glsl: Fix input/output structure matching across shader stages
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
111 ir_variable *get_variable() {
112 return found;
113 }
114
115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_uint_to_int_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
895 return rhs;
896 } else {
897 _mesa_glsl_error(&loc, state,
898 "implicitly sized arrays cannot be assigned");
899 return NULL;
900 }
901 }
902
903 /* Check for implicit conversion in GLSL 1.20 */
904 if (apply_implicit_conversion(lhs->type, rhs, state)) {
905 if (rhs->type == lhs->type)
906 return rhs;
907 }
908
909 _mesa_glsl_error(&loc, state,
910 "%s of type %s cannot be assigned to "
911 "variable of type %s",
912 is_initializer ? "initializer" : "value",
913 rhs->type->name, lhs->type->name);
914
915 return NULL;
916 }
917
918 static void
919 mark_whole_array_access(ir_rvalue *access)
920 {
921 ir_dereference_variable *deref = access->as_dereference_variable();
922
923 if (deref && deref->var) {
924 deref->var->data.max_array_access = deref->type->length - 1;
925 }
926 }
927
928 static bool
929 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
930 const char *non_lvalue_description,
931 ir_rvalue *lhs, ir_rvalue *rhs,
932 ir_rvalue **out_rvalue, bool needs_rvalue,
933 bool is_initializer,
934 YYLTYPE lhs_loc)
935 {
936 void *ctx = state;
937 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
938
939 ir_variable *lhs_var = lhs->variable_referenced();
940 if (lhs_var)
941 lhs_var->data.assigned = true;
942
943 if (!error_emitted) {
944 if (non_lvalue_description != NULL) {
945 _mesa_glsl_error(&lhs_loc, state,
946 "assignment to %s",
947 non_lvalue_description);
948 error_emitted = true;
949 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
950 (lhs_var->data.mode == ir_var_shader_storage &&
951 lhs_var->data.memory_read_only))) {
952 /* We can have memory_read_only set on both images and buffer variables,
953 * but in the former there is a distinction between assignments to
954 * the variable itself (read_only) and to the memory they point to
955 * (memory_read_only), while in the case of buffer variables there is
956 * no such distinction, that is why this check here is limited to
957 * buffer variables alone.
958 */
959 _mesa_glsl_error(&lhs_loc, state,
960 "assignment to read-only variable '%s'",
961 lhs_var->name);
962 error_emitted = true;
963 } else if (lhs->type->is_array() &&
964 !state->check_version(120, 300, &lhs_loc,
965 "whole array assignment forbidden")) {
966 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
967 *
968 * "Other binary or unary expressions, non-dereferenced
969 * arrays, function names, swizzles with repeated fields,
970 * and constants cannot be l-values."
971 *
972 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
973 */
974 error_emitted = true;
975 } else if (!lhs->is_lvalue(state)) {
976 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
977 error_emitted = true;
978 }
979 }
980
981 ir_rvalue *new_rhs =
982 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
983 if (new_rhs != NULL) {
984 rhs = new_rhs;
985
986 /* If the LHS array was not declared with a size, it takes it size from
987 * the RHS. If the LHS is an l-value and a whole array, it must be a
988 * dereference of a variable. Any other case would require that the LHS
989 * is either not an l-value or not a whole array.
990 */
991 if (lhs->type->is_unsized_array()) {
992 ir_dereference *const d = lhs->as_dereference();
993
994 assert(d != NULL);
995
996 ir_variable *const var = d->variable_referenced();
997
998 assert(var != NULL);
999
1000 if (var->data.max_array_access >= rhs->type->array_size()) {
1001 /* FINISHME: This should actually log the location of the RHS. */
1002 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1003 "previous access",
1004 var->data.max_array_access);
1005 }
1006
1007 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1008 rhs->type->array_size());
1009 d->type = var->type;
1010 }
1011 if (lhs->type->is_array()) {
1012 mark_whole_array_access(rhs);
1013 mark_whole_array_access(lhs);
1014 }
1015 } else {
1016 error_emitted = true;
1017 }
1018
1019 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1020 * but not post_inc) need the converted assigned value as an rvalue
1021 * to handle things like:
1022 *
1023 * i = j += 1;
1024 */
1025 if (needs_rvalue) {
1026 ir_rvalue *rvalue;
1027 if (!error_emitted) {
1028 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1029 ir_var_temporary);
1030 instructions->push_tail(var);
1031 instructions->push_tail(assign(var, rhs));
1032
1033 ir_dereference_variable *deref_var =
1034 new(ctx) ir_dereference_variable(var);
1035 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1036 rvalue = new(ctx) ir_dereference_variable(var);
1037 } else {
1038 rvalue = ir_rvalue::error_value(ctx);
1039 }
1040 *out_rvalue = rvalue;
1041 } else {
1042 if (!error_emitted)
1043 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1044 *out_rvalue = NULL;
1045 }
1046
1047 return error_emitted;
1048 }
1049
1050 static ir_rvalue *
1051 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1052 {
1053 void *ctx = ralloc_parent(lvalue);
1054 ir_variable *var;
1055
1056 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1057 ir_var_temporary);
1058 instructions->push_tail(var);
1059
1060 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1061 lvalue));
1062
1063 return new(ctx) ir_dereference_variable(var);
1064 }
1065
1066
1067 ir_rvalue *
1068 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1069 {
1070 (void) instructions;
1071 (void) state;
1072
1073 return NULL;
1074 }
1075
1076 bool
1077 ast_node::has_sequence_subexpression() const
1078 {
1079 return false;
1080 }
1081
1082 void
1083 ast_node::set_is_lhs(bool /* new_value */)
1084 {
1085 }
1086
1087 void
1088 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state)
1090 {
1091 (void)hir(instructions, state);
1092 }
1093
1094 void
1095 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1096 struct _mesa_glsl_parse_state *state)
1097 {
1098 (void)hir(instructions, state);
1099 }
1100
1101 static ir_rvalue *
1102 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1103 {
1104 int join_op;
1105 ir_rvalue *cmp = NULL;
1106
1107 if (operation == ir_binop_all_equal)
1108 join_op = ir_binop_logic_and;
1109 else
1110 join_op = ir_binop_logic_or;
1111
1112 switch (op0->type->base_type) {
1113 case GLSL_TYPE_FLOAT:
1114 case GLSL_TYPE_FLOAT16:
1115 case GLSL_TYPE_UINT:
1116 case GLSL_TYPE_INT:
1117 case GLSL_TYPE_BOOL:
1118 case GLSL_TYPE_DOUBLE:
1119 case GLSL_TYPE_UINT64:
1120 case GLSL_TYPE_INT64:
1121 case GLSL_TYPE_UINT16:
1122 case GLSL_TYPE_INT16:
1123 case GLSL_TYPE_UINT8:
1124 case GLSL_TYPE_INT8:
1125 return new(mem_ctx) ir_expression(operation, op0, op1);
1126
1127 case GLSL_TYPE_ARRAY: {
1128 for (unsigned int i = 0; i < op0->type->length; i++) {
1129 ir_rvalue *e0, *e1, *result;
1130
1131 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1132 new(mem_ctx) ir_constant(i));
1133 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1134 new(mem_ctx) ir_constant(i));
1135 result = do_comparison(mem_ctx, operation, e0, e1);
1136
1137 if (cmp) {
1138 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1139 } else {
1140 cmp = result;
1141 }
1142 }
1143
1144 mark_whole_array_access(op0);
1145 mark_whole_array_access(op1);
1146 break;
1147 }
1148
1149 case GLSL_TYPE_STRUCT: {
1150 for (unsigned int i = 0; i < op0->type->length; i++) {
1151 ir_rvalue *e0, *e1, *result;
1152 const char *field_name = op0->type->fields.structure[i].name;
1153
1154 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1155 field_name);
1156 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1157 field_name);
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166 break;
1167 }
1168
1169 case GLSL_TYPE_ERROR:
1170 case GLSL_TYPE_VOID:
1171 case GLSL_TYPE_SAMPLER:
1172 case GLSL_TYPE_IMAGE:
1173 case GLSL_TYPE_INTERFACE:
1174 case GLSL_TYPE_ATOMIC_UINT:
1175 case GLSL_TYPE_SUBROUTINE:
1176 case GLSL_TYPE_FUNCTION:
1177 /* I assume a comparison of a struct containing a sampler just
1178 * ignores the sampler present in the type.
1179 */
1180 break;
1181 }
1182
1183 if (cmp == NULL)
1184 cmp = new(mem_ctx) ir_constant(true);
1185
1186 return cmp;
1187 }
1188
1189 /* For logical operations, we want to ensure that the operands are
1190 * scalar booleans. If it isn't, emit an error and return a constant
1191 * boolean to avoid triggering cascading error messages.
1192 */
1193 static ir_rvalue *
1194 get_scalar_boolean_operand(exec_list *instructions,
1195 struct _mesa_glsl_parse_state *state,
1196 ast_expression *parent_expr,
1197 int operand,
1198 const char *operand_name,
1199 bool *error_emitted)
1200 {
1201 ast_expression *expr = parent_expr->subexpressions[operand];
1202 void *ctx = state;
1203 ir_rvalue *val = expr->hir(instructions, state);
1204
1205 if (val->type->is_boolean() && val->type->is_scalar())
1206 return val;
1207
1208 if (!*error_emitted) {
1209 YYLTYPE loc = expr->get_location();
1210 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1211 operand_name,
1212 parent_expr->operator_string(parent_expr->oper));
1213 *error_emitted = true;
1214 }
1215
1216 return new(ctx) ir_constant(true);
1217 }
1218
1219 /**
1220 * If name refers to a builtin array whose maximum allowed size is less than
1221 * size, report an error and return true. Otherwise return false.
1222 */
1223 void
1224 check_builtin_array_max_size(const char *name, unsigned size,
1225 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1226 {
1227 if ((strcmp("gl_TexCoord", name) == 0)
1228 && (size > state->Const.MaxTextureCoords)) {
1229 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1230 *
1231 * "The size [of gl_TexCoord] can be at most
1232 * gl_MaxTextureCoords."
1233 */
1234 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1235 "be larger than gl_MaxTextureCoords (%u)",
1236 state->Const.MaxTextureCoords);
1237 } else if (strcmp("gl_ClipDistance", name) == 0) {
1238 state->clip_dist_size = size;
1239 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1240 /* From section 7.1 (Vertex Shader Special Variables) of the
1241 * GLSL 1.30 spec:
1242 *
1243 * "The gl_ClipDistance array is predeclared as unsized and
1244 * must be sized by the shader either redeclaring it with a
1245 * size or indexing it only with integral constant
1246 * expressions. ... The size can be at most
1247 * gl_MaxClipDistances."
1248 */
1249 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1250 "be larger than gl_MaxClipDistances (%u)",
1251 state->Const.MaxClipPlanes);
1252 }
1253 } else if (strcmp("gl_CullDistance", name) == 0) {
1254 state->cull_dist_size = size;
1255 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1256 /* From the ARB_cull_distance spec:
1257 *
1258 * "The gl_CullDistance array is predeclared as unsized and
1259 * must be sized by the shader either redeclaring it with
1260 * a size or indexing it only with integral constant
1261 * expressions. The size determines the number and set of
1262 * enabled cull distances and can be at most
1263 * gl_MaxCullDistances."
1264 */
1265 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1266 "be larger than gl_MaxCullDistances (%u)",
1267 state->Const.MaxClipPlanes);
1268 }
1269 }
1270 }
1271
1272 /**
1273 * Create the constant 1, of a which is appropriate for incrementing and
1274 * decrementing values of the given GLSL type. For example, if type is vec4,
1275 * this creates a constant value of 1.0 having type float.
1276 *
1277 * If the given type is invalid for increment and decrement operators, return
1278 * a floating point 1--the error will be detected later.
1279 */
1280 static ir_rvalue *
1281 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1282 {
1283 switch (type->base_type) {
1284 case GLSL_TYPE_UINT:
1285 return new(ctx) ir_constant((unsigned) 1);
1286 case GLSL_TYPE_INT:
1287 return new(ctx) ir_constant(1);
1288 case GLSL_TYPE_UINT64:
1289 return new(ctx) ir_constant((uint64_t) 1);
1290 case GLSL_TYPE_INT64:
1291 return new(ctx) ir_constant((int64_t) 1);
1292 default:
1293 case GLSL_TYPE_FLOAT:
1294 return new(ctx) ir_constant(1.0f);
1295 }
1296 }
1297
1298 ir_rvalue *
1299 ast_expression::hir(exec_list *instructions,
1300 struct _mesa_glsl_parse_state *state)
1301 {
1302 return do_hir(instructions, state, true);
1303 }
1304
1305 void
1306 ast_expression::hir_no_rvalue(exec_list *instructions,
1307 struct _mesa_glsl_parse_state *state)
1308 {
1309 do_hir(instructions, state, false);
1310 }
1311
1312 void
1313 ast_expression::set_is_lhs(bool new_value)
1314 {
1315 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1316 * if we lack an identifier we can just skip it.
1317 */
1318 if (this->primary_expression.identifier == NULL)
1319 return;
1320
1321 this->is_lhs = new_value;
1322
1323 /* We need to go through the subexpressions tree to cover cases like
1324 * ast_field_selection
1325 */
1326 if (this->subexpressions[0] != NULL)
1327 this->subexpressions[0]->set_is_lhs(new_value);
1328 }
1329
1330 ir_rvalue *
1331 ast_expression::do_hir(exec_list *instructions,
1332 struct _mesa_glsl_parse_state *state,
1333 bool needs_rvalue)
1334 {
1335 void *ctx = state;
1336 static const int operations[AST_NUM_OPERATORS] = {
1337 -1, /* ast_assign doesn't convert to ir_expression. */
1338 -1, /* ast_plus doesn't convert to ir_expression. */
1339 ir_unop_neg,
1340 ir_binop_add,
1341 ir_binop_sub,
1342 ir_binop_mul,
1343 ir_binop_div,
1344 ir_binop_mod,
1345 ir_binop_lshift,
1346 ir_binop_rshift,
1347 ir_binop_less,
1348 ir_binop_less, /* This is correct. See the ast_greater case below. */
1349 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1350 ir_binop_gequal,
1351 ir_binop_all_equal,
1352 ir_binop_any_nequal,
1353 ir_binop_bit_and,
1354 ir_binop_bit_xor,
1355 ir_binop_bit_or,
1356 ir_unop_bit_not,
1357 ir_binop_logic_and,
1358 ir_binop_logic_xor,
1359 ir_binop_logic_or,
1360 ir_unop_logic_not,
1361
1362 /* Note: The following block of expression types actually convert
1363 * to multiple IR instructions.
1364 */
1365 ir_binop_mul, /* ast_mul_assign */
1366 ir_binop_div, /* ast_div_assign */
1367 ir_binop_mod, /* ast_mod_assign */
1368 ir_binop_add, /* ast_add_assign */
1369 ir_binop_sub, /* ast_sub_assign */
1370 ir_binop_lshift, /* ast_ls_assign */
1371 ir_binop_rshift, /* ast_rs_assign */
1372 ir_binop_bit_and, /* ast_and_assign */
1373 ir_binop_bit_xor, /* ast_xor_assign */
1374 ir_binop_bit_or, /* ast_or_assign */
1375
1376 -1, /* ast_conditional doesn't convert to ir_expression. */
1377 ir_binop_add, /* ast_pre_inc. */
1378 ir_binop_sub, /* ast_pre_dec. */
1379 ir_binop_add, /* ast_post_inc. */
1380 ir_binop_sub, /* ast_post_dec. */
1381 -1, /* ast_field_selection doesn't conv to ir_expression. */
1382 -1, /* ast_array_index doesn't convert to ir_expression. */
1383 -1, /* ast_function_call doesn't conv to ir_expression. */
1384 -1, /* ast_identifier doesn't convert to ir_expression. */
1385 -1, /* ast_int_constant doesn't convert to ir_expression. */
1386 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1387 -1, /* ast_float_constant doesn't conv to ir_expression. */
1388 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1389 -1, /* ast_sequence doesn't convert to ir_expression. */
1390 -1, /* ast_aggregate shouldn't ever even get here. */
1391 };
1392 ir_rvalue *result = NULL;
1393 ir_rvalue *op[3];
1394 const struct glsl_type *type, *orig_type;
1395 bool error_emitted = false;
1396 YYLTYPE loc;
1397
1398 loc = this->get_location();
1399
1400 switch (this->oper) {
1401 case ast_aggregate:
1402 unreachable("ast_aggregate: Should never get here.");
1403
1404 case ast_assign: {
1405 this->subexpressions[0]->set_is_lhs(true);
1406 op[0] = this->subexpressions[0]->hir(instructions, state);
1407 op[1] = this->subexpressions[1]->hir(instructions, state);
1408
1409 error_emitted =
1410 do_assignment(instructions, state,
1411 this->subexpressions[0]->non_lvalue_description,
1412 op[0], op[1], &result, needs_rvalue, false,
1413 this->subexpressions[0]->get_location());
1414 break;
1415 }
1416
1417 case ast_plus:
1418 op[0] = this->subexpressions[0]->hir(instructions, state);
1419
1420 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1421
1422 error_emitted = type->is_error();
1423
1424 result = op[0];
1425 break;
1426
1427 case ast_neg:
1428 op[0] = this->subexpressions[0]->hir(instructions, state);
1429
1430 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1431
1432 error_emitted = type->is_error();
1433
1434 result = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], NULL);
1436 break;
1437
1438 case ast_add:
1439 case ast_sub:
1440 case ast_mul:
1441 case ast_div:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443 op[1] = this->subexpressions[1]->hir(instructions, state);
1444
1445 type = arithmetic_result_type(op[0], op[1],
1446 (this->oper == ast_mul),
1447 state, & loc);
1448 error_emitted = type->is_error();
1449
1450 result = new(ctx) ir_expression(operations[this->oper], type,
1451 op[0], op[1]);
1452 break;
1453
1454 case ast_mod:
1455 op[0] = this->subexpressions[0]->hir(instructions, state);
1456 op[1] = this->subexpressions[1]->hir(instructions, state);
1457
1458 type = modulus_result_type(op[0], op[1], state, &loc);
1459
1460 assert(operations[this->oper] == ir_binop_mod);
1461
1462 result = new(ctx) ir_expression(operations[this->oper], type,
1463 op[0], op[1]);
1464 error_emitted = type->is_error();
1465 break;
1466
1467 case ast_lshift:
1468 case ast_rshift:
1469 if (!state->check_bitwise_operations_allowed(&loc)) {
1470 error_emitted = true;
1471 }
1472
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 result = new(ctx) ir_expression(operations[this->oper], type,
1478 op[0], op[1]);
1479 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1480 break;
1481
1482 case ast_less:
1483 case ast_greater:
1484 case ast_lequal:
1485 case ast_gequal:
1486 op[0] = this->subexpressions[0]->hir(instructions, state);
1487 op[1] = this->subexpressions[1]->hir(instructions, state);
1488
1489 type = relational_result_type(op[0], op[1], state, & loc);
1490
1491 /* The relational operators must either generate an error or result
1492 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1493 */
1494 assert(type->is_error()
1495 || (type->is_boolean() && type->is_scalar()));
1496
1497 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1498 * the arguments and use < or >=.
1499 */
1500 if (this->oper == ast_greater || this->oper == ast_lequal) {
1501 ir_rvalue *const tmp = op[0];
1502 op[0] = op[1];
1503 op[1] = tmp;
1504 }
1505
1506 result = new(ctx) ir_expression(operations[this->oper], type,
1507 op[0], op[1]);
1508 error_emitted = type->is_error();
1509 break;
1510
1511 case ast_nequal:
1512 case ast_equal:
1513 op[0] = this->subexpressions[0]->hir(instructions, state);
1514 op[1] = this->subexpressions[1]->hir(instructions, state);
1515
1516 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1517 *
1518 * "The equality operators equal (==), and not equal (!=)
1519 * operate on all types. They result in a scalar Boolean. If
1520 * the operand types do not match, then there must be a
1521 * conversion from Section 4.1.10 "Implicit Conversions"
1522 * applied to one operand that can make them match, in which
1523 * case this conversion is done."
1524 */
1525
1526 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1527 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1528 "no operation `%1$s' exists that takes a left-hand "
1529 "operand of type 'void' or a right operand of type "
1530 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1531 error_emitted = true;
1532 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1533 && !apply_implicit_conversion(op[1]->type, op[0], state))
1534 || (op[0]->type != op[1]->type)) {
1535 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1536 "type", (this->oper == ast_equal) ? "==" : "!=");
1537 error_emitted = true;
1538 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1539 !state->check_version(120, 300, &loc,
1540 "array comparisons forbidden")) {
1541 error_emitted = true;
1542 } else if ((op[0]->type->contains_subroutine() ||
1543 op[1]->type->contains_subroutine())) {
1544 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1545 error_emitted = true;
1546 } else if ((op[0]->type->contains_opaque() ||
1547 op[1]->type->contains_opaque())) {
1548 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1549 error_emitted = true;
1550 }
1551
1552 if (error_emitted) {
1553 result = new(ctx) ir_constant(false);
1554 } else {
1555 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1556 assert(result->type == glsl_type::bool_type);
1557 }
1558 break;
1559
1560 case ast_bit_and:
1561 case ast_bit_xor:
1562 case ast_bit_or:
1563 op[0] = this->subexpressions[0]->hir(instructions, state);
1564 op[1] = this->subexpressions[1]->hir(instructions, state);
1565 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1566 result = new(ctx) ir_expression(operations[this->oper], type,
1567 op[0], op[1]);
1568 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1569 break;
1570
1571 case ast_bit_not:
1572 op[0] = this->subexpressions[0]->hir(instructions, state);
1573
1574 if (!state->check_bitwise_operations_allowed(&loc)) {
1575 error_emitted = true;
1576 }
1577
1578 if (!op[0]->type->is_integer_32_64()) {
1579 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1580 error_emitted = true;
1581 }
1582
1583 type = error_emitted ? glsl_type::error_type : op[0]->type;
1584 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1585 break;
1586
1587 case ast_logic_and: {
1588 exec_list rhs_instructions;
1589 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1590 "LHS", &error_emitted);
1591 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1592 "RHS", &error_emitted);
1593
1594 if (rhs_instructions.is_empty()) {
1595 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1596 } else {
1597 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1598 "and_tmp",
1599 ir_var_temporary);
1600 instructions->push_tail(tmp);
1601
1602 ir_if *const stmt = new(ctx) ir_if(op[0]);
1603 instructions->push_tail(stmt);
1604
1605 stmt->then_instructions.append_list(&rhs_instructions);
1606 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1607 ir_assignment *const then_assign =
1608 new(ctx) ir_assignment(then_deref, op[1]);
1609 stmt->then_instructions.push_tail(then_assign);
1610
1611 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1612 ir_assignment *const else_assign =
1613 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1614 stmt->else_instructions.push_tail(else_assign);
1615
1616 result = new(ctx) ir_dereference_variable(tmp);
1617 }
1618 break;
1619 }
1620
1621 case ast_logic_or: {
1622 exec_list rhs_instructions;
1623 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1624 "LHS", &error_emitted);
1625 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1626 "RHS", &error_emitted);
1627
1628 if (rhs_instructions.is_empty()) {
1629 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1630 } else {
1631 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1632 "or_tmp",
1633 ir_var_temporary);
1634 instructions->push_tail(tmp);
1635
1636 ir_if *const stmt = new(ctx) ir_if(op[0]);
1637 instructions->push_tail(stmt);
1638
1639 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1640 ir_assignment *const then_assign =
1641 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1642 stmt->then_instructions.push_tail(then_assign);
1643
1644 stmt->else_instructions.append_list(&rhs_instructions);
1645 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1646 ir_assignment *const else_assign =
1647 new(ctx) ir_assignment(else_deref, op[1]);
1648 stmt->else_instructions.push_tail(else_assign);
1649
1650 result = new(ctx) ir_dereference_variable(tmp);
1651 }
1652 break;
1653 }
1654
1655 case ast_logic_xor:
1656 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1657 *
1658 * "The logical binary operators and (&&), or ( | | ), and
1659 * exclusive or (^^). They operate only on two Boolean
1660 * expressions and result in a Boolean expression."
1661 */
1662 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1663 &error_emitted);
1664 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1665 &error_emitted);
1666
1667 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1668 op[0], op[1]);
1669 break;
1670
1671 case ast_logic_not:
1672 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1673 "operand", &error_emitted);
1674
1675 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1676 op[0], NULL);
1677 break;
1678
1679 case ast_mul_assign:
1680 case ast_div_assign:
1681 case ast_add_assign:
1682 case ast_sub_assign: {
1683 this->subexpressions[0]->set_is_lhs(true);
1684 op[0] = this->subexpressions[0]->hir(instructions, state);
1685 op[1] = this->subexpressions[1]->hir(instructions, state);
1686
1687 orig_type = op[0]->type;
1688
1689 /* Break out if operand types were not parsed successfully. */
1690 if ((op[0]->type == glsl_type::error_type ||
1691 op[1]->type == glsl_type::error_type))
1692 break;
1693
1694 type = arithmetic_result_type(op[0], op[1],
1695 (this->oper == ast_mul_assign),
1696 state, & loc);
1697
1698 if (type != orig_type) {
1699 _mesa_glsl_error(& loc, state,
1700 "could not implicitly convert "
1701 "%s to %s", type->name, orig_type->name);
1702 type = glsl_type::error_type;
1703 }
1704
1705 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1706 op[0], op[1]);
1707
1708 error_emitted =
1709 do_assignment(instructions, state,
1710 this->subexpressions[0]->non_lvalue_description,
1711 op[0]->clone(ctx, NULL), temp_rhs,
1712 &result, needs_rvalue, false,
1713 this->subexpressions[0]->get_location());
1714
1715 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1716 * explicitly test for this because none of the binary expression
1717 * operators allow array operands either.
1718 */
1719
1720 break;
1721 }
1722
1723 case ast_mod_assign: {
1724 this->subexpressions[0]->set_is_lhs(true);
1725 op[0] = this->subexpressions[0]->hir(instructions, state);
1726 op[1] = this->subexpressions[1]->hir(instructions, state);
1727
1728 orig_type = op[0]->type;
1729 type = modulus_result_type(op[0], op[1], state, &loc);
1730
1731 if (type != orig_type) {
1732 _mesa_glsl_error(& loc, state,
1733 "could not implicitly convert "
1734 "%s to %s", type->name, orig_type->name);
1735 type = glsl_type::error_type;
1736 }
1737
1738 assert(operations[this->oper] == ir_binop_mod);
1739
1740 ir_rvalue *temp_rhs;
1741 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1742 op[0], op[1]);
1743
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_ls_assign:
1754 case ast_rs_assign: {
1755 this->subexpressions[0]->set_is_lhs(true);
1756 op[0] = this->subexpressions[0]->hir(instructions, state);
1757 op[1] = this->subexpressions[1]->hir(instructions, state);
1758 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1759 &loc);
1760 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1761 type, op[0], op[1]);
1762 error_emitted =
1763 do_assignment(instructions, state,
1764 this->subexpressions[0]->non_lvalue_description,
1765 op[0]->clone(ctx, NULL), temp_rhs,
1766 &result, needs_rvalue, false,
1767 this->subexpressions[0]->get_location());
1768 break;
1769 }
1770
1771 case ast_and_assign:
1772 case ast_xor_assign:
1773 case ast_or_assign: {
1774 this->subexpressions[0]->set_is_lhs(true);
1775 op[0] = this->subexpressions[0]->hir(instructions, state);
1776 op[1] = this->subexpressions[1]->hir(instructions, state);
1777
1778 orig_type = op[0]->type;
1779 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1780
1781 if (type != orig_type) {
1782 _mesa_glsl_error(& loc, state,
1783 "could not implicitly convert "
1784 "%s to %s", type->name, orig_type->name);
1785 type = glsl_type::error_type;
1786 }
1787
1788 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1789 type, op[0], op[1]);
1790 error_emitted =
1791 do_assignment(instructions, state,
1792 this->subexpressions[0]->non_lvalue_description,
1793 op[0]->clone(ctx, NULL), temp_rhs,
1794 &result, needs_rvalue, false,
1795 this->subexpressions[0]->get_location());
1796 break;
1797 }
1798
1799 case ast_conditional: {
1800 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1801 *
1802 * "The ternary selection operator (?:). It operates on three
1803 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1804 * first expression, which must result in a scalar Boolean."
1805 */
1806 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1807 "condition", &error_emitted);
1808
1809 /* The :? operator is implemented by generating an anonymous temporary
1810 * followed by an if-statement. The last instruction in each branch of
1811 * the if-statement assigns a value to the anonymous temporary. This
1812 * temporary is the r-value of the expression.
1813 */
1814 exec_list then_instructions;
1815 exec_list else_instructions;
1816
1817 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1818 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1819
1820 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1821 *
1822 * "The second and third expressions can be any type, as
1823 * long their types match, or there is a conversion in
1824 * Section 4.1.10 "Implicit Conversions" that can be applied
1825 * to one of the expressions to make their types match. This
1826 * resulting matching type is the type of the entire
1827 * expression."
1828 */
1829 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1830 && !apply_implicit_conversion(op[2]->type, op[1], state))
1831 || (op[1]->type != op[2]->type)) {
1832 YYLTYPE loc = this->subexpressions[1]->get_location();
1833
1834 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1835 "operator must have matching types");
1836 error_emitted = true;
1837 type = glsl_type::error_type;
1838 } else {
1839 type = op[1]->type;
1840 }
1841
1842 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The second and third expressions must be the same type, but can
1845 * be of any type other than an array."
1846 */
1847 if (type->is_array() &&
1848 !state->check_version(120, 300, &loc,
1849 "second and third operands of ?: operator "
1850 "cannot be arrays")) {
1851 error_emitted = true;
1852 }
1853
1854 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1855 *
1856 * "Except for array indexing, structure member selection, and
1857 * parentheses, opaque variables are not allowed to be operands in
1858 * expressions; such use results in a compile-time error."
1859 */
1860 if (type->contains_opaque()) {
1861 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1862 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1863 "operands of the ?: operator", type->name);
1864 error_emitted = true;
1865 }
1866 }
1867
1868 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1869
1870 if (then_instructions.is_empty()
1871 && else_instructions.is_empty()
1872 && cond_val != NULL) {
1873 result = cond_val->value.b[0] ? op[1] : op[2];
1874 } else {
1875 /* The copy to conditional_tmp reads the whole array. */
1876 if (type->is_array()) {
1877 mark_whole_array_access(op[1]);
1878 mark_whole_array_access(op[2]);
1879 }
1880
1881 ir_variable *const tmp =
1882 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1883 instructions->push_tail(tmp);
1884
1885 ir_if *const stmt = new(ctx) ir_if(op[0]);
1886 instructions->push_tail(stmt);
1887
1888 then_instructions.move_nodes_to(& stmt->then_instructions);
1889 ir_dereference *const then_deref =
1890 new(ctx) ir_dereference_variable(tmp);
1891 ir_assignment *const then_assign =
1892 new(ctx) ir_assignment(then_deref, op[1]);
1893 stmt->then_instructions.push_tail(then_assign);
1894
1895 else_instructions.move_nodes_to(& stmt->else_instructions);
1896 ir_dereference *const else_deref =
1897 new(ctx) ir_dereference_variable(tmp);
1898 ir_assignment *const else_assign =
1899 new(ctx) ir_assignment(else_deref, op[2]);
1900 stmt->else_instructions.push_tail(else_assign);
1901
1902 result = new(ctx) ir_dereference_variable(tmp);
1903 }
1904 break;
1905 }
1906
1907 case ast_pre_inc:
1908 case ast_pre_dec: {
1909 this->non_lvalue_description = (this->oper == ast_pre_inc)
1910 ? "pre-increment operation" : "pre-decrement operation";
1911
1912 op[0] = this->subexpressions[0]->hir(instructions, state);
1913 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1914
1915 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1916
1917 ir_rvalue *temp_rhs;
1918 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1919 op[0], op[1]);
1920
1921 error_emitted =
1922 do_assignment(instructions, state,
1923 this->subexpressions[0]->non_lvalue_description,
1924 op[0]->clone(ctx, NULL), temp_rhs,
1925 &result, needs_rvalue, false,
1926 this->subexpressions[0]->get_location());
1927 break;
1928 }
1929
1930 case ast_post_inc:
1931 case ast_post_dec: {
1932 this->non_lvalue_description = (this->oper == ast_post_inc)
1933 ? "post-increment operation" : "post-decrement operation";
1934 op[0] = this->subexpressions[0]->hir(instructions, state);
1935 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1936
1937 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1938
1939 if (error_emitted) {
1940 result = ir_rvalue::error_value(ctx);
1941 break;
1942 }
1943
1944 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1945
1946 ir_rvalue *temp_rhs;
1947 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1948 op[0], op[1]);
1949
1950 /* Get a temporary of a copy of the lvalue before it's modified.
