glsl: pass mem_ctx to constant_expression_value(...) and friends
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 void *mem_ctx = state;
2233
2234 exec_list dummy_instructions;
2235
2236 ast_node *array_size = exec_node_data(ast_node, node, link);
2237
2238 /**
2239 * Dimensions other than the outermost dimension can by unsized if they
2240 * are immediately sized by a constructor or initializer.
2241 */
2242 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2243 return 0;
2244
2245 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2246 YYLTYPE loc = array_size->get_location();
2247
2248 if (ir == NULL) {
2249 _mesa_glsl_error(& loc, state,
2250 "array size could not be resolved");
2251 return 0;
2252 }
2253
2254 if (!ir->type->is_integer()) {
2255 _mesa_glsl_error(& loc, state,
2256 "array size must be integer type");
2257 return 0;
2258 }
2259
2260 if (!ir->type->is_scalar()) {
2261 _mesa_glsl_error(& loc, state,
2262 "array size must be scalar type");
2263 return 0;
2264 }
2265
2266 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2267 if (size == NULL ||
2268 (state->is_version(120, 300) &&
2269 array_size->has_sequence_subexpression())) {
2270 _mesa_glsl_error(& loc, state, "array size must be a "
2271 "constant valued expression");
2272 return 0;
2273 }
2274
2275 if (size->value.i[0] <= 0) {
2276 _mesa_glsl_error(& loc, state, "array size must be > 0");
2277 return 0;
2278 }
2279
2280 assert(size->type == ir->type);
2281
2282 /* If the array size is const (and we've verified that
2283 * it is) then no instructions should have been emitted
2284 * when we converted it to HIR. If they were emitted,
2285 * then either the array size isn't const after all, or
2286 * we are emitting unnecessary instructions.
2287 */
2288 assert(dummy_instructions.is_empty());
2289
2290 return size->value.u[0];
2291 }
2292
2293 static const glsl_type *
2294 process_array_type(YYLTYPE *loc, const glsl_type *base,
2295 ast_array_specifier *array_specifier,
2296 struct _mesa_glsl_parse_state *state)
2297 {
2298 const glsl_type *array_type = base;
2299
2300 if (array_specifier != NULL) {
2301 if (base->is_array()) {
2302
2303 /* From page 19 (page 25) of the GLSL 1.20 spec:
2304 *
2305 * "Only one-dimensional arrays may be declared."
2306 */
2307 if (!state->check_arrays_of_arrays_allowed(loc)) {
2308 return glsl_type::error_type;
2309 }
2310 }
2311
2312 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2313 !node->is_head_sentinel(); node = node->prev) {
2314 unsigned array_size = process_array_size(node, state);
2315 array_type = glsl_type::get_array_instance(array_type, array_size);
2316 }
2317 }
2318
2319 return array_type;
2320 }
2321
2322 static bool
2323 precision_qualifier_allowed(const glsl_type *type)
2324 {
2325 /* Precision qualifiers apply to floating point, integer and opaque
2326 * types.
2327 *
2328 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2329 * "Any floating point or any integer declaration can have the type
2330 * preceded by one of these precision qualifiers [...] Literal
2331 * constants do not have precision qualifiers. Neither do Boolean
2332 * variables.
2333 *
2334 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2335 * spec also says:
2336 *
2337 * "Precision qualifiers are added for code portability with OpenGL
2338 * ES, not for functionality. They have the same syntax as in OpenGL
2339 * ES."
2340 *
2341 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2342 *
2343 * "uniform lowp sampler2D sampler;
2344 * highp vec2 coord;
2345 * ...
2346 * lowp vec4 col = texture2D (sampler, coord);
2347 * // texture2D returns lowp"
2348 *
2349 * From this, we infer that GLSL 1.30 (and later) should allow precision
2350 * qualifiers on sampler types just like float and integer types.
2351 */
2352 const glsl_type *const t = type->without_array();
2353
2354 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2355 !t->is_record();
2356 }
2357
2358 const glsl_type *
2359 ast_type_specifier::glsl_type(const char **name,
2360 struct _mesa_glsl_parse_state *state) const
2361 {
2362 const struct glsl_type *type;
2363
2364 if (structure)
2365 type = structure->type;
2366 else
2367 type = state->symbols->get_type(this->type_name);
2368 *name = this->type_name;
2369
2370 YYLTYPE loc = this->get_location();
2371 type = process_array_type(&loc, type, this->array_specifier, state);
2372
2373 return type;
2374 }
2375
2376 /**
2377 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2378 *
2379 * "The precision statement
2380 *
2381 * precision precision-qualifier type;
2382 *
2383 * can be used to establish a default precision qualifier. The type field can
2384 * be either int or float or any of the sampler types, (...) If type is float,
2385 * the directive applies to non-precision-qualified floating point type
2386 * (scalar, vector, and matrix) declarations. If type is int, the directive
2387 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2388 * and unsigned) declarations."
2389 *
2390 * We use the symbol table to keep the values of the default precisions for
2391 * each 'type' in each scope and we use the 'type' string from the precision
2392 * statement as key in the symbol table. When we want to retrieve the default
2393 * precision associated with a given glsl_type we need to know the type string
2394 * associated with it. This is what this function returns.
2395 */
2396 static const char *
2397 get_type_name_for_precision_qualifier(const glsl_type *type)
2398 {
2399 switch (type->base_type) {
2400 case GLSL_TYPE_FLOAT:
2401 return "float";
2402 case GLSL_TYPE_UINT:
2403 case GLSL_TYPE_INT:
2404 return "int";
2405 case GLSL_TYPE_ATOMIC_UINT:
2406 return "atomic_uint";
2407 case GLSL_TYPE_IMAGE:
2408 /* fallthrough */
2409 case GLSL_TYPE_SAMPLER: {
2410 const unsigned type_idx =
2411 type->sampler_array + 2 * type->sampler_shadow;
2412 const unsigned offset = type->is_sampler() ? 0 : 4;
2413 assert(type_idx < 4);
2414 switch (type->sampled_type) {
2415 case GLSL_TYPE_FLOAT:
2416 switch (type->sampler_dimensionality) {
2417 case GLSL_SAMPLER_DIM_1D: {
2418 assert(type->is_sampler());
2419 static const char *const names[4] = {
2420 "sampler1D", "sampler1DArray",
2421 "sampler1DShadow", "sampler1DArrayShadow"
2422 };
2423 return names[type_idx];
2424 }
2425 case GLSL_SAMPLER_DIM_2D: {
2426 static const char *const names[8] = {
2427 "sampler2D", "sampler2DArray",
2428 "sampler2DShadow", "sampler2DArrayShadow",
2429 "image2D", "image2DArray", NULL, NULL
2430 };
2431 return names[offset + type_idx];
2432 }
2433 case GLSL_SAMPLER_DIM_3D: {
2434 static const char *const names[8] = {
2435 "sampler3D", NULL, NULL, NULL,
2436 "image3D", NULL, NULL, NULL
2437 };
2438 return names[offset + type_idx];
2439 }
2440 case GLSL_SAMPLER_DIM_CUBE: {
2441 static const char *const names[8] = {
2442 "samplerCube", "samplerCubeArray",
2443 "samplerCubeShadow", "samplerCubeArrayShadow",
2444 "imageCube", NULL, NULL, NULL
2445 };
2446 return names[offset + type_idx];
2447 }
2448 case GLSL_SAMPLER_DIM_MS: {
2449 assert(type->is_sampler());
2450 static const char *const names[4] = {
2451 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2452 };
2453 return names[type_idx];
2454 }
2455 case GLSL_SAMPLER_DIM_RECT: {
2456 assert(type->is_sampler());
2457 static const char *const names[4] = {
2458 "samplerRect", NULL, "samplerRectShadow", NULL
2459 };
2460 return names[type_idx];
2461 }
2462 case GLSL_SAMPLER_DIM_BUF: {
2463 static const char *const names[8] = {
2464 "samplerBuffer", NULL, NULL, NULL,
2465 "imageBuffer", NULL, NULL, NULL
2466 };
2467 return names[offset + type_idx];
2468 }
2469 case GLSL_SAMPLER_DIM_EXTERNAL: {
2470 assert(type->is_sampler());
2471 static const char *const names[4] = {
2472 "samplerExternalOES", NULL, NULL, NULL
2473 };
2474 return names[type_idx];
2475 }
2476 default:
2477 unreachable("Unsupported sampler/image dimensionality");
2478 } /* sampler/image float dimensionality */
2479 break;
2480 case GLSL_TYPE_INT:
2481 switch (type->sampler_dimensionality) {
2482 case GLSL_SAMPLER_DIM_1D: {
2483 assert(type->is_sampler());
2484 static const char *const names[4] = {
2485 "isampler1D", "isampler1DArray", NULL, NULL
2486 };
2487 return names[type_idx];
2488 }
2489 case GLSL_SAMPLER_DIM_2D: {
2490 static const char *const names[8] = {
2491 "isampler2D", "isampler2DArray", NULL, NULL,
2492 "iimage2D", "iimage2DArray", NULL, NULL
2493 };
2494 return names[offset + type_idx];
2495 }
2496 case GLSL_SAMPLER_DIM_3D: {
2497 static const char *const names[8] = {
2498 "isampler3D", NULL, NULL, NULL,
2499 "iimage3D", NULL, NULL, NULL
2500 };
2501 return names[offset + type_idx];
2502 }
2503 case GLSL_SAMPLER_DIM_CUBE: {
2504 static const char *const names[8] = {
2505 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2506 "iimageCube", NULL, NULL, NULL
2507 };
2508 return names[offset + type_idx];
2509 }
2510 case GLSL_SAMPLER_DIM_MS: {
2511 assert(type->is_sampler());
2512 static const char *const names[4] = {
2513 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2514 };
2515 return names[type_idx];
2516 }
2517 case GLSL_SAMPLER_DIM_RECT: {
2518 assert(type->is_sampler());
2519 static const char *const names[4] = {
2520 "isamplerRect", NULL, "isamplerRectShadow", NULL
2521 };
2522 return names[type_idx];
2523 }
2524 case GLSL_SAMPLER_DIM_BUF: {
2525 static const char *const names[8] = {
2526 "isamplerBuffer", NULL, NULL, NULL,
2527 "iimageBuffer", NULL, NULL, NULL
2528 };
2529 return names[offset + type_idx];
2530 }
2531 default:
2532 unreachable("Unsupported isampler/iimage dimensionality");
2533 } /* sampler/image int dimensionality */
2534 break;
2535 case GLSL_TYPE_UINT:
2536 switch (type->sampler_dimensionality) {
2537 case GLSL_SAMPLER_DIM_1D: {
2538 assert(type->is_sampler());
2539 static const char *const names[4] = {
2540 "usampler1D", "usampler1DArray", NULL, NULL
2541 };
2542 return names[type_idx];
2543 }
2544 case GLSL_SAMPLER_DIM_2D: {
2545 static const char *const names[8] = {
2546 "usampler2D", "usampler2DArray", NULL, NULL,
2547 "uimage2D", "uimage2DArray", NULL, NULL
2548 };
2549 return names[offset + type_idx];
2550 }
2551 case GLSL_SAMPLER_DIM_3D: {
2552 static const char *const names[8] = {
2553 "usampler3D", NULL, NULL, NULL,
2554 "uimage3D", NULL, NULL, NULL
2555 };
2556 return names[offset + type_idx];
2557 }
2558 case GLSL_SAMPLER_DIM_CUBE: {
2559 static const char *const names[8] = {
2560 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2561 "uimageCube", NULL, NULL, NULL
2562 };
2563 return names[offset + type_idx];
2564 }
2565 case GLSL_SAMPLER_DIM_MS: {
2566 assert(type->is_sampler());
2567 static const char *const names[4] = {
2568 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2569 };
2570 return names[type_idx];
2571 }
2572 case GLSL_SAMPLER_DIM_RECT: {
2573 assert(type->is_sampler());
2574 static const char *const names[4] = {
2575 "usamplerRect", NULL, "usamplerRectShadow", NULL
2576 };
2577 return names[type_idx];
2578 }
2579 case GLSL_SAMPLER_DIM_BUF: {
2580 static const char *const names[8] = {
2581 "usamplerBuffer", NULL, NULL, NULL,
2582 "uimageBuffer", NULL, NULL, NULL
2583 };
2584 return names[offset + type_idx];
2585 }
2586 default:
2587 unreachable("Unsupported usampler/uimage dimensionality");
2588 } /* sampler/image uint dimensionality */
2589 break;
2590 default:
2591 unreachable("Unsupported sampler/image type");
2592 } /* sampler/image type */
2593 break;
2594 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2595 break;
2596 default:
2597 unreachable("Unsupported type");
2598 } /* base type */
2599 }
2600
2601 static unsigned
2602 select_gles_precision(unsigned qual_precision,
2603 const glsl_type *type,
2604 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2605 {
2606 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2607 * In GLES we take the precision from the type qualifier if present,
2608 * otherwise, if the type of the variable allows precision qualifiers at
2609 * all, we look for the default precision qualifier for that type in the
2610 * current scope.
2611 */
2612 assert(state->es_shader);
2613
2614 unsigned precision = GLSL_PRECISION_NONE;
2615 if (qual_precision) {
2616 precision = qual_precision;
2617 } else if (precision_qualifier_allowed(type)) {
2618 const char *type_name =
2619 get_type_name_for_precision_qualifier(type->without_array());
2620 assert(type_name != NULL);
2621
2622 precision =
2623 state->symbols->get_default_precision_qualifier(type_name);
2624 if (precision == ast_precision_none) {
2625 _mesa_glsl_error(loc, state,
2626 "No precision specified in this scope for type `%s'",
2627 type->name);
2628 }
2629 }
2630
2631
2632 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2633 *
2634 * "The default precision of all atomic types is highp. It is an error to
2635 * declare an atomic type with a different precision or to specify the
2636 * default precision for an atomic type to be lowp or mediump."
2637 */
2638 if (type->is_atomic_uint() && precision != ast_precision_high) {
2639 _mesa_glsl_error(loc, state,
2640 "atomic_uint can only have highp precision qualifier");
2641 }
2642
2643 return precision;
2644 }
2645
2646 const glsl_type *
2647 ast_fully_specified_type::glsl_type(const char **name,
2648 struct _mesa_glsl_parse_state *state) const
2649 {
2650 return this->specifier->glsl_type(name, state);
2651 }
2652
2653 /**
2654 * Determine whether a toplevel variable declaration declares a varying. This
2655 * function operates by examining the variable's mode and the shader target,
2656 * so it correctly identifies linkage variables regardless of whether they are
2657 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2658 *
2659 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2660 * this function will produce undefined results.
2661 */
2662 static bool
2663 is_varying_var(ir_variable *var, gl_shader_stage target)
2664 {
2665 switch (target) {
2666 case MESA_SHADER_VERTEX:
2667 return var->data.mode == ir_var_shader_out;
2668 case MESA_SHADER_FRAGMENT:
2669 return var->data.mode == ir_var_shader_in;
2670 default:
2671 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2672 }
2673 }
2674
2675 static bool
2676 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2677 {
2678 if (is_varying_var(var, state->stage))
2679 return true;
2680
2681 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2682 * "Only variables output from a vertex shader can be candidates
2683 * for invariance".
2684 */
2685 if (!state->is_version(130, 0))
2686 return false;
2687
2688 /*
2689 * Later specs remove this language - so allowed invariant
2690 * on fragment shader outputs as well.
2691 */
2692 if (state->stage == MESA_SHADER_FRAGMENT &&
2693 var->data.mode == ir_var_shader_out)
2694 return true;
2695 return false;
2696 }
2697
2698 /**
2699 * Matrix layout qualifiers are only allowed on certain types
2700 */
2701 static void
2702 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2703 YYLTYPE *loc,
2704 const glsl_type *type,
2705 ir_variable *var)
2706 {
2707 if (var && !var->is_in_buffer_block()) {
2708 /* Layout qualifiers may only apply to interface blocks and fields in
2709 * them.
2710 */
2711 _mesa_glsl_error(loc, state,
2712 "uniform block layout qualifiers row_major and "
2713 "column_major may not be applied to variables "
2714 "outside of uniform blocks");
2715 } else if (!type->without_array()->is_matrix()) {
2716 /* The OpenGL ES 3.0 conformance tests did not originally allow
2717 * matrix layout qualifiers on non-matrices. However, the OpenGL
2718 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2719 * amended to specifically allow these layouts on all types. Emit
2720 * a warning so that people know their code may not be portable.
2721 */
2722 _mesa_glsl_warning(loc, state,
2723 "uniform block layout qualifiers row_major and "
2724 "column_major applied to non-matrix types may "
2725 "be rejected by older compilers");
2726 }
2727 }
2728
2729 static bool
2730 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2731 struct _mesa_glsl_parse_state *state,
2732 unsigned xfb_buffer) {
2733 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2734 _mesa_glsl_error(loc, state,
2735 "invalid xfb_buffer specified %d is larger than "
2736 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2737 xfb_buffer,
2738 state->Const.MaxTransformFeedbackBuffers - 1);
2739 return false;
2740 }
2741
2742 return true;
2743 }
2744
2745 /* From the ARB_enhanced_layouts spec:
2746 *
2747 * "Variables and block members qualified with *xfb_offset* can be
2748 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2749 * The offset must be a multiple of the size of the first component of
2750 * the first qualified variable or block member, or a compile-time error
2751 * results. Further, if applied to an aggregate containing a double,
2752 * the offset must also be a multiple of 8, and the space taken in the
2753 * buffer will be a multiple of 8.
2754 */
2755 static bool
2756 validate_xfb_offset_qualifier(YYLTYPE *loc,
2757 struct _mesa_glsl_parse_state *state,
2758 int xfb_offset, const glsl_type *type,
2759 unsigned component_size) {
2760 const glsl_type *t_without_array = type->without_array();
2761
2762 if (xfb_offset != -1 && type->is_unsized_array()) {
2763 _mesa_glsl_error(loc, state,
2764 "xfb_offset can't be used with unsized arrays.");
2765 return false;
2766 }
2767
2768 /* Make sure nested structs don't contain unsized arrays, and validate
2769 * any xfb_offsets on interface members.
2770 */
2771 if (t_without_array->is_record() || t_without_array->is_interface())
2772 for (unsigned int i = 0; i < t_without_array->length; i++) {
2773 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2774
2775 /* When the interface block doesn't have an xfb_offset qualifier then
2776 * we apply the component size rules at the member level.
2777 */
2778 if (xfb_offset == -1)
2779 component_size = member_t->contains_double() ? 8 : 4;
2780
2781 int xfb_offset = t_without_array->fields.structure[i].offset;
2782 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2783 component_size);
2784 }
2785
2786 /* Nested structs or interface block without offset may not have had an
2787 * offset applied yet so return.
2788 */
2789 if (xfb_offset == -1) {
2790 return true;
2791 }
2792
2793 if (xfb_offset % component_size) {
2794 _mesa_glsl_error(loc, state,
2795 "invalid qualifier xfb_offset=%d must be a multiple "
2796 "of the first component size of the first qualified "
2797 "variable or block member. Or double if an aggregate "
2798 "that contains a double (%d).",
2799 xfb_offset, component_size);
2800 return false;
2801 }
2802
2803 return true;
2804 }
2805
2806 static bool
2807 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2808 unsigned stream)
2809 {
2810 if (stream >= state->ctx->Const.MaxVertexStreams) {
2811 _mesa_glsl_error(loc, state,
2812 "invalid stream specified %d is larger than "
2813 "MAX_VERTEX_STREAMS - 1 (%d).",
2814 stream, state->ctx->Const.MaxVertexStreams - 1);
2815 return false;
2816 }
2817
2818 return true;
2819 }
2820
2821 static void
2822 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2823 YYLTYPE *loc,
2824 ir_variable *var,
2825 const glsl_type *type,
2826 const ast_type_qualifier *qual)
2827 {
2828 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2829 _mesa_glsl_error(loc, state,
2830 "the \"binding\" qualifier only applies to uniforms and "
2831 "shader storage buffer objects");
2832 return;
2833 }
2834
2835 unsigned qual_binding;
2836 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2837 &qual_binding)) {
2838 return;
2839 }
2840
2841 const struct gl_context *const ctx = state->ctx;
2842 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2843 unsigned max_index = qual_binding + elements - 1;
2844 const glsl_type *base_type = type->without_array();
2845
2846 if (base_type->is_interface()) {
2847 /* UBOs. From page 60 of the GLSL 4.20 specification:
2848 * "If the binding point for any uniform block instance is less than zero,
2849 * or greater than or equal to the implementation-dependent maximum
2850 * number of uniform buffer bindings, a compilation error will occur.
2851 * When the binding identifier is used with a uniform block instanced as
2852 * an array of size N, all elements of the array from binding through
2853 * binding + N – 1 must be within this range."
2854 *
2855 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2856 */
2857 if (qual->flags.q.uniform &&
2858 max_index >= ctx->Const.MaxUniformBufferBindings) {
2859 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2860 "the maximum number of UBO binding points (%d)",
2861 qual_binding, elements,
2862 ctx->Const.MaxUniformBufferBindings);
2863 return;
2864 }
2865
2866 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2867 * "If the binding point for any uniform or shader storage block instance
2868 * is less than zero, or greater than or equal to the
2869 * implementation-dependent maximum number of uniform buffer bindings, a
2870 * compile-time error will occur. When the binding identifier is used
2871 * with a uniform or shader storage block instanced as an array of size
2872 * N, all elements of the array from binding through binding + N – 1 must
2873 * be within this range."
2874 */
2875 if (qual->flags.q.buffer &&
2876 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2877 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2878 "the maximum number of SSBO binding points (%d)",
2879 qual_binding, elements,
2880 ctx->Const.MaxShaderStorageBufferBindings);
2881 return;
2882 }
2883 } else if (base_type->is_sampler()) {
2884 /* Samplers. From page 63 of the GLSL 4.20 specification:
2885 * "If the binding is less than zero, or greater than or equal to the
2886 * implementation-dependent maximum supported number of units, a
2887 * compilation error will occur. When the binding identifier is used
2888 * with an array of size N, all elements of the array from binding
2889 * through binding + N - 1 must be within this range."
2890 */
2891 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2892
2893 if (max_index >= limit) {
2894 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2895 "exceeds the maximum number of texture image units "
2896 "(%u)", qual_binding, elements, limit);
2897
2898 return;
2899 }
2900 } else if (base_type->contains_atomic()) {
2901 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2902 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2903 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2904 "maximum number of atomic counter buffer bindings "
2905 "(%u)", qual_binding,
2906 ctx->Const.MaxAtomicBufferBindings);
2907
2908 return;
2909 }
2910 } else if ((state->is_version(420, 310) ||
2911 state->ARB_shading_language_420pack_enable) &&
2912 base_type->is_image()) {
2913 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2914 if (max_index >= ctx->Const.MaxImageUnits) {
2915 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2916 "maximum number of image units (%d)", max_index,
2917 ctx->Const.MaxImageUnits);
2918 return;
2919 }
2920
2921 } else {
2922 _mesa_glsl_error(loc, state,
2923 "the \"binding\" qualifier only applies to uniform "
2924 "blocks, storage blocks, opaque variables, or arrays "
2925 "thereof");
2926 return;
2927 }
2928
2929 var->data.explicit_binding = true;
2930 var->data.binding = qual_binding;
2931
2932 return;
2933 }
2934
2935 static void
2936 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2937 YYLTYPE *loc,
2938 const glsl_interp_mode interpolation,
2939 const struct glsl_type *var_type,
2940 ir_variable_mode mode)
2941 {
2942 if (state->stage != MESA_SHADER_FRAGMENT ||
2943 interpolation == INTERP_MODE_FLAT ||
2944 mode != ir_var_shader_in)
2945 return;
2946
2947 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2948 * so must integer vertex outputs.
2949 *
2950 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2951 * "Fragment shader inputs that are signed or unsigned integers or
2952 * integer vectors must be qualified with the interpolation qualifier
2953 * flat."
2954 *
2955 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2956 * "Fragment shader inputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2961 * "Vertex shader outputs that are, or contain, signed or unsigned
2962 * integers or integer vectors must be qualified with the
2963 * interpolation qualifier flat."
2964 *
2965 * Note that prior to GLSL 1.50, this requirement applied to vertex
2966 * outputs rather than fragment inputs. That creates problems in the
2967 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2968 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2969 * apply the restriction to both vertex outputs and fragment inputs.
2970 *
2971 * Note also that the desktop GLSL specs are missing the text "or
2972 * contain"; this is presumably an oversight, since there is no
2973 * reasonable way to interpolate a fragment shader input that contains
2974 * an integer. See Khronos bug #15671.
2975 */
2976 if (state->is_version(130, 300)
2977 && var_type->contains_integer()) {
2978 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2979 "an integer, then it must be qualified with 'flat'");
2980 }
2981
2982 /* Double fragment inputs must be qualified with 'flat'.
2983 *
2984 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2985 * "This extension does not support interpolation of double-precision
2986 * values; doubles used as fragment shader inputs must be qualified as
2987 * "flat"."
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers, integer
2991 * vectors, or any double-precision floating-point type must be
2992 * qualified with the interpolation qualifier flat."
2993 *
2994 * Note that the GLSL specs are missing the text "or contain"; this is
2995 * presumably an oversight. See Khronos bug #15671.
2996 *
2997 * The 'double' type does not exist in GLSL ES so far.
2998 */
2999 if (state->has_double()
3000 && var_type->contains_double()) {
3001 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3002 "a double, then it must be qualified with 'flat'");
3003 }
3004
3005 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3006 *
3007 * From section 4.3.4 of the ARB_bindless_texture spec:
3008 *
3009 * "(modify last paragraph, p. 35, allowing samplers and images as
3010 * fragment shader inputs) ... Fragment inputs can only be signed and
3011 * unsigned integers and integer vectors, floating point scalars,
3012 * floating-point vectors, matrices, sampler and image types, or arrays
3013 * or structures of these. Fragment shader inputs that are signed or
3014 * unsigned integers, integer vectors, or any double-precision floating-
3015 * point type, or any sampler or image type must be qualified with the
3016 * interpolation qualifier "flat"."
