glsl: Fix gl_shader_stage enum unsigned comparison
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 type = state->symbols->get_type(this->type_name);
2363 *name = this->type_name;
2364
2365 YYLTYPE loc = this->get_location();
2366 type = process_array_type(&loc, type, this->array_specifier, state);
2367
2368 return type;
2369 }
2370
2371 /**
2372 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2373 *
2374 * "The precision statement
2375 *
2376 * precision precision-qualifier type;
2377 *
2378 * can be used to establish a default precision qualifier. The type field can
2379 * be either int or float or any of the sampler types, (...) If type is float,
2380 * the directive applies to non-precision-qualified floating point type
2381 * (scalar, vector, and matrix) declarations. If type is int, the directive
2382 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2383 * and unsigned) declarations."
2384 *
2385 * We use the symbol table to keep the values of the default precisions for
2386 * each 'type' in each scope and we use the 'type' string from the precision
2387 * statement as key in the symbol table. When we want to retrieve the default
2388 * precision associated with a given glsl_type we need to know the type string
2389 * associated with it. This is what this function returns.
2390 */
2391 static const char *
2392 get_type_name_for_precision_qualifier(const glsl_type *type)
2393 {
2394 switch (type->base_type) {
2395 case GLSL_TYPE_FLOAT:
2396 return "float";
2397 case GLSL_TYPE_UINT:
2398 case GLSL_TYPE_INT:
2399 return "int";
2400 case GLSL_TYPE_ATOMIC_UINT:
2401 return "atomic_uint";
2402 case GLSL_TYPE_IMAGE:
2403 /* fallthrough */
2404 case GLSL_TYPE_SAMPLER: {
2405 const unsigned type_idx =
2406 type->sampler_array + 2 * type->sampler_shadow;
2407 const unsigned offset = type->is_sampler() ? 0 : 4;
2408 assert(type_idx < 4);
2409 switch (type->sampled_type) {
2410 case GLSL_TYPE_FLOAT:
2411 switch (type->sampler_dimensionality) {
2412 case GLSL_SAMPLER_DIM_1D: {
2413 assert(type->is_sampler());
2414 static const char *const names[4] = {
2415 "sampler1D", "sampler1DArray",
2416 "sampler1DShadow", "sampler1DArrayShadow"
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "sampler2D", "sampler2DArray",
2423 "sampler2DShadow", "sampler2DArrayShadow",
2424 "image2D", "image2DArray", NULL, NULL
2425 };
2426 return names[offset + type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_3D: {
2429 static const char *const names[8] = {
2430 "sampler3D", NULL, NULL, NULL,
2431 "image3D", NULL, NULL, NULL
2432 };
2433 return names[offset + type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_CUBE: {
2436 static const char *const names[8] = {
2437 "samplerCube", "samplerCubeArray",
2438 "samplerCubeShadow", "samplerCubeArrayShadow",
2439 "imageCube", NULL, NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_MS: {
2444 assert(type->is_sampler());
2445 static const char *const names[4] = {
2446 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_RECT: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "samplerRect", NULL, "samplerRectShadow", NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_BUF: {
2458 static const char *const names[8] = {
2459 "samplerBuffer", NULL, NULL, NULL,
2460 "imageBuffer", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_EXTERNAL: {
2465 assert(type->is_sampler());
2466 static const char *const names[4] = {
2467 "samplerExternalOES", NULL, NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 default:
2472 unreachable("Unsupported sampler/image dimensionality");
2473 } /* sampler/image float dimensionality */
2474 break;
2475 case GLSL_TYPE_INT:
2476 switch (type->sampler_dimensionality) {
2477 case GLSL_SAMPLER_DIM_1D: {
2478 assert(type->is_sampler());
2479 static const char *const names[4] = {
2480 "isampler1D", "isampler1DArray", NULL, NULL