1951 * This may get thrown away later.
1952 */
1953 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1954
1955 ir_rvalue *junk_rvalue;
1956 error_emitted =
1957 do_assignment(instructions, state,
1958 this->subexpressions[0]->non_lvalue_description,
1959 op[0]->clone(ctx, NULL), temp_rhs,
1960 &junk_rvalue, false, false,
1961 this->subexpressions[0]->get_location());
1962
1963 break;
1964 }
1965
1966 case ast_field_selection:
1967 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1968 break;
1969
1970 case ast_array_index: {
1971 YYLTYPE index_loc = subexpressions[1]->get_location();
1972
1973 /* Getting if an array is being used uninitialized is beyond what we get
1974 * from ir_value.data.assigned. Setting is_lhs as true would force to
1975 * not raise a uninitialized warning when using an array
1976 */
1977 subexpressions[0]->set_is_lhs(true);
1978 op[0] = subexpressions[0]->hir(instructions, state);
1979 op[1] = subexpressions[1]->hir(instructions, state);
1980
1981 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1982 loc, index_loc);
1983
1984 if (result->type->is_error())
1985 error_emitted = true;
1986
1987 break;
1988 }
1989
1990 case ast_unsized_array_dim:
1991 unreachable("ast_unsized_array_dim: Should never get here.");
1992
1993 case ast_function_call:
1994 /* Should *NEVER* get here. ast_function_call should always be handled
1995 * by ast_function_expression::hir.
1996 */
1997 unreachable("ast_function_call: handled elsewhere ");
1998
1999 case ast_identifier: {
2000 /* ast_identifier can appear several places in a full abstract syntax
2001 * tree. This particular use must be at location specified in the grammar
2002 * as 'variable_identifier'.
2003 */
2004 ir_variable *var =
2005 state->symbols->get_variable(this->primary_expression.identifier);
2006
2007 if (var == NULL) {
2008 /* the identifier might be a subroutine name */
2009 char *sub_name;
2010 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2011 var = state->symbols->get_variable(sub_name);
2012 ralloc_free(sub_name);
2013 }
2014
2015 if (var != NULL) {
2016 var->data.used = true;
2017 result = new(ctx) ir_dereference_variable(var);
2018
2019 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2020 && !this->is_lhs
2021 && result->variable_referenced()->data.assigned != true
2022 && !is_gl_identifier(var->name)) {
2023 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2024 this->primary_expression.identifier);
2025 }
2026
2027 /* From the EXT_shader_framebuffer_fetch spec:
2028 *
2029 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2030 * enabled in addition, it's an error to use gl_LastFragData if it
2031 * hasn't been explicitly redeclared with layout(noncoherent)."
2032 */
2033 if (var->data.fb_fetch_output && var->data.memory_coherent &&
2034 !state->EXT_shader_framebuffer_fetch_enable) {
2035 _mesa_glsl_error(&loc, state,
2036 "invalid use of framebuffer fetch output not "
2037 "qualified with layout(noncoherent)");
2038 }
2039
2040 } else {
2041 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2042 this->primary_expression.identifier);
2043
2044 result = ir_rvalue::error_value(ctx);
2045 error_emitted = true;
2046 }
2047 break;
2048 }
2049
2050 case ast_int_constant:
2051 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2052 break;
2053
2054 case ast_uint_constant:
2055 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2056 break;
2057
2058 case ast_float_constant:
2059 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2060 break;
2061
2062 case ast_bool_constant:
2063 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2064 break;
2065
2066 case ast_double_constant:
2067 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2068 break;
2069
2070 case ast_uint64_constant:
2071 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2072 break;
2073
2074 case ast_int64_constant:
2075 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2076 break;
2077
2078 case ast_sequence: {
2079 /* It should not be possible to generate a sequence in the AST without
2080 * any expressions in it.
2081 */
2082 assert(!this->expressions.is_empty());
2083
2084 /* The r-value of a sequence is the last expression in the sequence. If
2085 * the other expressions in the sequence do not have side-effects (and
2086 * therefore add instructions to the instruction list), they get dropped
2087 * on the floor.
2088 */
2089 exec_node *previous_tail = NULL;
2090 YYLTYPE previous_operand_loc = loc;
2091
2092 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2093 /* If one of the operands of comma operator does not generate any
2094 * code, we want to emit a warning. At each pass through the loop
2095 * previous_tail will point to the last instruction in the stream
2096 * *before* processing the previous operand. Naturally,
2097 * instructions->get_tail_raw() will point to the last instruction in
2098 * the stream *after* processing the previous operand. If the two
2099 * pointers match, then the previous operand had no effect.
2100 *
2101 * The warning behavior here differs slightly from GCC. GCC will
2102 * only emit a warning if none of the left-hand operands have an
2103 * effect. However, it will emit a warning for each. I believe that
2104 * there are some cases in C (especially with GCC extensions) where
2105 * it is useful to have an intermediate step in a sequence have no
2106 * effect, but I don't think these cases exist in GLSL. Either way,
2107 * it would be a giant hassle to replicate that behavior.
2108 */
2109 if (previous_tail == instructions->get_tail_raw()) {
2110 _mesa_glsl_warning(&previous_operand_loc, state,
2111 "left-hand operand of comma expression has "
2112 "no effect");
2113 }
2114
2115 /* The tail is directly accessed instead of using the get_tail()
2116 * method for performance reasons. get_tail() has extra code to
2117 * return NULL when the list is empty. We don't care about that
2118 * here, so using get_tail_raw() is fine.
2119 */
2120 previous_tail = instructions->get_tail_raw();
2121 previous_operand_loc = ast->get_location();
2122
2123 result = ast->hir(instructions, state);
2124 }
2125
2126 /* Any errors should have already been emitted in the loop above.
2127 */
2128 error_emitted = true;
2129 break;
2130 }
2131 }
2132 type = NULL; /* use result->type, not type. */
2133 assert(result != NULL || !needs_rvalue);
2134
2135 if (result && result->type->is_error() && !error_emitted)
2136 _mesa_glsl_error(& loc, state, "type mismatch");
2137
2138 return result;
2139 }
2140
2141 bool
2142 ast_expression::has_sequence_subexpression() const
2143 {
2144 switch (this->oper) {
2145 case ast_plus:
2146 case ast_neg:
2147 case ast_bit_not:
2148 case ast_logic_not:
2149 case ast_pre_inc:
2150 case ast_pre_dec:
2151 case ast_post_inc:
2152 case ast_post_dec:
2153 return this->subexpressions[0]->has_sequence_subexpression();
2154
2155 case ast_assign:
2156 case ast_add:
2157 case ast_sub:
2158 case ast_mul:
2159 case ast_div:
2160 case ast_mod:
2161 case ast_lshift:
2162 case ast_rshift:
2163 case ast_less:
2164 case ast_greater:
2165 case ast_lequal:
2166 case ast_gequal:
2167 case ast_nequal:
2168 case ast_equal:
2169 case ast_bit_and:
2170 case ast_bit_xor:
2171 case ast_bit_or:
2172 case ast_logic_and:
2173 case ast_logic_or:
2174 case ast_logic_xor:
2175 case ast_array_index:
2176 case ast_mul_assign:
2177 case ast_div_assign:
2178 case ast_add_assign:
2179 case ast_sub_assign:
2180 case ast_mod_assign:
2181 case ast_ls_assign:
2182 case ast_rs_assign:
2183 case ast_and_assign:
2184 case ast_xor_assign:
2185 case ast_or_assign:
2186 return this->subexpressions[0]->has_sequence_subexpression() ||
2187 this->subexpressions[1]->has_sequence_subexpression();
2188
2189 case ast_conditional:
2190 return this->subexpressions[0]->has_sequence_subexpression() ||
2191 this->subexpressions[1]->has_sequence_subexpression() ||
2192 this->subexpressions[2]->has_sequence_subexpression();
2193
2194 case ast_sequence:
2195 return true;
2196
2197 case ast_field_selection:
2198 case ast_identifier:
2199 case ast_int_constant:
2200 case ast_uint_constant:
2201 case ast_float_constant:
2202 case ast_bool_constant:
2203 case ast_double_constant:
2204 case ast_int64_constant:
2205 case ast_uint64_constant:
2206 return false;
2207
2208 case ast_aggregate:
2209 return false;
2210
2211 case ast_function_call:
2212 unreachable("should be handled by ast_function_expression::hir");
2213
2214 case ast_unsized_array_dim:
2215 unreachable("ast_unsized_array_dim: Should never get here.");
2216 }
2217
2218 return false;
2219 }
2220
2221 ir_rvalue *
2222 ast_expression_statement::hir(exec_list *instructions,
2223 struct _mesa_glsl_parse_state *state)
2224 {
2225 /* It is possible to have expression statements that don't have an
2226 * expression. This is the solitary semicolon:
2227 *
2228 * for (i = 0; i < 5; i++)
2229 * ;
2230 *
2231 * In this case the expression will be NULL. Test for NULL and don't do
2232 * anything in that case.
2233 */
2234 if (expression != NULL)
2235 expression->hir_no_rvalue(instructions, state);
2236
2237 /* Statements do not have r-values.
2238 */
2239 return NULL;
2240 }
2241
2242
2243 ir_rvalue *
2244 ast_compound_statement::hir(exec_list *instructions,
2245 struct _mesa_glsl_parse_state *state)
2246 {
2247 if (new_scope)
2248 state->symbols->push_scope();
2249
2250 foreach_list_typed (ast_node, ast, link, &this->statements)
2251 ast->hir(instructions, state);
2252
2253 if (new_scope)
2254 state->symbols->pop_scope();
2255
2256 /* Compound statements do not have r-values.
2257 */
2258 return NULL;
2259 }
2260
2261 /**
2262 * Evaluate the given exec_node (which should be an ast_node representing
2263 * a single array dimension) and return its integer value.
2264 */
2265 static unsigned
2266 process_array_size(exec_node *node,
2267 struct _mesa_glsl_parse_state *state)
2268 {
2269 void *mem_ctx = state;
2270
2271 exec_list dummy_instructions;
2272
2273 ast_node *array_size = exec_node_data(ast_node, node, link);
2274
2275 /**
2276 * Dimensions other than the outermost dimension can by unsized if they
2277 * are immediately sized by a constructor or initializer.
2278 */
2279 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2280 return 0;
2281
2282 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2283 YYLTYPE loc = array_size->get_location();
2284
2285 if (ir == NULL) {
2286 _mesa_glsl_error(& loc, state,
2287 "array size could not be resolved");
2288 return 0;
2289 }
2290
2291 if (!ir->type->is_integer()) {
2292 _mesa_glsl_error(& loc, state,
2293 "array size must be integer type");
2294 return 0;
2295 }
2296
2297 if (!ir->type->is_scalar()) {
2298 _mesa_glsl_error(& loc, state,
2299 "array size must be scalar type");
2300 return 0;
2301 }
2302
2303 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2304 if (size == NULL ||
2305 (state->is_version(120, 300) &&
2306 array_size->has_sequence_subexpression())) {
2307 _mesa_glsl_error(& loc, state, "array size must be a "
2308 "constant valued expression");
2309 return 0;
2310 }
2311
2312 if (size->value.i[0] <= 0) {
2313 _mesa_glsl_error(& loc, state, "array size must be > 0");
2314 return 0;
2315 }
2316
2317 assert(size->type == ir->type);
2318
2319 /* If the array size is const (and we've verified that
2320 * it is) then no instructions should have been emitted
2321 * when we converted it to HIR. If they were emitted,
2322 * then either the array size isn't const after all, or
2323 * we are emitting unnecessary instructions.
2324 */
2325 assert(dummy_instructions.is_empty());
2326
2327 return size->value.u[0];
2328 }
2329
2330 static const glsl_type *
2331 process_array_type(YYLTYPE *loc, const glsl_type *base,
2332 ast_array_specifier *array_specifier,
2333 struct _mesa_glsl_parse_state *state)
2334 {
2335 const glsl_type *array_type = base;
2336
2337 if (array_specifier != NULL) {
2338 if (base->is_array()) {
2339
2340 /* From page 19 (page 25) of the GLSL 1.20 spec:
2341 *
2342 * "Only one-dimensional arrays may be declared."
2343 */
2344 if (!state->check_arrays_of_arrays_allowed(loc)) {
2345 return glsl_type::error_type;
2346 }
2347 }
2348
2349 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2350 !node->is_head_sentinel(); node = node->prev) {
2351 unsigned array_size = process_array_size(node, state);
2352 array_type = glsl_type::get_array_instance(array_type, array_size);
2353 }
2354 }
2355
2356 return array_type;
2357 }
2358
2359 static bool
2360 precision_qualifier_allowed(const glsl_type *type)
2361 {
2362 /* Precision qualifiers apply to floating point, integer and opaque
2363 * types.
2364 *
2365 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2366 * "Any floating point or any integer declaration can have the type
2367 * preceded by one of these precision qualifiers [...] Literal
2368 * constants do not have precision qualifiers. Neither do Boolean
2369 * variables.
2370 *
2371 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2372 * spec also says:
2373 *
2374 * "Precision qualifiers are added for code portability with OpenGL
2375 * ES, not for functionality. They have the same syntax as in OpenGL
2376 * ES."
2377 *
2378 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2379 *
2380 * "uniform lowp sampler2D sampler;
2381 * highp vec2 coord;
2382 * ...
2383 * lowp vec4 col = texture2D (sampler, coord);
2384 * // texture2D returns lowp"
2385 *
2386 * From this, we infer that GLSL 1.30 (and later) should allow precision
2387 * qualifiers on sampler types just like float and integer types.
2388 */
2389 const glsl_type *const t = type->without_array();
2390
2391 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2392 !t->is_struct();
2393 }
2394
2395 const glsl_type *
2396 ast_type_specifier::glsl_type(const char **name,
2397 struct _mesa_glsl_parse_state *state) const
2398 {
2399 const struct glsl_type *type;
2400
2401 if (this->type != NULL)
2402 type = this->type;
2403 else if (structure)
2404 type = structure->type;
2405 else
2406 type = state->symbols->get_type(this->type_name);
2407 *name = this->type_name;
2408
2409 YYLTYPE loc = this->get_location();
2410 type = process_array_type(&loc, type, this->array_specifier, state);
2411
2412 return type;
2413 }
2414
2415 /**
2416 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2417 *
2418 * "The precision statement
2419 *
2420 * precision precision-qualifier type;
2421 *
2422 * can be used to establish a default precision qualifier. The type field can
2423 * be either int or float or any of the sampler types, (...) If type is float,
2424 * the directive applies to non-precision-qualified floating point type
2425 * (scalar, vector, and matrix) declarations. If type is int, the directive
2426 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2427 * and unsigned) declarations."
2428 *
2429 * We use the symbol table to keep the values of the default precisions for
2430 * each 'type' in each scope and we use the 'type' string from the precision
2431 * statement as key in the symbol table. When we want to retrieve the default
2432 * precision associated with a given glsl_type we need to know the type string
2433 * associated with it. This is what this function returns.
2434 */
2435 static const char *
2436 get_type_name_for_precision_qualifier(const glsl_type *type)
2437 {
2438 switch (type->base_type) {
2439 case GLSL_TYPE_FLOAT:
2440 return "float";
2441 case GLSL_TYPE_UINT:
2442 case GLSL_TYPE_INT:
2443 return "int";
2444 case GLSL_TYPE_ATOMIC_UINT:
2445 return "atomic_uint";
2446 case GLSL_TYPE_IMAGE:
2447 /* fallthrough */
2448 case GLSL_TYPE_SAMPLER: {
2449 const unsigned type_idx =
2450 type->sampler_array + 2 * type->sampler_shadow;
2451 const unsigned offset = type->is_sampler() ? 0 : 4;
2452 assert(type_idx < 4);
2453 switch (type->sampled_type) {
2454 case GLSL_TYPE_FLOAT:
2455 switch (type->sampler_dimensionality) {
2456 case GLSL_SAMPLER_DIM_1D: {
2457 assert(type->is_sampler());
2458 static const char *const names[4] = {
2459 "sampler1D", "sampler1DArray",
2460 "sampler1DShadow", "sampler1DArrayShadow"
2461 };
2462 return names[type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_2D: {
2465 static const char *const names[8] = {
2466 "sampler2D", "sampler2DArray",
2467 "sampler2DShadow", "sampler2DArrayShadow",
2468 "image2D", "image2DArray", NULL, NULL
2469 };
2470 return names[offset + type_idx];
2471 }
2472 case GLSL_SAMPLER_DIM_3D: {
2473 static const char *const names[8] = {
2474 "sampler3D", NULL, NULL, NULL,
2475 "image3D", NULL, NULL, NULL
2476 };
2477 return names[offset + type_idx];
2478 }
2479 case GLSL_SAMPLER_DIM_CUBE: {
2480 static const char *const names[8] = {
2481 "samplerCube", "samplerCubeArray",
2482 "samplerCubeShadow", "samplerCubeArrayShadow",
2483 "imageCube", NULL, NULL, NULL
2484 };
2485 return names[offset + type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_MS: {
2488 assert(type->is_sampler());
2489 static const char *const names[4] = {
2490 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2491 };
2492 return names[type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_RECT: {
2495 assert(type->is_sampler());
2496 static const char *const names[4] = {
2497 "samplerRect", NULL, "samplerRectShadow", NULL
2498 };
2499 return names[type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_BUF: {
2502 static const char *const names[8] = {
2503 "samplerBuffer", NULL, NULL, NULL,
2504 "imageBuffer", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_EXTERNAL: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "samplerExternalOES", NULL, NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 default:
2516 unreachable("Unsupported sampler/image dimensionality");
2517 } /* sampler/image float dimensionality */
2518 break;
2519 case GLSL_TYPE_INT:
2520 switch (type->sampler_dimensionality) {
2521 case GLSL_SAMPLER_DIM_1D: {
2522 assert(type->is_sampler());
2523 static const char *const names[4] = {
2524 "isampler1D", "isampler1DArray", NULL, NULL
2525 };
2526 return names[type_idx];
2527 }
2528 case GLSL_SAMPLER_DIM_2D: {
2529 static const char *const names[8] = {
2530 "isampler2D", "isampler2DArray", NULL, NULL,
2531 "iimage2D", "iimage2DArray", NULL, NULL
2532 };
2533 return names[offset + type_idx];
2534 }
2535 case GLSL_SAMPLER_DIM_3D: {
2536 static const char *const names[8] = {
2537 "isampler3D", NULL, NULL, NULL,
2538 "iimage3D", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_CUBE: {
2543 static const char *const names[8] = {
2544 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2545 "iimageCube", NULL, NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_MS: {
2550 assert(type->is_sampler());
2551 static const char *const names[4] = {
2552 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2553 };
2554 return names[type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_RECT: {
2557 assert(type->is_sampler());
2558 static const char *const names[4] = {
2559 "isamplerRect", NULL, "isamplerRectShadow", NULL
2560 };
2561 return names[type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_BUF: {
2564 static const char *const names[8] = {
2565 "isamplerBuffer", NULL, NULL, NULL,
2566 "iimageBuffer", NULL, NULL, NULL
2567 };
2568 return names[offset + type_idx];
2569 }
2570 default:
2571 unreachable("Unsupported isampler/iimage dimensionality");
2572 } /* sampler/image int dimensionality */
2573 break;
2574 case GLSL_TYPE_UINT:
2575 switch (type->sampler_dimensionality) {
2576 case GLSL_SAMPLER_DIM_1D: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "usampler1D", "usampler1DArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_2D: {
2584 static const char *const names[8] = {
2585 "usampler2D", "usampler2DArray", NULL, NULL,
2586 "uimage2D", "uimage2DArray", NULL, NULL
2587 };
2588 return names[offset + type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_3D: {
2591 static const char *const names[8] = {
2592 "usampler3D", NULL, NULL, NULL,
2593 "uimage3D", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 case GLSL_SAMPLER_DIM_CUBE: {
2598 static const char *const names[8] = {
2599 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2600 "uimageCube", NULL, NULL, NULL
2601 };
2602 return names[offset + type_idx];
2603 }
2604 case GLSL_SAMPLER_DIM_MS: {
2605 assert(type->is_sampler());
2606 static const char *const names[4] = {
2607 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2608 };
2609 return names[type_idx];
2610 }
2611 case GLSL_SAMPLER_DIM_RECT: {
2612 assert(type->is_sampler());
2613 static const char *const names[4] = {
2614 "usamplerRect", NULL, "usamplerRectShadow", NULL
2615 };
2616 return names[type_idx];
2617 }
2618 case GLSL_SAMPLER_DIM_BUF: {
2619 static const char *const names[8] = {
2620 "usamplerBuffer", NULL, NULL, NULL,
2621 "uimageBuffer", NULL, NULL, NULL
2622 };
2623 return names[offset + type_idx];
2624 }
2625 default:
2626 unreachable("Unsupported usampler/uimage dimensionality");
2627 } /* sampler/image uint dimensionality */
2628 break;
2629 default:
2630 unreachable("Unsupported sampler/image type");
2631 } /* sampler/image type */
2632 break;
2633 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2634 break;
2635 default:
2636 unreachable("Unsupported type");
2637 } /* base type */
2638 }
2639
2640 static unsigned
2641 select_gles_precision(unsigned qual_precision,
2642 const glsl_type *type,
2643 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2644 {
2645 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2646 * In GLES we take the precision from the type qualifier if present,
2647 * otherwise, if the type of the variable allows precision qualifiers at
2648 * all, we look for the default precision qualifier for that type in the
2649 * current scope.
2650 */
2651 assert(state->es_shader);
2652
2653 unsigned precision = GLSL_PRECISION_NONE;
2654 if (qual_precision) {
2655 precision = qual_precision;
2656 } else if (precision_qualifier_allowed(type)) {
2657 const char *type_name =
2658 get_type_name_for_precision_qualifier(type->without_array());
2659 assert(type_name != NULL);
2660
2661 precision =
2662 state->symbols->get_default_precision_qualifier(type_name);
2663 if (precision == ast_precision_none) {
2664 _mesa_glsl_error(loc, state,
2665 "No precision specified in this scope for type `%s'",
2666 type->name);
2667 }
2668 }
2669
2670
2671 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2672 *
2673 * "The default precision of all atomic types is highp. It is an error to
2674 * declare an atomic type with a different precision or to specify the
2675 * default precision for an atomic type to be lowp or mediump."
2676 */
2677 if (type->is_atomic_uint() && precision != ast_precision_high) {
2678 _mesa_glsl_error(loc, state,
2679 "atomic_uint can only have highp precision qualifier");
2680 }
2681
2682 return precision;
2683 }
2684
2685 const glsl_type *
2686 ast_fully_specified_type::glsl_type(const char **name,
2687 struct _mesa_glsl_parse_state *state) const
2688 {
2689 return this->specifier->glsl_type(name, state);
2690 }
2691
2692 /**
2693 * Determine whether a toplevel variable declaration declares a varying. This
2694 * function operates by examining the variable's mode and the shader target,
2695 * so it correctly identifies linkage variables regardless of whether they are
2696 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2697 *
2698 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2699 * this function will produce undefined results.
2700 */
2701 static bool
2702 is_varying_var(ir_variable *var, gl_shader_stage target)
2703 {
2704 switch (target) {
2705 case MESA_SHADER_VERTEX:
2706 return var->data.mode == ir_var_shader_out;
2707 case MESA_SHADER_FRAGMENT:
2708 return var->data.mode == ir_var_shader_in;
2709 default:
2710 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2711 }
2712 }
2713
2714 static bool
2715 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2716 {
2717 if (is_varying_var(var, state->stage))
2718 return true;
2719
2720 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2721 * "Only variables output from a vertex shader can be candidates
2722 * for invariance".
2723 */
2724 if (!state->is_version(130, 100))
2725 return false;
2726
2727 /*
2728 * Later specs remove this language - so allowed invariant
2729 * on fragment shader outputs as well.
2730 */
2731 if (state->stage == MESA_SHADER_FRAGMENT &&
2732 var->data.mode == ir_var_shader_out)
2733 return true;
2734 return false;
2735 }
2736
2737 /**
2738 * Matrix layout qualifiers are only allowed on certain types
2739 */
2740 static void
2741 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2742 YYLTYPE *loc,
2743 const glsl_type *type,
2744 ir_variable *var)
2745 {
2746 if (var && !var->is_in_buffer_block()) {
2747 /* Layout qualifiers may only apply to interface blocks and fields in
2748 * them.
2749 */
2750 _mesa_glsl_error(loc, state,
2751 "uniform block layout qualifiers row_major and "
2752 "column_major may not be applied to variables "
2753 "outside of uniform blocks");
2754 } else if (!type->without_array()->is_matrix()) {
2755 /* The OpenGL ES 3.0 conformance tests did not originally allow
2756 * matrix layout qualifiers on non-matrices. However, the OpenGL
2757 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2758 * amended to specifically allow these layouts on all types. Emit
2759 * a warning so that people know their code may not be portable.
2760 */
2761 _mesa_glsl_warning(loc, state,
2762 "uniform block layout qualifiers row_major and "
2763 "column_major applied to non-matrix types may "
2764 "be rejected by older compilers");
2765 }
2766 }
2767
2768 static bool
2769 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2770 struct _mesa_glsl_parse_state *state,
2771 unsigned xfb_buffer) {
2772 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2773 _mesa_glsl_error(loc, state,
2774 "invalid xfb_buffer specified %d is larger than "
2775 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2776 xfb_buffer,
2777 state->Const.MaxTransformFeedbackBuffers - 1);
2778 return false;
2779 }
2780
2781 return true;
2782 }
2783
2784 /* From the ARB_enhanced_layouts spec:
2785 *
2786 * "Variables and block members qualified with *xfb_offset* can be
2787 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2788 * The offset must be a multiple of the size of the first component of
2789 * the first qualified variable or block member, or a compile-time error
2790 * results. Further, if applied to an aggregate containing a double,
2791 * the offset must also be a multiple of 8, and the space taken in the
2792 * buffer will be a multiple of 8.
2793 */
2794 static bool
2795 validate_xfb_offset_qualifier(YYLTYPE *loc,
2796 struct _mesa_glsl_parse_state *state,
2797 int xfb_offset, const glsl_type *type,
2798 unsigned component_size) {
2799 const glsl_type *t_without_array = type->without_array();
2800
2801 if (xfb_offset != -1 && type->is_unsized_array()) {
2802 _mesa_glsl_error(loc, state,
2803 "xfb_offset can't be used with unsized arrays.");
2804 return false;
2805 }
2806
2807 /* Make sure nested structs don't contain unsized arrays, and validate
2808 * any xfb_offsets on interface members.
2809 */
2810 if (t_without_array->is_struct() || t_without_array->is_interface())
2811 for (unsigned int i = 0; i < t_without_array->length; i++) {
2812 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2813
2814 /* When the interface block doesn't have an xfb_offset qualifier then
2815 * we apply the component size rules at the member level.
2816 */
2817 if (xfb_offset == -1)
2818 component_size = member_t->contains_double() ? 8 : 4;
2819
2820 int xfb_offset = t_without_array->fields.structure[i].offset;
2821 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2822 component_size);
2823 }
2824
2825 /* Nested structs or interface block without offset may not have had an
2826 * offset applied yet so return.
2827 */
2828 if (xfb_offset == -1) {
2829 return true;
2830 }
2831
2832 if (xfb_offset % component_size) {
2833 _mesa_glsl_error(loc, state,
2834 "invalid qualifier xfb_offset=%d must be a multiple "
2835 "of the first component size of the first qualified "
2836 "variable or block member. Or double if an aggregate "
2837 "that contains a double (%d).",
2838 xfb_offset, component_size);
2839 return false;
2840 }
2841
2842 return true;
2843 }
2844
2845 static bool
2846 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2847 unsigned stream)
2848 {
2849 if (stream >= state->ctx->Const.MaxVertexStreams) {
2850 _mesa_glsl_error(loc, state,
2851 "invalid stream specified %d is larger than "
2852 "MAX_VERTEX_STREAMS - 1 (%d).",
2853 stream, state->ctx->Const.MaxVertexStreams - 1);
2854 return false;
2855 }
2856
2857 return true;
2858 }
2859
2860 static void
2861 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2862 YYLTYPE *loc,
2863 ir_variable *var,
2864 const glsl_type *type,
2865 const ast_type_qualifier *qual)
2866 {
2867 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2868 _mesa_glsl_error(loc, state,
2869 "the \"binding\" qualifier only applies to uniforms and "
2870 "shader storage buffer objects");
2871 return;
2872 }
2873
2874 unsigned qual_binding;
2875 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2876 &qual_binding)) {
2877 return;
2878 }
2879
2880 const struct gl_context *const ctx = state->ctx;
2881 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2882 unsigned max_index = qual_binding + elements - 1;
2883 const glsl_type *base_type = type->without_array();
2884
2885 if (base_type->is_interface()) {
2886 /* UBOs. From page 60 of the GLSL 4.20 specification:
2887 * "If the binding point for any uniform block instance is less than zero,
2888 * or greater than or equal to the implementation-dependent maximum
2889 * number of uniform buffer bindings, a compilation error will occur.
2890 * When the binding identifier is used with a uniform block instanced as
2891 * an array of size N, all elements of the array from binding through
2892 * binding + N – 1 must be within this range."
2893 *
2894 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2895 */
2896 if (qual->flags.q.uniform &&
2897 max_index >= ctx->Const.MaxUniformBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2899 "the maximum number of UBO binding points (%d)",
2900 qual_binding, elements,
2901 ctx->Const.MaxUniformBufferBindings);
2902 return;
2903 }
2904
2905 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2906 * "If the binding point for any uniform or shader storage block instance
2907 * is less than zero, or greater than or equal to the
2908 * implementation-dependent maximum number of uniform buffer bindings, a
2909 * compile-time error will occur. When the binding identifier is used
2910 * with a uniform or shader storage block instanced as an array of size
2911 * N, all elements of the array from binding through binding + N – 1 must
2912 * be within this range."
2913 */
2914 if (qual->flags.q.buffer &&
2915 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2916 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2917 "the maximum number of SSBO binding points (%d)",
2918 qual_binding, elements,
2919 ctx->Const.MaxShaderStorageBufferBindings);
2920 return;
2921 }
2922 } else if (base_type->is_sampler()) {
2923 /* Samplers. From page 63 of the GLSL 4.20 specification:
2924 * "If the binding is less than zero, or greater than or equal to the
2925 * implementation-dependent maximum supported number of units, a
2926 * compilation error will occur. When the binding identifier is used
2927 * with an array of size N, all elements of the array from binding
2928 * through binding + N - 1 must be within this range."
