glsl: prevent qualifiers modification of predeclared variables
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
111 ir_variable *get_variable() {
112 return found;
113 }
114
115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_uint_to_int_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
895 return rhs;
896 } else {
897 _mesa_glsl_error(&loc, state,
898 "implicitly sized arrays cannot be assigned");
899 return NULL;
900 }
901 }
902
903 /* Check for implicit conversion in GLSL 1.20 */
904 if (apply_implicit_conversion(lhs->type, rhs, state)) {
905 if (rhs->type == lhs->type)
906 return rhs;
907 }
908
909 _mesa_glsl_error(&loc, state,
910 "%s of type %s cannot be assigned to "
911 "variable of type %s",
912 is_initializer ? "initializer" : "value",
913 rhs->type->name, lhs->type->name);
914
915 return NULL;
916 }
917
918 static void
919 mark_whole_array_access(ir_rvalue *access)
920 {
921 ir_dereference_variable *deref = access->as_dereference_variable();
922
923 if (deref && deref->var) {
924 deref->var->data.max_array_access = deref->type->length - 1;
925 }
926 }
927
928 static bool
929 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
930 const char *non_lvalue_description,
931 ir_rvalue *lhs, ir_rvalue *rhs,
932 ir_rvalue **out_rvalue, bool needs_rvalue,
933 bool is_initializer,
934 YYLTYPE lhs_loc)
935 {
936 void *ctx = state;
937 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
938
939 ir_variable *lhs_var = lhs->variable_referenced();
940 if (lhs_var)
941 lhs_var->data.assigned = true;
942
943 if (!error_emitted) {
944 if (non_lvalue_description != NULL) {
945 _mesa_glsl_error(&lhs_loc, state,
946 "assignment to %s",
947 non_lvalue_description);
948 error_emitted = true;
949 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
950 (lhs_var->data.mode == ir_var_shader_storage &&
951 lhs_var->data.memory_read_only))) {
952 /* We can have memory_read_only set on both images and buffer variables,
953 * but in the former there is a distinction between assignments to
954 * the variable itself (read_only) and to the memory they point to
955 * (memory_read_only), while in the case of buffer variables there is
956 * no such distinction, that is why this check here is limited to
957 * buffer variables alone.
958 */
959 _mesa_glsl_error(&lhs_loc, state,
960 "assignment to read-only variable '%s'",
961 lhs_var->name);
962 error_emitted = true;
963 } else if (lhs->type->is_array() &&
964 !state->check_version(120, 300, &lhs_loc,
965 "whole array assignment forbidden")) {
966 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
967 *
968 * "Other binary or unary expressions, non-dereferenced
969 * arrays, function names, swizzles with repeated fields,
970 * and constants cannot be l-values."
971 *
972 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
973 */
974 error_emitted = true;
975 } else if (!lhs->is_lvalue(state)) {
976 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
977 error_emitted = true;
978 }
979 }
980
981 ir_rvalue *new_rhs =
982 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
983 if (new_rhs != NULL) {
984 rhs = new_rhs;
985
986 /* If the LHS array was not declared with a size, it takes it size from
987 * the RHS. If the LHS is an l-value and a whole array, it must be a
988 * dereference of a variable. Any other case would require that the LHS
989 * is either not an l-value or not a whole array.
990 */
991 if (lhs->type->is_unsized_array()) {
992 ir_dereference *const d = lhs->as_dereference();
993
994 assert(d != NULL);
995
996 ir_variable *const var = d->variable_referenced();
997
998 assert(var != NULL);
999
1000 if (var->data.max_array_access >= rhs->type->array_size()) {
1001 /* FINISHME: This should actually log the location of the RHS. */
1002 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1003 "previous access",
1004 var->data.max_array_access);
1005 }
1006
1007 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1008 rhs->type->array_size());
1009 d->type = var->type;
1010 }
1011 if (lhs->type->is_array()) {
1012 mark_whole_array_access(rhs);
1013 mark_whole_array_access(lhs);
1014 }
1015 } else {
1016 error_emitted = true;
1017 }
1018
1019 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1020 * but not post_inc) need the converted assigned value as an rvalue
1021 * to handle things like:
1022 *
1023 * i = j += 1;
1024 */
1025 if (needs_rvalue) {
1026 ir_rvalue *rvalue;
1027 if (!error_emitted) {
1028 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1029 ir_var_temporary);
1030 instructions->push_tail(var);
1031 instructions->push_tail(assign(var, rhs));
1032
1033 ir_dereference_variable *deref_var =
1034 new(ctx) ir_dereference_variable(var);
1035 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1036 rvalue = new(ctx) ir_dereference_variable(var);
1037 } else {
1038 rvalue = ir_rvalue::error_value(ctx);
1039 }
1040 *out_rvalue = rvalue;
1041 } else {
1042 if (!error_emitted)
1043 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1044 *out_rvalue = NULL;
1045 }
1046
1047 return error_emitted;
1048 }
1049
1050 static ir_rvalue *
1051 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1052 {
1053 void *ctx = ralloc_parent(lvalue);
1054 ir_variable *var;
1055
1056 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1057 ir_var_temporary);
1058 instructions->push_tail(var);
1059
1060 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1061 lvalue));
1062
1063 return new(ctx) ir_dereference_variable(var);
1064 }
1065
1066
1067 ir_rvalue *
1068 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1069 {
1070 (void) instructions;
1071 (void) state;
1072
1073 return NULL;
1074 }
1075
1076 bool
1077 ast_node::has_sequence_subexpression() const
1078 {
1079 return false;
1080 }
1081
1082 void
1083 ast_node::set_is_lhs(bool /* new_value */)
1084 {
1085 }
1086
1087 void
1088 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state)
1090 {
1091 (void)hir(instructions, state);
1092 }
1093
1094 void
1095 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1096 struct _mesa_glsl_parse_state *state)
1097 {
1098 (void)hir(instructions, state);
1099 }
1100
1101 static ir_rvalue *
1102 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1103 {
1104 int join_op;
1105 ir_rvalue *cmp = NULL;
1106
1107 if (operation == ir_binop_all_equal)
1108 join_op = ir_binop_logic_and;
1109 else
1110 join_op = ir_binop_logic_or;
1111
1112 switch (op0->type->base_type) {
1113 case GLSL_TYPE_FLOAT:
1114 case GLSL_TYPE_FLOAT16:
1115 case GLSL_TYPE_UINT:
1116 case GLSL_TYPE_INT:
1117 case GLSL_TYPE_BOOL:
1118 case GLSL_TYPE_DOUBLE:
1119 case GLSL_TYPE_UINT64:
1120 case GLSL_TYPE_INT64:
1121 case GLSL_TYPE_UINT16:
1122 case GLSL_TYPE_INT16:
1123 case GLSL_TYPE_UINT8:
1124 case GLSL_TYPE_INT8:
1125 return new(mem_ctx) ir_expression(operation, op0, op1);
1126
1127 case GLSL_TYPE_ARRAY: {
1128 for (unsigned int i = 0; i < op0->type->length; i++) {
1129 ir_rvalue *e0, *e1, *result;
1130
1131 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1132 new(mem_ctx) ir_constant(i));
1133 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1134 new(mem_ctx) ir_constant(i));
1135 result = do_comparison(mem_ctx, operation, e0, e1);
1136
1137 if (cmp) {
1138 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1139 } else {
1140 cmp = result;
1141 }
1142 }
1143
1144 mark_whole_array_access(op0);
1145 mark_whole_array_access(op1);
1146 break;
1147 }
1148
1149 case GLSL_TYPE_STRUCT: {
1150 for (unsigned int i = 0; i < op0->type->length; i++) {
1151 ir_rvalue *e0, *e1, *result;
1152 const char *field_name = op0->type->fields.structure[i].name;
1153
1154 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1155 field_name);
1156 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1157 field_name);
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166 break;
1167 }
1168
1169 case GLSL_TYPE_ERROR:
1170 case GLSL_TYPE_VOID:
1171 case GLSL_TYPE_SAMPLER:
1172 case GLSL_TYPE_IMAGE:
1173 case GLSL_TYPE_INTERFACE:
1174 case GLSL_TYPE_ATOMIC_UINT:
1175 case GLSL_TYPE_SUBROUTINE:
1176 case GLSL_TYPE_FUNCTION:
1177 /* I assume a comparison of a struct containing a sampler just
1178 * ignores the sampler present in the type.
1179 */
1180 break;
1181 }
1182
1183 if (cmp == NULL)
1184 cmp = new(mem_ctx) ir_constant(true);
1185
1186 return cmp;
1187 }
1188
1189 /* For logical operations, we want to ensure that the operands are
1190 * scalar booleans. If it isn't, emit an error and return a constant
1191 * boolean to avoid triggering cascading error messages.
1192 */
1193 static ir_rvalue *
1194 get_scalar_boolean_operand(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state,
1196 ast_expression *parent_expr,
1197 int operand,
1198 const char *operand_name,
1199 bool *error_emitted)
1200 {
1201 ast_expression *expr = parent_expr->subexpressions[operand];
1202 void *ctx = state;
1203 ir_rvalue *val = expr->hir(instructions, state);
1204
1205 if (val->type->is_boolean() && val->type->is_scalar())
1206 return val;
1207
1208 if (!*error_emitted) {
1209 YYLTYPE loc = expr->get_location();
1210 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1211 operand_name,
1212 parent_expr->operator_string(parent_expr->oper));
1213 *error_emitted = true;
1214 }
1215
1216 return new(ctx) ir_constant(true);
1217 }
1218
1219 /**
1220 * If name refers to a builtin array whose maximum allowed size is less than
1221 * size, report an error and return true. Otherwise return false.
1222 */
1223 void
1224 check_builtin_array_max_size(const char *name, unsigned size,
1225 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1226 {
1227 if ((strcmp("gl_TexCoord", name) == 0)
1228 && (size > state->Const.MaxTextureCoords)) {
1229 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1230 *
1231 * "The size [of gl_TexCoord] can be at most
1232 * gl_MaxTextureCoords."
1233 */
1234 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1235 "be larger than gl_MaxTextureCoords (%u)",
1236 state->Const.MaxTextureCoords);
1237 } else if (strcmp("gl_ClipDistance", name) == 0) {
1238 state->clip_dist_size = size;
1239 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1240 /* From section 7.1 (Vertex Shader Special Variables) of the
1241 * GLSL 1.30 spec:
1242 *
1243 * "The gl_ClipDistance array is predeclared as unsized and
1244 * must be sized by the shader either redeclaring it with a
1245 * size or indexing it only with integral constant
1246 * expressions. ... The size can be at most
1247 * gl_MaxClipDistances."
1248 */
1249 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1250 "be larger than gl_MaxClipDistances (%u)",
1251 state->Const.MaxClipPlanes);
1252 }
1253 } else if (strcmp("gl_CullDistance", name) == 0) {
1254 state->cull_dist_size = size;
1255 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1256 /* From the ARB_cull_distance spec:
1257 *
1258 * "The gl_CullDistance array is predeclared as unsized and
1259 * must be sized by the shader either redeclaring it with
1260 * a size or indexing it only with integral constant
1261 * expressions. The size determines the number and set of
1262 * enabled cull distances and can be at most
1263 * gl_MaxCullDistances."
1264 */
1265 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1266 "be larger than gl_MaxCullDistances (%u)",
1267 state->Const.MaxClipPlanes);
1268 }
1269 }
1270 }
1271
1272 /**
1273 * Create the constant 1, of a which is appropriate for incrementing and
1274 * decrementing values of the given GLSL type. For example, if type is vec4,
1275 * this creates a constant value of 1.0 having type float.
1276 *
1277 * If the given type is invalid for increment and decrement operators, return
1278 * a floating point 1--the error will be detected later.
1279 */
1280 static ir_rvalue *
1281 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1282 {
1283 switch (type->base_type) {
1284 case GLSL_TYPE_UINT:
1285 return new(ctx) ir_constant((unsigned) 1);
1286 case GLSL_TYPE_INT:
1287 return new(ctx) ir_constant(1);
1288 case GLSL_TYPE_UINT64:
1289 return new(ctx) ir_constant((uint64_t) 1);
1290 case GLSL_TYPE_INT64:
1291 return new(ctx) ir_constant((int64_t) 1);
1292 default:
1293 case GLSL_TYPE_FLOAT:
1294 return new(ctx) ir_constant(1.0f);
1295 }
1296 }
1297
1298 ir_rvalue *
1299 ast_expression::hir(exec_list *instructions,
1300 struct _mesa_glsl_parse_state *state)
1301 {
1302 return do_hir(instructions, state, true);
1303 }
1304
1305 void
1306 ast_expression::hir_no_rvalue(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 do_hir(instructions, state, false);
1310 }
1311
1312 void
1313 ast_expression::set_is_lhs(bool new_value)
1314 {
1315 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1316 * if we lack an identifier we can just skip it.
1317 */
1318 if (this->primary_expression.identifier == NULL)
1319 return;
1320
1321 this->is_lhs = new_value;
1322
1323 /* We need to go through the subexpressions tree to cover cases like
1324 * ast_field_selection
1325 */
1326 if (this->subexpressions[0] != NULL)
1327 this->subexpressions[0]->set_is_lhs(new_value);
1328 }
1329
1330 ir_rvalue *
1331 ast_expression::do_hir(exec_list *instructions,
1332 struct _mesa_glsl_parse_state *state,
1333 bool needs_rvalue)
1334 {
1335 void *ctx = state;
1336 static const int operations[AST_NUM_OPERATORS] = {
1337 -1, /* ast_assign doesn't convert to ir_expression. */
1338 -1, /* ast_plus doesn't convert to ir_expression. */
1339 ir_unop_neg,
1340 ir_binop_add,
1341 ir_binop_sub,
1342 ir_binop_mul,
1343 ir_binop_div,
1344 ir_binop_mod,
1345 ir_binop_lshift,
1346 ir_binop_rshift,
1347 ir_binop_less,
1348 ir_binop_less, /* This is correct. See the ast_greater case below. */
1349 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1350 ir_binop_gequal,
1351 ir_binop_all_equal,
1352 ir_binop_any_nequal,
1353 ir_binop_bit_and,
1354 ir_binop_bit_xor,
1355 ir_binop_bit_or,
1356 ir_unop_bit_not,
1357 ir_binop_logic_and,
1358 ir_binop_logic_xor,
1359 ir_binop_logic_or,
1360 ir_unop_logic_not,
1361
1362 /* Note: The following block of expression types actually convert
1363 * to multiple IR instructions.
1364 */
1365 ir_binop_mul, /* ast_mul_assign */
1366 ir_binop_div, /* ast_div_assign */
1367 ir_binop_mod, /* ast_mod_assign */
1368 ir_binop_add, /* ast_add_assign */
1369 ir_binop_sub, /* ast_sub_assign */
1370 ir_binop_lshift, /* ast_ls_assign */
1371 ir_binop_rshift, /* ast_rs_assign */
1372 ir_binop_bit_and, /* ast_and_assign */
1373 ir_binop_bit_xor, /* ast_xor_assign */
1374 ir_binop_bit_or, /* ast_or_assign */
1375
1376 -1, /* ast_conditional doesn't convert to ir_expression. */
1377 ir_binop_add, /* ast_pre_inc. */
1378 ir_binop_sub, /* ast_pre_dec. */
1379 ir_binop_add, /* ast_post_inc. */
1380 ir_binop_sub, /* ast_post_dec. */
1381 -1, /* ast_field_selection doesn't conv to ir_expression. */
1382 -1, /* ast_array_index doesn't convert to ir_expression. */
1383 -1, /* ast_function_call doesn't conv to ir_expression. */
1384 -1, /* ast_identifier doesn't convert to ir_expression. */
1385 -1, /* ast_int_constant doesn't convert to ir_expression. */
1386 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1387 -1, /* ast_float_constant doesn't conv to ir_expression. */
1388 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1389 -1, /* ast_sequence doesn't convert to ir_expression. */
1390 -1, /* ast_aggregate shouldn't ever even get here. */
1391 };
1392 ir_rvalue *result = NULL;
1393 ir_rvalue *op[3];
1394 const struct glsl_type *type, *orig_type;
1395 bool error_emitted = false;
1396 YYLTYPE loc;
1397
1398 loc = this->get_location();
1399
1400 switch (this->oper) {
1401 case ast_aggregate:
1402 unreachable("ast_aggregate: Should never get here.");
1403
1404 case ast_assign: {
1405 this->subexpressions[0]->set_is_lhs(true);
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 error_emitted =
1410 do_assignment(instructions, state,
1411 this->subexpressions[0]->non_lvalue_description,
1412 op[0], op[1], &result, needs_rvalue, false,
1413 this->subexpressions[0]->get_location());
1414 break;
1415 }
1416
1417 case ast_plus:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419
1420 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1421
1422 error_emitted = type->is_error();
1423
1424 result = op[0];
1425 break;
1426
1427 case ast_neg:
1428 op[0] = this->subexpressions[0]->hir(instructions, state);
1429
1430 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1431
1432 error_emitted = type->is_error();
1433
1434 result = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], NULL);
1436 break;
1437
1438 case ast_add:
1439 case ast_sub:
1440 case ast_mul:
1441 case ast_div:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443 op[1] = this->subexpressions[1]->hir(instructions, state);
1444
1445 type = arithmetic_result_type(op[0], op[1],
1446 (this->oper == ast_mul),
1447 state, & loc);
1448 error_emitted = type->is_error();
1449
1450 result = new(ctx) ir_expression(operations[this->oper], type,
1451 op[0], op[1]);
1452 break;
1453
1454 case ast_mod:
1455 op[0] = this->subexpressions[0]->hir(instructions, state);
1456 op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458 type = modulus_result_type(op[0], op[1], state, &loc);
1459
1460 assert(operations[this->oper] == ir_binop_mod);
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_lshift:
1468 case ast_rshift:
1469 if (!state->check_bitwise_operations_allowed(&loc)) {
1470 error_emitted = true;
1471 }
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 result = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1480 break;
1481
1482 case ast_less:
1483 case ast_greater:
1484 case ast_lequal:
1485 case ast_gequal:
1486 op[0] = this->subexpressions[0]->hir(instructions, state);
1487 op[1] = this->subexpressions[1]->hir(instructions, state);
1488
1489 type = relational_result_type(op[0], op[1], state, & loc);
1490
1491 /* The relational operators must either generate an error or result
1492 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1493 */
1494 assert(type->is_error()
1495 || (type->is_boolean() && type->is_scalar()));
1496
1497 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1498 * the arguments and use < or >=.
1499 */
1500 if (this->oper == ast_greater || this->oper == ast_lequal) {
1501 ir_rvalue *const tmp = op[0];
1502 op[0] = op[1];
1503 op[1] = tmp;
1504 }
1505
1506 result = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508 error_emitted = type->is_error();
1509 break;
1510
1511 case ast_nequal:
1512 case ast_equal:
1513 op[0] = this->subexpressions[0]->hir(instructions, state);
1514 op[1] = this->subexpressions[1]->hir(instructions, state);
1515
1516 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1517 *
1518 * "The equality operators equal (==), and not equal (!=)
1519 * operate on all types. They result in a scalar Boolean. If
1520 * the operand types do not match, then there must be a
1521 * conversion from Section 4.1.10 "Implicit Conversions"
1522 * applied to one operand that can make them match, in which
1523 * case this conversion is done."
1524 */
1525
1526 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1527 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1528 "no operation `%1$s' exists that takes a left-hand "
1529 "operand of type 'void' or a right operand of type "
1530 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1531 error_emitted = true;
1532 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1533 && !apply_implicit_conversion(op[1]->type, op[0], state))
1534 || (op[0]->type != op[1]->type)) {
1535 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1536 "type", (this->oper == ast_equal) ? "==" : "!=");
1537 error_emitted = true;
1538 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1539 !state->check_version(120, 300, &loc,
1540 "array comparisons forbidden")) {
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_subroutine() ||
1543 op[1]->type->contains_subroutine())) {
1544 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1545 error_emitted = true;
1546 } else if ((op[0]->type->contains_opaque() ||
1547 op[1]->type->contains_opaque())) {
1548 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1549 error_emitted = true;
1550 }
1551
1552 if (error_emitted) {
1553 result = new(ctx) ir_constant(false);
1554 } else {
1555 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1556 assert(result->type == glsl_type::bool_type);
1557 }
1558 break;
1559
1560 case ast_bit_and:
1561 case ast_bit_xor:
1562 case ast_bit_or:
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = this->subexpressions[1]->hir(instructions, state);
1565 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1566 result = new(ctx) ir_expression(operations[this->oper], type,
1567 op[0], op[1]);
1568 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1569 break;
1570
1571 case ast_bit_not:
1572 op[0] = this->subexpressions[0]->hir(instructions, state);
1573
1574 if (!state->check_bitwise_operations_allowed(&loc)) {
1575 error_emitted = true;
1576 }
1577
1578 if (!op[0]->type->is_integer_32_64()) {
1579 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1580 error_emitted = true;
1581 }
1582
1583 type = error_emitted ? glsl_type::error_type : op[0]->type;
1584 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1585 break;
1586
1587 case ast_logic_and: {
1588 exec_list rhs_instructions;
1589 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1590 "LHS", &error_emitted);
1591 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1592 "RHS", &error_emitted);
1593
1594 if (rhs_instructions.is_empty()) {
1595 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1596 } else {
1597 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1598 "and_tmp",
1599 ir_var_temporary);
1600 instructions->push_tail(tmp);
1601
1602 ir_if *const stmt = new(ctx) ir_if(op[0]);
1603 instructions->push_tail(stmt);
1604
1605 stmt->then_instructions.append_list(&rhs_instructions);
1606 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1607 ir_assignment *const then_assign =
1608 new(ctx) ir_assignment(then_deref, op[1]);
1609 stmt->then_instructions.push_tail(then_assign);
1610
1611 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1612 ir_assignment *const else_assign =
1613 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1614 stmt->else_instructions.push_tail(else_assign);
1615
1616 result = new(ctx) ir_dereference_variable(tmp);
1617 }
1618 break;
1619 }
1620
1621 case ast_logic_or: {
1622 exec_list rhs_instructions;
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1624 "LHS", &error_emitted);
1625 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1626 "RHS", &error_emitted);
1627
1628 if (rhs_instructions.is_empty()) {
1629 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1630 } else {
1631 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1632 "or_tmp",
1633 ir_var_temporary);
1634 instructions->push_tail(tmp);
1635
1636 ir_if *const stmt = new(ctx) ir_if(op[0]);
1637 instructions->push_tail(stmt);
1638
1639 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1640 ir_assignment *const then_assign =
1641 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1642 stmt->then_instructions.push_tail(then_assign);
1643
1644 stmt->else_instructions.append_list(&rhs_instructions);
1645 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1646 ir_assignment *const else_assign =
1647 new(ctx) ir_assignment(else_deref, op[1]);
1648 stmt->else_instructions.push_tail(else_assign);
1649
1650 result = new(ctx) ir_dereference_variable(tmp);
1651 }
1652 break;
1653 }
1654
1655 case ast_logic_xor:
1656 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1657 *
1658 * "The logical binary operators and (&&), or ( | | ), and
1659 * exclusive or (^^). They operate only on two Boolean
1660 * expressions and result in a Boolean expression."
1661 */
1662 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1663 &error_emitted);
1664 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1665 &error_emitted);
1666
1667 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1668 op[0], op[1]);
1669 break;
1670
1671 case ast_logic_not:
1672 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1673 "operand", &error_emitted);
1674
1675 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1676 op[0], NULL);
1677 break;
1678
1679 case ast_mul_assign:
1680 case ast_div_assign:
1681 case ast_add_assign:
1682 case ast_sub_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686
1687 orig_type = op[0]->type;
1688
1689 /* Break out if operand types were not parsed successfully. */
1690 if ((op[0]->type == glsl_type::error_type ||
1691 op[1]->type == glsl_type::error_type))
1692 break;
1693
1694 type = arithmetic_result_type(op[0], op[1],
1695 (this->oper == ast_mul_assign),
1696 state, & loc);
1697
1698 if (type != orig_type) {
1699 _mesa_glsl_error(& loc, state,
1700 "could not implicitly convert "
1701 "%s to %s", type->name, orig_type->name);
1702 type = glsl_type::error_type;
1703 }
1704
1705 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1706 op[0], op[1]);
1707
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714
1715 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1716 * explicitly test for this because none of the binary expression
1717 * operators allow array operands either.
1718 */
1719
1720 break;
1721 }
1722
1723 case ast_mod_assign: {
1724 this->subexpressions[0]->set_is_lhs(true);
1725 op[0] = this->subexpressions[0]->hir(instructions, state);
1726 op[1] = this->subexpressions[1]->hir(instructions, state);
1727
1728 orig_type = op[0]->type;
1729 type = modulus_result_type(op[0], op[1], state, &loc);
1730
1731 if (type != orig_type) {
1732 _mesa_glsl_error(& loc, state,
1733 "could not implicitly convert "
1734 "%s to %s", type->name, orig_type->name);
1735 type = glsl_type::error_type;
1736 }
1737
1738 assert(operations[this->oper] == ir_binop_mod);
1739
1740 ir_rvalue *temp_rhs;
1741 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1742 op[0], op[1]);
1743
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_ls_assign:
1754 case ast_rs_assign: {
1755 this->subexpressions[0]->set_is_lhs(true);
1756 op[0] = this->subexpressions[0]->hir(instructions, state);
1757 op[1] = this->subexpressions[1]->hir(instructions, state);
1758 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1759 &loc);
1760 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1761 type, op[0], op[1]);
1762 error_emitted =
1763 do_assignment(instructions, state,
1764 this->subexpressions[0]->non_lvalue_description,
1765 op[0]->clone(ctx, NULL), temp_rhs,
1766 &result, needs_rvalue, false,
1767 this->subexpressions[0]->get_location());
1768 break;
1769 }
1770
1771 case ast_and_assign:
1772 case ast_xor_assign:
1773 case ast_or_assign: {
1774 this->subexpressions[0]->set_is_lhs(true);
1775 op[0] = this->subexpressions[0]->hir(instructions, state);
1776 op[1] = this->subexpressions[1]->hir(instructions, state);
1777
1778 orig_type = op[0]->type;
1779 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1780
1781 if (type != orig_type) {
1782 _mesa_glsl_error(& loc, state,
1783 "could not implicitly convert "
1784 "%s to %s", type->name, orig_type->name);
1785 type = glsl_type::error_type;
1786 }
1787
1788 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1789 type, op[0], op[1]);
1790 error_emitted =
1791 do_assignment(instructions, state,
1792 this->subexpressions[0]->non_lvalue_description,
1793 op[0]->clone(ctx, NULL), temp_rhs,
1794 &result, needs_rvalue, false,
1795 this->subexpressions[0]->get_location());
1796 break;
1797 }
1798
1799 case ast_conditional: {
1800 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1801 *
1802 * "The ternary selection operator (?:). It operates on three
1803 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1804 * first expression, which must result in a scalar Boolean."
1805 */
1806 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1807 "condition", &error_emitted);
1808
1809 /* The :? operator is implemented by generating an anonymous temporary
1810 * followed by an if-statement. The last instruction in each branch of
1811 * the if-statement assigns a value to the anonymous temporary. This
1812 * temporary is the r-value of the expression.
1813 */
1814 exec_list then_instructions;
1815 exec_list else_instructions;
1816
1817 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1818 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1819
1820 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1821 *
1822 * "The second and third expressions can be any type, as
1823 * long their types match, or there is a conversion in
1824 * Section 4.1.10 "Implicit Conversions" that can be applied
1825 * to one of the expressions to make their types match. This
1826 * resulting matching type is the type of the entire
1827 * expression."
1828 */
1829 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1830 && !apply_implicit_conversion(op[2]->type, op[1], state))
1831 || (op[1]->type != op[2]->type)) {
1832 YYLTYPE loc = this->subexpressions[1]->get_location();
1833
1834 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1835 "operator must have matching types");
1836 error_emitted = true;
1837 type = glsl_type::error_type;
1838 } else {
1839 type = op[1]->type;
1840 }
1841
1842 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The second and third expressions must be the same type, but can
1845 * be of any type other than an array."
1846 */
1847 if (type->is_array() &&
1848 !state->check_version(120, 300, &loc,
1849 "second and third operands of ?: operator "
1850 "cannot be arrays")) {
1851 error_emitted = true;
1852 }
1853
1854 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1855 *
1856 * "Except for array indexing, structure member selection, and
1857 * parentheses, opaque variables are not allowed to be operands in
1858 * expressions; such use results in a compile-time error."
1859 */
1860 if (type->contains_opaque()) {
1861 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1862 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1863 "operands of the ?: operator", type->name);
1864 error_emitted = true;
1865 }
1866 }
1867
1868 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1869
1870 if (then_instructions.is_empty()
1871 && else_instructions.is_empty()
1872 && cond_val != NULL) {
1873 result = cond_val->value.b[0] ? op[1] : op[2];
1874 } else {
1875 /* The copy to conditional_tmp reads the whole array. */
1876 if (type->is_array()) {
1877 mark_whole_array_access(op[1]);
1878 mark_whole_array_access(op[2]);
1879 }
1880
1881 ir_variable *const tmp =
1882 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1883 instructions->push_tail(tmp);
1884
1885 ir_if *const stmt = new(ctx) ir_if(op[0]);
1886 instructions->push_tail(stmt);
1887
1888 then_instructions.move_nodes_to(& stmt->then_instructions);
1889 ir_dereference *const then_deref =
1890 new(ctx) ir_dereference_variable(tmp);
1891 ir_assignment *const then_assign =
1892 new(ctx) ir_assignment(then_deref, op[1]);
1893 stmt->then_instructions.push_tail(then_assign);
1894
1895 else_instructions.move_nodes_to(& stmt->else_instructions);
1896 ir_dereference *const else_deref =
1897 new(ctx) ir_dereference_variable(tmp);
1898 ir_assignment *const else_assign =
1899 new(ctx) ir_assignment(else_deref, op[2]);
1900 stmt->else_instructions.push_tail(else_assign);
1901
1902 result = new(ctx) ir_dereference_variable(tmp);
1903 }
1904 break;
1905 }
1906
1907 case ast_pre_inc:
1908 case ast_pre_dec: {
1909 this->non_lvalue_description = (this->oper == ast_pre_inc)
1910 ? "pre-increment operation" : "pre-decrement operation";
1911
1912 op[0] = this->subexpressions[0]->hir(instructions, state);
1913 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1914
1915 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1916
1917 ir_rvalue *temp_rhs;
1918 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1919 op[0], op[1]);
1920
1921 error_emitted =
1922 do_assignment(instructions, state,
1923 this->subexpressions[0]->non_lvalue_description,
1924 op[0]->clone(ctx, NULL), temp_rhs,
1925 &result, needs_rvalue, false,
1926 this->subexpressions[0]->get_location());
1927 break;
1928 }
1929
1930 case ast_post_inc:
1931 case ast_post_dec: {
1932 this->non_lvalue_description = (this->oper == ast_post_inc)
1933 ? "post-increment operation" : "post-decrement operation";
1934 op[0] = this->subexpressions[0]->hir(instructions, state);
1935 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1936
1937 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1938
1939 if (error_emitted) {
1940 result = ir_rvalue::error_value(ctx);
1941 break;
1942 }
1943
1944 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1945
1946 ir_rvalue *temp_rhs;
1947 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1948 op[0], op[1]);
1949
1950 /* Get a temporary of a copy of the lvalue before it's modified.
1951 * This may get thrown away later.