3017 */
3018 if (state->has_bindless()
3019 && (var_type->contains_sampler() || var_type->contains_image())) {
3020 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3021 "a bindless sampler (or image), then it must be "
3022 "qualified with 'flat'");
3023 }
3024 }
3025
3026 static void
3027 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3028 YYLTYPE *loc,
3029 const glsl_interp_mode interpolation,
3030 const struct ast_type_qualifier *qual,
3031 const struct glsl_type *var_type,
3032 ir_variable_mode mode)
3033 {
3034 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3035 * not to vertex shader inputs nor fragment shader outputs.
3036 *
3037 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3038 * "Outputs from a vertex shader (out) and inputs to a fragment
3039 * shader (in) can be further qualified with one or more of these
3040 * interpolation qualifiers"
3041 * ...
3042 * "These interpolation qualifiers may only precede the qualifiers in,
3043 * centroid in, out, or centroid out in a declaration. They do not apply
3044 * to the deprecated storage qualifiers varying or centroid
3045 * varying. They also do not apply to inputs into a vertex shader or
3046 * outputs from a fragment shader."
3047 *
3048 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3049 * "Outputs from a shader (out) and inputs to a shader (in) can be
3050 * further qualified with one of these interpolation qualifiers."
3051 * ...
3052 * "These interpolation qualifiers may only precede the qualifiers
3053 * in, centroid in, out, or centroid out in a declaration. They do
3054 * not apply to inputs into a vertex shader or outputs from a
3055 * fragment shader."
3056 */
3057 if (state->is_version(130, 300)
3058 && interpolation != INTERP_MODE_NONE) {
3059 const char *i = interpolation_string(interpolation);
3060 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3061 _mesa_glsl_error(loc, state,
3062 "interpolation qualifier `%s' can only be applied to "
3063 "shader inputs or outputs.", i);
3064
3065 switch (state->stage) {
3066 case MESA_SHADER_VERTEX:
3067 if (mode == ir_var_shader_in) {
3068 _mesa_glsl_error(loc, state,
3069 "interpolation qualifier '%s' cannot be applied to "
3070 "vertex shader inputs", i);
3071 }
3072 break;
3073 case MESA_SHADER_FRAGMENT:
3074 if (mode == ir_var_shader_out) {
3075 _mesa_glsl_error(loc, state,
3076 "interpolation qualifier '%s' cannot be applied to "
3077 "fragment shader outputs", i);
3078 }
3079 break;
3080 default:
3081 break;
3082 }
3083 }
3084
3085 /* Interpolation qualifiers cannot be applied to 'centroid' and
3086 * 'centroid varying'.
3087 *
3088 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3089 * "interpolation qualifiers may only precede the qualifiers in,
3090 * centroid in, out, or centroid out in a declaration. They do not apply
3091 * to the deprecated storage qualifiers varying or centroid varying."
3092 *
3093 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3094 */
3095 if (state->is_version(130, 0)
3096 && interpolation != INTERP_MODE_NONE
3097 && qual->flags.q.varying) {
3098
3099 const char *i = interpolation_string(interpolation);
3100 const char *s;
3101 if (qual->flags.q.centroid)
3102 s = "centroid varying";
3103 else
3104 s = "varying";
3105
3106 _mesa_glsl_error(loc, state,
3107 "qualifier '%s' cannot be applied to the "
3108 "deprecated storage qualifier '%s'", i, s);
3109 }
3110
3111 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3112 var_type, mode);
3113 }
3114
3115 static glsl_interp_mode
3116 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3117 const struct glsl_type *var_type,
3118 ir_variable_mode mode,
3119 struct _mesa_glsl_parse_state *state,
3120 YYLTYPE *loc)
3121 {
3122 glsl_interp_mode interpolation;
3123 if (qual->flags.q.flat)
3124 interpolation = INTERP_MODE_FLAT;
3125 else if (qual->flags.q.noperspective)
3126 interpolation = INTERP_MODE_NOPERSPECTIVE;
3127 else if (qual->flags.q.smooth)
3128 interpolation = INTERP_MODE_SMOOTH;
3129 else if (state->es_shader &&
3130 ((mode == ir_var_shader_in &&
3131 state->stage != MESA_SHADER_VERTEX) ||
3132 (mode == ir_var_shader_out &&
3133 state->stage != MESA_SHADER_FRAGMENT)))
3134 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3135 *
3136 * "When no interpolation qualifier is present, smooth interpolation
3137 * is used."
3138 */
3139 interpolation = INTERP_MODE_SMOOTH;
3140 else
3141 interpolation = INTERP_MODE_NONE;
3142
3143 validate_interpolation_qualifier(state, loc,
3144 interpolation,
3145 qual, var_type, mode);
3146
3147 return interpolation;
3148 }
3149
3150
3151 static void
3152 apply_explicit_location(const struct ast_type_qualifier *qual,
3153 ir_variable *var,
3154 struct _mesa_glsl_parse_state *state,
3155 YYLTYPE *loc)
3156 {
3157 bool fail = false;
3158
3159 unsigned qual_location;
3160 if (!process_qualifier_constant(state, loc, "location", qual->location,
3161 &qual_location)) {
3162 return;
3163 }
3164
3165 /* Checks for GL_ARB_explicit_uniform_location. */
3166 if (qual->flags.q.uniform) {
3167 if (!state->check_explicit_uniform_location_allowed(loc, var))
3168 return;
3169
3170 const struct gl_context *const ctx = state->ctx;
3171 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3172
3173 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3174 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3175 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3176 ctx->Const.MaxUserAssignableUniformLocations);
3177 return;
3178 }
3179
3180 var->data.explicit_location = true;
3181 var->data.location = qual_location;
3182 return;
3183 }
3184
3185 /* Between GL_ARB_explicit_attrib_location an
3186 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3187 * stage can be assigned explicit locations. The checking here associates
3188 * the correct extension with the correct stage's input / output:
3189 *
3190 * input output
3191 * ----- ------
3192 * vertex explicit_loc sso
3193 * tess control sso sso
3194 * tess eval sso sso
3195 * geometry sso sso
3196 * fragment sso explicit_loc
3197 */
3198 switch (state->stage) {
3199 case MESA_SHADER_VERTEX:
3200 if (var->data.mode == ir_var_shader_in) {
3201 if (!state->check_explicit_attrib_location_allowed(loc, var))
3202 return;
3203
3204 break;
3205 }
3206
3207 if (var->data.mode == ir_var_shader_out) {
3208 if (!state->check_separate_shader_objects_allowed(loc, var))
3209 return;
3210
3211 break;
3212 }
3213
3214 fail = true;
3215 break;
3216
3217 case MESA_SHADER_TESS_CTRL:
3218 case MESA_SHADER_TESS_EVAL:
3219 case MESA_SHADER_GEOMETRY:
3220 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3221 if (!state->check_separate_shader_objects_allowed(loc, var))
3222 return;
3223
3224 break;
3225 }
3226
3227 fail = true;
3228 break;
3229
3230 case MESA_SHADER_FRAGMENT:
3231 if (var->data.mode == ir_var_shader_in) {
3232 if (!state->check_separate_shader_objects_allowed(loc, var))
3233 return;
3234
3235 break;
3236 }
3237
3238 if (var->data.mode == ir_var_shader_out) {
3239 if (!state->check_explicit_attrib_location_allowed(loc, var))
3240 return;
3241
3242 break;
3243 }
3244
3245 fail = true;
3246 break;
3247
3248 case MESA_SHADER_COMPUTE:
3249 _mesa_glsl_error(loc, state,
3250 "compute shader variables cannot be given "
3251 "explicit locations");
3252 return;
3253 default:
3254 fail = true;
3255 break;
3256 };
3257
3258 if (fail) {
3259 _mesa_glsl_error(loc, state,
3260 "%s cannot be given an explicit location in %s shader",
3261 mode_string(var),
3262 _mesa_shader_stage_to_string(state->stage));
3263 } else {
3264 var->data.explicit_location = true;
3265
3266 switch (state->stage) {
3267 case MESA_SHADER_VERTEX:
3268 var->data.location = (var->data.mode == ir_var_shader_in)
3269 ? (qual_location + VERT_ATTRIB_GENERIC0)
3270 : (qual_location + VARYING_SLOT_VAR0);
3271 break;
3272
3273 case MESA_SHADER_TESS_CTRL:
3274 case MESA_SHADER_TESS_EVAL:
3275 case MESA_SHADER_GEOMETRY:
3276 if (var->data.patch)
3277 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3278 else
3279 var->data.location = qual_location + VARYING_SLOT_VAR0;
3280 break;
3281
3282 case MESA_SHADER_FRAGMENT:
3283 var->data.location = (var->data.mode == ir_var_shader_out)
3284 ? (qual_location + FRAG_RESULT_DATA0)
3285 : (qual_location + VARYING_SLOT_VAR0);
3286 break;
3287 default:
3288 assert(!"Unexpected shader type");
3289 break;
3290 }
3291
3292 /* Check if index was set for the uniform instead of the function */
3293 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3294 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3295 "used with subroutine functions");
3296 return;
3297 }
3298
3299 unsigned qual_index;
3300 if (qual->flags.q.explicit_index &&
3301 process_qualifier_constant(state, loc, "index", qual->index,
3302 &qual_index)) {
3303 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3304 * Layout Qualifiers):
3305 *
3306 * "It is also a compile-time error if a fragment shader
3307 * sets a layout index to less than 0 or greater than 1."
3308 *
3309 * Older specifications don't mandate a behavior; we take
3310 * this as a clarification and always generate the error.
3311 */
3312 if (qual_index > 1) {
3313 _mesa_glsl_error(loc, state,
3314 "explicit index may only be 0 or 1");
3315 } else {
3316 var->data.explicit_index = true;
3317 var->data.index = qual_index;
3318 }
3319 }
3320 }
3321 }
3322
3323 static bool
3324 validate_storage_for_sampler_image_types(ir_variable *var,
3325 struct _mesa_glsl_parse_state *state,
3326 YYLTYPE *loc)
3327 {
3328 /* From section 4.1.7 of the GLSL 4.40 spec:
3329 *
3330 * "[Opaque types] can only be declared as function
3331 * parameters or uniform-qualified variables."
3332 *
3333 * From section 4.1.7 of the ARB_bindless_texture spec:
3334 *
3335 * "Samplers may be declared as shader inputs and outputs, as uniform
3336 * variables, as temporary variables, and as function parameters."
3337 *
3338 * From section 4.1.X of the ARB_bindless_texture spec:
3339 *
3340 * "Images may be declared as shader inputs and outputs, as uniform
3341 * variables, as temporary variables, and as function parameters."
3342 */
3343 if (state->has_bindless()) {
3344 if (var->data.mode != ir_var_auto &&
3345 var->data.mode != ir_var_uniform &&
3346 var->data.mode != ir_var_shader_in &&
3347 var->data.mode != ir_var_shader_out &&
3348 var->data.mode != ir_var_function_in &&
3349 var->data.mode != ir_var_function_out &&
3350 var->data.mode != ir_var_function_inout) {
3351 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3352 "only be declared as shader inputs and outputs, as "
3353 "uniform variables, as temporary variables and as "
3354 "function parameters");
3355 return false;
3356 }
3357 } else {
3358 if (var->data.mode != ir_var_uniform &&
3359 var->data.mode != ir_var_function_in) {
3360 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3361 "declared as function parameters or "
3362 "uniform-qualified global variables");
3363 return false;
3364 }
3365 }
3366 return true;
3367 }
3368
3369 static bool
3370 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3371 YYLTYPE *loc,
3372 const struct ast_type_qualifier *qual,
3373 const glsl_type *type)
3374 {
3375 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3376 *
3377 * "Memory qualifiers are only supported in the declarations of image
3378 * variables, buffer variables, and shader storage blocks; it is an error
3379 * to use such qualifiers in any other declarations.
3380 */
3381 if (!type->is_image() && !qual->flags.q.buffer) {
3382 if (qual->flags.q.read_only ||
3383 qual->flags.q.write_only ||
3384 qual->flags.q.coherent ||
3385 qual->flags.q._volatile ||
3386 qual->flags.q.restrict_flag) {
3387 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3388 "in the declarations of image variables, buffer "
3389 "variables, and shader storage blocks");
3390 return false;
3391 }
3392 }
3393 return true;
3394 }
3395
3396 static bool
3397 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3398 YYLTYPE *loc,
3399 const struct ast_type_qualifier *qual,
3400 const glsl_type *type)
3401 {
3402 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3403 *
3404 * "Format layout qualifiers can be used on image variable declarations
3405 * (those declared with a basic type having “image ” in its keyword)."
3406 */
3407 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3408 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3409 "applied to images");
3410 return false;
3411 }
3412 return true;
3413 }
3414
3415 static void
3416 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3417 ir_variable *var,
3418 struct _mesa_glsl_parse_state *state,
3419 YYLTYPE *loc)
3420 {
3421 const glsl_type *base_type = var->type->without_array();
3422
3423 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3424 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3425 return;
3426
3427 if (!base_type->is_image())
3428 return;
3429
3430 if (!validate_storage_for_sampler_image_types(var, state, loc))
3431 return;
3432
3433 var->data.memory_read_only |= qual->flags.q.read_only;
3434 var->data.memory_write_only |= qual->flags.q.write_only;
3435 var->data.memory_coherent |= qual->flags.q.coherent;
3436 var->data.memory_volatile |= qual->flags.q._volatile;
3437 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3438
3439 if (qual->flags.q.explicit_image_format) {
3440 if (var->data.mode == ir_var_function_in) {
3441 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3442 "image function parameters");
3443 }
3444
3445 if (qual->image_base_type != base_type->sampled_type) {
3446 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3447 "data type of the image");
3448 }
3449
3450 var->data.image_format = qual->image_format;
3451 } else {
3452 if (var->data.mode == ir_var_uniform) {
3453 if (state->es_shader) {
3454 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3455 "format layout qualifier");
3456 } else if (!qual->flags.q.write_only) {
3457 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3458 "`writeonly' must have a format layout qualifier");
3459 }
3460 }
3461 var->data.image_format = GL_NONE;
3462 }
3463
3464 /* From page 70 of the GLSL ES 3.1 specification:
3465 *
3466 * "Except for image variables qualified with the format qualifiers r32f,
3467 * r32i, and r32ui, image variables must specify either memory qualifier
3468 * readonly or the memory qualifier writeonly."
3469 */
3470 if (state->es_shader &&
3471 var->data.image_format != GL_R32F &&
3472 var->data.image_format != GL_R32I &&
3473 var->data.image_format != GL_R32UI &&
3474 !var->data.memory_read_only &&
3475 !var->data.memory_write_only) {
3476 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3477 "r32i or r32ui must be qualified `readonly' or "
3478 "`writeonly'");
3479 }
3480 }
3481
3482 static inline const char*
3483 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3484 {
3485 if (origin_upper_left && pixel_center_integer)
3486 return "origin_upper_left, pixel_center_integer";
3487 else if (origin_upper_left)
3488 return "origin_upper_left";
3489 else if (pixel_center_integer)
3490 return "pixel_center_integer";
3491 else
3492 return " ";
3493 }
3494
3495 static inline bool
3496 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3497 const struct ast_type_qualifier *qual)
3498 {
3499 /* If gl_FragCoord was previously declared, and the qualifiers were
3500 * different in any way, return true.
3501 */
3502 if (state->fs_redeclares_gl_fragcoord) {
3503 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3504 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3505 }
3506
3507 return false;
3508 }
3509
3510 static inline void
3511 validate_array_dimensions(const glsl_type *t,
3512 struct _mesa_glsl_parse_state *state,
3513 YYLTYPE *loc) {
3514 if (t->is_array()) {
3515 t = t->fields.array;
3516 while (t->is_array()) {
3517 if (t->is_unsized_array()) {
3518 _mesa_glsl_error(loc, state,
3519 "only the outermost array dimension can "
3520 "be unsized",
3521 t->name);
3522 break;
3523 }
3524 t = t->fields.array;
3525 }
3526 }
3527 }
3528
3529 static void
3530 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3531 ir_variable *var,
3532 struct _mesa_glsl_parse_state *state,
3533 YYLTYPE *loc)
3534 {
3535 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3536 qual->flags.q.bindless_image ||
3537 qual->flags.q.bound_sampler ||
3538 qual->flags.q.bound_image;
3539
3540 /* The ARB_bindless_texture spec says:
3541 *
3542 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3543 * spec"
3544 *
3545 * "If these layout qualifiers are applied to other types of default block
3546 * uniforms, or variables with non-uniform storage, a compile-time error
3547 * will be generated."
3548 */
3549 if (has_local_qualifiers && !qual->flags.q.uniform) {
3550 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3551 "can only be applied to default block uniforms or "
3552 "variables with uniform storage");
3553 return;
3554 }
3555
3556 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3557 * but it makes sense to only allow bindless_sampler/bound_sampler for
3558 * sampler types, and respectively bindless_image/bound_image for image
3559 * types.
3560 */
3561 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3562 !var->type->contains_sampler()) {
3563 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3564 "be applied to sampler types");
3565 return;
3566 }
3567
3568 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3569 !var->type->contains_image()) {
3570 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3571 "applied to image types");
3572 return;
3573 }
3574
3575 /* The bindless_sampler/bindless_image (and respectively
3576 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3577 * local scope.
3578 */
3579 if (var->type->contains_sampler() || var->type->contains_image()) {
3580 var->data.bindless = qual->flags.q.bindless_sampler ||
3581 qual->flags.q.bindless_image ||
3582 state->bindless_sampler_specified ||
3583 state->bindless_image_specified;
3584
3585 var->data.bound = qual->flags.q.bound_sampler ||
3586 qual->flags.q.bound_image ||
3587 state->bound_sampler_specified ||
3588 state->bound_image_specified;
3589 }
3590 }
3591
3592 static void
3593 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3594 ir_variable *var,
3595 struct _mesa_glsl_parse_state *state,
3596 YYLTYPE *loc)
3597 {
3598 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3599
3600 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3601 *
3602 * "Within any shader, the first redeclarations of gl_FragCoord
3603 * must appear before any use of gl_FragCoord."
3604 *
3605 * Generate a compiler error if above condition is not met by the
3606 * fragment shader.
3607 */
3608 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3609 if (earlier != NULL &&
3610 earlier->data.used &&
3611 !state->fs_redeclares_gl_fragcoord) {
3612 _mesa_glsl_error(loc, state,
3613 "gl_FragCoord used before its first redeclaration "
3614 "in fragment shader");
3615 }
3616
3617 /* Make sure all gl_FragCoord redeclarations specify the same layout
3618 * qualifiers.
3619 */
3620 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3621 const char *const qual_string =
3622 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3623 qual->flags.q.pixel_center_integer);
3624
3625 const char *const state_string =
3626 get_layout_qualifier_string(state->fs_origin_upper_left,
3627 state->fs_pixel_center_integer);
3628
3629 _mesa_glsl_error(loc, state,
3630 "gl_FragCoord redeclared with different layout "
3631 "qualifiers (%s) and (%s) ",
3632 state_string,
3633 qual_string);
3634 }
3635 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3636 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3637 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3638 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3639 state->fs_redeclares_gl_fragcoord =
3640 state->fs_origin_upper_left ||
3641 state->fs_pixel_center_integer ||
3642 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3643 }
3644
3645 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3646 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3647 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3648 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3649 const char *const qual_string = (qual->flags.q.origin_upper_left)
3650 ? "origin_upper_left" : "pixel_center_integer";
3651
3652 _mesa_glsl_error(loc, state,
3653 "layout qualifier `%s' can only be applied to "
3654 "fragment shader input `gl_FragCoord'",
3655 qual_string);
3656 }
3657
3658 if (qual->flags.q.explicit_location) {
3659 apply_explicit_location(qual, var, state, loc);
3660
3661 if (qual->flags.q.explicit_component) {
3662 unsigned qual_component;
3663 if (process_qualifier_constant(state, loc, "component",
3664 qual->component, &qual_component)) {
3665 const glsl_type *type = var->type->without_array();
3666 unsigned components = type->component_slots();
3667
3668 if (type->is_matrix() || type->is_record()) {
3669 _mesa_glsl_error(loc, state, "component layout qualifier "
3670 "cannot be applied to a matrix, a structure, "
3671 "a block, or an array containing any of "
3672 "these.");
3673 } else if (qual_component != 0 &&
3674 (qual_component + components - 1) > 3) {
3675 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3676 (qual_component + components - 1));
3677 } else if (qual_component == 1 && type->is_64bit()) {
3678 /* We don't bother checking for 3 as it should be caught by the
3679 * overflow check above.
3680 */
3681 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3682 "component 1 or 3");
3683 } else {
3684 var->data.explicit_component = true;
3685 var->data.location_frac = qual_component;
3686 }
3687 }
3688 }
3689 } else if (qual->flags.q.explicit_index) {
3690 if (!qual->subroutine_list)
3691 _mesa_glsl_error(loc, state,
3692 "explicit index requires explicit location");
3693 } else if (qual->flags.q.explicit_component) {
3694 _mesa_glsl_error(loc, state,
3695 "explicit component requires explicit location");
3696 }
3697
3698 if (qual->flags.q.explicit_binding) {
3699 apply_explicit_binding(state, loc, var, var->type, qual);
3700 }
3701
3702 if (state->stage == MESA_SHADER_GEOMETRY &&
3703 qual->flags.q.out && qual->flags.q.stream) {
3704 unsigned qual_stream;
3705 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3706 &qual_stream) &&
3707 validate_stream_qualifier(loc, state, qual_stream)) {
3708 var->data.stream = qual_stream;
3709 }
3710 }
3711
3712 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3713 unsigned qual_xfb_buffer;
3714 if (process_qualifier_constant(state, loc, "xfb_buffer",
3715 qual->xfb_buffer, &qual_xfb_buffer) &&
3716 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3717 var->data.xfb_buffer = qual_xfb_buffer;
3718 if (qual->flags.q.explicit_xfb_buffer)
3719 var->data.explicit_xfb_buffer = true;
3720 }
3721 }
3722
3723 if (qual->flags.q.explicit_xfb_offset) {
3724 unsigned qual_xfb_offset;
3725 unsigned component_size = var->type->contains_double() ? 8 : 4;
3726
3727 if (process_qualifier_constant(state, loc, "xfb_offset",
3728 qual->offset, &qual_xfb_offset) &&
3729 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3730 var->type, component_size)) {
3731 var->data.offset = qual_xfb_offset;
3732 var->data.explicit_xfb_offset = true;
3733 }
3734 }
3735
3736 if (qual->flags.q.explicit_xfb_stride) {
3737 unsigned qual_xfb_stride;
3738 if (process_qualifier_constant(state, loc, "xfb_stride",
3739 qual->xfb_stride, &qual_xfb_stride)) {
3740 var->data.xfb_stride = qual_xfb_stride;
3741 var->data.explicit_xfb_stride = true;
3742 }
3743 }
3744
3745 if (var->type->contains_atomic()) {
3746 if (var->data.mode == ir_var_uniform) {
3747 if (var->data.explicit_binding) {
3748 unsigned *offset =
3749 &state->atomic_counter_offsets[var->data.binding];
3750
3751 if (*offset % ATOMIC_COUNTER_SIZE)
3752 _mesa_glsl_error(loc, state,
3753 "misaligned atomic counter offset");
3754
3755 var->data.offset = *offset;
3756 *offset += var->type->atomic_size();
3757
3758 } else {
3759 _mesa_glsl_error(loc, state,
3760 "atomic counters require explicit binding point");
3761 }
3762 } else if (var->data.mode != ir_var_function_in) {
3763 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3764 "function parameters or uniform-qualified "
3765 "global variables");
3766 }
3767 }
3768
3769 if (var->type->contains_sampler() &&
3770 !validate_storage_for_sampler_image_types(var, state, loc))
3771 return;
3772
3773 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3774 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3775 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3776 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3777 * These extensions and all following extensions that add the 'layout'
3778 * keyword have been modified to require the use of 'in' or 'out'.
3779 *
3780 * The following extension do not allow the deprecated keywords:
3781 *
3782 * GL_AMD_conservative_depth
3783 * GL_ARB_conservative_depth
3784 * GL_ARB_gpu_shader5
3785 * GL_ARB_separate_shader_objects
3786 * GL_ARB_tessellation_shader
3787 * GL_ARB_transform_feedback3
3788 * GL_ARB_uniform_buffer_object
3789 *
3790 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3791 * allow layout with the deprecated keywords.
3792 */
3793 const bool relaxed_layout_qualifier_checking =
3794 state->ARB_fragment_coord_conventions_enable;
3795
3796 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3797 || qual->flags.q.varying;
3798 if (qual->has_layout() && uses_deprecated_qualifier) {
3799 if (relaxed_layout_qualifier_checking) {
3800 _mesa_glsl_warning(loc, state,
3801 "`layout' qualifier may not be used with "
3802 "`attribute' or `varying'");
3803 } else {
3804 _mesa_glsl_error(loc, state,
3805 "`layout' qualifier may not be used with "
3806 "`attribute' or `varying'");
3807 }
3808 }
3809
3810 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3811 * AMD_conservative_depth.
3812 */
3813 if (qual->flags.q.depth_type
3814 && !state->is_version(420, 0)
3815 && !state->AMD_conservative_depth_enable
3816 && !state->ARB_conservative_depth_enable) {
3817 _mesa_glsl_error(loc, state,
3818 "extension GL_AMD_conservative_depth or "
3819 "GL_ARB_conservative_depth must be enabled "
3820 "to use depth layout qualifiers");
3821 } else if (qual->flags.q.depth_type
3822 && strcmp(var->name, "gl_FragDepth") != 0) {
3823 _mesa_glsl_error(loc, state,
3824 "depth layout qualifiers can be applied only to "
3825 "gl_FragDepth");
3826 }
3827
3828 switch (qual->depth_type) {
3829 case ast_depth_any:
3830 var->data.depth_layout = ir_depth_layout_any;
3831 break;
3832 case ast_depth_greater:
3833 var->data.depth_layout = ir_depth_layout_greater;
3834 break;
3835 case ast_depth_less:
3836 var->data.depth_layout = ir_depth_layout_less;
3837 break;
3838 case ast_depth_unchanged:
3839 var->data.depth_layout = ir_depth_layout_unchanged;
3840 break;
3841 default:
3842 var->data.depth_layout = ir_depth_layout_none;
3843 break;
3844 }
3845
3846 if (qual->flags.q.std140 ||
3847 qual->flags.q.std430 ||
3848 qual->flags.q.packed ||
3849 qual->flags.q.shared) {
3850 _mesa_glsl_error(loc, state,
3851 "uniform and shader storage block layout qualifiers "
3852 "std140, std430, packed, and shared can only be "
3853 "applied to uniform or shader storage blocks, not "
3854 "members");
3855 }
3856
3857 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3858 validate_matrix_layout_for_type(state, loc, var->type, var);
3859 }
3860
3861 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3862 * Inputs):
3863 *
3864 * "Fragment shaders also allow the following layout qualifier on in only
3865 * (not with variable declarations)
3866 * layout-qualifier-id
3867 * early_fragment_tests
3868 * [...]"