2929 */
2930 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2931
2932 if (max_index >= limit) {
2933 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2934 "exceeds the maximum number of texture image units "
2935 "(%u)", qual_binding, elements, limit);
2936
2937 return;
2938 }
2939 } else if (base_type->contains_atomic()) {
2940 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2941 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2942 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2943 "maximum number of atomic counter buffer bindings "
2944 "(%u)", qual_binding,
2945 ctx->Const.MaxAtomicBufferBindings);
2946
2947 return;
2948 }
2949 } else if ((state->is_version(420, 310) ||
2950 state->ARB_shading_language_420pack_enable) &&
2951 base_type->is_image()) {
2952 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2953 if (max_index >= ctx->Const.MaxImageUnits) {
2954 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2955 "maximum number of image units (%d)", max_index,
2956 ctx->Const.MaxImageUnits);
2957 return;
2958 }
2959
2960 } else {
2961 _mesa_glsl_error(loc, state,
2962 "the \"binding\" qualifier only applies to uniform "
2963 "blocks, storage blocks, opaque variables, or arrays "
2964 "thereof");
2965 return;
2966 }
2967
2968 var->data.explicit_binding = true;
2969 var->data.binding = qual_binding;
2970
2971 return;
2972 }
2973
2974 static void
2975 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2976 YYLTYPE *loc,
2977 const glsl_interp_mode interpolation,
2978 const struct glsl_type *var_type,
2979 ir_variable_mode mode)
2980 {
2981 if (state->stage != MESA_SHADER_FRAGMENT ||
2982 interpolation == INTERP_MODE_FLAT ||
2983 mode != ir_var_shader_in)
2984 return;
2985
2986 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2987 * so must integer vertex outputs.
2988 *
2989 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2990 * "Fragment shader inputs that are signed or unsigned integers or
2991 * integer vectors must be qualified with the interpolation qualifier
2992 * flat."
2993 *
2994 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2995 * "Fragment shader inputs that are, or contain, signed or unsigned
2996 * integers or integer vectors must be qualified with the
2997 * interpolation qualifier flat."
2998 *
2999 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3000 * "Vertex shader outputs that are, or contain, signed or unsigned
3001 * integers or integer vectors must be qualified with the
3002 * interpolation qualifier flat."
3003 *
3004 * Note that prior to GLSL 1.50, this requirement applied to vertex
3005 * outputs rather than fragment inputs. That creates problems in the
3006 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3007 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3008 * apply the restriction to both vertex outputs and fragment inputs.
3009 *
3010 * Note also that the desktop GLSL specs are missing the text "or
3011 * contain"; this is presumably an oversight, since there is no
3012 * reasonable way to interpolate a fragment shader input that contains
3013 * an integer. See Khronos bug #15671.
3014 */
3015 if (state->is_version(130, 300)
3016 && var_type->contains_integer()) {
3017 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3018 "an integer, then it must be qualified with 'flat'");
3019 }
3020
3021 /* Double fragment inputs must be qualified with 'flat'.
3022 *
3023 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3024 * "This extension does not support interpolation of double-precision
3025 * values; doubles used as fragment shader inputs must be qualified as
3026 * "flat"."
3027 *
3028 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3029 * "Fragment shader inputs that are signed or unsigned integers, integer
3030 * vectors, or any double-precision floating-point type must be
3031 * qualified with the interpolation qualifier flat."
3032 *
3033 * Note that the GLSL specs are missing the text "or contain"; this is
3034 * presumably an oversight. See Khronos bug #15671.
3035 *
3036 * The 'double' type does not exist in GLSL ES so far.
3037 */
3038 if (state->has_double()
3039 && var_type->contains_double()) {
3040 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3041 "a double, then it must be qualified with 'flat'");
3042 }
3043
3044 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3045 *
3046 * From section 4.3.4 of the ARB_bindless_texture spec:
3047 *
3048 * "(modify last paragraph, p. 35, allowing samplers and images as
3049 * fragment shader inputs) ... Fragment inputs can only be signed and
3050 * unsigned integers and integer vectors, floating point scalars,
3051 * floating-point vectors, matrices, sampler and image types, or arrays
3052 * or structures of these. Fragment shader inputs that are signed or
3053 * unsigned integers, integer vectors, or any double-precision floating-
3054 * point type, or any sampler or image type must be qualified with the
3055 * interpolation qualifier "flat"."
3056 */
3057 if (state->has_bindless()
3058 && (var_type->contains_sampler() || var_type->contains_image())) {
3059 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3060 "a bindless sampler (or image), then it must be "
3061 "qualified with 'flat'");
3062 }
3063 }
3064
3065 static void
3066 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3067 YYLTYPE *loc,
3068 const glsl_interp_mode interpolation,
3069 const struct ast_type_qualifier *qual,
3070 const struct glsl_type *var_type,
3071 ir_variable_mode mode)
3072 {
3073 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3074 * not to vertex shader inputs nor fragment shader outputs.
3075 *
3076 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3077 * "Outputs from a vertex shader (out) and inputs to a fragment
3078 * shader (in) can be further qualified with one or more of these
3079 * interpolation qualifiers"
3080 * ...
3081 * "These interpolation qualifiers may only precede the qualifiers in,
3082 * centroid in, out, or centroid out in a declaration. They do not apply
3083 * to the deprecated storage qualifiers varying or centroid
3084 * varying. They also do not apply to inputs into a vertex shader or
3085 * outputs from a fragment shader."
3086 *
3087 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3088 * "Outputs from a shader (out) and inputs to a shader (in) can be
3089 * further qualified with one of these interpolation qualifiers."
3090 * ...
3091 * "These interpolation qualifiers may only precede the qualifiers
3092 * in, centroid in, out, or centroid out in a declaration. They do
3093 * not apply to inputs into a vertex shader or outputs from a
3094 * fragment shader."
3095 */
3096 if (state->is_version(130, 300)
3097 && interpolation != INTERP_MODE_NONE) {
3098 const char *i = interpolation_string(interpolation);
3099 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3100 _mesa_glsl_error(loc, state,
3101 "interpolation qualifier `%s' can only be applied to "
3102 "shader inputs or outputs.", i);
3103
3104 switch (state->stage) {
3105 case MESA_SHADER_VERTEX:
3106 if (mode == ir_var_shader_in) {
3107 _mesa_glsl_error(loc, state,
3108 "interpolation qualifier '%s' cannot be applied to "
3109 "vertex shader inputs", i);
3110 }
3111 break;
3112 case MESA_SHADER_FRAGMENT:
3113 if (mode == ir_var_shader_out) {
3114 _mesa_glsl_error(loc, state,
3115 "interpolation qualifier '%s' cannot be applied to "
3116 "fragment shader outputs", i);
3117 }
3118 break;
3119 default:
3120 break;
3121 }
3122 }
3123
3124 /* Interpolation qualifiers cannot be applied to 'centroid' and
3125 * 'centroid varying'.
3126 *
3127 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3128 * "interpolation qualifiers may only precede the qualifiers in,
3129 * centroid in, out, or centroid out in a declaration. They do not apply
3130 * to the deprecated storage qualifiers varying or centroid varying."
3131 *
3132 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3133 */
3134 if (state->is_version(130, 0)
3135 && interpolation != INTERP_MODE_NONE
3136 && qual->flags.q.varying) {
3137
3138 const char *i = interpolation_string(interpolation);
3139 const char *s;
3140 if (qual->flags.q.centroid)
3141 s = "centroid varying";
3142 else
3143 s = "varying";
3144
3145 _mesa_glsl_error(loc, state,
3146 "qualifier '%s' cannot be applied to the "
3147 "deprecated storage qualifier '%s'", i, s);
3148 }
3149
3150 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3151 var_type, mode);
3152 }
3153
3154 static glsl_interp_mode
3155 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3156 const struct glsl_type *var_type,
3157 ir_variable_mode mode,
3158 struct _mesa_glsl_parse_state *state,
3159 YYLTYPE *loc)
3160 {
3161 glsl_interp_mode interpolation;
3162 if (qual->flags.q.flat)
3163 interpolation = INTERP_MODE_FLAT;
3164 else if (qual->flags.q.noperspective)
3165 interpolation = INTERP_MODE_NOPERSPECTIVE;
3166 else if (qual->flags.q.smooth)
3167 interpolation = INTERP_MODE_SMOOTH;
3168 else
3169 interpolation = INTERP_MODE_NONE;
3170
3171 validate_interpolation_qualifier(state, loc,
3172 interpolation,
3173 qual, var_type, mode);
3174
3175 return interpolation;
3176 }
3177
3178
3179 static void
3180 apply_explicit_location(const struct ast_type_qualifier *qual,
3181 ir_variable *var,
3182 struct _mesa_glsl_parse_state *state,
3183 YYLTYPE *loc)
3184 {
3185 bool fail = false;
3186
3187 unsigned qual_location;
3188 if (!process_qualifier_constant(state, loc, "location", qual->location,
3189 &qual_location)) {
3190 return;
3191 }
3192
3193 /* Checks for GL_ARB_explicit_uniform_location. */
3194 if (qual->flags.q.uniform) {
3195 if (!state->check_explicit_uniform_location_allowed(loc, var))
3196 return;
3197
3198 const struct gl_context *const ctx = state->ctx;
3199 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3200
3201 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3202 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3203 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3204 ctx->Const.MaxUserAssignableUniformLocations);
3205 return;
3206 }
3207
3208 var->data.explicit_location = true;
3209 var->data.location = qual_location;
3210 return;
3211 }
3212
3213 /* Between GL_ARB_explicit_attrib_location an
3214 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3215 * stage can be assigned explicit locations. The checking here associates
3216 * the correct extension with the correct stage's input / output:
3217 *
3218 * input output
3219 * ----- ------
3220 * vertex explicit_loc sso
3221 * tess control sso sso
3222 * tess eval sso sso
3223 * geometry sso sso
3224 * fragment sso explicit_loc
3225 */
3226 switch (state->stage) {
3227 case MESA_SHADER_VERTEX:
3228 if (var->data.mode == ir_var_shader_in) {
3229 if (!state->check_explicit_attrib_location_allowed(loc, var))
3230 return;
3231
3232 break;
3233 }
3234
3235 if (var->data.mode == ir_var_shader_out) {
3236 if (!state->check_separate_shader_objects_allowed(loc, var))
3237 return;
3238
3239 break;
3240 }
3241
3242 fail = true;
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3249 if (!state->check_separate_shader_objects_allowed(loc, var))
3250 return;
3251
3252 break;
3253 }
3254
3255 fail = true;
3256 break;
3257
3258 case MESA_SHADER_FRAGMENT:
3259 if (var->data.mode == ir_var_shader_in) {
3260 if (!state->check_separate_shader_objects_allowed(loc, var))
3261 return;
3262
3263 break;
3264 }
3265
3266 if (var->data.mode == ir_var_shader_out) {
3267 if (!state->check_explicit_attrib_location_allowed(loc, var))
3268 return;
3269
3270 break;
3271 }
3272
3273 fail = true;
3274 break;
3275
3276 case MESA_SHADER_COMPUTE:
3277 _mesa_glsl_error(loc, state,
3278 "compute shader variables cannot be given "
3279 "explicit locations");
3280 return;
3281 default:
3282 fail = true;
3283 break;
3284 };
3285
3286 if (fail) {
3287 _mesa_glsl_error(loc, state,
3288 "%s cannot be given an explicit location in %s shader",
3289 mode_string(var),
3290 _mesa_shader_stage_to_string(state->stage));
3291 } else {
3292 var->data.explicit_location = true;
3293
3294 switch (state->stage) {
3295 case MESA_SHADER_VERTEX:
3296 var->data.location = (var->data.mode == ir_var_shader_in)
3297 ? (qual_location + VERT_ATTRIB_GENERIC0)
3298 : (qual_location + VARYING_SLOT_VAR0);
3299 break;
3300
3301 case MESA_SHADER_TESS_CTRL:
3302 case MESA_SHADER_TESS_EVAL:
3303 case MESA_SHADER_GEOMETRY:
3304 if (var->data.patch)
3305 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3306 else
3307 var->data.location = qual_location + VARYING_SLOT_VAR0;
3308 break;
3309
3310 case MESA_SHADER_FRAGMENT:
3311 var->data.location = (var->data.mode == ir_var_shader_out)
3312 ? (qual_location + FRAG_RESULT_DATA0)
3313 : (qual_location + VARYING_SLOT_VAR0);
3314 break;
3315 default:
3316 assert(!"Unexpected shader type");
3317 break;
3318 }
3319
3320 /* Check if index was set for the uniform instead of the function */
3321 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3322 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3323 "used with subroutine functions");
3324 return;
3325 }
3326
3327 unsigned qual_index;
3328 if (qual->flags.q.explicit_index &&
3329 process_qualifier_constant(state, loc, "index", qual->index,
3330 &qual_index)) {
3331 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3332 * Layout Qualifiers):
3333 *
3334 * "It is also a compile-time error if a fragment shader
3335 * sets a layout index to less than 0 or greater than 1."
3336 *
3337 * Older specifications don't mandate a behavior; we take
3338 * this as a clarification and always generate the error.
3339 */
3340 if (qual_index > 1) {
3341 _mesa_glsl_error(loc, state,
3342 "explicit index may only be 0 or 1");
3343 } else {
3344 var->data.explicit_index = true;
3345 var->data.index = qual_index;
3346 }
3347 }
3348 }
3349 }
3350
3351 static bool
3352 validate_storage_for_sampler_image_types(ir_variable *var,
3353 struct _mesa_glsl_parse_state *state,
3354 YYLTYPE *loc)
3355 {
3356 /* From section 4.1.7 of the GLSL 4.40 spec:
3357 *
3358 * "[Opaque types] can only be declared as function
3359 * parameters or uniform-qualified variables."
3360 *
3361 * From section 4.1.7 of the ARB_bindless_texture spec:
3362 *
3363 * "Samplers may be declared as shader inputs and outputs, as uniform
3364 * variables, as temporary variables, and as function parameters."
3365 *
3366 * From section 4.1.X of the ARB_bindless_texture spec:
3367 *
3368 * "Images may be declared as shader inputs and outputs, as uniform
3369 * variables, as temporary variables, and as function parameters."
3370 */
3371 if (state->has_bindless()) {
3372 if (var->data.mode != ir_var_auto &&
3373 var->data.mode != ir_var_uniform &&
3374 var->data.mode != ir_var_shader_in &&
3375 var->data.mode != ir_var_shader_out &&
3376 var->data.mode != ir_var_function_in &&
3377 var->data.mode != ir_var_function_out &&
3378 var->data.mode != ir_var_function_inout) {
3379 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3380 "only be declared as shader inputs and outputs, as "
3381 "uniform variables, as temporary variables and as "
3382 "function parameters");
3383 return false;
3384 }
3385 } else {
3386 if (var->data.mode != ir_var_uniform &&
3387 var->data.mode != ir_var_function_in) {
3388 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3389 "declared as function parameters or "
3390 "uniform-qualified global variables");
3391 return false;
3392 }
3393 }
3394 return true;
3395 }
3396
3397 static bool
3398 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3399 YYLTYPE *loc,
3400 const struct ast_type_qualifier *qual,
3401 const glsl_type *type)
3402 {
3403 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3404 *
3405 * "Memory qualifiers are only supported in the declarations of image
3406 * variables, buffer variables, and shader storage blocks; it is an error
3407 * to use such qualifiers in any other declarations.
3408 */
3409 if (!type->is_image() && !qual->flags.q.buffer) {
3410 if (qual->flags.q.read_only ||
3411 qual->flags.q.write_only ||
3412 qual->flags.q.coherent ||
3413 qual->flags.q._volatile ||
3414 qual->flags.q.restrict_flag) {
3415 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3416 "in the declarations of image variables, buffer "
3417 "variables, and shader storage blocks");
3418 return false;
3419 }
3420 }
3421 return true;
3422 }
3423
3424 static bool
3425 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3426 YYLTYPE *loc,
3427 const struct ast_type_qualifier *qual,
3428 const glsl_type *type)
3429 {
3430 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3431 *
3432 * "Format layout qualifiers can be used on image variable declarations
3433 * (those declared with a basic type having “image ” in its keyword)."
3434 */
3435 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3436 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3437 "applied to images");
3438 return false;
3439 }
3440 return true;
3441 }
3442
3443 static void
3444 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3445 ir_variable *var,
3446 struct _mesa_glsl_parse_state *state,
3447 YYLTYPE *loc)
3448 {
3449 const glsl_type *base_type = var->type->without_array();
3450
3451 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3452 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3453 return;
3454
3455 if (!base_type->is_image())
3456 return;
3457
3458 if (!validate_storage_for_sampler_image_types(var, state, loc))
3459 return;
3460
3461 var->data.memory_read_only |= qual->flags.q.read_only;
3462 var->data.memory_write_only |= qual->flags.q.write_only;
3463 var->data.memory_coherent |= qual->flags.q.coherent;
3464 var->data.memory_volatile |= qual->flags.q._volatile;
3465 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3466
3467 if (qual->flags.q.explicit_image_format) {
3468 if (var->data.mode == ir_var_function_in) {
3469 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3470 "image function parameters");
3471 }
3472
3473 if (qual->image_base_type != base_type->sampled_type) {
3474 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3475 "data type of the image");
3476 }
3477
3478 var->data.image_format = qual->image_format;
3479 } else {
3480 if (var->data.mode == ir_var_uniform) {
3481 if (state->es_shader) {
3482 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3483 "format layout qualifier");
3484 } else if (!qual->flags.q.write_only) {
3485 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3486 "`writeonly' must have a format layout qualifier");
3487 }
3488 }
3489 var->data.image_format = GL_NONE;
3490 }
3491
3492 /* From page 70 of the GLSL ES 3.1 specification:
3493 *
3494 * "Except for image variables qualified with the format qualifiers r32f,
3495 * r32i, and r32ui, image variables must specify either memory qualifier
3496 * readonly or the memory qualifier writeonly."
3497 */
3498 if (state->es_shader &&
3499 var->data.image_format != GL_R32F &&
3500 var->data.image_format != GL_R32I &&
3501 var->data.image_format != GL_R32UI &&
3502 !var->data.memory_read_only &&
3503 !var->data.memory_write_only) {
3504 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3505 "r32i or r32ui must be qualified `readonly' or "
3506 "`writeonly'");
3507 }
3508 }
3509
3510 static inline const char*
3511 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3512 {
3513 if (origin_upper_left && pixel_center_integer)
3514 return "origin_upper_left, pixel_center_integer";
3515 else if (origin_upper_left)
3516 return "origin_upper_left";
3517 else if (pixel_center_integer)
3518 return "pixel_center_integer";
3519 else
3520 return " ";
3521 }
3522
3523 static inline bool
3524 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3525 const struct ast_type_qualifier *qual)
3526 {
3527 /* If gl_FragCoord was previously declared, and the qualifiers were
3528 * different in any way, return true.
3529 */
3530 if (state->fs_redeclares_gl_fragcoord) {
3531 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3532 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3533 }
3534
3535 return false;
3536 }
3537
3538 static inline void
3539 validate_array_dimensions(const glsl_type *t,
3540 struct _mesa_glsl_parse_state *state,
3541 YYLTYPE *loc) {
3542 if (t->is_array()) {
3543 t = t->fields.array;
3544 while (t->is_array()) {
3545 if (t->is_unsized_array()) {
3546 _mesa_glsl_error(loc, state,
3547 "only the outermost array dimension can "
3548 "be unsized",
3549 t->name);
3550 break;
3551 }
3552 t = t->fields.array;
3553 }
3554 }
3555 }
3556
3557 static void
3558 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3559 ir_variable *var,
3560 struct _mesa_glsl_parse_state *state,
3561 YYLTYPE *loc)
3562 {
3563 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3564 qual->flags.q.bindless_image ||
3565 qual->flags.q.bound_sampler ||
3566 qual->flags.q.bound_image;
3567
3568 /* The ARB_bindless_texture spec says:
3569 *
3570 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3571 * spec"
3572 *
3573 * "If these layout qualifiers are applied to other types of default block
3574 * uniforms, or variables with non-uniform storage, a compile-time error
3575 * will be generated."
3576 */
3577 if (has_local_qualifiers && !qual->flags.q.uniform) {
3578 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3579 "can only be applied to default block uniforms or "
3580 "variables with uniform storage");
3581 return;
3582 }
3583
3584 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3585 * but it makes sense to only allow bindless_sampler/bound_sampler for
3586 * sampler types, and respectively bindless_image/bound_image for image
3587 * types.
3588 */
3589 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3590 !var->type->contains_sampler()) {
3591 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3592 "be applied to sampler types");
3593 return;
3594 }
3595
3596 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3597 !var->type->contains_image()) {
3598 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3599 "applied to image types");
3600 return;
3601 }
3602
3603 /* The bindless_sampler/bindless_image (and respectively
3604 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3605 * local scope.
3606 */
3607 if (var->type->contains_sampler() || var->type->contains_image()) {
3608 var->data.bindless = qual->flags.q.bindless_sampler ||
3609 qual->flags.q.bindless_image ||
3610 state->bindless_sampler_specified ||
3611 state->bindless_image_specified;
3612
3613 var->data.bound = qual->flags.q.bound_sampler ||
3614 qual->flags.q.bound_image ||
3615 state->bound_sampler_specified ||
3616 state->bound_image_specified;
3617 }
3618 }
3619
3620 static void
3621 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3622 ir_variable *var,
3623 struct _mesa_glsl_parse_state *state,
3624 YYLTYPE *loc)
3625 {
3626 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3627
3628 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3629 *
3630 * "Within any shader, the first redeclarations of gl_FragCoord
3631 * must appear before any use of gl_FragCoord."
3632 *
3633 * Generate a compiler error if above condition is not met by the
3634 * fragment shader.
3635 */
3636 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3637 if (earlier != NULL &&
3638 earlier->data.used &&
3639 !state->fs_redeclares_gl_fragcoord) {
3640 _mesa_glsl_error(loc, state,
3641 "gl_FragCoord used before its first redeclaration "
3642 "in fragment shader");
3643 }
3644
3645 /* Make sure all gl_FragCoord redeclarations specify the same layout
3646 * qualifiers.
3647 */
3648 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3649 const char *const qual_string =
3650 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3651 qual->flags.q.pixel_center_integer);
3652
3653 const char *const state_string =
3654 get_layout_qualifier_string(state->fs_origin_upper_left,
3655 state->fs_pixel_center_integer);
3656
3657 _mesa_glsl_error(loc, state,
3658 "gl_FragCoord redeclared with different layout "
3659 "qualifiers (%s) and (%s) ",
3660 state_string,
3661 qual_string);
3662 }
3663 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3664 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3665 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3666 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3667 state->fs_redeclares_gl_fragcoord =
3668 state->fs_origin_upper_left ||
3669 state->fs_pixel_center_integer ||
3670 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3671 }
3672
3673 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3674 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3675 const char *const qual_string = (qual->flags.q.origin_upper_left)
3676 ? "origin_upper_left" : "pixel_center_integer";
3677
3678 _mesa_glsl_error(loc, state,
3679 "layout qualifier `%s' can only be applied to "
3680 "fragment shader input `gl_FragCoord'",
3681 qual_string);
3682 }
3683
3684 if (qual->flags.q.explicit_location) {
3685 apply_explicit_location(qual, var, state, loc);
3686
3687 if (qual->flags.q.explicit_component) {
3688 unsigned qual_component;
3689 if (process_qualifier_constant(state, loc, "component",
3690 qual->component, &qual_component)) {
3691 const glsl_type *type = var->type->without_array();
3692 unsigned components = type->component_slots();
3693
3694 if (type->is_matrix() || type->is_struct()) {
3695 _mesa_glsl_error(loc, state, "component layout qualifier "
3696 "cannot be applied to a matrix, a structure, "
3697 "a block, or an array containing any of "
3698 "these.");
3699 } else if (components > 4 && type->is_64bit()) {
3700 _mesa_glsl_error(loc, state, "component layout qualifier "
3701 "cannot be applied to dvec%u.",
3702 components / 2);
3703 } else if (qual_component != 0 &&
3704 (qual_component + components - 1) > 3) {
3705 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3706 (qual_component + components - 1));
3707 } else if (qual_component == 1 && type->is_64bit()) {
3708 /* We don't bother checking for 3 as it should be caught by the
3709 * overflow check above.
3710 */
3711 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3712 "component 1 or 3");
3713 } else {
3714 var->data.explicit_component = true;
3715 var->data.location_frac = qual_component;
3716 }
3717 }
3718 }
3719 } else if (qual->flags.q.explicit_index) {
3720 if (!qual->subroutine_list)
3721 _mesa_glsl_error(loc, state,
3722 "explicit index requires explicit location");
3723 } else if (qual->flags.q.explicit_component) {
3724 _mesa_glsl_error(loc, state,
3725 "explicit component requires explicit location");
3726 }
3727
3728 if (qual->flags.q.explicit_binding) {
3729 apply_explicit_binding(state, loc, var, var->type, qual);
3730 }
3731
3732 if (state->stage == MESA_SHADER_GEOMETRY &&
3733 qual->flags.q.out && qual->flags.q.stream) {
3734 unsigned qual_stream;
3735 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3736 &qual_stream) &&
3737 validate_stream_qualifier(loc, state, qual_stream)) {
3738 var->data.stream = qual_stream;
3739 }
3740 }
3741
3742 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3743 unsigned qual_xfb_buffer;
3744 if (process_qualifier_constant(state, loc, "xfb_buffer",
3745 qual->xfb_buffer, &qual_xfb_buffer) &&
3746 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3747 var->data.xfb_buffer = qual_xfb_buffer;
3748 if (qual->flags.q.explicit_xfb_buffer)
3749 var->data.explicit_xfb_buffer = true;
3750 }
3751 }
3752
3753 if (qual->flags.q.explicit_xfb_offset) {
3754 unsigned qual_xfb_offset;
3755 unsigned component_size = var->type->contains_double() ? 8 : 4;
3756
3757 if (process_qualifier_constant(state, loc, "xfb_offset",
3758 qual->offset, &qual_xfb_offset) &&
3759 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3760 var->type, component_size)) {
3761 var->data.offset = qual_xfb_offset;
3762 var->data.explicit_xfb_offset = true;
3763 }
3764 }
3765
3766 if (qual->flags.q.explicit_xfb_stride) {
3767 unsigned qual_xfb_stride;
3768 if (process_qualifier_constant(state, loc, "xfb_stride",
3769 qual->xfb_stride, &qual_xfb_stride)) {
3770 var->data.xfb_stride = qual_xfb_stride;
3771 var->data.explicit_xfb_stride = true;
3772 }
3773 }
3774
3775 if (var->type->contains_atomic()) {
3776 if (var->data.mode == ir_var_uniform) {
3777 if (var->data.explicit_binding) {
3778 unsigned *offset =
3779 &state->atomic_counter_offsets[var->data.binding];
3780
3781 if (*offset % ATOMIC_COUNTER_SIZE)
3782 _mesa_glsl_error(loc, state,
3783 "misaligned atomic counter offset");
3784
3785 var->data.offset = *offset;
3786 *offset += var->type->atomic_size();
3787
3788 } else {
3789 _mesa_glsl_error(loc, state,
3790 "atomic counters require explicit binding point");
3791 }
3792 } else if (var->data.mode != ir_var_function_in) {
3793 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3794 "function parameters or uniform-qualified "
3795 "global variables");
3796 }
3797 }
3798
3799 if (var->type->contains_sampler() &&
3800 !validate_storage_for_sampler_image_types(var, state, loc))
3801 return;
3802
3803 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3804 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3805 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3806 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3807 * These extensions and all following extensions that add the 'layout'
3808 * keyword have been modified to require the use of 'in' or 'out'.
3809 *
3810 * The following extension do not allow the deprecated keywords:
3811 *
3812 * GL_AMD_conservative_depth
3813 * GL_ARB_conservative_depth
3814 * GL_ARB_gpu_shader5
3815 * GL_ARB_separate_shader_objects
3816 * GL_ARB_tessellation_shader
3817 * GL_ARB_transform_feedback3
3818 * GL_ARB_uniform_buffer_object
3819 *
3820 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3821 * allow layout with the deprecated keywords.
3822 */
3823 const bool relaxed_layout_qualifier_checking =
3824 state->ARB_fragment_coord_conventions_enable;
3825
3826 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3827 || qual->flags.q.varying;
3828 if (qual->has_layout() && uses_deprecated_qualifier) {
3829 if (relaxed_layout_qualifier_checking) {
3830 _mesa_glsl_warning(loc, state,
3831 "`layout' qualifier may not be used with "
3832 "`attribute' or `varying'");
3833 } else {
3834 _mesa_glsl_error(loc, state,
3835 "`layout' qualifier may not be used with "
3836 "`attribute' or `varying'");
3837 }
3838 }
3839
3840 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3841 * AMD_conservative_depth.
3842 */
3843 if (qual->flags.q.depth_type
3844 && !state->is_version(420, 0)
3845 && !state->AMD_conservative_depth_enable
3846 && !state->ARB_conservative_depth_enable) {
3847 _mesa_glsl_error(loc, state,
3848 "extension GL_AMD_conservative_depth or "
3849 "GL_ARB_conservative_depth must be enabled "
3850 "to use depth layout qualifiers");
3851 } else if (qual->flags.q.depth_type
3852 && strcmp(var->name, "gl_FragDepth") != 0) {
3853 _mesa_glsl_error(loc, state,
3854 "depth layout qualifiers can be applied only to "
3855 "gl_FragDepth");
3856 }
3857
3858 switch (qual->depth_type) {
3859 case ast_depth_any:
3860 var->data.depth_layout = ir_depth_layout_any;
3861 break;
3862 case ast_depth_greater:
3863 var->data.depth_layout = ir_depth_layout_greater;
3864 break;
3865 case ast_depth_less:
3866 var->data.depth_layout = ir_depth_layout_less;
3867 break;
3868 case ast_depth_unchanged:
3869 var->data.depth_layout = ir_depth_layout_unchanged;
3870 break;
3871 default:
3872 var->data.depth_layout = ir_depth_layout_none;
3873 break;
3874 }
3875
3876 if (qual->flags.q.std140 ||
3877 qual->flags.q.std430 ||
3878 qual->flags.q.packed ||
3879 qual->flags.q.shared) {
3880 _mesa_glsl_error(loc, state,
3881 "uniform and shader storage block layout qualifiers "
3882 "std140, std430, packed, and shared can only be "
3883 "applied to uniform or shader storage blocks, not "
3884 "members");
3885 }
3886
3887 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3888 validate_matrix_layout_for_type(state, loc, var->type, var);
3889 }
3890
3891 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3892 * Inputs):
3893 *
3894 * "Fragment shaders also allow the following layout qualifier on in only
3895 * (not with variable declarations)
3896 * layout-qualifier-id
3897 * early_fragment_tests
3898 * [...]"