1952 */
1953 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1954
1955 ir_rvalue *junk_rvalue;
1956 error_emitted =
1957 do_assignment(instructions, state,
1958 this->subexpressions[0]->non_lvalue_description,
1959 op[0]->clone(ctx, NULL), temp_rhs,
1960 &junk_rvalue, false, false,
1961 this->subexpressions[0]->get_location());
1962
1963 break;
1964 }
1965
1966 case ast_field_selection:
1967 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1968 break;
1969
1970 case ast_array_index: {
1971 YYLTYPE index_loc = subexpressions[1]->get_location();
1972
1973 /* Getting if an array is being used uninitialized is beyond what we get
1974 * from ir_value.data.assigned. Setting is_lhs as true would force to
1975 * not raise a uninitialized warning when using an array
1976 */
1977 subexpressions[0]->set_is_lhs(true);
1978 op[0] = subexpressions[0]->hir(instructions, state);
1979 op[1] = subexpressions[1]->hir(instructions, state);
1980
1981 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1982 loc, index_loc);
1983
1984 if (result->type->is_error())
1985 error_emitted = true;
1986
1987 break;
1988 }
1989
1990 case ast_unsized_array_dim:
1991 unreachable("ast_unsized_array_dim: Should never get here.");
1992
1993 case ast_function_call:
1994 /* Should *NEVER* get here. ast_function_call should always be handled
1995 * by ast_function_expression::hir.
1996 */
1997 unreachable("ast_function_call: handled elsewhere ");
1998
1999 case ast_identifier: {
2000 /* ast_identifier can appear several places in a full abstract syntax
2001 * tree. This particular use must be at location specified in the grammar
2002 * as 'variable_identifier'.
2003 */
2004 ir_variable *var =
2005 state->symbols->get_variable(this->primary_expression.identifier);
2006
2007 if (var == NULL) {
2008 /* the identifier might be a subroutine name */
2009 char *sub_name;
2010 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2011 var = state->symbols->get_variable(sub_name);
2012 ralloc_free(sub_name);
2013 }
2014
2015 if (var != NULL) {
2016 var->data.used = true;
2017 result = new(ctx) ir_dereference_variable(var);
2018
2019 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2020 && !this->is_lhs
2021 && result->variable_referenced()->data.assigned != true
2022 && !is_gl_identifier(var->name)) {
2023 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2024 this->primary_expression.identifier);
2025 }
2026
2027 /* From the EXT_shader_framebuffer_fetch spec:
2028 *
2029 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2030 * enabled in addition, it's an error to use gl_LastFragData if it
2031 * hasn't been explicitly redeclared with layout(noncoherent)."
2032 */
2033 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2034 !state->EXT_shader_framebuffer_fetch_enable) {
2035 _mesa_glsl_error(&loc, state,
2036 "invalid use of framebuffer fetch output not "
2037 "qualified with layout(noncoherent)");
2038 }
2039
2040 } else {
2041 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2042 this->primary_expression.identifier);
2043
2044 result = ir_rvalue::error_value(ctx);
2045 error_emitted = true;
2046 }
2047 break;
2048 }
2049
2050 case ast_int_constant:
2051 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2052 break;
2053
2054 case ast_uint_constant:
2055 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2056 break;
2057
2058 case ast_float_constant:
2059 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2060 break;
2061
2062 case ast_bool_constant:
2063 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2064 break;
2065
2066 case ast_double_constant:
2067 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2068 break;
2069
2070 case ast_uint64_constant:
2071 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2072 break;
2073
2074 case ast_int64_constant:
2075 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2076 break;
2077
2078 case ast_sequence: {
2079 /* It should not be possible to generate a sequence in the AST without
2080 * any expressions in it.
2081 */
2082 assert(!this->expressions.is_empty());
2083
2084 /* The r-value of a sequence is the last expression in the sequence. If
2085 * the other expressions in the sequence do not have side-effects (and
2086 * therefore add instructions to the instruction list), they get dropped
2087 * on the floor.
2088 */
2089 exec_node *previous_tail = NULL;
2090 YYLTYPE previous_operand_loc = loc;
2091
2092 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2093 /* If one of the operands of comma operator does not generate any
2094 * code, we want to emit a warning. At each pass through the loop
2095 * previous_tail will point to the last instruction in the stream
2096 * *before* processing the previous operand. Naturally,
2097 * instructions->get_tail_raw() will point to the last instruction in
2098 * the stream *after* processing the previous operand. If the two
2099 * pointers match, then the previous operand had no effect.
2100 *
2101 * The warning behavior here differs slightly from GCC. GCC will
2102 * only emit a warning if none of the left-hand operands have an
2103 * effect. However, it will emit a warning for each. I believe that
2104 * there are some cases in C (especially with GCC extensions) where
2105 * it is useful to have an intermediate step in a sequence have no
2106 * effect, but I don't think these cases exist in GLSL. Either way,
2107 * it would be a giant hassle to replicate that behavior.
2108 */
2109 if (previous_tail == instructions->get_tail_raw()) {
2110 _mesa_glsl_warning(&previous_operand_loc, state,
2111 "left-hand operand of comma expression has "
2112 "no effect");
2113 }
2114
2115 /* The tail is directly accessed instead of using the get_tail()
2116 * method for performance reasons. get_tail() has extra code to
2117 * return NULL when the list is empty. We don't care about that
2118 * here, so using get_tail_raw() is fine.
2119 */
2120 previous_tail = instructions->get_tail_raw();
2121 previous_operand_loc = ast->get_location();
2122
2123 result = ast->hir(instructions, state);
2124 }
2125
2126 /* Any errors should have already been emitted in the loop above.
2127 */
2128 error_emitted = true;
2129 break;
2130 }
2131 }
2132 type = NULL; /* use result->type, not type. */
2133 assert(result != NULL || !needs_rvalue);
2134
2135 if (result && result->type->is_error() && !error_emitted)
2136 _mesa_glsl_error(& loc, state, "type mismatch");
2137
2138 return result;
2139 }
2140
2141 bool
2142 ast_expression::has_sequence_subexpression() const
2143 {
2144 switch (this->oper) {
2145 case ast_plus:
2146 case ast_neg:
2147 case ast_bit_not:
2148 case ast_logic_not:
2149 case ast_pre_inc:
2150 case ast_pre_dec:
2151 case ast_post_inc:
2152 case ast_post_dec:
2153 return this->subexpressions[0]->has_sequence_subexpression();
2154
2155 case ast_assign:
2156 case ast_add:
2157 case ast_sub:
2158 case ast_mul:
2159 case ast_div:
2160 case ast_mod:
2161 case ast_lshift:
2162 case ast_rshift:
2163 case ast_less:
2164 case ast_greater:
2165 case ast_lequal:
2166 case ast_gequal:
2167 case ast_nequal:
2168 case ast_equal:
2169 case ast_bit_and:
2170 case ast_bit_xor:
2171 case ast_bit_or:
2172 case ast_logic_and:
2173 case ast_logic_or:
2174 case ast_logic_xor:
2175 case ast_array_index:
2176 case ast_mul_assign:
2177 case ast_div_assign:
2178 case ast_add_assign:
2179 case ast_sub_assign:
2180 case ast_mod_assign:
2181 case ast_ls_assign:
2182 case ast_rs_assign:
2183 case ast_and_assign:
2184 case ast_xor_assign:
2185 case ast_or_assign:
2186 return this->subexpressions[0]->has_sequence_subexpression() ||
2187 this->subexpressions[1]->has_sequence_subexpression();
2188
2189 case ast_conditional:
2190 return this->subexpressions[0]->has_sequence_subexpression() ||
2191 this->subexpressions[1]->has_sequence_subexpression() ||
2192 this->subexpressions[2]->has_sequence_subexpression();
2193
2194 case ast_sequence:
2195 return true;
2196
2197 case ast_field_selection:
2198 case ast_identifier:
2199 case ast_int_constant:
2200 case ast_uint_constant:
2201 case ast_float_constant:
2202 case ast_bool_constant:
2203 case ast_double_constant:
2204 case ast_int64_constant:
2205 case ast_uint64_constant:
2206 return false;
2207
2208 case ast_aggregate:
2209 return false;
2210
2211 case ast_function_call:
2212 unreachable("should be handled by ast_function_expression::hir");
2213
2214 case ast_unsized_array_dim:
2215 unreachable("ast_unsized_array_dim: Should never get here.");
2216 }
2217
2218 return false;
2219 }
2220
2221 ir_rvalue *
2222 ast_expression_statement::hir(exec_list *instructions,
2223 struct _mesa_glsl_parse_state *state)
2224 {
2225 /* It is possible to have expression statements that don't have an
2226 * expression. This is the solitary semicolon:
2227 *
2228 * for (i = 0; i < 5; i++)
2229 * ;
2230 *
2231 * In this case the expression will be NULL. Test for NULL and don't do
2232 * anything in that case.
2233 */
2234 if (expression != NULL)
2235 expression->hir_no_rvalue(instructions, state);
2236
2237 /* Statements do not have r-values.
2238 */
2239 return NULL;
2240 }
2241
2242
2243 ir_rvalue *
2244 ast_compound_statement::hir(exec_list *instructions,
2245 struct _mesa_glsl_parse_state *state)
2246 {
2247 if (new_scope)
2248 state->symbols->push_scope();
2249
2250 foreach_list_typed (ast_node, ast, link, &this->statements)
2251 ast->hir(instructions, state);
2252
2253 if (new_scope)
2254 state->symbols->pop_scope();
2255
2256 /* Compound statements do not have r-values.
2257 */
2258 return NULL;
2259 }
2260
2261 /**
2262 * Evaluate the given exec_node (which should be an ast_node representing
2263 * a single array dimension) and return its integer value.
2264 */
2265 static unsigned
2266 process_array_size(exec_node *node,
2267 struct _mesa_glsl_parse_state *state)
2268 {
2269 void *mem_ctx = state;
2270
2271 exec_list dummy_instructions;
2272
2273 ast_node *array_size = exec_node_data(ast_node, node, link);
2274
2275 /**
2276 * Dimensions other than the outermost dimension can by unsized if they
2277 * are immediately sized by a constructor or initializer.
2278 */
2279 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2280 return 0;
2281
2282 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2283 YYLTYPE loc = array_size->get_location();
2284
2285 if (ir == NULL) {
2286 _mesa_glsl_error(& loc, state,
2287 "array size could not be resolved");
2288 return 0;
2289 }
2290
2291 if (!ir->type->is_integer()) {
2292 _mesa_glsl_error(& loc, state,
2293 "array size must be integer type");
2294 return 0;
2295 }
2296
2297 if (!ir->type->is_scalar()) {
2298 _mesa_glsl_error(& loc, state,
2299 "array size must be scalar type");
2300 return 0;
2301 }
2302
2303 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2304 if (size == NULL ||
2305 (state->is_version(120, 300) &&
2306 array_size->has_sequence_subexpression())) {
2307 _mesa_glsl_error(& loc, state, "array size must be a "
2308 "constant valued expression");
2309 return 0;
2310 }
2311
2312 if (size->value.i[0] <= 0) {
2313 _mesa_glsl_error(& loc, state, "array size must be > 0");
2314 return 0;
2315 }
2316
2317 assert(size->type == ir->type);
2318
2319 /* If the array size is const (and we've verified that
2320 * it is) then no instructions should have been emitted
2321 * when we converted it to HIR. If they were emitted,
2322 * then either the array size isn't const after all, or
2323 * we are emitting unnecessary instructions.
2324 */
2325 assert(dummy_instructions.is_empty());
2326
2327 return size->value.u[0];
2328 }
2329
2330 static const glsl_type *
2331 process_array_type(YYLTYPE *loc, const glsl_type *base,
2332 ast_array_specifier *array_specifier,
2333 struct _mesa_glsl_parse_state *state)
2334 {
2335 const glsl_type *array_type = base;
2336
2337 if (array_specifier != NULL) {
2338 if (base->is_array()) {
2339
2340 /* From page 19 (page 25) of the GLSL 1.20 spec:
2341 *
2342 * "Only one-dimensional arrays may be declared."
2343 */
2344 if (!state->check_arrays_of_arrays_allowed(loc)) {
2345 return glsl_type::error_type;
2346 }
2347 }
2348
2349 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2350 !node->is_head_sentinel(); node = node->prev) {
2351 unsigned array_size = process_array_size(node, state);
2352 array_type = glsl_type::get_array_instance(array_type, array_size);
2353 }
2354 }
2355
2356 return array_type;
2357 }
2358
2359 static bool
2360 precision_qualifier_allowed(const glsl_type *type)
2361 {
2362 /* Precision qualifiers apply to floating point, integer and opaque
2363 * types.
2364 *
2365 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2366 * "Any floating point or any integer declaration can have the type
2367 * preceded by one of these precision qualifiers [...] Literal
2368 * constants do not have precision qualifiers. Neither do Boolean
2369 * variables.
2370 *
2371 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2372 * spec also says:
2373 *
2374 * "Precision qualifiers are added for code portability with OpenGL
2375 * ES, not for functionality. They have the same syntax as in OpenGL
2376 * ES."
2377 *
2378 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2379 *
2380 * "uniform lowp sampler2D sampler;
2381 * highp vec2 coord;
2382 * ...
2383 * lowp vec4 col = texture2D (sampler, coord);
2384 * // texture2D returns lowp"
2385 *
2386 * From this, we infer that GLSL 1.30 (and later) should allow precision
2387 * qualifiers on sampler types just like float and integer types.
2388 */
2389 const glsl_type *const t = type->without_array();
2390
2391 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2392 !t->is_record();
2393 }
2394
2395 const glsl_type *
2396 ast_type_specifier::glsl_type(const char **name,
2397 struct _mesa_glsl_parse_state *state) const
2398 {
2399 const struct glsl_type *type;
2400
2401 if (this->type != NULL)
2402 type = this->type;
2403 else if (structure)
2404 type = structure->type;
2405 else
2406 type = state->symbols->get_type(this->type_name);
2407 *name = this->type_name;
2408
2409 YYLTYPE loc = this->get_location();
2410 type = process_array_type(&loc, type, this->array_specifier, state);
2411
2412 return type;
2413 }
2414
2415 /**
2416 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2417 *
2418 * "The precision statement
2419 *
2420 * precision precision-qualifier type;
2421 *
2422 * can be used to establish a default precision qualifier. The type field can
2423 * be either int or float or any of the sampler types, (...) If type is float,
2424 * the directive applies to non-precision-qualified floating point type
2425 * (scalar, vector, and matrix) declarations. If type is int, the directive
2426 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2427 * and unsigned) declarations."
2428 *
2429 * We use the symbol table to keep the values of the default precisions for
2430 * each 'type' in each scope and we use the 'type' string from the precision
2431 * statement as key in the symbol table. When we want to retrieve the default
2432 * precision associated with a given glsl_type we need to know the type string
2433 * associated with it. This is what this function returns.
2434 */
2435 static const char *
2436 get_type_name_for_precision_qualifier(const glsl_type *type)
2437 {
2438 switch (type->base_type) {
2439 case GLSL_TYPE_FLOAT:
2440 return "float";
2441 case GLSL_TYPE_UINT:
2442 case GLSL_TYPE_INT:
2443 return "int";
2444 case GLSL_TYPE_ATOMIC_UINT:
2445 return "atomic_uint";
2446 case GLSL_TYPE_IMAGE:
2447 /* fallthrough */
2448 case GLSL_TYPE_SAMPLER: {
2449 const unsigned type_idx =
2450 type->sampler_array + 2 * type->sampler_shadow;
2451 const unsigned offset = type->is_sampler() ? 0 : 4;
2452 assert(type_idx < 4);
2453 switch (type->sampled_type) {
2454 case GLSL_TYPE_FLOAT:
2455 switch (type->sampler_dimensionality) {
2456 case GLSL_SAMPLER_DIM_1D: {
2457 assert(type->is_sampler());
2458 static const char *const names[4] = {
2459 "sampler1D", "sampler1DArray",
2460 "sampler1DShadow", "sampler1DArrayShadow"
2461 };
2462 return names[type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_2D: {
2465 static const char *const names[8] = {
2466 "sampler2D", "sampler2DArray",
2467 "sampler2DShadow", "sampler2DArrayShadow",
2468 "image2D", "image2DArray", NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_3D: {
2473 static const char *const names[8] = {
2474 "sampler3D", NULL, NULL, NULL,
2475 "image3D", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_CUBE: {
2480 static const char *const names[8] = {
2481 "samplerCube", "samplerCubeArray",
2482 "samplerCubeShadow", "samplerCubeArrayShadow",
2483 "imageCube", NULL, NULL, NULL
2484 };
2485 return names[offset + type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_MS: {
2488 assert(type->is_sampler());
2489 static const char *const names[4] = {
2490 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2491 };
2492 return names[type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_RECT: {
2495 assert(type->is_sampler());
2496 static const char *const names[4] = {
2497 "samplerRect", NULL, "samplerRectShadow", NULL
2498 };
2499 return names[type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_BUF: {
2502 static const char *const names[8] = {
2503 "samplerBuffer", NULL, NULL, NULL,
2504 "imageBuffer", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_EXTERNAL: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "samplerExternalOES", NULL, NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 default:
2516 unreachable("Unsupported sampler/image dimensionality");
2517 } /* sampler/image float dimensionality */
2518 break;
2519 case GLSL_TYPE_INT:
2520 switch (type->sampler_dimensionality) {
2521 case GLSL_SAMPLER_DIM_1D: {
2522 assert(type->is_sampler());
2523 static const char *const names[4] = {
2524 "isampler1D", "isampler1DArray", NULL, NULL
2525 };
2526 return names[type_idx];
2527 }
2528 case GLSL_SAMPLER_DIM_2D: {
2529 static const char *const names[8] = {
2530 "isampler2D", "isampler2DArray", NULL, NULL,
2531 "iimage2D", "iimage2DArray", NULL, NULL
2532 };
2533 return names[offset + type_idx];
2534 }
2535 case GLSL_SAMPLER_DIM_3D: {
2536 static const char *const names[8] = {
2537 "isampler3D", NULL, NULL, NULL,
2538 "iimage3D", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_CUBE: {
2543 static const char *const names[8] = {
2544 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2545 "iimageCube", NULL, NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_MS: {
2550 assert(type->is_sampler());
2551 static const char *const names[4] = {
2552 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2553 };
2554 return names[type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_RECT: {
2557 assert(type->is_sampler());
2558 static const char *const names[4] = {
2559 "isamplerRect", NULL, "isamplerRectShadow", NULL
2560 };
2561 return names[type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_BUF: {
2564 static const char *const names[8] = {
2565 "isamplerBuffer", NULL, NULL, NULL,
2566 "iimageBuffer", NULL, NULL, NULL
2567 };
2568 return names[offset + type_idx];
2569 }
2570 default:
2571 unreachable("Unsupported isampler/iimage dimensionality");
2572 } /* sampler/image int dimensionality */
2573 break;
2574 case GLSL_TYPE_UINT:
2575 switch (type->sampler_dimensionality) {
2576 case GLSL_SAMPLER_DIM_1D: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "usampler1D", "usampler1DArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_2D: {
2584 static const char *const names[8] = {
2585 "usampler2D", "usampler2DArray", NULL, NULL,
2586 "uimage2D", "uimage2DArray", NULL, NULL
2587 };
2588 return names[offset + type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_3D: {
2591 static const char *const names[8] = {
2592 "usampler3D", NULL, NULL, NULL,
2593 "uimage3D", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 case GLSL_SAMPLER_DIM_CUBE: {
2598 static const char *const names[8] = {
2599 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2600 "uimageCube", NULL, NULL, NULL
2601 };
2602 return names[offset + type_idx];
2603 }
2604 case GLSL_SAMPLER_DIM_MS: {
2605 assert(type->is_sampler());
2606 static const char *const names[4] = {
2607 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2608 };
2609 return names[type_idx];
2610 }
2611 case GLSL_SAMPLER_DIM_RECT: {
2612 assert(type->is_sampler());
2613 static const char *const names[4] = {
2614 "usamplerRect", NULL, "usamplerRectShadow", NULL
2615 };
2616 return names[type_idx];
2617 }
2618 case GLSL_SAMPLER_DIM_BUF: {
2619 static const char *const names[8] = {
2620 "usamplerBuffer", NULL, NULL, NULL,
2621 "uimageBuffer", NULL, NULL, NULL
2622 };
2623 return names[offset + type_idx];
2624 }
2625 default:
2626 unreachable("Unsupported usampler/uimage dimensionality");
2627 } /* sampler/image uint dimensionality */
2628 break;
2629 default:
2630 unreachable("Unsupported sampler/image type");
2631 } /* sampler/image type */
2632 break;
2633 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2634 break;
2635 default:
2636 unreachable("Unsupported type");
2637 } /* base type */
2638 }
2639
2640 static unsigned
2641 select_gles_precision(unsigned qual_precision,
2642 const glsl_type *type,
2643 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2644 {
2645 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2646 * In GLES we take the precision from the type qualifier if present,
2647 * otherwise, if the type of the variable allows precision qualifiers at
2648 * all, we look for the default precision qualifier for that type in the
2649 * current scope.
2650 */
2651 assert(state->es_shader);
2652
2653 unsigned precision = GLSL_PRECISION_NONE;
2654 if (qual_precision) {
2655 precision = qual_precision;
2656 } else if (precision_qualifier_allowed(type)) {
2657 const char *type_name =
2658 get_type_name_for_precision_qualifier(type->without_array());
2659 assert(type_name != NULL);
2660
2661 precision =
2662 state->symbols->get_default_precision_qualifier(type_name);
2663 if (precision == ast_precision_none) {
2664 _mesa_glsl_error(loc, state,
2665 "No precision specified in this scope for type `%s'",
2666 type->name);
2667 }
2668 }
2669
2670
2671 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2672 *
2673 * "The default precision of all atomic types is highp. It is an error to
2674 * declare an atomic type with a different precision or to specify the
2675 * default precision for an atomic type to be lowp or mediump."
2676 */
2677 if (type->is_atomic_uint() && precision != ast_precision_high) {
2678 _mesa_glsl_error(loc, state,
2679 "atomic_uint can only have highp precision qualifier");
2680 }
2681
2682 return precision;
2683 }
2684
2685 const glsl_type *
2686 ast_fully_specified_type::glsl_type(const char **name,
2687 struct _mesa_glsl_parse_state *state) const
2688 {
2689 return this->specifier->glsl_type(name, state);
2690 }
2691
2692 /**
2693 * Determine whether a toplevel variable declaration declares a varying. This
2694 * function operates by examining the variable's mode and the shader target,
2695 * so it correctly identifies linkage variables regardless of whether they are
2696 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2697 *
2698 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2699 * this function will produce undefined results.
2700 */
2701 static bool
2702 is_varying_var(ir_variable *var, gl_shader_stage target)
2703 {
2704 switch (target) {
2705 case MESA_SHADER_VERTEX:
2706 return var->data.mode == ir_var_shader_out;
2707 case MESA_SHADER_FRAGMENT:
2708 return var->data.mode == ir_var_shader_in;
2709 default:
2710 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2711 }
2712 }
2713
2714 static bool
2715 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2716 {
2717 if (is_varying_var(var, state->stage))
2718 return true;
2719
2720 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2721 * "Only variables output from a vertex shader can be candidates
2722 * for invariance".
2723 */
2724 if (!state->is_version(130, 0))
2725 return false;
2726
2727 /*
2728 * Later specs remove this language - so allowed invariant
2729 * on fragment shader outputs as well.
2730 */
2731 if (state->stage == MESA_SHADER_FRAGMENT &&
2732 var->data.mode == ir_var_shader_out)
2733 return true;
2734 return false;
2735 }
2736
2737 /**
2738 * Matrix layout qualifiers are only allowed on certain types
2739 */
2740 static void
2741 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2742 YYLTYPE *loc,
2743 const glsl_type *type,
2744 ir_variable *var)
2745 {
2746 if (var && !var->is_in_buffer_block()) {
2747 /* Layout qualifiers may only apply to interface blocks and fields in
2748 * them.
2749 */
2750 _mesa_glsl_error(loc, state,
2751 "uniform block layout qualifiers row_major and "
2752 "column_major may not be applied to variables "
2753 "outside of uniform blocks");
2754 } else if (!type->without_array()->is_matrix()) {
2755 /* The OpenGL ES 3.0 conformance tests did not originally allow
2756 * matrix layout qualifiers on non-matrices. However, the OpenGL
2757 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2758 * amended to specifically allow these layouts on all types. Emit
2759 * a warning so that people know their code may not be portable.
2760 */
2761 _mesa_glsl_warning(loc, state,
2762 "uniform block layout qualifiers row_major and "
2763 "column_major applied to non-matrix types may "
2764 "be rejected by older compilers");
2765 }
2766 }
2767
2768 static bool
2769 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2770 struct _mesa_glsl_parse_state *state,
2771 unsigned xfb_buffer) {
2772 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2773 _mesa_glsl_error(loc, state,
2774 "invalid xfb_buffer specified %d is larger than "
2775 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2776 xfb_buffer,
2777 state->Const.MaxTransformFeedbackBuffers - 1);
2778 return false;
2779 }
2780
2781 return true;
2782 }
2783
2784 /* From the ARB_enhanced_layouts spec:
2785 *
2786 * "Variables and block members qualified with *xfb_offset* can be
2787 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2788 * The offset must be a multiple of the size of the first component of
2789 * the first qualified variable or block member, or a compile-time error
2790 * results. Further, if applied to an aggregate containing a double,
2791 * the offset must also be a multiple of 8, and the space taken in the
2792 * buffer will be a multiple of 8.
2793 */
2794 static bool
2795 validate_xfb_offset_qualifier(YYLTYPE *loc,
2796 struct _mesa_glsl_parse_state *state,
2797 int xfb_offset, const glsl_type *type,
2798 unsigned component_size) {
2799 const glsl_type *t_without_array = type->without_array();
2800
2801 if (xfb_offset != -1 && type->is_unsized_array()) {
2802 _mesa_glsl_error(loc, state,
2803 "xfb_offset can't be used with unsized arrays.");
2804 return false;
2805 }
2806
2807 /* Make sure nested structs don't contain unsized arrays, and validate
2808 * any xfb_offsets on interface members.
2809 */
2810 if (t_without_array->is_record() || t_without_array->is_interface())
2811 for (unsigned int i = 0; i < t_without_array->length; i++) {
2812 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2813
2814 /* When the interface block doesn't have an xfb_offset qualifier then
2815 * we apply the component size rules at the member level.
2816 */
2817 if (xfb_offset == -1)
2818 component_size = member_t->contains_double() ? 8 : 4;
2819
2820 int xfb_offset = t_without_array->fields.structure[i].offset;
2821 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2822 component_size);
2823 }
2824
2825 /* Nested structs or interface block without offset may not have had an
2826 * offset applied yet so return.
2827 */
2828 if (xfb_offset == -1) {
2829 return true;
2830 }
2831
2832 if (xfb_offset % component_size) {
2833 _mesa_glsl_error(loc, state,
2834 "invalid qualifier xfb_offset=%d must be a multiple "
2835 "of the first component size of the first qualified "
2836 "variable or block member. Or double if an aggregate "
2837 "that contains a double (%d).",
2838 xfb_offset, component_size);
2839 return false;
2840 }
2841
2842 return true;
2843 }
2844
2845 static bool
2846 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2847 unsigned stream)
2848 {
2849 if (stream >= state->ctx->Const.MaxVertexStreams) {
2850 _mesa_glsl_error(loc, state,
2851 "invalid stream specified %d is larger than "
2852 "MAX_VERTEX_STREAMS - 1 (%d).",
2853 stream, state->ctx->Const.MaxVertexStreams - 1);
2854 return false;
2855 }
2856
2857 return true;
2858 }
2859
2860 static void
2861 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2862 YYLTYPE *loc,
2863 ir_variable *var,
2864 const glsl_type *type,
2865 const ast_type_qualifier *qual)
2866 {
2867 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2868 _mesa_glsl_error(loc, state,
2869 "the \"binding\" qualifier only applies to uniforms and "
2870 "shader storage buffer objects");
2871 return;
2872 }
2873
2874 unsigned qual_binding;
2875 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2876 &qual_binding)) {
2877 return;
2878 }
2879
2880 const struct gl_context *const ctx = state->ctx;
2881 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2882 unsigned max_index = qual_binding + elements - 1;
2883 const glsl_type *base_type = type->without_array();
2884
2885 if (base_type->is_interface()) {
2886 /* UBOs. From page 60 of the GLSL 4.20 specification:
2887 * "If the binding point for any uniform block instance is less than zero,
2888 * or greater than or equal to the implementation-dependent maximum
2889 * number of uniform buffer bindings, a compilation error will occur.
2890 * When the binding identifier is used with a uniform block instanced as
2891 * an array of size N, all elements of the array from binding through
2892 * binding + N – 1 must be within this range."
2893 *
2894 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2895 */
2896 if (qual->flags.q.uniform &&
2897 max_index >= ctx->Const.MaxUniformBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2899 "the maximum number of UBO binding points (%d)",
2900 qual_binding, elements,
2901 ctx->Const.MaxUniformBufferBindings);
2902 return;
2903 }
2904
2905 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2906 * "If the binding point for any uniform or shader storage block instance
2907 * is less than zero, or greater than or equal to the
2908 * implementation-dependent maximum number of uniform buffer bindings, a
2909 * compile-time error will occur. When the binding identifier is used
2910 * with a uniform or shader storage block instanced as an array of size
2911 * N, all elements of the array from binding through binding + N – 1 must
2912 * be within this range."
2913 */
2914 if (qual->flags.q.buffer &&
2915 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2916 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2917 "the maximum number of SSBO binding points (%d)",
2918 qual_binding, elements,
2919 ctx->Const.MaxShaderStorageBufferBindings);
2920 return;
2921 }
2922 } else if (base_type->is_sampler()) {
2923 /* Samplers. From page 63 of the GLSL 4.20 specification:
2924 * "If the binding is less than zero, or greater than or equal to the
2925 * implementation-dependent maximum supported number of units, a
2926 * compilation error will occur. When the binding identifier is used
2927 * with an array of size N, all elements of the array from binding
2928 * through binding + N - 1 must be within this range."
2929 */
2930 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2931
2932 if (max_index >= limit) {
2933 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2934 "exceeds the maximum number of texture image units "
2935 "(%u)", qual_binding, elements, limit);
2936
2937 return;
2938 }
2939 } else if (base_type->contains_atomic()) {
2940 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2941 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2942 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2943 "maximum number of atomic counter buffer bindings "
2944 "(%u)", qual_binding,
2945 ctx->Const.MaxAtomicBufferBindings);
2946
2947 return;
2948 }
2949 } else if ((state->is_version(420, 310) ||
2950 state->ARB_shading_language_420pack_enable) &&
2951 base_type->is_image()) {
2952 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2953 if (max_index >= ctx->Const.MaxImageUnits) {
2954 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2955 "maximum number of image units (%d)", max_index,
2956 ctx->Const.MaxImageUnits);
2957 return;
2958 }
2959
2960 } else {
2961 _mesa_glsl_error(loc, state,
2962 "the \"binding\" qualifier only applies to uniform "
2963 "blocks, storage blocks, opaque variables, or arrays "
2964 "thereof");
2965 return;
2966 }
2967
2968 var->data.explicit_binding = true;
2969 var->data.binding = qual_binding;
2970
2971 return;
2972 }
2973
2974 static void
2975 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2976 YYLTYPE *loc,
2977 const glsl_interp_mode interpolation,
2978 const struct glsl_type *var_type,
2979 ir_variable_mode mode)
2980 {
2981 if (state->stage != MESA_SHADER_FRAGMENT ||
2982 interpolation == INTERP_MODE_FLAT ||
2983 mode != ir_var_shader_in)
2984 return;
2985
2986 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2987 * so must integer vertex outputs.