2481 };
2482 return names[type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_2D: {
2485 static const char *const names[8] = {
2486 "isampler2D", "isampler2DArray", NULL, NULL,
2487 "iimage2D", "iimage2DArray", NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_3D: {
2492 static const char *const names[8] = {
2493 "isampler3D", NULL, NULL, NULL,
2494 "iimage3D", NULL, NULL, NULL
2495 };
2496 return names[offset + type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_CUBE: {
2499 static const char *const names[8] = {
2500 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2501 "iimageCube", NULL, NULL, NULL
2502 };
2503 return names[offset + type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_MS: {
2506 assert(type->is_sampler());
2507 static const char *const names[4] = {
2508 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2509 };
2510 return names[type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_RECT: {
2513 assert(type->is_sampler());
2514 static const char *const names[4] = {
2515 "isamplerRect", NULL, "isamplerRectShadow", NULL
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_BUF: {
2520 static const char *const names[8] = {
2521 "isamplerBuffer", NULL, NULL, NULL,
2522 "iimageBuffer", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 default:
2527 unreachable("Unsupported isampler/iimage dimensionality");
2528 } /* sampler/image int dimensionality */
2529 break;
2530 case GLSL_TYPE_UINT:
2531 switch (type->sampler_dimensionality) {
2532 case GLSL_SAMPLER_DIM_1D: {
2533 assert(type->is_sampler());
2534 static const char *const names[4] = {
2535 "usampler1D", "usampler1DArray", NULL, NULL
2536 };
2537 return names[type_idx];
2538 }
2539 case GLSL_SAMPLER_DIM_2D: {
2540 static const char *const names[8] = {
2541 "usampler2D", "usampler2DArray", NULL, NULL,
2542 "uimage2D", "uimage2DArray", NULL, NULL
2543 };
2544 return names[offset + type_idx];
2545 }
2546 case GLSL_SAMPLER_DIM_3D: {
2547 static const char *const names[8] = {
2548 "usampler3D", NULL, NULL, NULL,
2549 "uimage3D", NULL, NULL, NULL
2550 };
2551 return names[offset + type_idx];
2552 }
2553 case GLSL_SAMPLER_DIM_CUBE: {
2554 static const char *const names[8] = {
2555 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2556 "uimageCube", NULL, NULL, NULL
2557 };
2558 return names[offset + type_idx];
2559 }
2560 case GLSL_SAMPLER_DIM_MS: {
2561 assert(type->is_sampler());
2562 static const char *const names[4] = {
2563 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2564 };
2565 return names[type_idx];
2566 }
2567 case GLSL_SAMPLER_DIM_RECT: {
2568 assert(type->is_sampler());
2569 static const char *const names[4] = {
2570 "usamplerRect", NULL, "usamplerRectShadow", NULL
2571 };
2572 return names[type_idx];
2573 }
2574 case GLSL_SAMPLER_DIM_BUF: {
2575 static const char *const names[8] = {
2576 "usamplerBuffer", NULL, NULL, NULL,
2577 "uimageBuffer", NULL, NULL, NULL
2578 };
2579 return names[offset + type_idx];
2580 }
2581 default:
2582 unreachable("Unsupported usampler/uimage dimensionality");
2583 } /* sampler/image uint dimensionality */
2584 break;
2585 default:
2586 unreachable("Unsupported sampler/image type");
2587 } /* sampler/image type */
2588 break;
2589 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2590 break;
2591 default:
2592 unreachable("Unsupported type");
2593 } /* base type */
2594 }
2595
2596 static unsigned
2597 select_gles_precision(unsigned qual_precision,
2598 const glsl_type *type,
2599 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2600 {
2601 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2602 * In GLES we take the precision from the type qualifier if present,
2603 * otherwise, if the type of the variable allows precision qualifiers at
2604 * all, we look for the default precision qualifier for that type in the
2605 * current scope.