3899 */
3900 if (qual->flags.q.early_fragment_tests) {
3901 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3902 "valid in fragment shader input layout declaration.");
3903 }
3904
3905 if (qual->flags.q.inner_coverage) {
3906 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3907 "valid in fragment shader input layout declaration.");
3908 }
3909
3910 if (qual->flags.q.post_depth_coverage) {
3911 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3912 "valid in fragment shader input layout declaration.");
3913 }
3914
3915 if (state->has_bindless())
3916 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3917
3918 if (qual->flags.q.pixel_interlock_ordered ||
3919 qual->flags.q.pixel_interlock_unordered ||
3920 qual->flags.q.sample_interlock_ordered ||
3921 qual->flags.q.sample_interlock_unordered) {
3922 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3923 "pixel_interlock_ordered, pixel_interlock_unordered, "
3924 "sample_interlock_ordered and sample_interlock_unordered, "
3925 "only valid in fragment shader input layout declaration.");
3926 }
3927 }
3928
3929 static void
3930 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3931 ir_variable *var,
3932 struct _mesa_glsl_parse_state *state,
3933 YYLTYPE *loc,
3934 bool is_parameter)
3935 {
3936 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3937
3938 if (qual->flags.q.invariant) {
3939 if (var->data.used) {
3940 _mesa_glsl_error(loc, state,
3941 "variable `%s' may not be redeclared "
3942 "`invariant' after being used",
3943 var->name);
3944 } else {
3945 var->data.explicit_invariant = true;
3946 var->data.invariant = true;
3947 }
3948 }
3949
3950 if (qual->flags.q.precise) {
3951 if (var->data.used) {
3952 _mesa_glsl_error(loc, state,
3953 "variable `%s' may not be redeclared "
3954 "`precise' after being used",
3955 var->name);
3956 } else {
3957 var->data.precise = 1;
3958 }
3959 }
3960
3961 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3962 _mesa_glsl_error(loc, state,
3963 "`subroutine' may only be applied to uniforms, "
3964 "subroutine type declarations, or function definitions");
3965 }
3966
3967 if (qual->flags.q.constant || qual->flags.q.attribute
3968 || qual->flags.q.uniform
3969 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3970 var->data.read_only = 1;
3971
3972 if (qual->flags.q.centroid)
3973 var->data.centroid = 1;
3974
3975 if (qual->flags.q.sample)
3976 var->data.sample = 1;
3977
3978 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3979 if (state->es_shader) {
3980 var->data.precision =
3981 select_gles_precision(qual->precision, var->type, state, loc);
3982 }
3983
3984 if (qual->flags.q.patch)
3985 var->data.patch = 1;
3986
3987 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3988 var->type = glsl_type::error_type;
3989 _mesa_glsl_error(loc, state,
3990 "`attribute' variables may not be declared in the "
3991 "%s shader",
3992 _mesa_shader_stage_to_string(state->stage));
3993 }
3994
3995 /* Disallow layout qualifiers which may only appear on layout declarations. */
3996 if (qual->flags.q.prim_type) {
3997 _mesa_glsl_error(loc, state,
3998 "Primitive type may only be specified on GS input or output "
3999 "layout declaration, not on variables.");
4000 }
4001
4002 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4003 *
4004 * "However, the const qualifier cannot be used with out or inout."
4005 *
4006 * The same section of the GLSL 4.40 spec further clarifies this saying:
4007 *
4008 * "The const qualifier cannot be used with out or inout, or a
4009 * compile-time error results."
4010 */
4011 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4012 _mesa_glsl_error(loc, state,
4013 "`const' may not be applied to `out' or `inout' "
4014 "function parameters");
4015 }
4016
4017 /* If there is no qualifier that changes the mode of the variable, leave
4018 * the setting alone.
4019 */
4020 assert(var->data.mode != ir_var_temporary);
4021 if (qual->flags.q.in && qual->flags.q.out)
4022 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4023 else if (qual->flags.q.in)
4024 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4025 else if (qual->flags.q.attribute
4026 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4027 var->data.mode = ir_var_shader_in;
4028 else if (qual->flags.q.out)
4029 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4030 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4031 var->data.mode = ir_var_shader_out;
4032 else if (qual->flags.q.uniform)
4033 var->data.mode = ir_var_uniform;
4034 else if (qual->flags.q.buffer)
4035 var->data.mode = ir_var_shader_storage;
4036 else if (qual->flags.q.shared_storage)
4037 var->data.mode = ir_var_shader_shared;
4038
4039 if (!is_parameter && state->has_framebuffer_fetch() &&
4040 state->stage == MESA_SHADER_FRAGMENT) {
4041 if (state->is_version(130, 300))
4042 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4043 else
4044 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4045 }
4046
4047 if (var->data.fb_fetch_output) {
4048 var->data.assigned = true;
4049 var->data.memory_coherent = !qual->flags.q.non_coherent;
4050
4051 /* From the EXT_shader_framebuffer_fetch spec:
4052 *
4053 * "It is an error to declare an inout fragment output not qualified
4054 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4055 * extension hasn't been enabled."
4056 */
4057 if (var->data.memory_coherent &&
4058 !state->EXT_shader_framebuffer_fetch_enable)
4059 _mesa_glsl_error(loc, state,
4060 "invalid declaration of framebuffer fetch output not "
4061 "qualified with layout(noncoherent)");
4062
4063 } else {
4064 /* From the EXT_shader_framebuffer_fetch spec:
4065 *
4066 * "Fragment outputs declared inout may specify the following layout
4067 * qualifier: [...] noncoherent"
4068 */
4069 if (qual->flags.q.non_coherent)
4070 _mesa_glsl_error(loc, state,
4071 "invalid layout(noncoherent) qualifier not part of "
4072 "framebuffer fetch output declaration");
4073 }
4074
4075 if (!is_parameter && is_varying_var(var, state->stage)) {
4076 /* User-defined ins/outs are not permitted in compute shaders. */
4077 if (state->stage == MESA_SHADER_COMPUTE) {
4078 _mesa_glsl_error(loc, state,
4079 "user-defined input and output variables are not "
4080 "permitted in compute shaders");
4081 }
4082
4083 /* This variable is being used to link data between shader stages (in
4084 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4085 * that is allowed for such purposes.
4086 *
4087 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4088 *
4089 * "The varying qualifier can be used only with the data types
4090 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4091 * these."
4092 *
4093 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4094 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4095 *
4096 * "Fragment inputs can only be signed and unsigned integers and
4097 * integer vectors, float, floating-point vectors, matrices, or
4098 * arrays of these. Structures cannot be input.
4099 *
4100 * Similar text exists in the section on vertex shader outputs.
4101 *
4102 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4103 * 3.00 spec allows structs as well. Varying structs are also allowed
4104 * in GLSL 1.50.
4105 *
4106 * From section 4.3.4 of the ARB_bindless_texture spec:
4107 *
4108 * "(modify third paragraph of the section to allow sampler and image
4109 * types) ... Vertex shader inputs can only be float,
4110 * single-precision floating-point scalars, single-precision
4111 * floating-point vectors, matrices, signed and unsigned integers
4112 * and integer vectors, sampler and image types."
4113 *
4114 * From section 4.3.6 of the ARB_bindless_texture spec:
4115 *
4116 * "Output variables can only be floating-point scalars,
4117 * floating-point vectors, matrices, signed or unsigned integers or
4118 * integer vectors, sampler or image types, or arrays or structures
4119 * of any these."
4120 */
4121 switch (var->type->without_array()->base_type) {
4122 case GLSL_TYPE_FLOAT:
4123 /* Ok in all GLSL versions */
4124 break;
4125 case GLSL_TYPE_UINT:
4126 case GLSL_TYPE_INT:
4127 if (state->is_version(130, 300))
4128 break;
4129 _mesa_glsl_error(loc, state,
4130 "varying variables must be of base type float in %s",
4131 state->get_version_string());
4132 break;
4133 case GLSL_TYPE_STRUCT:
4134 if (state->is_version(150, 300))
4135 break;
4136 _mesa_glsl_error(loc, state,
4137 "varying variables may not be of type struct");
4138 break;
4139 case GLSL_TYPE_DOUBLE:
4140 case GLSL_TYPE_UINT64:
4141 case GLSL_TYPE_INT64:
4142 break;
4143 case GLSL_TYPE_SAMPLER:
4144 case GLSL_TYPE_IMAGE:
4145 if (state->has_bindless())
4146 break;
4147 /* fallthrough */
4148 default:
4149 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4150 break;
4151 }
4152 }
4153
4154 if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4155 var->data.explicit_invariant = true;
4156 var->data.invariant = true;
4157 }
4158
4159 var->data.interpolation =
4160 interpret_interpolation_qualifier(qual, var->type,
4161 (ir_variable_mode) var->data.mode,
4162 state, loc);
4163
4164 /* Does the declaration use the deprecated 'attribute' or 'varying'
4165 * keywords?
4166 */
4167 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4168 || qual->flags.q.varying;
4169
4170
4171 /* Validate auxiliary storage qualifiers */
4172
4173 /* From section 4.3.4 of the GLSL 1.30 spec:
4174 * "It is an error to use centroid in in a vertex shader."
4175 *
4176 * From section 4.3.4 of the GLSL ES 3.00 spec:
4177 * "It is an error to use centroid in or interpolation qualifiers in
4178 * a vertex shader input."
4179 */
4180
4181 /* Section 4.3.6 of the GLSL 1.30 specification states:
4182 * "It is an error to use centroid out in a fragment shader."
4183 *
4184 * The GL_ARB_shading_language_420pack extension specification states:
4185 * "It is an error to use auxiliary storage qualifiers or interpolation
4186 * qualifiers on an output in a fragment shader."
4187 */
4188 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4189 _mesa_glsl_error(loc, state,
4190 "sample qualifier may only be used on `in` or `out` "
4191 "variables between shader stages");
4192 }
4193 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4194 _mesa_glsl_error(loc, state,
4195 "centroid qualifier may only be used with `in', "
4196 "`out' or `varying' variables between shader stages");
4197 }
4198
4199 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4200 _mesa_glsl_error(loc, state,
4201 "the shared storage qualifiers can only be used with "
4202 "compute shaders");
4203 }
4204
4205 apply_image_qualifier_to_variable(qual, var, state, loc);
4206 }
4207
4208 /**
4209 * Get the variable that is being redeclared by this declaration or if it
4210 * does not exist, the current declared variable.
4211 *
4212 * Semantic checks to verify the validity of the redeclaration are also
4213 * performed. If semantic checks fail, compilation error will be emitted via
4214 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4215 *
4216 * \returns
4217 * A pointer to an existing variable in the current scope if the declaration
4218 * is a redeclaration, current variable otherwise. \c is_declared boolean
4219 * will return \c true if the declaration is a redeclaration, \c false
4220 * otherwise.
4221 */
4222 static ir_variable *
4223 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4224 struct _mesa_glsl_parse_state *state,
4225 bool allow_all_redeclarations,
4226 bool *is_redeclaration)
4227 {
4228 ir_variable *var = *var_ptr;
4229
4230 /* Check if this declaration is actually a re-declaration, either to
4231 * resize an array or add qualifiers to an existing variable.
4232 *
4233 * This is allowed for variables in the current scope, or when at
4234 * global scope (for built-ins in the implicit outer scope).
4235 */
4236 ir_variable *earlier = state->symbols->get_variable(var->name);
4237 if (earlier == NULL ||
4238 (state->current_function != NULL &&
4239 !state->symbols->name_declared_this_scope(var->name))) {
4240 *is_redeclaration = false;
4241 return var;
4242 }
4243
4244 *is_redeclaration = true;
4245
4246 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4247 /* Verify that the redeclaration of a built-in does not change the
4248 * storage qualifier. There are a couple special cases.
4249 *
4250 * 1. Some built-in variables that are defined as 'in' in the
4251 * specification are implemented as system values. Allow
4252 * ir_var_system_value -> ir_var_shader_in.
4253 *
4254 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4255 * specification requires that redeclarations omit any qualifier.
4256 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4257 */
4258 if (earlier->data.mode != var->data.mode &&
4259 !(earlier->data.mode == ir_var_system_value &&
4260 var->data.mode == ir_var_shader_in) &&
4261 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4262 var->data.mode == ir_var_auto)) {
4263 _mesa_glsl_error(&loc, state,
4264 "redeclaration cannot change qualification of `%s'",
4265 var->name);
4266 }
4267 }
4268
4269 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4270 *
4271 * "It is legal to declare an array without a size and then
4272 * later re-declare the same name as an array of the same
4273 * type and specify a size."
4274 */
4275 if (earlier->type->is_unsized_array() && var->type->is_array()
4276 && (var->type->fields.array == earlier->type->fields.array)) {
4277 const int size = var->type->array_size();
4278 check_builtin_array_max_size(var->name, size, loc, state);
4279 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4280 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4281 "previous access",
4282 earlier->data.max_array_access);
4283 }
4284
4285 earlier->type = var->type;
4286 delete var;
4287 var = NULL;
4288 *var_ptr = NULL;
4289 } else if (earlier->type != var->type) {
4290 _mesa_glsl_error(&loc, state,
4291 "redeclaration of `%s' has incorrect type",
4292 var->name);
4293 } else if ((state->ARB_fragment_coord_conventions_enable ||
4294 state->is_version(150, 0))
4295 && strcmp(var->name, "gl_FragCoord") == 0) {
4296 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4297 * qualifiers.
4298 *
4299 * We don't really need to do anything here, just allow the
4300 * redeclaration. Any error on the gl_FragCoord is handled on the ast
4301 * level at apply_layout_qualifier_to_variable using the
4302 * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4303 * linker.cpp.
4304 */
4305 /* According to section 4.3.7 of the GLSL 1.30 spec,
4306 * the following built-in varaibles can be redeclared with an
4307 * interpolation qualifier:
4308 * * gl_FrontColor
4309 * * gl_BackColor
4310 * * gl_FrontSecondaryColor
4311 * * gl_BackSecondaryColor
4312 * * gl_Color
4313 * * gl_SecondaryColor
4314 */
4315 } else if (state->is_version(130, 0)
4316 && (strcmp(var->name, "gl_FrontColor") == 0
4317 || strcmp(var->name, "gl_BackColor") == 0
4318 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4319 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4320 || strcmp(var->name, "gl_Color") == 0
4321 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4322 earlier->data.interpolation = var->data.interpolation;
4323
4324 /* Layout qualifiers for gl_FragDepth. */
4325 } else if ((state->is_version(420, 0) ||
4326 state->AMD_conservative_depth_enable ||
4327 state->ARB_conservative_depth_enable)
4328 && strcmp(var->name, "gl_FragDepth") == 0) {
4329
4330 /** From the AMD_conservative_depth spec:
4331 * Within any shader, the first redeclarations of gl_FragDepth
4332 * must appear before any use of gl_FragDepth.
4333 */
4334 if (earlier->data.used) {
4335 _mesa_glsl_error(&loc, state,
4336 "the first redeclaration of gl_FragDepth "
4337 "must appear before any use of gl_FragDepth");
4338 }
4339
4340 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4341 if (earlier->data.depth_layout != ir_depth_layout_none
4342 && earlier->data.depth_layout != var->data.depth_layout) {
4343 _mesa_glsl_error(&loc, state,
4344 "gl_FragDepth: depth layout is declared here "
4345 "as '%s, but it was previously declared as "
4346 "'%s'",
4347 depth_layout_string(var->data.depth_layout),
4348 depth_layout_string(earlier->data.depth_layout));
4349 }
4350
4351 earlier->data.depth_layout = var->data.depth_layout;
4352
4353 } else if (state->has_framebuffer_fetch() &&
4354 strcmp(var->name, "gl_LastFragData") == 0 &&
4355 var->data.mode == ir_var_auto) {
4356 /* According to the EXT_shader_framebuffer_fetch spec:
4357 *
4358 * "By default, gl_LastFragData is declared with the mediump precision
4359 * qualifier. This can be changed by redeclaring the corresponding
4360 * variables with the desired precision qualifier."
4361 *
4362 * "Fragment shaders may specify the following layout qualifier only for
4363 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4364 */
4365 earlier->data.precision = var->data.precision;
4366 earlier->data.memory_coherent = var->data.memory_coherent;
4367
4368 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4369 state->allow_builtin_variable_redeclaration) ||
4370 allow_all_redeclarations) {
4371 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4372 * valid, but some applications do it.
4373 */
4374 } else {
4375 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4376 }
4377
4378 return earlier;
4379 }
4380
4381 /**
4382 * Generate the IR for an initializer in a variable declaration
4383 */
4384 static ir_rvalue *
4385 process_initializer(ir_variable *var, ast_declaration *decl,
4386 ast_fully_specified_type *type,
4387 exec_list *initializer_instructions,
4388 struct _mesa_glsl_parse_state *state)
4389 {
4390 void *mem_ctx = state;
4391 ir_rvalue *result = NULL;
4392
4393 YYLTYPE initializer_loc = decl->initializer->get_location();
4394
4395 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4396 *
4397 * "All uniform variables are read-only and are initialized either
4398 * directly by an application via API commands, or indirectly by
4399 * OpenGL."
4400 */
4401 if (var->data.mode == ir_var_uniform) {
4402 state->check_version(120, 0, &initializer_loc,
4403 "cannot initialize uniform %s",
4404 var->name);
4405 }
4406
4407 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4408 *
4409 * "Buffer variables cannot have initializers."
4410 */
4411 if (var->data.mode == ir_var_shader_storage) {
4412 _mesa_glsl_error(&initializer_loc, state,
4413 "cannot initialize buffer variable %s",
4414 var->name);
4415 }
4416
4417 /* From section 4.1.7 of the GLSL 4.40 spec:
4418 *
4419 * "Opaque variables [...] are initialized only through the
4420 * OpenGL API; they cannot be declared with an initializer in a
4421 * shader."
4422 *
4423 * From section 4.1.7 of the ARB_bindless_texture spec:
4424 *
4425 * "Samplers may be declared as shader inputs and outputs, as uniform
4426 * variables, as temporary variables, and as function parameters."
4427 *
4428 * From section 4.1.X of the ARB_bindless_texture spec:
4429 *
4430 * "Images may be declared as shader inputs and outputs, as uniform
4431 * variables, as temporary variables, and as function parameters."
4432 */
4433 if (var->type->contains_atomic() ||
4434 (!state->has_bindless() && var->type->contains_opaque())) {
4435 _mesa_glsl_error(&initializer_loc, state,
4436 "cannot initialize %s variable %s",
4437 var->name, state->has_bindless() ? "atomic" : "opaque");
4438 }
4439
4440 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4441 _mesa_glsl_error(&initializer_loc, state,
4442 "cannot initialize %s shader input / %s %s",
4443 _mesa_shader_stage_to_string(state->stage),
4444 (state->stage == MESA_SHADER_VERTEX)
4445 ? "attribute" : "varying",
4446 var->name);
4447 }
4448
4449 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4450 _mesa_glsl_error(&initializer_loc, state,
4451 "cannot initialize %s shader output %s",
4452 _mesa_shader_stage_to_string(state->stage),
4453 var->name);
4454 }
4455
4456 /* If the initializer is an ast_aggregate_initializer, recursively store
4457 * type information from the LHS into it, so that its hir() function can do
4458 * type checking.
4459 */
4460 if (decl->initializer->oper == ast_aggregate)
4461 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4462
4463 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4464 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4465
4466 /* Calculate the constant value if this is a const or uniform
4467 * declaration.
4468 *
4469 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4470 *
4471 * "Declarations of globals without a storage qualifier, or with
4472 * just the const qualifier, may include initializers, in which case
4473 * they will be initialized before the first line of main() is
4474 * executed. Such initializers must be a constant expression."
4475 *
4476 * The same section of the GLSL ES 3.00.4 spec has similar language.
4477 */
4478 if (type->qualifier.flags.q.constant
4479 || type->qualifier.flags.q.uniform
4480 || (state->es_shader && state->current_function == NULL)) {
4481 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4482 lhs, rhs, true);
4483 if (new_rhs != NULL) {
4484 rhs = new_rhs;
4485
4486 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4487 * says:
4488 *
4489 * "A constant expression is one of
4490 *
4491 * ...
4492 *
4493 * - an expression formed by an operator on operands that are
4494 * all constant expressions, including getting an element of
4495 * a constant array, or a field of a constant structure, or
4496 * components of a constant vector. However, the sequence
4497 * operator ( , ) and the assignment operators ( =, +=, ...)
4498 * are not included in the operators that can create a
4499 * constant expression."
4500 *
4501 * Section 12.43 (Sequence operator and constant expressions) says:
4502 *
4503 * "Should the following construct be allowed?
4504 *
4505 * float a[2,3];
4506 *
4507 * The expression within the brackets uses the sequence operator
4508 * (',') and returns the integer 3 so the construct is declaring
4509 * a single-dimensional array of size 3. In some languages, the
4510 * construct declares a two-dimensional array. It would be
4511 * preferable to make this construct illegal to avoid confusion.
4512 *
4513 * One possibility is to change the definition of the sequence
4514 * operator so that it does not return a constant-expression and
4515 * hence cannot be used to declare an array size.
4516 *
4517 * RESOLUTION: The result of a sequence operator is not a
4518 * constant-expression."
4519 *
4520 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4521 * contains language almost identical to the section 4.3.3 in the
4522 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4523 * versions.
4524 */
4525 ir_constant *constant_value =
4526 rhs->constant_expression_value(mem_ctx);
4527
4528 if (!constant_value ||
4529 (state->is_version(430, 300) &&
4530 decl->initializer->has_sequence_subexpression())) {
4531 const char *const variable_mode =
4532 (type->qualifier.flags.q.constant)
4533 ? "const"
4534 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4535
4536 /* If ARB_shading_language_420pack is enabled, initializers of
4537 * const-qualified local variables do not have to be constant
4538 * expressions. Const-qualified global variables must still be
4539 * initialized with constant expressions.
4540 */
4541 if (!state->has_420pack()
4542 || state->current_function == NULL) {
4543 _mesa_glsl_error(& initializer_loc, state,
4544 "initializer of %s variable `%s' must be a "
4545 "constant expression",
4546 variable_mode,
4547 decl->identifier);
4548 if (var->type->is_numeric()) {
4549 /* Reduce cascading errors. */
4550 var->constant_value = type->qualifier.flags.q.constant
4551 ? ir_constant::zero(state, var->type) : NULL;
4552 }
4553 }
4554 } else {
4555 rhs = constant_value;
4556 var->constant_value = type->qualifier.flags.q.constant
4557 ? constant_value : NULL;
4558 }
4559 } else {
4560 if (var->type->is_numeric()) {
4561 /* Reduce cascading errors. */
4562 rhs = var->constant_value = type->qualifier.flags.q.constant
4563 ? ir_constant::zero(state, var->type) : NULL;
4564 }
4565 }
4566 }
4567
4568 if (rhs && !rhs->type->is_error()) {
4569 bool temp = var->data.read_only;
4570 if (type->qualifier.flags.q.constant)
4571 var->data.read_only = false;
4572
4573 /* Never emit code to initialize a uniform.
4574 */
4575 const glsl_type *initializer_type;
4576 bool error_emitted = false;
4577 if (!type->qualifier.flags.q.uniform) {
4578 error_emitted =
4579 do_assignment(initializer_instructions, state,
4580 NULL, lhs, rhs,
4581 &result, true, true,
4582 type->get_location());
4583 initializer_type = result->type;
4584 } else
4585 initializer_type = rhs->type;
4586
4587 if (!error_emitted) {
4588 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4589 var->data.has_initializer = true;
4590
4591 /* If the declared variable is an unsized array, it must inherrit
4592 * its full type from the initializer. A declaration such as
4593 *
4594 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4595 *
4596 * becomes
4597 *
4598 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4599 *
4600 * The assignment generated in the if-statement (below) will also
4601 * automatically handle this case for non-uniforms.
4602 *
4603 * If the declared variable is not an array, the types must
4604 * already match exactly. As a result, the type assignment
4605 * here can be done unconditionally. For non-uniforms the call
4606 * to do_assignment can change the type of the initializer (via
4607 * the implicit conversion rules). For uniforms the initializer
4608 * must be a constant expression, and the type of that expression
4609 * was validated above.
4610 */
4611 var->type = initializer_type;
4612 }
4613
4614 var->data.read_only = temp;
4615 }
4616
4617 return result;
4618 }
4619
4620 static void
4621 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4622 YYLTYPE loc, ir_variable *var,
4623 unsigned num_vertices,
4624 unsigned *size,
4625 const char *var_category)
4626 {
4627 if (var->type->is_unsized_array()) {
4628 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4629 *
4630 * All geometry shader input unsized array declarations will be
4631 * sized by an earlier input layout qualifier, when present, as per
4632 * the following table.
4633 *
4634 * Followed by a table mapping each allowed input layout qualifier to
4635 * the corresponding input length.
4636 *
4637 * Similarly for tessellation control shader outputs.
4638 */
4639 if (num_vertices != 0)
4640 var->type = glsl_type::get_array_instance(var->type->fields.array,
4641 num_vertices);
4642 } else {
4643 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4644 * includes the following examples of compile-time errors:
4645 *
4646 * // code sequence within one shader...
4647 * in vec4 Color1[]; // size unknown
4648 * ...Color1.length()...// illegal, length() unknown
4649 * in vec4 Color2[2]; // size is 2
4650 * ...Color1.length()...// illegal, Color1 still has no size
4651 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4652 * layout(lines) in; // legal, input size is 2, matching
4653 * in vec4 Color4[3]; // illegal, contradicts layout
4654 * ...
4655 *
4656 * To detect the case illustrated by Color3, we verify that the size of
4657 * an explicitly-sized array matches the size of any previously declared
4658 * explicitly-sized array. To detect the case illustrated by Color4, we
4659 * verify that the size of an explicitly-sized array is consistent with
4660 * any previously declared input layout.
4661 */
4662 if (num_vertices != 0 && var->type->length != num_vertices) {
4663 _mesa_glsl_error(&loc, state,
4664 "%s size contradicts previously declared layout "
4665 "(size is %u, but layout requires a size of %u)",
4666 var_category, var->type->length, num_vertices);
4667 } else if (*size != 0 && var->type->length != *size) {
4668 _mesa_glsl_error(&loc, state,
4669 "%s sizes are inconsistent (size is %u, but a "
4670 "previous declaration has size %u)",
4671 var_category, var->type->length, *size);
4672 } else {
4673 *size = var->type->length;
4674 }
4675 }
4676 }
4677
4678 static void
4679 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4680 YYLTYPE loc, ir_variable *var)
4681 {
4682 unsigned num_vertices = 0;
4683
4684 if (state->tcs_output_vertices_specified) {
4685 if (!state->out_qualifier->vertices->
4686 process_qualifier_constant(state, "vertices",
4687 &num_vertices, false)) {
4688 return;
4689 }
4690
4691 if (num_vertices > state->Const.MaxPatchVertices) {
4692 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4693 "GL_MAX_PATCH_VERTICES", num_vertices);
4694 return;
4695 }
4696 }
4697
4698 if (!var->type->is_array() && !var->data.patch) {
4699 _mesa_glsl_error(&loc, state,
4700 "tessellation control shader outputs must be arrays");
4701
4702 /* To avoid cascading failures, short circuit the checks below. */
4703 return;
4704 }
4705
4706 if (var->data.patch)
4707 return;
4708
4709 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4710 &state->tcs_output_size,
4711 "tessellation control shader output");
4712 }
4713
4714 /**
4715 * Do additional processing necessary for tessellation control/evaluation shader
4716 * input declarations. This covers both interface block arrays and bare input
4717 * variables.
4718 */
4719 static void
4720 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4721 YYLTYPE loc, ir_variable *var)
4722 {
4723 if (!var->type->is_array() && !var->data.patch) {
4724 _mesa_glsl_error(&loc, state,
4725 "per-vertex tessellation shader inputs must be arrays");
4726 /* Avoid cascading failures. */
4727 return;
4728 }
4729
4730 if (var->data.patch)
4731 return;
4732
4733 /* The ARB_tessellation_shader spec says:
4734 *
4735 * "Declaring an array size is optional. If no size is specified, it
4736 * will be taken from the implementation-dependent maximum patch size
4737 * (gl_MaxPatchVertices). If a size is specified, it must match the
4738 * maximum patch size; otherwise, a compile or link error will occur."
4739 *
4740 * This text appears twice, once for TCS inputs, and again for TES inputs.
4741 */
4742 if (var->type->is_unsized_array()) {
4743 var->type = glsl_type::get_array_instance(var->type->fields.array,
4744 state->Const.MaxPatchVertices);
4745 } else if (var->type->length != state->Const.MaxPatchVertices) {
4746 _mesa_glsl_error(&loc, state,
4747 "per-vertex tessellation shader input arrays must be "
4748 "sized to gl_MaxPatchVertices (%d).",
4749 state->Const.MaxPatchVertices);
4750 }
4751 }
4752
4753
4754 /**
4755 * Do additional processing necessary for geometry shader input declarations
4756 * (this covers both interface blocks arrays and bare input variables).
4757 */
4758 static void
4759 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4760 YYLTYPE loc, ir_variable *var)
4761 {
4762 unsigned num_vertices = 0;
4763
4764 if (state->gs_input_prim_type_specified) {
4765 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4766 }
4767
4768 /* Geometry shader input variables must be arrays. Caller should have
4769 * reported an error for this.
4770 */
4771 if (!var->type->is_array()) {
4772 assert(state->error);
4773
4774 /* To avoid cascading failures, short circuit the checks below. */
4775 return;
4776 }
4777
4778 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4779 &state->gs_input_size,
4780 "geometry shader input");
4781 }
4782
4783 static void
4784 validate_identifier(const char *identifier, YYLTYPE loc,
4785 struct _mesa_glsl_parse_state *state)
4786 {
4787 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4788 *
4789 * "Identifiers starting with "gl_" are reserved for use by
4790 * OpenGL, and may not be declared in a shader as either a
4791 * variable or a function."
4792 */
4793 if (is_gl_identifier(identifier)) {
4794 _mesa_glsl_error(&loc, state,
4795 "identifier `%s' uses reserved `gl_' prefix",
4796 identifier);
4797 } else if (strstr(identifier, "__")) {
4798 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4799 * spec:
4800 *
4801 * "In addition, all identifiers containing two
4802 * consecutive underscores (__) are reserved as
4803 * possible future keywords."
4804 *
4805 * The intention is that names containing __ are reserved for internal
4806 * use by the implementation, and names prefixed with GL_ are reserved
4807 * for use by Khronos. Names simply containing __ are dangerous to use,
4808 * but should be allowed.
4809 *
4810 * A future version of the GLSL specification will clarify this.
4811 */
4812 _mesa_glsl_warning(&loc, state,
4813 "identifier `%s' uses reserved `__' string",
4814 identifier);
4815 }
4816 }
4817
4818 ir_rvalue *
4819 ast_declarator_list::hir(exec_list *instructions,
4820 struct _mesa_glsl_parse_state *state)
4821 {
4822 void *ctx = state;
4823 const struct glsl_type *decl_type;
4824 const char *type_name = NULL;
4825 ir_rvalue *result = NULL;
4826 YYLTYPE loc = this->get_location();
4827
4828 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4829 *
4830 * "To ensure that a particular output variable is invariant, it is
4831 * necessary to use the invariant qualifier. It can either be used to
4832 * qualify a previously declared variable as being invariant
4833 *
4834 * invariant gl_Position; // make existing gl_Position be invariant"
4835 *
4836 * In these cases the parser will set the 'invariant' flag in the declarator
4837 * list, and the type will be NULL.
4838 */
4839 if (this->invariant) {
4840 assert(this->type == NULL);
4841
4842 if (state->current_function != NULL) {
4843 _mesa_glsl_error(& loc, state,
4844 "all uses of `invariant' keyword must be at global "
4845 "scope");
4846 }
4847
4848 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4849 assert(decl->array_specifier == NULL);
4850 assert(decl->initializer == NULL);
4851
4852 ir_variable *const earlier =
4853 state->symbols->get_variable(decl->identifier);
4854 if (earlier == NULL) {
4855 _mesa_glsl_error(& loc, state,
4856 "undeclared variable `%s' cannot be marked "
4857 "invariant", decl->identifier);
4858 } else if (!is_allowed_invariant(earlier, state)) {
4859 _mesa_glsl_error(&loc, state,
4860 "`%s' cannot be marked invariant; interfaces between "
4861 "shader stages only.", decl->identifier);
4862 } else if (earlier->data.used) {
4863 _mesa_glsl_error(& loc, state,
4864 "variable `%s' may not be redeclared "
4865 "`invariant' after being used",
4866 earlier->name);
4867 } else {
4868 earlier->data.explicit_invariant = true;
4869 earlier->data.invariant = true;
4870 }
4871 }
4872
4873 /* Invariant redeclarations do not have r-values.