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers or
2991 * integer vectors must be qualified with the interpolation qualifier
2992 * flat."
2993 *
2994 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2995 * "Fragment shader inputs that are, or contain, signed or unsigned
2996 * integers or integer vectors must be qualified with the
2997 * interpolation qualifier flat."
2998 *
2999 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3000 * "Vertex shader outputs that are, or contain, signed or unsigned
3001 * integers or integer vectors must be qualified with the
3002 * interpolation qualifier flat."
3003 *
3004 * Note that prior to GLSL 1.50, this requirement applied to vertex
3005 * outputs rather than fragment inputs. That creates problems in the
3006 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3007 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3008 * apply the restriction to both vertex outputs and fragment inputs.
3009 *
3010 * Note also that the desktop GLSL specs are missing the text "or
3011 * contain"; this is presumably an oversight, since there is no
3012 * reasonable way to interpolate a fragment shader input that contains
3013 * an integer. See Khronos bug #15671.
3014 */
3015 if (state->is_version(130, 300)
3016 && var_type->contains_integer()) {
3017 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3018 "an integer, then it must be qualified with 'flat'");
3019 }
3020
3021 /* Double fragment inputs must be qualified with 'flat'.
3022 *
3023 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3024 * "This extension does not support interpolation of double-precision
3025 * values; doubles used as fragment shader inputs must be qualified as
3026 * "flat"."
3027 *
3028 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3029 * "Fragment shader inputs that are signed or unsigned integers, integer
3030 * vectors, or any double-precision floating-point type must be
3031 * qualified with the interpolation qualifier flat."
3032 *
3033 * Note that the GLSL specs are missing the text "or contain"; this is
3034 * presumably an oversight. See Khronos bug #15671.
3035 *
3036 * The 'double' type does not exist in GLSL ES so far.
3037 */
3038 if (state->has_double()
3039 && var_type->contains_double()) {
3040 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3041 "a double, then it must be qualified with 'flat'");
3042 }
3043
3044 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3045 *
3046 * From section 4.3.4 of the ARB_bindless_texture spec:
3047 *
3048 * "(modify last paragraph, p. 35, allowing samplers and images as
3049 * fragment shader inputs) ... Fragment inputs can only be signed and
3050 * unsigned integers and integer vectors, floating point scalars,
3051 * floating-point vectors, matrices, sampler and image types, or arrays
3052 * or structures of these. Fragment shader inputs that are signed or
3053 * unsigned integers, integer vectors, or any double-precision floating-
3054 * point type, or any sampler or image type must be qualified with the
3055 * interpolation qualifier "flat"."
3056 */
3057 if (state->has_bindless()
3058 && (var_type->contains_sampler() || var_type->contains_image())) {
3059 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3060 "a bindless sampler (or image), then it must be "
3061 "qualified with 'flat'");
3062 }
3063 }
3064
3065 static void
3066 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3067 YYLTYPE *loc,
3068 const glsl_interp_mode interpolation,
3069 const struct ast_type_qualifier *qual,
3070 const struct glsl_type *var_type,
3071 ir_variable_mode mode)
3072 {
3073 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3074 * not to vertex shader inputs nor fragment shader outputs.
3075 *
3076 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3077 * "Outputs from a vertex shader (out) and inputs to a fragment
3078 * shader (in) can be further qualified with one or more of these
3079 * interpolation qualifiers"
3080 * ...
3081 * "These interpolation qualifiers may only precede the qualifiers in,
3082 * centroid in, out, or centroid out in a declaration. They do not apply
3083 * to the deprecated storage qualifiers varying or centroid
3084 * varying. They also do not apply to inputs into a vertex shader or
3085 * outputs from a fragment shader."
3086 *
3087 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3088 * "Outputs from a shader (out) and inputs to a shader (in) can be
3089 * further qualified with one of these interpolation qualifiers."
3090 * ...
3091 * "These interpolation qualifiers may only precede the qualifiers
3092 * in, centroid in, out, or centroid out in a declaration. They do
3093 * not apply to inputs into a vertex shader or outputs from a
3094 * fragment shader."
3095 */
3096 if (state->is_version(130, 300)
3097 && interpolation != INTERP_MODE_NONE) {
3098 const char *i = interpolation_string(interpolation);
3099 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3100 _mesa_glsl_error(loc, state,
3101 "interpolation qualifier `%s' can only be applied to "
3102 "shader inputs or outputs.", i);
3103
3104 switch (state->stage) {
3105 case MESA_SHADER_VERTEX:
3106 if (mode == ir_var_shader_in) {
3107 _mesa_glsl_error(loc, state,
3108 "interpolation qualifier '%s' cannot be applied to "
3109 "vertex shader inputs", i);
3110 }
3111 break;
3112 case MESA_SHADER_FRAGMENT:
3113 if (mode == ir_var_shader_out) {
3114 _mesa_glsl_error(loc, state,
3115 "interpolation qualifier '%s' cannot be applied to "
3116 "fragment shader outputs", i);
3117 }
3118 break;
3119 default:
3120 break;
3121 }
3122 }
3123
3124 /* Interpolation qualifiers cannot be applied to 'centroid' and
3125 * 'centroid varying'.
3126 *
3127 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3128 * "interpolation qualifiers may only precede the qualifiers in,
3129 * centroid in, out, or centroid out in a declaration. They do not apply
3130 * to the deprecated storage qualifiers varying or centroid varying."
3131 *
3132 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3133 */
3134 if (state->is_version(130, 0)
3135 && interpolation != INTERP_MODE_NONE
3136 && qual->flags.q.varying) {
3137
3138 const char *i = interpolation_string(interpolation);
3139 const char *s;
3140 if (qual->flags.q.centroid)
3141 s = "centroid varying";
3142 else
3143 s = "varying";
3144
3145 _mesa_glsl_error(loc, state,
3146 "qualifier '%s' cannot be applied to the "
3147 "deprecated storage qualifier '%s'", i, s);
3148 }
3149
3150 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3151 var_type, mode);
3152 }
3153
3154 static glsl_interp_mode
3155 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3156 const struct glsl_type *var_type,
3157 ir_variable_mode mode,
3158 struct _mesa_glsl_parse_state *state,
3159 YYLTYPE *loc)
3160 {
3161 glsl_interp_mode interpolation;
3162 if (qual->flags.q.flat)
3163 interpolation = INTERP_MODE_FLAT;
3164 else if (qual->flags.q.noperspective)
3165 interpolation = INTERP_MODE_NOPERSPECTIVE;
3166 else if (qual->flags.q.smooth)
3167 interpolation = INTERP_MODE_SMOOTH;
3168 else
3169 interpolation = INTERP_MODE_NONE;
3170
3171 validate_interpolation_qualifier(state, loc,
3172 interpolation,
3173 qual, var_type, mode);
3174
3175 return interpolation;
3176 }
3177
3178
3179 static void
3180 apply_explicit_location(const struct ast_type_qualifier *qual,
3181 ir_variable *var,
3182 struct _mesa_glsl_parse_state *state,
3183 YYLTYPE *loc)
3184 {
3185 bool fail = false;
3186
3187 unsigned qual_location;
3188 if (!process_qualifier_constant(state, loc, "location", qual->location,
3189 &qual_location)) {
3190 return;
3191 }
3192
3193 /* Checks for GL_ARB_explicit_uniform_location. */
3194 if (qual->flags.q.uniform) {
3195 if (!state->check_explicit_uniform_location_allowed(loc, var))
3196 return;
3197
3198 const struct gl_context *const ctx = state->ctx;
3199 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3200
3201 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3202 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3203 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3204 ctx->Const.MaxUserAssignableUniformLocations);
3205 return;
3206 }
3207
3208 var->data.explicit_location = true;
3209 var->data.location = qual_location;
3210 return;
3211 }
3212
3213 /* Between GL_ARB_explicit_attrib_location an
3214 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3215 * stage can be assigned explicit locations. The checking here associates
3216 * the correct extension with the correct stage's input / output:
3217 *
3218 * input output
3219 * ----- ------
3220 * vertex explicit_loc sso
3221 * tess control sso sso
3222 * tess eval sso sso
3223 * geometry sso sso
3224 * fragment sso explicit_loc
3225 */
3226 switch (state->stage) {
3227 case MESA_SHADER_VERTEX:
3228 if (var->data.mode == ir_var_shader_in) {
3229 if (!state->check_explicit_attrib_location_allowed(loc, var))
3230 return;
3231
3232 break;
3233 }
3234
3235 if (var->data.mode == ir_var_shader_out) {
3236 if (!state->check_separate_shader_objects_allowed(loc, var))
3237 return;
3238
3239 break;
3240 }
3241
3242 fail = true;
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3249 if (!state->check_separate_shader_objects_allowed(loc, var))
3250 return;
3251
3252 break;
3253 }
3254
3255 fail = true;
3256 break;
3257
3258 case MESA_SHADER_FRAGMENT:
3259 if (var->data.mode == ir_var_shader_in) {
3260 if (!state->check_separate_shader_objects_allowed(loc, var))
3261 return;
3262
3263 break;
3264 }
3265
3266 if (var->data.mode == ir_var_shader_out) {
3267 if (!state->check_explicit_attrib_location_allowed(loc, var))
3268 return;
3269
3270 break;
3271 }
3272
3273 fail = true;
3274 break;
3275
3276 case MESA_SHADER_COMPUTE:
3277 _mesa_glsl_error(loc, state,
3278 "compute shader variables cannot be given "
3279 "explicit locations");
3280 return;
3281 default:
3282 fail = true;
3283 break;
3284 };
3285
3286 if (fail) {
3287 _mesa_glsl_error(loc, state,
3288 "%s cannot be given an explicit location in %s shader",
3289 mode_string(var),
3290 _mesa_shader_stage_to_string(state->stage));
3291 } else {
3292 var->data.explicit_location = true;
3293
3294 switch (state->stage) {
3295 case MESA_SHADER_VERTEX:
3296 var->data.location = (var->data.mode == ir_var_shader_in)
3297 ? (qual_location + VERT_ATTRIB_GENERIC0)
3298 : (qual_location + VARYING_SLOT_VAR0);
3299 break;
3300
3301 case MESA_SHADER_TESS_CTRL:
3302 case MESA_SHADER_TESS_EVAL:
3303 case MESA_SHADER_GEOMETRY:
3304 if (var->data.patch)
3305 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3306 else
3307 var->data.location = qual_location + VARYING_SLOT_VAR0;
3308 break;
3309
3310 case MESA_SHADER_FRAGMENT:
3311 var->data.location = (var->data.mode == ir_var_shader_out)
3312 ? (qual_location + FRAG_RESULT_DATA0)
3313 : (qual_location + VARYING_SLOT_VAR0);
3314 break;
3315 default:
3316 assert(!"Unexpected shader type");
3317 break;
3318 }
3319
3320 /* Check if index was set for the uniform instead of the function */
3321 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3322 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3323 "used with subroutine functions");
3324 return;
3325 }
3326
3327 unsigned qual_index;
3328 if (qual->flags.q.explicit_index &&
3329 process_qualifier_constant(state, loc, "index", qual->index,
3330 &qual_index)) {
3331 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3332 * Layout Qualifiers):
3333 *
3334 * "It is also a compile-time error if a fragment shader
3335 * sets a layout index to less than 0 or greater than 1."
3336 *
3337 * Older specifications don't mandate a behavior; we take
3338 * this as a clarification and always generate the error.
3339 */
3340 if (qual_index > 1) {
3341 _mesa_glsl_error(loc, state,
3342 "explicit index may only be 0 or 1");
3343 } else {
3344 var->data.explicit_index = true;
3345 var->data.index = qual_index;
3346 }
3347 }
3348 }
3349 }
3350
3351 static bool
3352 validate_storage_for_sampler_image_types(ir_variable *var,
3353 struct _mesa_glsl_parse_state *state,
3354 YYLTYPE *loc)
3355 {
3356 /* From section 4.1.7 of the GLSL 4.40 spec:
3357 *
3358 * "[Opaque types] can only be declared as function
3359 * parameters or uniform-qualified variables."
3360 *
3361 * From section 4.1.7 of the ARB_bindless_texture spec:
3362 *
3363 * "Samplers may be declared as shader inputs and outputs, as uniform
3364 * variables, as temporary variables, and as function parameters."
3365 *
3366 * From section 4.1.X of the ARB_bindless_texture spec:
3367 *
3368 * "Images may be declared as shader inputs and outputs, as uniform
3369 * variables, as temporary variables, and as function parameters."
3370 */
3371 if (state->has_bindless()) {
3372 if (var->data.mode != ir_var_auto &&
3373 var->data.mode != ir_var_uniform &&
3374 var->data.mode != ir_var_shader_in &&
3375 var->data.mode != ir_var_shader_out &&
3376 var->data.mode != ir_var_function_in &&
3377 var->data.mode != ir_var_function_out &&
3378 var->data.mode != ir_var_function_inout) {
3379 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3380 "only be declared as shader inputs and outputs, as "
3381 "uniform variables, as temporary variables and as "
3382 "function parameters");
3383 return false;
3384 }
3385 } else {
3386 if (var->data.mode != ir_var_uniform &&
3387 var->data.mode != ir_var_function_in) {
3388 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3389 "declared as function parameters or "
3390 "uniform-qualified global variables");
3391 return false;
3392 }
3393 }
3394 return true;
3395 }
3396
3397 static bool
3398 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3399 YYLTYPE *loc,
3400 const struct ast_type_qualifier *qual,
3401 const glsl_type *type)
3402 {
3403 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3404 *
3405 * "Memory qualifiers are only supported in the declarations of image
3406 * variables, buffer variables, and shader storage blocks; it is an error
3407 * to use such qualifiers in any other declarations.
3408 */
3409 if (!type->is_image() && !qual->flags.q.buffer) {
3410 if (qual->flags.q.read_only ||
3411 qual->flags.q.write_only ||
3412 qual->flags.q.coherent ||
3413 qual->flags.q._volatile ||
3414 qual->flags.q.restrict_flag) {
3415 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3416 "in the declarations of image variables, buffer "
3417 "variables, and shader storage blocks");
3418 return false;
3419 }
3420 }
3421 return true;
3422 }
3423
3424 static bool
3425 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3426 YYLTYPE *loc,
3427 const struct ast_type_qualifier *qual,
3428 const glsl_type *type)
3429 {
3430 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3431 *
3432 * "Format layout qualifiers can be used on image variable declarations
3433 * (those declared with a basic type having “image ” in its keyword)."
3434 */
3435 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3436 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3437 "applied to images");
3438 return false;
3439 }
3440 return true;
3441 }
3442
3443 static void
3444 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3445 ir_variable *var,
3446 struct _mesa_glsl_parse_state *state,
3447 YYLTYPE *loc)
3448 {
3449 const glsl_type *base_type = var->type->without_array();
3450
3451 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3452 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3453 return;
3454
3455 if (!base_type->is_image())
3456 return;
3457
3458 if (!validate_storage_for_sampler_image_types(var, state, loc))
3459 return;
3460
3461 var->data.memory_read_only |= qual->flags.q.read_only;
3462 var->data.memory_write_only |= qual->flags.q.write_only;
3463 var->data.memory_coherent |= qual->flags.q.coherent;
3464 var->data.memory_volatile |= qual->flags.q._volatile;
3465 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3466
3467 if (qual->flags.q.explicit_image_format) {
3468 if (var->data.mode == ir_var_function_in) {
3469 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3470 "image function parameters");
3471 }
3472
3473 if (qual->image_base_type != base_type->sampled_type) {
3474 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3475 "data type of the image");
3476 }
3477
3478 var->data.image_format = qual->image_format;
3479 } else {
3480 if (var->data.mode == ir_var_uniform) {
3481 if (state->es_shader) {
3482 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3483 "format layout qualifier");
3484 } else if (!qual->flags.q.write_only) {
3485 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3486 "`writeonly' must have a format layout qualifier");
3487 }
3488 }
3489 var->data.image_format = GL_NONE;
3490 }
3491
3492 /* From page 70 of the GLSL ES 3.1 specification:
3493 *
3494 * "Except for image variables qualified with the format qualifiers r32f,
3495 * r32i, and r32ui, image variables must specify either memory qualifier
3496 * readonly or the memory qualifier writeonly."
3497 */
3498 if (state->es_shader &&
3499 var->data.image_format != GL_R32F &&
3500 var->data.image_format != GL_R32I &&
3501 var->data.image_format != GL_R32UI &&
3502 !var->data.memory_read_only &&
3503 !var->data.memory_write_only) {
3504 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3505 "r32i or r32ui must be qualified `readonly' or "
3506 "`writeonly'");
3507 }
3508 }
3509
3510 static inline const char*
3511 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3512 {
3513 if (origin_upper_left && pixel_center_integer)
3514 return "origin_upper_left, pixel_center_integer";
3515 else if (origin_upper_left)
3516 return "origin_upper_left";
3517 else if (pixel_center_integer)
3518 return "pixel_center_integer";
3519 else
3520 return " ";
3521 }
3522
3523 static inline bool
3524 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3525 const struct ast_type_qualifier *qual)
3526 {
3527 /* If gl_FragCoord was previously declared, and the qualifiers were
3528 * different in any way, return true.
3529 */
3530 if (state->fs_redeclares_gl_fragcoord) {
3531 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3532 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3533 }
3534
3535 return false;
3536 }
3537
3538 static inline void
3539 validate_array_dimensions(const glsl_type *t,
3540 struct _mesa_glsl_parse_state *state,
3541 YYLTYPE *loc) {
3542 if (t->is_array()) {
3543 t = t->fields.array;
3544 while (t->is_array()) {
3545 if (t->is_unsized_array()) {
3546 _mesa_glsl_error(loc, state,
3547 "only the outermost array dimension can "
3548 "be unsized",
3549 t->name);
3550 break;
3551 }
3552 t = t->fields.array;
3553 }
3554 }
3555 }
3556
3557 static void
3558 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3559 ir_variable *var,
3560 struct _mesa_glsl_parse_state *state,
3561 YYLTYPE *loc)
3562 {
3563 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3564 qual->flags.q.bindless_image ||
3565 qual->flags.q.bound_sampler ||
3566 qual->flags.q.bound_image;
3567
3568 /* The ARB_bindless_texture spec says:
3569 *
3570 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3571 * spec"
3572 *
3573 * "If these layout qualifiers are applied to other types of default block
3574 * uniforms, or variables with non-uniform storage, a compile-time error
3575 * will be generated."
3576 */
3577 if (has_local_qualifiers && !qual->flags.q.uniform) {
3578 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3579 "can only be applied to default block uniforms or "
3580 "variables with uniform storage");
3581 return;
3582 }
3583
3584 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3585 * but it makes sense to only allow bindless_sampler/bound_sampler for
3586 * sampler types, and respectively bindless_image/bound_image for image
3587 * types.
3588 */
3589 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3590 !var->type->contains_sampler()) {
3591 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3592 "be applied to sampler types");
3593 return;
3594 }
3595
3596 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3597 !var->type->contains_image()) {
3598 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3599 "applied to image types");
3600 return;
3601 }
3602
3603 /* The bindless_sampler/bindless_image (and respectively
3604 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3605 * local scope.
3606 */
3607 if (var->type->contains_sampler() || var->type->contains_image()) {
3608 var->data.bindless = qual->flags.q.bindless_sampler ||
3609 qual->flags.q.bindless_image ||
3610 state->bindless_sampler_specified ||
3611 state->bindless_image_specified;
3612
3613 var->data.bound = qual->flags.q.bound_sampler ||
3614 qual->flags.q.bound_image ||
3615 state->bound_sampler_specified ||
3616 state->bound_image_specified;
3617 }
3618 }
3619
3620 static void
3621 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3622 ir_variable *var,
3623 struct _mesa_glsl_parse_state *state,
3624 YYLTYPE *loc)
3625 {
3626 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3627
3628 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3629 *
3630 * "Within any shader, the first redeclarations of gl_FragCoord
3631 * must appear before any use of gl_FragCoord."
3632 *
3633 * Generate a compiler error if above condition is not met by the
3634 * fragment shader.
3635 */
3636 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3637 if (earlier != NULL &&
3638 earlier->data.used &&
3639 !state->fs_redeclares_gl_fragcoord) {
3640 _mesa_glsl_error(loc, state,
3641 "gl_FragCoord used before its first redeclaration "
3642 "in fragment shader");
3643 }
3644
3645 /* Make sure all gl_FragCoord redeclarations specify the same layout
3646 * qualifiers.
3647 */
3648 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3649 const char *const qual_string =
3650 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3651 qual->flags.q.pixel_center_integer);
3652
3653 const char *const state_string =
3654 get_layout_qualifier_string(state->fs_origin_upper_left,
3655 state->fs_pixel_center_integer);
3656
3657 _mesa_glsl_error(loc, state,
3658 "gl_FragCoord redeclared with different layout "
3659 "qualifiers (%s) and (%s) ",
3660 state_string,
3661 qual_string);
3662 }
3663 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3664 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3665 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3666 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3667 state->fs_redeclares_gl_fragcoord =
3668 state->fs_origin_upper_left ||
3669 state->fs_pixel_center_integer ||
3670 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3671 }
3672
3673 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3674 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3675 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3676 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3677 const char *const qual_string = (qual->flags.q.origin_upper_left)
3678 ? "origin_upper_left" : "pixel_center_integer";
3679
3680 _mesa_glsl_error(loc, state,
3681 "layout qualifier `%s' can only be applied to "
3682 "fragment shader input `gl_FragCoord'",
3683 qual_string);
3684 }
3685
3686 if (qual->flags.q.explicit_location) {
3687 apply_explicit_location(qual, var, state, loc);
3688
3689 if (qual->flags.q.explicit_component) {
3690 unsigned qual_component;
3691 if (process_qualifier_constant(state, loc, "component",
3692 qual->component, &qual_component)) {
3693 const glsl_type *type = var->type->without_array();
3694 unsigned components = type->component_slots();
3695
3696 if (type->is_matrix() || type->is_record()) {
3697 _mesa_glsl_error(loc, state, "component layout qualifier "
3698 "cannot be applied to a matrix, a structure, "
3699 "a block, or an array containing any of "
3700 "these.");
3701 } else if (qual_component != 0 &&
3702 (qual_component + components - 1) > 3) {
3703 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3704 (qual_component + components - 1));
3705 } else if (qual_component == 1 && type->is_64bit()) {
3706 /* We don't bother checking for 3 as it should be caught by the
3707 * overflow check above.
3708 */
3709 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3710 "component 1 or 3");
3711 } else {
3712 var->data.explicit_component = true;
3713 var->data.location_frac = qual_component;
3714 }
3715 }
3716 }
3717 } else if (qual->flags.q.explicit_index) {
3718 if (!qual->subroutine_list)
3719 _mesa_glsl_error(loc, state,
3720 "explicit index requires explicit location");
3721 } else if (qual->flags.q.explicit_component) {
3722 _mesa_glsl_error(loc, state,
3723 "explicit component requires explicit location");
3724 }
3725
3726 if (qual->flags.q.explicit_binding) {
3727 apply_explicit_binding(state, loc, var, var->type, qual);
3728 }
3729
3730 if (state->stage == MESA_SHADER_GEOMETRY &&
3731 qual->flags.q.out && qual->flags.q.stream) {
3732 unsigned qual_stream;
3733 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3734 &qual_stream) &&
3735 validate_stream_qualifier(loc, state, qual_stream)) {
3736 var->data.stream = qual_stream;
3737 }
3738 }
3739
3740 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3741 unsigned qual_xfb_buffer;
3742 if (process_qualifier_constant(state, loc, "xfb_buffer",
3743 qual->xfb_buffer, &qual_xfb_buffer) &&
3744 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3745 var->data.xfb_buffer = qual_xfb_buffer;
3746 if (qual->flags.q.explicit_xfb_buffer)
3747 var->data.explicit_xfb_buffer = true;
3748 }
3749 }
3750
3751 if (qual->flags.q.explicit_xfb_offset) {
3752 unsigned qual_xfb_offset;
3753 unsigned component_size = var->type->contains_double() ? 8 : 4;
3754
3755 if (process_qualifier_constant(state, loc, "xfb_offset",
3756 qual->offset, &qual_xfb_offset) &&
3757 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3758 var->type, component_size)) {
3759 var->data.offset = qual_xfb_offset;
3760 var->data.explicit_xfb_offset = true;
3761 }
3762 }
3763
3764 if (qual->flags.q.explicit_xfb_stride) {
3765 unsigned qual_xfb_stride;
3766 if (process_qualifier_constant(state, loc, "xfb_stride",
3767 qual->xfb_stride, &qual_xfb_stride)) {
3768 var->data.xfb_stride = qual_xfb_stride;
3769 var->data.explicit_xfb_stride = true;
3770 }
3771 }
3772
3773 if (var->type->contains_atomic()) {
3774 if (var->data.mode == ir_var_uniform) {
3775 if (var->data.explicit_binding) {
3776 unsigned *offset =
3777 &state->atomic_counter_offsets[var->data.binding];
3778
3779 if (*offset % ATOMIC_COUNTER_SIZE)
3780 _mesa_glsl_error(loc, state,
3781 "misaligned atomic counter offset");
3782
3783 var->data.offset = *offset;
3784 *offset += var->type->atomic_size();
3785
3786 } else {
3787 _mesa_glsl_error(loc, state,
3788 "atomic counters require explicit binding point");
3789 }
3790 } else if (var->data.mode != ir_var_function_in) {
3791 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3792 "function parameters or uniform-qualified "
3793 "global variables");
3794 }
3795 }
3796
3797 if (var->type->contains_sampler() &&
3798 !validate_storage_for_sampler_image_types(var, state, loc))
3799 return;
3800
3801 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3802 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3803 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3804 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3805 * These extensions and all following extensions that add the 'layout'
3806 * keyword have been modified to require the use of 'in' or 'out'.
3807 *
3808 * The following extension do not allow the deprecated keywords:
3809 *
3810 * GL_AMD_conservative_depth
3811 * GL_ARB_conservative_depth
3812 * GL_ARB_gpu_shader5
3813 * GL_ARB_separate_shader_objects
3814 * GL_ARB_tessellation_shader
3815 * GL_ARB_transform_feedback3
3816 * GL_ARB_uniform_buffer_object
3817 *
3818 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3819 * allow layout with the deprecated keywords.
3820 */
3821 const bool relaxed_layout_qualifier_checking =
3822 state->ARB_fragment_coord_conventions_enable;
3823
3824 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3825 || qual->flags.q.varying;
3826 if (qual->has_layout() && uses_deprecated_qualifier) {
3827 if (relaxed_layout_qualifier_checking) {
3828 _mesa_glsl_warning(loc, state,
3829 "`layout' qualifier may not be used with "
3830 "`attribute' or `varying'");
3831 } else {
3832 _mesa_glsl_error(loc, state,
3833 "`layout' qualifier may not be used with "
3834 "`attribute' or `varying'");
3835 }
3836 }
3837
3838 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3839 * AMD_conservative_depth.
3840 */
3841 if (qual->flags.q.depth_type
3842 && !state->is_version(420, 0)
3843 && !state->AMD_conservative_depth_enable
3844 && !state->ARB_conservative_depth_enable) {
3845 _mesa_glsl_error(loc, state,
3846 "extension GL_AMD_conservative_depth or "
3847 "GL_ARB_conservative_depth must be enabled "
3848 "to use depth layout qualifiers");
3849 } else if (qual->flags.q.depth_type
3850 && strcmp(var->name, "gl_FragDepth") != 0) {
3851 _mesa_glsl_error(loc, state,
3852 "depth layout qualifiers can be applied only to "
3853 "gl_FragDepth");
3854 }
3855
3856 switch (qual->depth_type) {
3857 case ast_depth_any:
3858 var->data.depth_layout = ir_depth_layout_any;
3859 break;
3860 case ast_depth_greater:
3861 var->data.depth_layout = ir_depth_layout_greater;
3862 break;
3863 case ast_depth_less:
3864 var->data.depth_layout = ir_depth_layout_less;
3865 break;
3866 case ast_depth_unchanged:
3867 var->data.depth_layout = ir_depth_layout_unchanged;
3868 break;
3869 default:
3870 var->data.depth_layout = ir_depth_layout_none;
3871 break;
3872 }
3873
3874 if (qual->flags.q.std140 ||
3875 qual->flags.q.std430 ||
3876 qual->flags.q.packed ||
3877 qual->flags.q.shared) {
3878 _mesa_glsl_error(loc, state,
3879 "uniform and shader storage block layout qualifiers "
3880 "std140, std430, packed, and shared can only be "
3881 "applied to uniform or shader storage blocks, not "
3882 "members");
3883 }
3884
3885 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3886 validate_matrix_layout_for_type(state, loc, var->type, var);
3887 }
3888
3889 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3890 * Inputs):
3891 *
3892 * "Fragment shaders also allow the following layout qualifier on in only
3893 * (not with variable declarations)
3894 * layout-qualifier-id
3895 * early_fragment_tests
3896 * [...]"
3897 */
3898 if (qual->flags.q.early_fragment_tests) {
3899 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3900 "valid in fragment shader input layout declaration.");
3901 }
3902
3903 if (qual->flags.q.inner_coverage) {
3904 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3905 "valid in fragment shader input layout declaration.");
3906 }
3907
3908 if (qual->flags.q.post_depth_coverage) {
3909 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3910 "valid in fragment shader input layout declaration.");
3911 }
3912
3913 if (state->has_bindless())
3914 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3915
3916 if (qual->flags.q.pixel_interlock_ordered ||
3917 qual->flags.q.pixel_interlock_unordered ||
3918 qual->flags.q.sample_interlock_ordered ||
3919 qual->flags.q.sample_interlock_unordered) {
3920 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3921 "pixel_interlock_ordered, pixel_interlock_unordered, "
3922 "sample_interlock_ordered and sample_interlock_unordered, "
3923 "only valid in fragment shader input layout declaration.");
3924 }
3925 }
3926
3927 static void
3928 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3929 ir_variable *var,
3930 struct _mesa_glsl_parse_state *state,
3931 YYLTYPE *loc,
3932 bool is_parameter)
3933 {
3934 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3935
3936 if (qual->flags.q.invariant) {
3937 if (var->data.used) {
3938 _mesa_glsl_error(loc, state,
3939 "variable `%s' may not be redeclared "
3940 "`invariant' after being used",
3941 var->name);
3942 } else {
3943 var->data.invariant = 1;
3944 }
3945 }
3946
3947 if (qual->flags.q.precise) {
3948 if (var->data.used) {
3949 _mesa_glsl_error(loc, state,
3950 "variable `%s' may not be redeclared "
3951 "`precise' after being used",
3952 var->name);
3953 } else {
3954 var->data.precise = 1;
3955 }
3956 }
3957
3958 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3959 _mesa_glsl_error(loc, state,
3960 "`subroutine' may only be applied to uniforms, "
3961 "subroutine type declarations, or function definitions");
3962 }
3963
3964 if (qual->flags.q.constant || qual->flags.q.attribute
3965 || qual->flags.q.uniform
3966 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3967 var->data.read_only = 1;
3968
3969 if (qual->flags.q.centroid)
3970 var->data.centroid = 1;
3971
3972 if (qual->flags.q.sample)
3973 var->data.sample = 1;
3974
3975 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3976 if (state->es_shader) {
3977 var->data.precision =
3978 select_gles_precision(qual->precision, var->type, state, loc);
3979 }
3980
3981 if (qual->flags.q.patch)
3982 var->data.patch = 1;
3983
3984 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3985 var->type = glsl_type::error_type;
3986 _mesa_glsl_error(loc, state,
3987 "`attribute' variables may not be declared in the "
3988 "%s shader",
3989 _mesa_shader_stage_to_string(state->stage));
3990 }
3991
3992 /* Disallow layout qualifiers which may only appear on layout declarations. */
3993 if (qual->flags.q.prim_type) {
3994 _mesa_glsl_error(loc, state,
3995 "Primitive type may only be specified on GS input or output "
3996 "layout declaration, not on variables.");
3997 }
3998
3999 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4000 *
4001 * "However, the const qualifier cannot be used with out or inout."