2606 */
2607 assert(state->es_shader);
2608
2609 unsigned precision = GLSL_PRECISION_NONE;
2610 if (qual_precision) {
2611 precision = qual_precision;
2612 } else if (precision_qualifier_allowed(type)) {
2613 const char *type_name =
2614 get_type_name_for_precision_qualifier(type->without_array());
2615 assert(type_name != NULL);
2616
2617 precision =
2618 state->symbols->get_default_precision_qualifier(type_name);
2619 if (precision == ast_precision_none) {
2620 _mesa_glsl_error(loc, state,
2621 "No precision specified in this scope for type `%s'",
2622 type->name);
2623 }
2624 }
2625
2626
2627 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2628 *
2629 * "The default precision of all atomic types is highp. It is an error to
2630 * declare an atomic type with a different precision or to specify the
2631 * default precision for an atomic type to be lowp or mediump."
2632 */
2633 if (type->is_atomic_uint() && precision != ast_precision_high) {
2634 _mesa_glsl_error(loc, state,
2635 "atomic_uint can only have highp precision qualifier");
2636 }
2637
2638 return precision;
2639 }
2640
2641 const glsl_type *
2642 ast_fully_specified_type::glsl_type(const char **name,
2643 struct _mesa_glsl_parse_state *state) const
2644 {
2645 return this->specifier->glsl_type(name, state);
2646 }
2647
2648 /**
2649 * Determine whether a toplevel variable declaration declares a varying. This
2650 * function operates by examining the variable's mode and the shader target,
2651 * so it correctly identifies linkage variables regardless of whether they are
2652 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2653 *
2654 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2655 * this function will produce undefined results.
2656 */
2657 static bool
2658 is_varying_var(ir_variable *var, gl_shader_stage target)
2659 {
2660 switch (target) {
2661 case MESA_SHADER_VERTEX:
2662 return var->data.mode == ir_var_shader_out;
2663 case MESA_SHADER_FRAGMENT:
2664 return var->data.mode == ir_var_shader_in;
2665 default:
2666 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2667 }
2668 }
2669
2670 static bool
2671 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2672 {
2673 if (is_varying_var(var, state->stage))
2674 return true;
2675
2676 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2677 * "Only variables output from a vertex shader can be candidates
2678 * for invariance".
2679 */
2680 if (!state->is_version(130, 0))
2681 return false;
2682
2683 /*
2684 * Later specs remove this language - so allowed invariant
2685 * on fragment shader outputs as well.
2686 */
2687 if (state->stage == MESA_SHADER_FRAGMENT &&
2688 var->data.mode == ir_var_shader_out)
2689 return true;
2690 return false;
2691 }
2692
2693 /**
2694 * Matrix layout qualifiers are only allowed on certain types
2695 */
2696 static void
2697 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2698 YYLTYPE *loc,
2699 const glsl_type *type,
2700 ir_variable *var)
2701 {
2702 if (var && !var->is_in_buffer_block()) {
2703 /* Layout qualifiers may only apply to interface blocks and fields in
2704 * them.
2705 */
2706 _mesa_glsl_error(loc, state,
2707 "uniform block layout qualifiers row_major and "
2708 "column_major may not be applied to variables "
2709 "outside of uniform blocks");
2710 } else if (!type->without_array()->is_matrix()) {
2711 /* The OpenGL ES 3.0 conformance tests did not originally allow
2712 * matrix layout qualifiers on non-matrices. However, the OpenGL
2713 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2714 * amended to specifically allow these layouts on all types. Emit
2715 * a warning so that people know their code may not be portable.
2716 */
2717 _mesa_glsl_warning(loc, state,
2718 "uniform block layout qualifiers row_major and "
2719 "column_major applied to non-matrix types may "
2720 "be rejected by older compilers");
2721 }
2722 }
2723
2724 static bool
2725 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2726 struct _mesa_glsl_parse_state *state,
2727 unsigned xfb_buffer) {
2728 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2729 _mesa_glsl_error(loc, state,
2730 "invalid xfb_buffer specified %d is larger than "
2731 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2732 xfb_buffer,
2733 state->Const.MaxTransformFeedbackBuffers - 1);
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 /* From the ARB_enhanced_layouts spec:
2741 *
2742 * "Variables and block members qualified with *xfb_offset* can be
2743 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2744 * The offset must be a multiple of the size of the first component of
2745 * the first qualified variable or block member, or a compile-time error
2746 * results. Further, if applied to an aggregate containing a double,
2747 * the offset must also be a multiple of 8, and the space taken in the
2748 * buffer will be a multiple of 8.