4874 */
4875 return NULL;
4876 }
4877
4878 if (this->precise) {
4879 assert(this->type == NULL);
4880
4881 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4882 assert(decl->array_specifier == NULL);
4883 assert(decl->initializer == NULL);
4884
4885 ir_variable *const earlier =
4886 state->symbols->get_variable(decl->identifier);
4887 if (earlier == NULL) {
4888 _mesa_glsl_error(& loc, state,
4889 "undeclared variable `%s' cannot be marked "
4890 "precise", decl->identifier);
4891 } else if (state->current_function != NULL &&
4892 !state->symbols->name_declared_this_scope(decl->identifier)) {
4893 /* Note: we have to check if we're in a function, since
4894 * builtins are treated as having come from another scope.
4895 */
4896 _mesa_glsl_error(& loc, state,
4897 "variable `%s' from an outer scope may not be "
4898 "redeclared `precise' in this scope",
4899 earlier->name);
4900 } else if (earlier->data.used) {
4901 _mesa_glsl_error(& loc, state,
4902 "variable `%s' may not be redeclared "
4903 "`precise' after being used",
4904 earlier->name);
4905 } else {
4906 earlier->data.precise = true;
4907 }
4908 }
4909
4910 /* Precise redeclarations do not have r-values either. */
4911 return NULL;
4912 }
4913
4914 assert(this->type != NULL);
4915 assert(!this->invariant);
4916 assert(!this->precise);
4917
4918 /* The type specifier may contain a structure definition. Process that
4919 * before any of the variable declarations.
4920 */
4921 (void) this->type->specifier->hir(instructions, state);
4922
4923 decl_type = this->type->glsl_type(& type_name, state);
4924
4925 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4926 * "Buffer variables may only be declared inside interface blocks
4927 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4928 * shader storage blocks. It is a compile-time error to declare buffer
4929 * variables at global scope (outside a block)."
4930 */
4931 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4932 _mesa_glsl_error(&loc, state,
4933 "buffer variables cannot be declared outside "
4934 "interface blocks");
4935 }
4936
4937 /* An offset-qualified atomic counter declaration sets the default
4938 * offset for the next declaration within the same atomic counter
4939 * buffer.
4940 */
4941 if (decl_type && decl_type->contains_atomic()) {
4942 if (type->qualifier.flags.q.explicit_binding &&
4943 type->qualifier.flags.q.explicit_offset) {
4944 unsigned qual_binding;
4945 unsigned qual_offset;
4946 if (process_qualifier_constant(state, &loc, "binding",
4947 type->qualifier.binding,
4948 &qual_binding)
4949 && process_qualifier_constant(state, &loc, "offset",
4950 type->qualifier.offset,
4951 &qual_offset)) {
4952 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
4953 state->atomic_counter_offsets[qual_binding] = qual_offset;
4954 }
4955 }
4956
4957 ast_type_qualifier allowed_atomic_qual_mask;
4958 allowed_atomic_qual_mask.flags.i = 0;
4959 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4960 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4961 allowed_atomic_qual_mask.flags.q.uniform = 1;
4962
4963 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4964 "invalid layout qualifier for",
4965 "atomic_uint");
4966 }
4967
4968 if (this->declarations.is_empty()) {
4969 /* If there is no structure involved in the program text, there are two
4970 * possible scenarios:
4971 *
4972 * - The program text contained something like 'vec4;'. This is an
4973 * empty declaration. It is valid but weird. Emit a warning.
4974 *
4975 * - The program text contained something like 'S;' and 'S' is not the
4976 * name of a known structure type. This is both invalid and weird.
4977 * Emit an error.
4978 *
4979 * - The program text contained something like 'mediump float;'
4980 * when the programmer probably meant 'precision mediump
4981 * float;' Emit a warning with a description of what they
4982 * probably meant to do.
4983 *
4984 * Note that if decl_type is NULL and there is a structure involved,
4985 * there must have been some sort of error with the structure. In this
4986 * case we assume that an error was already generated on this line of
4987 * code for the structure. There is no need to generate an additional,
4988 * confusing error.
4989 */
4990 assert(this->type->specifier->structure == NULL || decl_type != NULL
4991 || state->error);
4992
4993 if (decl_type == NULL) {
4994 _mesa_glsl_error(&loc, state,
4995 "invalid type `%s' in empty declaration",
4996 type_name);
4997 } else {
4998 if (decl_type->is_array()) {
4999 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5000 * spec:
5001 *
5002 * "... any declaration that leaves the size undefined is
5003 * disallowed as this would add complexity and there are no
5004 * use-cases."
5005 */
5006 if (state->es_shader && decl_type->is_unsized_array()) {
5007 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5008 "or implicitly defined");
5009 }
5010
5011 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5012 *
5013 * "The combinations of types and qualifiers that cause
5014 * compile-time or link-time errors are the same whether or not
5015 * the declaration is empty."
5016 */
5017 validate_array_dimensions(decl_type, state, &loc);
5018 }
5019
5020 if (decl_type->is_atomic_uint()) {
5021 /* Empty atomic counter declarations are allowed and useful
5022 * to set the default offset qualifier.
5023 */
5024 return NULL;
5025 } else if (this->type->qualifier.precision != ast_precision_none) {
5026 if (this->type->specifier->structure != NULL) {
5027 _mesa_glsl_error(&loc, state,
5028 "precision qualifiers can't be applied "
5029 "to structures");
5030 } else {
5031 static const char *const precision_names[] = {
5032 "highp",
5033 "highp",
5034 "mediump",
5035 "lowp"
5036 };
5037
5038 _mesa_glsl_warning(&loc, state,
5039 "empty declaration with precision "
5040 "qualifier, to set the default precision, "
5041 "use `precision %s %s;'",
5042 precision_names[this->type->
5043 qualifier.precision],
5044 type_name);
5045 }
5046 } else if (this->type->specifier->structure == NULL) {
5047 _mesa_glsl_warning(&loc, state, "empty declaration");
5048 }
5049 }
5050 }
5051
5052 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5053 const struct glsl_type *var_type;
5054 ir_variable *var;
5055 const char *identifier = decl->identifier;
5056 /* FINISHME: Emit a warning if a variable declaration shadows a
5057 * FINISHME: declaration at a higher scope.
5058 */
5059
5060 if ((decl_type == NULL) || decl_type->is_void()) {
5061 if (type_name != NULL) {
5062 _mesa_glsl_error(& loc, state,
5063 "invalid type `%s' in declaration of `%s'",
5064 type_name, decl->identifier);
5065 } else {
5066 _mesa_glsl_error(& loc, state,
5067 "invalid type in declaration of `%s'",
5068 decl->identifier);
5069 }
5070 continue;
5071 }
5072
5073 if (this->type->qualifier.is_subroutine_decl()) {
5074 const glsl_type *t;
5075 const char *name;
5076
5077 t = state->symbols->get_type(this->type->specifier->type_name);
5078 if (!t)
5079 _mesa_glsl_error(& loc, state,
5080 "invalid type in declaration of `%s'",
5081 decl->identifier);
5082 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5083
5084 identifier = name;
5085
5086 }
5087 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5088 state);
5089
5090 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5091
5092 /* The 'varying in' and 'varying out' qualifiers can only be used with
5093 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5094 * yet.
5095 */
5096 if (this->type->qualifier.flags.q.varying) {
5097 if (this->type->qualifier.flags.q.in) {
5098 _mesa_glsl_error(& loc, state,
5099 "`varying in' qualifier in declaration of "
5100 "`%s' only valid for geometry shaders using "
5101 "ARB_geometry_shader4 or EXT_geometry_shader4",
5102 decl->identifier);
5103 } else if (this->type->qualifier.flags.q.out) {
5104 _mesa_glsl_error(& loc, state,
5105 "`varying out' qualifier in declaration of "
5106 "`%s' only valid for geometry shaders using "
5107 "ARB_geometry_shader4 or EXT_geometry_shader4",
5108 decl->identifier);
5109 }
5110 }
5111
5112 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5113 *
5114 * "Global variables can only use the qualifiers const,
5115 * attribute, uniform, or varying. Only one may be
5116 * specified.
5117 *
5118 * Local variables can only use the qualifier const."
5119 *
5120 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5121 * any extension that adds the 'layout' keyword.
5122 */
5123 if (!state->is_version(130, 300)
5124 && !state->has_explicit_attrib_location()
5125 && !state->has_separate_shader_objects()
5126 && !state->ARB_fragment_coord_conventions_enable) {
5127 if (this->type->qualifier.flags.q.out) {
5128 _mesa_glsl_error(& loc, state,
5129 "`out' qualifier in declaration of `%s' "
5130 "only valid for function parameters in %s",
5131 decl->identifier, state->get_version_string());
5132 }
5133 if (this->type->qualifier.flags.q.in) {
5134 _mesa_glsl_error(& loc, state,
5135 "`in' qualifier in declaration of `%s' "
5136 "only valid for function parameters in %s",
5137 decl->identifier, state->get_version_string());
5138 }
5139 /* FINISHME: Test for other invalid qualifiers. */
5140 }
5141
5142 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5143 & loc, false);
5144 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5145 &loc);
5146
5147 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5148 && (var->type->is_numeric() || var->type->is_boolean())
5149 && state->zero_init) {
5150 const ir_constant_data data = { { 0 } };
5151 var->data.has_initializer = true;
5152 var->constant_initializer = new(var) ir_constant(var->type, &data);
5153 }
5154
5155 if (this->type->qualifier.flags.q.invariant) {
5156 if (!is_allowed_invariant(var, state)) {
5157 _mesa_glsl_error(&loc, state,
5158 "`%s' cannot be marked invariant; interfaces between "
5159 "shader stages only", var->name);
5160 }
5161 }
5162
5163 if (state->current_function != NULL) {
5164 const char *mode = NULL;
5165 const char *extra = "";
5166
5167 /* There is no need to check for 'inout' here because the parser will
5168 * only allow that in function parameter lists.
5169 */
5170 if (this->type->qualifier.flags.q.attribute) {
5171 mode = "attribute";
5172 } else if (this->type->qualifier.is_subroutine_decl()) {
5173 mode = "subroutine uniform";
5174 } else if (this->type->qualifier.flags.q.uniform) {
5175 mode = "uniform";
5176 } else if (this->type->qualifier.flags.q.varying) {
5177 mode = "varying";
5178 } else if (this->type->qualifier.flags.q.in) {
5179 mode = "in";
5180 extra = " or in function parameter list";
5181 } else if (this->type->qualifier.flags.q.out) {
5182 mode = "out";
5183 extra = " or in function parameter list";
5184 }
5185
5186 if (mode) {
5187 _mesa_glsl_error(& loc, state,
5188 "%s variable `%s' must be declared at "
5189 "global scope%s",
5190 mode, var->name, extra);
5191 }
5192 } else if (var->data.mode == ir_var_shader_in) {
5193 var->data.read_only = true;
5194
5195 if (state->stage == MESA_SHADER_VERTEX) {
5196 bool error_emitted = false;
5197
5198 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5199 *
5200 * "Vertex shader inputs can only be float, floating-point
5201 * vectors, matrices, signed and unsigned integers and integer
5202 * vectors. Vertex shader inputs can also form arrays of these
5203 * types, but not structures."
5204 *
5205 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5206 *
5207 * "Vertex shader inputs can only be float, floating-point
5208 * vectors, matrices, signed and unsigned integers and integer
5209 * vectors. They cannot be arrays or structures."
5210 *
5211 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5212 *
5213 * "The attribute qualifier can be used only with float,
5214 * floating-point vectors, and matrices. Attribute variables
5215 * cannot be declared as arrays or structures."
5216 *
5217 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5218 *
5219 * "Vertex shader inputs can only be float, floating-point
5220 * vectors, matrices, signed and unsigned integers and integer
5221 * vectors. Vertex shader inputs cannot be arrays or
5222 * structures."
5223 *
5224 * From section 4.3.4 of the ARB_bindless_texture spec:
5225 *
5226 * "(modify third paragraph of the section to allow sampler and
5227 * image types) ... Vertex shader inputs can only be float,
5228 * single-precision floating-point scalars, single-precision
5229 * floating-point vectors, matrices, signed and unsigned
5230 * integers and integer vectors, sampler and image types."
5231 */
5232 const glsl_type *check_type = var->type->without_array();
5233
5234 switch (check_type->base_type) {
5235 case GLSL_TYPE_FLOAT:
5236 break;
5237 case GLSL_TYPE_UINT64:
5238 case GLSL_TYPE_INT64:
5239 break;
5240 case GLSL_TYPE_UINT:
5241 case GLSL_TYPE_INT:
5242 if (state->is_version(120, 300))
5243 break;
5244 case GLSL_TYPE_DOUBLE:
5245 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5246 break;
5247 case GLSL_TYPE_SAMPLER:
5248 if (check_type->is_sampler() && state->has_bindless())
5249 break;
5250 case GLSL_TYPE_IMAGE:
5251 if (check_type->is_image() && state->has_bindless())
5252 break;
5253 /* FALLTHROUGH */
5254 default:
5255 _mesa_glsl_error(& loc, state,
5256 "vertex shader input / attribute cannot have "
5257 "type %s`%s'",
5258 var->type->is_array() ? "array of " : "",
5259 check_type->name);
5260 error_emitted = true;
5261 }
5262
5263 if (!error_emitted && var->type->is_array() &&
5264 !state->check_version(150, 0, &loc,
5265 "vertex shader input / attribute "
5266 "cannot have array type")) {
5267 error_emitted = true;
5268 }
5269 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5270 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5271 *
5272 * Geometry shader input variables get the per-vertex values
5273 * written out by vertex shader output variables of the same
5274 * names. Since a geometry shader operates on a set of
5275 * vertices, each input varying variable (or input block, see
5276 * interface blocks below) needs to be declared as an array.
5277 */
5278 if (!var->type->is_array()) {
5279 _mesa_glsl_error(&loc, state,
5280 "geometry shader inputs must be arrays");
5281 }
5282
5283 handle_geometry_shader_input_decl(state, loc, var);
5284 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5285 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5286 *
5287 * It is a compile-time error to declare a fragment shader
5288 * input with, or that contains, any of the following types:
5289 *
5290 * * A boolean type
5291 * * An opaque type
5292 * * An array of arrays
5293 * * An array of structures
5294 * * A structure containing an array
5295 * * A structure containing a structure
5296 */
5297 if (state->es_shader) {
5298 const glsl_type *check_type = var->type->without_array();
5299 if (check_type->is_boolean() ||
5300 check_type->contains_opaque()) {
5301 _mesa_glsl_error(&loc, state,
5302 "fragment shader input cannot have type %s",
5303 check_type->name);
5304 }
5305 if (var->type->is_array() &&
5306 var->type->fields.array->is_array()) {
5307 _mesa_glsl_error(&loc, state,
5308 "%s shader output "
5309 "cannot have an array of arrays",
5310 _mesa_shader_stage_to_string(state->stage));
5311 }
5312 if (var->type->is_array() &&
5313 var->type->fields.array->is_struct()) {
5314 _mesa_glsl_error(&loc, state,
5315 "fragment shader input "
5316 "cannot have an array of structs");
5317 }
5318 if (var->type->is_struct()) {
5319 for (unsigned i = 0; i < var->type->length; i++) {
5320 if (var->type->fields.structure[i].type->is_array() ||
5321 var->type->fields.structure[i].type->is_struct())
5322 _mesa_glsl_error(&loc, state,
5323 "fragment shader input cannot have "
5324 "a struct that contains an "
5325 "array or struct");
5326 }
5327 }
5328 }
5329 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5330 state->stage == MESA_SHADER_TESS_EVAL) {
5331 handle_tess_shader_input_decl(state, loc, var);
5332 }
5333 } else if (var->data.mode == ir_var_shader_out) {
5334 const glsl_type *check_type = var->type->without_array();
5335
5336 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5337 *
5338 * It is a compile-time error to declare a fragment shader output
5339 * that contains any of the following:
5340 *
5341 * * A Boolean type (bool, bvec2 ...)
5342 * * A double-precision scalar or vector (double, dvec2 ...)
5343 * * An opaque type
5344 * * Any matrix type
5345 * * A structure
5346 */
5347 if (state->stage == MESA_SHADER_FRAGMENT) {
5348 if (check_type->is_struct() || check_type->is_matrix())
5349 _mesa_glsl_error(&loc, state,
5350 "fragment shader output "
5351 "cannot have struct or matrix type");
5352 switch (check_type->base_type) {
5353 case GLSL_TYPE_UINT:
5354 case GLSL_TYPE_INT:
5355 case GLSL_TYPE_FLOAT:
5356 break;
5357 default:
5358 _mesa_glsl_error(&loc, state,
5359 "fragment shader output cannot have "
5360 "type %s", check_type->name);
5361 }
5362 }
5363
5364 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5365 *
5366 * It is a compile-time error to declare a vertex shader output
5367 * with, or that contains, any of the following types:
5368 *
5369 * * A boolean type
5370 * * An opaque type
5371 * * An array of arrays
5372 * * An array of structures
5373 * * A structure containing an array
5374 * * A structure containing a structure
5375 *
5376 * It is a compile-time error to declare a fragment shader output
5377 * with, or that contains, any of the following types:
5378 *
5379 * * A boolean type
5380 * * An opaque type
5381 * * A matrix
5382 * * A structure
5383 * * An array of array
5384 *
5385 * ES 3.20 updates this to apply to tessellation and geometry shaders
5386 * as well. Because there are per-vertex arrays in the new stages,
5387 * it strikes the "array of..." rules and replaces them with these:
5388 *
5389 * * For per-vertex-arrayed variables (applies to tessellation
5390 * control, tessellation evaluation and geometry shaders):
5391 *
5392 * * Per-vertex-arrayed arrays of arrays
5393 * * Per-vertex-arrayed arrays of structures
5394 *
5395 * * For non-per-vertex-arrayed variables:
5396 *
5397 * * An array of arrays
5398 * * An array of structures
5399 *
5400 * which basically says to unwrap the per-vertex aspect and apply
5401 * the old rules.
5402 */
5403 if (state->es_shader) {
5404 if (var->type->is_array() &&
5405 var->type->fields.array->is_array()) {
5406 _mesa_glsl_error(&loc, state,
5407 "%s shader output "
5408 "cannot have an array of arrays",
5409 _mesa_shader_stage_to_string(state->stage));
5410 }
5411 if (state->stage <= MESA_SHADER_GEOMETRY) {
5412 const glsl_type *type = var->type;
5413
5414 if (state->stage == MESA_SHADER_TESS_CTRL &&
5415 !var->data.patch && var->type->is_array()) {
5416 type = var->type->fields.array;
5417 }
5418
5419 if (type->is_array() && type->fields.array->is_struct()) {
5420 _mesa_glsl_error(&loc, state,
5421 "%s shader output cannot have "
5422 "an array of structs",
5423 _mesa_shader_stage_to_string(state->stage));
5424 }
5425 if (type->is_struct()) {
5426 for (unsigned i = 0; i < type->length; i++) {
5427 if (type->fields.structure[i].type->is_array() ||
5428 type->fields.structure[i].type->is_struct())
5429 _mesa_glsl_error(&loc, state,
5430 "%s shader output cannot have a "
5431 "struct that contains an "
5432 "array or struct",
5433 _mesa_shader_stage_to_string(state->stage));
5434 }
5435 }
5436 }
5437 }
5438
5439 if (state->stage == MESA_SHADER_TESS_CTRL) {
5440 handle_tess_ctrl_shader_output_decl(state, loc, var);
5441 }
5442 } else if (var->type->contains_subroutine()) {
5443 /* declare subroutine uniforms as hidden */
5444 var->data.how_declared = ir_var_hidden;
5445 }
5446
5447 /* From section 4.3.4 of the GLSL 4.00 spec:
5448 * "Input variables may not be declared using the patch in qualifier
5449 * in tessellation control or geometry shaders."
5450 *
5451 * From section 4.3.6 of the GLSL 4.00 spec:
5452 * "It is an error to use patch out in a vertex, tessellation
5453 * evaluation, or geometry shader."
5454 *
5455 * This doesn't explicitly forbid using them in a fragment shader, but
5456 * that's probably just an oversight.
5457 */
5458 if (state->stage != MESA_SHADER_TESS_EVAL
5459 && this->type->qualifier.flags.q.patch
5460 && this->type->qualifier.flags.q.in) {
5461
5462 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5463 "tessellation evaluation shader");
5464 }
5465
5466 if (state->stage != MESA_SHADER_TESS_CTRL
5467 && this->type->qualifier.flags.q.patch
5468 && this->type->qualifier.flags.q.out) {
5469
5470 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5471 "tessellation control shader");
5472 }
5473
5474 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5475 */
5476 if (this->type->qualifier.precision != ast_precision_none) {
5477 state->check_precision_qualifiers_allowed(&loc);
5478 }
5479
5480 if (this->type->qualifier.precision != ast_precision_none &&
5481 !precision_qualifier_allowed(var->type)) {
5482 _mesa_glsl_error(&loc, state,
5483 "precision qualifiers apply only to floating point"
5484 ", integer and opaque types");
5485 }
5486
5487 /* From section 4.1.7 of the GLSL 4.40 spec:
5488 *
5489 * "[Opaque types] can only be declared as function
5490 * parameters or uniform-qualified variables."
5491 *
5492 * From section 4.1.7 of the ARB_bindless_texture spec:
5493 *
5494 * "Samplers may be declared as shader inputs and outputs, as uniform
5495 * variables, as temporary variables, and as function parameters."
5496 *
5497 * From section 4.1.X of the ARB_bindless_texture spec:
5498 *
5499 * "Images may be declared as shader inputs and outputs, as uniform
5500 * variables, as temporary variables, and as function parameters."
5501 */
5502 if (!this->type->qualifier.flags.q.uniform &&
5503 (var_type->contains_atomic() ||
5504 (!state->has_bindless() && var_type->contains_opaque()))) {
5505 _mesa_glsl_error(&loc, state,
5506 "%s variables must be declared uniform",
5507 state->has_bindless() ? "atomic" : "opaque");
5508 }
5509
5510 /* Process the initializer and add its instructions to a temporary
5511 * list. This list will be added to the instruction stream (below) after
5512 * the declaration is added. This is done because in some cases (such as
5513 * redeclarations) the declaration may not actually be added to the
5514 * instruction stream.
5515 */
5516 exec_list initializer_instructions;
5517
5518 /* Examine var name here since var may get deleted in the next call */
5519 bool var_is_gl_id = is_gl_identifier(var->name);
5520
5521 bool is_redeclaration;
5522 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5523 false /* allow_all_redeclarations */,
5524 &is_redeclaration);
5525 if (is_redeclaration) {
5526 if (var_is_gl_id &&
5527 var->data.how_declared == ir_var_declared_in_block) {
5528 _mesa_glsl_error(&loc, state,
5529 "`%s' has already been redeclared using "
5530 "gl_PerVertex", var->name);
5531 }
5532 var->data.how_declared = ir_var_declared_normally;
5533 }
5534
5535 if (decl->initializer != NULL) {
5536 result = process_initializer(var,
5537 decl, this->type,
5538 &initializer_instructions, state);
5539 } else {
5540 validate_array_dimensions(var_type, state, &loc);
5541 }
5542
5543 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5544 *
5545 * "It is an error to write to a const variable outside of
5546 * its declaration, so they must be initialized when
5547 * declared."
5548 */
5549 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5550 _mesa_glsl_error(& loc, state,
5551 "const declaration of `%s' must be initialized",
5552 decl->identifier);
5553 }
5554
5555 if (state->es_shader) {
5556 const glsl_type *const t = var->type;
5557
5558 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5559 *
5560 * The GL_OES_tessellation_shader spec says about inputs:
5561 *
5562 * "Declaring an array size is optional. If no size is specified,
5563 * it will be taken from the implementation-dependent maximum
5564 * patch size (gl_MaxPatchVertices)."
5565 *
5566 * and about TCS outputs:
5567 *
5568 * "If no size is specified, it will be taken from output patch
5569 * size declared in the shader."
5570 *
5571 * The GL_OES_geometry_shader spec says:
5572 *
5573 * "All geometry shader input unsized array declarations will be
5574 * sized by an earlier input primitive layout qualifier, when
5575 * present, as per the following table."
5576 */
5577 const bool implicitly_sized =
5578 (var->data.mode == ir_var_shader_in &&
5579 state->stage >= MESA_SHADER_TESS_CTRL &&
5580 state->stage <= MESA_SHADER_GEOMETRY) ||
5581 (var->data.mode == ir_var_shader_out &&
5582 state->stage == MESA_SHADER_TESS_CTRL);
5583
5584 if (t->is_unsized_array() && !implicitly_sized)
5585 /* Section 10.17 of the GLSL ES 1.00 specification states that
5586 * unsized array declarations have been removed from the language.
5587 * Arrays that are sized using an initializer are still explicitly
5588 * sized. However, GLSL ES 1.00 does not allow array
5589 * initializers. That is only allowed in GLSL ES 3.00.
5590 *
5591 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5592 *
5593 * "An array type can also be formed without specifying a size
5594 * if the definition includes an initializer:
5595 *
5596 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5597 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5598 *
5599 * float a[5];
5600 * float b[] = a;"
5601 */
5602 _mesa_glsl_error(& loc, state,
5603 "unsized array declarations are not allowed in "
5604 "GLSL ES");
5605 }
5606
5607 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5608 *
5609 * "It is a compile-time error to declare an unsized array of
5610 * atomic_uint"
5611 */
5612 if (var->type->is_unsized_array() &&
5613 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5614 _mesa_glsl_error(& loc, state,
5615 "Unsized array of atomic_uint is not allowed");
5616 }
5617
5618 /* If the declaration is not a redeclaration, there are a few additional
5619 * semantic checks that must be applied. In addition, variable that was
5620 * created for the declaration should be added to the IR stream.
5621 */
5622 if (!is_redeclaration) {
5623 validate_identifier(decl->identifier, loc, state);
5624
5625 /* Add the variable to the symbol table. Note that the initializer's
5626 * IR was already processed earlier (though it hasn't been emitted
5627 * yet), without the variable in scope.
5628 *
5629 * This differs from most C-like languages, but it follows the GLSL
5630 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5631 * spec:
5632 *
5633 * "Within a declaration, the scope of a name starts immediately
5634 * after the initializer if present or immediately after the name
5635 * being declared if not."
5636 */
5637 if (!state->symbols->add_variable(var)) {
5638 YYLTYPE loc = this->get_location();
5639 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5640 "current scope", decl->identifier);
5641 continue;
5642 }
5643
5644 /* Push the variable declaration to the top. It means that all the
5645 * variable declarations will appear in a funny last-to-first order,
5646 * but otherwise we run into trouble if a function is prototyped, a
5647 * global var is decled, then the function is defined with usage of
5648 * the global var. See glslparsertest's CorrectModule.frag.
5649 */
5650 instructions->push_head(var);
5651 }
5652
5653 instructions->append_list(&initializer_instructions);
5654 }
5655
5656
5657 /* Generally, variable declarations do not have r-values. However,
5658 * one is used for the declaration in
5659 *
5660 * while (bool b = some_condition()) {
5661 * ...
5662 * }
5663 *
5664 * so we return the rvalue from the last seen declaration here.
5665 */
5666 return result;
5667 }
5668
5669
5670 ir_rvalue *
5671 ast_parameter_declarator::hir(exec_list *instructions,
5672 struct _mesa_glsl_parse_state *state)
5673 {
5674 void *ctx = state;
5675 const struct glsl_type *type;
5676 const char *name = NULL;
5677 YYLTYPE loc = this->get_location();
5678
5679 type = this->type->glsl_type(& name, state);
5680
5681 if (type == NULL) {
5682 if (name != NULL) {
5683 _mesa_glsl_error(& loc, state,
5684 "invalid type `%s' in declaration of `%s'",
5685 name, this->identifier);
5686 } else {
5687 _mesa_glsl_error(& loc, state,
5688 "invalid type in declaration of `%s'",
5689 this->identifier);
5690 }
5691
5692 type = glsl_type::error_type;
5693 }
5694
5695 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5696 *
5697 * "Functions that accept no input arguments need not use void in the
5698 * argument list because prototypes (or definitions) are required and
5699 * therefore there is no ambiguity when an empty argument list "( )" is
5700 * declared. The idiom "(void)" as a parameter list is provided for
5701 * convenience."
5702 *
5703 * Placing this check here prevents a void parameter being set up
5704 * for a function, which avoids tripping up checks for main taking
5705 * parameters and lookups of an unnamed symbol.
5706 */
5707 if (type->is_void()) {
5708 if (this->identifier != NULL)
5709 _mesa_glsl_error(& loc, state,
5710 "named parameter cannot have type `void'");
5711
5712 is_void = true;
5713 return NULL;
5714 }
5715
5716 if (formal_parameter && (this->identifier == NULL)) {
5717 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5718 return NULL;
5719 }
5720
5721 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5722 * call already handled the "vec4[..] foo" case.
5723 */
5724 type = process_array_type(&loc, type, this->array_specifier, state);
5725
5726 if (!type->is_error() && type->is_unsized_array()) {
5727 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5728 "a declared size");
5729 type = glsl_type::error_type;
5730 }
5731
5732 is_void = false;
5733 ir_variable *var = new(ctx)
5734 ir_variable(type, this->identifier, ir_var_function_in);
5735
5736 /* Apply any specified qualifiers to the parameter declaration. Note that
5737 * for function parameters the default mode is 'in'.
5738 */
5739 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5740 true);
5741
5742 /* From section 4.1.7 of the GLSL 4.40 spec:
5743 *
5744 * "Opaque variables cannot be treated as l-values; hence cannot
5745 * be used as out or inout function parameters, nor can they be
5746 * assigned into."
5747 *
5748 * From section 4.1.7 of the ARB_bindless_texture spec:
5749 *
5750 * "Samplers can be used as l-values, so can be assigned into and used
5751 * as "out" and "inout" function parameters."
5752 *
5753 * From section 4.1.X of the ARB_bindless_texture spec:
5754 *
5755 * "Images can be used as l-values, so can be assigned into and used as
5756 * "out" and "inout" function parameters."
5757 */
5758 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5759 && (type->contains_atomic() ||
5760 (!state->has_bindless() && type->contains_opaque()))) {
5761 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5762 "contain %s variables",
5763 state->has_bindless() ? "atomic" : "opaque");
5764 type = glsl_type::error_type;
5765 }
5766
5767 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5768 *
5769 * "When calling a function, expressions that do not evaluate to
5770 * l-values cannot be passed to parameters declared as out or inout."
5771 *
5772 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5773 *
5774 * "Other binary or unary expressions, non-dereferenced arrays,
5775 * function names, swizzles with repeated fields, and constants
5776 * cannot be l-values."
5777 *
5778 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5779 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5780 */
5781 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5782 && type->is_array()
5783 && !state->check_version(120, 100, &loc,
5784 "arrays cannot be out or inout parameters")) {
5785 type = glsl_type::error_type;
5786 }
5787
5788 instructions->push_tail(var);
5789
5790 /* Parameter declarations do not have r-values.
5791 */
5792 return NULL;
5793 }
5794
5795
5796 void
5797 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5798 bool formal,
5799 exec_list *ir_parameters,
5800 _mesa_glsl_parse_state *state)
5801 {
5802 ast_parameter_declarator *void_param = NULL;
5803 unsigned count = 0;
5804
5805 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5806 param->formal_parameter = formal;
5807 param->hir(ir_parameters, state);
5808
5809 if (param->is_void)
5810 void_param = param;
5811
5812 count++;
5813 }
5814
5815 if ((void_param != NULL) && (count > 1)) {
5816 YYLTYPE loc = void_param->get_location();
5817
5818 _mesa_glsl_error(& loc, state,
5819 "`void' parameter must be only parameter");
5820 }
5821 }
5822
5823
5824 void
5825 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5826 {
5827 /* IR invariants disallow function declarations or definitions
5828 * nested within other function definitions. But there is no
5829 * requirement about the relative order of function declarations
5830 * and definitions with respect to one another. So simply insert
5831 * the new ir_function block at the end of the toplevel instruction
5832 * list.