3869 */
3870 if (qual->flags.q.early_fragment_tests) {
3871 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3872 "valid in fragment shader input layout declaration.");
3873 }
3874
3875 if (qual->flags.q.inner_coverage) {
3876 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3877 "valid in fragment shader input layout declaration.");
3878 }
3879
3880 if (qual->flags.q.post_depth_coverage) {
3881 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3882 "valid in fragment shader input layout declaration.");
3883 }
3884
3885 if (state->has_bindless())
3886 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3887 }
3888
3889 static void
3890 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3891 ir_variable *var,
3892 struct _mesa_glsl_parse_state *state,
3893 YYLTYPE *loc,
3894 bool is_parameter)
3895 {
3896 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3897
3898 if (qual->flags.q.invariant) {
3899 if (var->data.used) {
3900 _mesa_glsl_error(loc, state,
3901 "variable `%s' may not be redeclared "
3902 "`invariant' after being used",
3903 var->name);
3904 } else {
3905 var->data.invariant = 1;
3906 }
3907 }
3908
3909 if (qual->flags.q.precise) {
3910 if (var->data.used) {
3911 _mesa_glsl_error(loc, state,
3912 "variable `%s' may not be redeclared "
3913 "`precise' after being used",
3914 var->name);
3915 } else {
3916 var->data.precise = 1;
3917 }
3918 }
3919
3920 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3921 _mesa_glsl_error(loc, state,
3922 "`subroutine' may only be applied to uniforms, "
3923 "subroutine type declarations, or function definitions");
3924 }
3925
3926 if (qual->flags.q.constant || qual->flags.q.attribute
3927 || qual->flags.q.uniform
3928 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3929 var->data.read_only = 1;
3930
3931 if (qual->flags.q.centroid)
3932 var->data.centroid = 1;
3933
3934 if (qual->flags.q.sample)
3935 var->data.sample = 1;
3936
3937 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3938 if (state->es_shader) {
3939 var->data.precision =
3940 select_gles_precision(qual->precision, var->type, state, loc);
3941 }
3942
3943 if (qual->flags.q.patch)
3944 var->data.patch = 1;
3945
3946 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3947 var->type = glsl_type::error_type;
3948 _mesa_glsl_error(loc, state,
3949 "`attribute' variables may not be declared in the "
3950 "%s shader",
3951 _mesa_shader_stage_to_string(state->stage));
3952 }
3953
3954 /* Disallow layout qualifiers which may only appear on layout declarations. */
3955 if (qual->flags.q.prim_type) {
3956 _mesa_glsl_error(loc, state,
3957 "Primitive type may only be specified on GS input or output "
3958 "layout declaration, not on variables.");
3959 }
3960
3961 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3962 *
3963 * "However, the const qualifier cannot be used with out or inout."
3964 *
3965 * The same section of the GLSL 4.40 spec further clarifies this saying:
3966 *
3967 * "The const qualifier cannot be used with out or inout, or a
3968 * compile-time error results."
3969 */
3970 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3971 _mesa_glsl_error(loc, state,
3972 "`const' may not be applied to `out' or `inout' "
3973 "function parameters");
3974 }
3975
3976 /* If there is no qualifier that changes the mode of the variable, leave
3977 * the setting alone.
3978 */
3979 assert(var->data.mode != ir_var_temporary);
3980 if (qual->flags.q.in && qual->flags.q.out)
3981 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3982 else if (qual->flags.q.in)
3983 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3984 else if (qual->flags.q.attribute
3985 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3986 var->data.mode = ir_var_shader_in;
3987 else if (qual->flags.q.out)
3988 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3989 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3990 var->data.mode = ir_var_shader_out;
3991 else if (qual->flags.q.uniform)
3992 var->data.mode = ir_var_uniform;
3993 else if (qual->flags.q.buffer)
3994 var->data.mode = ir_var_shader_storage;
3995 else if (qual->flags.q.shared_storage)
3996 var->data.mode = ir_var_shader_shared;
3997
3998 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3999 qual->flags.q.in && qual->flags.q.out;
4000
4001 if (!is_parameter && is_varying_var(var, state->stage)) {
4002 /* User-defined ins/outs are not permitted in compute shaders. */
4003 if (state->stage == MESA_SHADER_COMPUTE) {
4004 _mesa_glsl_error(loc, state,
4005 "user-defined input and output variables are not "
4006 "permitted in compute shaders");
4007 }
4008
4009 /* This variable is being used to link data between shader stages (in
4010 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4011 * that is allowed for such purposes.
4012 *
4013 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4014 *
4015 * "The varying qualifier can be used only with the data types
4016 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4017 * these."
4018 *
4019 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4020 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4021 *
4022 * "Fragment inputs can only be signed and unsigned integers and
4023 * integer vectors, float, floating-point vectors, matrices, or
4024 * arrays of these. Structures cannot be input.
4025 *
4026 * Similar text exists in the section on vertex shader outputs.
4027 *
4028 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4029 * 3.00 spec allows structs as well. Varying structs are also allowed
4030 * in GLSL 1.50.
4031 *
4032 * From section 4.3.4 of the ARB_bindless_texture spec:
4033 *
4034 * "(modify third paragraph of the section to allow sampler and image
4035 * types) ... Vertex shader inputs can only be float,
4036 * single-precision floating-point scalars, single-precision
4037 * floating-point vectors, matrices, signed and unsigned integers
4038 * and integer vectors, sampler and image types."
4039 *
4040 * From section 4.3.6 of the ARB_bindless_texture spec:
4041 *
4042 * "Output variables can only be floating-point scalars,
4043 * floating-point vectors, matrices, signed or unsigned integers or
4044 * integer vectors, sampler or image types, or arrays or structures
4045 * of any these."
4046 */
4047 switch (var->type->without_array()->base_type) {
4048 case GLSL_TYPE_FLOAT:
4049 /* Ok in all GLSL versions */
4050 break;
4051 case GLSL_TYPE_UINT:
4052 case GLSL_TYPE_INT:
4053 if (state->is_version(130, 300))
4054 break;
4055 _mesa_glsl_error(loc, state,
4056 "varying variables must be of base type float in %s",
4057 state->get_version_string());
4058 break;
4059 case GLSL_TYPE_STRUCT:
4060 if (state->is_version(150, 300))
4061 break;
4062 _mesa_glsl_error(loc, state,
4063 "varying variables may not be of type struct");
4064 break;
4065 case GLSL_TYPE_DOUBLE:
4066 case GLSL_TYPE_UINT64:
4067 case GLSL_TYPE_INT64:
4068 break;
4069 case GLSL_TYPE_SAMPLER:
4070 case GLSL_TYPE_IMAGE:
4071 if (state->has_bindless())
4072 break;
4073 /* fallthrough */
4074 default:
4075 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4076 break;
4077 }
4078 }
4079
4080 if (state->all_invariant && (state->current_function == NULL)) {
4081 switch (state->stage) {
4082 case MESA_SHADER_VERTEX:
4083 if (var->data.mode == ir_var_shader_out)
4084 var->data.invariant = true;
4085 break;
4086 case MESA_SHADER_TESS_CTRL:
4087 case MESA_SHADER_TESS_EVAL:
4088 case MESA_SHADER_GEOMETRY:
4089 if ((var->data.mode == ir_var_shader_in)
4090 || (var->data.mode == ir_var_shader_out))
4091 var->data.invariant = true;
4092 break;
4093 case MESA_SHADER_FRAGMENT:
4094 if (var->data.mode == ir_var_shader_in)
4095 var->data.invariant = true;
4096 break;
4097 case MESA_SHADER_COMPUTE:
4098 /* Invariance isn't meaningful in compute shaders. */
4099 break;
4100 default:
4101 break;
4102 }
4103 }
4104
4105 var->data.interpolation =
4106 interpret_interpolation_qualifier(qual, var->type,
4107 (ir_variable_mode) var->data.mode,
4108 state, loc);
4109
4110 /* Does the declaration use the deprecated 'attribute' or 'varying'
4111 * keywords?
4112 */
4113 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4114 || qual->flags.q.varying;
4115
4116
4117 /* Validate auxiliary storage qualifiers */
4118
4119 /* From section 4.3.4 of the GLSL 1.30 spec:
4120 * "It is an error to use centroid in in a vertex shader."
4121 *
4122 * From section 4.3.4 of the GLSL ES 3.00 spec:
4123 * "It is an error to use centroid in or interpolation qualifiers in
4124 * a vertex shader input."
4125 */
4126
4127 /* Section 4.3.6 of the GLSL 1.30 specification states:
4128 * "It is an error to use centroid out in a fragment shader."
4129 *
4130 * The GL_ARB_shading_language_420pack extension specification states:
4131 * "It is an error to use auxiliary storage qualifiers or interpolation
4132 * qualifiers on an output in a fragment shader."
4133 */
4134 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4135 _mesa_glsl_error(loc, state,
4136 "sample qualifier may only be used on `in` or `out` "
4137 "variables between shader stages");
4138 }
4139 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4140 _mesa_glsl_error(loc, state,
4141 "centroid qualifier may only be used with `in', "
4142 "`out' or `varying' variables between shader stages");
4143 }
4144
4145 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4146 _mesa_glsl_error(loc, state,
4147 "the shared storage qualifiers can only be used with "
4148 "compute shaders");
4149 }
4150
4151 apply_image_qualifier_to_variable(qual, var, state, loc);
4152 }
4153
4154 /**
4155 * Get the variable that is being redeclared by this declaration or if it
4156 * does not exist, the current declared variable.
4157 *
4158 * Semantic checks to verify the validity of the redeclaration are also
4159 * performed. If semantic checks fail, compilation error will be emitted via
4160 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4161 *
4162 * \returns
4163 * A pointer to an existing variable in the current scope if the declaration
4164 * is a redeclaration, current variable otherwise. \c is_declared boolean
4165 * will return \c true if the declaration is a redeclaration, \c false
4166 * otherwise.
4167 */
4168 static ir_variable *
4169 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4170 struct _mesa_glsl_parse_state *state,
4171 bool allow_all_redeclarations,
4172 bool *is_redeclaration)
4173 {
4174 /* Check if this declaration is actually a re-declaration, either to
4175 * resize an array or add qualifiers to an existing variable.
4176 *
4177 * This is allowed for variables in the current scope, or when at
4178 * global scope (for built-ins in the implicit outer scope).
4179 */
4180 ir_variable *earlier = state->symbols->get_variable(var->name);
4181 if (earlier == NULL ||
4182 (state->current_function != NULL &&
4183 !state->symbols->name_declared_this_scope(var->name))) {
4184 *is_redeclaration = false;
4185 return var;
4186 }
4187
4188 *is_redeclaration = true;
4189
4190 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4191 *
4192 * "It is legal to declare an array without a size and then
4193 * later re-declare the same name as an array of the same
4194 * type and specify a size."
4195 */
4196 if (earlier->type->is_unsized_array() && var->type->is_array()
4197 && (var->type->fields.array == earlier->type->fields.array)) {
4198 /* FINISHME: This doesn't match the qualifiers on the two
4199 * FINISHME: declarations. It's not 100% clear whether this is
4200 * FINISHME: required or not.
4201 */
4202
4203 const int size = var->type->array_size();
4204 check_builtin_array_max_size(var->name, size, loc, state);
4205 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4206 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4207 "previous access",
4208 earlier->data.max_array_access);
4209 }
4210
4211 earlier->type = var->type;
4212 delete var;
4213 var = NULL;
4214 } else if ((state->ARB_fragment_coord_conventions_enable ||
4215 state->is_version(150, 0))
4216 && strcmp(var->name, "gl_FragCoord") == 0
4217 && earlier->type == var->type
4218 && var->data.mode == ir_var_shader_in) {
4219 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4220 * qualifiers.
4221 */
4222 earlier->data.origin_upper_left = var->data.origin_upper_left;
4223 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4224
4225 /* According to section 4.3.7 of the GLSL 1.30 spec,
4226 * the following built-in varaibles can be redeclared with an
4227 * interpolation qualifier:
4228 * * gl_FrontColor
4229 * * gl_BackColor
4230 * * gl_FrontSecondaryColor
4231 * * gl_BackSecondaryColor
4232 * * gl_Color
4233 * * gl_SecondaryColor
4234 */
4235 } else if (state->is_version(130, 0)
4236 && (strcmp(var->name, "gl_FrontColor") == 0
4237 || strcmp(var->name, "gl_BackColor") == 0
4238 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4239 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4240 || strcmp(var->name, "gl_Color") == 0
4241 || strcmp(var->name, "gl_SecondaryColor") == 0)
4242 && earlier->type == var->type
4243 && earlier->data.mode == var->data.mode) {
4244 earlier->data.interpolation = var->data.interpolation;
4245
4246 /* Layout qualifiers for gl_FragDepth. */
4247 } else if ((state->is_version(420, 0) ||
4248 state->AMD_conservative_depth_enable ||
4249 state->ARB_conservative_depth_enable)
4250 && strcmp(var->name, "gl_FragDepth") == 0
4251 && earlier->type == var->type
4252 && earlier->data.mode == var->data.mode) {
4253
4254 /** From the AMD_conservative_depth spec:
4255 * Within any shader, the first redeclarations of gl_FragDepth
4256 * must appear before any use of gl_FragDepth.
4257 */
4258 if (earlier->data.used) {
4259 _mesa_glsl_error(&loc, state,
4260 "the first redeclaration of gl_FragDepth "
4261 "must appear before any use of gl_FragDepth");
4262 }
4263
4264 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4265 if (earlier->data.depth_layout != ir_depth_layout_none
4266 && earlier->data.depth_layout != var->data.depth_layout) {
4267 _mesa_glsl_error(&loc, state,
4268 "gl_FragDepth: depth layout is declared here "
4269 "as '%s, but it was previously declared as "
4270 "'%s'",
4271 depth_layout_string(var->data.depth_layout),
4272 depth_layout_string(earlier->data.depth_layout));
4273 }
4274
4275 earlier->data.depth_layout = var->data.depth_layout;
4276
4277 } else if (state->has_framebuffer_fetch() &&
4278 strcmp(var->name, "gl_LastFragData") == 0 &&
4279 var->type == earlier->type &&
4280 var->data.mode == ir_var_auto) {
4281 /* According to the EXT_shader_framebuffer_fetch spec:
4282 *
4283 * "By default, gl_LastFragData is declared with the mediump precision
4284 * qualifier. This can be changed by redeclaring the corresponding
4285 * variables with the desired precision qualifier."
4286 */
4287 earlier->data.precision = var->data.precision;
4288
4289 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4290 state->allow_builtin_variable_redeclaration) {
4291 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4292 * valid, but some applications do it.
4293 */
4294 if (earlier->data.mode != var->data.mode &&
4295 !(earlier->data.mode == ir_var_system_value &&
4296 var->data.mode == ir_var_shader_in)) {
4297 _mesa_glsl_error(&loc, state,
4298 "redeclaration of `%s' with incorrect qualifiers",
4299 var->name);
4300 } else if (earlier->type != var->type) {
4301 _mesa_glsl_error(&loc, state,
4302 "redeclaration of `%s' has incorrect type",
4303 var->name);
4304 }
4305 } else if (allow_all_redeclarations) {
4306 if (earlier->data.mode != var->data.mode) {
4307 _mesa_glsl_error(&loc, state,
4308 "redeclaration of `%s' with incorrect qualifiers",
4309 var->name);
4310 } else if (earlier->type != var->type) {
4311 _mesa_glsl_error(&loc, state,
4312 "redeclaration of `%s' has incorrect type",
4313 var->name);
4314 }
4315 } else {
4316 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4317 }
4318
4319 return earlier;
4320 }
4321
4322 /**
4323 * Generate the IR for an initializer in a variable declaration
4324 */
4325 ir_rvalue *
4326 process_initializer(ir_variable *var, ast_declaration *decl,
4327 ast_fully_specified_type *type,
4328 exec_list *initializer_instructions,
4329 struct _mesa_glsl_parse_state *state)
4330 {
4331 void *mem_ctx = state;
4332 ir_rvalue *result = NULL;
4333
4334 YYLTYPE initializer_loc = decl->initializer->get_location();
4335
4336 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4337 *
4338 * "All uniform variables are read-only and are initialized either
4339 * directly by an application via API commands, or indirectly by
4340 * OpenGL."
4341 */
4342 if (var->data.mode == ir_var_uniform) {
4343 state->check_version(120, 0, &initializer_loc,
4344 "cannot initialize uniform %s",
4345 var->name);
4346 }
4347
4348 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4349 *
4350 * "Buffer variables cannot have initializers."
4351 */
4352 if (var->data.mode == ir_var_shader_storage) {
4353 _mesa_glsl_error(&initializer_loc, state,
4354 "cannot initialize buffer variable %s",
4355 var->name);
4356 }
4357
4358 /* From section 4.1.7 of the GLSL 4.40 spec:
4359 *
4360 * "Opaque variables [...] are initialized only through the
4361 * OpenGL API; they cannot be declared with an initializer in a
4362 * shader."
4363 *
4364 * From section 4.1.7 of the ARB_bindless_texture spec:
4365 *
4366 * "Samplers may be declared as shader inputs and outputs, as uniform
4367 * variables, as temporary variables, and as function parameters."
4368 *
4369 * From section 4.1.X of the ARB_bindless_texture spec:
4370 *
4371 * "Images may be declared as shader inputs and outputs, as uniform
4372 * variables, as temporary variables, and as function parameters."
4373 */
4374 if (var->type->contains_atomic() ||
4375 (!state->has_bindless() && var->type->contains_opaque())) {
4376 _mesa_glsl_error(&initializer_loc, state,
4377 "cannot initialize %s variable %s",
4378 var->name, state->has_bindless() ? "atomic" : "opaque");
4379 }
4380
4381 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4382 _mesa_glsl_error(&initializer_loc, state,
4383 "cannot initialize %s shader input / %s %s",
4384 _mesa_shader_stage_to_string(state->stage),
4385 (state->stage == MESA_SHADER_VERTEX)
4386 ? "attribute" : "varying",
4387 var->name);
4388 }
4389
4390 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4391 _mesa_glsl_error(&initializer_loc, state,
4392 "cannot initialize %s shader output %s",
4393 _mesa_shader_stage_to_string(state->stage),
4394 var->name);
4395 }
4396
4397 /* If the initializer is an ast_aggregate_initializer, recursively store
4398 * type information from the LHS into it, so that its hir() function can do
4399 * type checking.
4400 */
4401 if (decl->initializer->oper == ast_aggregate)
4402 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4403
4404 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4405 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4406
4407 /* Calculate the constant value if this is a const or uniform
4408 * declaration.
4409 *
4410 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4411 *
4412 * "Declarations of globals without a storage qualifier, or with
4413 * just the const qualifier, may include initializers, in which case
4414 * they will be initialized before the first line of main() is
4415 * executed. Such initializers must be a constant expression."
4416 *
4417 * The same section of the GLSL ES 3.00.4 spec has similar language.
4418 */
4419 if (type->qualifier.flags.q.constant
4420 || type->qualifier.flags.q.uniform
4421 || (state->es_shader && state->current_function == NULL)) {
4422 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4423 lhs, rhs, true);
4424 if (new_rhs != NULL) {
4425 rhs = new_rhs;
4426
4427 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4428 * says:
4429 *
4430 * "A constant expression is one of
4431 *
4432 * ...
4433 *
4434 * - an expression formed by an operator on operands that are
4435 * all constant expressions, including getting an element of
4436 * a constant array, or a field of a constant structure, or
4437 * components of a constant vector. However, the sequence
4438 * operator ( , ) and the assignment operators ( =, +=, ...)
4439 * are not included in the operators that can create a
4440 * constant expression."
4441 *
4442 * Section 12.43 (Sequence operator and constant expressions) says:
4443 *
4444 * "Should the following construct be allowed?
4445 *
4446 * float a[2,3];
4447 *
4448 * The expression within the brackets uses the sequence operator
4449 * (',') and returns the integer 3 so the construct is declaring
4450 * a single-dimensional array of size 3. In some languages, the
4451 * construct declares a two-dimensional array. It would be
4452 * preferable to make this construct illegal to avoid confusion.
4453 *
4454 * One possibility is to change the definition of the sequence
4455 * operator so that it does not return a constant-expression and
4456 * hence cannot be used to declare an array size.
4457 *
4458 * RESOLUTION: The result of a sequence operator is not a
4459 * constant-expression."
4460 *
4461 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4462 * contains language almost identical to the section 4.3.3 in the
4463 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4464 * versions.
4465 */
4466 ir_constant *constant_value =
4467 rhs->constant_expression_value(mem_ctx);
4468
4469 if (!constant_value ||
4470 (state->is_version(430, 300) &&
4471 decl->initializer->has_sequence_subexpression())) {
4472 const char *const variable_mode =
4473 (type->qualifier.flags.q.constant)
4474 ? "const"
4475 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4476
4477 /* If ARB_shading_language_420pack is enabled, initializers of
4478 * const-qualified local variables do not have to be constant
4479 * expressions. Const-qualified global variables must still be
4480 * initialized with constant expressions.
4481 */
4482 if (!state->has_420pack()
4483 || state->current_function == NULL) {
4484 _mesa_glsl_error(& initializer_loc, state,
4485 "initializer of %s variable `%s' must be a "
4486 "constant expression",
4487 variable_mode,
4488 decl->identifier);
4489 if (var->type->is_numeric()) {
4490 /* Reduce cascading errors. */
4491 var->constant_value = type->qualifier.flags.q.constant
4492 ? ir_constant::zero(state, var->type) : NULL;
4493 }
4494 }
4495 } else {
4496 rhs = constant_value;
4497 var->constant_value = type->qualifier.flags.q.constant
4498 ? constant_value : NULL;
4499 }
4500 } else {
4501 if (var->type->is_numeric()) {
4502 /* Reduce cascading errors. */
4503 var->constant_value = type->qualifier.flags.q.constant
4504 ? ir_constant::zero(state, var->type) : NULL;
4505 }
4506 }
4507 }
4508
4509 if (rhs && !rhs->type->is_error()) {
4510 bool temp = var->data.read_only;
4511 if (type->qualifier.flags.q.constant)
4512 var->data.read_only = false;
4513
4514 /* Never emit code to initialize a uniform.
4515 */
4516 const glsl_type *initializer_type;
4517 if (!type->qualifier.flags.q.uniform) {
4518 do_assignment(initializer_instructions, state,
4519 NULL,
4520 lhs, rhs,
4521 &result, true,
4522 true,
4523 type->get_location());
4524 initializer_type = result->type;
4525 } else
4526 initializer_type = rhs->type;
4527
4528 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4529 var->data.has_initializer = true;
4530
4531 /* If the declared variable is an unsized array, it must inherrit
4532 * its full type from the initializer. A declaration such as
4533 *
4534 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4535 *
4536 * becomes
4537 *
4538 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4539 *
4540 * The assignment generated in the if-statement (below) will also
4541 * automatically handle this case for non-uniforms.
4542 *
4543 * If the declared variable is not an array, the types must
4544 * already match exactly. As a result, the type assignment
4545 * here can be done unconditionally. For non-uniforms the call
4546 * to do_assignment can change the type of the initializer (via
4547 * the implicit conversion rules). For uniforms the initializer
4548 * must be a constant expression, and the type of that expression
4549 * was validated above.
4550 */
4551 var->type = initializer_type;
4552
4553 var->data.read_only = temp;
4554 }
4555
4556 return result;
4557 }
4558
4559 static void
4560 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4561 YYLTYPE loc, ir_variable *var,
4562 unsigned num_vertices,
4563 unsigned *size,
4564 const char *var_category)
4565 {
4566 if (var->type->is_unsized_array()) {
4567 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4568 *
4569 * All geometry shader input unsized array declarations will be
4570 * sized by an earlier input layout qualifier, when present, as per
4571 * the following table.
4572 *
4573 * Followed by a table mapping each allowed input layout qualifier to
4574 * the corresponding input length.
4575 *
4576 * Similarly for tessellation control shader outputs.
4577 */
4578 if (num_vertices != 0)
4579 var->type = glsl_type::get_array_instance(var->type->fields.array,
4580 num_vertices);
4581 } else {
4582 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4583 * includes the following examples of compile-time errors:
4584 *
4585 * // code sequence within one shader...
4586 * in vec4 Color1[]; // size unknown
4587 * ...Color1.length()...// illegal, length() unknown
4588 * in vec4 Color2[2]; // size is 2
4589 * ...Color1.length()...// illegal, Color1 still has no size
4590 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4591 * layout(lines) in; // legal, input size is 2, matching
4592 * in vec4 Color4[3]; // illegal, contradicts layout
4593 * ...
4594 *
4595 * To detect the case illustrated by Color3, we verify that the size of
4596 * an explicitly-sized array matches the size of any previously declared
4597 * explicitly-sized array. To detect the case illustrated by Color4, we
4598 * verify that the size of an explicitly-sized array is consistent with
4599 * any previously declared input layout.
4600 */
4601 if (num_vertices != 0 && var->type->length != num_vertices) {
4602 _mesa_glsl_error(&loc, state,
4603 "%s size contradicts previously declared layout "
4604 "(size is %u, but layout requires a size of %u)",
4605 var_category, var->type->length, num_vertices);
4606 } else if (*size != 0 && var->type->length != *size) {
4607 _mesa_glsl_error(&loc, state,
4608 "%s sizes are inconsistent (size is %u, but a "
4609 "previous declaration has size %u)",
4610 var_category, var->type->length, *size);
4611 } else {
4612 *size = var->type->length;
4613 }
4614 }
4615 }
4616
4617 static void
4618 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4619 YYLTYPE loc, ir_variable *var)
4620 {
4621 unsigned num_vertices = 0;
4622
4623 if (state->tcs_output_vertices_specified) {
4624 if (!state->out_qualifier->vertices->
4625 process_qualifier_constant(state, "vertices",
4626 &num_vertices, false)) {
4627 return;
4628 }
4629
4630 if (num_vertices > state->Const.MaxPatchVertices) {
4631 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4632 "GL_MAX_PATCH_VERTICES", num_vertices);
4633 return;
4634 }
4635 }
4636
4637 if (!var->type->is_array() && !var->data.patch) {
4638 _mesa_glsl_error(&loc, state,
4639 "tessellation control shader outputs must be arrays");
4640
4641 /* To avoid cascading failures, short circuit the checks below. */
4642 return;
4643 }
4644
4645 if (var->data.patch)
4646 return;
4647
4648 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4649 &state->tcs_output_size,
4650 "tessellation control shader output");
4651 }
4652
4653 /**
4654 * Do additional processing necessary for tessellation control/evaluation shader
4655 * input declarations. This covers both interface block arrays and bare input
4656 * variables.