4002 *
4003 * The same section of the GLSL 4.40 spec further clarifies this saying:
4004 *
4005 * "The const qualifier cannot be used with out or inout, or a
4006 * compile-time error results."
4007 */
4008 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4009 _mesa_glsl_error(loc, state,
4010 "`const' may not be applied to `out' or `inout' "
4011 "function parameters");
4012 }
4013
4014 /* If there is no qualifier that changes the mode of the variable, leave
4015 * the setting alone.
4016 */
4017 assert(var->data.mode != ir_var_temporary);
4018 if (qual->flags.q.in && qual->flags.q.out)
4019 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4020 else if (qual->flags.q.in)
4021 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4022 else if (qual->flags.q.attribute
4023 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4024 var->data.mode = ir_var_shader_in;
4025 else if (qual->flags.q.out)
4026 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4027 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4028 var->data.mode = ir_var_shader_out;
4029 else if (qual->flags.q.uniform)
4030 var->data.mode = ir_var_uniform;
4031 else if (qual->flags.q.buffer)
4032 var->data.mode = ir_var_shader_storage;
4033 else if (qual->flags.q.shared_storage)
4034 var->data.mode = ir_var_shader_shared;
4035
4036 if (!is_parameter && state->has_framebuffer_fetch() &&
4037 state->stage == MESA_SHADER_FRAGMENT) {
4038 if (state->is_version(130, 300))
4039 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4040 else
4041 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4042 }
4043
4044 if (var->data.fb_fetch_output) {
4045 var->data.assigned = true;
4046 var->data.memory_coherent = !qual->flags.q.non_coherent;
4047
4048 /* From the EXT_shader_framebuffer_fetch spec:
4049 *
4050 * "It is an error to declare an inout fragment output not qualified
4051 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4052 * extension hasn't been enabled."
4053 */
4054 if (var->data.memory_coherent &&
4055 !state->EXT_shader_framebuffer_fetch_enable)
4056 _mesa_glsl_error(loc, state,
4057 "invalid declaration of framebuffer fetch output not "
4058 "qualified with layout(noncoherent)");
4059
4060 } else {
4061 /* From the EXT_shader_framebuffer_fetch spec:
4062 *
4063 * "Fragment outputs declared inout may specify the following layout
4064 * qualifier: [...] noncoherent"
4065 */
4066 if (qual->flags.q.non_coherent)
4067 _mesa_glsl_error(loc, state,
4068 "invalid layout(noncoherent) qualifier not part of "
4069 "framebuffer fetch output declaration");
4070 }
4071
4072 if (!is_parameter && is_varying_var(var, state->stage)) {
4073 /* User-defined ins/outs are not permitted in compute shaders. */
4074 if (state->stage == MESA_SHADER_COMPUTE) {
4075 _mesa_glsl_error(loc, state,
4076 "user-defined input and output variables are not "
4077 "permitted in compute shaders");
4078 }
4079
4080 /* This variable is being used to link data between shader stages (in
4081 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4082 * that is allowed for such purposes.
4083 *
4084 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4085 *
4086 * "The varying qualifier can be used only with the data types
4087 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4088 * these."
4089 *
4090 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4091 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4092 *
4093 * "Fragment inputs can only be signed and unsigned integers and
4094 * integer vectors, float, floating-point vectors, matrices, or
4095 * arrays of these. Structures cannot be input.
4096 *
4097 * Similar text exists in the section on vertex shader outputs.
4098 *
4099 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4100 * 3.00 spec allows structs as well. Varying structs are also allowed
4101 * in GLSL 1.50.
4102 *
4103 * From section 4.3.4 of the ARB_bindless_texture spec:
4104 *
4105 * "(modify third paragraph of the section to allow sampler and image
4106 * types) ... Vertex shader inputs can only be float,
4107 * single-precision floating-point scalars, single-precision
4108 * floating-point vectors, matrices, signed and unsigned integers
4109 * and integer vectors, sampler and image types."
4110 *
4111 * From section 4.3.6 of the ARB_bindless_texture spec:
4112 *
4113 * "Output variables can only be floating-point scalars,
4114 * floating-point vectors, matrices, signed or unsigned integers or
4115 * integer vectors, sampler or image types, or arrays or structures
4116 * of any these."
4117 */
4118 switch (var->type->without_array()->base_type) {
4119 case GLSL_TYPE_FLOAT:
4120 /* Ok in all GLSL versions */
4121 break;
4122 case GLSL_TYPE_UINT:
4123 case GLSL_TYPE_INT:
4124 if (state->is_version(130, 300))
4125 break;
4126 _mesa_glsl_error(loc, state,
4127 "varying variables must be of base type float in %s",
4128 state->get_version_string());
4129 break;
4130 case GLSL_TYPE_STRUCT:
4131 if (state->is_version(150, 300))
4132 break;
4133 _mesa_glsl_error(loc, state,
4134 "varying variables may not be of type struct");
4135 break;
4136 case GLSL_TYPE_DOUBLE:
4137 case GLSL_TYPE_UINT64:
4138 case GLSL_TYPE_INT64:
4139 break;
4140 case GLSL_TYPE_SAMPLER:
4141 case GLSL_TYPE_IMAGE:
4142 if (state->has_bindless())
4143 break;
4144 /* fallthrough */
4145 default:
4146 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4147 break;
4148 }
4149 }
4150
4151 if (state->all_invariant && var->data.mode == ir_var_shader_out)
4152 var->data.invariant = true;
4153
4154 var->data.interpolation =
4155 interpret_interpolation_qualifier(qual, var->type,
4156 (ir_variable_mode) var->data.mode,
4157 state, loc);
4158
4159 /* Does the declaration use the deprecated 'attribute' or 'varying'
4160 * keywords?
4161 */
4162 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4163 || qual->flags.q.varying;
4164
4165
4166 /* Validate auxiliary storage qualifiers */
4167
4168 /* From section 4.3.4 of the GLSL 1.30 spec:
4169 * "It is an error to use centroid in in a vertex shader."
4170 *
4171 * From section 4.3.4 of the GLSL ES 3.00 spec:
4172 * "It is an error to use centroid in or interpolation qualifiers in
4173 * a vertex shader input."
4174 */
4175
4176 /* Section 4.3.6 of the GLSL 1.30 specification states:
4177 * "It is an error to use centroid out in a fragment shader."
4178 *
4179 * The GL_ARB_shading_language_420pack extension specification states:
4180 * "It is an error to use auxiliary storage qualifiers or interpolation
4181 * qualifiers on an output in a fragment shader."
4182 */
4183 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4184 _mesa_glsl_error(loc, state,
4185 "sample qualifier may only be used on `in` or `out` "
4186 "variables between shader stages");
4187 }
4188 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4189 _mesa_glsl_error(loc, state,
4190 "centroid qualifier may only be used with `in', "
4191 "`out' or `varying' variables between shader stages");
4192 }
4193
4194 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4195 _mesa_glsl_error(loc, state,
4196 "the shared storage qualifiers can only be used with "
4197 "compute shaders");
4198 }
4199
4200 apply_image_qualifier_to_variable(qual, var, state, loc);
4201 }
4202
4203 /**
4204 * Get the variable that is being redeclared by this declaration or if it
4205 * does not exist, the current declared variable.
4206 *
4207 * Semantic checks to verify the validity of the redeclaration are also
4208 * performed. If semantic checks fail, compilation error will be emitted via
4209 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4210 *
4211 * \returns
4212 * A pointer to an existing variable in the current scope if the declaration
4213 * is a redeclaration, current variable otherwise. \c is_declared boolean
4214 * will return \c true if the declaration is a redeclaration, \c false
4215 * otherwise.
4216 */
4217 static ir_variable *
4218 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4219 struct _mesa_glsl_parse_state *state,
4220 bool allow_all_redeclarations,
4221 bool *is_redeclaration)
4222 {
4223 ir_variable *var = *var_ptr;
4224
4225 /* Check if this declaration is actually a re-declaration, either to
4226 * resize an array or add qualifiers to an existing variable.
4227 *
4228 * This is allowed for variables in the current scope, or when at
4229 * global scope (for built-ins in the implicit outer scope).
4230 */
4231 ir_variable *earlier = state->symbols->get_variable(var->name);
4232 if (earlier == NULL ||
4233 (state->current_function != NULL &&
4234 !state->symbols->name_declared_this_scope(var->name))) {
4235 *is_redeclaration = false;
4236 return var;
4237 }
4238
4239 *is_redeclaration = true;
4240
4241 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4242 /* Verify that the redeclaration of a built-in does not change the
4243 * storage qualifier. There are a couple special cases.
4244 *
4245 * 1. Some built-in variables that are defined as 'in' in the
4246 * specification are implemented as system values. Allow
4247 * ir_var_system_value -> ir_var_shader_in.
4248 *
4249 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4250 * specification requires that redeclarations omit any qualifier.
4251 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4252 */
4253 if (earlier->data.mode != var->data.mode &&
4254 !(earlier->data.mode == ir_var_system_value &&
4255 var->data.mode == ir_var_shader_in) &&
4256 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4257 var->data.mode == ir_var_auto)) {
4258 _mesa_glsl_error(&loc, state,
4259 "redeclaration cannot change qualification of `%s'",
4260 var->name);
4261 }
4262 }
4263
4264 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4265 *
4266 * "It is legal to declare an array without a size and then
4267 * later re-declare the same name as an array of the same
4268 * type and specify a size."
4269 */
4270 if (earlier->type->is_unsized_array() && var->type->is_array()
4271 && (var->type->fields.array == earlier->type->fields.array)) {
4272 const int size = var->type->array_size();
4273 check_builtin_array_max_size(var->name, size, loc, state);
4274 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4275 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4276 "previous access",
4277 earlier->data.max_array_access);
4278 }
4279
4280 earlier->type = var->type;
4281 delete var;
4282 var = NULL;
4283 *var_ptr = NULL;
4284 } else if ((state->ARB_fragment_coord_conventions_enable ||
4285 state->is_version(150, 0))
4286 && strcmp(var->name, "gl_FragCoord") == 0
4287 && earlier->type == var->type
4288 && var->data.mode == ir_var_shader_in) {
4289 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4290 * qualifiers.
4291 */
4292 earlier->data.origin_upper_left = var->data.origin_upper_left;
4293 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4294
4295 /* According to section 4.3.7 of the GLSL 1.30 spec,
4296 * the following built-in varaibles can be redeclared with an
4297 * interpolation qualifier:
4298 * * gl_FrontColor
4299 * * gl_BackColor
4300 * * gl_FrontSecondaryColor
4301 * * gl_BackSecondaryColor
4302 * * gl_Color
4303 * * gl_SecondaryColor
4304 */
4305 } else if (state->is_version(130, 0)
4306 && (strcmp(var->name, "gl_FrontColor") == 0
4307 || strcmp(var->name, "gl_BackColor") == 0
4308 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4309 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4310 || strcmp(var->name, "gl_Color") == 0
4311 || strcmp(var->name, "gl_SecondaryColor") == 0)
4312 && earlier->type == var->type
4313 && earlier->data.mode == var->data.mode) {
4314 earlier->data.interpolation = var->data.interpolation;
4315
4316 /* Layout qualifiers for gl_FragDepth. */
4317 } else if ((state->is_version(420, 0) ||
4318 state->AMD_conservative_depth_enable ||
4319 state->ARB_conservative_depth_enable)
4320 && strcmp(var->name, "gl_FragDepth") == 0
4321 && earlier->type == var->type
4322 && earlier->data.mode == var->data.mode) {
4323
4324 /** From the AMD_conservative_depth spec:
4325 * Within any shader, the first redeclarations of gl_FragDepth
4326 * must appear before any use of gl_FragDepth.
4327 */
4328 if (earlier->data.used) {
4329 _mesa_glsl_error(&loc, state,
4330 "the first redeclaration of gl_FragDepth "
4331 "must appear before any use of gl_FragDepth");
4332 }
4333
4334 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4335 if (earlier->data.depth_layout != ir_depth_layout_none
4336 && earlier->data.depth_layout != var->data.depth_layout) {
4337 _mesa_glsl_error(&loc, state,
4338 "gl_FragDepth: depth layout is declared here "
4339 "as '%s, but it was previously declared as "
4340 "'%s'",
4341 depth_layout_string(var->data.depth_layout),
4342 depth_layout_string(earlier->data.depth_layout));
4343 }
4344
4345 earlier->data.depth_layout = var->data.depth_layout;
4346
4347 } else if (state->has_framebuffer_fetch() &&
4348 strcmp(var->name, "gl_LastFragData") == 0 &&
4349 var->type == earlier->type &&
4350 var->data.mode == ir_var_auto) {
4351 /* According to the EXT_shader_framebuffer_fetch spec:
4352 *
4353 * "By default, gl_LastFragData is declared with the mediump precision
4354 * qualifier. This can be changed by redeclaring the corresponding
4355 * variables with the desired precision qualifier."
4356 *
4357 * "Fragment shaders may specify the following layout qualifier only for
4358 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4359 */
4360 earlier->data.precision = var->data.precision;
4361 earlier->data.memory_coherent = var->data.memory_coherent;
4362
4363 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4364 state->allow_builtin_variable_redeclaration) ||
4365 allow_all_redeclarations) {
4366 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4367 * valid, but some applications do it.
4368 */
4369 if (earlier->type != var->type) {
4370 _mesa_glsl_error(&loc, state,
4371 "redeclaration of `%s' has incorrect type",
4372 var->name);
4373 }
4374 } else {
4375 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4376 }
4377
4378 return earlier;
4379 }
4380
4381 /**
4382 * Generate the IR for an initializer in a variable declaration
4383 */
4384 static ir_rvalue *
4385 process_initializer(ir_variable *var, ast_declaration *decl,
4386 ast_fully_specified_type *type,
4387 exec_list *initializer_instructions,
4388 struct _mesa_glsl_parse_state *state)
4389 {
4390 void *mem_ctx = state;
4391 ir_rvalue *result = NULL;
4392
4393 YYLTYPE initializer_loc = decl->initializer->get_location();
4394
4395 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4396 *
4397 * "All uniform variables are read-only and are initialized either
4398 * directly by an application via API commands, or indirectly by
4399 * OpenGL."
4400 */
4401 if (var->data.mode == ir_var_uniform) {
4402 state->check_version(120, 0, &initializer_loc,
4403 "cannot initialize uniform %s",
4404 var->name);
4405 }
4406
4407 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4408 *
4409 * "Buffer variables cannot have initializers."
4410 */
4411 if (var->data.mode == ir_var_shader_storage) {
4412 _mesa_glsl_error(&initializer_loc, state,
4413 "cannot initialize buffer variable %s",
4414 var->name);
4415 }
4416
4417 /* From section 4.1.7 of the GLSL 4.40 spec:
4418 *
4419 * "Opaque variables [...] are initialized only through the
4420 * OpenGL API; they cannot be declared with an initializer in a
4421 * shader."
4422 *
4423 * From section 4.1.7 of the ARB_bindless_texture spec:
4424 *
4425 * "Samplers may be declared as shader inputs and outputs, as uniform
4426 * variables, as temporary variables, and as function parameters."
4427 *
4428 * From section 4.1.X of the ARB_bindless_texture spec:
4429 *
4430 * "Images may be declared as shader inputs and outputs, as uniform
4431 * variables, as temporary variables, and as function parameters."
4432 */
4433 if (var->type->contains_atomic() ||
4434 (!state->has_bindless() && var->type->contains_opaque())) {
4435 _mesa_glsl_error(&initializer_loc, state,
4436 "cannot initialize %s variable %s",
4437 var->name, state->has_bindless() ? "atomic" : "opaque");
4438 }
4439
4440 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4441 _mesa_glsl_error(&initializer_loc, state,
4442 "cannot initialize %s shader input / %s %s",
4443 _mesa_shader_stage_to_string(state->stage),
4444 (state->stage == MESA_SHADER_VERTEX)
4445 ? "attribute" : "varying",
4446 var->name);
4447 }
4448
4449 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4450 _mesa_glsl_error(&initializer_loc, state,
4451 "cannot initialize %s shader output %s",
4452 _mesa_shader_stage_to_string(state->stage),
4453 var->name);
4454 }
4455
4456 /* If the initializer is an ast_aggregate_initializer, recursively store
4457 * type information from the LHS into it, so that its hir() function can do
4458 * type checking.
4459 */
4460 if (decl->initializer->oper == ast_aggregate)
4461 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4462
4463 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4464 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4465
4466 /* Calculate the constant value if this is a const or uniform
4467 * declaration.
4468 *
4469 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4470 *
4471 * "Declarations of globals without a storage qualifier, or with
4472 * just the const qualifier, may include initializers, in which case
4473 * they will be initialized before the first line of main() is
4474 * executed. Such initializers must be a constant expression."
4475 *
4476 * The same section of the GLSL ES 3.00.4 spec has similar language.
4477 */
4478 if (type->qualifier.flags.q.constant
4479 || type->qualifier.flags.q.uniform
4480 || (state->es_shader && state->current_function == NULL)) {
4481 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4482 lhs, rhs, true);
4483 if (new_rhs != NULL) {
4484 rhs = new_rhs;
4485
4486 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4487 * says:
4488 *
4489 * "A constant expression is one of
4490 *
4491 * ...
4492 *
4493 * - an expression formed by an operator on operands that are
4494 * all constant expressions, including getting an element of
4495 * a constant array, or a field of a constant structure, or
4496 * components of a constant vector. However, the sequence
4497 * operator ( , ) and the assignment operators ( =, +=, ...)
4498 * are not included in the operators that can create a
4499 * constant expression."
4500 *
4501 * Section 12.43 (Sequence operator and constant expressions) says:
4502 *
4503 * "Should the following construct be allowed?
4504 *
4505 * float a[2,3];
4506 *
4507 * The expression within the brackets uses the sequence operator
4508 * (',') and returns the integer 3 so the construct is declaring
4509 * a single-dimensional array of size 3. In some languages, the
4510 * construct declares a two-dimensional array. It would be
4511 * preferable to make this construct illegal to avoid confusion.
4512 *
4513 * One possibility is to change the definition of the sequence
4514 * operator so that it does not return a constant-expression and
4515 * hence cannot be used to declare an array size.
4516 *
4517 * RESOLUTION: The result of a sequence operator is not a
4518 * constant-expression."
4519 *
4520 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4521 * contains language almost identical to the section 4.3.3 in the
4522 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4523 * versions.
4524 */
4525 ir_constant *constant_value =
4526 rhs->constant_expression_value(mem_ctx);
4527
4528 if (!constant_value ||
4529 (state->is_version(430, 300) &&
4530 decl->initializer->has_sequence_subexpression())) {
4531 const char *const variable_mode =
4532 (type->qualifier.flags.q.constant)
4533 ? "const"
4534 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4535
4536 /* If ARB_shading_language_420pack is enabled, initializers of
4537 * const-qualified local variables do not have to be constant
4538 * expressions. Const-qualified global variables must still be
4539 * initialized with constant expressions.
4540 */
4541 if (!state->has_420pack()
4542 || state->current_function == NULL) {
4543 _mesa_glsl_error(& initializer_loc, state,
4544 "initializer of %s variable `%s' must be a "
4545 "constant expression",
4546 variable_mode,
4547 decl->identifier);
4548 if (var->type->is_numeric()) {
4549 /* Reduce cascading errors. */
4550 var->constant_value = type->qualifier.flags.q.constant
4551 ? ir_constant::zero(state, var->type) : NULL;
4552 }
4553 }
4554 } else {
4555 rhs = constant_value;
4556 var->constant_value = type->qualifier.flags.q.constant
4557 ? constant_value : NULL;
4558 }
4559 } else {
4560 if (var->type->is_numeric()) {
4561 /* Reduce cascading errors. */
4562 rhs = var->constant_value = type->qualifier.flags.q.constant
4563 ? ir_constant::zero(state, var->type) : NULL;
4564 }
4565 }
4566 }
4567
4568 if (rhs && !rhs->type->is_error()) {
4569 bool temp = var->data.read_only;
4570 if (type->qualifier.flags.q.constant)
4571 var->data.read_only = false;
4572
4573 /* Never emit code to initialize a uniform.
4574 */
4575 const glsl_type *initializer_type;
4576 bool error_emitted = false;
4577 if (!type->qualifier.flags.q.uniform) {
4578 error_emitted =
4579 do_assignment(initializer_instructions, state,
4580 NULL, lhs, rhs,
4581 &result, true, true,
4582 type->get_location());
4583 initializer_type = result->type;
4584 } else
4585 initializer_type = rhs->type;
4586
4587 if (!error_emitted) {
4588 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4589 var->data.has_initializer = true;
4590
4591 /* If the declared variable is an unsized array, it must inherrit
4592 * its full type from the initializer. A declaration such as
4593 *
4594 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4595 *
4596 * becomes
4597 *
4598 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4599 *
4600 * The assignment generated in the if-statement (below) will also
4601 * automatically handle this case for non-uniforms.
4602 *
4603 * If the declared variable is not an array, the types must
4604 * already match exactly. As a result, the type assignment
4605 * here can be done unconditionally. For non-uniforms the call
4606 * to do_assignment can change the type of the initializer (via
4607 * the implicit conversion rules). For uniforms the initializer
4608 * must be a constant expression, and the type of that expression
4609 * was validated above.
4610 */
4611 var->type = initializer_type;
4612 }
4613
4614 var->data.read_only = temp;
4615 }
4616
4617 return result;
4618 }
4619
4620 static void
4621 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4622 YYLTYPE loc, ir_variable *var,
4623 unsigned num_vertices,
4624 unsigned *size,
4625 const char *var_category)
4626 {
4627 if (var->type->is_unsized_array()) {
4628 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4629 *
4630 * All geometry shader input unsized array declarations will be
4631 * sized by an earlier input layout qualifier, when present, as per
4632 * the following table.
4633 *
4634 * Followed by a table mapping each allowed input layout qualifier to
4635 * the corresponding input length.
4636 *
4637 * Similarly for tessellation control shader outputs.
4638 */
4639 if (num_vertices != 0)
4640 var->type = glsl_type::get_array_instance(var->type->fields.array,
4641 num_vertices);
4642 } else {
4643 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4644 * includes the following examples of compile-time errors:
4645 *
4646 * // code sequence within one shader...
4647 * in vec4 Color1[]; // size unknown
4648 * ...Color1.length()...// illegal, length() unknown
4649 * in vec4 Color2[2]; // size is 2
4650 * ...Color1.length()...// illegal, Color1 still has no size
4651 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4652 * layout(lines) in; // legal, input size is 2, matching
4653 * in vec4 Color4[3]; // illegal, contradicts layout
4654 * ...
4655 *
4656 * To detect the case illustrated by Color3, we verify that the size of
4657 * an explicitly-sized array matches the size of any previously declared
4658 * explicitly-sized array. To detect the case illustrated by Color4, we
4659 * verify that the size of an explicitly-sized array is consistent with
4660 * any previously declared input layout.
4661 */
4662 if (num_vertices != 0 && var->type->length != num_vertices) {
4663 _mesa_glsl_error(&loc, state,
4664 "%s size contradicts previously declared layout "
4665 "(size is %u, but layout requires a size of %u)",
4666 var_category, var->type->length, num_vertices);
4667 } else if (*size != 0 && var->type->length != *size) {
4668 _mesa_glsl_error(&loc, state,
4669 "%s sizes are inconsistent (size is %u, but a "
4670 "previous declaration has size %u)",
4671 var_category, var->type->length, *size);
4672 } else {
4673 *size = var->type->length;
4674 }
4675 }
4676 }
4677
4678 static void
4679 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4680 YYLTYPE loc, ir_variable *var)
4681 {
4682 unsigned num_vertices = 0;
4683
4684 if (state->tcs_output_vertices_specified) {
4685 if (!state->out_qualifier->vertices->
4686 process_qualifier_constant(state, "vertices",
4687 &num_vertices, false)) {
4688 return;
4689 }
4690
4691 if (num_vertices > state->Const.MaxPatchVertices) {
4692 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4693 "GL_MAX_PATCH_VERTICES", num_vertices);
4694 return;
4695 }
4696 }
4697
4698 if (!var->type->is_array() && !var->data.patch) {
4699 _mesa_glsl_error(&loc, state,
4700 "tessellation control shader outputs must be arrays");
4701
4702 /* To avoid cascading failures, short circuit the checks below. */
4703 return;
4704 }
4705
4706 if (var->data.patch)
4707 return;
4708
4709 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4710 &state->tcs_output_size,
4711 "tessellation control shader output");
4712 }
4713
4714 /**
4715 * Do additional processing necessary for tessellation control/evaluation shader
4716 * input declarations. This covers both interface block arrays and bare input
4717 * variables.
4718 */
4719 static void
4720 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4721 YYLTYPE loc, ir_variable *var)
4722 {
4723 if (!var->type->is_array() && !var->data.patch) {
4724 _mesa_glsl_error(&loc, state,
4725 "per-vertex tessellation shader inputs must be arrays");
4726 /* Avoid cascading failures. */
4727 return;
4728 }
4729
4730 if (var->data.patch)
4731 return;
4732
4733 /* The ARB_tessellation_shader spec says:
4734 *
4735 * "Declaring an array size is optional. If no size is specified, it
4736 * will be taken from the implementation-dependent maximum patch size
4737 * (gl_MaxPatchVertices). If a size is specified, it must match the
4738 * maximum patch size; otherwise, a compile or link error will occur."
4739 *
4740 * This text appears twice, once for TCS inputs, and again for TES inputs.
4741 */
4742 if (var->type->is_unsized_array()) {
4743 var->type = glsl_type::get_array_instance(var->type->fields.array,
4744 state->Const.MaxPatchVertices);
4745 } else if (var->type->length != state->Const.MaxPatchVertices) {
4746 _mesa_glsl_error(&loc, state,
4747 "per-vertex tessellation shader input arrays must be "
4748 "sized to gl_MaxPatchVertices (%d).",
4749 state->Const.MaxPatchVertices);
4750 }
4751 }
4752
4753
4754 /**
4755 * Do additional processing necessary for geometry shader input declarations
4756 * (this covers both interface blocks arrays and bare input variables).
4757 */
4758 static void
4759 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4760 YYLTYPE loc, ir_variable *var)
4761 {
4762 unsigned num_vertices = 0;
4763
4764 if (state->gs_input_prim_type_specified) {
4765 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4766 }
4767
4768 /* Geometry shader input variables must be arrays. Caller should have
4769 * reported an error for this.
4770 */
4771 if (!var->type->is_array()) {
4772 assert(state->error);
4773
4774 /* To avoid cascading failures, short circuit the checks below. */
4775 return;
4776 }
4777
4778 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4779 &state->gs_input_size,
4780 "geometry shader input");
4781 }
4782
4783 static void
4784 validate_identifier(const char *identifier, YYLTYPE loc,
4785 struct _mesa_glsl_parse_state *state)
4786 {
4787 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4788 *
4789 * "Identifiers starting with "gl_" are reserved for use by
4790 * OpenGL, and may not be declared in a shader as either a
4791 * variable or a function."
4792 */
4793 if (is_gl_identifier(identifier)) {
4794 _mesa_glsl_error(&loc, state,
4795 "identifier `%s' uses reserved `gl_' prefix",
4796 identifier);
4797 } else if (strstr(identifier, "__")) {
4798 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4799 * spec:
4800 *
4801 * "In addition, all identifiers containing two
4802 * consecutive underscores (__) are reserved as
4803 * possible future keywords."
4804 *
4805 * The intention is that names containing __ are reserved for internal
4806 * use by the implementation, and names prefixed with GL_ are reserved
4807 * for use by Khronos. Names simply containing __ are dangerous to use,
4808 * but should be allowed.
4809 *
4810 * A future version of the GLSL specification will clarify this.
4811 */
4812 _mesa_glsl_warning(&loc, state,
4813 "identifier `%s' uses reserved `__' string",
4814 identifier);
4815 }
4816 }
4817
4818 ir_rvalue *
4819 ast_declarator_list::hir(exec_list *instructions,
4820 struct _mesa_glsl_parse_state *state)
4821 {
4822 void *ctx = state;
4823 const struct glsl_type *decl_type;
4824 const char *type_name = NULL;
4825 ir_rvalue *result = NULL;
4826 YYLTYPE loc = this->get_location();
4827
4828 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4829 *
4830 * "To ensure that a particular output variable is invariant, it is
4831 * necessary to use the invariant qualifier. It can either be used to
4832 * qualify a previously declared variable as being invariant
4833 *
4834 * invariant gl_Position; // make existing gl_Position be invariant"
4835 *
4836 * In these cases the parser will set the 'invariant' flag in the declarator
4837 * list, and the type will be NULL.
4838 */
4839 if (this->invariant) {
4840 assert(this->type == NULL);
4841
4842 if (state->current_function != NULL) {
4843 _mesa_glsl_error(& loc, state,
4844 "all uses of `invariant' keyword must be at global "
4845 "scope");
4846 }
4847
4848 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4849 assert(decl->array_specifier == NULL);
4850 assert(decl->initializer == NULL);
4851
4852 ir_variable *const earlier =
4853 state->symbols->get_variable(decl->identifier);
4854 if (earlier == NULL) {
4855 _mesa_glsl_error(& loc, state,
4856 "undeclared variable `%s' cannot be marked "
4857 "invariant", decl->identifier);
4858 } else if (!is_allowed_invariant(earlier, state)) {
4859 _mesa_glsl_error(&loc, state,
4860 "`%s' cannot be marked invariant; interfaces between "
4861 "shader stages only.", decl->identifier);
4862 } else if (earlier->data.used) {
4863 _mesa_glsl_error(& loc, state,
4864 "variable `%s' may not be redeclared "
4865 "`invariant' after being used",
4866 earlier->name);
4867 } else {
4868 earlier->data.invariant = true;
4869 }
4870 }
4871
4872 /* Invariant redeclarations do not have r-values.
4873 */
4874 return NULL;
4875 }
4876
4877 if (this->precise) {
4878 assert(this->type == NULL);
4879
4880 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4881 assert(decl->array_specifier == NULL);
4882 assert(decl->initializer == NULL);
4883
4884 ir_variable *const earlier =
4885 state->symbols->get_variable(decl->identifier);
4886 if (earlier == NULL) {
4887 _mesa_glsl_error(& loc, state,
4888 "undeclared variable `%s' cannot be marked "
4889 "precise", decl->identifier);
4890 } else if (state->current_function != NULL &&
4891 !state->symbols->name_declared_this_scope(decl->identifier)) {
4892 /* Note: we have to check if we're in a function, since
4893 * builtins are treated as having come from another scope.