5833 */
5834 state->toplevel_ir->push_tail(f);
5835 }
5836
5837
5838 ir_rvalue *
5839 ast_function::hir(exec_list *instructions,
5840 struct _mesa_glsl_parse_state *state)
5841 {
5842 void *ctx = state;
5843 ir_function *f = NULL;
5844 ir_function_signature *sig = NULL;
5845 exec_list hir_parameters;
5846 YYLTYPE loc = this->get_location();
5847
5848 const char *const name = identifier;
5849
5850 /* New functions are always added to the top-level IR instruction stream,
5851 * so this instruction list pointer is ignored. See also emit_function
5852 * (called below).
5853 */
5854 (void) instructions;
5855
5856 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5857 *
5858 * "Function declarations (prototypes) cannot occur inside of functions;
5859 * they must be at global scope, or for the built-in functions, outside
5860 * the global scope."
5861 *
5862 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5863 *
5864 * "User defined functions may only be defined within the global scope."
5865 *
5866 * Note that this language does not appear in GLSL 1.10.
5867 */
5868 if ((state->current_function != NULL) &&
5869 state->is_version(120, 100)) {
5870 YYLTYPE loc = this->get_location();
5871 _mesa_glsl_error(&loc, state,
5872 "declaration of function `%s' not allowed within "
5873 "function body", name);
5874 }
5875
5876 validate_identifier(name, this->get_location(), state);
5877
5878 /* Convert the list of function parameters to HIR now so that they can be
5879 * used below to compare this function's signature with previously seen
5880 * signatures for functions with the same name.
5881 */
5882 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5883 is_definition,
5884 & hir_parameters, state);
5885
5886 const char *return_type_name;
5887 const glsl_type *return_type =
5888 this->return_type->glsl_type(& return_type_name, state);
5889
5890 if (!return_type) {
5891 YYLTYPE loc = this->get_location();
5892 _mesa_glsl_error(&loc, state,
5893 "function `%s' has undeclared return type `%s'",
5894 name, return_type_name);
5895 return_type = glsl_type::error_type;
5896 }
5897
5898 /* ARB_shader_subroutine states:
5899 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5900 * subroutine(...) to a function declaration."
5901 */
5902 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5903 YYLTYPE loc = this->get_location();
5904 _mesa_glsl_error(&loc, state,
5905 "function declaration `%s' cannot have subroutine prepended",
5906 name);
5907 }
5908
5909 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5910 * "No qualifier is allowed on the return type of a function."
5911 */
5912 if (this->return_type->has_qualifiers(state)) {
5913 YYLTYPE loc = this->get_location();
5914 _mesa_glsl_error(& loc, state,
5915 "function `%s' return type has qualifiers", name);
5916 }
5917
5918 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5919 *
5920 * "Arrays are allowed as arguments and as the return type. In both
5921 * cases, the array must be explicitly sized."
5922 */
5923 if (return_type->is_unsized_array()) {
5924 YYLTYPE loc = this->get_location();
5925 _mesa_glsl_error(& loc, state,
5926 "function `%s' return type array must be explicitly "
5927 "sized", name);
5928 }
5929
5930 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5931 *
5932 * "Arrays are allowed as arguments, but not as the return type. [...]
5933 * The return type can also be a structure if the structure does not
5934 * contain an array."
5935 */
5936 if (state->language_version == 100 && return_type->contains_array()) {
5937 YYLTYPE loc = this->get_location();
5938 _mesa_glsl_error(& loc, state,
5939 "function `%s' return type contains an array", name);
5940 }
5941
5942 /* From section 4.1.7 of the GLSL 4.40 spec:
5943 *
5944 * "[Opaque types] can only be declared as function parameters
5945 * or uniform-qualified variables."
5946 *
5947 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5948 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5949 * (Images)", this should be allowed.
5950 */
5951 if (return_type->contains_atomic() ||
5952 (!state->has_bindless() && return_type->contains_opaque())) {
5953 YYLTYPE loc = this->get_location();
5954 _mesa_glsl_error(&loc, state,
5955 "function `%s' return type can't contain an %s type",
5956 name, state->has_bindless() ? "atomic" : "opaque");
5957 }
5958
5959 /**/
5960 if (return_type->is_subroutine()) {
5961 YYLTYPE loc = this->get_location();
5962 _mesa_glsl_error(&loc, state,
5963 "function `%s' return type can't be a subroutine type",
5964 name);
5965 }
5966
5967
5968 /* Create an ir_function if one doesn't already exist. */
5969 f = state->symbols->get_function(name);
5970 if (f == NULL) {
5971 f = new(ctx) ir_function(name);
5972 if (!this->return_type->qualifier.is_subroutine_decl()) {
5973 if (!state->symbols->add_function(f)) {
5974 /* This function name shadows a non-function use of the same name. */
5975 YYLTYPE loc = this->get_location();
5976 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5977 "non-function", name);
5978 return NULL;
5979 }
5980 }
5981 emit_function(state, f);
5982 }
5983
5984 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5985 *
5986 * "A shader cannot redefine or overload built-in functions."
5987 *
5988 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5989 *
5990 * "User code can overload the built-in functions but cannot redefine
5991 * them."
5992 */
5993 if (state->es_shader) {
5994 /* Local shader has no exact candidates; check the built-ins. */
5995 _mesa_glsl_initialize_builtin_functions();
5996 if (state->language_version >= 300 &&
5997 _mesa_glsl_has_builtin_function(state, name)) {
5998 YYLTYPE loc = this->get_location();
5999 _mesa_glsl_error(& loc, state,
6000 "A shader cannot redefine or overload built-in "
6001 "function `%s' in GLSL ES 3.00", name);
6002 return NULL;
6003 }
6004
6005 if (state->language_version == 100) {
6006 ir_function_signature *sig =
6007 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6008 if (sig && sig->is_builtin()) {
6009 _mesa_glsl_error(& loc, state,
6010 "A shader cannot redefine built-in "
6011 "function `%s' in GLSL ES 1.00", name);
6012 }
6013 }
6014 }
6015
6016 /* Verify that this function's signature either doesn't match a previously
6017 * seen signature for a function with the same name, or, if a match is found,
6018 * that the previously seen signature does not have an associated definition.
6019 */
6020 if (state->es_shader || f->has_user_signature()) {
6021 sig = f->exact_matching_signature(state, &hir_parameters);
6022 if (sig != NULL) {
6023 const char *badvar = sig->qualifiers_match(&hir_parameters);
6024 if (badvar != NULL) {
6025 YYLTYPE loc = this->get_location();
6026
6027 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6028 "qualifiers don't match prototype", name, badvar);
6029 }
6030
6031 if (sig->return_type != return_type) {
6032 YYLTYPE loc = this->get_location();
6033
6034 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6035 "match prototype", name);
6036 }
6037
6038 if (sig->is_defined) {
6039 if (is_definition) {
6040 YYLTYPE loc = this->get_location();
6041 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6042 } else {
6043 /* We just encountered a prototype that exactly matches a
6044 * function that's already been defined. This is redundant,
6045 * and we should ignore it.
6046 */
6047 return NULL;
6048 }
6049 } else if (state->language_version == 100 && !is_definition) {
6050 /* From the GLSL 1.00 spec, section 4.2.7:
6051 *
6052 * "A particular variable, structure or function declaration
6053 * may occur at most once within a scope with the exception
6054 * that a single function prototype plus the corresponding
6055 * function definition are allowed."
6056 */
6057 YYLTYPE loc = this->get_location();
6058 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6059 }
6060 }
6061 }
6062
6063 /* Verify the return type of main() */
6064 if (strcmp(name, "main") == 0) {
6065 if (! return_type->is_void()) {
6066 YYLTYPE loc = this->get_location();
6067
6068 _mesa_glsl_error(& loc, state, "main() must return void");
6069 }
6070
6071 if (!hir_parameters.is_empty()) {
6072 YYLTYPE loc = this->get_location();
6073
6074 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6075 }
6076 }
6077
6078 /* Finish storing the information about this new function in its signature.
6079 */
6080 if (sig == NULL) {
6081 sig = new(ctx) ir_function_signature(return_type);
6082 f->add_signature(sig);
6083 }
6084
6085 sig->replace_parameters(&hir_parameters);
6086 signature = sig;
6087
6088 if (this->return_type->qualifier.subroutine_list) {
6089 int idx;
6090
6091 if (this->return_type->qualifier.flags.q.explicit_index) {
6092 unsigned qual_index;
6093 if (process_qualifier_constant(state, &loc, "index",
6094 this->return_type->qualifier.index,
6095 &qual_index)) {
6096 if (!state->has_explicit_uniform_location()) {
6097 _mesa_glsl_error(&loc, state, "subroutine index requires "
6098 "GL_ARB_explicit_uniform_location or "
6099 "GLSL 4.30");
6100 } else if (qual_index >= MAX_SUBROUTINES) {
6101 _mesa_glsl_error(&loc, state,
6102 "invalid subroutine index (%d) index must "
6103 "be a number between 0 and "
6104 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6105 MAX_SUBROUTINES - 1);
6106 } else {
6107 f->subroutine_index = qual_index;
6108 }
6109 }
6110 }
6111
6112 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6113 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6114 f->num_subroutine_types);
6115 idx = 0;
6116 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6117 const struct glsl_type *type;
6118 /* the subroutine type must be already declared */
6119 type = state->symbols->get_type(decl->identifier);
6120 if (!type) {
6121 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6122 }
6123
6124 for (int i = 0; i < state->num_subroutine_types; i++) {
6125 ir_function *fn = state->subroutine_types[i];
6126 ir_function_signature *tsig = NULL;
6127
6128 if (strcmp(fn->name, decl->identifier))
6129 continue;
6130
6131 tsig = fn->matching_signature(state, &sig->parameters,
6132 false);
6133 if (!tsig) {
6134 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6135 } else {
6136 if (tsig->return_type != sig->return_type) {
6137 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6138 }
6139 }
6140 }
6141 f->subroutine_types[idx++] = type;
6142 }
6143 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6144 ir_function *,
6145 state->num_subroutines + 1);
6146 state->subroutines[state->num_subroutines] = f;
6147 state->num_subroutines++;
6148
6149 }
6150
6151 if (this->return_type->qualifier.is_subroutine_decl()) {
6152 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6153 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6154 return NULL;
6155 }
6156 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6157 ir_function *,
6158 state->num_subroutine_types + 1);
6159 state->subroutine_types[state->num_subroutine_types] = f;
6160 state->num_subroutine_types++;
6161
6162 f->is_subroutine = true;
6163 }
6164
6165 /* Function declarations (prototypes) do not have r-values.
6166 */
6167 return NULL;
6168 }
6169
6170
6171 ir_rvalue *
6172 ast_function_definition::hir(exec_list *instructions,
6173 struct _mesa_glsl_parse_state *state)
6174 {
6175 prototype->is_definition = true;
6176 prototype->hir(instructions, state);
6177
6178 ir_function_signature *signature = prototype->signature;
6179 if (signature == NULL)
6180 return NULL;
6181
6182 assert(state->current_function == NULL);
6183 state->current_function = signature;
6184 state->found_return = false;
6185
6186 /* Duplicate parameters declared in the prototype as concrete variables.
6187 * Add these to the symbol table.
6188 */
6189 state->symbols->push_scope();
6190 foreach_in_list(ir_variable, var, &signature->parameters) {
6191 assert(var->as_variable() != NULL);
6192
6193 /* The only way a parameter would "exist" is if two parameters have
6194 * the same name.
6195 */
6196 if (state->symbols->name_declared_this_scope(var->name)) {
6197 YYLTYPE loc = this->get_location();
6198
6199 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6200 } else {
6201 state->symbols->add_variable(var);
6202 }
6203 }
6204
6205 /* Convert the body of the function to HIR. */
6206 this->body->hir(&signature->body, state);
6207 signature->is_defined = true;
6208
6209 state->symbols->pop_scope();
6210
6211 assert(state->current_function == signature);
6212 state->current_function = NULL;
6213
6214 if (!signature->return_type->is_void() && !state->found_return) {
6215 YYLTYPE loc = this->get_location();
6216 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6217 "%s, but no return statement",
6218 signature->function_name(),
6219 signature->return_type->name);
6220 }
6221
6222 /* Function definitions do not have r-values.
6223 */
6224 return NULL;
6225 }
6226
6227
6228 ir_rvalue *
6229 ast_jump_statement::hir(exec_list *instructions,
6230 struct _mesa_glsl_parse_state *state)
6231 {
6232 void *ctx = state;
6233
6234 switch (mode) {
6235 case ast_return: {
6236 ir_return *inst;
6237 assert(state->current_function);
6238
6239 if (opt_return_value) {
6240 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6241
6242 /* The value of the return type can be NULL if the shader says
6243 * 'return foo();' and foo() is a function that returns void.
6244 *
6245 * NOTE: The GLSL spec doesn't say that this is an error. The type
6246 * of the return value is void. If the return type of the function is
6247 * also void, then this should compile without error. Seriously.
6248 */
6249 const glsl_type *const ret_type =
6250 (ret == NULL) ? glsl_type::void_type : ret->type;
6251
6252 /* Implicit conversions are not allowed for return values prior to
6253 * ARB_shading_language_420pack.
6254 */
6255 if (state->current_function->return_type != ret_type) {
6256 YYLTYPE loc = this->get_location();
6257
6258 if (state->has_420pack()) {
6259 if (!apply_implicit_conversion(state->current_function->return_type,
6260 ret, state)
6261 || (ret->type != state->current_function->return_type)) {
6262 _mesa_glsl_error(& loc, state,
6263 "could not implicitly convert return value "
6264 "to %s, in function `%s'",
6265 state->current_function->return_type->name,
6266 state->current_function->function_name());
6267 }
6268 } else {
6269 _mesa_glsl_error(& loc, state,
6270 "`return' with wrong type %s, in function `%s' "
6271 "returning %s",
6272 ret_type->name,
6273 state->current_function->function_name(),
6274 state->current_function->return_type->name);
6275 }
6276 } else if (state->current_function->return_type->base_type ==
6277 GLSL_TYPE_VOID) {
6278 YYLTYPE loc = this->get_location();
6279
6280 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6281 * specs add a clarification:
6282 *
6283 * "A void function can only use return without a return argument, even if
6284 * the return argument has void type. Return statements only accept values:
6285 *
6286 * void func1() { }
6287 * void func2() { return func1(); } // illegal return statement"
6288 */
6289 _mesa_glsl_error(& loc, state,
6290 "void functions can only use `return' without a "
6291 "return argument");
6292 }
6293
6294 inst = new(ctx) ir_return(ret);
6295 } else {
6296 if (state->current_function->return_type->base_type !=
6297 GLSL_TYPE_VOID) {
6298 YYLTYPE loc = this->get_location();
6299
6300 _mesa_glsl_error(& loc, state,
6301 "`return' with no value, in function %s returning "
6302 "non-void",
6303 state->current_function->function_name());
6304 }
6305 inst = new(ctx) ir_return;
6306 }
6307
6308 state->found_return = true;
6309 instructions->push_tail(inst);
6310 break;
6311 }
6312
6313 case ast_discard:
6314 if (state->stage != MESA_SHADER_FRAGMENT) {
6315 YYLTYPE loc = this->get_location();
6316
6317 _mesa_glsl_error(& loc, state,
6318 "`discard' may only appear in a fragment shader");
6319 }
6320 instructions->push_tail(new(ctx) ir_discard);
6321 break;
6322
6323 case ast_break:
6324 case ast_continue:
6325 if (mode == ast_continue &&
6326 state->loop_nesting_ast == NULL) {
6327 YYLTYPE loc = this->get_location();
6328
6329 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6330 } else if (mode == ast_break &&
6331 state->loop_nesting_ast == NULL &&
6332 state->switch_state.switch_nesting_ast == NULL) {
6333 YYLTYPE loc = this->get_location();
6334
6335 _mesa_glsl_error(& loc, state,
6336 "break may only appear in a loop or a switch");
6337 } else {
6338 /* For a loop, inline the for loop expression again, since we don't
6339 * know where near the end of the loop body the normal copy of it is
6340 * going to be placed. Same goes for the condition for a do-while
6341 * loop.
6342 */
6343 if (state->loop_nesting_ast != NULL &&
6344 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6345 if (state->loop_nesting_ast->rest_expression) {
6346 state->loop_nesting_ast->rest_expression->hir(instructions,
6347 state);
6348 }
6349 if (state->loop_nesting_ast->mode ==
6350 ast_iteration_statement::ast_do_while) {
6351 state->loop_nesting_ast->condition_to_hir(instructions, state);
6352 }
6353 }
6354
6355 if (state->switch_state.is_switch_innermost &&
6356 mode == ast_continue) {
6357 /* Set 'continue_inside' to true. */
6358 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6359 ir_dereference_variable *deref_continue_inside_var =
6360 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6361 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6362 true_val));
6363
6364 /* Break out from the switch, continue for the loop will
6365 * be called right after switch. */
6366 ir_loop_jump *const jump =
6367 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6368 instructions->push_tail(jump);
6369
6370 } else if (state->switch_state.is_switch_innermost &&
6371 mode == ast_break) {
6372 /* Force break out of switch by inserting a break. */
6373 ir_loop_jump *const jump =
6374 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6375 instructions->push_tail(jump);
6376 } else {
6377 ir_loop_jump *const jump =
6378 new(ctx) ir_loop_jump((mode == ast_break)
6379 ? ir_loop_jump::jump_break
6380 : ir_loop_jump::jump_continue);
6381 instructions->push_tail(jump);
6382 }
6383 }
6384
6385 break;
6386 }
6387
6388 /* Jump instructions do not have r-values.
6389 */
6390 return NULL;
6391 }
6392
6393
6394 ir_rvalue *
6395 ast_selection_statement::hir(exec_list *instructions,
6396 struct _mesa_glsl_parse_state *state)
6397 {
6398 void *ctx = state;
6399
6400 ir_rvalue *const condition = this->condition->hir(instructions, state);
6401
6402 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6403 *
6404 * "Any expression whose type evaluates to a Boolean can be used as the
6405 * conditional expression bool-expression. Vector types are not accepted
6406 * as the expression to if."
6407 *
6408 * The checks are separated so that higher quality diagnostics can be
6409 * generated for cases where both rules are violated.
6410 */
6411 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6412 YYLTYPE loc = this->condition->get_location();
6413
6414 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6415 "boolean");
6416 }
6417
6418 ir_if *const stmt = new(ctx) ir_if(condition);
6419
6420 if (then_statement != NULL) {
6421 state->symbols->push_scope();
6422 then_statement->hir(& stmt->then_instructions, state);
6423 state->symbols->pop_scope();
6424 }
6425
6426 if (else_statement != NULL) {
6427 state->symbols->push_scope();
6428 else_statement->hir(& stmt->else_instructions, state);
6429 state->symbols->pop_scope();
6430 }
6431
6432 instructions->push_tail(stmt);
6433
6434 /* if-statements do not have r-values.
6435 */
6436 return NULL;
6437 }
6438
6439
6440 struct case_label {
6441 /** Value of the case label. */
6442 unsigned value;
6443
6444 /** Does this label occur after the default? */
6445 bool after_default;
6446
6447 /**
6448 * AST for the case label.
6449 *
6450 * This is only used to generate error messages for duplicate labels.
6451 */
6452 ast_expression *ast;
6453 };
6454
6455 /* Used for detection of duplicate case values, compare
6456 * given contents directly.
6457 */
6458 static bool
6459 compare_case_value(const void *a, const void *b)
6460 {
6461 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6462 }
6463
6464
6465 /* Used for detection of duplicate case values, just
6466 * returns key contents as is.
6467 */
6468 static unsigned
6469 key_contents(const void *key)
6470 {
6471 return ((struct case_label *) key)->value;
6472 }
6473
6474
6475 ir_rvalue *
6476 ast_switch_statement::hir(exec_list *instructions,
6477 struct _mesa_glsl_parse_state *state)
6478 {
6479 void *ctx = state;
6480
6481 ir_rvalue *const test_expression =
6482 this->test_expression->hir(instructions, state);
6483
6484 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6485 *
6486 * "The type of init-expression in a switch statement must be a
6487 * scalar integer."
6488 */
6489 if (!test_expression->type->is_scalar() ||
6490 !test_expression->type->is_integer()) {
6491 YYLTYPE loc = this->test_expression->get_location();
6492
6493 _mesa_glsl_error(& loc,
6494 state,
6495 "switch-statement expression must be scalar "
6496 "integer");
6497 return NULL;
6498 }
6499
6500 /* Track the switch-statement nesting in a stack-like manner.
6501 */
6502 struct glsl_switch_state saved = state->switch_state;
6503
6504 state->switch_state.is_switch_innermost = true;
6505 state->switch_state.switch_nesting_ast = this;
6506 state->switch_state.labels_ht =
6507 _mesa_hash_table_create(NULL, key_contents,
6508 compare_case_value);
6509 state->switch_state.previous_default = NULL;
6510
6511 /* Initalize is_fallthru state to false.
6512 */
6513 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6514 state->switch_state.is_fallthru_var =
6515 new(ctx) ir_variable(glsl_type::bool_type,
6516 "switch_is_fallthru_tmp",
6517 ir_var_temporary);
6518 instructions->push_tail(state->switch_state.is_fallthru_var);
6519
6520 ir_dereference_variable *deref_is_fallthru_var =
6521 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6522 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6523 is_fallthru_val));
6524
6525 /* Initialize continue_inside state to false.
6526 */
6527 state->switch_state.continue_inside =
6528 new(ctx) ir_variable(glsl_type::bool_type,
6529 "continue_inside_tmp",
6530 ir_var_temporary);
6531 instructions->push_tail(state->switch_state.continue_inside);
6532
6533 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6534 ir_dereference_variable *deref_continue_inside_var =
6535 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6536 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6537 false_val));
6538
6539 state->switch_state.run_default =
6540 new(ctx) ir_variable(glsl_type::bool_type,
6541 "run_default_tmp",
6542 ir_var_temporary);
6543 instructions->push_tail(state->switch_state.run_default);
6544
6545 /* Loop around the switch is used for flow control. */
6546 ir_loop * loop = new(ctx) ir_loop();
6547 instructions->push_tail(loop);
6548
6549 /* Cache test expression.
6550 */
6551 test_to_hir(&loop->body_instructions, state);
6552
6553 /* Emit code for body of switch stmt.
6554 */
6555 body->hir(&loop->body_instructions, state);
6556
6557 /* Insert a break at the end to exit loop. */
6558 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6559 loop->body_instructions.push_tail(jump);
6560
6561 /* If we are inside loop, check if continue got called inside switch. */
6562 if (state->loop_nesting_ast != NULL) {
6563 ir_dereference_variable *deref_continue_inside =
6564 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6565 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6566 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6567
6568 if (state->loop_nesting_ast != NULL) {
6569 if (state->loop_nesting_ast->rest_expression) {
6570 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6571 state);
6572 }
6573 if (state->loop_nesting_ast->mode ==
6574 ast_iteration_statement::ast_do_while) {
6575 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6576 }
6577 }
6578 irif->then_instructions.push_tail(jump);
6579 instructions->push_tail(irif);
6580 }
6581
6582 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6583
6584 state->switch_state = saved;
6585
6586 /* Switch statements do not have r-values. */
6587 return NULL;
6588 }
6589
6590
6591 void
6592 ast_switch_statement::test_to_hir(exec_list *instructions,
6593 struct _mesa_glsl_parse_state *state)
6594 {
6595 void *ctx = state;
6596
6597 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6598 * on the switch test case. The first one would be already raised when
6599 * getting the test_expression at ast_switch_statement::hir
6600 */
6601 test_expression->set_is_lhs(true);
6602 /* Cache value of test expression. */
6603 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6604
6605 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6606 "switch_test_tmp",
6607 ir_var_temporary);
6608 ir_dereference_variable *deref_test_var =
6609 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6610
6611 instructions->push_tail(state->switch_state.test_var);
6612 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6613 }
6614
6615
6616 ir_rvalue *
6617 ast_switch_body::hir(exec_list *instructions,
6618 struct _mesa_glsl_parse_state *state)
6619 {
6620 if (stmts != NULL)
6621 stmts->hir(instructions, state);
6622
6623 /* Switch bodies do not have r-values. */
6624 return NULL;
6625 }
6626
6627 ir_rvalue *
6628 ast_case_statement_list::hir(exec_list *instructions,
6629 struct _mesa_glsl_parse_state *state)
6630 {
6631 exec_list default_case, after_default, tmp;
6632
6633 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6634 case_stmt->hir(&tmp, state);
6635
6636 /* Default case. */
6637 if (state->switch_state.previous_default && default_case.is_empty()) {
6638 default_case.append_list(&tmp);
6639 continue;
6640 }
6641
6642 /* If default case found, append 'after_default' list. */
6643 if (!default_case.is_empty())
6644 after_default.append_list(&tmp);
6645 else
6646 instructions->append_list(&tmp);
6647 }
6648
6649 /* Handle the default case. This is done here because default might not be
6650 * the last case. We need to add checks against following cases first to see
6651 * if default should be chosen or not.
6652 */
6653 if (!default_case.is_empty()) {
6654 ir_factory body(instructions, state);
6655
6656 ir_expression *cmp = NULL;
6657
6658 hash_table_foreach(state->switch_state.labels_ht, entry) {
6659 const struct case_label *const l = (struct case_label *) entry->data;
6660
6661 /* If the switch init-value is the value of one of the labels that
6662 * occurs after the default case, disable execution of the default
6663 * case.
6664 */
6665 if (l->after_default) {
6666 ir_constant *const cnst =
6667 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6668 ? body.constant(unsigned(l->value))
6669 : body.constant(int(l->value));
6670
6671 cmp = cmp == NULL
6672 ? equal(cnst, state->switch_state.test_var)
6673 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6674 }
6675 }
6676
6677 if (cmp != NULL)
6678 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6679 else
6680 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6681
6682 /* Append default case and all cases after it. */
6683 instructions->append_list(&default_case);
6684 instructions->append_list(&after_default);
6685 }
6686
6687 /* Case statements do not have r-values. */
6688 return NULL;
6689 }
6690
6691 ir_rvalue *
6692 ast_case_statement::hir(exec_list *instructions,
6693 struct _mesa_glsl_parse_state *state)
6694 {
6695 labels->hir(instructions, state);
6696
6697 /* Guard case statements depending on fallthru state. */
6698 ir_dereference_variable *const deref_fallthru_guard =
6699 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6700 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6701
6702 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6703 stmt->hir(& test_fallthru->then_instructions, state);
6704
6705 instructions->push_tail(test_fallthru);
6706
6707 /* Case statements do not have r-values. */
6708 return NULL;
6709 }
6710
6711
6712 ir_rvalue *
6713 ast_case_label_list::hir(exec_list *instructions,
6714 struct _mesa_glsl_parse_state *state)
6715 {
6716 foreach_list_typed (ast_case_label, label, link, & this->labels)
6717 label->hir(instructions, state);
6718
6719 /* Case labels do not have r-values. */
6720 return NULL;
6721 }
6722
6723 ir_rvalue *
6724 ast_case_label::hir(exec_list *instructions,
6725 struct _mesa_glsl_parse_state *state)
6726 {
6727 ir_factory body(instructions, state);
6728
6729 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6730
6731 /* If not default case, ... */
6732 if (this->test_value != NULL) {
6733 /* Conditionally set fallthru state based on
6734 * comparison of cached test expression value to case label.
6735 */
6736 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6737 ir_constant *label_const =
6738 label_rval->constant_expression_value(body.mem_ctx);
6739
6740 if (!label_const) {
6741 YYLTYPE loc = this->test_value->get_location();
6742
6743 _mesa_glsl_error(& loc, state,
6744 "switch statement case label must be a "
6745 "constant expression");
6746
6747 /* Stuff a dummy value in to allow processing to continue. */
6748 label_const = body.constant(0);
6749 } else {
6750 hash_entry *entry =
6751 _mesa_hash_table_search(state->switch_state.labels_ht,
6752 &label_const->value.u[0]);
6753
6754 if (entry) {
6755 const struct case_label *const l =
6756 (struct case_label *) entry->data;
6757 const ast_expression *const previous_label = l->ast;
6758 YYLTYPE loc = this->test_value->get_location();
6759
6760 _mesa_glsl_error(& loc, state, "duplicate case value");
6761
6762 loc = previous_label->get_location();
6763 _mesa_glsl_error(& loc, state, "this is the previous case label");
6764 } else {
6765 struct case_label *l = ralloc(state->switch_state.labels_ht,
6766 struct case_label);
6767
6768 l->value = label_const->value.u[0];
6769 l->after_default = state->switch_state.previous_default != NULL;
6770 l->ast = this->test_value;
6771
6772 _mesa_hash_table_insert(state->switch_state.labels_ht,
6773 &label_const->value.u[0],
6774 l);
6775 }
6776 }
6777
6778 /* Create an r-value version of the ir_constant label here (after we may
6779 * have created a fake one in error cases) that can be passed to
6780 * apply_implicit_conversion below.
6781 */
6782 ir_rvalue *label = label_const;
6783
6784 ir_rvalue *deref_test_var =
6785 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
6786
6787 /*
6788 * From GLSL 4.40 specification section 6.2 ("Selection"):
6789 *
6790 * "The type of the init-expression value in a switch statement must
6791 * be a scalar int or uint. The type of the constant-expression value
6792 * in a case label also must be a scalar int or uint. When any pair
6793 * of these values is tested for "equal value" and the types do not
6794 * match, an implicit conversion will be done to convert the int to a
6795 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6796 * is done."
6797 */
6798 if (label->type != state->switch_state.test_var->type) {
6799 YYLTYPE loc = this->test_value->get_location();
6800
6801 const glsl_type *type_a = label->type;
6802 const glsl_type *type_b = state->switch_state.test_var->type;
6803
6804 /* Check if int->uint implicit conversion is supported. */
6805 bool integer_conversion_supported =
6806 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6807 state);
6808
6809 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6810 !integer_conversion_supported) {
6811 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6812 "init-expression and case label (%s != %s)",
6813 type_a->name, type_b->name);
6814 } else {
6815 /* Conversion of the case label. */
6816 if (type_a->base_type == GLSL_TYPE_INT) {
6817 if (!apply_implicit_conversion(glsl_type::uint_type,
6818 label, state))
6819 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6820 } else {
6821 /* Conversion of the init-expression value. */
6822 if (!apply_implicit_conversion(glsl_type::uint_type,
6823 deref_test_var, state))
6824 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6825 }
6826 }
6827
6828 /* If the implicit conversion was allowed, the types will already be
6829 * the same. If the implicit conversion wasn't allowed, smash the
6830 * type of the label anyway. This will prevent the expression
6831 * constructor (below) from failing an assertion.