4657 */
4658 static void
4659 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4660 YYLTYPE loc, ir_variable *var)
4661 {
4662 if (!var->type->is_array() && !var->data.patch) {
4663 _mesa_glsl_error(&loc, state,
4664 "per-vertex tessellation shader inputs must be arrays");
4665 /* Avoid cascading failures. */
4666 return;
4667 }
4668
4669 if (var->data.patch)
4670 return;
4671
4672 /* The ARB_tessellation_shader spec says:
4673 *
4674 * "Declaring an array size is optional. If no size is specified, it
4675 * will be taken from the implementation-dependent maximum patch size
4676 * (gl_MaxPatchVertices). If a size is specified, it must match the
4677 * maximum patch size; otherwise, a compile or link error will occur."
4678 *
4679 * This text appears twice, once for TCS inputs, and again for TES inputs.
4680 */
4681 if (var->type->is_unsized_array()) {
4682 var->type = glsl_type::get_array_instance(var->type->fields.array,
4683 state->Const.MaxPatchVertices);
4684 } else if (var->type->length != state->Const.MaxPatchVertices) {
4685 _mesa_glsl_error(&loc, state,
4686 "per-vertex tessellation shader input arrays must be "
4687 "sized to gl_MaxPatchVertices (%d).",
4688 state->Const.MaxPatchVertices);
4689 }
4690 }
4691
4692
4693 /**
4694 * Do additional processing necessary for geometry shader input declarations
4695 * (this covers both interface blocks arrays and bare input variables).
4696 */
4697 static void
4698 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4699 YYLTYPE loc, ir_variable *var)
4700 {
4701 unsigned num_vertices = 0;
4702
4703 if (state->gs_input_prim_type_specified) {
4704 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4705 }
4706
4707 /* Geometry shader input variables must be arrays. Caller should have
4708 * reported an error for this.
4709 */
4710 if (!var->type->is_array()) {
4711 assert(state->error);
4712
4713 /* To avoid cascading failures, short circuit the checks below. */
4714 return;
4715 }
4716
4717 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4718 &state->gs_input_size,
4719 "geometry shader input");
4720 }
4721
4722 void
4723 validate_identifier(const char *identifier, YYLTYPE loc,
4724 struct _mesa_glsl_parse_state *state)
4725 {
4726 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4727 *
4728 * "Identifiers starting with "gl_" are reserved for use by
4729 * OpenGL, and may not be declared in a shader as either a
4730 * variable or a function."
4731 */
4732 if (is_gl_identifier(identifier)) {
4733 _mesa_glsl_error(&loc, state,
4734 "identifier `%s' uses reserved `gl_' prefix",
4735 identifier);
4736 } else if (strstr(identifier, "__")) {
4737 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4738 * spec:
4739 *
4740 * "In addition, all identifiers containing two
4741 * consecutive underscores (__) are reserved as
4742 * possible future keywords."
4743 *
4744 * The intention is that names containing __ are reserved for internal
4745 * use by the implementation, and names prefixed with GL_ are reserved
4746 * for use by Khronos. Names simply containing __ are dangerous to use,
4747 * but should be allowed.
4748 *
4749 * A future version of the GLSL specification will clarify this.
4750 */
4751 _mesa_glsl_warning(&loc, state,
4752 "identifier `%s' uses reserved `__' string",
4753 identifier);
4754 }
4755 }
4756
4757 ir_rvalue *
4758 ast_declarator_list::hir(exec_list *instructions,
4759 struct _mesa_glsl_parse_state *state)
4760 {
4761 void *ctx = state;
4762 const struct glsl_type *decl_type;
4763 const char *type_name = NULL;
4764 ir_rvalue *result = NULL;
4765 YYLTYPE loc = this->get_location();
4766
4767 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4768 *
4769 * "To ensure that a particular output variable is invariant, it is
4770 * necessary to use the invariant qualifier. It can either be used to
4771 * qualify a previously declared variable as being invariant
4772 *
4773 * invariant gl_Position; // make existing gl_Position be invariant"
4774 *
4775 * In these cases the parser will set the 'invariant' flag in the declarator
4776 * list, and the type will be NULL.
4777 */
4778 if (this->invariant) {
4779 assert(this->type == NULL);
4780
4781 if (state->current_function != NULL) {
4782 _mesa_glsl_error(& loc, state,
4783 "all uses of `invariant' keyword must be at global "
4784 "scope");
4785 }
4786
4787 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4788 assert(decl->array_specifier == NULL);
4789 assert(decl->initializer == NULL);
4790
4791 ir_variable *const earlier =
4792 state->symbols->get_variable(decl->identifier);
4793 if (earlier == NULL) {
4794 _mesa_glsl_error(& loc, state,
4795 "undeclared variable `%s' cannot be marked "
4796 "invariant", decl->identifier);
4797 } else if (!is_allowed_invariant(earlier, state)) {
4798 _mesa_glsl_error(&loc, state,
4799 "`%s' cannot be marked invariant; interfaces between "
4800 "shader stages only.", decl->identifier);
4801 } else if (earlier->data.used) {
4802 _mesa_glsl_error(& loc, state,
4803 "variable `%s' may not be redeclared "
4804 "`invariant' after being used",
4805 earlier->name);
4806 } else {
4807 earlier->data.invariant = true;
4808 }
4809 }
4810
4811 /* Invariant redeclarations do not have r-values.
4812 */
4813 return NULL;
4814 }
4815
4816 if (this->precise) {
4817 assert(this->type == NULL);
4818
4819 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4820 assert(decl->array_specifier == NULL);
4821 assert(decl->initializer == NULL);
4822
4823 ir_variable *const earlier =
4824 state->symbols->get_variable(decl->identifier);
4825 if (earlier == NULL) {
4826 _mesa_glsl_error(& loc, state,
4827 "undeclared variable `%s' cannot be marked "
4828 "precise", decl->identifier);
4829 } else if (state->current_function != NULL &&
4830 !state->symbols->name_declared_this_scope(decl->identifier)) {
4831 /* Note: we have to check if we're in a function, since
4832 * builtins are treated as having come from another scope.
4833 */
4834 _mesa_glsl_error(& loc, state,
4835 "variable `%s' from an outer scope may not be "
4836 "redeclared `precise' in this scope",
4837 earlier->name);
4838 } else if (earlier->data.used) {
4839 _mesa_glsl_error(& loc, state,
4840 "variable `%s' may not be redeclared "
4841 "`precise' after being used",
4842 earlier->name);
4843 } else {
4844 earlier->data.precise = true;
4845 }
4846 }
4847
4848 /* Precise redeclarations do not have r-values either. */
4849 return NULL;
4850 }
4851
4852 assert(this->type != NULL);
4853 assert(!this->invariant);
4854 assert(!this->precise);
4855
4856 /* The type specifier may contain a structure definition. Process that
4857 * before any of the variable declarations.
4858 */
4859 (void) this->type->specifier->hir(instructions, state);
4860
4861 decl_type = this->type->glsl_type(& type_name, state);
4862
4863 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4864 * "Buffer variables may only be declared inside interface blocks
4865 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4866 * shader storage blocks. It is a compile-time error to declare buffer
4867 * variables at global scope (outside a block)."
4868 */
4869 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4870 _mesa_glsl_error(&loc, state,
4871 "buffer variables cannot be declared outside "
4872 "interface blocks");
4873 }
4874
4875 /* An offset-qualified atomic counter declaration sets the default
4876 * offset for the next declaration within the same atomic counter
4877 * buffer.
4878 */
4879 if (decl_type && decl_type->contains_atomic()) {
4880 if (type->qualifier.flags.q.explicit_binding &&
4881 type->qualifier.flags.q.explicit_offset) {
4882 unsigned qual_binding;
4883 unsigned qual_offset;
4884 if (process_qualifier_constant(state, &loc, "binding",
4885 type->qualifier.binding,
4886 &qual_binding)
4887 && process_qualifier_constant(state, &loc, "offset",
4888 type->qualifier.offset,
4889 &qual_offset)) {
4890 state->atomic_counter_offsets[qual_binding] = qual_offset;
4891 }
4892 }
4893
4894 ast_type_qualifier allowed_atomic_qual_mask;
4895 allowed_atomic_qual_mask.flags.i = 0;
4896 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4897 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4898 allowed_atomic_qual_mask.flags.q.uniform = 1;
4899
4900 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4901 "invalid layout qualifier for",
4902 "atomic_uint");
4903 }
4904
4905 if (this->declarations.is_empty()) {
4906 /* If there is no structure involved in the program text, there are two
4907 * possible scenarios:
4908 *
4909 * - The program text contained something like 'vec4;'. This is an
4910 * empty declaration. It is valid but weird. Emit a warning.
4911 *
4912 * - The program text contained something like 'S;' and 'S' is not the
4913 * name of a known structure type. This is both invalid and weird.
4914 * Emit an error.
4915 *
4916 * - The program text contained something like 'mediump float;'
4917 * when the programmer probably meant 'precision mediump
4918 * float;' Emit a warning with a description of what they
4919 * probably meant to do.
4920 *
4921 * Note that if decl_type is NULL and there is a structure involved,
4922 * there must have been some sort of error with the structure. In this
4923 * case we assume that an error was already generated on this line of
4924 * code for the structure. There is no need to generate an additional,
4925 * confusing error.
4926 */
4927 assert(this->type->specifier->structure == NULL || decl_type != NULL
4928 || state->error);
4929
4930 if (decl_type == NULL) {
4931 _mesa_glsl_error(&loc, state,
4932 "invalid type `%s' in empty declaration",
4933 type_name);
4934 } else {
4935 if (decl_type->is_array()) {
4936 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4937 * spec:
4938 *
4939 * "... any declaration that leaves the size undefined is
4940 * disallowed as this would add complexity and there are no
4941 * use-cases."
4942 */
4943 if (state->es_shader && decl_type->is_unsized_array()) {
4944 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4945 "or implicitly defined");
4946 }
4947
4948 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4949 *
4950 * "The combinations of types and qualifiers that cause
4951 * compile-time or link-time errors are the same whether or not
4952 * the declaration is empty."
4953 */
4954 validate_array_dimensions(decl_type, state, &loc);
4955 }
4956
4957 if (decl_type->is_atomic_uint()) {
4958 /* Empty atomic counter declarations are allowed and useful
4959 * to set the default offset qualifier.
4960 */
4961 return NULL;
4962 } else if (this->type->qualifier.precision != ast_precision_none) {
4963 if (this->type->specifier->structure != NULL) {
4964 _mesa_glsl_error(&loc, state,
4965 "precision qualifiers can't be applied "
4966 "to structures");
4967 } else {
4968 static const char *const precision_names[] = {
4969 "highp",
4970 "highp",
4971 "mediump",
4972 "lowp"
4973 };
4974
4975 _mesa_glsl_warning(&loc, state,
4976 "empty declaration with precision "
4977 "qualifier, to set the default precision, "
4978 "use `precision %s %s;'",
4979 precision_names[this->type->
4980 qualifier.precision],
4981 type_name);
4982 }
4983 } else if (this->type->specifier->structure == NULL) {
4984 _mesa_glsl_warning(&loc, state, "empty declaration");
4985 }
4986 }
4987 }
4988
4989 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4990 const struct glsl_type *var_type;
4991 ir_variable *var;
4992 const char *identifier = decl->identifier;
4993 /* FINISHME: Emit a warning if a variable declaration shadows a
4994 * FINISHME: declaration at a higher scope.
4995 */
4996
4997 if ((decl_type == NULL) || decl_type->is_void()) {
4998 if (type_name != NULL) {
4999 _mesa_glsl_error(& loc, state,
5000 "invalid type `%s' in declaration of `%s'",
5001 type_name, decl->identifier);
5002 } else {
5003 _mesa_glsl_error(& loc, state,
5004 "invalid type in declaration of `%s'",
5005 decl->identifier);
5006 }
5007 continue;
5008 }
5009
5010 if (this->type->qualifier.is_subroutine_decl()) {
5011 const glsl_type *t;
5012 const char *name;
5013
5014 t = state->symbols->get_type(this->type->specifier->type_name);
5015 if (!t)
5016 _mesa_glsl_error(& loc, state,
5017 "invalid type in declaration of `%s'",
5018 decl->identifier);
5019 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5020
5021 identifier = name;
5022
5023 }
5024 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5025 state);
5026
5027 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5028
5029 /* The 'varying in' and 'varying out' qualifiers can only be used with
5030 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5031 * yet.
5032 */
5033 if (this->type->qualifier.flags.q.varying) {
5034 if (this->type->qualifier.flags.q.in) {
5035 _mesa_glsl_error(& loc, state,
5036 "`varying in' qualifier in declaration of "
5037 "`%s' only valid for geometry shaders using "
5038 "ARB_geometry_shader4 or EXT_geometry_shader4",
5039 decl->identifier);
5040 } else if (this->type->qualifier.flags.q.out) {
5041 _mesa_glsl_error(& loc, state,
5042 "`varying out' qualifier in declaration of "
5043 "`%s' only valid for geometry shaders using "
5044 "ARB_geometry_shader4 or EXT_geometry_shader4",
5045 decl->identifier);
5046 }
5047 }
5048
5049 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5050 *
5051 * "Global variables can only use the qualifiers const,
5052 * attribute, uniform, or varying. Only one may be
5053 * specified.
5054 *
5055 * Local variables can only use the qualifier const."
5056 *
5057 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5058 * any extension that adds the 'layout' keyword.
5059 */
5060 if (!state->is_version(130, 300)
5061 && !state->has_explicit_attrib_location()
5062 && !state->has_separate_shader_objects()
5063 && !state->ARB_fragment_coord_conventions_enable) {
5064 if (this->type->qualifier.flags.q.out) {
5065 _mesa_glsl_error(& loc, state,
5066 "`out' qualifier in declaration of `%s' "
5067 "only valid for function parameters in %s",
5068 decl->identifier, state->get_version_string());
5069 }
5070 if (this->type->qualifier.flags.q.in) {
5071 _mesa_glsl_error(& loc, state,
5072 "`in' qualifier in declaration of `%s' "
5073 "only valid for function parameters in %s",
5074 decl->identifier, state->get_version_string());
5075 }
5076 /* FINISHME: Test for other invalid qualifiers. */
5077 }
5078
5079 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5080 & loc, false);
5081 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5082 &loc);
5083
5084 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5085 && (var->type->is_numeric() || var->type->is_boolean())
5086 && state->zero_init) {
5087 const ir_constant_data data = { { 0 } };
5088 var->data.has_initializer = true;
5089 var->constant_initializer = new(var) ir_constant(var->type, &data);
5090 }
5091
5092 if (this->type->qualifier.flags.q.invariant) {
5093 if (!is_allowed_invariant(var, state)) {
5094 _mesa_glsl_error(&loc, state,
5095 "`%s' cannot be marked invariant; interfaces between "
5096 "shader stages only", var->name);
5097 }
5098 }
5099
5100 if (state->current_function != NULL) {
5101 const char *mode = NULL;
5102 const char *extra = "";
5103
5104 /* There is no need to check for 'inout' here because the parser will
5105 * only allow that in function parameter lists.
5106 */
5107 if (this->type->qualifier.flags.q.attribute) {
5108 mode = "attribute";
5109 } else if (this->type->qualifier.is_subroutine_decl()) {
5110 mode = "subroutine uniform";
5111 } else if (this->type->qualifier.flags.q.uniform) {
5112 mode = "uniform";
5113 } else if (this->type->qualifier.flags.q.varying) {
5114 mode = "varying";
5115 } else if (this->type->qualifier.flags.q.in) {
5116 mode = "in";
5117 extra = " or in function parameter list";
5118 } else if (this->type->qualifier.flags.q.out) {
5119 mode = "out";
5120 extra = " or in function parameter list";
5121 }
5122
5123 if (mode) {
5124 _mesa_glsl_error(& loc, state,
5125 "%s variable `%s' must be declared at "
5126 "global scope%s",
5127 mode, var->name, extra);
5128 }
5129 } else if (var->data.mode == ir_var_shader_in) {
5130 var->data.read_only = true;
5131
5132 if (state->stage == MESA_SHADER_VERTEX) {
5133 bool error_emitted = false;
5134
5135 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5136 *
5137 * "Vertex shader inputs can only be float, floating-point
5138 * vectors, matrices, signed and unsigned integers and integer
5139 * vectors. Vertex shader inputs can also form arrays of these
5140 * types, but not structures."
5141 *
5142 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5143 *
5144 * "Vertex shader inputs can only be float, floating-point
5145 * vectors, matrices, signed and unsigned integers and integer
5146 * vectors. They cannot be arrays or structures."
5147 *
5148 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5149 *
5150 * "The attribute qualifier can be used only with float,
5151 * floating-point vectors, and matrices. Attribute variables
5152 * cannot be declared as arrays or structures."
5153 *
5154 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5155 *
5156 * "Vertex shader inputs can only be float, floating-point
5157 * vectors, matrices, signed and unsigned integers and integer
5158 * vectors. Vertex shader inputs cannot be arrays or
5159 * structures."
5160 *
5161 * From section 4.3.4 of the ARB_bindless_texture spec:
5162 *
5163 * "(modify third paragraph of the section to allow sampler and
5164 * image types) ... Vertex shader inputs can only be float,
5165 * single-precision floating-point scalars, single-precision
5166 * floating-point vectors, matrices, signed and unsigned
5167 * integers and integer vectors, sampler and image types."
5168 */
5169 const glsl_type *check_type = var->type->without_array();
5170
5171 switch (check_type->base_type) {
5172 case GLSL_TYPE_FLOAT:
5173 break;
5174 case GLSL_TYPE_UINT64:
5175 case GLSL_TYPE_INT64:
5176 break;
5177 case GLSL_TYPE_UINT:
5178 case GLSL_TYPE_INT:
5179 if (state->is_version(120, 300))
5180 break;
5181 case GLSL_TYPE_DOUBLE:
5182 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5183 break;
5184 case GLSL_TYPE_SAMPLER:
5185 if (check_type->is_sampler() && state->has_bindless())
5186 break;
5187 case GLSL_TYPE_IMAGE:
5188 if (check_type->is_image() && state->has_bindless())
5189 break;
5190 /* FALLTHROUGH */
5191 default:
5192 _mesa_glsl_error(& loc, state,
5193 "vertex shader input / attribute cannot have "
5194 "type %s`%s'",
5195 var->type->is_array() ? "array of " : "",
5196 check_type->name);
5197 error_emitted = true;
5198 }
5199
5200 if (!error_emitted && var->type->is_array() &&
5201 !state->check_version(150, 0, &loc,
5202 "vertex shader input / attribute "
5203 "cannot have array type")) {
5204 error_emitted = true;
5205 }
5206 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5207 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5208 *
5209 * Geometry shader input variables get the per-vertex values
5210 * written out by vertex shader output variables of the same
5211 * names. Since a geometry shader operates on a set of
5212 * vertices, each input varying variable (or input block, see
5213 * interface blocks below) needs to be declared as an array.
5214 */
5215 if (!var->type->is_array()) {
5216 _mesa_glsl_error(&loc, state,
5217 "geometry shader inputs must be arrays");
5218 }
5219
5220 handle_geometry_shader_input_decl(state, loc, var);
5221 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5222 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5223 *
5224 * It is a compile-time error to declare a fragment shader
5225 * input with, or that contains, any of the following types:
5226 *
5227 * * A boolean type
5228 * * An opaque type
5229 * * An array of arrays
5230 * * An array of structures
5231 * * A structure containing an array
5232 * * A structure containing a structure
5233 */
5234 if (state->es_shader) {
5235 const glsl_type *check_type = var->type->without_array();
5236 if (check_type->is_boolean() ||
5237 check_type->contains_opaque()) {
5238 _mesa_glsl_error(&loc, state,
5239 "fragment shader input cannot have type %s",
5240 check_type->name);
5241 }
5242 if (var->type->is_array() &&
5243 var->type->fields.array->is_array()) {
5244 _mesa_glsl_error(&loc, state,
5245 "%s shader output "
5246 "cannot have an array of arrays",
5247 _mesa_shader_stage_to_string(state->stage));
5248 }
5249 if (var->type->is_array() &&
5250 var->type->fields.array->is_record()) {
5251 _mesa_glsl_error(&loc, state,
5252 "fragment shader input "
5253 "cannot have an array of structs");
5254 }
5255 if (var->type->is_record()) {
5256 for (unsigned i = 0; i < var->type->length; i++) {
5257 if (var->type->fields.structure[i].type->is_array() ||
5258 var->type->fields.structure[i].type->is_record())
5259 _mesa_glsl_error(&loc, state,
5260 "fragement shader input cannot have "
5261 "a struct that contains an "
5262 "array or struct");
5263 }
5264 }
5265 }
5266 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5267 state->stage == MESA_SHADER_TESS_EVAL) {
5268 handle_tess_shader_input_decl(state, loc, var);
5269 }
5270 } else if (var->data.mode == ir_var_shader_out) {
5271 const glsl_type *check_type = var->type->without_array();
5272
5273 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5274 *
5275 * It is a compile-time error to declare a fragment shader output
5276 * that contains any of the following:
5277 *
5278 * * A Boolean type (bool, bvec2 ...)
5279 * * A double-precision scalar or vector (double, dvec2 ...)
5280 * * An opaque type
5281 * * Any matrix type
5282 * * A structure
5283 */
5284 if (state->stage == MESA_SHADER_FRAGMENT) {
5285 if (check_type->is_record() || check_type->is_matrix())
5286 _mesa_glsl_error(&loc, state,
5287 "fragment shader output "
5288 "cannot have struct or matrix type");
5289 switch (check_type->base_type) {
5290 case GLSL_TYPE_UINT:
5291 case GLSL_TYPE_INT:
5292 case GLSL_TYPE_FLOAT:
5293 break;
5294 default:
5295 _mesa_glsl_error(&loc, state,
5296 "fragment shader output cannot have "
5297 "type %s", check_type->name);
5298 }
5299 }
5300
5301 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5302 *
5303 * It is a compile-time error to declare a vertex shader output
5304 * with, or that contains, any of the following types:
5305 *
5306 * * A boolean type
5307 * * An opaque type
5308 * * An array of arrays
5309 * * An array of structures
5310 * * A structure containing an array
5311 * * A structure containing a structure
5312 *
5313 * It is a compile-time error to declare a fragment shader output
5314 * with, or that contains, any of the following types:
5315 *
5316 * * A boolean type
5317 * * An opaque type
5318 * * A matrix
5319 * * A structure
5320 * * An array of array
5321 *
5322 * ES 3.20 updates this to apply to tessellation and geometry shaders
5323 * as well. Because there are per-vertex arrays in the new stages,
5324 * it strikes the "array of..." rules and replaces them with these:
5325 *
5326 * * For per-vertex-arrayed variables (applies to tessellation
5327 * control, tessellation evaluation and geometry shaders):
5328 *
5329 * * Per-vertex-arrayed arrays of arrays
5330 * * Per-vertex-arrayed arrays of structures
5331 *
5332 * * For non-per-vertex-arrayed variables:
5333 *
5334 * * An array of arrays
5335 * * An array of structures
5336 *
5337 * which basically says to unwrap the per-vertex aspect and apply
5338 * the old rules.
5339 */
5340 if (state->es_shader) {
5341 if (var->type->is_array() &&
5342 var->type->fields.array->is_array()) {
5343 _mesa_glsl_error(&loc, state,
5344 "%s shader output "
5345 "cannot have an array of arrays",
5346 _mesa_shader_stage_to_string(state->stage));
5347 }
5348 if (state->stage <= MESA_SHADER_GEOMETRY) {
5349 const glsl_type *type = var->type;
5350
5351 if (state->stage == MESA_SHADER_TESS_CTRL &&
5352 !var->data.patch && var->type->is_array()) {
5353 type = var->type->fields.array;
5354 }
5355
5356 if (type->is_array() && type->fields.array->is_record()) {
5357 _mesa_glsl_error(&loc, state,
5358 "%s shader output cannot have "
5359 "an array of structs",
5360 _mesa_shader_stage_to_string(state->stage));
5361 }
5362 if (type->is_record()) {
5363 for (unsigned i = 0; i < type->length; i++) {
5364 if (type->fields.structure[i].type->is_array() ||
5365 type->fields.structure[i].type->is_record())
5366 _mesa_glsl_error(&loc, state,
5367 "%s shader output cannot have a "
5368 "struct that contains an "
5369 "array or struct",
5370 _mesa_shader_stage_to_string(state->stage));
5371 }
5372 }
5373 }
5374 }
5375
5376 if (state->stage == MESA_SHADER_TESS_CTRL) {
5377 handle_tess_ctrl_shader_output_decl(state, loc, var);
5378 }
5379 } else if (var->type->contains_subroutine()) {
5380 /* declare subroutine uniforms as hidden */
5381 var->data.how_declared = ir_var_hidden;
5382 }
5383
5384 /* From section 4.3.4 of the GLSL 4.00 spec:
5385 * "Input variables may not be declared using the patch in qualifier
5386 * in tessellation control or geometry shaders."
5387 *
5388 * From section 4.3.6 of the GLSL 4.00 spec:
5389 * "It is an error to use patch out in a vertex, tessellation
5390 * evaluation, or geometry shader."
5391 *
5392 * This doesn't explicitly forbid using them in a fragment shader, but
5393 * that's probably just an oversight.