4894 */
4895 _mesa_glsl_error(& loc, state,
4896 "variable `%s' from an outer scope may not be "
4897 "redeclared `precise' in this scope",
4898 earlier->name);
4899 } else if (earlier->data.used) {
4900 _mesa_glsl_error(& loc, state,
4901 "variable `%s' may not be redeclared "
4902 "`precise' after being used",
4903 earlier->name);
4904 } else {
4905 earlier->data.precise = true;
4906 }
4907 }
4908
4909 /* Precise redeclarations do not have r-values either. */
4910 return NULL;
4911 }
4912
4913 assert(this->type != NULL);
4914 assert(!this->invariant);
4915 assert(!this->precise);
4916
4917 /* The type specifier may contain a structure definition. Process that
4918 * before any of the variable declarations.
4919 */
4920 (void) this->type->specifier->hir(instructions, state);
4921
4922 decl_type = this->type->glsl_type(& type_name, state);
4923
4924 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4925 * "Buffer variables may only be declared inside interface blocks
4926 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4927 * shader storage blocks. It is a compile-time error to declare buffer
4928 * variables at global scope (outside a block)."
4929 */
4930 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4931 _mesa_glsl_error(&loc, state,
4932 "buffer variables cannot be declared outside "
4933 "interface blocks");
4934 }
4935
4936 /* An offset-qualified atomic counter declaration sets the default
4937 * offset for the next declaration within the same atomic counter
4938 * buffer.
4939 */
4940 if (decl_type && decl_type->contains_atomic()) {
4941 if (type->qualifier.flags.q.explicit_binding &&
4942 type->qualifier.flags.q.explicit_offset) {
4943 unsigned qual_binding;
4944 unsigned qual_offset;
4945 if (process_qualifier_constant(state, &loc, "binding",
4946 type->qualifier.binding,
4947 &qual_binding)
4948 && process_qualifier_constant(state, &loc, "offset",
4949 type->qualifier.offset,
4950 &qual_offset)) {
4951 state->atomic_counter_offsets[qual_binding] = qual_offset;
4952 }
4953 }
4954
4955 ast_type_qualifier allowed_atomic_qual_mask;
4956 allowed_atomic_qual_mask.flags.i = 0;
4957 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4958 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4959 allowed_atomic_qual_mask.flags.q.uniform = 1;
4960
4961 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4962 "invalid layout qualifier for",
4963 "atomic_uint");
4964 }
4965
4966 if (this->declarations.is_empty()) {
4967 /* If there is no structure involved in the program text, there are two
4968 * possible scenarios:
4969 *
4970 * - The program text contained something like 'vec4;'. This is an
4971 * empty declaration. It is valid but weird. Emit a warning.
4972 *
4973 * - The program text contained something like 'S;' and 'S' is not the
4974 * name of a known structure type. This is both invalid and weird.
4975 * Emit an error.
4976 *
4977 * - The program text contained something like 'mediump float;'
4978 * when the programmer probably meant 'precision mediump
4979 * float;' Emit a warning with a description of what they
4980 * probably meant to do.
4981 *
4982 * Note that if decl_type is NULL and there is a structure involved,
4983 * there must have been some sort of error with the structure. In this
4984 * case we assume that an error was already generated on this line of
4985 * code for the structure. There is no need to generate an additional,
4986 * confusing error.
4987 */
4988 assert(this->type->specifier->structure == NULL || decl_type != NULL
4989 || state->error);
4990
4991 if (decl_type == NULL) {
4992 _mesa_glsl_error(&loc, state,
4993 "invalid type `%s' in empty declaration",
4994 type_name);
4995 } else {
4996 if (decl_type->is_array()) {
4997 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4998 * spec:
4999 *
5000 * "... any declaration that leaves the size undefined is
5001 * disallowed as this would add complexity and there are no
5002 * use-cases."
5003 */
5004 if (state->es_shader && decl_type->is_unsized_array()) {
5005 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5006 "or implicitly defined");
5007 }
5008
5009 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5010 *
5011 * "The combinations of types and qualifiers that cause
5012 * compile-time or link-time errors are the same whether or not
5013 * the declaration is empty."
5014 */
5015 validate_array_dimensions(decl_type, state, &loc);
5016 }
5017
5018 if (decl_type->is_atomic_uint()) {
5019 /* Empty atomic counter declarations are allowed and useful
5020 * to set the default offset qualifier.
5021 */
5022 return NULL;
5023 } else if (this->type->qualifier.precision != ast_precision_none) {
5024 if (this->type->specifier->structure != NULL) {
5025 _mesa_glsl_error(&loc, state,
5026 "precision qualifiers can't be applied "
5027 "to structures");
5028 } else {
5029 static const char *const precision_names[] = {
5030 "highp",
5031 "highp",
5032 "mediump",
5033 "lowp"
5034 };
5035
5036 _mesa_glsl_warning(&loc, state,
5037 "empty declaration with precision "
5038 "qualifier, to set the default precision, "
5039 "use `precision %s %s;'",
5040 precision_names[this->type->
5041 qualifier.precision],
5042 type_name);
5043 }
5044 } else if (this->type->specifier->structure == NULL) {
5045 _mesa_glsl_warning(&loc, state, "empty declaration");
5046 }
5047 }
5048 }
5049
5050 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5051 const struct glsl_type *var_type;
5052 ir_variable *var;
5053 const char *identifier = decl->identifier;
5054 /* FINISHME: Emit a warning if a variable declaration shadows a
5055 * FINISHME: declaration at a higher scope.
5056 */
5057
5058 if ((decl_type == NULL) || decl_type->is_void()) {
5059 if (type_name != NULL) {
5060 _mesa_glsl_error(& loc, state,
5061 "invalid type `%s' in declaration of `%s'",
5062 type_name, decl->identifier);
5063 } else {
5064 _mesa_glsl_error(& loc, state,
5065 "invalid type in declaration of `%s'",
5066 decl->identifier);
5067 }
5068 continue;
5069 }
5070
5071 if (this->type->qualifier.is_subroutine_decl()) {
5072 const glsl_type *t;
5073 const char *name;
5074
5075 t = state->symbols->get_type(this->type->specifier->type_name);
5076 if (!t)
5077 _mesa_glsl_error(& loc, state,
5078 "invalid type in declaration of `%s'",
5079 decl->identifier);
5080 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5081
5082 identifier = name;
5083
5084 }
5085 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5086 state);
5087
5088 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5089
5090 /* The 'varying in' and 'varying out' qualifiers can only be used with
5091 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5092 * yet.
5093 */
5094 if (this->type->qualifier.flags.q.varying) {
5095 if (this->type->qualifier.flags.q.in) {
5096 _mesa_glsl_error(& loc, state,
5097 "`varying in' qualifier in declaration of "
5098 "`%s' only valid for geometry shaders using "
5099 "ARB_geometry_shader4 or EXT_geometry_shader4",
5100 decl->identifier);
5101 } else if (this->type->qualifier.flags.q.out) {
5102 _mesa_glsl_error(& loc, state,
5103 "`varying out' qualifier in declaration of "
5104 "`%s' only valid for geometry shaders using "
5105 "ARB_geometry_shader4 or EXT_geometry_shader4",
5106 decl->identifier);
5107 }
5108 }
5109
5110 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5111 *
5112 * "Global variables can only use the qualifiers const,
5113 * attribute, uniform, or varying. Only one may be
5114 * specified.
5115 *
5116 * Local variables can only use the qualifier const."
5117 *
5118 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5119 * any extension that adds the 'layout' keyword.
5120 */
5121 if (!state->is_version(130, 300)
5122 && !state->has_explicit_attrib_location()
5123 && !state->has_separate_shader_objects()
5124 && !state->ARB_fragment_coord_conventions_enable) {
5125 if (this->type->qualifier.flags.q.out) {
5126 _mesa_glsl_error(& loc, state,
5127 "`out' qualifier in declaration of `%s' "
5128 "only valid for function parameters in %s",
5129 decl->identifier, state->get_version_string());
5130 }
5131 if (this->type->qualifier.flags.q.in) {
5132 _mesa_glsl_error(& loc, state,
5133 "`in' qualifier in declaration of `%s' "
5134 "only valid for function parameters in %s",
5135 decl->identifier, state->get_version_string());
5136 }
5137 /* FINISHME: Test for other invalid qualifiers. */
5138 }
5139
5140 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5141 & loc, false);
5142 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5143 &loc);
5144
5145 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5146 && (var->type->is_numeric() || var->type->is_boolean())
5147 && state->zero_init) {
5148 const ir_constant_data data = { { 0 } };
5149 var->data.has_initializer = true;
5150 var->constant_initializer = new(var) ir_constant(var->type, &data);
5151 }
5152
5153 if (this->type->qualifier.flags.q.invariant) {
5154 if (!is_allowed_invariant(var, state)) {
5155 _mesa_glsl_error(&loc, state,
5156 "`%s' cannot be marked invariant; interfaces between "
5157 "shader stages only", var->name);
5158 }
5159 }
5160
5161 if (state->current_function != NULL) {
5162 const char *mode = NULL;
5163 const char *extra = "";
5164
5165 /* There is no need to check for 'inout' here because the parser will
5166 * only allow that in function parameter lists.
5167 */
5168 if (this->type->qualifier.flags.q.attribute) {
5169 mode = "attribute";
5170 } else if (this->type->qualifier.is_subroutine_decl()) {
5171 mode = "subroutine uniform";
5172 } else if (this->type->qualifier.flags.q.uniform) {
5173 mode = "uniform";
5174 } else if (this->type->qualifier.flags.q.varying) {
5175 mode = "varying";
5176 } else if (this->type->qualifier.flags.q.in) {
5177 mode = "in";
5178 extra = " or in function parameter list";
5179 } else if (this->type->qualifier.flags.q.out) {
5180 mode = "out";
5181 extra = " or in function parameter list";
5182 }
5183
5184 if (mode) {
5185 _mesa_glsl_error(& loc, state,
5186 "%s variable `%s' must be declared at "
5187 "global scope%s",
5188 mode, var->name, extra);
5189 }
5190 } else if (var->data.mode == ir_var_shader_in) {
5191 var->data.read_only = true;
5192
5193 if (state->stage == MESA_SHADER_VERTEX) {
5194 bool error_emitted = false;
5195
5196 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5197 *
5198 * "Vertex shader inputs can only be float, floating-point
5199 * vectors, matrices, signed and unsigned integers and integer
5200 * vectors. Vertex shader inputs can also form arrays of these
5201 * types, but not structures."
5202 *
5203 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5204 *
5205 * "Vertex shader inputs can only be float, floating-point
5206 * vectors, matrices, signed and unsigned integers and integer
5207 * vectors. They cannot be arrays or structures."
5208 *
5209 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5210 *
5211 * "The attribute qualifier can be used only with float,
5212 * floating-point vectors, and matrices. Attribute variables
5213 * cannot be declared as arrays or structures."
5214 *
5215 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5216 *
5217 * "Vertex shader inputs can only be float, floating-point
5218 * vectors, matrices, signed and unsigned integers and integer
5219 * vectors. Vertex shader inputs cannot be arrays or
5220 * structures."
5221 *
5222 * From section 4.3.4 of the ARB_bindless_texture spec:
5223 *
5224 * "(modify third paragraph of the section to allow sampler and
5225 * image types) ... Vertex shader inputs can only be float,
5226 * single-precision floating-point scalars, single-precision
5227 * floating-point vectors, matrices, signed and unsigned
5228 * integers and integer vectors, sampler and image types."
5229 */
5230 const glsl_type *check_type = var->type->without_array();
5231
5232 switch (check_type->base_type) {
5233 case GLSL_TYPE_FLOAT:
5234 break;
5235 case GLSL_TYPE_UINT64:
5236 case GLSL_TYPE_INT64:
5237 break;
5238 case GLSL_TYPE_UINT:
5239 case GLSL_TYPE_INT:
5240 if (state->is_version(120, 300))
5241 break;
5242 case GLSL_TYPE_DOUBLE:
5243 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5244 break;
5245 case GLSL_TYPE_SAMPLER:
5246 if (check_type->is_sampler() && state->has_bindless())
5247 break;
5248 case GLSL_TYPE_IMAGE:
5249 if (check_type->is_image() && state->has_bindless())
5250 break;
5251 /* FALLTHROUGH */
5252 default:
5253 _mesa_glsl_error(& loc, state,
5254 "vertex shader input / attribute cannot have "
5255 "type %s`%s'",
5256 var->type->is_array() ? "array of " : "",
5257 check_type->name);
5258 error_emitted = true;
5259 }
5260
5261 if (!error_emitted && var->type->is_array() &&
5262 !state->check_version(150, 0, &loc,
5263 "vertex shader input / attribute "
5264 "cannot have array type")) {
5265 error_emitted = true;
5266 }
5267 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5268 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5269 *
5270 * Geometry shader input variables get the per-vertex values
5271 * written out by vertex shader output variables of the same
5272 * names. Since a geometry shader operates on a set of
5273 * vertices, each input varying variable (or input block, see
5274 * interface blocks below) needs to be declared as an array.
5275 */
5276 if (!var->type->is_array()) {
5277 _mesa_glsl_error(&loc, state,
5278 "geometry shader inputs must be arrays");
5279 }
5280
5281 handle_geometry_shader_input_decl(state, loc, var);
5282 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5283 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5284 *
5285 * It is a compile-time error to declare a fragment shader
5286 * input with, or that contains, any of the following types:
5287 *
5288 * * A boolean type
5289 * * An opaque type
5290 * * An array of arrays
5291 * * An array of structures
5292 * * A structure containing an array
5293 * * A structure containing a structure
5294 */
5295 if (state->es_shader) {
5296 const glsl_type *check_type = var->type->without_array();
5297 if (check_type->is_boolean() ||
5298 check_type->contains_opaque()) {
5299 _mesa_glsl_error(&loc, state,
5300 "fragment shader input cannot have type %s",
5301 check_type->name);
5302 }
5303 if (var->type->is_array() &&
5304 var->type->fields.array->is_array()) {
5305 _mesa_glsl_error(&loc, state,
5306 "%s shader output "
5307 "cannot have an array of arrays",
5308 _mesa_shader_stage_to_string(state->stage));
5309 }
5310 if (var->type->is_array() &&
5311 var->type->fields.array->is_record()) {
5312 _mesa_glsl_error(&loc, state,
5313 "fragment shader input "
5314 "cannot have an array of structs");
5315 }
5316 if (var->type->is_record()) {
5317 for (unsigned i = 0; i < var->type->length; i++) {
5318 if (var->type->fields.structure[i].type->is_array() ||
5319 var->type->fields.structure[i].type->is_record())
5320 _mesa_glsl_error(&loc, state,
5321 "fragment shader input cannot have "
5322 "a struct that contains an "
5323 "array or struct");
5324 }
5325 }
5326 }
5327 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5328 state->stage == MESA_SHADER_TESS_EVAL) {
5329 handle_tess_shader_input_decl(state, loc, var);
5330 }
5331 } else if (var->data.mode == ir_var_shader_out) {
5332 const glsl_type *check_type = var->type->without_array();
5333
5334 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5335 *
5336 * It is a compile-time error to declare a fragment shader output
5337 * that contains any of the following:
5338 *
5339 * * A Boolean type (bool, bvec2 ...)
5340 * * A double-precision scalar or vector (double, dvec2 ...)
5341 * * An opaque type
5342 * * Any matrix type
5343 * * A structure
5344 */
5345 if (state->stage == MESA_SHADER_FRAGMENT) {
5346 if (check_type->is_record() || check_type->is_matrix())
5347 _mesa_glsl_error(&loc, state,
5348 "fragment shader output "
5349 "cannot have struct or matrix type");
5350 switch (check_type->base_type) {
5351 case GLSL_TYPE_UINT:
5352 case GLSL_TYPE_INT:
5353 case GLSL_TYPE_FLOAT:
5354 break;
5355 default:
5356 _mesa_glsl_error(&loc, state,
5357 "fragment shader output cannot have "
5358 "type %s", check_type->name);
5359 }
5360 }
5361
5362 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5363 *
5364 * It is a compile-time error to declare a vertex shader output
5365 * with, or that contains, any of the following types:
5366 *
5367 * * A boolean type
5368 * * An opaque type
5369 * * An array of arrays
5370 * * An array of structures
5371 * * A structure containing an array
5372 * * A structure containing a structure
5373 *
5374 * It is a compile-time error to declare a fragment shader output
5375 * with, or that contains, any of the following types:
5376 *
5377 * * A boolean type
5378 * * An opaque type
5379 * * A matrix
5380 * * A structure
5381 * * An array of array
5382 *
5383 * ES 3.20 updates this to apply to tessellation and geometry shaders
5384 * as well. Because there are per-vertex arrays in the new stages,
5385 * it strikes the "array of..." rules and replaces them with these:
5386 *
5387 * * For per-vertex-arrayed variables (applies to tessellation
5388 * control, tessellation evaluation and geometry shaders):
5389 *
5390 * * Per-vertex-arrayed arrays of arrays
5391 * * Per-vertex-arrayed arrays of structures
5392 *
5393 * * For non-per-vertex-arrayed variables:
5394 *
5395 * * An array of arrays
5396 * * An array of structures
5397 *
5398 * which basically says to unwrap the per-vertex aspect and apply
5399 * the old rules.
5400 */
5401 if (state->es_shader) {
5402 if (var->type->is_array() &&
5403 var->type->fields.array->is_array()) {
5404 _mesa_glsl_error(&loc, state,
5405 "%s shader output "
5406 "cannot have an array of arrays",
5407 _mesa_shader_stage_to_string(state->stage));
5408 }
5409 if (state->stage <= MESA_SHADER_GEOMETRY) {
5410 const glsl_type *type = var->type;
5411
5412 if (state->stage == MESA_SHADER_TESS_CTRL &&
5413 !var->data.patch && var->type->is_array()) {
5414 type = var->type->fields.array;
5415 }
5416
5417 if (type->is_array() && type->fields.array->is_record()) {
5418 _mesa_glsl_error(&loc, state,
5419 "%s shader output cannot have "
5420 "an array of structs",
5421 _mesa_shader_stage_to_string(state->stage));
5422 }
5423 if (type->is_record()) {
5424 for (unsigned i = 0; i < type->length; i++) {
5425 if (type->fields.structure[i].type->is_array() ||
5426 type->fields.structure[i].type->is_record())
5427 _mesa_glsl_error(&loc, state,
5428 "%s shader output cannot have a "
5429 "struct that contains an "
5430 "array or struct",
5431 _mesa_shader_stage_to_string(state->stage));
5432 }
5433 }
5434 }
5435 }
5436
5437 if (state->stage == MESA_SHADER_TESS_CTRL) {
5438 handle_tess_ctrl_shader_output_decl(state, loc, var);
5439 }
5440 } else if (var->type->contains_subroutine()) {
5441 /* declare subroutine uniforms as hidden */
5442 var->data.how_declared = ir_var_hidden;
5443 }
5444
5445 /* From section 4.3.4 of the GLSL 4.00 spec:
5446 * "Input variables may not be declared using the patch in qualifier
5447 * in tessellation control or geometry shaders."
5448 *
5449 * From section 4.3.6 of the GLSL 4.00 spec:
5450 * "It is an error to use patch out in a vertex, tessellation
5451 * evaluation, or geometry shader."
5452 *
5453 * This doesn't explicitly forbid using them in a fragment shader, but
5454 * that's probably just an oversight.
5455 */
5456 if (state->stage != MESA_SHADER_TESS_EVAL
5457 && this->type->qualifier.flags.q.patch
5458 && this->type->qualifier.flags.q.in) {
5459
5460 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5461 "tessellation evaluation shader");
5462 }
5463
5464 if (state->stage != MESA_SHADER_TESS_CTRL
5465 && this->type->qualifier.flags.q.patch
5466 && this->type->qualifier.flags.q.out) {
5467
5468 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5469 "tessellation control shader");
5470 }
5471
5472 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5473 */
5474 if (this->type->qualifier.precision != ast_precision_none) {
5475 state->check_precision_qualifiers_allowed(&loc);
5476 }
5477
5478 if (this->type->qualifier.precision != ast_precision_none &&
5479 !precision_qualifier_allowed(var->type)) {
5480 _mesa_glsl_error(&loc, state,
5481 "precision qualifiers apply only to floating point"
5482 ", integer and opaque types");
5483 }
5484
5485 /* From section 4.1.7 of the GLSL 4.40 spec:
5486 *
5487 * "[Opaque types] can only be declared as function
5488 * parameters or uniform-qualified variables."
5489 *
5490 * From section 4.1.7 of the ARB_bindless_texture spec:
5491 *
5492 * "Samplers may be declared as shader inputs and outputs, as uniform
5493 * variables, as temporary variables, and as function parameters."
5494 *
5495 * From section 4.1.X of the ARB_bindless_texture spec:
5496 *
5497 * "Images may be declared as shader inputs and outputs, as uniform
5498 * variables, as temporary variables, and as function parameters."
5499 */
5500 if (!this->type->qualifier.flags.q.uniform &&
5501 (var_type->contains_atomic() ||
5502 (!state->has_bindless() && var_type->contains_opaque()))) {
5503 _mesa_glsl_error(&loc, state,
5504 "%s variables must be declared uniform",
5505 state->has_bindless() ? "atomic" : "opaque");
5506 }
5507
5508 /* Process the initializer and add its instructions to a temporary
5509 * list. This list will be added to the instruction stream (below) after
5510 * the declaration is added. This is done because in some cases (such as
5511 * redeclarations) the declaration may not actually be added to the
5512 * instruction stream.
5513 */
5514 exec_list initializer_instructions;
5515
5516 /* Examine var name here since var may get deleted in the next call */
5517 bool var_is_gl_id = is_gl_identifier(var->name);
5518
5519 bool is_redeclaration;
5520 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5521 false /* allow_all_redeclarations */,
5522 &is_redeclaration);
5523 if (is_redeclaration) {
5524 if (var_is_gl_id &&
5525 var->data.how_declared == ir_var_declared_in_block) {
5526 _mesa_glsl_error(&loc, state,
5527 "`%s' has already been redeclared using "
5528 "gl_PerVertex", var->name);
5529 }
5530 var->data.how_declared = ir_var_declared_normally;
5531 }
5532
5533 if (decl->initializer != NULL) {
5534 result = process_initializer(var,
5535 decl, this->type,
5536 &initializer_instructions, state);
5537 } else {
5538 validate_array_dimensions(var_type, state, &loc);
5539 }
5540
5541 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5542 *
5543 * "It is an error to write to a const variable outside of
5544 * its declaration, so they must be initialized when
5545 * declared."
5546 */
5547 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5548 _mesa_glsl_error(& loc, state,
5549 "const declaration of `%s' must be initialized",
5550 decl->identifier);
5551 }
5552
5553 if (state->es_shader) {
5554 const glsl_type *const t = var->type;
5555
5556 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5557 *
5558 * The GL_OES_tessellation_shader spec says about inputs:
5559 *
5560 * "Declaring an array size is optional. If no size is specified,
5561 * it will be taken from the implementation-dependent maximum
5562 * patch size (gl_MaxPatchVertices)."
5563 *
5564 * and about TCS outputs:
5565 *
5566 * "If no size is specified, it will be taken from output patch
5567 * size declared in the shader."
5568 *
5569 * The GL_OES_geometry_shader spec says:
5570 *
5571 * "All geometry shader input unsized array declarations will be
5572 * sized by an earlier input primitive layout qualifier, when
5573 * present, as per the following table."
5574 */
5575 const bool implicitly_sized =
5576 (var->data.mode == ir_var_shader_in &&
5577 state->stage >= MESA_SHADER_TESS_CTRL &&
5578 state->stage <= MESA_SHADER_GEOMETRY) ||
5579 (var->data.mode == ir_var_shader_out &&
5580 state->stage == MESA_SHADER_TESS_CTRL);
5581
5582 if (t->is_unsized_array() && !implicitly_sized)
5583 /* Section 10.17 of the GLSL ES 1.00 specification states that
5584 * unsized array declarations have been removed from the language.
5585 * Arrays that are sized using an initializer are still explicitly
5586 * sized. However, GLSL ES 1.00 does not allow array
5587 * initializers. That is only allowed in GLSL ES 3.00.
5588 *
5589 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5590 *
5591 * "An array type can also be formed without specifying a size
5592 * if the definition includes an initializer:
5593 *
5594 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5595 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5596 *
5597 * float a[5];
5598 * float b[] = a;"
5599 */
5600 _mesa_glsl_error(& loc, state,
5601 "unsized array declarations are not allowed in "
5602 "GLSL ES");
5603 }
5604
5605 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5606 *
5607 * "It is a compile-time error to declare an unsized array of
5608 * atomic_uint"
5609 */
5610 if (var->type->is_unsized_array() &&
5611 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5612 _mesa_glsl_error(& loc, state,
5613 "Unsized array of atomic_uint is not allowed");
5614 }
5615
5616 /* If the declaration is not a redeclaration, there are a few additional
5617 * semantic checks that must be applied. In addition, variable that was
5618 * created for the declaration should be added to the IR stream.
5619 */
5620 if (!is_redeclaration) {
5621 validate_identifier(decl->identifier, loc, state);
5622
5623 /* Add the variable to the symbol table. Note that the initializer's
5624 * IR was already processed earlier (though it hasn't been emitted
5625 * yet), without the variable in scope.
5626 *
5627 * This differs from most C-like languages, but it follows the GLSL
5628 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5629 * spec:
5630 *
5631 * "Within a declaration, the scope of a name starts immediately
5632 * after the initializer if present or immediately after the name
5633 * being declared if not."
5634 */
5635 if (!state->symbols->add_variable(var)) {
5636 YYLTYPE loc = this->get_location();
5637 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5638 "current scope", decl->identifier);
5639 continue;
5640 }
5641
5642 /* Push the variable declaration to the top. It means that all the
5643 * variable declarations will appear in a funny last-to-first order,
5644 * but otherwise we run into trouble if a function is prototyped, a
5645 * global var is decled, then the function is defined with usage of
5646 * the global var. See glslparsertest's CorrectModule.frag.
5647 */
5648 instructions->push_head(var);
5649 }
5650
5651 instructions->append_list(&initializer_instructions);
5652 }
5653
5654
5655 /* Generally, variable declarations do not have r-values. However,
5656 * one is used for the declaration in
5657 *
5658 * while (bool b = some_condition()) {
5659 * ...
5660 * }
5661 *
5662 * so we return the rvalue from the last seen declaration here.
5663 */
5664 return result;
5665 }
5666
5667
5668 ir_rvalue *
5669 ast_parameter_declarator::hir(exec_list *instructions,
5670 struct _mesa_glsl_parse_state *state)
5671 {
5672 void *ctx = state;
5673 const struct glsl_type *type;
5674 const char *name = NULL;
5675 YYLTYPE loc = this->get_location();
5676
5677 type = this->type->glsl_type(& name, state);
5678
5679 if (type == NULL) {
5680 if (name != NULL) {
5681 _mesa_glsl_error(& loc, state,
5682 "invalid type `%s' in declaration of `%s'",
5683 name, this->identifier);
5684 } else {
5685 _mesa_glsl_error(& loc, state,
5686 "invalid type in declaration of `%s'",
5687 this->identifier);
5688 }
5689
5690 type = glsl_type::error_type;
5691 }
5692
5693 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5694 *
5695 * "Functions that accept no input arguments need not use void in the
5696 * argument list because prototypes (or definitions) are required and
5697 * therefore there is no ambiguity when an empty argument list "( )" is
5698 * declared. The idiom "(void)" as a parameter list is provided for
5699 * convenience."
5700 *
5701 * Placing this check here prevents a void parameter being set up
5702 * for a function, which avoids tripping up checks for main taking
5703 * parameters and lookups of an unnamed symbol.
5704 */
5705 if (type->is_void()) {
5706 if (this->identifier != NULL)
5707 _mesa_glsl_error(& loc, state,
5708 "named parameter cannot have type `void'");
5709
5710 is_void = true;
5711 return NULL;
5712 }
5713
5714 if (formal_parameter && (this->identifier == NULL)) {
5715 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5716 return NULL;
5717 }
5718
5719 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5720 * call already handled the "vec4[..] foo" case.
5721 */
5722 type = process_array_type(&loc, type, this->array_specifier, state);
5723
5724 if (!type->is_error() && type->is_unsized_array()) {
5725 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5726 "a declared size");
5727 type = glsl_type::error_type;
5728 }
5729
5730 is_void = false;
5731 ir_variable *var = new(ctx)
5732 ir_variable(type, this->identifier, ir_var_function_in);
5733
5734 /* Apply any specified qualifiers to the parameter declaration. Note that
5735 * for function parameters the default mode is 'in'.
5736 */
5737 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5738 true);
5739
5740 /* From section 4.1.7 of the GLSL 4.40 spec:
5741 *
5742 * "Opaque variables cannot be treated as l-values; hence cannot
5743 * be used as out or inout function parameters, nor can they be
5744 * assigned into."
5745 *
5746 * From section 4.1.7 of the ARB_bindless_texture spec:
5747 *
5748 * "Samplers can be used as l-values, so can be assigned into and used
5749 * as "out" and "inout" function parameters."
5750 *
5751 * From section 4.1.X of the ARB_bindless_texture spec:
5752 *
5753 * "Images can be used as l-values, so can be assigned into and used as
5754 * "out" and "inout" function parameters."
5755 */
5756 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5757 && (type->contains_atomic() ||
5758 (!state->has_bindless() && type->contains_opaque()))) {
5759 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5760 "contain %s variables",
5761 state->has_bindless() ? "atomic" : "opaque");
5762 type = glsl_type::error_type;
5763 }
5764
5765 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5766 *
5767 * "When calling a function, expressions that do not evaluate to
5768 * l-values cannot be passed to parameters declared as out or inout."
5769 *
5770 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5771 *
5772 * "Other binary or unary expressions, non-dereferenced arrays,
5773 * function names, swizzles with repeated fields, and constants
5774 * cannot be l-values."
5775 *
5776 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5777 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5778 */
5779 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5780 && type->is_array()
5781 && !state->check_version(120, 100, &loc,
5782 "arrays cannot be out or inout parameters")) {
5783 type = glsl_type::error_type;
5784 }
5785
5786 instructions->push_tail(var);
5787
5788 /* Parameter declarations do not have r-values.
5789 */
5790 return NULL;
5791 }
5792
5793
5794 void
5795 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5796 bool formal,
5797 exec_list *ir_parameters,
5798 _mesa_glsl_parse_state *state)
5799 {
5800 ast_parameter_declarator *void_param = NULL;
5801 unsigned count = 0;
5802
5803 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5804 param->formal_parameter = formal;
5805 param->hir(ir_parameters, state);
5806
5807 if (param->is_void)
5808 void_param = param;
5809
5810 count++;
5811 }
5812
5813 if ((void_param != NULL) && (count > 1)) {
5814 YYLTYPE loc = void_param->get_location();
5815
5816 _mesa_glsl_error(& loc, state,
5817 "`void' parameter must be only parameter");
5818 }
5819 }
5820
5821
5822 void
5823 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5824 {
5825 /* IR invariants disallow function declarations or definitions
5826 * nested within other function definitions. But there is no
5827 * requirement about the relative order of function declarations
5828 * and definitions with respect to one another. So simply insert
5829 * the new ir_function block at the end of the toplevel instruction
5830 * list.