6832 */
6833 label->type = deref_test_var->type;
6834 }
6835
6836 body.emit(assign(fallthru_var,
6837 logic_or(fallthru_var, equal(label, deref_test_var))));
6838 } else { /* default case */
6839 if (state->switch_state.previous_default) {
6840 YYLTYPE loc = this->get_location();
6841 _mesa_glsl_error(& loc, state,
6842 "multiple default labels in one switch");
6843
6844 loc = state->switch_state.previous_default->get_location();
6845 _mesa_glsl_error(& loc, state, "this is the first default label");
6846 }
6847 state->switch_state.previous_default = this;
6848
6849 /* Set fallthru condition on 'run_default' bool. */
6850 body.emit(assign(fallthru_var,
6851 logic_or(fallthru_var,
6852 state->switch_state.run_default)));
6853 }
6854
6855 /* Case statements do not have r-values. */
6856 return NULL;
6857 }
6858
6859 void
6860 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6861 struct _mesa_glsl_parse_state *state)
6862 {
6863 void *ctx = state;
6864
6865 if (condition != NULL) {
6866 ir_rvalue *const cond =
6867 condition->hir(instructions, state);
6868
6869 if ((cond == NULL)
6870 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6871 YYLTYPE loc = condition->get_location();
6872
6873 _mesa_glsl_error(& loc, state,
6874 "loop condition must be scalar boolean");
6875 } else {
6876 /* As the first code in the loop body, generate a block that looks
6877 * like 'if (!condition) break;' as the loop termination condition.
6878 */
6879 ir_rvalue *const not_cond =
6880 new(ctx) ir_expression(ir_unop_logic_not, cond);
6881
6882 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6883
6884 ir_jump *const break_stmt =
6885 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6886
6887 if_stmt->then_instructions.push_tail(break_stmt);
6888 instructions->push_tail(if_stmt);
6889 }
6890 }
6891 }
6892
6893
6894 ir_rvalue *
6895 ast_iteration_statement::hir(exec_list *instructions,
6896 struct _mesa_glsl_parse_state *state)
6897 {
6898 void *ctx = state;
6899
6900 /* For-loops and while-loops start a new scope, but do-while loops do not.
6901 */
6902 if (mode != ast_do_while)
6903 state->symbols->push_scope();
6904
6905 if (init_statement != NULL)
6906 init_statement->hir(instructions, state);
6907
6908 ir_loop *const stmt = new(ctx) ir_loop();
6909 instructions->push_tail(stmt);
6910
6911 /* Track the current loop nesting. */
6912 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6913
6914 state->loop_nesting_ast = this;
6915
6916 /* Likewise, indicate that following code is closest to a loop,
6917 * NOT closest to a switch.
6918 */
6919 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6920 state->switch_state.is_switch_innermost = false;
6921
6922 if (mode != ast_do_while)
6923 condition_to_hir(&stmt->body_instructions, state);
6924
6925 if (body != NULL)
6926 body->hir(& stmt->body_instructions, state);
6927
6928 if (rest_expression != NULL)
6929 rest_expression->hir(& stmt->body_instructions, state);
6930
6931 if (mode == ast_do_while)
6932 condition_to_hir(&stmt->body_instructions, state);
6933
6934 if (mode != ast_do_while)
6935 state->symbols->pop_scope();
6936
6937 /* Restore previous nesting before returning. */
6938 state->loop_nesting_ast = nesting_ast;
6939 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6940
6941 /* Loops do not have r-values.
6942 */
6943 return NULL;
6944 }
6945
6946
6947 /**
6948 * Determine if the given type is valid for establishing a default precision
6949 * qualifier.
6950 *
6951 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6952 *
6953 * "The precision statement
6954 *
6955 * precision precision-qualifier type;
6956 *
6957 * can be used to establish a default precision qualifier. The type field
6958 * can be either int or float or any of the sampler types, and the
6959 * precision-qualifier can be lowp, mediump, or highp."
6960 *
6961 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6962 * qualifiers on sampler types, but this seems like an oversight (since the
6963 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6964 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6965 * version.
6966 */
6967 static bool
6968 is_valid_default_precision_type(const struct glsl_type *const type)
6969 {
6970 if (type == NULL)
6971 return false;
6972
6973 switch (type->base_type) {
6974 case GLSL_TYPE_INT:
6975 case GLSL_TYPE_FLOAT:
6976 /* "int" and "float" are valid, but vectors and matrices are not. */
6977 return type->vector_elements == 1 && type->matrix_columns == 1;
6978 case GLSL_TYPE_SAMPLER:
6979 case GLSL_TYPE_IMAGE:
6980 case GLSL_TYPE_ATOMIC_UINT:
6981 return true;
6982 default:
6983 return false;
6984 }
6985 }
6986
6987
6988 ir_rvalue *
6989 ast_type_specifier::hir(exec_list *instructions,
6990 struct _mesa_glsl_parse_state *state)
6991 {
6992 if (this->default_precision == ast_precision_none && this->structure == NULL)
6993 return NULL;
6994
6995 YYLTYPE loc = this->get_location();
6996
6997 /* If this is a precision statement, check that the type to which it is
6998 * applied is either float or int.
6999 *
7000 * From section 4.5.3 of the GLSL 1.30 spec:
7001 * "The precision statement
7002 * precision precision-qualifier type;
7003 * can be used to establish a default precision qualifier. The type
7004 * field can be either int or float [...]. Any other types or
7005 * qualifiers will result in an error.
7006 */
7007 if (this->default_precision != ast_precision_none) {
7008 if (!state->check_precision_qualifiers_allowed(&loc))
7009 return NULL;
7010
7011 if (this->structure != NULL) {
7012 _mesa_glsl_error(&loc, state,
7013 "precision qualifiers do not apply to structures");
7014 return NULL;
7015 }
7016
7017 if (this->array_specifier != NULL) {
7018 _mesa_glsl_error(&loc, state,
7019 "default precision statements do not apply to "
7020 "arrays");
7021 return NULL;
7022 }
7023
7024 const struct glsl_type *const type =
7025 state->symbols->get_type(this->type_name);
7026 if (!is_valid_default_precision_type(type)) {
7027 _mesa_glsl_error(&loc, state,
7028 "default precision statements apply only to "
7029 "float, int, and opaque types");
7030 return NULL;
7031 }
7032
7033 if (state->es_shader) {
7034 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7035 * spec says:
7036 *
7037 * "Non-precision qualified declarations will use the precision
7038 * qualifier specified in the most recent precision statement
7039 * that is still in scope. The precision statement has the same
7040 * scoping rules as variable declarations. If it is declared
7041 * inside a compound statement, its effect stops at the end of
7042 * the innermost statement it was declared in. Precision
7043 * statements in nested scopes override precision statements in
7044 * outer scopes. Multiple precision statements for the same basic
7045 * type can appear inside the same scope, with later statements
7046 * overriding earlier statements within that scope."
7047 *
7048 * Default precision specifications follow the same scope rules as
7049 * variables. So, we can track the state of the default precision
7050 * qualifiers in the symbol table, and the rules will just work. This
7051 * is a slight abuse of the symbol table, but it has the semantics
7052 * that we want.
7053 */
7054 state->symbols->add_default_precision_qualifier(this->type_name,
7055 this->default_precision);
7056 }
7057
7058 /* FINISHME: Translate precision statements into IR. */
7059 return NULL;
7060 }
7061
7062 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7063 * process_record_constructor() can do type-checking on C-style initializer
7064 * expressions of structs, but ast_struct_specifier should only be translated
7065 * to HIR if it is declaring the type of a structure.
7066 *
7067 * The ->is_declaration field is false for initializers of variables
7068 * declared separately from the struct's type definition.
7069 *
7070 * struct S { ... }; (is_declaration = true)
7071 * struct T { ... } t = { ... }; (is_declaration = true)
7072 * S s = { ... }; (is_declaration = false)
7073 */
7074 if (this->structure != NULL && this->structure->is_declaration)
7075 return this->structure->hir(instructions, state);
7076
7077 return NULL;
7078 }
7079
7080
7081 /**
7082 * Process a structure or interface block tree into an array of structure fields
7083 *
7084 * After parsing, where there are some syntax differnces, structures and
7085 * interface blocks are almost identical. They are similar enough that the
7086 * AST for each can be processed the same way into a set of
7087 * \c glsl_struct_field to describe the members.
7088 *
7089 * If we're processing an interface block, var_mode should be the type of the
7090 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7091 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7092 * ir_var_auto.
7093 *
7094 * \return
7095 * The number of fields processed. A pointer to the array structure fields is
7096 * stored in \c *fields_ret.
7097 */
7098 static unsigned
7099 ast_process_struct_or_iface_block_members(exec_list *instructions,
7100 struct _mesa_glsl_parse_state *state,
7101 exec_list *declarations,
7102 glsl_struct_field **fields_ret,
7103 bool is_interface,
7104 enum glsl_matrix_layout matrix_layout,
7105 bool allow_reserved_names,
7106 ir_variable_mode var_mode,
7107 ast_type_qualifier *layout,
7108 unsigned block_stream,
7109 unsigned block_xfb_buffer,
7110 unsigned block_xfb_offset,
7111 unsigned expl_location,
7112 unsigned expl_align)
7113 {
7114 unsigned decl_count = 0;
7115 unsigned next_offset = 0;
7116
7117 /* Make an initial pass over the list of fields to determine how
7118 * many there are. Each element in this list is an ast_declarator_list.
7119 * This means that we actually need to count the number of elements in the
7120 * 'declarations' list in each of the elements.
7121 */
7122 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7123 decl_count += decl_list->declarations.length();
7124 }
7125
7126 /* Allocate storage for the fields and process the field
7127 * declarations. As the declarations are processed, try to also convert
7128 * the types to HIR. This ensures that structure definitions embedded in
7129 * other structure definitions or in interface blocks are processed.
7130 */
7131 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7132 decl_count);
7133
7134 bool first_member = true;
7135 bool first_member_has_explicit_location = false;
7136
7137 unsigned i = 0;
7138 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7139 const char *type_name;
7140 YYLTYPE loc = decl_list->get_location();
7141
7142 decl_list->type->specifier->hir(instructions, state);
7143
7144 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7145 *
7146 * "Anonymous structures are not supported; so embedded structures
7147 * must have a declarator. A name given to an embedded struct is
7148 * scoped at the same level as the struct it is embedded in."
7149 *
7150 * The same section of the GLSL 1.20 spec says:
7151 *
7152 * "Anonymous structures are not supported. Embedded structures are
7153 * not supported."
7154 *
7155 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7156 * embedded structures in 1.10 only.
7157 */
7158 if (state->language_version != 110 &&
7159 decl_list->type->specifier->structure != NULL)
7160 _mesa_glsl_error(&loc, state,
7161 "embedded structure declarations are not allowed");
7162
7163 const glsl_type *decl_type =
7164 decl_list->type->glsl_type(& type_name, state);
7165
7166 const struct ast_type_qualifier *const qual =
7167 &decl_list->type->qualifier;
7168
7169 /* From section 4.3.9 of the GLSL 4.40 spec:
7170 *
7171 * "[In interface blocks] opaque types are not allowed."
7172 *
7173 * It should be impossible for decl_type to be NULL here. Cases that
7174 * might naturally lead to decl_type being NULL, especially for the
7175 * is_interface case, will have resulted in compilation having
7176 * already halted due to a syntax error.
7177 */
7178 assert(decl_type);
7179
7180 if (is_interface) {
7181 /* From section 4.3.7 of the ARB_bindless_texture spec:
7182 *
7183 * "(remove the following bullet from the last list on p. 39,
7184 * thereby permitting sampler types in interface blocks; image
7185 * types are also permitted in blocks by this extension)"
7186 *
7187 * * sampler types are not allowed
7188 */
7189 if (decl_type->contains_atomic() ||
7190 (!state->has_bindless() && decl_type->contains_opaque())) {
7191 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7192 "interface block contains %s variable",
7193 state->has_bindless() ? "atomic" : "opaque");
7194 }
7195 } else {
7196 if (decl_type->contains_atomic()) {
7197 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7198 *
7199 * "Members of structures cannot be declared as atomic counter
7200 * types."
7201 */
7202 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7203 }
7204
7205 if (!state->has_bindless() && decl_type->contains_image()) {
7206 /* FINISHME: Same problem as with atomic counters.
7207 * FINISHME: Request clarification from Khronos and add
7208 * FINISHME: spec quotation here.
7209 */
7210 _mesa_glsl_error(&loc, state, "image in structure");
7211 }
7212 }
7213
7214 if (qual->flags.q.explicit_binding) {
7215 _mesa_glsl_error(&loc, state,
7216 "binding layout qualifier cannot be applied "
7217 "to struct or interface block members");
7218 }
7219
7220 if (is_interface) {
7221 if (!first_member) {
7222 if (!layout->flags.q.explicit_location &&
7223 ((first_member_has_explicit_location &&
7224 !qual->flags.q.explicit_location) ||
7225 (!first_member_has_explicit_location &&
7226 qual->flags.q.explicit_location))) {
7227 _mesa_glsl_error(&loc, state,
7228 "when block-level location layout qualifier "
7229 "is not supplied either all members must "
7230 "have a location layout qualifier or all "
7231 "members must not have a location layout "
7232 "qualifier");
7233 }
7234 } else {
7235 first_member = false;
7236 first_member_has_explicit_location =
7237 qual->flags.q.explicit_location;
7238 }
7239 }
7240
7241 if (qual->flags.q.std140 ||
7242 qual->flags.q.std430 ||
7243 qual->flags.q.packed ||
7244 qual->flags.q.shared) {
7245 _mesa_glsl_error(&loc, state,
7246 "uniform/shader storage block layout qualifiers "
7247 "std140, std430, packed, and shared can only be "
7248 "applied to uniform/shader storage blocks, not "
7249 "members");
7250 }
7251
7252 if (qual->flags.q.constant) {
7253 _mesa_glsl_error(&loc, state,
7254 "const storage qualifier cannot be applied "
7255 "to struct or interface block members");
7256 }
7257
7258 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7259 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7260
7261 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7262 *
7263 * "A block member may be declared with a stream identifier, but
7264 * the specified stream must match the stream associated with the
7265 * containing block."
7266 */
7267 if (qual->flags.q.explicit_stream) {
7268 unsigned qual_stream;
7269 if (process_qualifier_constant(state, &loc, "stream",
7270 qual->stream, &qual_stream) &&
7271 qual_stream != block_stream) {
7272 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7273 "interface block member does not match "
7274 "the interface block (%u vs %u)", qual_stream,
7275 block_stream);
7276 }
7277 }
7278
7279 int xfb_buffer;
7280 unsigned explicit_xfb_buffer = 0;
7281 if (qual->flags.q.explicit_xfb_buffer) {
7282 unsigned qual_xfb_buffer;
7283 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7284 qual->xfb_buffer, &qual_xfb_buffer)) {
7285 explicit_xfb_buffer = 1;
7286 if (qual_xfb_buffer != block_xfb_buffer)
7287 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7288 "interface block member does not match "
7289 "the interface block (%u vs %u)",
7290 qual_xfb_buffer, block_xfb_buffer);
7291 }
7292 xfb_buffer = (int) qual_xfb_buffer;
7293 } else {
7294 if (layout)
7295 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7296 xfb_buffer = (int) block_xfb_buffer;
7297 }
7298
7299 int xfb_stride = -1;
7300 if (qual->flags.q.explicit_xfb_stride) {
7301 unsigned qual_xfb_stride;
7302 if (process_qualifier_constant(state, &loc, "xfb_stride",
7303 qual->xfb_stride, &qual_xfb_stride)) {
7304 xfb_stride = (int) qual_xfb_stride;
7305 }
7306 }
7307
7308 if (qual->flags.q.uniform && qual->has_interpolation()) {
7309 _mesa_glsl_error(&loc, state,
7310 "interpolation qualifiers cannot be used "
7311 "with uniform interface blocks");
7312 }
7313
7314 if ((qual->flags.q.uniform || !is_interface) &&
7315 qual->has_auxiliary_storage()) {
7316 _mesa_glsl_error(&loc, state,
7317 "auxiliary storage qualifiers cannot be used "
7318 "in uniform blocks or structures.");
7319 }
7320
7321 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7322 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7323 _mesa_glsl_error(&loc, state,
7324 "row_major and column_major can only be "
7325 "applied to interface blocks");
7326 } else
7327 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7328 }
7329
7330 foreach_list_typed (ast_declaration, decl, link,
7331 &decl_list->declarations) {
7332 YYLTYPE loc = decl->get_location();
7333
7334 if (!allow_reserved_names)
7335 validate_identifier(decl->identifier, loc, state);
7336
7337 const struct glsl_type *field_type =
7338 process_array_type(&loc, decl_type, decl->array_specifier, state);
7339 validate_array_dimensions(field_type, state, &loc);
7340 fields[i].type = field_type;
7341 fields[i].name = decl->identifier;
7342 fields[i].interpolation =
7343 interpret_interpolation_qualifier(qual, field_type,
7344 var_mode, state, &loc);
7345 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7346 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7347 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7348 fields[i].precision = qual->precision;
7349 fields[i].offset = -1;
7350 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7351 fields[i].xfb_buffer = xfb_buffer;
7352 fields[i].xfb_stride = xfb_stride;
7353
7354 if (qual->flags.q.explicit_location) {
7355 unsigned qual_location;
7356 if (process_qualifier_constant(state, &loc, "location",
7357 qual->location, &qual_location)) {
7358 fields[i].location = qual_location +
7359 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7360 expl_location = fields[i].location +
7361 fields[i].type->count_attribute_slots(false);
7362 }
7363 } else {
7364 if (layout && layout->flags.q.explicit_location) {
7365 fields[i].location = expl_location;
7366 expl_location += fields[i].type->count_attribute_slots(false);
7367 } else {
7368 fields[i].location = -1;
7369 }
7370 }
7371
7372 /* Offset can only be used with std430 and std140 layouts an initial
7373 * value of 0 is used for error detection.
7374 */
7375 unsigned align = 0;
7376 unsigned size = 0;
7377 if (layout) {
7378 bool row_major;
7379 if (qual->flags.q.row_major ||
7380 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7381 row_major = true;
7382 } else {
7383 row_major = false;
7384 }
7385
7386 if(layout->flags.q.std140) {
7387 align = field_type->std140_base_alignment(row_major);
7388 size = field_type->std140_size(row_major);
7389 } else if (layout->flags.q.std430) {
7390 align = field_type->std430_base_alignment(row_major);
7391 size = field_type->std430_size(row_major);
7392 }
7393 }
7394
7395 if (qual->flags.q.explicit_offset) {
7396 unsigned qual_offset;
7397 if (process_qualifier_constant(state, &loc, "offset",
7398 qual->offset, &qual_offset)) {
7399 if (align != 0 && size != 0) {
7400 if (next_offset > qual_offset)
7401 _mesa_glsl_error(&loc, state, "layout qualifier "
7402 "offset overlaps previous member");
7403
7404 if (qual_offset % align) {
7405 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7406 "must be a multiple of the base "
7407 "alignment of %s", field_type->name);
7408 }
7409 fields[i].offset = qual_offset;
7410 next_offset = qual_offset + size;
7411 } else {
7412 _mesa_glsl_error(&loc, state, "offset can only be used "
7413 "with std430 and std140 layouts");
7414 }
7415 }
7416 }
7417
7418 if (qual->flags.q.explicit_align || expl_align != 0) {
7419 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7420 next_offset;
7421 if (align == 0 || size == 0) {
7422 _mesa_glsl_error(&loc, state, "align can only be used with "
7423 "std430 and std140 layouts");
7424 } else if (qual->flags.q.explicit_align) {
7425 unsigned member_align;
7426 if (process_qualifier_constant(state, &loc, "align",
7427 qual->align, &member_align)) {
7428 if (member_align == 0 ||
7429 member_align & (member_align - 1)) {
7430 _mesa_glsl_error(&loc, state, "align layout qualifier "
7431 "is not a power of 2");
7432 } else {
7433 fields[i].offset = glsl_align(offset, member_align);
7434 next_offset = fields[i].offset + size;
7435 }
7436 }
7437 } else {
7438 fields[i].offset = glsl_align(offset, expl_align);
7439 next_offset = fields[i].offset + size;
7440 }
7441 } else if (!qual->flags.q.explicit_offset) {
7442 if (align != 0 && size != 0)
7443 next_offset = glsl_align(next_offset, align) + size;
7444 }
7445
7446 /* From the ARB_enhanced_layouts spec:
7447 *
7448 * "The given offset applies to the first component of the first
7449 * member of the qualified entity. Then, within the qualified
7450 * entity, subsequent components are each assigned, in order, to
7451 * the next available offset aligned to a multiple of that
7452 * component's size. Aggregate types are flattened down to the
7453 * component level to get this sequence of components."
7454 */
7455 if (qual->flags.q.explicit_xfb_offset) {
7456 unsigned xfb_offset;
7457 if (process_qualifier_constant(state, &loc, "xfb_offset",
7458 qual->offset, &xfb_offset)) {
7459 fields[i].offset = xfb_offset;
7460 block_xfb_offset = fields[i].offset +
7461 4 * field_type->component_slots();
7462 }
7463 } else {
7464 if (layout && layout->flags.q.explicit_xfb_offset) {
7465 unsigned align = field_type->is_64bit() ? 8 : 4;
7466 fields[i].offset = glsl_align(block_xfb_offset, align);
7467 block_xfb_offset += 4 * field_type->component_slots();
7468 }
7469 }
7470
7471 /* Propogate row- / column-major information down the fields of the
7472 * structure or interface block. Structures need this data because
7473 * the structure may contain a structure that contains ... a matrix
7474 * that need the proper layout.
7475 */
7476 if (is_interface && layout &&
7477 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7478 (field_type->without_array()->is_matrix()
7479 || field_type->without_array()->is_struct())) {
7480 /* If no layout is specified for the field, inherit the layout
7481 * from the block.
7482 */
7483 fields[i].matrix_layout = matrix_layout;
7484
7485 if (qual->flags.q.row_major)
7486 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7487 else if (qual->flags.q.column_major)
7488 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7489
7490 /* If we're processing an uniform or buffer block, the matrix
7491 * layout must be decided by this point.
7492 */
7493 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7494 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7495 }
7496
7497 /* Memory qualifiers are allowed on buffer and image variables, while
7498 * the format qualifier is only accepted for images.
7499 */
7500 if (var_mode == ir_var_shader_storage ||
7501 field_type->without_array()->is_image()) {
7502 /* For readonly and writeonly qualifiers the field definition,
7503 * if set, overwrites the layout qualifier.
7504 */
7505 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7506 fields[i].memory_read_only = qual->flags.q.read_only;
7507 fields[i].memory_write_only = qual->flags.q.write_only;
7508 } else {
7509 fields[i].memory_read_only =
7510 layout ? layout->flags.q.read_only : 0;
7511 fields[i].memory_write_only =
7512 layout ? layout->flags.q.write_only : 0;
7513 }
7514
7515 /* For other qualifiers, we set the flag if either the layout
7516 * qualifier or the field qualifier are set
7517 */
7518 fields[i].memory_coherent = qual->flags.q.coherent ||
7519 (layout && layout->flags.q.coherent);
7520 fields[i].memory_volatile = qual->flags.q._volatile ||
7521 (layout && layout->flags.q._volatile);
7522 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7523 (layout && layout->flags.q.restrict_flag);
7524
7525 if (field_type->without_array()->is_image()) {
7526 if (qual->flags.q.explicit_image_format) {
7527 if (qual->image_base_type !=
7528 field_type->without_array()->sampled_type) {
7529 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7530 "match the base data type of the image");
7531 }
7532
7533 fields[i].image_format = qual->image_format;
7534 } else {
7535 if (!qual->flags.q.write_only) {
7536 _mesa_glsl_error(&loc, state, "image not qualified with "
7537 "`writeonly' must have a format layout "
7538 "qualifier");
7539 }
7540
7541 fields[i].image_format = GL_NONE;
7542 }
7543 }
7544 }
7545
7546 i++;
7547 }
7548 }
7549
7550 assert(i == decl_count);
7551
7552 *fields_ret = fields;
7553 return decl_count;
7554 }
7555
7556
7557 ir_rvalue *
7558 ast_struct_specifier::hir(exec_list *instructions,
7559 struct _mesa_glsl_parse_state *state)
7560 {
7561 YYLTYPE loc = this->get_location();
7562
7563 unsigned expl_location = 0;
7564 if (layout && layout->flags.q.explicit_location) {
7565 if (!process_qualifier_constant(state, &loc, "location",
7566 layout->location, &expl_location)) {
7567 return NULL;
7568 } else {
7569 expl_location = VARYING_SLOT_VAR0 + expl_location;
7570 }
7571 }
7572
7573 glsl_struct_field *fields;
7574 unsigned decl_count =
7575 ast_process_struct_or_iface_block_members(instructions,
7576 state,
7577 &this->declarations,
7578 &fields,
7579 false,
7580 GLSL_MATRIX_LAYOUT_INHERITED,
7581 false /* allow_reserved_names */,
7582 ir_var_auto,
7583 layout,
7584 0, /* for interface only */
7585 0, /* for interface only */
7586 0, /* for interface only */
7587 expl_location,
7588 0 /* for interface only */);
7589
7590 validate_identifier(this->name, loc, state);
7591
7592 type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7593
7594 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7595 const glsl_type *match = state->symbols->get_type(name);
7596 /* allow struct matching for desktop GL - older UE4 does this */
7597 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7598 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7599 else
7600 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7601 } else {
7602 const glsl_type **s = reralloc(state, state->user_structures,
7603 const glsl_type *,
7604 state->num_user_structures + 1);
7605 if (s != NULL) {
7606 s[state->num_user_structures] = type;
7607 state->user_structures = s;
7608 state->num_user_structures++;
7609 }
7610 }
7611
7612 /* Structure type definitions do not have r-values.
7613 */
7614 return NULL;
7615 }
7616
7617
7618 /**
7619 * Visitor class which detects whether a given interface block has been used.
7620 */
7621 class interface_block_usage_visitor : public ir_hierarchical_visitor
7622 {
7623 public:
7624 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7625 : mode(mode), block(block), found(false)
7626 {
7627 }
7628
7629 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7630 {
7631 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7632 found = true;
7633 return visit_stop;
7634 }
7635 return visit_continue;
7636 }
7637
7638 bool usage_found() const
7639 {
7640 return this->found;
7641 }
7642
7643 private:
7644 ir_variable_mode mode;
7645 const glsl_type *block;
7646 bool found;
7647 };
7648
7649 static bool
7650 is_unsized_array_last_element(ir_variable *v)
7651 {
7652 const glsl_type *interface_type = v->get_interface_type();
7653 int length = interface_type->length;
7654
7655 assert(v->type->is_unsized_array());
7656
7657 /* Check if it is the last element of the interface */
7658 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7659 return true;
7660 return false;
7661 }
7662
7663 static void
7664 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7665 {
7666 var->data.memory_read_only = field.memory_read_only;
7667 var->data.memory_write_only = field.memory_write_only;
7668 var->data.memory_coherent = field.memory_coherent;
7669 var->data.memory_volatile = field.memory_volatile;
7670 var->data.memory_restrict = field.memory_restrict;
7671 }
7672
7673 ir_rvalue *
7674 ast_interface_block::hir(exec_list *instructions,
7675 struct _mesa_glsl_parse_state *state)
7676 {
7677 YYLTYPE loc = this->get_location();
7678
7679 /* Interface blocks must be declared at global scope */
7680 if (state->current_function != NULL) {
7681 _mesa_glsl_error(&loc, state,
7682 "Interface block `%s' must be declared "
7683 "at global scope",
7684 this->block_name);
7685 }
7686
7687 /* Validate qualifiers:
7688 *
7689 * - Layout Qualifiers as per the table in Section 4.4
7690 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7691 *
7692 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7693 * GLSL 4.50 spec:
7694 *
7695 * "Additionally, memory qualifiers may also be used in the declaration
7696 * of shader storage blocks"
7697 *
7698 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7699 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7700 * Layout Qualifiers) of the GLSL 4.50 spec says:
7701 *
7702 * "The std430 qualifier is supported only for shader storage blocks;
7703 * using std430 on a uniform block will result in a compile-time error."
7704 */
7705 ast_type_qualifier allowed_blk_qualifiers;
7706 allowed_blk_qualifiers.flags.i = 0;
7707 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7708 allowed_blk_qualifiers.flags.q.shared = 1;
7709 allowed_blk_qualifiers.flags.q.packed = 1;
7710 allowed_blk_qualifiers.flags.q.std140 = 1;
7711 allowed_blk_qualifiers.flags.q.row_major = 1;
7712 allowed_blk_qualifiers.flags.q.column_major = 1;
7713 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7714 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7715 if (this->layout.flags.q.buffer) {
7716 allowed_blk_qualifiers.flags.q.buffer = 1;
7717 allowed_blk_qualifiers.flags.q.std430 = 1;
7718 allowed_blk_qualifiers.flags.q.coherent = 1;
7719 allowed_blk_qualifiers.flags.q._volatile = 1;
7720 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7721 allowed_blk_qualifiers.flags.q.read_only = 1;
7722 allowed_blk_qualifiers.flags.q.write_only = 1;
7723 } else {
7724 allowed_blk_qualifiers.flags.q.uniform = 1;
7725 }
7726 } else {
7727 /* Interface block */
7728 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7729
7730 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7731 if (this->layout.flags.q.out) {
7732 allowed_blk_qualifiers.flags.q.out = 1;
7733 if (state->stage == MESA_SHADER_GEOMETRY ||
7734 state->stage == MESA_SHADER_TESS_CTRL ||
7735 state->stage == MESA_SHADER_TESS_EVAL ||
7736 state->stage == MESA_SHADER_VERTEX ) {
7737 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7738 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7739 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7740 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7741 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7742 if (state->stage == MESA_SHADER_GEOMETRY) {
7743 allowed_blk_qualifiers.flags.q.stream = 1;
7744 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7745 }
7746 if (state->stage == MESA_SHADER_TESS_CTRL) {
7747 allowed_blk_qualifiers.flags.q.patch = 1;
7748 }
7749 }
7750 } else {
7751 allowed_blk_qualifiers.flags.q.in = 1;
7752 if (state->stage == MESA_SHADER_TESS_EVAL) {
7753 allowed_blk_qualifiers.flags.q.patch = 1;
7754 }
7755 }
7756 }
7757
7758 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7759 "invalid qualifier for block",
7760 this->block_name);
7761
7762 enum glsl_interface_packing packing;
7763 if (this->layout.flags.q.std140) {
7764 packing = GLSL_INTERFACE_PACKING_STD140;
7765 } else if (this->layout.flags.q.packed) {
7766 packing = GLSL_INTERFACE_PACKING_PACKED;
7767 } else if (this->layout.flags.q.std430) {
7768 packing = GLSL_INTERFACE_PACKING_STD430;
7769 } else {
7770 /* The default layout is shared.
7771 */
7772 packing = GLSL_INTERFACE_PACKING_SHARED;
7773 }
7774
7775 ir_variable_mode var_mode;
7776 const char *iface_type_name;
7777 if (this->layout.flags.q.in) {
7778 var_mode = ir_var_shader_in;
7779 iface_type_name = "in";
7780 } else if (this->layout.flags.q.out) {
7781 var_mode = ir_var_shader_out;
7782 iface_type_name = "out";
7783 } else if (this->layout.flags.q.uniform) {
7784 var_mode = ir_var_uniform;
7785 iface_type_name = "uniform";
7786 } else if (this->layout.flags.q.buffer) {
7787 var_mode = ir_var_shader_storage;
7788 iface_type_name = "buffer";
7789 } else {
7790 var_mode = ir_var_auto;
7791 iface_type_name = "UNKNOWN";
7792 assert(!"interface block layout qualifier not found!");
7793 }
7794
7795 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7796 if (this->layout.flags.q.row_major)
7797 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7798 else if (this->layout.flags.q.column_major)
7799 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7800
7801 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7802 exec_list declared_variables;
7803 glsl_struct_field *fields;
7804
7805 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7806 * that we don't have incompatible qualifiers
7807 */
7808 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7809 _mesa_glsl_error(&loc, state,
7810 "Interface block sets both readonly and writeonly");
7811 }
7812
7813 unsigned qual_stream;
7814 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7815 &qual_stream) ||
7816 !validate_stream_qualifier(&loc, state, qual_stream)) {
7817 /* If the stream qualifier is invalid it doesn't make sense to continue
7818 * on and try to compare stream layouts on member variables against it
7819 * so just return early.