5394 */
5395 if (state->stage != MESA_SHADER_TESS_EVAL
5396 && this->type->qualifier.flags.q.patch
5397 && this->type->qualifier.flags.q.in) {
5398
5399 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5400 "tessellation evaluation shader");
5401 }
5402
5403 if (state->stage != MESA_SHADER_TESS_CTRL
5404 && this->type->qualifier.flags.q.patch
5405 && this->type->qualifier.flags.q.out) {
5406
5407 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5408 "tessellation control shader");
5409 }
5410
5411 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5412 */
5413 if (this->type->qualifier.precision != ast_precision_none) {
5414 state->check_precision_qualifiers_allowed(&loc);
5415 }
5416
5417 if (this->type->qualifier.precision != ast_precision_none &&
5418 !precision_qualifier_allowed(var->type)) {
5419 _mesa_glsl_error(&loc, state,
5420 "precision qualifiers apply only to floating point"
5421 ", integer and opaque types");
5422 }
5423
5424 /* From section 4.1.7 of the GLSL 4.40 spec:
5425 *
5426 * "[Opaque types] can only be declared as function
5427 * parameters or uniform-qualified variables."
5428 *
5429 * From section 4.1.7 of the ARB_bindless_texture spec:
5430 *
5431 * "Samplers may be declared as shader inputs and outputs, as uniform
5432 * variables, as temporary variables, and as function parameters."
5433 *
5434 * From section 4.1.X of the ARB_bindless_texture spec:
5435 *
5436 * "Images may be declared as shader inputs and outputs, as uniform
5437 * variables, as temporary variables, and as function parameters."
5438 */
5439 if (!this->type->qualifier.flags.q.uniform &&
5440 (var_type->contains_atomic() ||
5441 (!state->has_bindless() && var_type->contains_opaque()))) {
5442 _mesa_glsl_error(&loc, state,
5443 "%s variables must be declared uniform",
5444 state->has_bindless() ? "atomic" : "opaque");
5445 }
5446
5447 /* Process the initializer and add its instructions to a temporary
5448 * list. This list will be added to the instruction stream (below) after
5449 * the declaration is added. This is done because in some cases (such as
5450 * redeclarations) the declaration may not actually be added to the
5451 * instruction stream.
5452 */
5453 exec_list initializer_instructions;
5454
5455 /* Examine var name here since var may get deleted in the next call */
5456 bool var_is_gl_id = is_gl_identifier(var->name);
5457
5458 bool is_redeclaration;
5459 ir_variable *declared_var =
5460 get_variable_being_redeclared(var, decl->get_location(), state,
5461 false /* allow_all_redeclarations */,
5462 &is_redeclaration);
5463 if (is_redeclaration) {
5464 if (var_is_gl_id &&
5465 declared_var->data.how_declared == ir_var_declared_in_block) {
5466 _mesa_glsl_error(&loc, state,
5467 "`%s' has already been redeclared using "
5468 "gl_PerVertex", declared_var->name);
5469 }
5470 declared_var->data.how_declared = ir_var_declared_normally;
5471 }
5472
5473 if (decl->initializer != NULL) {
5474 result = process_initializer(declared_var,
5475 decl, this->type,
5476 &initializer_instructions, state);
5477 } else {
5478 validate_array_dimensions(var_type, state, &loc);
5479 }
5480
5481 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5482 *
5483 * "It is an error to write to a const variable outside of
5484 * its declaration, so they must be initialized when
5485 * declared."
5486 */
5487 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5488 _mesa_glsl_error(& loc, state,
5489 "const declaration of `%s' must be initialized",
5490 decl->identifier);
5491 }
5492
5493 if (state->es_shader) {
5494 const glsl_type *const t = declared_var->type;
5495
5496 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5497 *
5498 * The GL_OES_tessellation_shader spec says about inputs:
5499 *
5500 * "Declaring an array size is optional. If no size is specified,
5501 * it will be taken from the implementation-dependent maximum
5502 * patch size (gl_MaxPatchVertices)."
5503 *
5504 * and about TCS outputs:
5505 *
5506 * "If no size is specified, it will be taken from output patch
5507 * size declared in the shader."
5508 *
5509 * The GL_OES_geometry_shader spec says:
5510 *
5511 * "All geometry shader input unsized array declarations will be
5512 * sized by an earlier input primitive layout qualifier, when
5513 * present, as per the following table."
5514 */
5515 const bool implicitly_sized =
5516 (declared_var->data.mode == ir_var_shader_in &&
5517 state->stage >= MESA_SHADER_TESS_CTRL &&
5518 state->stage <= MESA_SHADER_GEOMETRY) ||
5519 (declared_var->data.mode == ir_var_shader_out &&
5520 state->stage == MESA_SHADER_TESS_CTRL);
5521
5522 if (t->is_unsized_array() && !implicitly_sized)
5523 /* Section 10.17 of the GLSL ES 1.00 specification states that
5524 * unsized array declarations have been removed from the language.
5525 * Arrays that are sized using an initializer are still explicitly
5526 * sized. However, GLSL ES 1.00 does not allow array
5527 * initializers. That is only allowed in GLSL ES 3.00.
5528 *
5529 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5530 *
5531 * "An array type can also be formed without specifying a size
5532 * if the definition includes an initializer:
5533 *
5534 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5535 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5536 *
5537 * float a[5];
5538 * float b[] = a;"
5539 */
5540 _mesa_glsl_error(& loc, state,
5541 "unsized array declarations are not allowed in "
5542 "GLSL ES");
5543 }
5544
5545 /* If the declaration is not a redeclaration, there are a few additional
5546 * semantic checks that must be applied. In addition, variable that was
5547 * created for the declaration should be added to the IR stream.
5548 */
5549 if (!is_redeclaration) {
5550 validate_identifier(decl->identifier, loc, state);
5551
5552 /* Add the variable to the symbol table. Note that the initializer's
5553 * IR was already processed earlier (though it hasn't been emitted
5554 * yet), without the variable in scope.
5555 *
5556 * This differs from most C-like languages, but it follows the GLSL
5557 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5558 * spec:
5559 *
5560 * "Within a declaration, the scope of a name starts immediately
5561 * after the initializer if present or immediately after the name
5562 * being declared if not."
5563 */
5564 if (!state->symbols->add_variable(declared_var)) {
5565 YYLTYPE loc = this->get_location();
5566 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5567 "current scope", decl->identifier);
5568 continue;
5569 }
5570
5571 /* Push the variable declaration to the top. It means that all the
5572 * variable declarations will appear in a funny last-to-first order,
5573 * but otherwise we run into trouble if a function is prototyped, a
5574 * global var is decled, then the function is defined with usage of
5575 * the global var. See glslparsertest's CorrectModule.frag.
5576 */
5577 instructions->push_head(declared_var);
5578 }
5579
5580 instructions->append_list(&initializer_instructions);
5581 }
5582
5583
5584 /* Generally, variable declarations do not have r-values. However,
5585 * one is used for the declaration in
5586 *
5587 * while (bool b = some_condition()) {
5588 * ...
5589 * }
5590 *
5591 * so we return the rvalue from the last seen declaration here.
5592 */
5593 return result;
5594 }
5595
5596
5597 ir_rvalue *
5598 ast_parameter_declarator::hir(exec_list *instructions,
5599 struct _mesa_glsl_parse_state *state)
5600 {
5601 void *ctx = state;
5602 const struct glsl_type *type;
5603 const char *name = NULL;
5604 YYLTYPE loc = this->get_location();
5605
5606 type = this->type->glsl_type(& name, state);
5607
5608 if (type == NULL) {
5609 if (name != NULL) {
5610 _mesa_glsl_error(& loc, state,
5611 "invalid type `%s' in declaration of `%s'",
5612 name, this->identifier);
5613 } else {
5614 _mesa_glsl_error(& loc, state,
5615 "invalid type in declaration of `%s'",
5616 this->identifier);
5617 }
5618
5619 type = glsl_type::error_type;
5620 }
5621
5622 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5623 *
5624 * "Functions that accept no input arguments need not use void in the
5625 * argument list because prototypes (or definitions) are required and
5626 * therefore there is no ambiguity when an empty argument list "( )" is
5627 * declared. The idiom "(void)" as a parameter list is provided for
5628 * convenience."
5629 *
5630 * Placing this check here prevents a void parameter being set up
5631 * for a function, which avoids tripping up checks for main taking
5632 * parameters and lookups of an unnamed symbol.
5633 */
5634 if (type->is_void()) {
5635 if (this->identifier != NULL)
5636 _mesa_glsl_error(& loc, state,
5637 "named parameter cannot have type `void'");
5638
5639 is_void = true;
5640 return NULL;
5641 }
5642
5643 if (formal_parameter && (this->identifier == NULL)) {
5644 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5645 return NULL;
5646 }
5647
5648 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5649 * call already handled the "vec4[..] foo" case.
5650 */
5651 type = process_array_type(&loc, type, this->array_specifier, state);
5652
5653 if (!type->is_error() && type->is_unsized_array()) {
5654 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5655 "a declared size");
5656 type = glsl_type::error_type;
5657 }
5658
5659 is_void = false;
5660 ir_variable *var = new(ctx)
5661 ir_variable(type, this->identifier, ir_var_function_in);
5662
5663 /* Apply any specified qualifiers to the parameter declaration. Note that
5664 * for function parameters the default mode is 'in'.
5665 */
5666 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5667 true);
5668
5669 /* From section 4.1.7 of the GLSL 4.40 spec:
5670 *
5671 * "Opaque variables cannot be treated as l-values; hence cannot
5672 * be used as out or inout function parameters, nor can they be
5673 * assigned into."
5674 *
5675 * From section 4.1.7 of the ARB_bindless_texture spec:
5676 *
5677 * "Samplers can be used as l-values, so can be assigned into and used
5678 * as "out" and "inout" function parameters."
5679 *
5680 * From section 4.1.X of the ARB_bindless_texture spec:
5681 *
5682 * "Images can be used as l-values, so can be assigned into and used as
5683 * "out" and "inout" function parameters."
5684 */
5685 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5686 && (type->contains_atomic() ||
5687 (!state->has_bindless() && type->contains_opaque()))) {
5688 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5689 "contain %s variables",
5690 state->has_bindless() ? "atomic" : "opaque");
5691 type = glsl_type::error_type;
5692 }
5693
5694 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5695 *
5696 * "When calling a function, expressions that do not evaluate to
5697 * l-values cannot be passed to parameters declared as out or inout."
5698 *
5699 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5700 *
5701 * "Other binary or unary expressions, non-dereferenced arrays,
5702 * function names, swizzles with repeated fields, and constants
5703 * cannot be l-values."
5704 *
5705 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5706 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5707 */
5708 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5709 && type->is_array()
5710 && !state->check_version(120, 100, &loc,
5711 "arrays cannot be out or inout parameters")) {
5712 type = glsl_type::error_type;
5713 }
5714
5715 instructions->push_tail(var);
5716
5717 /* Parameter declarations do not have r-values.
5718 */
5719 return NULL;
5720 }
5721
5722
5723 void
5724 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5725 bool formal,
5726 exec_list *ir_parameters,
5727 _mesa_glsl_parse_state *state)
5728 {
5729 ast_parameter_declarator *void_param = NULL;
5730 unsigned count = 0;
5731
5732 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5733 param->formal_parameter = formal;
5734 param->hir(ir_parameters, state);
5735
5736 if (param->is_void)
5737 void_param = param;
5738
5739 count++;
5740 }
5741
5742 if ((void_param != NULL) && (count > 1)) {
5743 YYLTYPE loc = void_param->get_location();
5744
5745 _mesa_glsl_error(& loc, state,
5746 "`void' parameter must be only parameter");
5747 }
5748 }
5749
5750
5751 void
5752 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5753 {
5754 /* IR invariants disallow function declarations or definitions
5755 * nested within other function definitions. But there is no
5756 * requirement about the relative order of function declarations
5757 * and definitions with respect to one another. So simply insert
5758 * the new ir_function block at the end of the toplevel instruction
5759 * list.
5760 */
5761 state->toplevel_ir->push_tail(f);
5762 }
5763
5764
5765 ir_rvalue *
5766 ast_function::hir(exec_list *instructions,
5767 struct _mesa_glsl_parse_state *state)
5768 {
5769 void *ctx = state;
5770 ir_function *f = NULL;
5771 ir_function_signature *sig = NULL;
5772 exec_list hir_parameters;
5773 YYLTYPE loc = this->get_location();
5774
5775 const char *const name = identifier;
5776
5777 /* New functions are always added to the top-level IR instruction stream,
5778 * so this instruction list pointer is ignored. See also emit_function
5779 * (called below).
5780 */
5781 (void) instructions;
5782
5783 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5784 *
5785 * "Function declarations (prototypes) cannot occur inside of functions;
5786 * they must be at global scope, or for the built-in functions, outside
5787 * the global scope."
5788 *
5789 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5790 *
5791 * "User defined functions may only be defined within the global scope."
5792 *
5793 * Note that this language does not appear in GLSL 1.10.
5794 */
5795 if ((state->current_function != NULL) &&
5796 state->is_version(120, 100)) {
5797 YYLTYPE loc = this->get_location();
5798 _mesa_glsl_error(&loc, state,
5799 "declaration of function `%s' not allowed within "
5800 "function body", name);
5801 }
5802
5803 validate_identifier(name, this->get_location(), state);
5804
5805 /* Convert the list of function parameters to HIR now so that they can be
5806 * used below to compare this function's signature with previously seen
5807 * signatures for functions with the same name.
5808 */
5809 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5810 is_definition,
5811 & hir_parameters, state);
5812
5813 const char *return_type_name;
5814 const glsl_type *return_type =
5815 this->return_type->glsl_type(& return_type_name, state);
5816
5817 if (!return_type) {
5818 YYLTYPE loc = this->get_location();
5819 _mesa_glsl_error(&loc, state,
5820 "function `%s' has undeclared return type `%s'",
5821 name, return_type_name);
5822 return_type = glsl_type::error_type;
5823 }
5824
5825 /* ARB_shader_subroutine states:
5826 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5827 * subroutine(...) to a function declaration."
5828 */
5829 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5830 YYLTYPE loc = this->get_location();
5831 _mesa_glsl_error(&loc, state,
5832 "function declaration `%s' cannot have subroutine prepended",
5833 name);
5834 }
5835
5836 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5837 * "No qualifier is allowed on the return type of a function."
5838 */
5839 if (this->return_type->has_qualifiers(state)) {
5840 YYLTYPE loc = this->get_location();
5841 _mesa_glsl_error(& loc, state,
5842 "function `%s' return type has qualifiers", name);
5843 }
5844
5845 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5846 *
5847 * "Arrays are allowed as arguments and as the return type. In both
5848 * cases, the array must be explicitly sized."
5849 */
5850 if (return_type->is_unsized_array()) {
5851 YYLTYPE loc = this->get_location();
5852 _mesa_glsl_error(& loc, state,
5853 "function `%s' return type array must be explicitly "
5854 "sized", name);
5855 }
5856
5857 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5858 *
5859 * "Arrays are allowed as arguments, but not as the return type. [...]
5860 * The return type can also be a structure if the structure does not
5861 * contain an array."
5862 */
5863 if (state->language_version == 100 && return_type->contains_array()) {
5864 YYLTYPE loc = this->get_location();
5865 _mesa_glsl_error(& loc, state,
5866 "function `%s' return type contains an array", name);
5867 }
5868
5869 /* From section 4.1.7 of the GLSL 4.40 spec:
5870 *
5871 * "[Opaque types] can only be declared as function parameters
5872 * or uniform-qualified variables."
5873 *
5874 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5875 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5876 * (Images)", this should be allowed.
5877 */
5878 if (return_type->contains_atomic() ||
5879 (!state->has_bindless() && return_type->contains_opaque())) {
5880 YYLTYPE loc = this->get_location();
5881 _mesa_glsl_error(&loc, state,
5882 "function `%s' return type can't contain an %s type",
5883 name, state->has_bindless() ? "atomic" : "opaque");
5884 }
5885
5886 /**/
5887 if (return_type->is_subroutine()) {
5888 YYLTYPE loc = this->get_location();
5889 _mesa_glsl_error(&loc, state,
5890 "function `%s' return type can't be a subroutine type",
5891 name);
5892 }
5893
5894
5895 /* Create an ir_function if one doesn't already exist. */
5896 f = state->symbols->get_function(name);
5897 if (f == NULL) {
5898 f = new(ctx) ir_function(name);
5899 if (!this->return_type->qualifier.is_subroutine_decl()) {
5900 if (!state->symbols->add_function(f)) {
5901 /* This function name shadows a non-function use of the same name. */
5902 YYLTYPE loc = this->get_location();
5903 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5904 "non-function", name);
5905 return NULL;
5906 }
5907 }
5908 emit_function(state, f);
5909 }
5910
5911 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5912 *
5913 * "A shader cannot redefine or overload built-in functions."
5914 *
5915 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5916 *
5917 * "User code can overload the built-in functions but cannot redefine
5918 * them."
5919 */
5920 if (state->es_shader) {
5921 /* Local shader has no exact candidates; check the built-ins. */
5922 _mesa_glsl_initialize_builtin_functions();
5923 if (state->language_version >= 300 &&
5924 _mesa_glsl_has_builtin_function(state, name)) {
5925 YYLTYPE loc = this->get_location();
5926 _mesa_glsl_error(& loc, state,
5927 "A shader cannot redefine or overload built-in "
5928 "function `%s' in GLSL ES 3.00", name);
5929 return NULL;
5930 }
5931
5932 if (state->language_version == 100) {
5933 ir_function_signature *sig =
5934 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5935 if (sig && sig->is_builtin()) {
5936 _mesa_glsl_error(& loc, state,
5937 "A shader cannot redefine built-in "
5938 "function `%s' in GLSL ES 1.00", name);
5939 }
5940 }
5941 }
5942
5943 /* Verify that this function's signature either doesn't match a previously
5944 * seen signature for a function with the same name, or, if a match is found,
5945 * that the previously seen signature does not have an associated definition.
5946 */
5947 if (state->es_shader || f->has_user_signature()) {
5948 sig = f->exact_matching_signature(state, &hir_parameters);
5949 if (sig != NULL) {
5950 const char *badvar = sig->qualifiers_match(&hir_parameters);
5951 if (badvar != NULL) {
5952 YYLTYPE loc = this->get_location();
5953
5954 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5955 "qualifiers don't match prototype", name, badvar);
5956 }
5957
5958 if (sig->return_type != return_type) {
5959 YYLTYPE loc = this->get_location();
5960
5961 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5962 "match prototype", name);
5963 }
5964
5965 if (sig->is_defined) {
5966 if (is_definition) {
5967 YYLTYPE loc = this->get_location();
5968 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5969 } else {
5970 /* We just encountered a prototype that exactly matches a
5971 * function that's already been defined. This is redundant,
5972 * and we should ignore it.
5973 */
5974 return NULL;
5975 }
5976 } else if (state->language_version == 100 && !is_definition) {
5977 /* From the GLSL 1.00 spec, section 4.2.7:
5978 *
5979 * "A particular variable, structure or function declaration
5980 * may occur at most once within a scope with the exception
5981 * that a single function prototype plus the corresponding
5982 * function definition are allowed."
5983 */
5984 YYLTYPE loc = this->get_location();
5985 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5986 }
5987 }
5988 }
5989
5990 /* Verify the return type of main() */
5991 if (strcmp(name, "main") == 0) {
5992 if (! return_type->is_void()) {
5993 YYLTYPE loc = this->get_location();
5994
5995 _mesa_glsl_error(& loc, state, "main() must return void");
5996 }
5997
5998 if (!hir_parameters.is_empty()) {
5999 YYLTYPE loc = this->get_location();
6000
6001 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6002 }
6003 }
6004
6005 /* Finish storing the information about this new function in its signature.
6006 */
6007 if (sig == NULL) {
6008 sig = new(ctx) ir_function_signature(return_type);
6009 f->add_signature(sig);
6010 }
6011
6012 sig->replace_parameters(&hir_parameters);
6013 signature = sig;
6014
6015 if (this->return_type->qualifier.subroutine_list) {
6016 int idx;
6017
6018 if (this->return_type->qualifier.flags.q.explicit_index) {
6019 unsigned qual_index;
6020 if (process_qualifier_constant(state, &loc, "index",
6021 this->return_type->qualifier.index,
6022 &qual_index)) {
6023 if (!state->has_explicit_uniform_location()) {
6024 _mesa_glsl_error(&loc, state, "subroutine index requires "
6025 "GL_ARB_explicit_uniform_location or "
6026 "GLSL 4.30");
6027 } else if (qual_index >= MAX_SUBROUTINES) {
6028 _mesa_glsl_error(&loc, state,
6029 "invalid subroutine index (%d) index must "
6030 "be a number between 0 and "
6031 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6032 MAX_SUBROUTINES - 1);
6033 } else {
6034 f->subroutine_index = qual_index;
6035 }
6036 }
6037 }
6038
6039 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6040 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6041 f->num_subroutine_types);
6042 idx = 0;
6043 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6044 const struct glsl_type *type;
6045 /* the subroutine type must be already declared */
6046 type = state->symbols->get_type(decl->identifier);
6047 if (!type) {
6048 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6049 }
6050
6051 for (int i = 0; i < state->num_subroutine_types; i++) {
6052 ir_function *fn = state->subroutine_types[i];
6053 ir_function_signature *tsig = NULL;
6054
6055 if (strcmp(fn->name, decl->identifier))
6056 continue;
6057
6058 tsig = fn->matching_signature(state, &sig->parameters,
6059 false);
6060 if (!tsig) {
6061 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6062 } else {
6063 if (tsig->return_type != sig->return_type) {
6064 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6065 }
6066 }
6067 }
6068 f->subroutine_types[idx++] = type;
6069 }
6070 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6071 ir_function *,
6072 state->num_subroutines + 1);
6073 state->subroutines[state->num_subroutines] = f;
6074 state->num_subroutines++;
6075
6076 }
6077
6078 if (this->return_type->qualifier.is_subroutine_decl()) {
6079 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6080 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6081 return NULL;
6082 }
6083 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6084 ir_function *,
6085 state->num_subroutine_types + 1);
6086 state->subroutine_types[state->num_subroutine_types] = f;
6087 state->num_subroutine_types++;
6088
6089 f->is_subroutine = true;
6090 }
6091
6092 /* Function declarations (prototypes) do not have r-values.
6093 */
6094 return NULL;
6095 }
6096
6097
6098 ir_rvalue *
6099 ast_function_definition::hir(exec_list *instructions,
6100 struct _mesa_glsl_parse_state *state)
6101 {
6102 prototype->is_definition = true;
6103 prototype->hir(instructions, state);
6104
6105 ir_function_signature *signature = prototype->signature;
6106 if (signature == NULL)
6107 return NULL;
6108
6109 assert(state->current_function == NULL);
6110 state->current_function = signature;
6111 state->found_return = false;
6112
6113 /* Duplicate parameters declared in the prototype as concrete variables.
6114 * Add these to the symbol table.
6115 */
6116 state->symbols->push_scope();
6117 foreach_in_list(ir_variable, var, &signature->parameters) {
6118 assert(var->as_variable() != NULL);
6119
6120 /* The only way a parameter would "exist" is if two parameters have
6121 * the same name.
6122 */
6123 if (state->symbols->name_declared_this_scope(var->name)) {
6124 YYLTYPE loc = this->get_location();
6125
6126 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6127 } else {
6128 state->symbols->add_variable(var);
6129 }
6130 }
6131
6132 /* Convert the body of the function to HIR. */
6133 this->body->hir(&signature->body, state);
6134 signature->is_defined = true;
6135
6136 state->symbols->pop_scope();
6137
6138 assert(state->current_function == signature);
6139 state->current_function = NULL;
6140
6141 if (!signature->return_type->is_void() && !state->found_return) {
6142 YYLTYPE loc = this->get_location();
6143 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6144 "%s, but no return statement",
6145 signature->function_name(),
6146 signature->return_type->name);
6147 }
6148
6149 /* Function definitions do not have r-values.
6150 */
6151 return NULL;
6152 }
6153
6154
6155 ir_rvalue *
6156 ast_jump_statement::hir(exec_list *instructions,
6157 struct _mesa_glsl_parse_state *state)
6158 {
6159 void *ctx = state;
6160
6161 switch (mode) {
6162 case ast_return: {
6163 ir_return *inst;
6164 assert(state->current_function);
6165
6166 if (opt_return_value) {
6167 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6168
6169 /* The value of the return type can be NULL if the shader says
6170 * 'return foo();' and foo() is a function that returns void.
6171 *
6172 * NOTE: The GLSL spec doesn't say that this is an error. The type
6173 * of the return value is void. If the return type of the function is
6174 * also void, then this should compile without error. Seriously.
6175 */
6176 const glsl_type *const ret_type =
6177 (ret == NULL) ? glsl_type::void_type : ret->type;
6178
6179 /* Implicit conversions are not allowed for return values prior to
6180 * ARB_shading_language_420pack.
6181 */
6182 if (state->current_function->return_type != ret_type) {
6183 YYLTYPE loc = this->get_location();
6184
6185 if (state->has_420pack()) {
6186 if (!apply_implicit_conversion(state->current_function->return_type,
6187 ret, state)) {
6188 _mesa_glsl_error(& loc, state,
6189 "could not implicitly convert return value "
6190 "to %s, in function `%s'",
6191 state->current_function->return_type->name,
6192 state->current_function->function_name());
6193 }
6194 } else {
6195 _mesa_glsl_error(& loc, state,
6196 "`return' with wrong type %s, in function `%s' "
6197 "returning %s",
6198 ret_type->name,
6199 state->current_function->function_name(),
6200 state->current_function->return_type->name);
6201 }
6202 } else if (state->current_function->return_type->base_type ==
6203 GLSL_TYPE_VOID) {
6204 YYLTYPE loc = this->get_location();
6205
6206 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6207 * specs add a clarification:
6208 *
6209 * "A void function can only use return without a return argument, even if
6210 * the return argument has void type. Return statements only accept values:
6211 *
6212 * void func1() { }
6213 * void func2() { return func1(); } // illegal return statement"
6214 */
6215 _mesa_glsl_error(& loc, state,
6216 "void functions can only use `return' without a "
6217 "return argument");
6218 }
6219
6220 inst = new(ctx) ir_return(ret);
6221 } else {
6222 if (state->current_function->return_type->base_type !=
6223 GLSL_TYPE_VOID) {
6224 YYLTYPE loc = this->get_location();
6225
6226 _mesa_glsl_error(& loc, state,
6227 "`return' with no value, in function %s returning "
6228 "non-void",
6229 state->current_function->function_name());
6230 }
6231 inst = new(ctx) ir_return;
6232 }
6233
6234 state->found_return = true;
6235 instructions->push_tail(inst);
6236 break;
6237 }
6238
6239 case ast_discard:
6240 if (state->stage != MESA_SHADER_FRAGMENT) {
6241 YYLTYPE loc = this->get_location();
6242
6243 _mesa_glsl_error(& loc, state,
6244 "`discard' may only appear in a fragment shader");
6245 }
6246 instructions->push_tail(new(ctx) ir_discard);
6247 break;
6248
6249 case ast_break:
6250 case ast_continue:
6251 if (mode == ast_continue &&
6252 state->loop_nesting_ast == NULL) {
6253 YYLTYPE loc = this->get_location();
6254
6255 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6256 } else if (mode == ast_break &&
6257 state->loop_nesting_ast == NULL &&
6258 state->switch_state.switch_nesting_ast == NULL) {
6259 YYLTYPE loc = this->get_location();
6260
6261 _mesa_glsl_error(& loc, state,
6262 "break may only appear in a loop or a switch");
6263 } else {
6264 /* For a loop, inline the for loop expression again, since we don't
6265 * know where near the end of the loop body the normal copy of it is
6266 * going to be placed. Same goes for the condition for a do-while
6267 * loop.