5831 */
5832 state->toplevel_ir->push_tail(f);
5833 }
5834
5835
5836 ir_rvalue *
5837 ast_function::hir(exec_list *instructions,
5838 struct _mesa_glsl_parse_state *state)
5839 {
5840 void *ctx = state;
5841 ir_function *f = NULL;
5842 ir_function_signature *sig = NULL;
5843 exec_list hir_parameters;
5844 YYLTYPE loc = this->get_location();
5845
5846 const char *const name = identifier;
5847
5848 /* New functions are always added to the top-level IR instruction stream,
5849 * so this instruction list pointer is ignored. See also emit_function
5850 * (called below).
5851 */
5852 (void) instructions;
5853
5854 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5855 *
5856 * "Function declarations (prototypes) cannot occur inside of functions;
5857 * they must be at global scope, or for the built-in functions, outside
5858 * the global scope."
5859 *
5860 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5861 *
5862 * "User defined functions may only be defined within the global scope."
5863 *
5864 * Note that this language does not appear in GLSL 1.10.
5865 */
5866 if ((state->current_function != NULL) &&
5867 state->is_version(120, 100)) {
5868 YYLTYPE loc = this->get_location();
5869 _mesa_glsl_error(&loc, state,
5870 "declaration of function `%s' not allowed within "
5871 "function body", name);
5872 }
5873
5874 validate_identifier(name, this->get_location(), state);
5875
5876 /* Convert the list of function parameters to HIR now so that they can be
5877 * used below to compare this function's signature with previously seen
5878 * signatures for functions with the same name.
5879 */
5880 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5881 is_definition,
5882 & hir_parameters, state);
5883
5884 const char *return_type_name;
5885 const glsl_type *return_type =
5886 this->return_type->glsl_type(& return_type_name, state);
5887
5888 if (!return_type) {
5889 YYLTYPE loc = this->get_location();
5890 _mesa_glsl_error(&loc, state,
5891 "function `%s' has undeclared return type `%s'",
5892 name, return_type_name);
5893 return_type = glsl_type::error_type;
5894 }
5895
5896 /* ARB_shader_subroutine states:
5897 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5898 * subroutine(...) to a function declaration."
5899 */
5900 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5901 YYLTYPE loc = this->get_location();
5902 _mesa_glsl_error(&loc, state,
5903 "function declaration `%s' cannot have subroutine prepended",
5904 name);
5905 }
5906
5907 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5908 * "No qualifier is allowed on the return type of a function."
5909 */
5910 if (this->return_type->has_qualifiers(state)) {
5911 YYLTYPE loc = this->get_location();
5912 _mesa_glsl_error(& loc, state,
5913 "function `%s' return type has qualifiers", name);
5914 }
5915
5916 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5917 *
5918 * "Arrays are allowed as arguments and as the return type. In both
5919 * cases, the array must be explicitly sized."
5920 */
5921 if (return_type->is_unsized_array()) {
5922 YYLTYPE loc = this->get_location();
5923 _mesa_glsl_error(& loc, state,
5924 "function `%s' return type array must be explicitly "
5925 "sized", name);
5926 }
5927
5928 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5929 *
5930 * "Arrays are allowed as arguments, but not as the return type. [...]
5931 * The return type can also be a structure if the structure does not
5932 * contain an array."
5933 */
5934 if (state->language_version == 100 && return_type->contains_array()) {
5935 YYLTYPE loc = this->get_location();
5936 _mesa_glsl_error(& loc, state,
5937 "function `%s' return type contains an array", name);
5938 }
5939
5940 /* From section 4.1.7 of the GLSL 4.40 spec:
5941 *
5942 * "[Opaque types] can only be declared as function parameters
5943 * or uniform-qualified variables."
5944 *
5945 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5946 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5947 * (Images)", this should be allowed.
5948 */
5949 if (return_type->contains_atomic() ||
5950 (!state->has_bindless() && return_type->contains_opaque())) {
5951 YYLTYPE loc = this->get_location();
5952 _mesa_glsl_error(&loc, state,
5953 "function `%s' return type can't contain an %s type",
5954 name, state->has_bindless() ? "atomic" : "opaque");
5955 }
5956
5957 /**/
5958 if (return_type->is_subroutine()) {
5959 YYLTYPE loc = this->get_location();
5960 _mesa_glsl_error(&loc, state,
5961 "function `%s' return type can't be a subroutine type",
5962 name);
5963 }
5964
5965
5966 /* Create an ir_function if one doesn't already exist. */
5967 f = state->symbols->get_function(name);
5968 if (f == NULL) {
5969 f = new(ctx) ir_function(name);
5970 if (!this->return_type->qualifier.is_subroutine_decl()) {
5971 if (!state->symbols->add_function(f)) {
5972 /* This function name shadows a non-function use of the same name. */
5973 YYLTYPE loc = this->get_location();
5974 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5975 "non-function", name);
5976 return NULL;
5977 }
5978 }
5979 emit_function(state, f);
5980 }
5981
5982 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5983 *
5984 * "A shader cannot redefine or overload built-in functions."
5985 *
5986 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5987 *
5988 * "User code can overload the built-in functions but cannot redefine
5989 * them."
5990 */
5991 if (state->es_shader) {
5992 /* Local shader has no exact candidates; check the built-ins. */
5993 _mesa_glsl_initialize_builtin_functions();
5994 if (state->language_version >= 300 &&
5995 _mesa_glsl_has_builtin_function(state, name)) {
5996 YYLTYPE loc = this->get_location();
5997 _mesa_glsl_error(& loc, state,
5998 "A shader cannot redefine or overload built-in "
5999 "function `%s' in GLSL ES 3.00", name);
6000 return NULL;
6001 }
6002
6003 if (state->language_version == 100) {
6004 ir_function_signature *sig =
6005 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6006 if (sig && sig->is_builtin()) {
6007 _mesa_glsl_error(& loc, state,
6008 "A shader cannot redefine built-in "
6009 "function `%s' in GLSL ES 1.00", name);
6010 }
6011 }
6012 }
6013
6014 /* Verify that this function's signature either doesn't match a previously
6015 * seen signature for a function with the same name, or, if a match is found,
6016 * that the previously seen signature does not have an associated definition.
6017 */
6018 if (state->es_shader || f->has_user_signature()) {
6019 sig = f->exact_matching_signature(state, &hir_parameters);
6020 if (sig != NULL) {
6021 const char *badvar = sig->qualifiers_match(&hir_parameters);
6022 if (badvar != NULL) {
6023 YYLTYPE loc = this->get_location();
6024
6025 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6026 "qualifiers don't match prototype", name, badvar);
6027 }
6028
6029 if (sig->return_type != return_type) {
6030 YYLTYPE loc = this->get_location();
6031
6032 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6033 "match prototype", name);
6034 }
6035
6036 if (sig->is_defined) {
6037 if (is_definition) {
6038 YYLTYPE loc = this->get_location();
6039 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6040 } else {
6041 /* We just encountered a prototype that exactly matches a
6042 * function that's already been defined. This is redundant,
6043 * and we should ignore it.
6044 */
6045 return NULL;
6046 }
6047 } else if (state->language_version == 100 && !is_definition) {
6048 /* From the GLSL 1.00 spec, section 4.2.7:
6049 *
6050 * "A particular variable, structure or function declaration
6051 * may occur at most once within a scope with the exception
6052 * that a single function prototype plus the corresponding
6053 * function definition are allowed."
6054 */
6055 YYLTYPE loc = this->get_location();
6056 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6057 }
6058 }
6059 }
6060
6061 /* Verify the return type of main() */
6062 if (strcmp(name, "main") == 0) {
6063 if (! return_type->is_void()) {
6064 YYLTYPE loc = this->get_location();
6065
6066 _mesa_glsl_error(& loc, state, "main() must return void");
6067 }
6068
6069 if (!hir_parameters.is_empty()) {
6070 YYLTYPE loc = this->get_location();
6071
6072 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6073 }
6074 }
6075
6076 /* Finish storing the information about this new function in its signature.
6077 */
6078 if (sig == NULL) {
6079 sig = new(ctx) ir_function_signature(return_type);
6080 f->add_signature(sig);
6081 }
6082
6083 sig->replace_parameters(&hir_parameters);
6084 signature = sig;
6085
6086 if (this->return_type->qualifier.subroutine_list) {
6087 int idx;
6088
6089 if (this->return_type->qualifier.flags.q.explicit_index) {
6090 unsigned qual_index;
6091 if (process_qualifier_constant(state, &loc, "index",
6092 this->return_type->qualifier.index,
6093 &qual_index)) {
6094 if (!state->has_explicit_uniform_location()) {
6095 _mesa_glsl_error(&loc, state, "subroutine index requires "
6096 "GL_ARB_explicit_uniform_location or "
6097 "GLSL 4.30");
6098 } else if (qual_index >= MAX_SUBROUTINES) {
6099 _mesa_glsl_error(&loc, state,
6100 "invalid subroutine index (%d) index must "
6101 "be a number between 0 and "
6102 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6103 MAX_SUBROUTINES - 1);
6104 } else {
6105 f->subroutine_index = qual_index;
6106 }
6107 }
6108 }
6109
6110 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6111 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6112 f->num_subroutine_types);
6113 idx = 0;
6114 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6115 const struct glsl_type *type;
6116 /* the subroutine type must be already declared */
6117 type = state->symbols->get_type(decl->identifier);
6118 if (!type) {
6119 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6120 }
6121
6122 for (int i = 0; i < state->num_subroutine_types; i++) {
6123 ir_function *fn = state->subroutine_types[i];
6124 ir_function_signature *tsig = NULL;
6125
6126 if (strcmp(fn->name, decl->identifier))
6127 continue;
6128
6129 tsig = fn->matching_signature(state, &sig->parameters,
6130 false);
6131 if (!tsig) {
6132 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6133 } else {
6134 if (tsig->return_type != sig->return_type) {
6135 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6136 }
6137 }
6138 }
6139 f->subroutine_types[idx++] = type;
6140 }
6141 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6142 ir_function *,
6143 state->num_subroutines + 1);
6144 state->subroutines[state->num_subroutines] = f;
6145 state->num_subroutines++;
6146
6147 }
6148
6149 if (this->return_type->qualifier.is_subroutine_decl()) {
6150 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6151 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6152 return NULL;
6153 }
6154 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6155 ir_function *,
6156 state->num_subroutine_types + 1);
6157 state->subroutine_types[state->num_subroutine_types] = f;
6158 state->num_subroutine_types++;
6159
6160 f->is_subroutine = true;
6161 }
6162
6163 /* Function declarations (prototypes) do not have r-values.
6164 */
6165 return NULL;
6166 }
6167
6168
6169 ir_rvalue *
6170 ast_function_definition::hir(exec_list *instructions,
6171 struct _mesa_glsl_parse_state *state)
6172 {
6173 prototype->is_definition = true;
6174 prototype->hir(instructions, state);
6175
6176 ir_function_signature *signature = prototype->signature;
6177 if (signature == NULL)
6178 return NULL;
6179
6180 assert(state->current_function == NULL);
6181 state->current_function = signature;
6182 state->found_return = false;
6183
6184 /* Duplicate parameters declared in the prototype as concrete variables.
6185 * Add these to the symbol table.
6186 */
6187 state->symbols->push_scope();
6188 foreach_in_list(ir_variable, var, &signature->parameters) {
6189 assert(var->as_variable() != NULL);
6190
6191 /* The only way a parameter would "exist" is if two parameters have
6192 * the same name.
6193 */
6194 if (state->symbols->name_declared_this_scope(var->name)) {
6195 YYLTYPE loc = this->get_location();
6196
6197 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6198 } else {
6199 state->symbols->add_variable(var);
6200 }
6201 }
6202
6203 /* Convert the body of the function to HIR. */
6204 this->body->hir(&signature->body, state);
6205 signature->is_defined = true;
6206
6207 state->symbols->pop_scope();
6208
6209 assert(state->current_function == signature);
6210 state->current_function = NULL;
6211
6212 if (!signature->return_type->is_void() && !state->found_return) {
6213 YYLTYPE loc = this->get_location();
6214 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6215 "%s, but no return statement",
6216 signature->function_name(),
6217 signature->return_type->name);
6218 }
6219
6220 /* Function definitions do not have r-values.
6221 */
6222 return NULL;
6223 }
6224
6225
6226 ir_rvalue *
6227 ast_jump_statement::hir(exec_list *instructions,
6228 struct _mesa_glsl_parse_state *state)
6229 {
6230 void *ctx = state;
6231
6232 switch (mode) {
6233 case ast_return: {
6234 ir_return *inst;
6235 assert(state->current_function);
6236
6237 if (opt_return_value) {
6238 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6239
6240 /* The value of the return type can be NULL if the shader says
6241 * 'return foo();' and foo() is a function that returns void.
6242 *
6243 * NOTE: The GLSL spec doesn't say that this is an error. The type
6244 * of the return value is void. If the return type of the function is
6245 * also void, then this should compile without error. Seriously.
6246 */
6247 const glsl_type *const ret_type =
6248 (ret == NULL) ? glsl_type::void_type : ret->type;
6249
6250 /* Implicit conversions are not allowed for return values prior to
6251 * ARB_shading_language_420pack.
6252 */
6253 if (state->current_function->return_type != ret_type) {
6254 YYLTYPE loc = this->get_location();
6255
6256 if (state->has_420pack()) {
6257 if (!apply_implicit_conversion(state->current_function->return_type,
6258 ret, state)) {
6259 _mesa_glsl_error(& loc, state,
6260 "could not implicitly convert return value "
6261 "to %s, in function `%s'",
6262 state->current_function->return_type->name,
6263 state->current_function->function_name());
6264 }
6265 } else {
6266 _mesa_glsl_error(& loc, state,
6267 "`return' with wrong type %s, in function `%s' "
6268 "returning %s",
6269 ret_type->name,
6270 state->current_function->function_name(),
6271 state->current_function->return_type->name);
6272 }
6273 } else if (state->current_function->return_type->base_type ==
6274 GLSL_TYPE_VOID) {
6275 YYLTYPE loc = this->get_location();
6276
6277 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6278 * specs add a clarification:
6279 *
6280 * "A void function can only use return without a return argument, even if
6281 * the return argument has void type. Return statements only accept values:
6282 *
6283 * void func1() { }
6284 * void func2() { return func1(); } // illegal return statement"
6285 */
6286 _mesa_glsl_error(& loc, state,
6287 "void functions can only use `return' without a "
6288 "return argument");
6289 }
6290
6291 inst = new(ctx) ir_return(ret);
6292 } else {
6293 if (state->current_function->return_type->base_type !=
6294 GLSL_TYPE_VOID) {
6295 YYLTYPE loc = this->get_location();
6296
6297 _mesa_glsl_error(& loc, state,
6298 "`return' with no value, in function %s returning "
6299 "non-void",
6300 state->current_function->function_name());
6301 }
6302 inst = new(ctx) ir_return;
6303 }
6304
6305 state->found_return = true;
6306 instructions->push_tail(inst);
6307 break;
6308 }
6309
6310 case ast_discard:
6311 if (state->stage != MESA_SHADER_FRAGMENT) {
6312 YYLTYPE loc = this->get_location();
6313
6314 _mesa_glsl_error(& loc, state,
6315 "`discard' may only appear in a fragment shader");
6316 }
6317 instructions->push_tail(new(ctx) ir_discard);
6318 break;
6319
6320 case ast_break:
6321 case ast_continue:
6322 if (mode == ast_continue &&
6323 state->loop_nesting_ast == NULL) {
6324 YYLTYPE loc = this->get_location();
6325
6326 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6327 } else if (mode == ast_break &&
6328 state->loop_nesting_ast == NULL &&
6329 state->switch_state.switch_nesting_ast == NULL) {
6330 YYLTYPE loc = this->get_location();
6331
6332 _mesa_glsl_error(& loc, state,
6333 "break may only appear in a loop or a switch");
6334 } else {
6335 /* For a loop, inline the for loop expression again, since we don't
6336 * know where near the end of the loop body the normal copy of it is
6337 * going to be placed. Same goes for the condition for a do-while
6338 * loop.
6339 */
6340 if (state->loop_nesting_ast != NULL &&
6341 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6342 if (state->loop_nesting_ast->rest_expression) {
6343 state->loop_nesting_ast->rest_expression->hir(instructions,
6344 state);
6345 }
6346 if (state->loop_nesting_ast->mode ==
6347 ast_iteration_statement::ast_do_while) {
6348 state->loop_nesting_ast->condition_to_hir(instructions, state);
6349 }
6350 }
6351
6352 if (state->switch_state.is_switch_innermost &&
6353 mode == ast_continue) {
6354 /* Set 'continue_inside' to true. */
6355 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6356 ir_dereference_variable *deref_continue_inside_var =
6357 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6358 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6359 true_val));
6360
6361 /* Break out from the switch, continue for the loop will
6362 * be called right after switch. */
6363 ir_loop_jump *const jump =
6364 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6365 instructions->push_tail(jump);
6366
6367 } else if (state->switch_state.is_switch_innermost &&
6368 mode == ast_break) {
6369 /* Force break out of switch by inserting a break. */
6370 ir_loop_jump *const jump =
6371 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6372 instructions->push_tail(jump);
6373 } else {
6374 ir_loop_jump *const jump =
6375 new(ctx) ir_loop_jump((mode == ast_break)
6376 ? ir_loop_jump::jump_break
6377 : ir_loop_jump::jump_continue);
6378 instructions->push_tail(jump);
6379 }
6380 }
6381
6382 break;
6383 }
6384
6385 /* Jump instructions do not have r-values.
6386 */
6387 return NULL;
6388 }
6389
6390
6391 ir_rvalue *
6392 ast_selection_statement::hir(exec_list *instructions,
6393 struct _mesa_glsl_parse_state *state)
6394 {
6395 void *ctx = state;
6396
6397 ir_rvalue *const condition = this->condition->hir(instructions, state);
6398
6399 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6400 *
6401 * "Any expression whose type evaluates to a Boolean can be used as the
6402 * conditional expression bool-expression. Vector types are not accepted
6403 * as the expression to if."
6404 *
6405 * The checks are separated so that higher quality diagnostics can be
6406 * generated for cases where both rules are violated.
6407 */
6408 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6409 YYLTYPE loc = this->condition->get_location();
6410
6411 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6412 "boolean");
6413 }
6414
6415 ir_if *const stmt = new(ctx) ir_if(condition);
6416
6417 if (then_statement != NULL) {
6418 state->symbols->push_scope();
6419 then_statement->hir(& stmt->then_instructions, state);
6420 state->symbols->pop_scope();
6421 }
6422
6423 if (else_statement != NULL) {
6424 state->symbols->push_scope();
6425 else_statement->hir(& stmt->else_instructions, state);
6426 state->symbols->pop_scope();
6427 }
6428
6429 instructions->push_tail(stmt);
6430
6431 /* if-statements do not have r-values.
6432 */
6433 return NULL;
6434 }
6435
6436
6437 struct case_label {
6438 /** Value of the case label. */
6439 unsigned value;
6440
6441 /** Does this label occur after the default? */
6442 bool after_default;
6443
6444 /**
6445 * AST for the case label.
6446 *
6447 * This is only used to generate error messages for duplicate labels.
6448 */
6449 ast_expression *ast;
6450 };
6451
6452 /* Used for detection of duplicate case values, compare
6453 * given contents directly.
6454 */
6455 static bool
6456 compare_case_value(const void *a, const void *b)
6457 {
6458 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6459 }
6460
6461
6462 /* Used for detection of duplicate case values, just
6463 * returns key contents as is.
6464 */
6465 static unsigned
6466 key_contents(const void *key)
6467 {
6468 return ((struct case_label *) key)->value;
6469 }
6470
6471
6472 ir_rvalue *
6473 ast_switch_statement::hir(exec_list *instructions,
6474 struct _mesa_glsl_parse_state *state)
6475 {
6476 void *ctx = state;
6477
6478 ir_rvalue *const test_expression =
6479 this->test_expression->hir(instructions, state);
6480
6481 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6482 *
6483 * "The type of init-expression in a switch statement must be a
6484 * scalar integer."
6485 */
6486 if (!test_expression->type->is_scalar() ||
6487 !test_expression->type->is_integer()) {
6488 YYLTYPE loc = this->test_expression->get_location();
6489
6490 _mesa_glsl_error(& loc,
6491 state,
6492 "switch-statement expression must be scalar "
6493 "integer");
6494 return NULL;
6495 }
6496
6497 /* Track the switch-statement nesting in a stack-like manner.
6498 */
6499 struct glsl_switch_state saved = state->switch_state;
6500
6501 state->switch_state.is_switch_innermost = true;
6502 state->switch_state.switch_nesting_ast = this;
6503 state->switch_state.labels_ht =
6504 _mesa_hash_table_create(NULL, key_contents,
6505 compare_case_value);
6506 state->switch_state.previous_default = NULL;
6507
6508 /* Initalize is_fallthru state to false.
6509 */
6510 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6511 state->switch_state.is_fallthru_var =
6512 new(ctx) ir_variable(glsl_type::bool_type,
6513 "switch_is_fallthru_tmp",
6514 ir_var_temporary);
6515 instructions->push_tail(state->switch_state.is_fallthru_var);
6516
6517 ir_dereference_variable *deref_is_fallthru_var =
6518 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6519 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6520 is_fallthru_val));
6521
6522 /* Initialize continue_inside state to false.
6523 */
6524 state->switch_state.continue_inside =
6525 new(ctx) ir_variable(glsl_type::bool_type,
6526 "continue_inside_tmp",
6527 ir_var_temporary);
6528 instructions->push_tail(state->switch_state.continue_inside);
6529
6530 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6531 ir_dereference_variable *deref_continue_inside_var =
6532 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6533 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6534 false_val));
6535
6536 state->switch_state.run_default =
6537 new(ctx) ir_variable(glsl_type::bool_type,
6538 "run_default_tmp",
6539 ir_var_temporary);
6540 instructions->push_tail(state->switch_state.run_default);
6541
6542 /* Loop around the switch is used for flow control. */
6543 ir_loop * loop = new(ctx) ir_loop();
6544 instructions->push_tail(loop);
6545
6546 /* Cache test expression.
6547 */
6548 test_to_hir(&loop->body_instructions, state);
6549
6550 /* Emit code for body of switch stmt.
6551 */
6552 body->hir(&loop->body_instructions, state);
6553
6554 /* Insert a break at the end to exit loop. */
6555 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6556 loop->body_instructions.push_tail(jump);
6557
6558 /* If we are inside loop, check if continue got called inside switch. */
6559 if (state->loop_nesting_ast != NULL) {
6560 ir_dereference_variable *deref_continue_inside =
6561 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6562 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6563 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6564
6565 if (state->loop_nesting_ast != NULL) {
6566 if (state->loop_nesting_ast->rest_expression) {
6567 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6568 state);
6569 }
6570 if (state->loop_nesting_ast->mode ==
6571 ast_iteration_statement::ast_do_while) {
6572 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6573 }
6574 }
6575 irif->then_instructions.push_tail(jump);
6576 instructions->push_tail(irif);
6577 }
6578
6579 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6580
6581 state->switch_state = saved;
6582
6583 /* Switch statements do not have r-values. */
6584 return NULL;
6585 }
6586
6587
6588 void
6589 ast_switch_statement::test_to_hir(exec_list *instructions,
6590 struct _mesa_glsl_parse_state *state)
6591 {
6592 void *ctx = state;
6593
6594 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6595 * on the switch test case. The first one would be already raised when
6596 * getting the test_expression at ast_switch_statement::hir
6597 */
6598 test_expression->set_is_lhs(true);
6599 /* Cache value of test expression. */
6600 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6601
6602 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6603 "switch_test_tmp",
6604 ir_var_temporary);
6605 ir_dereference_variable *deref_test_var =
6606 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6607
6608 instructions->push_tail(state->switch_state.test_var);
6609 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6610 }
6611
6612
6613 ir_rvalue *
6614 ast_switch_body::hir(exec_list *instructions,
6615 struct _mesa_glsl_parse_state *state)
6616 {
6617 if (stmts != NULL)
6618 stmts->hir(instructions, state);
6619
6620 /* Switch bodies do not have r-values. */
6621 return NULL;
6622 }
6623
6624 ir_rvalue *
6625 ast_case_statement_list::hir(exec_list *instructions,
6626 struct _mesa_glsl_parse_state *state)
6627 {
6628 exec_list default_case, after_default, tmp;
6629
6630 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6631 case_stmt->hir(&tmp, state);
6632
6633 /* Default case. */
6634 if (state->switch_state.previous_default && default_case.is_empty()) {
6635 default_case.append_list(&tmp);
6636 continue;
6637 }
6638
6639 /* If default case found, append 'after_default' list. */
6640 if (!default_case.is_empty())
6641 after_default.append_list(&tmp);
6642 else
6643 instructions->append_list(&tmp);
6644 }
6645
6646 /* Handle the default case. This is done here because default might not be
6647 * the last case. We need to add checks against following cases first to see
6648 * if default should be chosen or not.
6649 */
6650 if (!default_case.is_empty()) {
6651 ir_factory body(instructions, state);
6652
6653 ir_expression *cmp = NULL;
6654
6655 hash_table_foreach(state->switch_state.labels_ht, entry) {
6656 const struct case_label *const l = (struct case_label *) entry->data;
6657
6658 /* If the switch init-value is the value of one of the labels that
6659 * occurs after the default case, disable execution of the default
6660 * case.
6661 */
6662 if (l->after_default) {
6663 ir_constant *const cnst =
6664 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6665 ? body.constant(unsigned(l->value))
6666 : body.constant(int(l->value));
6667
6668 cmp = cmp == NULL
6669 ? equal(cnst, state->switch_state.test_var)
6670 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6671 }
6672 }
6673
6674 if (cmp != NULL)
6675 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6676 else
6677 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6678
6679 /* Append default case and all cases after it. */
6680 instructions->append_list(&default_case);
6681 instructions->append_list(&after_default);
6682 }
6683
6684 /* Case statements do not have r-values. */
6685 return NULL;
6686 }
6687
6688 ir_rvalue *
6689 ast_case_statement::hir(exec_list *instructions,
6690 struct _mesa_glsl_parse_state *state)
6691 {
6692 labels->hir(instructions, state);
6693
6694 /* Guard case statements depending on fallthru state. */
6695 ir_dereference_variable *const deref_fallthru_guard =
6696 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6697 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6698
6699 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6700 stmt->hir(& test_fallthru->then_instructions, state);
6701
6702 instructions->push_tail(test_fallthru);
6703
6704 /* Case statements do not have r-values. */
6705 return NULL;
6706 }
6707
6708
6709 ir_rvalue *
6710 ast_case_label_list::hir(exec_list *instructions,
6711 struct _mesa_glsl_parse_state *state)
6712 {
6713 foreach_list_typed (ast_case_label, label, link, & this->labels)
6714 label->hir(instructions, state);
6715
6716 /* Case labels do not have r-values. */
6717 return NULL;
6718 }
6719
6720 ir_rvalue *
6721 ast_case_label::hir(exec_list *instructions,
6722 struct _mesa_glsl_parse_state *state)
6723 {
6724 ir_factory body(instructions, state);
6725
6726 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6727
6728 /* If not default case, ... */
6729 if (this->test_value != NULL) {
6730 /* Conditionally set fallthru state based on
6731 * comparison of cached test expression value to case label.
6732 */
6733 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6734 ir_constant *label_const =
6735 label_rval->constant_expression_value(body.mem_ctx);
6736
6737 if (!label_const) {
6738 YYLTYPE loc = this->test_value->get_location();
6739
6740 _mesa_glsl_error(& loc, state,
6741 "switch statement case label must be a "
6742 "constant expression");
6743
6744 /* Stuff a dummy value in to allow processing to continue. */
6745 label_const = body.constant(0);
6746 } else {
6747 hash_entry *entry =
6748 _mesa_hash_table_search(state->switch_state.labels_ht,
6749 &label_const->value.u[0]);
6750
6751 if (entry) {
6752 const struct case_label *const l =
6753 (struct case_label *) entry->data;
6754 const ast_expression *const previous_label = l->ast;
6755 YYLTYPE loc = this->test_value->get_location();
6756
6757 _mesa_glsl_error(& loc, state, "duplicate case value");
6758
6759 loc = previous_label->get_location();
6760 _mesa_glsl_error(& loc, state, "this is the previous case label");
6761 } else {
6762 struct case_label *l = ralloc(state->switch_state.labels_ht,
6763 struct case_label);
6764
6765 l->value = label_const->value.u[0];
6766 l->after_default = state->switch_state.previous_default != NULL;
6767 l->ast = this->test_value;
6768
6769 _mesa_hash_table_insert(state->switch_state.labels_ht,
6770 &label_const->value.u[0],
6771 l);
6772 }
6773 }
6774
6775 /* Create an r-value version of the ir_constant label here (after we may
6776 * have created a fake one in error cases) that can be passed to
6777 * apply_implicit_conversion below.
6778 */
6779 ir_rvalue *label = label_const;
6780
6781 ir_rvalue *deref_test_var =
6782 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6783
6784 /*
6785 * From GLSL 4.40 specification section 6.2 ("Selection"):
6786 *
6787 * "The type of the init-expression value in a switch statement must
6788 * be a scalar int or uint. The type of the constant-expression value
6789 * in a case label also must be a scalar int or uint. When any pair
6790 * of these values is tested for "equal value" and the types do not
6791 * match, an implicit conversion will be done to convert the int to a
6792 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6793 * is done."
6794 */
6795 if (label->type != state->switch_state.test_var->type) {
6796 YYLTYPE loc = this->test_value->get_location();
6797
6798 const glsl_type *type_a = label->type;
6799 const glsl_type *type_b = state->switch_state.test_var->type;
6800
6801 /* Check if int->uint implicit conversion is supported. */
6802 bool integer_conversion_supported =
6803 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6804 state);
6805
6806 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6807 !integer_conversion_supported) {
6808 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6809 "init-expression and case label (%s != %s)",
6810 type_a->name, type_b->name);
6811 } else {
6812 /* Conversion of the case label. */
6813 if (type_a->base_type == GLSL_TYPE_INT) {
6814 if (!apply_implicit_conversion(glsl_type::uint_type,
6815 label, state))
6816 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6817 } else {
6818 /* Conversion of the init-expression value. */
6819 if (!apply_implicit_conversion(glsl_type::uint_type,
6820 deref_test_var, state))
6821 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6822 }
6823 }
6824
6825 /* If the implicit conversion was allowed, the types will already be
6826 * the same. If the implicit conversion wasn't allowed, smash the
6827 * type of the label anyway. This will prevent the expression
6828 * constructor (below) from failing an assertion.
6829 */
6830 label->type = deref_test_var->type;
6831 }
6832
6833 body.emit(assign(fallthru_var,
6834 logic_or(fallthru_var, equal(label, deref_test_var))));
6835 } else { /* default case */
6836 if (state->switch_state.previous_default) {
6837 YYLTYPE loc = this->get_location();
6838 _mesa_glsl_error(& loc, state,
6839 "multiple default labels in one switch");
6840
6841 loc = state->switch_state.previous_default->get_location();
6842 _mesa_glsl_error(& loc, state, "this is the first default label");
6843 }
6844 state->switch_state.previous_default = this;
6845
6846 /* Set fallthru condition on 'run_default' bool. */
6847 body.emit(assign(fallthru_var,
6848 logic_or(fallthru_var,
6849 state->switch_state.run_default)));
6850 }
6851
6852 /* Case statements do not have r-values. */
6853 return NULL;
6854 }
6855
6856 void
6857 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6858 struct _mesa_glsl_parse_state *state)
6859 {
6860 void *ctx = state;
6861
6862 if (condition != NULL) {
6863 ir_rvalue *const cond =
6864 condition->hir(instructions, state);
6865
6866 if ((cond == NULL)
6867 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6868 YYLTYPE loc = condition->get_location();
6869
6870 _mesa_glsl_error(& loc, state,
6871 "loop condition must be scalar boolean");
6872 } else {
6873 /* As the first code in the loop body, generate a block that looks
6874 * like 'if (!condition) break;' as the loop termination condition.