2749 */
2750 static bool
2751 validate_xfb_offset_qualifier(YYLTYPE *loc,
2752 struct _mesa_glsl_parse_state *state,
2753 int xfb_offset, const glsl_type *type,
2754 unsigned component_size) {
2755 const glsl_type *t_without_array = type->without_array();
2756
2757 if (xfb_offset != -1 && type->is_unsized_array()) {
2758 _mesa_glsl_error(loc, state,
2759 "xfb_offset can't be used with unsized arrays.");
2760 return false;
2761 }
2762
2763 /* Make sure nested structs don't contain unsized arrays, and validate
2764 * any xfb_offsets on interface members.
2765 */
2766 if (t_without_array->is_record() || t_without_array->is_interface())
2767 for (unsigned int i = 0; i < t_without_array->length; i++) {
2768 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2769
2770 /* When the interface block doesn't have an xfb_offset qualifier then
2771 * we apply the component size rules at the member level.
2772 */
2773 if (xfb_offset == -1)
2774 component_size = member_t->contains_double() ? 8 : 4;
2775
2776 int xfb_offset = t_without_array->fields.structure[i].offset;
2777 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2778 component_size);
2779 }
2780
2781 /* Nested structs or interface block without offset may not have had an
2782 * offset applied yet so return.
2783 */
2784 if (xfb_offset == -1) {
2785 return true;
2786 }
2787
2788 if (xfb_offset % component_size) {
2789 _mesa_glsl_error(loc, state,
2790 "invalid qualifier xfb_offset=%d must be a multiple "
2791 "of the first component size of the first qualified "
2792 "variable or block member. Or double if an aggregate "
2793 "that contains a double (%d).",
2794 xfb_offset, component_size);
2795 return false;
2796 }
2797
2798 return true;
2799 }
2800
2801 static bool
2802 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2803 unsigned stream)
2804 {
2805 if (stream >= state->ctx->Const.MaxVertexStreams) {
2806 _mesa_glsl_error(loc, state,
2807 "invalid stream specified %d is larger than "
2808 "MAX_VERTEX_STREAMS - 1 (%d).",
2809 stream, state->ctx->Const.MaxVertexStreams - 1);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static void
2817 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc,
2819 ir_variable *var,
2820 const glsl_type *type,
2821 const ast_type_qualifier *qual)
2822 {
2823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2824 _mesa_glsl_error(loc, state,
2825 "the \"binding\" qualifier only applies to uniforms and "
2826 "shader storage buffer objects");
2827 return;
2828 }
2829
2830 unsigned qual_binding;
2831 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2832 &qual_binding)) {
2833 return;
2834 }
2835
2836 const struct gl_context *const ctx = state->ctx;
2837 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2838 unsigned max_index = qual_binding + elements - 1;
2839 const glsl_type *base_type = type->without_array();
2840
2841 if (base_type->is_interface()) {
2842 /* UBOs. From page 60 of the GLSL 4.20 specification:
2843 * "If the binding point for any uniform block instance is less than zero,
2844 * or greater than or equal to the implementation-dependent maximum
2845 * number of uniform buffer bindings, a compilation error will occur.
2846 * When the binding identifier is used with a uniform block instanced as
2847 * an array of size N, all elements of the array from binding through
2848 * binding + N – 1 must be within this range."