6268 */
6269 if (state->loop_nesting_ast != NULL &&
6270 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6271 if (state->loop_nesting_ast->rest_expression) {
6272 state->loop_nesting_ast->rest_expression->hir(instructions,
6273 state);
6274 }
6275 if (state->loop_nesting_ast->mode ==
6276 ast_iteration_statement::ast_do_while) {
6277 state->loop_nesting_ast->condition_to_hir(instructions, state);
6278 }
6279 }
6280
6281 if (state->switch_state.is_switch_innermost &&
6282 mode == ast_continue) {
6283 /* Set 'continue_inside' to true. */
6284 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6285 ir_dereference_variable *deref_continue_inside_var =
6286 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6287 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6288 true_val));
6289
6290 /* Break out from the switch, continue for the loop will
6291 * be called right after switch. */
6292 ir_loop_jump *const jump =
6293 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6294 instructions->push_tail(jump);
6295
6296 } else if (state->switch_state.is_switch_innermost &&
6297 mode == ast_break) {
6298 /* Force break out of switch by inserting a break. */
6299 ir_loop_jump *const jump =
6300 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6301 instructions->push_tail(jump);
6302 } else {
6303 ir_loop_jump *const jump =
6304 new(ctx) ir_loop_jump((mode == ast_break)
6305 ? ir_loop_jump::jump_break
6306 : ir_loop_jump::jump_continue);
6307 instructions->push_tail(jump);
6308 }
6309 }
6310
6311 break;
6312 }
6313
6314 /* Jump instructions do not have r-values.
6315 */
6316 return NULL;
6317 }
6318
6319
6320 ir_rvalue *
6321 ast_selection_statement::hir(exec_list *instructions,
6322 struct _mesa_glsl_parse_state *state)
6323 {
6324 void *ctx = state;
6325
6326 ir_rvalue *const condition = this->condition->hir(instructions, state);
6327
6328 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6329 *
6330 * "Any expression whose type evaluates to a Boolean can be used as the
6331 * conditional expression bool-expression. Vector types are not accepted
6332 * as the expression to if."
6333 *
6334 * The checks are separated so that higher quality diagnostics can be
6335 * generated for cases where both rules are violated.
6336 */
6337 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6338 YYLTYPE loc = this->condition->get_location();
6339
6340 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6341 "boolean");
6342 }
6343
6344 ir_if *const stmt = new(ctx) ir_if(condition);
6345
6346 if (then_statement != NULL) {
6347 state->symbols->push_scope();
6348 then_statement->hir(& stmt->then_instructions, state);
6349 state->symbols->pop_scope();
6350 }
6351
6352 if (else_statement != NULL) {
6353 state->symbols->push_scope();
6354 else_statement->hir(& stmt->else_instructions, state);
6355 state->symbols->pop_scope();
6356 }
6357
6358 instructions->push_tail(stmt);
6359
6360 /* if-statements do not have r-values.
6361 */
6362 return NULL;
6363 }
6364
6365
6366 /* Used for detection of duplicate case values, compare
6367 * given contents directly.
6368 */
6369 static bool
6370 compare_case_value(const void *a, const void *b)
6371 {
6372 return *(unsigned *) a == *(unsigned *) b;
6373 }
6374
6375
6376 /* Used for detection of duplicate case values, just
6377 * returns key contents as is.
6378 */
6379 static unsigned
6380 key_contents(const void *key)
6381 {
6382 return *(unsigned *) key;
6383 }
6384
6385
6386 ir_rvalue *
6387 ast_switch_statement::hir(exec_list *instructions,
6388 struct _mesa_glsl_parse_state *state)
6389 {
6390 void *ctx = state;
6391
6392 ir_rvalue *const test_expression =
6393 this->test_expression->hir(instructions, state);
6394
6395 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6396 *
6397 * "The type of init-expression in a switch statement must be a
6398 * scalar integer."
6399 */
6400 if (!test_expression->type->is_scalar() ||
6401 !test_expression->type->is_integer()) {
6402 YYLTYPE loc = this->test_expression->get_location();
6403
6404 _mesa_glsl_error(& loc,
6405 state,
6406 "switch-statement expression must be scalar "
6407 "integer");
6408 }
6409
6410 /* Track the switch-statement nesting in a stack-like manner.
6411 */
6412 struct glsl_switch_state saved = state->switch_state;
6413
6414 state->switch_state.is_switch_innermost = true;
6415 state->switch_state.switch_nesting_ast = this;
6416 state->switch_state.labels_ht =
6417 _mesa_hash_table_create(NULL, key_contents,
6418 compare_case_value);
6419 state->switch_state.previous_default = NULL;
6420
6421 /* Initalize is_fallthru state to false.
6422 */
6423 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6424 state->switch_state.is_fallthru_var =
6425 new(ctx) ir_variable(glsl_type::bool_type,
6426 "switch_is_fallthru_tmp",
6427 ir_var_temporary);
6428 instructions->push_tail(state->switch_state.is_fallthru_var);
6429
6430 ir_dereference_variable *deref_is_fallthru_var =
6431 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6432 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6433 is_fallthru_val));
6434
6435 /* Initialize continue_inside state to false.
6436 */
6437 state->switch_state.continue_inside =
6438 new(ctx) ir_variable(glsl_type::bool_type,
6439 "continue_inside_tmp",
6440 ir_var_temporary);
6441 instructions->push_tail(state->switch_state.continue_inside);
6442
6443 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6444 ir_dereference_variable *deref_continue_inside_var =
6445 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6446 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6447 false_val));
6448
6449 state->switch_state.run_default =
6450 new(ctx) ir_variable(glsl_type::bool_type,
6451 "run_default_tmp",
6452 ir_var_temporary);
6453 instructions->push_tail(state->switch_state.run_default);
6454
6455 /* Loop around the switch is used for flow control. */
6456 ir_loop * loop = new(ctx) ir_loop();
6457 instructions->push_tail(loop);
6458
6459 /* Cache test expression.
6460 */
6461 test_to_hir(&loop->body_instructions, state);
6462
6463 /* Emit code for body of switch stmt.
6464 */
6465 body->hir(&loop->body_instructions, state);
6466
6467 /* Insert a break at the end to exit loop. */
6468 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6469 loop->body_instructions.push_tail(jump);
6470
6471 /* If we are inside loop, check if continue got called inside switch. */
6472 if (state->loop_nesting_ast != NULL) {
6473 ir_dereference_variable *deref_continue_inside =
6474 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6475 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6476 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6477
6478 if (state->loop_nesting_ast != NULL) {
6479 if (state->loop_nesting_ast->rest_expression) {
6480 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6481 state);
6482 }
6483 if (state->loop_nesting_ast->mode ==
6484 ast_iteration_statement::ast_do_while) {
6485 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6486 }
6487 }
6488 irif->then_instructions.push_tail(jump);
6489 instructions->push_tail(irif);
6490 }
6491
6492 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6493
6494 state->switch_state = saved;
6495
6496 /* Switch statements do not have r-values. */
6497 return NULL;
6498 }
6499
6500
6501 void
6502 ast_switch_statement::test_to_hir(exec_list *instructions,
6503 struct _mesa_glsl_parse_state *state)
6504 {
6505 void *ctx = state;
6506
6507 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6508 * on the switch test case. The first one would be already raised when
6509 * getting the test_expression at ast_switch_statement::hir
6510 */
6511 test_expression->set_is_lhs(true);
6512 /* Cache value of test expression. */
6513 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6514
6515 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6516 "switch_test_tmp",
6517 ir_var_temporary);
6518 ir_dereference_variable *deref_test_var =
6519 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6520
6521 instructions->push_tail(state->switch_state.test_var);
6522 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6523 }
6524
6525
6526 ir_rvalue *
6527 ast_switch_body::hir(exec_list *instructions,
6528 struct _mesa_glsl_parse_state *state)
6529 {
6530 if (stmts != NULL)
6531 stmts->hir(instructions, state);
6532
6533 /* Switch bodies do not have r-values. */
6534 return NULL;
6535 }
6536
6537 ir_rvalue *
6538 ast_case_statement_list::hir(exec_list *instructions,
6539 struct _mesa_glsl_parse_state *state)
6540 {
6541 exec_list default_case, after_default, tmp;
6542
6543 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6544 case_stmt->hir(&tmp, state);
6545
6546 /* Default case. */
6547 if (state->switch_state.previous_default && default_case.is_empty()) {
6548 default_case.append_list(&tmp);
6549 continue;
6550 }
6551
6552 /* If default case found, append 'after_default' list. */
6553 if (!default_case.is_empty())
6554 after_default.append_list(&tmp);
6555 else
6556 instructions->append_list(&tmp);
6557 }
6558
6559 /* Handle the default case. This is done here because default might not be
6560 * the last case. We need to add checks against following cases first to see
6561 * if default should be chosen or not.
6562 */
6563 if (!default_case.is_empty()) {
6564
6565 ir_rvalue *const true_val = new (state) ir_constant(true);
6566 ir_dereference_variable *deref_run_default_var =
6567 new(state) ir_dereference_variable(state->switch_state.run_default);
6568
6569 /* Choose to run default case initially, following conditional
6570 * assignments might change this.
6571 */
6572 ir_assignment *const init_var =
6573 new(state) ir_assignment(deref_run_default_var, true_val);
6574 instructions->push_tail(init_var);
6575
6576 /* Default case was the last one, no checks required. */
6577 if (after_default.is_empty()) {
6578 instructions->append_list(&default_case);
6579 return NULL;
6580 }
6581
6582 foreach_in_list(ir_instruction, ir, &after_default) {
6583 ir_assignment *assign = ir->as_assignment();
6584
6585 if (!assign)
6586 continue;
6587
6588 /* Clone the check between case label and init expression. */
6589 ir_expression *exp = (ir_expression*) assign->condition;
6590 ir_expression *clone = exp->clone(state, NULL);
6591
6592 ir_dereference_variable *deref_var =
6593 new(state) ir_dereference_variable(state->switch_state.run_default);
6594 ir_rvalue *const false_val = new (state) ir_constant(false);
6595
6596 ir_assignment *const set_false =
6597 new(state) ir_assignment(deref_var, false_val, clone);
6598
6599 instructions->push_tail(set_false);
6600 }
6601
6602 /* Append default case and all cases after it. */
6603 instructions->append_list(&default_case);
6604 instructions->append_list(&after_default);
6605 }
6606
6607 /* Case statements do not have r-values. */
6608 return NULL;
6609 }
6610
6611 ir_rvalue *
6612 ast_case_statement::hir(exec_list *instructions,
6613 struct _mesa_glsl_parse_state *state)
6614 {
6615 labels->hir(instructions, state);
6616
6617 /* Guard case statements depending on fallthru state. */
6618 ir_dereference_variable *const deref_fallthru_guard =
6619 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6620 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6621
6622 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6623 stmt->hir(& test_fallthru->then_instructions, state);
6624
6625 instructions->push_tail(test_fallthru);
6626
6627 /* Case statements do not have r-values. */
6628 return NULL;
6629 }
6630
6631
6632 ir_rvalue *
6633 ast_case_label_list::hir(exec_list *instructions,
6634 struct _mesa_glsl_parse_state *state)
6635 {
6636 foreach_list_typed (ast_case_label, label, link, & this->labels)
6637 label->hir(instructions, state);
6638
6639 /* Case labels do not have r-values. */
6640 return NULL;
6641 }
6642
6643 ir_rvalue *
6644 ast_case_label::hir(exec_list *instructions,
6645 struct _mesa_glsl_parse_state *state)
6646 {
6647 void *ctx = state;
6648
6649 ir_dereference_variable *deref_fallthru_var =
6650 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6651
6652 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6653
6654 /* If not default case, ... */
6655 if (this->test_value != NULL) {
6656 /* Conditionally set fallthru state based on
6657 * comparison of cached test expression value to case label.
6658 */
6659 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6660 ir_constant *label_const = label_rval->constant_expression_value(ctx);
6661
6662 if (!label_const) {
6663 YYLTYPE loc = this->test_value->get_location();
6664
6665 _mesa_glsl_error(& loc, state,
6666 "switch statement case label must be a "
6667 "constant expression");
6668
6669 /* Stuff a dummy value in to allow processing to continue. */
6670 label_const = new(ctx) ir_constant(0);
6671 } else {
6672 hash_entry *entry =
6673 _mesa_hash_table_search(state->switch_state.labels_ht,
6674 (void *)(uintptr_t)&label_const->value.u[0]);
6675
6676 if (entry) {
6677 ast_expression *previous_label = (ast_expression *) entry->data;
6678 YYLTYPE loc = this->test_value->get_location();
6679 _mesa_glsl_error(& loc, state, "duplicate case value");
6680
6681 loc = previous_label->get_location();
6682 _mesa_glsl_error(& loc, state, "this is the previous case label");
6683 } else {
6684 _mesa_hash_table_insert(state->switch_state.labels_ht,
6685 (void *)(uintptr_t)&label_const->value.u[0],
6686 this->test_value);
6687 }
6688 }
6689
6690 ir_dereference_variable *deref_test_var =
6691 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6692
6693 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6694 label_const,
6695 deref_test_var);
6696
6697 /*
6698 * From GLSL 4.40 specification section 6.2 ("Selection"):
6699 *
6700 * "The type of the init-expression value in a switch statement must
6701 * be a scalar int or uint. The type of the constant-expression value
6702 * in a case label also must be a scalar int or uint. When any pair
6703 * of these values is tested for "equal value" and the types do not
6704 * match, an implicit conversion will be done to convert the int to a
6705 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6706 * is done."
6707 */
6708 if (label_const->type != state->switch_state.test_var->type) {
6709 YYLTYPE loc = this->test_value->get_location();
6710
6711 const glsl_type *type_a = label_const->type;
6712 const glsl_type *type_b = state->switch_state.test_var->type;
6713
6714 /* Check if int->uint implicit conversion is supported. */
6715 bool integer_conversion_supported =
6716 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6717 state);
6718
6719 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6720 !integer_conversion_supported) {
6721 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6722 "init-expression and case label (%s != %s)",
6723 type_a->name, type_b->name);
6724 } else {
6725 /* Conversion of the case label. */
6726 if (type_a->base_type == GLSL_TYPE_INT) {
6727 if (!apply_implicit_conversion(glsl_type::uint_type,
6728 test_cond->operands[0], state))
6729 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6730 } else {
6731 /* Conversion of the init-expression value. */
6732 if (!apply_implicit_conversion(glsl_type::uint_type,
6733 test_cond->operands[1], state))
6734 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6735 }
6736 }
6737 }
6738
6739 ir_assignment *set_fallthru_on_test =
6740 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6741
6742 instructions->push_tail(set_fallthru_on_test);
6743 } else { /* default case */
6744 if (state->switch_state.previous_default) {
6745 YYLTYPE loc = this->get_location();
6746 _mesa_glsl_error(& loc, state,
6747 "multiple default labels in one switch");
6748
6749 loc = state->switch_state.previous_default->get_location();
6750 _mesa_glsl_error(& loc, state, "this is the first default label");
6751 }
6752 state->switch_state.previous_default = this;
6753
6754 /* Set fallthru condition on 'run_default' bool. */
6755 ir_dereference_variable *deref_run_default =
6756 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6757 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6758 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6759 cond_true,
6760 deref_run_default);
6761
6762 /* Set falltrhu state. */
6763 ir_assignment *set_fallthru =
6764 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6765
6766 instructions->push_tail(set_fallthru);
6767 }
6768
6769 /* Case statements do not have r-values. */
6770 return NULL;
6771 }
6772
6773 void
6774 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6775 struct _mesa_glsl_parse_state *state)
6776 {
6777 void *ctx = state;
6778
6779 if (condition != NULL) {
6780 ir_rvalue *const cond =
6781 condition->hir(instructions, state);
6782
6783 if ((cond == NULL)
6784 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6785 YYLTYPE loc = condition->get_location();
6786
6787 _mesa_glsl_error(& loc, state,
6788 "loop condition must be scalar boolean");
6789 } else {
6790 /* As the first code in the loop body, generate a block that looks
6791 * like 'if (!condition) break;' as the loop termination condition.
6792 */
6793 ir_rvalue *const not_cond =
6794 new(ctx) ir_expression(ir_unop_logic_not, cond);
6795
6796 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6797
6798 ir_jump *const break_stmt =
6799 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6800
6801 if_stmt->then_instructions.push_tail(break_stmt);
6802 instructions->push_tail(if_stmt);
6803 }
6804 }
6805 }
6806
6807
6808 ir_rvalue *
6809 ast_iteration_statement::hir(exec_list *instructions,
6810 struct _mesa_glsl_parse_state *state)
6811 {
6812 void *ctx = state;
6813
6814 /* For-loops and while-loops start a new scope, but do-while loops do not.
6815 */
6816 if (mode != ast_do_while)
6817 state->symbols->push_scope();
6818
6819 if (init_statement != NULL)
6820 init_statement->hir(instructions, state);
6821
6822 ir_loop *const stmt = new(ctx) ir_loop();
6823 instructions->push_tail(stmt);
6824
6825 /* Track the current loop nesting. */
6826 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6827
6828 state->loop_nesting_ast = this;
6829
6830 /* Likewise, indicate that following code is closest to a loop,
6831 * NOT closest to a switch.
6832 */
6833 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6834 state->switch_state.is_switch_innermost = false;
6835
6836 if (mode != ast_do_while)
6837 condition_to_hir(&stmt->body_instructions, state);
6838
6839 if (body != NULL)
6840 body->hir(& stmt->body_instructions, state);
6841
6842 if (rest_expression != NULL)
6843 rest_expression->hir(& stmt->body_instructions, state);
6844
6845 if (mode == ast_do_while)
6846 condition_to_hir(&stmt->body_instructions, state);
6847
6848 if (mode != ast_do_while)
6849 state->symbols->pop_scope();
6850
6851 /* Restore previous nesting before returning. */
6852 state->loop_nesting_ast = nesting_ast;
6853 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6854
6855 /* Loops do not have r-values.
6856 */
6857 return NULL;
6858 }
6859
6860
6861 /**
6862 * Determine if the given type is valid for establishing a default precision
6863 * qualifier.
6864 *
6865 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6866 *
6867 * "The precision statement
6868 *
6869 * precision precision-qualifier type;
6870 *
6871 * can be used to establish a default precision qualifier. The type field
6872 * can be either int or float or any of the sampler types, and the
6873 * precision-qualifier can be lowp, mediump, or highp."
6874 *
6875 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6876 * qualifiers on sampler types, but this seems like an oversight (since the
6877 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6878 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6879 * version.
6880 */
6881 static bool
6882 is_valid_default_precision_type(const struct glsl_type *const type)
6883 {
6884 if (type == NULL)
6885 return false;
6886
6887 switch (type->base_type) {
6888 case GLSL_TYPE_INT:
6889 case GLSL_TYPE_FLOAT:
6890 /* "int" and "float" are valid, but vectors and matrices are not. */
6891 return type->vector_elements == 1 && type->matrix_columns == 1;
6892 case GLSL_TYPE_SAMPLER:
6893 case GLSL_TYPE_IMAGE:
6894 case GLSL_TYPE_ATOMIC_UINT:
6895 return true;
6896 default:
6897 return false;
6898 }
6899 }
6900
6901
6902 ir_rvalue *
6903 ast_type_specifier::hir(exec_list *instructions,
6904 struct _mesa_glsl_parse_state *state)
6905 {
6906 if (this->default_precision == ast_precision_none && this->structure == NULL)
6907 return NULL;
6908
6909 YYLTYPE loc = this->get_location();
6910
6911 /* If this is a precision statement, check that the type to which it is
6912 * applied is either float or int.
6913 *
6914 * From section 4.5.3 of the GLSL 1.30 spec:
6915 * "The precision statement
6916 * precision precision-qualifier type;
6917 * can be used to establish a default precision qualifier. The type
6918 * field can be either int or float [...]. Any other types or
6919 * qualifiers will result in an error.
6920 */
6921 if (this->default_precision != ast_precision_none) {
6922 if (!state->check_precision_qualifiers_allowed(&loc))
6923 return NULL;
6924
6925 if (this->structure != NULL) {
6926 _mesa_glsl_error(&loc, state,
6927 "precision qualifiers do not apply to structures");
6928 return NULL;
6929 }
6930
6931 if (this->array_specifier != NULL) {
6932 _mesa_glsl_error(&loc, state,
6933 "default precision statements do not apply to "
6934 "arrays");
6935 return NULL;
6936 }
6937
6938 const struct glsl_type *const type =
6939 state->symbols->get_type(this->type_name);
6940 if (!is_valid_default_precision_type(type)) {
6941 _mesa_glsl_error(&loc, state,
6942 "default precision statements apply only to "
6943 "float, int, and opaque types");
6944 return NULL;
6945 }
6946
6947 if (state->es_shader) {
6948 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6949 * spec says:
6950 *
6951 * "Non-precision qualified declarations will use the precision
6952 * qualifier specified in the most recent precision statement
6953 * that is still in scope. The precision statement has the same
6954 * scoping rules as variable declarations. If it is declared
6955 * inside a compound statement, its effect stops at the end of
6956 * the innermost statement it was declared in. Precision
6957 * statements in nested scopes override precision statements in
6958 * outer scopes. Multiple precision statements for the same basic
6959 * type can appear inside the same scope, with later statements
6960 * overriding earlier statements within that scope."
6961 *
6962 * Default precision specifications follow the same scope rules as
6963 * variables. So, we can track the state of the default precision
6964 * qualifiers in the symbol table, and the rules will just work. This
6965 * is a slight abuse of the symbol table, but it has the semantics
6966 * that we want.
6967 */
6968 state->symbols->add_default_precision_qualifier(this->type_name,
6969 this->default_precision);
6970 }
6971
6972 /* FINISHME: Translate precision statements into IR. */
6973 return NULL;
6974 }
6975
6976 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6977 * process_record_constructor() can do type-checking on C-style initializer
6978 * expressions of structs, but ast_struct_specifier should only be translated
6979 * to HIR if it is declaring the type of a structure.
6980 *
6981 * The ->is_declaration field is false for initializers of variables
6982 * declared separately from the struct's type definition.
6983 *
6984 * struct S { ... }; (is_declaration = true)
6985 * struct T { ... } t = { ... }; (is_declaration = true)
6986 * S s = { ... }; (is_declaration = false)
6987 */
6988 if (this->structure != NULL && this->structure->is_declaration)
6989 return this->structure->hir(instructions, state);
6990
6991 return NULL;
6992 }
6993
6994
6995 /**
6996 * Process a structure or interface block tree into an array of structure fields
6997 *
6998 * After parsing, where there are some syntax differnces, structures and
6999 * interface blocks are almost identical. They are similar enough that the
7000 * AST for each can be processed the same way into a set of
7001 * \c glsl_struct_field to describe the members.
7002 *
7003 * If we're processing an interface block, var_mode should be the type of the
7004 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7005 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7006 * ir_var_auto.
7007 *
7008 * \return
7009 * The number of fields processed. A pointer to the array structure fields is
7010 * stored in \c *fields_ret.
7011 */
7012 static unsigned
7013 ast_process_struct_or_iface_block_members(exec_list *instructions,
7014 struct _mesa_glsl_parse_state *state,
7015 exec_list *declarations,
7016 glsl_struct_field **fields_ret,
7017 bool is_interface,
7018 enum glsl_matrix_layout matrix_layout,
7019 bool allow_reserved_names,
7020 ir_variable_mode var_mode,
7021 ast_type_qualifier *layout,
7022 unsigned block_stream,
7023 unsigned block_xfb_buffer,
7024 unsigned block_xfb_offset,
7025 unsigned expl_location,
7026 unsigned expl_align)
7027 {
7028 unsigned decl_count = 0;
7029 unsigned next_offset = 0;
7030
7031 /* Make an initial pass over the list of fields to determine how
7032 * many there are. Each element in this list is an ast_declarator_list.
7033 * This means that we actually need to count the number of elements in the
7034 * 'declarations' list in each of the elements.
7035 */
7036 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7037 decl_count += decl_list->declarations.length();
7038 }
7039
7040 /* Allocate storage for the fields and process the field
7041 * declarations. As the declarations are processed, try to also convert
7042 * the types to HIR. This ensures that structure definitions embedded in
7043 * other structure definitions or in interface blocks are processed.
7044 */
7045 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7046 decl_count);
7047
7048 bool first_member = true;
7049 bool first_member_has_explicit_location = false;
7050
7051 unsigned i = 0;
7052 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7053 const char *type_name;
7054 YYLTYPE loc = decl_list->get_location();
7055
7056 decl_list->type->specifier->hir(instructions, state);
7057
7058 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7059 *
7060 * "Anonymous structures are not supported; so embedded structures
7061 * must have a declarator. A name given to an embedded struct is
7062 * scoped at the same level as the struct it is embedded in."
7063 *
7064 * The same section of the GLSL 1.20 spec says:
7065 *
7066 * "Anonymous structures are not supported. Embedded structures are
7067 * not supported."
7068 *
7069 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7070 * embedded structures in 1.10 only.