6875 */
6876 ir_rvalue *const not_cond =
6877 new(ctx) ir_expression(ir_unop_logic_not, cond);
6878
6879 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6880
6881 ir_jump *const break_stmt =
6882 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6883
6884 if_stmt->then_instructions.push_tail(break_stmt);
6885 instructions->push_tail(if_stmt);
6886 }
6887 }
6888 }
6889
6890
6891 ir_rvalue *
6892 ast_iteration_statement::hir(exec_list *instructions,
6893 struct _mesa_glsl_parse_state *state)
6894 {
6895 void *ctx = state;
6896
6897 /* For-loops and while-loops start a new scope, but do-while loops do not.
6898 */
6899 if (mode != ast_do_while)
6900 state->symbols->push_scope();
6901
6902 if (init_statement != NULL)
6903 init_statement->hir(instructions, state);
6904
6905 ir_loop *const stmt = new(ctx) ir_loop();
6906 instructions->push_tail(stmt);
6907
6908 /* Track the current loop nesting. */
6909 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6910
6911 state->loop_nesting_ast = this;
6912
6913 /* Likewise, indicate that following code is closest to a loop,
6914 * NOT closest to a switch.
6915 */
6916 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6917 state->switch_state.is_switch_innermost = false;
6918
6919 if (mode != ast_do_while)
6920 condition_to_hir(&stmt->body_instructions, state);
6921
6922 if (body != NULL)
6923 body->hir(& stmt->body_instructions, state);
6924
6925 if (rest_expression != NULL)
6926 rest_expression->hir(& stmt->body_instructions, state);
6927
6928 if (mode == ast_do_while)
6929 condition_to_hir(&stmt->body_instructions, state);
6930
6931 if (mode != ast_do_while)
6932 state->symbols->pop_scope();
6933
6934 /* Restore previous nesting before returning. */
6935 state->loop_nesting_ast = nesting_ast;
6936 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6937
6938 /* Loops do not have r-values.
6939 */
6940 return NULL;
6941 }
6942
6943
6944 /**
6945 * Determine if the given type is valid for establishing a default precision
6946 * qualifier.
6947 *
6948 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6949 *
6950 * "The precision statement
6951 *
6952 * precision precision-qualifier type;
6953 *
6954 * can be used to establish a default precision qualifier. The type field
6955 * can be either int or float or any of the sampler types, and the
6956 * precision-qualifier can be lowp, mediump, or highp."
6957 *
6958 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6959 * qualifiers on sampler types, but this seems like an oversight (since the
6960 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6961 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6962 * version.
6963 */
6964 static bool
6965 is_valid_default_precision_type(const struct glsl_type *const type)
6966 {
6967 if (type == NULL)
6968 return false;
6969
6970 switch (type->base_type) {
6971 case GLSL_TYPE_INT:
6972 case GLSL_TYPE_FLOAT:
6973 /* "int" and "float" are valid, but vectors and matrices are not. */
6974 return type->vector_elements == 1 && type->matrix_columns == 1;
6975 case GLSL_TYPE_SAMPLER:
6976 case GLSL_TYPE_IMAGE:
6977 case GLSL_TYPE_ATOMIC_UINT:
6978 return true;
6979 default:
6980 return false;
6981 }
6982 }
6983
6984
6985 ir_rvalue *
6986 ast_type_specifier::hir(exec_list *instructions,
6987 struct _mesa_glsl_parse_state *state)
6988 {
6989 if (this->default_precision == ast_precision_none && this->structure == NULL)
6990 return NULL;
6991
6992 YYLTYPE loc = this->get_location();
6993
6994 /* If this is a precision statement, check that the type to which it is
6995 * applied is either float or int.
6996 *
6997 * From section 4.5.3 of the GLSL 1.30 spec:
6998 * "The precision statement
6999 * precision precision-qualifier type;
7000 * can be used to establish a default precision qualifier. The type
7001 * field can be either int or float [...]. Any other types or
7002 * qualifiers will result in an error.
7003 */
7004 if (this->default_precision != ast_precision_none) {
7005 if (!state->check_precision_qualifiers_allowed(&loc))
7006 return NULL;
7007
7008 if (this->structure != NULL) {
7009 _mesa_glsl_error(&loc, state,
7010 "precision qualifiers do not apply to structures");
7011 return NULL;
7012 }
7013
7014 if (this->array_specifier != NULL) {
7015 _mesa_glsl_error(&loc, state,
7016 "default precision statements do not apply to "
7017 "arrays");
7018 return NULL;
7019 }
7020
7021 const struct glsl_type *const type =
7022 state->symbols->get_type(this->type_name);
7023 if (!is_valid_default_precision_type(type)) {
7024 _mesa_glsl_error(&loc, state,
7025 "default precision statements apply only to "
7026 "float, int, and opaque types");
7027 return NULL;
7028 }
7029
7030 if (state->es_shader) {
7031 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7032 * spec says:
7033 *
7034 * "Non-precision qualified declarations will use the precision
7035 * qualifier specified in the most recent precision statement
7036 * that is still in scope. The precision statement has the same
7037 * scoping rules as variable declarations. If it is declared
7038 * inside a compound statement, its effect stops at the end of
7039 * the innermost statement it was declared in. Precision
7040 * statements in nested scopes override precision statements in
7041 * outer scopes. Multiple precision statements for the same basic
7042 * type can appear inside the same scope, with later statements
7043 * overriding earlier statements within that scope."
7044 *
7045 * Default precision specifications follow the same scope rules as
7046 * variables. So, we can track the state of the default precision
7047 * qualifiers in the symbol table, and the rules will just work. This
7048 * is a slight abuse of the symbol table, but it has the semantics
7049 * that we want.
7050 */
7051 state->symbols->add_default_precision_qualifier(this->type_name,
7052 this->default_precision);
7053 }
7054
7055 /* FINISHME: Translate precision statements into IR. */
7056 return NULL;
7057 }
7058
7059 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7060 * process_record_constructor() can do type-checking on C-style initializer
7061 * expressions of structs, but ast_struct_specifier should only be translated
7062 * to HIR if it is declaring the type of a structure.
7063 *
7064 * The ->is_declaration field is false for initializers of variables
7065 * declared separately from the struct's type definition.
7066 *
7067 * struct S { ... }; (is_declaration = true)
7068 * struct T { ... } t = { ... }; (is_declaration = true)
7069 * S s = { ... }; (is_declaration = false)
7070 */
7071 if (this->structure != NULL && this->structure->is_declaration)
7072 return this->structure->hir(instructions, state);
7073
7074 return NULL;
7075 }
7076
7077
7078 /**
7079 * Process a structure or interface block tree into an array of structure fields
7080 *
7081 * After parsing, where there are some syntax differnces, structures and
7082 * interface blocks are almost identical. They are similar enough that the
7083 * AST for each can be processed the same way into a set of
7084 * \c glsl_struct_field to describe the members.
7085 *
7086 * If we're processing an interface block, var_mode should be the type of the
7087 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7088 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7089 * ir_var_auto.
7090 *
7091 * \return
7092 * The number of fields processed. A pointer to the array structure fields is
7093 * stored in \c *fields_ret.
7094 */
7095 static unsigned
7096 ast_process_struct_or_iface_block_members(exec_list *instructions,
7097 struct _mesa_glsl_parse_state *state,
7098 exec_list *declarations,
7099 glsl_struct_field **fields_ret,
7100 bool is_interface,
7101 enum glsl_matrix_layout matrix_layout,
7102 bool allow_reserved_names,
7103 ir_variable_mode var_mode,
7104 ast_type_qualifier *layout,
7105 unsigned block_stream,
7106 unsigned block_xfb_buffer,
7107 unsigned block_xfb_offset,
7108 unsigned expl_location,
7109 unsigned expl_align)
7110 {
7111 unsigned decl_count = 0;
7112 unsigned next_offset = 0;
7113
7114 /* Make an initial pass over the list of fields to determine how
7115 * many there are. Each element in this list is an ast_declarator_list.
7116 * This means that we actually need to count the number of elements in the
7117 * 'declarations' list in each of the elements.
7118 */
7119 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7120 decl_count += decl_list->declarations.length();
7121 }
7122
7123 /* Allocate storage for the fields and process the field
7124 * declarations. As the declarations are processed, try to also convert
7125 * the types to HIR. This ensures that structure definitions embedded in
7126 * other structure definitions or in interface blocks are processed.
7127 */
7128 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7129 decl_count);
7130
7131 bool first_member = true;
7132 bool first_member_has_explicit_location = false;
7133
7134 unsigned i = 0;
7135 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7136 const char *type_name;
7137 YYLTYPE loc = decl_list->get_location();
7138
7139 decl_list->type->specifier->hir(instructions, state);
7140
7141 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7142 *
7143 * "Anonymous structures are not supported; so embedded structures
7144 * must have a declarator. A name given to an embedded struct is
7145 * scoped at the same level as the struct it is embedded in."
7146 *
7147 * The same section of the GLSL 1.20 spec says:
7148 *
7149 * "Anonymous structures are not supported. Embedded structures are
7150 * not supported."
7151 *
7152 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7153 * embedded structures in 1.10 only.
7154 */
7155 if (state->language_version != 110 &&
7156 decl_list->type->specifier->structure != NULL)
7157 _mesa_glsl_error(&loc, state,
7158 "embedded structure declarations are not allowed");
7159
7160 const glsl_type *decl_type =
7161 decl_list->type->glsl_type(& type_name, state);
7162
7163 const struct ast_type_qualifier *const qual =
7164 &decl_list->type->qualifier;
7165
7166 /* From section 4.3.9 of the GLSL 4.40 spec:
7167 *
7168 * "[In interface blocks] opaque types are not allowed."
7169 *
7170 * It should be impossible for decl_type to be NULL here. Cases that
7171 * might naturally lead to decl_type being NULL, especially for the
7172 * is_interface case, will have resulted in compilation having
7173 * already halted due to a syntax error.
7174 */
7175 assert(decl_type);
7176
7177 if (is_interface) {
7178 /* From section 4.3.7 of the ARB_bindless_texture spec:
7179 *
7180 * "(remove the following bullet from the last list on p. 39,
7181 * thereby permitting sampler types in interface blocks; image
7182 * types are also permitted in blocks by this extension)"
7183 *
7184 * * sampler types are not allowed
7185 */
7186 if (decl_type->contains_atomic() ||
7187 (!state->has_bindless() && decl_type->contains_opaque())) {
7188 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7189 "interface block contains %s variable",
7190 state->has_bindless() ? "atomic" : "opaque");
7191 }
7192 } else {
7193 if (decl_type->contains_atomic()) {
7194 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7195 *
7196 * "Members of structures cannot be declared as atomic counter
7197 * types."
7198 */
7199 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7200 }
7201
7202 if (!state->has_bindless() && decl_type->contains_image()) {
7203 /* FINISHME: Same problem as with atomic counters.
7204 * FINISHME: Request clarification from Khronos and add
7205 * FINISHME: spec quotation here.
7206 */
7207 _mesa_glsl_error(&loc, state, "image in structure");
7208 }
7209 }
7210
7211 if (qual->flags.q.explicit_binding) {
7212 _mesa_glsl_error(&loc, state,
7213 "binding layout qualifier cannot be applied "
7214 "to struct or interface block members");
7215 }
7216
7217 if (is_interface) {
7218 if (!first_member) {
7219 if (!layout->flags.q.explicit_location &&
7220 ((first_member_has_explicit_location &&
7221 !qual->flags.q.explicit_location) ||
7222 (!first_member_has_explicit_location &&
7223 qual->flags.q.explicit_location))) {
7224 _mesa_glsl_error(&loc, state,
7225 "when block-level location layout qualifier "
7226 "is not supplied either all members must "
7227 "have a location layout qualifier or all "
7228 "members must not have a location layout "
7229 "qualifier");
7230 }
7231 } else {
7232 first_member = false;
7233 first_member_has_explicit_location =
7234 qual->flags.q.explicit_location;
7235 }
7236 }
7237
7238 if (qual->flags.q.std140 ||
7239 qual->flags.q.std430 ||
7240 qual->flags.q.packed ||
7241 qual->flags.q.shared) {
7242 _mesa_glsl_error(&loc, state,
7243 "uniform/shader storage block layout qualifiers "
7244 "std140, std430, packed, and shared can only be "
7245 "applied to uniform/shader storage blocks, not "
7246 "members");
7247 }
7248
7249 if (qual->flags.q.constant) {
7250 _mesa_glsl_error(&loc, state,
7251 "const storage qualifier cannot be applied "
7252 "to struct or interface block members");
7253 }
7254
7255 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7256 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7257
7258 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7259 *
7260 * "A block member may be declared with a stream identifier, but
7261 * the specified stream must match the stream associated with the
7262 * containing block."
7263 */
7264 if (qual->flags.q.explicit_stream) {
7265 unsigned qual_stream;
7266 if (process_qualifier_constant(state, &loc, "stream",
7267 qual->stream, &qual_stream) &&
7268 qual_stream != block_stream) {
7269 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7270 "interface block member does not match "
7271 "the interface block (%u vs %u)", qual_stream,
7272 block_stream);
7273 }
7274 }
7275
7276 int xfb_buffer;
7277 unsigned explicit_xfb_buffer = 0;
7278 if (qual->flags.q.explicit_xfb_buffer) {
7279 unsigned qual_xfb_buffer;
7280 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7281 qual->xfb_buffer, &qual_xfb_buffer)) {
7282 explicit_xfb_buffer = 1;
7283 if (qual_xfb_buffer != block_xfb_buffer)
7284 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7285 "interface block member does not match "
7286 "the interface block (%u vs %u)",
7287 qual_xfb_buffer, block_xfb_buffer);
7288 }
7289 xfb_buffer = (int) qual_xfb_buffer;
7290 } else {
7291 if (layout)
7292 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7293 xfb_buffer = (int) block_xfb_buffer;
7294 }
7295
7296 int xfb_stride = -1;
7297 if (qual->flags.q.explicit_xfb_stride) {
7298 unsigned qual_xfb_stride;
7299 if (process_qualifier_constant(state, &loc, "xfb_stride",
7300 qual->xfb_stride, &qual_xfb_stride)) {
7301 xfb_stride = (int) qual_xfb_stride;
7302 }
7303 }
7304
7305 if (qual->flags.q.uniform && qual->has_interpolation()) {
7306 _mesa_glsl_error(&loc, state,
7307 "interpolation qualifiers cannot be used "
7308 "with uniform interface blocks");
7309 }
7310
7311 if ((qual->flags.q.uniform || !is_interface) &&
7312 qual->has_auxiliary_storage()) {
7313 _mesa_glsl_error(&loc, state,
7314 "auxiliary storage qualifiers cannot be used "
7315 "in uniform blocks or structures.");
7316 }
7317
7318 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7319 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7320 _mesa_glsl_error(&loc, state,
7321 "row_major and column_major can only be "
7322 "applied to interface blocks");
7323 } else
7324 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7325 }
7326
7327 foreach_list_typed (ast_declaration, decl, link,
7328 &decl_list->declarations) {
7329 YYLTYPE loc = decl->get_location();
7330
7331 if (!allow_reserved_names)
7332 validate_identifier(decl->identifier, loc, state);
7333
7334 const struct glsl_type *field_type =
7335 process_array_type(&loc, decl_type, decl->array_specifier, state);
7336 validate_array_dimensions(field_type, state, &loc);
7337 fields[i].type = field_type;
7338 fields[i].name = decl->identifier;
7339 fields[i].interpolation =
7340 interpret_interpolation_qualifier(qual, field_type,
7341 var_mode, state, &loc);
7342 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7343 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7344 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7345 fields[i].precision = qual->precision;
7346 fields[i].offset = -1;
7347 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7348 fields[i].xfb_buffer = xfb_buffer;
7349 fields[i].xfb_stride = xfb_stride;
7350
7351 if (qual->flags.q.explicit_location) {
7352 unsigned qual_location;
7353 if (process_qualifier_constant(state, &loc, "location",
7354 qual->location, &qual_location)) {
7355 fields[i].location = qual_location +
7356 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7357 expl_location = fields[i].location +
7358 fields[i].type->count_attribute_slots(false);
7359 }
7360 } else {
7361 if (layout && layout->flags.q.explicit_location) {
7362 fields[i].location = expl_location;
7363 expl_location += fields[i].type->count_attribute_slots(false);
7364 } else {
7365 fields[i].location = -1;
7366 }
7367 }
7368
7369 /* Offset can only be used with std430 and std140 layouts an initial
7370 * value of 0 is used for error detection.
7371 */
7372 unsigned align = 0;
7373 unsigned size = 0;
7374 if (layout) {
7375 bool row_major;
7376 if (qual->flags.q.row_major ||
7377 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7378 row_major = true;
7379 } else {
7380 row_major = false;
7381 }
7382
7383 if(layout->flags.q.std140) {
7384 align = field_type->std140_base_alignment(row_major);
7385 size = field_type->std140_size(row_major);
7386 } else if (layout->flags.q.std430) {
7387 align = field_type->std430_base_alignment(row_major);
7388 size = field_type->std430_size(row_major);
7389 }
7390 }
7391
7392 if (qual->flags.q.explicit_offset) {
7393 unsigned qual_offset;
7394 if (process_qualifier_constant(state, &loc, "offset",
7395 qual->offset, &qual_offset)) {
7396 if (align != 0 && size != 0) {
7397 if (next_offset > qual_offset)
7398 _mesa_glsl_error(&loc, state, "layout qualifier "
7399 "offset overlaps previous member");
7400
7401 if (qual_offset % align) {
7402 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7403 "must be a multiple of the base "
7404 "alignment of %s", field_type->name);
7405 }
7406 fields[i].offset = qual_offset;
7407 next_offset = glsl_align(qual_offset + size, align);
7408 } else {
7409 _mesa_glsl_error(&loc, state, "offset can only be used "
7410 "with std430 and std140 layouts");
7411 }
7412 }
7413 }
7414
7415 if (qual->flags.q.explicit_align || expl_align != 0) {
7416 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7417 next_offset;
7418 if (align == 0 || size == 0) {
7419 _mesa_glsl_error(&loc, state, "align can only be used with "
7420 "std430 and std140 layouts");
7421 } else if (qual->flags.q.explicit_align) {
7422 unsigned member_align;
7423 if (process_qualifier_constant(state, &loc, "align",
7424 qual->align, &member_align)) {
7425 if (member_align == 0 ||
7426 member_align & (member_align - 1)) {
7427 _mesa_glsl_error(&loc, state, "align layout qualifier "
7428 "in not a power of 2");
7429 } else {
7430 fields[i].offset = glsl_align(offset, member_align);
7431 next_offset = glsl_align(fields[i].offset + size, align);
7432 }
7433 }
7434 } else {
7435 fields[i].offset = glsl_align(offset, expl_align);
7436 next_offset = glsl_align(fields[i].offset + size, align);
7437 }
7438 } else if (!qual->flags.q.explicit_offset) {
7439 if (align != 0 && size != 0)
7440 next_offset = glsl_align(next_offset + size, align);
7441 }
7442
7443 /* From the ARB_enhanced_layouts spec:
7444 *
7445 * "The given offset applies to the first component of the first
7446 * member of the qualified entity. Then, within the qualified
7447 * entity, subsequent components are each assigned, in order, to
7448 * the next available offset aligned to a multiple of that
7449 * component's size. Aggregate types are flattened down to the
7450 * component level to get this sequence of components."
7451 */
7452 if (qual->flags.q.explicit_xfb_offset) {
7453 unsigned xfb_offset;
7454 if (process_qualifier_constant(state, &loc, "xfb_offset",
7455 qual->offset, &xfb_offset)) {
7456 fields[i].offset = xfb_offset;
7457 block_xfb_offset = fields[i].offset +
7458 4 * field_type->component_slots();
7459 }
7460 } else {
7461 if (layout && layout->flags.q.explicit_xfb_offset) {
7462 unsigned align = field_type->is_64bit() ? 8 : 4;
7463 fields[i].offset = glsl_align(block_xfb_offset, align);
7464 block_xfb_offset += 4 * field_type->component_slots();
7465 }
7466 }
7467
7468 /* Propogate row- / column-major information down the fields of the
7469 * structure or interface block. Structures need this data because
7470 * the structure may contain a structure that contains ... a matrix
7471 * that need the proper layout.
7472 */
7473 if (is_interface && layout &&
7474 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7475 (field_type->without_array()->is_matrix()
7476 || field_type->without_array()->is_record())) {
7477 /* If no layout is specified for the field, inherit the layout
7478 * from the block.
7479 */
7480 fields[i].matrix_layout = matrix_layout;
7481
7482 if (qual->flags.q.row_major)
7483 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7484 else if (qual->flags.q.column_major)
7485 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7486
7487 /* If we're processing an uniform or buffer block, the matrix
7488 * layout must be decided by this point.
7489 */
7490 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7491 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7492 }
7493
7494 /* Memory qualifiers are allowed on buffer and image variables, while
7495 * the format qualifier is only accepted for images.
7496 */
7497 if (var_mode == ir_var_shader_storage ||
7498 field_type->without_array()->is_image()) {
7499 /* For readonly and writeonly qualifiers the field definition,
7500 * if set, overwrites the layout qualifier.
7501 */
7502 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7503 fields[i].memory_read_only = qual->flags.q.read_only;
7504 fields[i].memory_write_only = qual->flags.q.write_only;
7505 } else {
7506 fields[i].memory_read_only =
7507 layout ? layout->flags.q.read_only : 0;
7508 fields[i].memory_write_only =
7509 layout ? layout->flags.q.write_only : 0;
7510 }
7511
7512 /* For other qualifiers, we set the flag if either the layout
7513 * qualifier or the field qualifier are set
7514 */
7515 fields[i].memory_coherent = qual->flags.q.coherent ||
7516 (layout && layout->flags.q.coherent);
7517 fields[i].memory_volatile = qual->flags.q._volatile ||
7518 (layout && layout->flags.q._volatile);
7519 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7520 (layout && layout->flags.q.restrict_flag);
7521
7522 if (field_type->without_array()->is_image()) {
7523 if (qual->flags.q.explicit_image_format) {
7524 if (qual->image_base_type !=
7525 field_type->without_array()->sampled_type) {
7526 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7527 "match the base data type of the image");
7528 }
7529
7530 fields[i].image_format = qual->image_format;
7531 } else {
7532 if (!qual->flags.q.write_only) {
7533 _mesa_glsl_error(&loc, state, "image not qualified with "
7534 "`writeonly' must have a format layout "
7535 "qualifier");
7536 }
7537
7538 fields[i].image_format = GL_NONE;
7539 }
7540 }
7541 }
7542
7543 i++;
7544 }
7545 }
7546
7547 assert(i == decl_count);
7548
7549 *fields_ret = fields;
7550 return decl_count;
7551 }
7552
7553
7554 ir_rvalue *
7555 ast_struct_specifier::hir(exec_list *instructions,
7556 struct _mesa_glsl_parse_state *state)
7557 {
7558 YYLTYPE loc = this->get_location();
7559
7560 unsigned expl_location = 0;
7561 if (layout && layout->flags.q.explicit_location) {
7562 if (!process_qualifier_constant(state, &loc, "location",
7563 layout->location, &expl_location)) {
7564 return NULL;
7565 } else {
7566 expl_location = VARYING_SLOT_VAR0 + expl_location;
7567 }
7568 }
7569
7570 glsl_struct_field *fields;
7571 unsigned decl_count =
7572 ast_process_struct_or_iface_block_members(instructions,
7573 state,
7574 &this->declarations,
7575 &fields,
7576 false,
7577 GLSL_MATRIX_LAYOUT_INHERITED,
7578 false /* allow_reserved_names */,
7579 ir_var_auto,
7580 layout,
7581 0, /* for interface only */
7582 0, /* for interface only */
7583 0, /* for interface only */
7584 expl_location,
7585 0 /* for interface only */);
7586
7587 validate_identifier(this->name, loc, state);
7588
7589 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7590
7591 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7592 const glsl_type *match = state->symbols->get_type(name);
7593 /* allow struct matching for desktop GL - older UE4 does this */
7594 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7595 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7596 else
7597 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7598 } else {
7599 const glsl_type **s = reralloc(state, state->user_structures,
7600 const glsl_type *,
7601 state->num_user_structures + 1);
7602 if (s != NULL) {
7603 s[state->num_user_structures] = type;
7604 state->user_structures = s;
7605 state->num_user_structures++;
7606 }
7607 }
7608
7609 /* Structure type definitions do not have r-values.
7610 */
7611 return NULL;
7612 }
7613
7614
7615 /**
7616 * Visitor class which detects whether a given interface block has been used.
7617 */
7618 class interface_block_usage_visitor : public ir_hierarchical_visitor
7619 {
7620 public:
7621 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7622 : mode(mode), block(block), found(false)
7623 {
7624 }
7625
7626 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7627 {
7628 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7629 found = true;
7630 return visit_stop;
7631 }
7632 return visit_continue;
7633 }
7634
7635 bool usage_found() const
7636 {
7637 return this->found;
7638 }
7639
7640 private:
7641 ir_variable_mode mode;
7642 const glsl_type *block;
7643 bool found;
7644 };
7645
7646 static bool
7647 is_unsized_array_last_element(ir_variable *v)
7648 {
7649 const glsl_type *interface_type = v->get_interface_type();
7650 int length = interface_type->length;
7651
7652 assert(v->type->is_unsized_array());
7653
7654 /* Check if it is the last element of the interface */
7655 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7656 return true;
7657 return false;
7658 }
7659
7660 static void
7661 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7662 {
7663 var->data.memory_read_only = field.memory_read_only;
7664 var->data.memory_write_only = field.memory_write_only;
7665 var->data.memory_coherent = field.memory_coherent;
7666 var->data.memory_volatile = field.memory_volatile;
7667 var->data.memory_restrict = field.memory_restrict;
7668 }
7669
7670 ir_rvalue *
7671 ast_interface_block::hir(exec_list *instructions,
7672 struct _mesa_glsl_parse_state *state)
7673 {
7674 YYLTYPE loc = this->get_location();
7675
7676 /* Interface blocks must be declared at global scope */
7677 if (state->current_function != NULL) {
7678 _mesa_glsl_error(&loc, state,
7679 "Interface block `%s' must be declared "
7680 "at global scope",
7681 this->block_name);
7682 }
7683
7684 /* Validate qualifiers:
7685 *
7686 * - Layout Qualifiers as per the table in Section 4.4
7687 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7688 *
7689 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7690 * GLSL 4.50 spec:
7691 *
7692 * "Additionally, memory qualifiers may also be used in the declaration
7693 * of shader storage blocks"
7694 *
7695 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7696 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7697 * Layout Qualifiers) of the GLSL 4.50 spec says:
7698 *
7699 * "The std430 qualifier is supported only for shader storage blocks;
7700 * using std430 on a uniform block will result in a compile-time error."
7701 */
7702 ast_type_qualifier allowed_blk_qualifiers;
7703 allowed_blk_qualifiers.flags.i = 0;
7704 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7705 allowed_blk_qualifiers.flags.q.shared = 1;
7706 allowed_blk_qualifiers.flags.q.packed = 1;
7707 allowed_blk_qualifiers.flags.q.std140 = 1;
7708 allowed_blk_qualifiers.flags.q.row_major = 1;
7709 allowed_blk_qualifiers.flags.q.column_major = 1;
7710 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7711 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7712 if (this->layout.flags.q.buffer) {
7713 allowed_blk_qualifiers.flags.q.buffer = 1;
7714 allowed_blk_qualifiers.flags.q.std430 = 1;
7715 allowed_blk_qualifiers.flags.q.coherent = 1;
7716 allowed_blk_qualifiers.flags.q._volatile = 1;
7717 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7718 allowed_blk_qualifiers.flags.q.read_only = 1;
7719 allowed_blk_qualifiers.flags.q.write_only = 1;
7720 } else {
7721 allowed_blk_qualifiers.flags.q.uniform = 1;
7722 }
7723 } else {
7724 /* Interface block */
7725 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7726
7727 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7728 if (this->layout.flags.q.out) {
7729 allowed_blk_qualifiers.flags.q.out = 1;
7730 if (state->stage == MESA_SHADER_GEOMETRY ||
7731 state->stage == MESA_SHADER_TESS_CTRL ||
7732 state->stage == MESA_SHADER_TESS_EVAL ||
7733 state->stage == MESA_SHADER_VERTEX ) {
7734 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7735 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7736 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7737 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7738 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7739 if (state->stage == MESA_SHADER_GEOMETRY) {
7740 allowed_blk_qualifiers.flags.q.stream = 1;
7741 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7742 }
7743 if (state->stage == MESA_SHADER_TESS_CTRL) {
7744 allowed_blk_qualifiers.flags.q.patch = 1;
7745 }
7746 }
7747 } else {
7748 allowed_blk_qualifiers.flags.q.in = 1;
7749 if (state->stage == MESA_SHADER_TESS_EVAL) {
7750 allowed_blk_qualifiers.flags.q.patch = 1;
7751 }
7752 }
7753 }
7754
7755 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7756 "invalid qualifier for block",
7757 this->block_name);
7758
7759 enum glsl_interface_packing packing;
7760 if (this->layout.flags.q.std140) {
7761 packing = GLSL_INTERFACE_PACKING_STD140;
7762 } else if (this->layout.flags.q.packed) {
7763 packing = GLSL_INTERFACE_PACKING_PACKED;
7764 } else if (this->layout.flags.q.std430) {
7765 packing = GLSL_INTERFACE_PACKING_STD430;
7766 } else {
7767 /* The default layout is shared.
7768 */
7769 packing = GLSL_INTERFACE_PACKING_SHARED;
7770 }
7771
7772 ir_variable_mode var_mode;
7773 const char *iface_type_name;
7774 if (this->layout.flags.q.in) {
7775 var_mode = ir_var_shader_in;
7776 iface_type_name = "in";
7777 } else if (this->layout.flags.q.out) {
7778 var_mode = ir_var_shader_out;
7779 iface_type_name = "out";
7780 } else if (this->layout.flags.q.uniform) {
7781 var_mode = ir_var_uniform;
7782 iface_type_name = "uniform";
7783 } else if (this->layout.flags.q.buffer) {
7784 var_mode = ir_var_shader_storage;
7785 iface_type_name = "buffer";
7786 } else {
7787 var_mode = ir_var_auto;
7788 iface_type_name = "UNKNOWN";
7789 assert(!"interface block layout qualifier not found!");
7790 }
7791
7792 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7793 if (this->layout.flags.q.row_major)
7794 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7795 else if (this->layout.flags.q.column_major)
7796 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7797
7798 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7799 exec_list declared_variables;
7800 glsl_struct_field *fields;
7801
7802 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7803 * that we don't have incompatible qualifiers
7804 */
7805 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7806 _mesa_glsl_error(&loc, state,
7807 "Interface block sets both readonly and writeonly");
7808 }
7809
7810 unsigned qual_stream;
7811 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7812 &qual_stream) ||
7813 !validate_stream_qualifier(&loc, state, qual_stream)) {
7814 /* If the stream qualifier is invalid it doesn't make sense to continue
7815 * on and try to compare stream layouts on member variables against it
7816 * so just return early.