2849 *
2850 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2851 */
2852 if (qual->flags.q.uniform &&
2853 max_index >= ctx->Const.MaxUniformBufferBindings) {
2854 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2855 "the maximum number of UBO binding points (%d)",
2856 qual_binding, elements,
2857 ctx->Const.MaxUniformBufferBindings);
2858 return;
2859 }
2860
2861 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2862 * "If the binding point for any uniform or shader storage block instance
2863 * is less than zero, or greater than or equal to the
2864 * implementation-dependent maximum number of uniform buffer bindings, a
2865 * compile-time error will occur. When the binding identifier is used
2866 * with a uniform or shader storage block instanced as an array of size
2867 * N, all elements of the array from binding through binding + N – 1 must
2868 * be within this range."
2869 */
2870 if (qual->flags.q.buffer &&
2871 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2872 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2873 "the maximum number of SSBO binding points (%d)",
2874 qual_binding, elements,
2875 ctx->Const.MaxShaderStorageBufferBindings);
2876 return;
2877 }
2878 } else if (base_type->is_sampler()) {
2879 /* Samplers. From page 63 of the GLSL 4.20 specification:
2880 * "If the binding is less than zero, or greater than or equal to the
2881 * implementation-dependent maximum supported number of units, a
2882 * compilation error will occur. When the binding identifier is used
2883 * with an array of size N, all elements of the array from binding
2884 * through binding + N - 1 must be within this range."
2885 */
2886 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2887
2888 if (max_index >= limit) {
2889 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2890 "exceeds the maximum number of texture image units "
2891 "(%u)", qual_binding, elements, limit);
2892
2893 return;
2894 }
2895 } else if (base_type->contains_atomic()) {
2896 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2897 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2899 "maximum number of atomic counter buffer bindings "
2900 "(%u)", qual_binding,
2901 ctx->Const.MaxAtomicBufferBindings);
2902
2903 return;
2904 }
2905 } else if ((state->is_version(420, 310) ||
2906 state->ARB_shading_language_420pack_enable) &&
2907 base_type->is_image()) {
2908 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2909 if (max_index >= ctx->Const.MaxImageUnits) {
2910 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2911 "maximum number of image units (%d)", max_index,
2912 ctx->Const.MaxImageUnits);
2913 return;
2914 }
2915
2916 } else {
2917 _mesa_glsl_error(loc, state,
2918 "the \"binding\" qualifier only applies to uniform "
2919 "blocks, storage blocks, opaque variables, or arrays "
2920 "thereof");
2921 return;
2922 }
2923
2924 var->data.explicit_binding = true;
2925 var->data.binding = qual_binding;
2926
2927 return;
2928 }
2929
2930 static void
2931 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2932 YYLTYPE *loc,
2933 const glsl_interp_mode interpolation,
2934 const struct glsl_type *var_type,
2935 ir_variable_mode mode)
2936 {
2937 if (state->stage != MESA_SHADER_FRAGMENT ||
2938 interpolation == INTERP_MODE_FLAT ||
2939 mode != ir_var_shader_in)
2940 return;
2941
2942 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2943 * so must integer vertex outputs.
2944 *
2945 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2946 * "Fragment shader inputs that are signed or unsigned integers or
2947 * integer vectors must be qualified with the interpolation qualifier
2948 * flat."
2949 *
2950 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2951 * "Fragment shader inputs that are, or contain, signed or unsigned
2952 * integers or integer vectors must be qualified with the
2953 * interpolation qualifier flat."
2954 *
2955 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2956 * "Vertex shader outputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * Note that prior to GLSL 1.50, this requirement applied to vertex
2961 * outputs rather than fragment inputs. That creates problems in the
2962 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2963 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2964 * apply the restriction to both vertex outputs and fragment inputs.
2965 *
2966 * Note also that the desktop GLSL specs are missing the text "or
2967 * contain"; this is presumably an oversight, since there is no
2968 * reasonable way to interpolate a fragment shader input that contains
2969 * an integer. See Khronos bug #15671.