7071 */
7072 if (state->language_version != 110 &&
7073 decl_list->type->specifier->structure != NULL)
7074 _mesa_glsl_error(&loc, state,
7075 "embedded structure declarations are not allowed");
7076
7077 const glsl_type *decl_type =
7078 decl_list->type->glsl_type(& type_name, state);
7079
7080 const struct ast_type_qualifier *const qual =
7081 &decl_list->type->qualifier;
7082
7083 /* From section 4.3.9 of the GLSL 4.40 spec:
7084 *
7085 * "[In interface blocks] opaque types are not allowed."
7086 *
7087 * It should be impossible for decl_type to be NULL here. Cases that
7088 * might naturally lead to decl_type being NULL, especially for the
7089 * is_interface case, will have resulted in compilation having
7090 * already halted due to a syntax error.
7091 */
7092 assert(decl_type);
7093
7094 if (is_interface) {
7095 /* From section 4.3.7 of the ARB_bindless_texture spec:
7096 *
7097 * "(remove the following bullet from the last list on p. 39,
7098 * thereby permitting sampler types in interface blocks; image
7099 * types are also permitted in blocks by this extension)"
7100 *
7101 * * sampler types are not allowed
7102 */
7103 if (decl_type->contains_atomic() ||
7104 (!state->has_bindless() && decl_type->contains_opaque())) {
7105 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7106 "interface block contains %s variable",
7107 state->has_bindless() ? "atomic" : "opaque");
7108 }
7109 } else {
7110 if (decl_type->contains_atomic()) {
7111 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7112 *
7113 * "Members of structures cannot be declared as atomic counter
7114 * types."
7115 */
7116 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7117 }
7118
7119 if (!state->has_bindless() && decl_type->contains_image()) {
7120 /* FINISHME: Same problem as with atomic counters.
7121 * FINISHME: Request clarification from Khronos and add
7122 * FINISHME: spec quotation here.
7123 */
7124 _mesa_glsl_error(&loc, state, "image in structure");
7125 }
7126 }
7127
7128 if (qual->flags.q.explicit_binding) {
7129 _mesa_glsl_error(&loc, state,
7130 "binding layout qualifier cannot be applied "
7131 "to struct or interface block members");
7132 }
7133
7134 if (is_interface) {
7135 if (!first_member) {
7136 if (!layout->flags.q.explicit_location &&
7137 ((first_member_has_explicit_location &&
7138 !qual->flags.q.explicit_location) ||
7139 (!first_member_has_explicit_location &&
7140 qual->flags.q.explicit_location))) {
7141 _mesa_glsl_error(&loc, state,
7142 "when block-level location layout qualifier "
7143 "is not supplied either all members must "
7144 "have a location layout qualifier or all "
7145 "members must not have a location layout "
7146 "qualifier");
7147 }
7148 } else {
7149 first_member = false;
7150 first_member_has_explicit_location =
7151 qual->flags.q.explicit_location;
7152 }
7153 }
7154
7155 if (qual->flags.q.std140 ||
7156 qual->flags.q.std430 ||
7157 qual->flags.q.packed ||
7158 qual->flags.q.shared) {
7159 _mesa_glsl_error(&loc, state,
7160 "uniform/shader storage block layout qualifiers "
7161 "std140, std430, packed, and shared can only be "
7162 "applied to uniform/shader storage blocks, not "
7163 "members");
7164 }
7165
7166 if (qual->flags.q.constant) {
7167 _mesa_glsl_error(&loc, state,
7168 "const storage qualifier cannot be applied "
7169 "to struct or interface block members");
7170 }
7171
7172 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7173 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7174
7175 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7176 *
7177 * "A block member may be declared with a stream identifier, but
7178 * the specified stream must match the stream associated with the
7179 * containing block."
7180 */
7181 if (qual->flags.q.explicit_stream) {
7182 unsigned qual_stream;
7183 if (process_qualifier_constant(state, &loc, "stream",
7184 qual->stream, &qual_stream) &&
7185 qual_stream != block_stream) {
7186 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7187 "interface block member does not match "
7188 "the interface block (%u vs %u)", qual_stream,
7189 block_stream);
7190 }
7191 }
7192
7193 int xfb_buffer;
7194 unsigned explicit_xfb_buffer = 0;
7195 if (qual->flags.q.explicit_xfb_buffer) {
7196 unsigned qual_xfb_buffer;
7197 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7198 qual->xfb_buffer, &qual_xfb_buffer)) {
7199 explicit_xfb_buffer = 1;
7200 if (qual_xfb_buffer != block_xfb_buffer)
7201 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7202 "interface block member does not match "
7203 "the interface block (%u vs %u)",
7204 qual_xfb_buffer, block_xfb_buffer);
7205 }
7206 xfb_buffer = (int) qual_xfb_buffer;
7207 } else {
7208 if (layout)
7209 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7210 xfb_buffer = (int) block_xfb_buffer;
7211 }
7212
7213 int xfb_stride = -1;
7214 if (qual->flags.q.explicit_xfb_stride) {
7215 unsigned qual_xfb_stride;
7216 if (process_qualifier_constant(state, &loc, "xfb_stride",
7217 qual->xfb_stride, &qual_xfb_stride)) {
7218 xfb_stride = (int) qual_xfb_stride;
7219 }
7220 }
7221
7222 if (qual->flags.q.uniform && qual->has_interpolation()) {
7223 _mesa_glsl_error(&loc, state,
7224 "interpolation qualifiers cannot be used "
7225 "with uniform interface blocks");
7226 }
7227
7228 if ((qual->flags.q.uniform || !is_interface) &&
7229 qual->has_auxiliary_storage()) {
7230 _mesa_glsl_error(&loc, state,
7231 "auxiliary storage qualifiers cannot be used "
7232 "in uniform blocks or structures.");
7233 }
7234
7235 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7236 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7237 _mesa_glsl_error(&loc, state,
7238 "row_major and column_major can only be "
7239 "applied to interface blocks");
7240 } else
7241 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7242 }
7243
7244 if (qual->flags.q.read_only && qual->flags.q.write_only) {
7245 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
7246 "readonly and writeonly.");
7247 }
7248
7249 foreach_list_typed (ast_declaration, decl, link,
7250 &decl_list->declarations) {
7251 YYLTYPE loc = decl->get_location();
7252
7253 if (!allow_reserved_names)
7254 validate_identifier(decl->identifier, loc, state);
7255
7256 const struct glsl_type *field_type =
7257 process_array_type(&loc, decl_type, decl->array_specifier, state);
7258 validate_array_dimensions(field_type, state, &loc);
7259 fields[i].type = field_type;
7260 fields[i].name = decl->identifier;
7261 fields[i].interpolation =
7262 interpret_interpolation_qualifier(qual, field_type,
7263 var_mode, state, &loc);
7264 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7265 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7266 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7267 fields[i].precision = qual->precision;
7268 fields[i].offset = -1;
7269 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7270 fields[i].xfb_buffer = xfb_buffer;
7271 fields[i].xfb_stride = xfb_stride;
7272
7273 if (qual->flags.q.explicit_location) {
7274 unsigned qual_location;
7275 if (process_qualifier_constant(state, &loc, "location",
7276 qual->location, &qual_location)) {
7277 fields[i].location = qual_location +
7278 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7279 expl_location = fields[i].location +
7280 fields[i].type->count_attribute_slots(false);
7281 }
7282 } else {
7283 if (layout && layout->flags.q.explicit_location) {
7284 fields[i].location = expl_location;
7285 expl_location += fields[i].type->count_attribute_slots(false);
7286 } else {
7287 fields[i].location = -1;
7288 }
7289 }
7290
7291 /* Offset can only be used with std430 and std140 layouts an initial
7292 * value of 0 is used for error detection.
7293 */
7294 unsigned align = 0;
7295 unsigned size = 0;
7296 if (layout) {
7297 bool row_major;
7298 if (qual->flags.q.row_major ||
7299 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7300 row_major = true;
7301 } else {
7302 row_major = false;
7303 }
7304
7305 if(layout->flags.q.std140) {
7306 align = field_type->std140_base_alignment(row_major);
7307 size = field_type->std140_size(row_major);
7308 } else if (layout->flags.q.std430) {
7309 align = field_type->std430_base_alignment(row_major);
7310 size = field_type->std430_size(row_major);
7311 }
7312 }
7313
7314 if (qual->flags.q.explicit_offset) {
7315 unsigned qual_offset;
7316 if (process_qualifier_constant(state, &loc, "offset",
7317 qual->offset, &qual_offset)) {
7318 if (align != 0 && size != 0) {
7319 if (next_offset > qual_offset)
7320 _mesa_glsl_error(&loc, state, "layout qualifier "
7321 "offset overlaps previous member");
7322
7323 if (qual_offset % align) {
7324 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7325 "must be a multiple of the base "
7326 "alignment of %s", field_type->name);
7327 }
7328 fields[i].offset = qual_offset;
7329 next_offset = glsl_align(qual_offset + size, align);
7330 } else {
7331 _mesa_glsl_error(&loc, state, "offset can only be used "
7332 "with std430 and std140 layouts");
7333 }
7334 }
7335 }
7336
7337 if (qual->flags.q.explicit_align || expl_align != 0) {
7338 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7339 next_offset;
7340 if (align == 0 || size == 0) {
7341 _mesa_glsl_error(&loc, state, "align can only be used with "
7342 "std430 and std140 layouts");
7343 } else if (qual->flags.q.explicit_align) {
7344 unsigned member_align;
7345 if (process_qualifier_constant(state, &loc, "align",
7346 qual->align, &member_align)) {
7347 if (member_align == 0 ||
7348 member_align & (member_align - 1)) {
7349 _mesa_glsl_error(&loc, state, "align layout qualifier "
7350 "in not a power of 2");
7351 } else {
7352 fields[i].offset = glsl_align(offset, member_align);
7353 next_offset = glsl_align(fields[i].offset + size, align);
7354 }
7355 }
7356 } else {
7357 fields[i].offset = glsl_align(offset, expl_align);
7358 next_offset = glsl_align(fields[i].offset + size, align);
7359 }
7360 } else if (!qual->flags.q.explicit_offset) {
7361 if (align != 0 && size != 0)
7362 next_offset = glsl_align(next_offset + size, align);
7363 }
7364
7365 /* From the ARB_enhanced_layouts spec:
7366 *
7367 * "The given offset applies to the first component of the first
7368 * member of the qualified entity. Then, within the qualified
7369 * entity, subsequent components are each assigned, in order, to
7370 * the next available offset aligned to a multiple of that
7371 * component's size. Aggregate types are flattened down to the
7372 * component level to get this sequence of components."
7373 */
7374 if (qual->flags.q.explicit_xfb_offset) {
7375 unsigned xfb_offset;
7376 if (process_qualifier_constant(state, &loc, "xfb_offset",
7377 qual->offset, &xfb_offset)) {
7378 fields[i].offset = xfb_offset;
7379 block_xfb_offset = fields[i].offset +
7380 4 * field_type->component_slots();
7381 }
7382 } else {
7383 if (layout && layout->flags.q.explicit_xfb_offset) {
7384 unsigned align = field_type->is_64bit() ? 8 : 4;
7385 fields[i].offset = glsl_align(block_xfb_offset, align);
7386 block_xfb_offset += 4 * field_type->component_slots();
7387 }
7388 }
7389
7390 /* Propogate row- / column-major information down the fields of the
7391 * structure or interface block. Structures need this data because
7392 * the structure may contain a structure that contains ... a matrix
7393 * that need the proper layout.
7394 */
7395 if (is_interface && layout &&
7396 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7397 (field_type->without_array()->is_matrix()
7398 || field_type->without_array()->is_record())) {
7399 /* If no layout is specified for the field, inherit the layout
7400 * from the block.
7401 */
7402 fields[i].matrix_layout = matrix_layout;
7403
7404 if (qual->flags.q.row_major)
7405 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7406 else if (qual->flags.q.column_major)
7407 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7408
7409 /* If we're processing an uniform or buffer block, the matrix
7410 * layout must be decided by this point.
7411 */
7412 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7413 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7414 }
7415
7416 /* Memory qualifiers are allowed on buffer and image variables, while
7417 * the format qualifier is only accepted for images.
7418 */
7419 if (var_mode == ir_var_shader_storage ||
7420 field_type->without_array()->is_image()) {
7421 /* For readonly and writeonly qualifiers the field definition,
7422 * if set, overwrites the layout qualifier.
7423 */
7424 if (qual->flags.q.read_only) {
7425 fields[i].memory_read_only = true;
7426 fields[i].memory_write_only = false;
7427 } else if (qual->flags.q.write_only) {
7428 fields[i].memory_read_only = false;
7429 fields[i].memory_write_only = true;
7430 } else {
7431 fields[i].memory_read_only =
7432 layout ? layout->flags.q.read_only : 0;
7433 fields[i].memory_write_only =
7434 layout ? layout->flags.q.write_only : 0;
7435 }
7436
7437 /* For other qualifiers, we set the flag if either the layout
7438 * qualifier or the field qualifier are set
7439 */
7440 fields[i].memory_coherent = qual->flags.q.coherent ||
7441 (layout && layout->flags.q.coherent);
7442 fields[i].memory_volatile = qual->flags.q._volatile ||
7443 (layout && layout->flags.q._volatile);
7444 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7445 (layout && layout->flags.q.restrict_flag);
7446
7447 if (field_type->without_array()->is_image()) {
7448 if (qual->flags.q.explicit_image_format) {
7449 if (qual->image_base_type !=
7450 field_type->without_array()->sampled_type) {
7451 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7452 "match the base data type of the image");
7453 }
7454
7455 fields[i].image_format = qual->image_format;
7456 } else {
7457 if (!qual->flags.q.write_only) {
7458 _mesa_glsl_error(&loc, state, "image not qualified with "
7459 "`writeonly' must have a format layout "
7460 "qualifier");
7461 }
7462
7463 fields[i].image_format = GL_NONE;
7464 }
7465 }
7466 }
7467
7468 i++;
7469 }
7470 }
7471
7472 assert(i == decl_count);
7473
7474 *fields_ret = fields;
7475 return decl_count;
7476 }
7477
7478
7479 ir_rvalue *
7480 ast_struct_specifier::hir(exec_list *instructions,
7481 struct _mesa_glsl_parse_state *state)
7482 {
7483 YYLTYPE loc = this->get_location();
7484
7485 unsigned expl_location = 0;
7486 if (layout && layout->flags.q.explicit_location) {
7487 if (!process_qualifier_constant(state, &loc, "location",
7488 layout->location, &expl_location)) {
7489 return NULL;
7490 } else {
7491 expl_location = VARYING_SLOT_VAR0 + expl_location;
7492 }
7493 }
7494
7495 glsl_struct_field *fields;
7496 unsigned decl_count =
7497 ast_process_struct_or_iface_block_members(instructions,
7498 state,
7499 &this->declarations,
7500 &fields,
7501 false,
7502 GLSL_MATRIX_LAYOUT_INHERITED,
7503 false /* allow_reserved_names */,
7504 ir_var_auto,
7505 layout,
7506 0, /* for interface only */
7507 0, /* for interface only */
7508 0, /* for interface only */
7509 expl_location,
7510 0 /* for interface only */);
7511
7512 validate_identifier(this->name, loc, state);
7513
7514 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7515
7516 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7517 const glsl_type *match = state->symbols->get_type(name);
7518 /* allow struct matching for desktop GL - older UE4 does this */
7519 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7520 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7521 else
7522 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7523 } else {
7524 const glsl_type **s = reralloc(state, state->user_structures,
7525 const glsl_type *,
7526 state->num_user_structures + 1);
7527 if (s != NULL) {
7528 s[state->num_user_structures] = type;
7529 state->user_structures = s;
7530 state->num_user_structures++;
7531 }
7532 }
7533
7534 /* Structure type definitions do not have r-values.
7535 */
7536 return NULL;
7537 }
7538
7539
7540 /**
7541 * Visitor class which detects whether a given interface block has been used.
7542 */
7543 class interface_block_usage_visitor : public ir_hierarchical_visitor
7544 {
7545 public:
7546 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7547 : mode(mode), block(block), found(false)
7548 {
7549 }
7550
7551 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7552 {
7553 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7554 found = true;
7555 return visit_stop;
7556 }
7557 return visit_continue;
7558 }
7559
7560 bool usage_found() const
7561 {
7562 return this->found;
7563 }
7564
7565 private:
7566 ir_variable_mode mode;
7567 const glsl_type *block;
7568 bool found;
7569 };
7570
7571 static bool
7572 is_unsized_array_last_element(ir_variable *v)
7573 {
7574 const glsl_type *interface_type = v->get_interface_type();
7575 int length = interface_type->length;
7576
7577 assert(v->type->is_unsized_array());
7578
7579 /* Check if it is the last element of the interface */
7580 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7581 return true;
7582 return false;
7583 }
7584
7585 static void
7586 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7587 {
7588 var->data.memory_read_only = field.memory_read_only;
7589 var->data.memory_write_only = field.memory_write_only;
7590 var->data.memory_coherent = field.memory_coherent;
7591 var->data.memory_volatile = field.memory_volatile;
7592 var->data.memory_restrict = field.memory_restrict;
7593 }
7594
7595 ir_rvalue *
7596 ast_interface_block::hir(exec_list *instructions,
7597 struct _mesa_glsl_parse_state *state)
7598 {
7599 YYLTYPE loc = this->get_location();
7600
7601 /* Interface blocks must be declared at global scope */
7602 if (state->current_function != NULL) {
7603 _mesa_glsl_error(&loc, state,
7604 "Interface block `%s' must be declared "
7605 "at global scope",
7606 this->block_name);
7607 }
7608
7609 /* Validate qualifiers:
7610 *
7611 * - Layout Qualifiers as per the table in Section 4.4
7612 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7613 *
7614 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7615 * GLSL 4.50 spec:
7616 *
7617 * "Additionally, memory qualifiers may also be used in the declaration
7618 * of shader storage blocks"
7619 *
7620 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7621 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7622 * Layout Qualifiers) of the GLSL 4.50 spec says:
7623 *
7624 * "The std430 qualifier is supported only for shader storage blocks;
7625 * using std430 on a uniform block will result in a compile-time error."
7626 */
7627 ast_type_qualifier allowed_blk_qualifiers;
7628 allowed_blk_qualifiers.flags.i = 0;
7629 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7630 allowed_blk_qualifiers.flags.q.shared = 1;
7631 allowed_blk_qualifiers.flags.q.packed = 1;
7632 allowed_blk_qualifiers.flags.q.std140 = 1;
7633 allowed_blk_qualifiers.flags.q.row_major = 1;
7634 allowed_blk_qualifiers.flags.q.column_major = 1;
7635 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7636 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7637 if (this->layout.flags.q.buffer) {
7638 allowed_blk_qualifiers.flags.q.buffer = 1;
7639 allowed_blk_qualifiers.flags.q.std430 = 1;
7640 allowed_blk_qualifiers.flags.q.coherent = 1;
7641 allowed_blk_qualifiers.flags.q._volatile = 1;
7642 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7643 allowed_blk_qualifiers.flags.q.read_only = 1;
7644 allowed_blk_qualifiers.flags.q.write_only = 1;
7645 } else {
7646 allowed_blk_qualifiers.flags.q.uniform = 1;
7647 }
7648 } else {
7649 /* Interface block */
7650 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7651
7652 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7653 if (this->layout.flags.q.out) {
7654 allowed_blk_qualifiers.flags.q.out = 1;
7655 if (state->stage == MESA_SHADER_GEOMETRY ||
7656 state->stage == MESA_SHADER_TESS_CTRL ||
7657 state->stage == MESA_SHADER_TESS_EVAL ||
7658 state->stage == MESA_SHADER_VERTEX ) {
7659 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7660 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7661 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7662 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7663 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7664 if (state->stage == MESA_SHADER_GEOMETRY) {
7665 allowed_blk_qualifiers.flags.q.stream = 1;
7666 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7667 }
7668 if (state->stage == MESA_SHADER_TESS_CTRL) {
7669 allowed_blk_qualifiers.flags.q.patch = 1;
7670 }
7671 }
7672 } else {
7673 allowed_blk_qualifiers.flags.q.in = 1;
7674 if (state->stage == MESA_SHADER_TESS_EVAL) {
7675 allowed_blk_qualifiers.flags.q.patch = 1;
7676 }
7677 }
7678 }
7679
7680 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7681 "invalid qualifier for block",
7682 this->block_name);
7683
7684 enum glsl_interface_packing packing;
7685 if (this->layout.flags.q.std140) {
7686 packing = GLSL_INTERFACE_PACKING_STD140;
7687 } else if (this->layout.flags.q.packed) {
7688 packing = GLSL_INTERFACE_PACKING_PACKED;
7689 } else if (this->layout.flags.q.std430) {
7690 packing = GLSL_INTERFACE_PACKING_STD430;
7691 } else {
7692 /* The default layout is shared.
7693 */
7694 packing = GLSL_INTERFACE_PACKING_SHARED;
7695 }
7696
7697 ir_variable_mode var_mode;
7698 const char *iface_type_name;
7699 if (this->layout.flags.q.in) {
7700 var_mode = ir_var_shader_in;
7701 iface_type_name = "in";
7702 } else if (this->layout.flags.q.out) {
7703 var_mode = ir_var_shader_out;
7704 iface_type_name = "out";
7705 } else if (this->layout.flags.q.uniform) {
7706 var_mode = ir_var_uniform;
7707 iface_type_name = "uniform";
7708 } else if (this->layout.flags.q.buffer) {
7709 var_mode = ir_var_shader_storage;
7710 iface_type_name = "buffer";
7711 } else {
7712 var_mode = ir_var_auto;
7713 iface_type_name = "UNKNOWN";
7714 assert(!"interface block layout qualifier not found!");
7715 }
7716
7717 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7718 if (this->layout.flags.q.row_major)
7719 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7720 else if (this->layout.flags.q.column_major)
7721 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7722
7723 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7724 exec_list declared_variables;
7725 glsl_struct_field *fields;
7726
7727 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7728 * that we don't have incompatible qualifiers
7729 */
7730 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7731 _mesa_glsl_error(&loc, state,
7732 "Interface block sets both readonly and writeonly");
7733 }
7734
7735 unsigned qual_stream;
7736 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7737 &qual_stream) ||
7738 !validate_stream_qualifier(&loc, state, qual_stream)) {
7739 /* If the stream qualifier is invalid it doesn't make sense to continue
7740 * on and try to compare stream layouts on member variables against it
7741 * so just return early.
7742 */
7743 return NULL;
7744 }
7745
7746 unsigned qual_xfb_buffer;
7747 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7748 layout.xfb_buffer, &qual_xfb_buffer) ||
7749 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7750 return NULL;
7751 }
7752
7753 unsigned qual_xfb_offset;
7754 if (layout.flags.q.explicit_xfb_offset) {
7755 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7756 layout.offset, &qual_xfb_offset)) {
7757 return NULL;
7758 }
7759 }
7760
7761 unsigned qual_xfb_stride;
7762 if (layout.flags.q.explicit_xfb_stride) {
7763 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7764 layout.xfb_stride, &qual_xfb_stride)) {
7765 return NULL;
7766 }
7767 }
7768
7769 unsigned expl_location = 0;
7770 if (layout.flags.q.explicit_location) {
7771 if (!process_qualifier_constant(state, &loc, "location",
7772 layout.location, &expl_location)) {
7773 return NULL;
7774 } else {
7775 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7776 : VARYING_SLOT_VAR0;
7777 }
7778 }
7779
7780 unsigned expl_align = 0;
7781 if (layout.flags.q.explicit_align) {
7782 if (!process_qualifier_constant(state, &loc, "align",
7783 layout.align, &expl_align)) {
7784 return NULL;
7785 } else {
7786 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7787 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7788 "power of 2.");
7789 return NULL;
7790 }
7791 }
7792 }
7793
7794 unsigned int num_variables =
7795 ast_process_struct_or_iface_block_members(&declared_variables,
7796 state,
7797 &this->declarations,
7798 &fields,
7799 true,
7800 matrix_layout,
7801 redeclaring_per_vertex,
7802 var_mode,
7803 &this->layout,
7804 qual_stream,
7805 qual_xfb_buffer,
7806 qual_xfb_offset,
7807 expl_location,
7808 expl_align);
7809
7810 if (!redeclaring_per_vertex) {
7811 validate_identifier(this->block_name, loc, state);
7812
7813 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7814 *
7815 * "Block names have no other use within a shader beyond interface
7816 * matching; it is a compile-time error to use a block name at global
7817 * scope for anything other than as a block name."
7818 */
7819 ir_variable *var = state->symbols->get_variable(this->block_name);
7820 if (var && !var->type->is_interface()) {
7821 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7822 "already used in the scope.",
7823 this->block_name);
7824 }
7825 }
7826
7827 const glsl_type *earlier_per_vertex = NULL;
7828 if (redeclaring_per_vertex) {
7829 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7830 * the named interface block gl_in, we can find it by looking at the
7831 * previous declaration of gl_in. Otherwise we can find it by looking
7832 * at the previous decalartion of any of the built-in outputs,
7833 * e.g. gl_Position.
7834 *
7835 * Also check that the instance name and array-ness of the redeclaration
7836 * are correct.
7837 */
7838 switch (var_mode) {
7839 case ir_var_shader_in:
7840 if (ir_variable *earlier_gl_in =
7841 state->symbols->get_variable("gl_in")) {
7842 earlier_per_vertex = earlier_gl_in->get_interface_type();
7843 } else {
7844 _mesa_glsl_error(&loc, state,
7845 "redeclaration of gl_PerVertex input not allowed "
7846 "in the %s shader",
7847 _mesa_shader_stage_to_string(state->stage));
7848 }
7849 if (this->instance_name == NULL ||
7850 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7851 !this->array_specifier->is_single_dimension()) {
7852 _mesa_glsl_error(&loc, state,
7853 "gl_PerVertex input must be redeclared as "
7854 "gl_in[]");
7855 }
7856 break;
7857 case ir_var_shader_out:
7858 if (ir_variable *earlier_gl_Position =
7859 state->symbols->get_variable("gl_Position")) {
7860 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7861 } else if (ir_variable *earlier_gl_out =
7862 state->symbols->get_variable("gl_out")) {
7863 earlier_per_vertex = earlier_gl_out->get_interface_type();
7864 } else {
7865 _mesa_glsl_error(&loc, state,
7866 "redeclaration of gl_PerVertex output not "
7867 "allowed in the %s shader",
7868 _mesa_shader_stage_to_string(state->stage));
7869 }
7870 if (state->stage == MESA_SHADER_TESS_CTRL) {
7871 if (this->instance_name == NULL ||
7872 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7873 _mesa_glsl_error(&loc, state,
7874 "gl_PerVertex output must be redeclared as "
7875 "gl_out[]");
7876 }
7877 } else {
7878 if (this->instance_name != NULL) {
7879 _mesa_glsl_error(&loc, state,
7880 "gl_PerVertex output may not be redeclared with "
7881 "an instance name");
7882 }
7883 }
7884 break;
7885 default:
7886 _mesa_glsl_error(&loc, state,
7887 "gl_PerVertex must be declared as an input or an "
7888 "output");
7889 break;
7890 }
7891
7892 if (earlier_per_vertex == NULL) {
7893 /* An error has already been reported. Bail out to avoid null
7894 * dereferences later in this function.