7820 */
7821 return NULL;
7822 }
7823
7824 unsigned qual_xfb_buffer;
7825 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7826 layout.xfb_buffer, &qual_xfb_buffer) ||
7827 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7828 return NULL;
7829 }
7830
7831 unsigned qual_xfb_offset;
7832 if (layout.flags.q.explicit_xfb_offset) {
7833 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7834 layout.offset, &qual_xfb_offset)) {
7835 return NULL;
7836 }
7837 }
7838
7839 unsigned qual_xfb_stride;
7840 if (layout.flags.q.explicit_xfb_stride) {
7841 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7842 layout.xfb_stride, &qual_xfb_stride)) {
7843 return NULL;
7844 }
7845 }
7846
7847 unsigned expl_location = 0;
7848 if (layout.flags.q.explicit_location) {
7849 if (!process_qualifier_constant(state, &loc, "location",
7850 layout.location, &expl_location)) {
7851 return NULL;
7852 } else {
7853 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7854 : VARYING_SLOT_VAR0;
7855 }
7856 }
7857
7858 unsigned expl_align = 0;
7859 if (layout.flags.q.explicit_align) {
7860 if (!process_qualifier_constant(state, &loc, "align",
7861 layout.align, &expl_align)) {
7862 return NULL;
7863 } else {
7864 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7865 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7866 "power of 2.");
7867 return NULL;
7868 }
7869 }
7870 }
7871
7872 unsigned int num_variables =
7873 ast_process_struct_or_iface_block_members(&declared_variables,
7874 state,
7875 &this->declarations,
7876 &fields,
7877 true,
7878 matrix_layout,
7879 redeclaring_per_vertex,
7880 var_mode,
7881 &this->layout,
7882 qual_stream,
7883 qual_xfb_buffer,
7884 qual_xfb_offset,
7885 expl_location,
7886 expl_align);
7887
7888 if (!redeclaring_per_vertex) {
7889 validate_identifier(this->block_name, loc, state);
7890
7891 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7892 *
7893 * "Block names have no other use within a shader beyond interface
7894 * matching; it is a compile-time error to use a block name at global
7895 * scope for anything other than as a block name."
7896 */
7897 ir_variable *var = state->symbols->get_variable(this->block_name);
7898 if (var && !var->type->is_interface()) {
7899 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7900 "already used in the scope.",
7901 this->block_name);
7902 }
7903 }
7904
7905 const glsl_type *earlier_per_vertex = NULL;
7906 if (redeclaring_per_vertex) {
7907 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7908 * the named interface block gl_in, we can find it by looking at the
7909 * previous declaration of gl_in. Otherwise we can find it by looking
7910 * at the previous decalartion of any of the built-in outputs,
7911 * e.g. gl_Position.
7912 *
7913 * Also check that the instance name and array-ness of the redeclaration
7914 * are correct.
7915 */
7916 switch (var_mode) {
7917 case ir_var_shader_in:
7918 if (ir_variable *earlier_gl_in =
7919 state->symbols->get_variable("gl_in")) {
7920 earlier_per_vertex = earlier_gl_in->get_interface_type();
7921 } else {
7922 _mesa_glsl_error(&loc, state,
7923 "redeclaration of gl_PerVertex input not allowed "
7924 "in the %s shader",
7925 _mesa_shader_stage_to_string(state->stage));
7926 }
7927 if (this->instance_name == NULL ||
7928 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7929 !this->array_specifier->is_single_dimension()) {
7930 _mesa_glsl_error(&loc, state,
7931 "gl_PerVertex input must be redeclared as "
7932 "gl_in[]");
7933 }
7934 break;
7935 case ir_var_shader_out:
7936 if (ir_variable *earlier_gl_Position =
7937 state->symbols->get_variable("gl_Position")) {
7938 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7939 } else if (ir_variable *earlier_gl_out =
7940 state->symbols->get_variable("gl_out")) {
7941 earlier_per_vertex = earlier_gl_out->get_interface_type();
7942 } else {
7943 _mesa_glsl_error(&loc, state,
7944 "redeclaration of gl_PerVertex output not "
7945 "allowed in the %s shader",
7946 _mesa_shader_stage_to_string(state->stage));
7947 }
7948 if (state->stage == MESA_SHADER_TESS_CTRL) {
7949 if (this->instance_name == NULL ||
7950 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7951 _mesa_glsl_error(&loc, state,
7952 "gl_PerVertex output must be redeclared as "
7953 "gl_out[]");
7954 }
7955 } else {
7956 if (this->instance_name != NULL) {
7957 _mesa_glsl_error(&loc, state,
7958 "gl_PerVertex output may not be redeclared with "
7959 "an instance name");
7960 }
7961 }
7962 break;
7963 default:
7964 _mesa_glsl_error(&loc, state,
7965 "gl_PerVertex must be declared as an input or an "
7966 "output");
7967 break;
7968 }
7969
7970 if (earlier_per_vertex == NULL) {
7971 /* An error has already been reported. Bail out to avoid null
7972 * dereferences later in this function.
7973 */
7974 return NULL;
7975 }
7976
7977 /* Copy locations from the old gl_PerVertex interface block. */
7978 for (unsigned i = 0; i < num_variables; i++) {
7979 int j = earlier_per_vertex->field_index(fields[i].name);
7980 if (j == -1) {
7981 _mesa_glsl_error(&loc, state,
7982 "redeclaration of gl_PerVertex must be a subset "
7983 "of the built-in members of gl_PerVertex");
7984 } else {
7985 fields[i].location =
7986 earlier_per_vertex->fields.structure[j].location;
7987 fields[i].offset =
7988 earlier_per_vertex->fields.structure[j].offset;
7989 fields[i].interpolation =
7990 earlier_per_vertex->fields.structure[j].interpolation;
7991 fields[i].centroid =
7992 earlier_per_vertex->fields.structure[j].centroid;
7993 fields[i].sample =
7994 earlier_per_vertex->fields.structure[j].sample;
7995 fields[i].patch =
7996 earlier_per_vertex->fields.structure[j].patch;
7997 fields[i].precision =
7998 earlier_per_vertex->fields.structure[j].precision;
7999 fields[i].explicit_xfb_buffer =
8000 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8001 fields[i].xfb_buffer =
8002 earlier_per_vertex->fields.structure[j].xfb_buffer;
8003 fields[i].xfb_stride =
8004 earlier_per_vertex->fields.structure[j].xfb_stride;
8005 }
8006 }
8007
8008 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8009 * spec:
8010 *
8011 * If a built-in interface block is redeclared, it must appear in
8012 * the shader before any use of any member included in the built-in
8013 * declaration, or a compilation error will result.
8014 *
8015 * This appears to be a clarification to the behaviour established for
8016 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8017 * regardless of GLSL version.
8018 */
8019 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8020 v.run(instructions);
8021 if (v.usage_found()) {
8022 _mesa_glsl_error(&loc, state,
8023 "redeclaration of a built-in interface block must "
8024 "appear before any use of any member of the "
8025 "interface block");
8026 }
8027 }
8028
8029 const glsl_type *block_type =
8030 glsl_type::get_interface_instance(fields,
8031 num_variables,
8032 packing,
8033 matrix_layout ==
8034 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8035 this->block_name);
8036
8037 unsigned component_size = block_type->contains_double() ? 8 : 4;
8038 int xfb_offset =
8039 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8040 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8041 component_size);
8042
8043 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8044 YYLTYPE loc = this->get_location();
8045 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8046 "already taken in the current scope",
8047 this->block_name, iface_type_name);
8048 }
8049
8050 /* Since interface blocks cannot contain statements, it should be
8051 * impossible for the block to generate any instructions.
8052 */
8053 assert(declared_variables.is_empty());
8054
8055 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8056 *
8057 * Geometry shader input variables get the per-vertex values written
8058 * out by vertex shader output variables of the same names. Since a
8059 * geometry shader operates on a set of vertices, each input varying
8060 * variable (or input block, see interface blocks below) needs to be
8061 * declared as an array.
8062 */
8063 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8064 var_mode == ir_var_shader_in) {
8065 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8066 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8067 state->stage == MESA_SHADER_TESS_EVAL) &&
8068 !this->layout.flags.q.patch &&
8069 this->array_specifier == NULL &&
8070 var_mode == ir_var_shader_in) {
8071 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8072 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8073 !this->layout.flags.q.patch &&
8074 this->array_specifier == NULL &&
8075 var_mode == ir_var_shader_out) {
8076 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8077 }
8078
8079
8080 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8081 * says:
8082 *
8083 * "If an instance name (instance-name) is used, then it puts all the
8084 * members inside a scope within its own name space, accessed with the
8085 * field selector ( . ) operator (analogously to structures)."
8086 */
8087 if (this->instance_name) {
8088 if (redeclaring_per_vertex) {
8089 /* When a built-in in an unnamed interface block is redeclared,
8090 * get_variable_being_redeclared() calls
8091 * check_builtin_array_max_size() to make sure that built-in array
8092 * variables aren't redeclared to illegal sizes. But we're looking
8093 * at a redeclaration of a named built-in interface block. So we
8094 * have to manually call check_builtin_array_max_size() for all parts
8095 * of the interface that are arrays.
8096 */
8097 for (unsigned i = 0; i < num_variables; i++) {
8098 if (fields[i].type->is_array()) {
8099 const unsigned size = fields[i].type->array_size();
8100 check_builtin_array_max_size(fields[i].name, size, loc, state);
8101 }
8102 }
8103 } else {
8104 validate_identifier(this->instance_name, loc, state);
8105 }
8106
8107 ir_variable *var;
8108
8109 if (this->array_specifier != NULL) {
8110 const glsl_type *block_array_type =
8111 process_array_type(&loc, block_type, this->array_specifier, state);
8112
8113 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8114 *
8115 * For uniform blocks declared an array, each individual array
8116 * element corresponds to a separate buffer object backing one
8117 * instance of the block. As the array size indicates the number
8118 * of buffer objects needed, uniform block array declarations
8119 * must specify an array size.
8120 *
8121 * And a few paragraphs later:
8122 *
8123 * Geometry shader input blocks must be declared as arrays and
8124 * follow the array declaration and linking rules for all
8125 * geometry shader inputs. All other input and output block
8126 * arrays must specify an array size.
8127 *
8128 * The same applies to tessellation shaders.
8129 *
8130 * The upshot of this is that the only circumstance where an
8131 * interface array size *doesn't* need to be specified is on a
8132 * geometry shader input, tessellation control shader input,
8133 * tessellation control shader output, and tessellation evaluation
8134 * shader input.
8135 */
8136 if (block_array_type->is_unsized_array()) {
8137 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8138 state->stage == MESA_SHADER_TESS_CTRL ||
8139 state->stage == MESA_SHADER_TESS_EVAL;
8140 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8141
8142 if (this->layout.flags.q.in) {
8143 if (!allow_inputs)
8144 _mesa_glsl_error(&loc, state,
8145 "unsized input block arrays not allowed in "
8146 "%s shader",
8147 _mesa_shader_stage_to_string(state->stage));
8148 } else if (this->layout.flags.q.out) {
8149 if (!allow_outputs)
8150 _mesa_glsl_error(&loc, state,
8151 "unsized output block arrays not allowed in "
8152 "%s shader",
8153 _mesa_shader_stage_to_string(state->stage));
8154 } else {
8155 /* by elimination, this is a uniform block array */
8156 _mesa_glsl_error(&loc, state,
8157 "unsized uniform block arrays not allowed in "
8158 "%s shader",
8159 _mesa_shader_stage_to_string(state->stage));
8160 }
8161 }
8162
8163 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8164 *
8165 * * Arrays of arrays of blocks are not allowed
8166 */
8167 if (state->es_shader && block_array_type->is_array() &&
8168 block_array_type->fields.array->is_array()) {
8169 _mesa_glsl_error(&loc, state,
8170 "arrays of arrays interface blocks are "
8171 "not allowed");
8172 }
8173
8174 var = new(state) ir_variable(block_array_type,
8175 this->instance_name,
8176 var_mode);
8177 } else {
8178 var = new(state) ir_variable(block_type,
8179 this->instance_name,
8180 var_mode);
8181 }
8182
8183 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8184 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8185
8186 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8187 var->data.read_only = true;
8188
8189 var->data.patch = this->layout.flags.q.patch;
8190
8191 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8192 handle_geometry_shader_input_decl(state, loc, var);
8193 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8194 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8195 handle_tess_shader_input_decl(state, loc, var);
8196 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8197 handle_tess_ctrl_shader_output_decl(state, loc, var);
8198
8199 for (unsigned i = 0; i < num_variables; i++) {
8200 if (var->data.mode == ir_var_shader_storage)
8201 apply_memory_qualifiers(var, fields[i]);
8202 }
8203
8204 if (ir_variable *earlier =
8205 state->symbols->get_variable(this->instance_name)) {
8206 if (!redeclaring_per_vertex) {
8207 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8208 this->instance_name);
8209 }
8210 earlier->data.how_declared = ir_var_declared_normally;
8211 earlier->type = var->type;
8212 earlier->reinit_interface_type(block_type);
8213 delete var;
8214 } else {
8215 if (this->layout.flags.q.explicit_binding) {
8216 apply_explicit_binding(state, &loc, var, var->type,
8217 &this->layout);
8218 }
8219
8220 var->data.stream = qual_stream;
8221 if (layout.flags.q.explicit_location) {
8222 var->data.location = expl_location;
8223 var->data.explicit_location = true;
8224 }
8225
8226 state->symbols->add_variable(var);
8227 instructions->push_tail(var);
8228 }
8229 } else {
8230 /* In order to have an array size, the block must also be declared with
8231 * an instance name.
8232 */
8233 assert(this->array_specifier == NULL);
8234
8235 for (unsigned i = 0; i < num_variables; i++) {
8236 ir_variable *var =
8237 new(state) ir_variable(fields[i].type,
8238 ralloc_strdup(state, fields[i].name),
8239 var_mode);
8240 var->data.interpolation = fields[i].interpolation;
8241 var->data.centroid = fields[i].centroid;
8242 var->data.sample = fields[i].sample;
8243 var->data.patch = fields[i].patch;
8244 var->data.stream = qual_stream;
8245 var->data.location = fields[i].location;
8246
8247 if (fields[i].location != -1)
8248 var->data.explicit_location = true;
8249
8250 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8251 var->data.xfb_buffer = fields[i].xfb_buffer;
8252
8253 if (fields[i].offset != -1)
8254 var->data.explicit_xfb_offset = true;
8255 var->data.offset = fields[i].offset;
8256
8257 var->init_interface_type(block_type);
8258
8259 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8260 var->data.read_only = true;
8261
8262 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8263 if (state->es_shader) {
8264 var->data.precision =
8265 select_gles_precision(fields[i].precision, fields[i].type,
8266 state, &loc);
8267 }
8268
8269 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8270 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8271 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8272 } else {
8273 var->data.matrix_layout = fields[i].matrix_layout;
8274 }
8275
8276 if (var->data.mode == ir_var_shader_storage)
8277 apply_memory_qualifiers(var, fields[i]);
8278
8279 /* Examine var name here since var may get deleted in the next call */
8280 bool var_is_gl_id = is_gl_identifier(var->name);
8281
8282 if (redeclaring_per_vertex) {
8283 bool is_redeclaration;
8284 var =
8285 get_variable_being_redeclared(&var, loc, state,
8286 true /* allow_all_redeclarations */,
8287 &is_redeclaration);
8288 if (!var_is_gl_id || !is_redeclaration) {
8289 _mesa_glsl_error(&loc, state,
8290 "redeclaration of gl_PerVertex can only "
8291 "include built-in variables");
8292 } else if (var->data.how_declared == ir_var_declared_normally) {
8293 _mesa_glsl_error(&loc, state,
8294 "`%s' has already been redeclared",
8295 var->name);
8296 } else {
8297 var->data.how_declared = ir_var_declared_in_block;
8298 var->reinit_interface_type(block_type);
8299 }
8300 continue;
8301 }
8302
8303 if (state->symbols->get_variable(var->name) != NULL)
8304 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8305
8306 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8307 * The UBO declaration itself doesn't get an ir_variable unless it
8308 * has an instance name. This is ugly.
8309 */
8310 if (this->layout.flags.q.explicit_binding) {
8311 apply_explicit_binding(state, &loc, var,
8312 var->get_interface_type(), &this->layout);
8313 }
8314
8315 if (var->type->is_unsized_array()) {
8316 if (var->is_in_shader_storage_block() &&
8317 is_unsized_array_last_element(var)) {
8318 var->data.from_ssbo_unsized_array = true;
8319 } else {
8320 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8321 *
8322 * "If an array is declared as the last member of a shader storage
8323 * block and the size is not specified at compile-time, it is
8324 * sized at run-time. In all other cases, arrays are sized only
8325 * at compile-time."
8326 *
8327 * In desktop GLSL it is allowed to have unsized-arrays that are
8328 * not last, as long as we can determine that they are implicitly
8329 * sized.
8330 */
8331 if (state->es_shader) {
8332 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8333 "definition: only last member of a shader "
8334 "storage block can be defined as unsized "
8335 "array", fields[i].name);
8336 }
8337 }
8338 }
8339
8340 state->symbols->add_variable(var);
8341 instructions->push_tail(var);
8342 }
8343
8344 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8345 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8346 *
8347 * It is also a compilation error ... to redeclare a built-in
8348 * block and then use a member from that built-in block that was
8349 * not included in the redeclaration.
8350 *
8351 * This appears to be a clarification to the behaviour established
8352 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8353 * behaviour regardless of GLSL version.
8354 *
8355 * To prevent the shader from using a member that was not included in
8356 * the redeclaration, we disable any ir_variables that are still
8357 * associated with the old declaration of gl_PerVertex (since we've
8358 * already updated all of the variables contained in the new
8359 * gl_PerVertex to point to it).
8360 *
8361 * As a side effect this will prevent
8362 * validate_intrastage_interface_blocks() from getting confused and
8363 * thinking there are conflicting definitions of gl_PerVertex in the
8364 * shader.
8365 */
8366 foreach_in_list_safe(ir_instruction, node, instructions) {
8367 ir_variable *const var = node->as_variable();
8368 if (var != NULL &&
8369 var->get_interface_type() == earlier_per_vertex &&
8370 var->data.mode == var_mode) {
8371 if (var->data.how_declared == ir_var_declared_normally) {
8372 _mesa_glsl_error(&loc, state,
8373 "redeclaration of gl_PerVertex cannot "
8374 "follow a redeclaration of `%s'",
8375 var->name);
8376 }
8377 state->symbols->disable_variable(var->name);
8378 var->remove();
8379 }
8380 }
8381 }
8382 }
8383
8384 return NULL;
8385 }
8386
8387
8388 ir_rvalue *
8389 ast_tcs_output_layout::hir(exec_list *instructions,
8390 struct _mesa_glsl_parse_state *state)
8391 {
8392 YYLTYPE loc = this->get_location();
8393
8394 unsigned num_vertices;
8395 if (!state->out_qualifier->vertices->
8396 process_qualifier_constant(state, "vertices", &num_vertices,
8397 false)) {
8398 /* return here to stop cascading incorrect error messages */
8399 return NULL;
8400 }
8401
8402 /* If any shader outputs occurred before this declaration and specified an
8403 * array size, make sure the size they specified is consistent with the
8404 * primitive type.
8405 */
8406 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8407 _mesa_glsl_error(&loc, state,
8408 "this tessellation control shader output layout "
8409 "specifies %u vertices, but a previous output "
8410 "is declared with size %u",
8411 num_vertices, state->tcs_output_size);
8412 return NULL;
8413 }
8414
8415 state->tcs_output_vertices_specified = true;
8416
8417 /* If any shader outputs occurred before this declaration and did not
8418 * specify an array size, their size is determined now.
8419 */
8420 foreach_in_list (ir_instruction, node, instructions) {
8421 ir_variable *var = node->as_variable();
8422 if (var == NULL || var->data.mode != ir_var_shader_out)
8423 continue;
8424
8425 /* Note: Not all tessellation control shader output are arrays. */
8426 if (!var->type->is_unsized_array() || var->data.patch)
8427 continue;
8428
8429 if (var->data.max_array_access >= (int)num_vertices) {
8430 _mesa_glsl_error(&loc, state,
8431 "this tessellation control shader output layout "
8432 "specifies %u vertices, but an access to element "
8433 "%u of output `%s' already exists", num_vertices,
8434 var->data.max_array_access, var->name);
8435 } else {
8436 var->type = glsl_type::get_array_instance(var->type->fields.array,
8437 num_vertices);
8438 }
8439 }
8440
8441 return NULL;
8442 }
8443
8444
8445 ir_rvalue *
8446 ast_gs_input_layout::hir(exec_list *instructions,
8447 struct _mesa_glsl_parse_state *state)
8448 {
8449 YYLTYPE loc = this->get_location();
8450
8451 /* Should have been prevented by the parser. */
8452 assert(!state->gs_input_prim_type_specified
8453 || state->in_qualifier->prim_type == this->prim_type);
8454
8455 /* If any shader inputs occurred before this declaration and specified an
8456 * array size, make sure the size they specified is consistent with the
8457 * primitive type.
8458 */
8459 unsigned num_vertices = vertices_per_prim(this->prim_type);
8460 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8461 _mesa_glsl_error(&loc, state,
8462 "this geometry shader input layout implies %u vertices"
8463 " per primitive, but a previous input is declared"
8464 " with size %u", num_vertices, state->gs_input_size);
8465 return NULL;
8466 }
8467
8468 state->gs_input_prim_type_specified = true;
8469
8470 /* If any shader inputs occurred before this declaration and did not
8471 * specify an array size, their size is determined now.
8472 */
8473 foreach_in_list(ir_instruction, node, instructions) {
8474 ir_variable *var = node->as_variable();
8475 if (var == NULL || var->data.mode != ir_var_shader_in)
8476 continue;
8477
8478 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8479 * array; skip it.
8480 */
8481
8482 if (var->type->is_unsized_array()) {
8483 if (var->data.max_array_access >= (int)num_vertices) {
8484 _mesa_glsl_error(&loc, state,
8485 "this geometry shader input layout implies %u"
8486 " vertices, but an access to element %u of input"
8487 " `%s' already exists", num_vertices,
8488 var->data.max_array_access, var->name);
8489 } else {
8490 var->type = glsl_type::get_array_instance(var->type->fields.array,
8491 num_vertices);
8492 }
8493 }
8494 }
8495
8496 return NULL;
8497 }
8498
8499
8500 ir_rvalue *
8501 ast_cs_input_layout::hir(exec_list *instructions,
8502 struct _mesa_glsl_parse_state *state)
8503 {
8504 YYLTYPE loc = this->get_location();
8505
8506 /* From the ARB_compute_shader specification:
8507 *
8508 * If the local size of the shader in any dimension is greater
8509 * than the maximum size supported by the implementation for that
8510 * dimension, a compile-time error results.
8511 *
8512 * It is not clear from the spec how the error should be reported if
8513 * the total size of the work group exceeds
8514 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8515 * report it at compile time as well.
8516 */
8517 GLuint64 total_invocations = 1;
8518 unsigned qual_local_size[3];
8519 for (int i = 0; i < 3; i++) {
8520
8521 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8522 'x' + i);
8523 /* Infer a local_size of 1 for unspecified dimensions */
8524 if (this->local_size[i] == NULL) {
8525 qual_local_size[i] = 1;
8526 } else if (!this->local_size[i]->
8527 process_qualifier_constant(state, local_size_str,
8528 &qual_local_size[i], false)) {
8529 ralloc_free(local_size_str);
8530 return NULL;
8531 }
8532 ralloc_free(local_size_str);
8533
8534 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8535 _mesa_glsl_error(&loc, state,
8536 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8537 " (%d)", 'x' + i,
8538 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8539 break;
8540 }
8541 total_invocations *= qual_local_size[i];
8542 if (total_invocations >
8543 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8544 _mesa_glsl_error(&loc, state,
8545 "product of local_sizes exceeds "
8546 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8547 state->ctx->Const.MaxComputeWorkGroupInvocations);
8548 break;
8549 }
8550 }
8551
8552 /* If any compute input layout declaration preceded this one, make sure it
8553 * was consistent with this one.
8554 */
8555 if (state->cs_input_local_size_specified) {
8556 for (int i = 0; i < 3; i++) {
8557 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8558 _mesa_glsl_error(&loc, state,
8559 "compute shader input layout does not match"
8560 " previous declaration");
8561 return NULL;
8562 }
8563 }
8564 }
8565
8566 /* The ARB_compute_variable_group_size spec says:
8567 *
8568 * If a compute shader including a *local_size_variable* qualifier also
8569 * declares a fixed local group size using the *local_size_x*,
8570 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8571 * results
8572 */
8573 if (state->cs_input_local_size_variable_specified) {
8574 _mesa_glsl_error(&loc, state,
8575 "compute shader can't include both a variable and a "
8576 "fixed local group size");
8577 return NULL;
8578 }
8579
8580 state->cs_input_local_size_specified = true;
8581 for (int i = 0; i < 3; i++)
8582 state->cs_input_local_size[i] = qual_local_size[i];
8583
8584 /* We may now declare the built-in constant gl_WorkGroupSize (see
8585 * builtin_variable_generator::generate_constants() for why we didn't
8586 * declare it earlier).
8587 */
8588 ir_variable *var = new(state->symbols)
8589 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8590 var->data.how_declared = ir_var_declared_implicitly;
8591 var->data.read_only = true;
8592 instructions->push_tail(var);
8593 state->symbols->add_variable(var);
8594 ir_constant_data data;
8595 memset(&data, 0, sizeof(data));
8596 for (int i = 0; i < 3; i++)
8597 data.u[i] = qual_local_size[i];
8598 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8599 var->constant_initializer =
8600 new(var) ir_constant(glsl_type::uvec3_type, &data);
8601 var->data.has_initializer = true;
8602
8603 return NULL;
8604 }
8605
8606
8607 static void
8608 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8609 exec_list *instructions)
8610 {
8611 bool gl_FragColor_assigned = false;
8612 bool gl_FragData_assigned = false;
8613 bool gl_FragSecondaryColor_assigned = false;
8614 bool gl_FragSecondaryData_assigned = false;
8615 bool user_defined_fs_output_assigned = false;
8616 ir_variable *user_defined_fs_output = NULL;
8617
8618 /* It would be nice to have proper location information. */
8619 YYLTYPE loc;
8620 memset(&loc, 0, sizeof(loc));
8621
8622 foreach_in_list(ir_instruction, node, instructions) {
8623 ir_variable *var = node->as_variable();
8624
8625 if (!var || !var->data.assigned)
8626 continue;
8627
8628 if (strcmp(var->name, "gl_FragColor") == 0)
8629 gl_FragColor_assigned = true;
8630 else if (strcmp(var->name, "gl_FragData") == 0)
8631 gl_FragData_assigned = true;
8632 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8633 gl_FragSecondaryColor_assigned = true;
8634 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8635 gl_FragSecondaryData_assigned = true;
8636 else if (!is_gl_identifier(var->name)) {
8637 if (state->stage == MESA_SHADER_FRAGMENT &&
8638 var->data.mode == ir_var_shader_out) {
8639 user_defined_fs_output_assigned = true;
8640 user_defined_fs_output = var;
8641 }
8642 }
8643 }
8644
8645 /* From the GLSL 1.30 spec:
8646 *
8647 * "If a shader statically assigns a value to gl_FragColor, it
8648 * may not assign a value to any element of gl_FragData. If a
8649 * shader statically writes a value to any element of
8650 * gl_FragData, it may not assign a value to
8651 * gl_FragColor. That is, a shader may assign values to either
8652 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8653 * linked together must also consistently write just one of
8654 * these variables. Similarly, if user declared output
8655 * variables are in use (statically assigned to), then the
8656 * built-in variables gl_FragColor and gl_FragData may not be
8657 * assigned to. These incorrect usages all generate compile
8658 * time errors."
8659 */
8660 if (gl_FragColor_assigned && gl_FragData_assigned) {
8661 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8662 "`gl_FragColor' and `gl_FragData'");
8663 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8664 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8665 "`gl_FragColor' and `%s'",
8666 user_defined_fs_output->name);
8667 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8668 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8669 "`gl_FragSecondaryColorEXT' and"
8670 " `gl_FragSecondaryDataEXT'");
8671 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8672 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8673 "`gl_FragColor' and"
8674 " `gl_FragSecondaryDataEXT'");
8675 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8676 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8677 "`gl_FragData' and"
8678 " `gl_FragSecondaryColorEXT'");
8679 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8680 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8681 "`gl_FragData' and `%s'",
8682 user_defined_fs_output->name);
8683 }
8684
8685 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8686 !state->EXT_blend_func_extended_enable) {
8687 _mesa_glsl_error(&loc, state,
8688 "Dual source blending requires EXT_blend_func_extended");
8689 }
8690 }
8691
8692 static void
8693 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8694 {
8695 YYLTYPE loc;
8696 memset(&loc, 0, sizeof(loc));
8697
8698 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8699 *
8700 * "A program will fail to compile or link if any shader
8701 * or stage contains two or more functions with the same
8702 * name if the name is associated with a subroutine type."
8703 */
8704
8705 for (int i = 0; i < state->num_subroutines; i++) {
8706 unsigned definitions = 0;
8707 ir_function *fn = state->subroutines[i];
8708 /* Calculate number of function definitions with the same name */
8709 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8710 if (sig->is_defined) {
8711 if (++definitions > 1) {
8712 _mesa_glsl_error(&loc, state,
8713 "%s shader contains two or more function "
8714 "definitions with name `%s', which is "
8715 "associated with a subroutine type.\n",
8716 _mesa_shader_stage_to_string(state->stage),
8717 fn->name);
8718 return;
8719 }
8720 }
8721 }
8722 }
8723 }
8724
8725 static void
8726 remove_per_vertex_blocks(exec_list *instructions,
8727 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8728 {
8729 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8730 * if it exists in this shader type.
8731 */
8732 const glsl_type *per_vertex = NULL;
8733 switch (mode) {
8734 case ir_var_shader_in:
8735 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8736 per_vertex = gl_in->get_interface_type();
8737 break;
8738 case ir_var_shader_out:
8739 if (ir_variable *gl_Position =
8740 state->symbols->get_variable("gl_Position")) {
8741 per_vertex = gl_Position->get_interface_type();
8742 }
8743 break;
8744 default:
8745 assert(!"Unexpected mode");
8746 break;
8747 }
8748
8749 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8750 * need to do anything.
8751 */
8752 if (per_vertex == NULL)
8753 return;
8754
8755 /* If the interface block is used by the shader, then we don't need to do
8756 * anything.
8757 */
8758 interface_block_usage_visitor v(mode, per_vertex);
8759 v.run(instructions);
8760 if (v.usage_found())
8761 return;
8762
8763 /* Remove any ir_variable declarations that refer to the interface block
8764 * we're removing.
8765 */
8766 foreach_in_list_safe(ir_instruction, node, instructions) {
8767 ir_variable *const var = node->as_variable();
8768 if (var != NULL && var->get_interface_type() == per_vertex &&
8769 var->data.mode == mode) {
8770 state->symbols->disable_variable(var->name);
8771 var->remove();
8772 }
8773 }
8774 }
8775
8776 ir_rvalue *
8777 ast_warnings_toggle::hir(exec_list *,
8778 struct _mesa_glsl_parse_state *state)
8779 {
8780 state->warnings_enabled = enable;
8781 return NULL;
8782 }