2970 */
2971 if (state->is_version(130, 300)
2972 && var_type->contains_integer()) {
2973 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2974 "an integer, then it must be qualified with 'flat'");
2975 }
2976
2977 /* Double fragment inputs must be qualified with 'flat'.
2978 *
2979 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2980 * "This extension does not support interpolation of double-precision
2981 * values; doubles used as fragment shader inputs must be qualified as
2982 * "flat"."
2983 *
2984 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2985 * "Fragment shader inputs that are signed or unsigned integers, integer
2986 * vectors, or any double-precision floating-point type must be
2987 * qualified with the interpolation qualifier flat."
2988 *
2989 * Note that the GLSL specs are missing the text "or contain"; this is
2990 * presumably an oversight. See Khronos bug #15671.
2991 *
2992 * The 'double' type does not exist in GLSL ES so far.
2993 */
2994 if (state->has_double()
2995 && var_type->contains_double()) {
2996 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2997 "a double, then it must be qualified with 'flat'");
2998 }
2999
3000 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3001 *
3002 * From section 4.3.4 of the ARB_bindless_texture spec:
3003 *
3004 * "(modify last paragraph, p. 35, allowing samplers and images as
3005 * fragment shader inputs) ... Fragment inputs can only be signed and
3006 * unsigned integers and integer vectors, floating point scalars,
3007 * floating-point vectors, matrices, sampler and image types, or arrays
3008 * or structures of these. Fragment shader inputs that are signed or
3009 * unsigned integers, integer vectors, or any double-precision floating-
3010 * point type, or any sampler or image type must be qualified with the
3011 * interpolation qualifier "flat"."
3012 */
3013 if (state->has_bindless()
3014 && (var_type->contains_sampler() || var_type->contains_image())) {
3015 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3016 "a bindless sampler (or image), then it must be "
3017 "qualified with 'flat'");
3018 }
3019 }
3020
3021 static void
3022 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3023 YYLTYPE *loc,
3024 const glsl_interp_mode interpolation,
3025 const struct ast_type_qualifier *qual,
3026 const struct glsl_type *var_type,
3027 ir_variable_mode mode)
3028 {
3029 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3030 * not to vertex shader inputs nor fragment shader outputs.
3031 *
3032 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3033 * "Outputs from a vertex shader (out) and inputs to a fragment
3034 * shader (in) can be further qualified with one or more of these
3035 * interpolation qualifiers"
3036 * ...
3037 * "These interpolation qualifiers may only precede the qualifiers in,
3038 * centroid in, out, or centroid out in a declaration. They do not apply
3039 * to the deprecated storage qualifiers varying or centroid
3040 * varying. They also do not apply to inputs into a vertex shader or
3041 * outputs from a fragment shader."
3042 *
3043 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3044 * "Outputs from a shader (out) and inputs to a shader (in) can be
3045 * further qualified with one of these interpolation qualifiers."
3046 * ...
3047 * "These interpolation qualifiers may only precede the qualifiers
3048 * in, centroid in, out, or centroid out in a declaration. They do
3049 * not apply to inputs into a vertex shader or outputs from a
3050 * fragment shader."
3051 */
3052 if (state->is_version(130, 300)
3053 && interpolation != INTERP_MODE_NONE) {
3054 const char *i = interpolation_string(interpolation);
3055 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3056 _mesa_glsl_error(loc, state,
3057 "interpolation qualifier `%s' can only be applied to "
3058 "shader inputs or outputs.", i);
3059
3060 switch (state->stage) {
3061 case MESA_SHADER_VERTEX:
3062 if (mode == ir_var_shader_in) {
3063 _mesa_glsl_error(loc, state,
3064 "interpolation qualifier '%s' cannot be applied to "
3065 "vertex shader inputs", i);
3066 }
3067 break;
3068 case MESA_SHADER_FRAGMENT:
3069 if (mode == ir_var_shader_out) {
3070 _mesa_glsl_error(loc, state,
3071 "interpolation qualifier '%s' cannot be applied to "
3072 "fragment shader outputs", i);
3073 }
3074 break;
3075 default:
3076 break;
3077 }
3078 }
3079
3080 /* Interpolation qualifiers cannot be applied to 'centroid' and
3081 * 'centroid varying'.