7817 */
7818 return NULL;
7819 }
7820
7821 unsigned qual_xfb_buffer;
7822 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7823 layout.xfb_buffer, &qual_xfb_buffer) ||
7824 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7825 return NULL;
7826 }
7827
7828 unsigned qual_xfb_offset;
7829 if (layout.flags.q.explicit_xfb_offset) {
7830 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7831 layout.offset, &qual_xfb_offset)) {
7832 return NULL;
7833 }
7834 }
7835
7836 unsigned qual_xfb_stride;
7837 if (layout.flags.q.explicit_xfb_stride) {
7838 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7839 layout.xfb_stride, &qual_xfb_stride)) {
7840 return NULL;
7841 }
7842 }
7843
7844 unsigned expl_location = 0;
7845 if (layout.flags.q.explicit_location) {
7846 if (!process_qualifier_constant(state, &loc, "location",
7847 layout.location, &expl_location)) {
7848 return NULL;
7849 } else {
7850 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7851 : VARYING_SLOT_VAR0;
7852 }
7853 }
7854
7855 unsigned expl_align = 0;
7856 if (layout.flags.q.explicit_align) {
7857 if (!process_qualifier_constant(state, &loc, "align",
7858 layout.align, &expl_align)) {
7859 return NULL;
7860 } else {
7861 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7862 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7863 "power of 2.");
7864 return NULL;
7865 }
7866 }
7867 }
7868
7869 unsigned int num_variables =
7870 ast_process_struct_or_iface_block_members(&declared_variables,
7871 state,
7872 &this->declarations,
7873 &fields,
7874 true,
7875 matrix_layout,
7876 redeclaring_per_vertex,
7877 var_mode,
7878 &this->layout,
7879 qual_stream,
7880 qual_xfb_buffer,
7881 qual_xfb_offset,
7882 expl_location,
7883 expl_align);
7884
7885 if (!redeclaring_per_vertex) {
7886 validate_identifier(this->block_name, loc, state);
7887
7888 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7889 *
7890 * "Block names have no other use within a shader beyond interface
7891 * matching; it is a compile-time error to use a block name at global
7892 * scope for anything other than as a block name."
7893 */
7894 ir_variable *var = state->symbols->get_variable(this->block_name);
7895 if (var && !var->type->is_interface()) {
7896 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7897 "already used in the scope.",
7898 this->block_name);
7899 }
7900 }
7901
7902 const glsl_type *earlier_per_vertex = NULL;
7903 if (redeclaring_per_vertex) {
7904 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7905 * the named interface block gl_in, we can find it by looking at the
7906 * previous declaration of gl_in. Otherwise we can find it by looking
7907 * at the previous decalartion of any of the built-in outputs,
7908 * e.g. gl_Position.
7909 *
7910 * Also check that the instance name and array-ness of the redeclaration
7911 * are correct.
7912 */
7913 switch (var_mode) {
7914 case ir_var_shader_in:
7915 if (ir_variable *earlier_gl_in =
7916 state->symbols->get_variable("gl_in")) {
7917 earlier_per_vertex = earlier_gl_in->get_interface_type();
7918 } else {
7919 _mesa_glsl_error(&loc, state,
7920 "redeclaration of gl_PerVertex input not allowed "
7921 "in the %s shader",
7922 _mesa_shader_stage_to_string(state->stage));
7923 }
7924 if (this->instance_name == NULL ||
7925 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7926 !this->array_specifier->is_single_dimension()) {
7927 _mesa_glsl_error(&loc, state,
7928 "gl_PerVertex input must be redeclared as "
7929 "gl_in[]");
7930 }
7931 break;
7932 case ir_var_shader_out:
7933 if (ir_variable *earlier_gl_Position =
7934 state->symbols->get_variable("gl_Position")) {
7935 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7936 } else if (ir_variable *earlier_gl_out =
7937 state->symbols->get_variable("gl_out")) {
7938 earlier_per_vertex = earlier_gl_out->get_interface_type();
7939 } else {
7940 _mesa_glsl_error(&loc, state,
7941 "redeclaration of gl_PerVertex output not "
7942 "allowed in the %s shader",
7943 _mesa_shader_stage_to_string(state->stage));
7944 }
7945 if (state->stage == MESA_SHADER_TESS_CTRL) {
7946 if (this->instance_name == NULL ||
7947 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7948 _mesa_glsl_error(&loc, state,
7949 "gl_PerVertex output must be redeclared as "
7950 "gl_out[]");
7951 }
7952 } else {
7953 if (this->instance_name != NULL) {
7954 _mesa_glsl_error(&loc, state,
7955 "gl_PerVertex output may not be redeclared with "
7956 "an instance name");
7957 }
7958 }
7959 break;
7960 default:
7961 _mesa_glsl_error(&loc, state,
7962 "gl_PerVertex must be declared as an input or an "
7963 "output");
7964 break;
7965 }
7966
7967 if (earlier_per_vertex == NULL) {
7968 /* An error has already been reported. Bail out to avoid null
7969 * dereferences later in this function.
7970 */
7971 return NULL;
7972 }
7973
7974 /* Copy locations from the old gl_PerVertex interface block. */
7975 for (unsigned i = 0; i < num_variables; i++) {
7976 int j = earlier_per_vertex->field_index(fields[i].name);
7977 if (j == -1) {
7978 _mesa_glsl_error(&loc, state,
7979 "redeclaration of gl_PerVertex must be a subset "
7980 "of the built-in members of gl_PerVertex");
7981 } else {
7982 fields[i].location =
7983 earlier_per_vertex->fields.structure[j].location;
7984 fields[i].offset =
7985 earlier_per_vertex->fields.structure[j].offset;
7986 fields[i].interpolation =
7987 earlier_per_vertex->fields.structure[j].interpolation;
7988 fields[i].centroid =
7989 earlier_per_vertex->fields.structure[j].centroid;
7990 fields[i].sample =
7991 earlier_per_vertex->fields.structure[j].sample;
7992 fields[i].patch =
7993 earlier_per_vertex->fields.structure[j].patch;
7994 fields[i].precision =
7995 earlier_per_vertex->fields.structure[j].precision;
7996 fields[i].explicit_xfb_buffer =
7997 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7998 fields[i].xfb_buffer =
7999 earlier_per_vertex->fields.structure[j].xfb_buffer;
8000 fields[i].xfb_stride =
8001 earlier_per_vertex->fields.structure[j].xfb_stride;
8002 }
8003 }
8004
8005 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8006 * spec:
8007 *
8008 * If a built-in interface block is redeclared, it must appear in
8009 * the shader before any use of any member included in the built-in
8010 * declaration, or a compilation error will result.
8011 *
8012 * This appears to be a clarification to the behaviour established for
8013 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8014 * regardless of GLSL version.
8015 */
8016 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8017 v.run(instructions);
8018 if (v.usage_found()) {
8019 _mesa_glsl_error(&loc, state,
8020 "redeclaration of a built-in interface block must "
8021 "appear before any use of any member of the "
8022 "interface block");
8023 }
8024 }
8025
8026 const glsl_type *block_type =
8027 glsl_type::get_interface_instance(fields,
8028 num_variables,
8029 packing,
8030 matrix_layout ==
8031 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8032 this->block_name);
8033
8034 unsigned component_size = block_type->contains_double() ? 8 : 4;
8035 int xfb_offset =
8036 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8037 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8038 component_size);
8039
8040 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8041 YYLTYPE loc = this->get_location();
8042 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8043 "already taken in the current scope",
8044 this->block_name, iface_type_name);
8045 }
8046
8047 /* Since interface blocks cannot contain statements, it should be
8048 * impossible for the block to generate any instructions.
8049 */
8050 assert(declared_variables.is_empty());
8051
8052 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8053 *
8054 * Geometry shader input variables get the per-vertex values written
8055 * out by vertex shader output variables of the same names. Since a
8056 * geometry shader operates on a set of vertices, each input varying
8057 * variable (or input block, see interface blocks below) needs to be
8058 * declared as an array.
8059 */
8060 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8061 var_mode == ir_var_shader_in) {
8062 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8063 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8064 state->stage == MESA_SHADER_TESS_EVAL) &&
8065 !this->layout.flags.q.patch &&
8066 this->array_specifier == NULL &&
8067 var_mode == ir_var_shader_in) {
8068 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8069 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8070 !this->layout.flags.q.patch &&
8071 this->array_specifier == NULL &&
8072 var_mode == ir_var_shader_out) {
8073 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8074 }
8075
8076
8077 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8078 * says:
8079 *
8080 * "If an instance name (instance-name) is used, then it puts all the
8081 * members inside a scope within its own name space, accessed with the
8082 * field selector ( . ) operator (analogously to structures)."
8083 */
8084 if (this->instance_name) {
8085 if (redeclaring_per_vertex) {
8086 /* When a built-in in an unnamed interface block is redeclared,
8087 * get_variable_being_redeclared() calls
8088 * check_builtin_array_max_size() to make sure that built-in array
8089 * variables aren't redeclared to illegal sizes. But we're looking
8090 * at a redeclaration of a named built-in interface block. So we
8091 * have to manually call check_builtin_array_max_size() for all parts
8092 * of the interface that are arrays.
8093 */
8094 for (unsigned i = 0; i < num_variables; i++) {
8095 if (fields[i].type->is_array()) {
8096 const unsigned size = fields[i].type->array_size();
8097 check_builtin_array_max_size(fields[i].name, size, loc, state);
8098 }
8099 }
8100 } else {
8101 validate_identifier(this->instance_name, loc, state);
8102 }
8103
8104 ir_variable *var;
8105
8106 if (this->array_specifier != NULL) {
8107 const glsl_type *block_array_type =
8108 process_array_type(&loc, block_type, this->array_specifier, state);
8109
8110 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8111 *
8112 * For uniform blocks declared an array, each individual array
8113 * element corresponds to a separate buffer object backing one
8114 * instance of the block. As the array size indicates the number
8115 * of buffer objects needed, uniform block array declarations
8116 * must specify an array size.
8117 *
8118 * And a few paragraphs later:
8119 *
8120 * Geometry shader input blocks must be declared as arrays and
8121 * follow the array declaration and linking rules for all
8122 * geometry shader inputs. All other input and output block
8123 * arrays must specify an array size.
8124 *
8125 * The same applies to tessellation shaders.
8126 *
8127 * The upshot of this is that the only circumstance where an
8128 * interface array size *doesn't* need to be specified is on a
8129 * geometry shader input, tessellation control shader input,
8130 * tessellation control shader output, and tessellation evaluation
8131 * shader input.
8132 */
8133 if (block_array_type->is_unsized_array()) {
8134 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8135 state->stage == MESA_SHADER_TESS_CTRL ||
8136 state->stage == MESA_SHADER_TESS_EVAL;
8137 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8138
8139 if (this->layout.flags.q.in) {
8140 if (!allow_inputs)
8141 _mesa_glsl_error(&loc, state,
8142 "unsized input block arrays not allowed in "
8143 "%s shader",
8144 _mesa_shader_stage_to_string(state->stage));
8145 } else if (this->layout.flags.q.out) {
8146 if (!allow_outputs)
8147 _mesa_glsl_error(&loc, state,
8148 "unsized output block arrays not allowed in "
8149 "%s shader",
8150 _mesa_shader_stage_to_string(state->stage));
8151 } else {
8152 /* by elimination, this is a uniform block array */
8153 _mesa_glsl_error(&loc, state,
8154 "unsized uniform block arrays not allowed in "
8155 "%s shader",
8156 _mesa_shader_stage_to_string(state->stage));
8157 }
8158 }
8159
8160 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8161 *
8162 * * Arrays of arrays of blocks are not allowed
8163 */
8164 if (state->es_shader && block_array_type->is_array() &&
8165 block_array_type->fields.array->is_array()) {
8166 _mesa_glsl_error(&loc, state,
8167 "arrays of arrays interface blocks are "
8168 "not allowed");
8169 }
8170
8171 var = new(state) ir_variable(block_array_type,
8172 this->instance_name,
8173 var_mode);
8174 } else {
8175 var = new(state) ir_variable(block_type,
8176 this->instance_name,
8177 var_mode);
8178 }
8179
8180 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8181 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8182
8183 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8184 var->data.read_only = true;
8185
8186 var->data.patch = this->layout.flags.q.patch;
8187
8188 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8189 handle_geometry_shader_input_decl(state, loc, var);
8190 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8191 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8192 handle_tess_shader_input_decl(state, loc, var);
8193 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8194 handle_tess_ctrl_shader_output_decl(state, loc, var);
8195
8196 for (unsigned i = 0; i < num_variables; i++) {
8197 if (var->data.mode == ir_var_shader_storage)
8198 apply_memory_qualifiers(var, fields[i]);
8199 }
8200
8201 if (ir_variable *earlier =
8202 state->symbols->get_variable(this->instance_name)) {
8203 if (!redeclaring_per_vertex) {
8204 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8205 this->instance_name);
8206 }
8207 earlier->data.how_declared = ir_var_declared_normally;
8208 earlier->type = var->type;
8209 earlier->reinit_interface_type(block_type);
8210 delete var;
8211 } else {
8212 if (this->layout.flags.q.explicit_binding) {
8213 apply_explicit_binding(state, &loc, var, var->type,
8214 &this->layout);
8215 }
8216
8217 var->data.stream = qual_stream;
8218 if (layout.flags.q.explicit_location) {
8219 var->data.location = expl_location;
8220 var->data.explicit_location = true;
8221 }
8222
8223 state->symbols->add_variable(var);
8224 instructions->push_tail(var);
8225 }
8226 } else {
8227 /* In order to have an array size, the block must also be declared with
8228 * an instance name.
8229 */
8230 assert(this->array_specifier == NULL);
8231
8232 for (unsigned i = 0; i < num_variables; i++) {
8233 ir_variable *var =
8234 new(state) ir_variable(fields[i].type,
8235 ralloc_strdup(state, fields[i].name),
8236 var_mode);
8237 var->data.interpolation = fields[i].interpolation;
8238 var->data.centroid = fields[i].centroid;
8239 var->data.sample = fields[i].sample;
8240 var->data.patch = fields[i].patch;
8241 var->data.stream = qual_stream;
8242 var->data.location = fields[i].location;
8243
8244 if (fields[i].location != -1)
8245 var->data.explicit_location = true;
8246
8247 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8248 var->data.xfb_buffer = fields[i].xfb_buffer;
8249
8250 if (fields[i].offset != -1)
8251 var->data.explicit_xfb_offset = true;
8252 var->data.offset = fields[i].offset;
8253
8254 var->init_interface_type(block_type);
8255
8256 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8257 var->data.read_only = true;
8258
8259 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8260 if (state->es_shader) {
8261 var->data.precision =
8262 select_gles_precision(fields[i].precision, fields[i].type,
8263 state, &loc);
8264 }
8265
8266 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8267 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8268 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8269 } else {
8270 var->data.matrix_layout = fields[i].matrix_layout;
8271 }
8272
8273 if (var->data.mode == ir_var_shader_storage)
8274 apply_memory_qualifiers(var, fields[i]);
8275
8276 /* Examine var name here since var may get deleted in the next call */
8277 bool var_is_gl_id = is_gl_identifier(var->name);
8278
8279 if (redeclaring_per_vertex) {
8280 bool is_redeclaration;
8281 var =
8282 get_variable_being_redeclared(&var, loc, state,
8283 true /* allow_all_redeclarations */,
8284 &is_redeclaration);
8285 if (!var_is_gl_id || !is_redeclaration) {
8286 _mesa_glsl_error(&loc, state,
8287 "redeclaration of gl_PerVertex can only "
8288 "include built-in variables");
8289 } else if (var->data.how_declared == ir_var_declared_normally) {
8290 _mesa_glsl_error(&loc, state,
8291 "`%s' has already been redeclared",
8292 var->name);
8293 } else {
8294 var->data.how_declared = ir_var_declared_in_block;
8295 var->reinit_interface_type(block_type);
8296 }
8297 continue;
8298 }
8299
8300 if (state->symbols->get_variable(var->name) != NULL)
8301 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8302
8303 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8304 * The UBO declaration itself doesn't get an ir_variable unless it
8305 * has an instance name. This is ugly.
8306 */
8307 if (this->layout.flags.q.explicit_binding) {
8308 apply_explicit_binding(state, &loc, var,
8309 var->get_interface_type(), &this->layout);
8310 }
8311
8312 if (var->type->is_unsized_array()) {
8313 if (var->is_in_shader_storage_block() &&
8314 is_unsized_array_last_element(var)) {
8315 var->data.from_ssbo_unsized_array = true;
8316 } else {
8317 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8318 *
8319 * "If an array is declared as the last member of a shader storage
8320 * block and the size is not specified at compile-time, it is
8321 * sized at run-time. In all other cases, arrays are sized only
8322 * at compile-time."
8323 *
8324 * In desktop GLSL it is allowed to have unsized-arrays that are
8325 * not last, as long as we can determine that they are implicitly
8326 * sized.
8327 */
8328 if (state->es_shader) {
8329 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8330 "definition: only last member of a shader "
8331 "storage block can be defined as unsized "
8332 "array", fields[i].name);
8333 }
8334 }
8335 }
8336
8337 state->symbols->add_variable(var);
8338 instructions->push_tail(var);
8339 }
8340
8341 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8342 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8343 *
8344 * It is also a compilation error ... to redeclare a built-in
8345 * block and then use a member from that built-in block that was
8346 * not included in the redeclaration.
8347 *
8348 * This appears to be a clarification to the behaviour established
8349 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8350 * behaviour regardless of GLSL version.
8351 *
8352 * To prevent the shader from using a member that was not included in
8353 * the redeclaration, we disable any ir_variables that are still
8354 * associated with the old declaration of gl_PerVertex (since we've
8355 * already updated all of the variables contained in the new
8356 * gl_PerVertex to point to it).
8357 *
8358 * As a side effect this will prevent
8359 * validate_intrastage_interface_blocks() from getting confused and
8360 * thinking there are conflicting definitions of gl_PerVertex in the
8361 * shader.
8362 */
8363 foreach_in_list_safe(ir_instruction, node, instructions) {
8364 ir_variable *const var = node->as_variable();
8365 if (var != NULL &&
8366 var->get_interface_type() == earlier_per_vertex &&
8367 var->data.mode == var_mode) {
8368 if (var->data.how_declared == ir_var_declared_normally) {
8369 _mesa_glsl_error(&loc, state,
8370 "redeclaration of gl_PerVertex cannot "
8371 "follow a redeclaration of `%s'",
8372 var->name);
8373 }
8374 state->symbols->disable_variable(var->name);
8375 var->remove();
8376 }
8377 }
8378 }
8379 }
8380
8381 return NULL;
8382 }
8383
8384
8385 ir_rvalue *
8386 ast_tcs_output_layout::hir(exec_list *instructions,
8387 struct _mesa_glsl_parse_state *state)
8388 {
8389 YYLTYPE loc = this->get_location();
8390
8391 unsigned num_vertices;
8392 if (!state->out_qualifier->vertices->
8393 process_qualifier_constant(state, "vertices", &num_vertices,
8394 false)) {
8395 /* return here to stop cascading incorrect error messages */
8396 return NULL;
8397 }
8398
8399 /* If any shader outputs occurred before this declaration and specified an
8400 * array size, make sure the size they specified is consistent with the
8401 * primitive type.
8402 */
8403 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8404 _mesa_glsl_error(&loc, state,
8405 "this tessellation control shader output layout "
8406 "specifies %u vertices, but a previous output "
8407 "is declared with size %u",
8408 num_vertices, state->tcs_output_size);
8409 return NULL;
8410 }
8411
8412 state->tcs_output_vertices_specified = true;
8413
8414 /* If any shader outputs occurred before this declaration and did not
8415 * specify an array size, their size is determined now.
8416 */
8417 foreach_in_list (ir_instruction, node, instructions) {
8418 ir_variable *var = node->as_variable();
8419 if (var == NULL || var->data.mode != ir_var_shader_out)
8420 continue;
8421
8422 /* Note: Not all tessellation control shader output are arrays. */
8423 if (!var->type->is_unsized_array() || var->data.patch)
8424 continue;
8425
8426 if (var->data.max_array_access >= (int)num_vertices) {
8427 _mesa_glsl_error(&loc, state,
8428 "this tessellation control shader output layout "
8429 "specifies %u vertices, but an access to element "
8430 "%u of output `%s' already exists", num_vertices,
8431 var->data.max_array_access, var->name);
8432 } else {
8433 var->type = glsl_type::get_array_instance(var->type->fields.array,
8434 num_vertices);
8435 }
8436 }
8437
8438 return NULL;
8439 }
8440
8441
8442 ir_rvalue *
8443 ast_gs_input_layout::hir(exec_list *instructions,
8444 struct _mesa_glsl_parse_state *state)
8445 {
8446 YYLTYPE loc = this->get_location();
8447
8448 /* Should have been prevented by the parser. */
8449 assert(!state->gs_input_prim_type_specified
8450 || state->in_qualifier->prim_type == this->prim_type);
8451
8452 /* If any shader inputs occurred before this declaration and specified an
8453 * array size, make sure the size they specified is consistent with the
8454 * primitive type.
8455 */
8456 unsigned num_vertices = vertices_per_prim(this->prim_type);
8457 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8458 _mesa_glsl_error(&loc, state,
8459 "this geometry shader input layout implies %u vertices"
8460 " per primitive, but a previous input is declared"
8461 " with size %u", num_vertices, state->gs_input_size);
8462 return NULL;
8463 }
8464
8465 state->gs_input_prim_type_specified = true;
8466
8467 /* If any shader inputs occurred before this declaration and did not
8468 * specify an array size, their size is determined now.
8469 */
8470 foreach_in_list(ir_instruction, node, instructions) {
8471 ir_variable *var = node->as_variable();
8472 if (var == NULL || var->data.mode != ir_var_shader_in)
8473 continue;
8474
8475 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8476 * array; skip it.
8477 */
8478
8479 if (var->type->is_unsized_array()) {
8480 if (var->data.max_array_access >= (int)num_vertices) {
8481 _mesa_glsl_error(&loc, state,
8482 "this geometry shader input layout implies %u"
8483 " vertices, but an access to element %u of input"
8484 " `%s' already exists", num_vertices,
8485 var->data.max_array_access, var->name);
8486 } else {
8487 var->type = glsl_type::get_array_instance(var->type->fields.array,
8488 num_vertices);
8489 }
8490 }
8491 }
8492
8493 return NULL;
8494 }
8495
8496
8497 ir_rvalue *
8498 ast_cs_input_layout::hir(exec_list *instructions,
8499 struct _mesa_glsl_parse_state *state)
8500 {
8501 YYLTYPE loc = this->get_location();
8502
8503 /* From the ARB_compute_shader specification:
8504 *
8505 * If the local size of the shader in any dimension is greater
8506 * than the maximum size supported by the implementation for that
8507 * dimension, a compile-time error results.
8508 *
8509 * It is not clear from the spec how the error should be reported if
8510 * the total size of the work group exceeds
8511 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8512 * report it at compile time as well.
8513 */
8514 GLuint64 total_invocations = 1;
8515 unsigned qual_local_size[3];
8516 for (int i = 0; i < 3; i++) {
8517
8518 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8519 'x' + i);
8520 /* Infer a local_size of 1 for unspecified dimensions */
8521 if (this->local_size[i] == NULL) {
8522 qual_local_size[i] = 1;
8523 } else if (!this->local_size[i]->
8524 process_qualifier_constant(state, local_size_str,
8525 &qual_local_size[i], false)) {
8526 ralloc_free(local_size_str);
8527 return NULL;
8528 }
8529 ralloc_free(local_size_str);
8530
8531 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8532 _mesa_glsl_error(&loc, state,
8533 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8534 " (%d)", 'x' + i,
8535 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8536 break;
8537 }
8538 total_invocations *= qual_local_size[i];
8539 if (total_invocations >
8540 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8541 _mesa_glsl_error(&loc, state,
8542 "product of local_sizes exceeds "
8543 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8544 state->ctx->Const.MaxComputeWorkGroupInvocations);
8545 break;
8546 }
8547 }
8548
8549 /* If any compute input layout declaration preceded this one, make sure it
8550 * was consistent with this one.
8551 */
8552 if (state->cs_input_local_size_specified) {
8553 for (int i = 0; i < 3; i++) {
8554 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8555 _mesa_glsl_error(&loc, state,
8556 "compute shader input layout does not match"
8557 " previous declaration");
8558 return NULL;
8559 }
8560 }
8561 }
8562
8563 /* The ARB_compute_variable_group_size spec says:
8564 *
8565 * If a compute shader including a *local_size_variable* qualifier also
8566 * declares a fixed local group size using the *local_size_x*,
8567 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8568 * results
8569 */
8570 if (state->cs_input_local_size_variable_specified) {
8571 _mesa_glsl_error(&loc, state,
8572 "compute shader can't include both a variable and a "
8573 "fixed local group size");
8574 return NULL;
8575 }
8576
8577 state->cs_input_local_size_specified = true;
8578 for (int i = 0; i < 3; i++)
8579 state->cs_input_local_size[i] = qual_local_size[i];
8580
8581 /* We may now declare the built-in constant gl_WorkGroupSize (see
8582 * builtin_variable_generator::generate_constants() for why we didn't
8583 * declare it earlier).
8584 */
8585 ir_variable *var = new(state->symbols)
8586 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8587 var->data.how_declared = ir_var_declared_implicitly;
8588 var->data.read_only = true;
8589 instructions->push_tail(var);
8590 state->symbols->add_variable(var);
8591 ir_constant_data data;
8592 memset(&data, 0, sizeof(data));
8593 for (int i = 0; i < 3; i++)
8594 data.u[i] = qual_local_size[i];
8595 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8596 var->constant_initializer =
8597 new(var) ir_constant(glsl_type::uvec3_type, &data);
8598 var->data.has_initializer = true;
8599
8600 return NULL;
8601 }
8602
8603
8604 static void
8605 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8606 exec_list *instructions)
8607 {
8608 bool gl_FragColor_assigned = false;
8609 bool gl_FragData_assigned = false;
8610 bool gl_FragSecondaryColor_assigned = false;
8611 bool gl_FragSecondaryData_assigned = false;
8612 bool user_defined_fs_output_assigned = false;
8613 ir_variable *user_defined_fs_output = NULL;
8614
8615 /* It would be nice to have proper location information. */
8616 YYLTYPE loc;
8617 memset(&loc, 0, sizeof(loc));
8618
8619 foreach_in_list(ir_instruction, node, instructions) {
8620 ir_variable *var = node->as_variable();
8621
8622 if (!var || !var->data.assigned)
8623 continue;
8624
8625 if (strcmp(var->name, "gl_FragColor") == 0)
8626 gl_FragColor_assigned = true;
8627 else if (strcmp(var->name, "gl_FragData") == 0)
8628 gl_FragData_assigned = true;
8629 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8630 gl_FragSecondaryColor_assigned = true;
8631 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8632 gl_FragSecondaryData_assigned = true;
8633 else if (!is_gl_identifier(var->name)) {
8634 if (state->stage == MESA_SHADER_FRAGMENT &&
8635 var->data.mode == ir_var_shader_out) {
8636 user_defined_fs_output_assigned = true;
8637 user_defined_fs_output = var;
8638 }
8639 }
8640 }
8641
8642 /* From the GLSL 1.30 spec:
8643 *
8644 * "If a shader statically assigns a value to gl_FragColor, it
8645 * may not assign a value to any element of gl_FragData. If a
8646 * shader statically writes a value to any element of
8647 * gl_FragData, it may not assign a value to
8648 * gl_FragColor. That is, a shader may assign values to either
8649 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8650 * linked together must also consistently write just one of
8651 * these variables. Similarly, if user declared output
8652 * variables are in use (statically assigned to), then the
8653 * built-in variables gl_FragColor and gl_FragData may not be
8654 * assigned to. These incorrect usages all generate compile
8655 * time errors."
8656 */
8657 if (gl_FragColor_assigned && gl_FragData_assigned) {
8658 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8659 "`gl_FragColor' and `gl_FragData'");
8660 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8661 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8662 "`gl_FragColor' and `%s'",
8663 user_defined_fs_output->name);
8664 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8665 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8666 "`gl_FragSecondaryColorEXT' and"
8667 " `gl_FragSecondaryDataEXT'");
8668 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8669 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8670 "`gl_FragColor' and"
8671 " `gl_FragSecondaryDataEXT'");
8672 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8673 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8674 "`gl_FragData' and"
8675 " `gl_FragSecondaryColorEXT'");
8676 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8677 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8678 "`gl_FragData' and `%s'",
8679 user_defined_fs_output->name);
8680 }
8681
8682 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8683 !state->EXT_blend_func_extended_enable) {
8684 _mesa_glsl_error(&loc, state,
8685 "Dual source blending requires EXT_blend_func_extended");
8686 }
8687 }
8688
8689 static void
8690 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8691 {
8692 YYLTYPE loc;
8693 memset(&loc, 0, sizeof(loc));
8694
8695 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8696 *
8697 * "A program will fail to compile or link if any shader
8698 * or stage contains two or more functions with the same
8699 * name if the name is associated with a subroutine type."
8700 */
8701
8702 for (int i = 0; i < state->num_subroutines; i++) {
8703 unsigned definitions = 0;
8704 ir_function *fn = state->subroutines[i];
8705 /* Calculate number of function definitions with the same name */
8706 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8707 if (sig->is_defined) {
8708 if (++definitions > 1) {
8709 _mesa_glsl_error(&loc, state,
8710 "%s shader contains two or more function "
8711 "definitions with name `%s', which is "
8712 "associated with a subroutine type.\n",
8713 _mesa_shader_stage_to_string(state->stage),
8714 fn->name);
8715 return;
8716 }
8717 }
8718 }
8719 }
8720 }
8721
8722 static void
8723 remove_per_vertex_blocks(exec_list *instructions,
8724 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8725 {
8726 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8727 * if it exists in this shader type.
8728 */
8729 const glsl_type *per_vertex = NULL;
8730 switch (mode) {
8731 case ir_var_shader_in:
8732 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8733 per_vertex = gl_in->get_interface_type();
8734 break;
8735 case ir_var_shader_out:
8736 if (ir_variable *gl_Position =
8737 state->symbols->get_variable("gl_Position")) {
8738 per_vertex = gl_Position->get_interface_type();
8739 }
8740 break;
8741 default:
8742 assert(!"Unexpected mode");
8743 break;
8744 }
8745
8746 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8747 * need to do anything.
8748 */
8749 if (per_vertex == NULL)
8750 return;
8751
8752 /* If the interface block is used by the shader, then we don't need to do
8753 * anything.
8754 */
8755 interface_block_usage_visitor v(mode, per_vertex);
8756 v.run(instructions);
8757 if (v.usage_found())
8758 return;
8759
8760 /* Remove any ir_variable declarations that refer to the interface block
8761 * we're removing.
8762 */
8763 foreach_in_list_safe(ir_instruction, node, instructions) {
8764 ir_variable *const var = node->as_variable();
8765 if (var != NULL && var->get_interface_type() == per_vertex &&
8766 var->data.mode == mode) {
8767 state->symbols->disable_variable(var->name);
8768 var->remove();
8769 }
8770 }
8771 }
8772
8773 ir_rvalue *
8774 ast_warnings_toggle::hir(exec_list *,
8775 struct _mesa_glsl_parse_state *state)
8776 {
8777 state->warnings_enabled = enable;
8778 return NULL;
8779 }