7895 */
7896 return NULL;
7897 }
7898
7899 /* Copy locations from the old gl_PerVertex interface block. */
7900 for (unsigned i = 0; i < num_variables; i++) {
7901 int j = earlier_per_vertex->field_index(fields[i].name);
7902 if (j == -1) {
7903 _mesa_glsl_error(&loc, state,
7904 "redeclaration of gl_PerVertex must be a subset "
7905 "of the built-in members of gl_PerVertex");
7906 } else {
7907 fields[i].location =
7908 earlier_per_vertex->fields.structure[j].location;
7909 fields[i].offset =
7910 earlier_per_vertex->fields.structure[j].offset;
7911 fields[i].interpolation =
7912 earlier_per_vertex->fields.structure[j].interpolation;
7913 fields[i].centroid =
7914 earlier_per_vertex->fields.structure[j].centroid;
7915 fields[i].sample =
7916 earlier_per_vertex->fields.structure[j].sample;
7917 fields[i].patch =
7918 earlier_per_vertex->fields.structure[j].patch;
7919 fields[i].precision =
7920 earlier_per_vertex->fields.structure[j].precision;
7921 fields[i].explicit_xfb_buffer =
7922 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7923 fields[i].xfb_buffer =
7924 earlier_per_vertex->fields.structure[j].xfb_buffer;
7925 fields[i].xfb_stride =
7926 earlier_per_vertex->fields.structure[j].xfb_stride;
7927 }
7928 }
7929
7930 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7931 * spec:
7932 *
7933 * If a built-in interface block is redeclared, it must appear in
7934 * the shader before any use of any member included in the built-in
7935 * declaration, or a compilation error will result.
7936 *
7937 * This appears to be a clarification to the behaviour established for
7938 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7939 * regardless of GLSL version.
7940 */
7941 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7942 v.run(instructions);
7943 if (v.usage_found()) {
7944 _mesa_glsl_error(&loc, state,
7945 "redeclaration of a built-in interface block must "
7946 "appear before any use of any member of the "
7947 "interface block");
7948 }
7949 }
7950
7951 const glsl_type *block_type =
7952 glsl_type::get_interface_instance(fields,
7953 num_variables,
7954 packing,
7955 matrix_layout ==
7956 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7957 this->block_name);
7958
7959 unsigned component_size = block_type->contains_double() ? 8 : 4;
7960 int xfb_offset =
7961 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7962 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7963 component_size);
7964
7965 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7966 YYLTYPE loc = this->get_location();
7967 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7968 "already taken in the current scope",
7969 this->block_name, iface_type_name);
7970 }
7971
7972 /* Since interface blocks cannot contain statements, it should be
7973 * impossible for the block to generate any instructions.
7974 */
7975 assert(declared_variables.is_empty());
7976
7977 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7978 *
7979 * Geometry shader input variables get the per-vertex values written
7980 * out by vertex shader output variables of the same names. Since a
7981 * geometry shader operates on a set of vertices, each input varying
7982 * variable (or input block, see interface blocks below) needs to be
7983 * declared as an array.
7984 */
7985 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7986 var_mode == ir_var_shader_in) {
7987 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7988 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7989 state->stage == MESA_SHADER_TESS_EVAL) &&
7990 !this->layout.flags.q.patch &&
7991 this->array_specifier == NULL &&
7992 var_mode == ir_var_shader_in) {
7993 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7994 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7995 !this->layout.flags.q.patch &&
7996 this->array_specifier == NULL &&
7997 var_mode == ir_var_shader_out) {
7998 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7999 }
8000
8001
8002 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8003 * says:
8004 *
8005 * "If an instance name (instance-name) is used, then it puts all the
8006 * members inside a scope within its own name space, accessed with the
8007 * field selector ( . ) operator (analogously to structures)."
8008 */
8009 if (this->instance_name) {
8010 if (redeclaring_per_vertex) {
8011 /* When a built-in in an unnamed interface block is redeclared,
8012 * get_variable_being_redeclared() calls
8013 * check_builtin_array_max_size() to make sure that built-in array
8014 * variables aren't redeclared to illegal sizes. But we're looking
8015 * at a redeclaration of a named built-in interface block. So we
8016 * have to manually call check_builtin_array_max_size() for all parts
8017 * of the interface that are arrays.
8018 */
8019 for (unsigned i = 0; i < num_variables; i++) {
8020 if (fields[i].type->is_array()) {
8021 const unsigned size = fields[i].type->array_size();
8022 check_builtin_array_max_size(fields[i].name, size, loc, state);
8023 }
8024 }
8025 } else {
8026 validate_identifier(this->instance_name, loc, state);
8027 }
8028
8029 ir_variable *var;
8030
8031 if (this->array_specifier != NULL) {
8032 const glsl_type *block_array_type =
8033 process_array_type(&loc, block_type, this->array_specifier, state);
8034
8035 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8036 *
8037 * For uniform blocks declared an array, each individual array
8038 * element corresponds to a separate buffer object backing one
8039 * instance of the block. As the array size indicates the number
8040 * of buffer objects needed, uniform block array declarations
8041 * must specify an array size.
8042 *
8043 * And a few paragraphs later:
8044 *
8045 * Geometry shader input blocks must be declared as arrays and
8046 * follow the array declaration and linking rules for all
8047 * geometry shader inputs. All other input and output block
8048 * arrays must specify an array size.
8049 *
8050 * The same applies to tessellation shaders.
8051 *
8052 * The upshot of this is that the only circumstance where an
8053 * interface array size *doesn't* need to be specified is on a
8054 * geometry shader input, tessellation control shader input,
8055 * tessellation control shader output, and tessellation evaluation
8056 * shader input.
8057 */
8058 if (block_array_type->is_unsized_array()) {
8059 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8060 state->stage == MESA_SHADER_TESS_CTRL ||
8061 state->stage == MESA_SHADER_TESS_EVAL;
8062 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8063
8064 if (this->layout.flags.q.in) {
8065 if (!allow_inputs)
8066 _mesa_glsl_error(&loc, state,
8067 "unsized input block arrays not allowed in "
8068 "%s shader",
8069 _mesa_shader_stage_to_string(state->stage));
8070 } else if (this->layout.flags.q.out) {
8071 if (!allow_outputs)
8072 _mesa_glsl_error(&loc, state,
8073 "unsized output block arrays not allowed in "
8074 "%s shader",
8075 _mesa_shader_stage_to_string(state->stage));
8076 } else {
8077 /* by elimination, this is a uniform block array */
8078 _mesa_glsl_error(&loc, state,
8079 "unsized uniform block arrays not allowed in "
8080 "%s shader",
8081 _mesa_shader_stage_to_string(state->stage));
8082 }
8083 }
8084
8085 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8086 *
8087 * * Arrays of arrays of blocks are not allowed
8088 */
8089 if (state->es_shader && block_array_type->is_array() &&
8090 block_array_type->fields.array->is_array()) {
8091 _mesa_glsl_error(&loc, state,
8092 "arrays of arrays interface blocks are "
8093 "not allowed");
8094 }
8095
8096 var = new(state) ir_variable(block_array_type,
8097 this->instance_name,
8098 var_mode);
8099 } else {
8100 var = new(state) ir_variable(block_type,
8101 this->instance_name,
8102 var_mode);
8103 }
8104
8105 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8106 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8107
8108 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8109 var->data.read_only = true;
8110
8111 var->data.patch = this->layout.flags.q.patch;
8112
8113 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8114 handle_geometry_shader_input_decl(state, loc, var);
8115 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8116 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8117 handle_tess_shader_input_decl(state, loc, var);
8118 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8119 handle_tess_ctrl_shader_output_decl(state, loc, var);
8120
8121 for (unsigned i = 0; i < num_variables; i++) {
8122 if (var->data.mode == ir_var_shader_storage)
8123 apply_memory_qualifiers(var, fields[i]);
8124 }
8125
8126 if (ir_variable *earlier =
8127 state->symbols->get_variable(this->instance_name)) {
8128 if (!redeclaring_per_vertex) {
8129 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8130 this->instance_name);
8131 }
8132 earlier->data.how_declared = ir_var_declared_normally;
8133 earlier->type = var->type;
8134 earlier->reinit_interface_type(block_type);
8135 delete var;
8136 } else {
8137 if (this->layout.flags.q.explicit_binding) {
8138 apply_explicit_binding(state, &loc, var, var->type,
8139 &this->layout);
8140 }
8141
8142 var->data.stream = qual_stream;
8143 if (layout.flags.q.explicit_location) {
8144 var->data.location = expl_location;
8145 var->data.explicit_location = true;
8146 }
8147
8148 state->symbols->add_variable(var);
8149 instructions->push_tail(var);
8150 }
8151 } else {
8152 /* In order to have an array size, the block must also be declared with
8153 * an instance name.
8154 */
8155 assert(this->array_specifier == NULL);
8156
8157 for (unsigned i = 0; i < num_variables; i++) {
8158 ir_variable *var =
8159 new(state) ir_variable(fields[i].type,
8160 ralloc_strdup(state, fields[i].name),
8161 var_mode);
8162 var->data.interpolation = fields[i].interpolation;
8163 var->data.centroid = fields[i].centroid;
8164 var->data.sample = fields[i].sample;
8165 var->data.patch = fields[i].patch;
8166 var->data.stream = qual_stream;
8167 var->data.location = fields[i].location;
8168
8169 if (fields[i].location != -1)
8170 var->data.explicit_location = true;
8171
8172 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8173 var->data.xfb_buffer = fields[i].xfb_buffer;
8174
8175 if (fields[i].offset != -1)
8176 var->data.explicit_xfb_offset = true;
8177 var->data.offset = fields[i].offset;
8178
8179 var->init_interface_type(block_type);
8180
8181 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8182 var->data.read_only = true;
8183
8184 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8185 if (state->es_shader) {
8186 var->data.precision =
8187 select_gles_precision(fields[i].precision, fields[i].type,
8188 state, &loc);
8189 }
8190
8191 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8192 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8193 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8194 } else {
8195 var->data.matrix_layout = fields[i].matrix_layout;
8196 }
8197
8198 if (var->data.mode == ir_var_shader_storage)
8199 apply_memory_qualifiers(var, fields[i]);
8200
8201 /* Examine var name here since var may get deleted in the next call */
8202 bool var_is_gl_id = is_gl_identifier(var->name);
8203
8204 if (redeclaring_per_vertex) {
8205 bool is_redeclaration;
8206 ir_variable *declared_var =
8207 get_variable_being_redeclared(var, loc, state,
8208 true /* allow_all_redeclarations */,
8209 &is_redeclaration);
8210 if (!var_is_gl_id || !is_redeclaration) {
8211 _mesa_glsl_error(&loc, state,
8212 "redeclaration of gl_PerVertex can only "
8213 "include built-in variables");
8214 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
8215 _mesa_glsl_error(&loc, state,
8216 "`%s' has already been redeclared",
8217 declared_var->name);
8218 } else {
8219 declared_var->data.how_declared = ir_var_declared_in_block;
8220 declared_var->reinit_interface_type(block_type);
8221 }
8222 continue;
8223 }
8224
8225 if (state->symbols->get_variable(var->name) != NULL)
8226 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8227
8228 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8229 * The UBO declaration itself doesn't get an ir_variable unless it
8230 * has an instance name. This is ugly.
8231 */
8232 if (this->layout.flags.q.explicit_binding) {
8233 apply_explicit_binding(state, &loc, var,
8234 var->get_interface_type(), &this->layout);
8235 }
8236
8237 if (var->type->is_unsized_array()) {
8238 if (var->is_in_shader_storage_block() &&
8239 is_unsized_array_last_element(var)) {
8240 var->data.from_ssbo_unsized_array = true;
8241 } else {
8242 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8243 *
8244 * "If an array is declared as the last member of a shader storage
8245 * block and the size is not specified at compile-time, it is
8246 * sized at run-time. In all other cases, arrays are sized only
8247 * at compile-time."
8248 *
8249 * In desktop GLSL it is allowed to have unsized-arrays that are
8250 * not last, as long as we can determine that they are implicitly
8251 * sized.
8252 */
8253 if (state->es_shader) {
8254 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8255 "definition: only last member of a shader "
8256 "storage block can be defined as unsized "
8257 "array", fields[i].name);
8258 }
8259 }
8260 }
8261
8262 state->symbols->add_variable(var);
8263 instructions->push_tail(var);
8264 }
8265
8266 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8267 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8268 *
8269 * It is also a compilation error ... to redeclare a built-in
8270 * block and then use a member from that built-in block that was
8271 * not included in the redeclaration.
8272 *
8273 * This appears to be a clarification to the behaviour established
8274 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8275 * behaviour regardless of GLSL version.
8276 *
8277 * To prevent the shader from using a member that was not included in
8278 * the redeclaration, we disable any ir_variables that are still
8279 * associated with the old declaration of gl_PerVertex (since we've
8280 * already updated all of the variables contained in the new
8281 * gl_PerVertex to point to it).
8282 *
8283 * As a side effect this will prevent
8284 * validate_intrastage_interface_blocks() from getting confused and
8285 * thinking there are conflicting definitions of gl_PerVertex in the
8286 * shader.
8287 */
8288 foreach_in_list_safe(ir_instruction, node, instructions) {
8289 ir_variable *const var = node->as_variable();
8290 if (var != NULL &&
8291 var->get_interface_type() == earlier_per_vertex &&
8292 var->data.mode == var_mode) {
8293 if (var->data.how_declared == ir_var_declared_normally) {
8294 _mesa_glsl_error(&loc, state,
8295 "redeclaration of gl_PerVertex cannot "
8296 "follow a redeclaration of `%s'",
8297 var->name);
8298 }
8299 state->symbols->disable_variable(var->name);
8300 var->remove();
8301 }
8302 }
8303 }
8304 }
8305
8306 return NULL;
8307 }
8308
8309
8310 ir_rvalue *
8311 ast_tcs_output_layout::hir(exec_list *instructions,
8312 struct _mesa_glsl_parse_state *state)
8313 {
8314 YYLTYPE loc = this->get_location();
8315
8316 unsigned num_vertices;
8317 if (!state->out_qualifier->vertices->
8318 process_qualifier_constant(state, "vertices", &num_vertices,
8319 false)) {
8320 /* return here to stop cascading incorrect error messages */
8321 return NULL;
8322 }
8323
8324 /* If any shader outputs occurred before this declaration and specified an
8325 * array size, make sure the size they specified is consistent with the
8326 * primitive type.
8327 */
8328 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8329 _mesa_glsl_error(&loc, state,
8330 "this tessellation control shader output layout "
8331 "specifies %u vertices, but a previous output "
8332 "is declared with size %u",
8333 num_vertices, state->tcs_output_size);
8334 return NULL;
8335 }
8336
8337 state->tcs_output_vertices_specified = true;
8338
8339 /* If any shader outputs occurred before this declaration and did not
8340 * specify an array size, their size is determined now.
8341 */
8342 foreach_in_list (ir_instruction, node, instructions) {
8343 ir_variable *var = node->as_variable();
8344 if (var == NULL || var->data.mode != ir_var_shader_out)
8345 continue;
8346
8347 /* Note: Not all tessellation control shader output are arrays. */
8348 if (!var->type->is_unsized_array() || var->data.patch)
8349 continue;
8350
8351 if (var->data.max_array_access >= (int)num_vertices) {
8352 _mesa_glsl_error(&loc, state,
8353 "this tessellation control shader output layout "
8354 "specifies %u vertices, but an access to element "
8355 "%u of output `%s' already exists", num_vertices,
8356 var->data.max_array_access, var->name);
8357 } else {
8358 var->type = glsl_type::get_array_instance(var->type->fields.array,
8359 num_vertices);
8360 }
8361 }
8362
8363 return NULL;
8364 }
8365
8366
8367 ir_rvalue *
8368 ast_gs_input_layout::hir(exec_list *instructions,
8369 struct _mesa_glsl_parse_state *state)
8370 {
8371 YYLTYPE loc = this->get_location();
8372
8373 /* Should have been prevented by the parser. */
8374 assert(!state->gs_input_prim_type_specified
8375 || state->in_qualifier->prim_type == this->prim_type);
8376
8377 /* If any shader inputs occurred before this declaration and specified an
8378 * array size, make sure the size they specified is consistent with the
8379 * primitive type.
8380 */
8381 unsigned num_vertices = vertices_per_prim(this->prim_type);
8382 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8383 _mesa_glsl_error(&loc, state,
8384 "this geometry shader input layout implies %u vertices"
8385 " per primitive, but a previous input is declared"
8386 " with size %u", num_vertices, state->gs_input_size);
8387 return NULL;
8388 }
8389
8390 state->gs_input_prim_type_specified = true;
8391
8392 /* If any shader inputs occurred before this declaration and did not
8393 * specify an array size, their size is determined now.
8394 */
8395 foreach_in_list(ir_instruction, node, instructions) {
8396 ir_variable *var = node->as_variable();
8397 if (var == NULL || var->data.mode != ir_var_shader_in)
8398 continue;
8399
8400 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8401 * array; skip it.
8402 */
8403
8404 if (var->type->is_unsized_array()) {
8405 if (var->data.max_array_access >= (int)num_vertices) {
8406 _mesa_glsl_error(&loc, state,
8407 "this geometry shader input layout implies %u"
8408 " vertices, but an access to element %u of input"
8409 " `%s' already exists", num_vertices,
8410 var->data.max_array_access, var->name);
8411 } else {
8412 var->type = glsl_type::get_array_instance(var->type->fields.array,
8413 num_vertices);
8414 }
8415 }
8416 }
8417
8418 return NULL;
8419 }
8420
8421
8422 ir_rvalue *
8423 ast_cs_input_layout::hir(exec_list *instructions,
8424 struct _mesa_glsl_parse_state *state)
8425 {
8426 YYLTYPE loc = this->get_location();
8427
8428 /* From the ARB_compute_shader specification:
8429 *
8430 * If the local size of the shader in any dimension is greater
8431 * than the maximum size supported by the implementation for that
8432 * dimension, a compile-time error results.
8433 *
8434 * It is not clear from the spec how the error should be reported if
8435 * the total size of the work group exceeds
8436 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8437 * report it at compile time as well.
8438 */
8439 GLuint64 total_invocations = 1;
8440 unsigned qual_local_size[3];
8441 for (int i = 0; i < 3; i++) {
8442
8443 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8444 'x' + i);
8445 /* Infer a local_size of 1 for unspecified dimensions */
8446 if (this->local_size[i] == NULL) {
8447 qual_local_size[i] = 1;
8448 } else if (!this->local_size[i]->
8449 process_qualifier_constant(state, local_size_str,
8450 &qual_local_size[i], false)) {
8451 ralloc_free(local_size_str);
8452 return NULL;
8453 }
8454 ralloc_free(local_size_str);
8455
8456 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8457 _mesa_glsl_error(&loc, state,
8458 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8459 " (%d)", 'x' + i,
8460 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8461 break;
8462 }
8463 total_invocations *= qual_local_size[i];
8464 if (total_invocations >
8465 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8466 _mesa_glsl_error(&loc, state,
8467 "product of local_sizes exceeds "
8468 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8469 state->ctx->Const.MaxComputeWorkGroupInvocations);
8470 break;
8471 }
8472 }
8473
8474 /* If any compute input layout declaration preceded this one, make sure it
8475 * was consistent with this one.
8476 */
8477 if (state->cs_input_local_size_specified) {
8478 for (int i = 0; i < 3; i++) {
8479 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8480 _mesa_glsl_error(&loc, state,
8481 "compute shader input layout does not match"
8482 " previous declaration");
8483 return NULL;
8484 }
8485 }
8486 }
8487
8488 /* The ARB_compute_variable_group_size spec says:
8489 *
8490 * If a compute shader including a *local_size_variable* qualifier also
8491 * declares a fixed local group size using the *local_size_x*,
8492 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8493 * results
8494 */
8495 if (state->cs_input_local_size_variable_specified) {
8496 _mesa_glsl_error(&loc, state,
8497 "compute shader can't include both a variable and a "
8498 "fixed local group size");
8499 return NULL;
8500 }
8501
8502 state->cs_input_local_size_specified = true;
8503 for (int i = 0; i < 3; i++)
8504 state->cs_input_local_size[i] = qual_local_size[i];
8505
8506 /* We may now declare the built-in constant gl_WorkGroupSize (see
8507 * builtin_variable_generator::generate_constants() for why we didn't
8508 * declare it earlier).
8509 */
8510 ir_variable *var = new(state->symbols)
8511 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8512 var->data.how_declared = ir_var_declared_implicitly;
8513 var->data.read_only = true;
8514 instructions->push_tail(var);
8515 state->symbols->add_variable(var);
8516 ir_constant_data data;
8517 memset(&data, 0, sizeof(data));
8518 for (int i = 0; i < 3; i++)
8519 data.u[i] = qual_local_size[i];
8520 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8521 var->constant_initializer =
8522 new(var) ir_constant(glsl_type::uvec3_type, &data);
8523 var->data.has_initializer = true;
8524
8525 return NULL;
8526 }
8527
8528
8529 static void
8530 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8531 exec_list *instructions)
8532 {
8533 bool gl_FragColor_assigned = false;
8534 bool gl_FragData_assigned = false;
8535 bool gl_FragSecondaryColor_assigned = false;
8536 bool gl_FragSecondaryData_assigned = false;
8537 bool user_defined_fs_output_assigned = false;
8538 ir_variable *user_defined_fs_output = NULL;
8539
8540 /* It would be nice to have proper location information. */
8541 YYLTYPE loc;
8542 memset(&loc, 0, sizeof(loc));
8543
8544 foreach_in_list(ir_instruction, node, instructions) {
8545 ir_variable *var = node->as_variable();
8546
8547 if (!var || !var->data.assigned)
8548 continue;
8549
8550 if (strcmp(var->name, "gl_FragColor") == 0)
8551 gl_FragColor_assigned = true;
8552 else if (strcmp(var->name, "gl_FragData") == 0)
8553 gl_FragData_assigned = true;
8554 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8555 gl_FragSecondaryColor_assigned = true;
8556 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8557 gl_FragSecondaryData_assigned = true;
8558 else if (!is_gl_identifier(var->name)) {
8559 if (state->stage == MESA_SHADER_FRAGMENT &&
8560 var->data.mode == ir_var_shader_out) {
8561 user_defined_fs_output_assigned = true;
8562 user_defined_fs_output = var;
8563 }
8564 }
8565 }
8566
8567 /* From the GLSL 1.30 spec:
8568 *
8569 * "If a shader statically assigns a value to gl_FragColor, it
8570 * may not assign a value to any element of gl_FragData. If a
8571 * shader statically writes a value to any element of
8572 * gl_FragData, it may not assign a value to
8573 * gl_FragColor. That is, a shader may assign values to either
8574 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8575 * linked together must also consistently write just one of
8576 * these variables. Similarly, if user declared output
8577 * variables are in use (statically assigned to), then the
8578 * built-in variables gl_FragColor and gl_FragData may not be
8579 * assigned to. These incorrect usages all generate compile
8580 * time errors."
8581 */
8582 if (gl_FragColor_assigned && gl_FragData_assigned) {
8583 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8584 "`gl_FragColor' and `gl_FragData'");
8585 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8586 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8587 "`gl_FragColor' and `%s'",
8588 user_defined_fs_output->name);
8589 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8590 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8591 "`gl_FragSecondaryColorEXT' and"
8592 " `gl_FragSecondaryDataEXT'");
8593 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8594 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8595 "`gl_FragColor' and"
8596 " `gl_FragSecondaryDataEXT'");
8597 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8598 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8599 "`gl_FragData' and"
8600 " `gl_FragSecondaryColorEXT'");
8601 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8602 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8603 "`gl_FragData' and `%s'",
8604 user_defined_fs_output->name);
8605 }
8606
8607 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8608 !state->EXT_blend_func_extended_enable) {
8609 _mesa_glsl_error(&loc, state,
8610 "Dual source blending requires EXT_blend_func_extended");
8611 }
8612 }
8613
8614
8615 static void
8616 remove_per_vertex_blocks(exec_list *instructions,
8617 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8618 {
8619 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8620 * if it exists in this shader type.
8621 */
8622 const glsl_type *per_vertex = NULL;
8623 switch (mode) {
8624 case ir_var_shader_in:
8625 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8626 per_vertex = gl_in->get_interface_type();
8627 break;
8628 case ir_var_shader_out:
8629 if (ir_variable *gl_Position =
8630 state->symbols->get_variable("gl_Position")) {
8631 per_vertex = gl_Position->get_interface_type();
8632 }
8633 break;
8634 default:
8635 assert(!"Unexpected mode");
8636 break;
8637 }
8638
8639 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8640 * need to do anything.
8641 */
8642 if (per_vertex == NULL)
8643 return;
8644
8645 /* If the interface block is used by the shader, then we don't need to do
8646 * anything.
8647 */
8648 interface_block_usage_visitor v(mode, per_vertex);
8649 v.run(instructions);
8650 if (v.usage_found())
8651 return;
8652
8653 /* Remove any ir_variable declarations that refer to the interface block
8654 * we're removing.
8655 */
8656 foreach_in_list_safe(ir_instruction, node, instructions) {
8657 ir_variable *const var = node->as_variable();
8658 if (var != NULL && var->get_interface_type() == per_vertex &&
8659 var->data.mode == mode) {
8660 state->symbols->disable_variable(var->name);
8661 var->remove();
8662 }
8663 }
8664 }