3082 *
3083 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3084 * "interpolation qualifiers may only precede the qualifiers in,
3085 * centroid in, out, or centroid out in a declaration. They do not apply
3086 * to the deprecated storage qualifiers varying or centroid varying."
3087 *
3088 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3089 */
3090 if (state->is_version(130, 0)
3091 && interpolation != INTERP_MODE_NONE
3092 && qual->flags.q.varying) {
3093
3094 const char *i = interpolation_string(interpolation);
3095 const char *s;
3096 if (qual->flags.q.centroid)
3097 s = "centroid varying";
3098 else
3099 s = "varying";
3100
3101 _mesa_glsl_error(loc, state,
3102 "qualifier '%s' cannot be applied to the "
3103 "deprecated storage qualifier '%s'", i, s);
3104 }
3105
3106 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3107 var_type, mode);
3108 }
3109
3110 static glsl_interp_mode
3111 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3112 const struct glsl_type *var_type,
3113 ir_variable_mode mode,
3114 struct _mesa_glsl_parse_state *state,
3115 YYLTYPE *loc)
3116 {
3117 glsl_interp_mode interpolation;
3118 if (qual->flags.q.flat)
3119 interpolation = INTERP_MODE_FLAT;
3120 else if (qual->flags.q.noperspective)
3121 interpolation = INTERP_MODE_NOPERSPECTIVE;
3122 else if (qual->flags.q.smooth)
3123 interpolation = INTERP_MODE_SMOOTH;
3124 else if (state->es_shader &&
3125 ((mode == ir_var_shader_in &&
3126 state->stage != MESA_SHADER_VERTEX) ||
3127 (mode == ir_var_shader_out &&
3128 state->stage != MESA_SHADER_FRAGMENT)))
3129 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3130 *
3131 * "When no interpolation qualifier is present, smooth interpolation
3132 * is used."
3133 */
3134 interpolation = INTERP_MODE_SMOOTH;
3135 else
3136 interpolation = INTERP_MODE_NONE;
3137
3138 validate_interpolation_qualifier(state, loc,
3139 interpolation,
3140 qual, var_type, mode);
3141
3142 return interpolation;
3143 }
3144
3145
3146 static void
3147 apply_explicit_location(const struct ast_type_qualifier *qual,
3148 ir_variable *var,
3149 struct _mesa_glsl_parse_state *state,
3150 YYLTYPE *loc)
3151 {
3152 bool fail = false;
3153
3154 unsigned qual_location;
3155 if (!process_qualifier_constant(state, loc, "location", qual->location,
3156 &qual_location)) {
3157 return;
3158 }
3159
3160 /* Checks for GL_ARB_explicit_uniform_location. */
3161 if (qual->flags.q.uniform) {
3162 if (!state->check_explicit_uniform_location_allowed(loc, var))
3163 return;
3164
3165 const struct gl_context *const ctx = state->ctx;
3166 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3167
3168 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3169 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3170 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3171 ctx->Const.MaxUserAssignableUniformLocations);
3172 return;
3173 }
3174
3175 var->data.explicit_location = true;
3176 var->data.location = qual_location;
3177 return;
3178 }
3179
3180 /* Between GL_ARB_explicit_attrib_location an
3181 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3182 * stage can be assigned explicit locations. The checking here associates
3183 * the correct extension with the correct stage's input / output:
3184 *
3185 * input output
3186 * ----- ------
3187 * vertex explicit_loc sso
3188 * tess control sso sso
3189 * tess eval sso sso
3190 * geometry sso sso
3191 * fragment sso explicit_loc
3192 */
3193 switch (state->stage) {
3194 case MESA_SHADER_VERTEX:
3195 if (var->data.mode == ir_var_shader_in) {
3196 if (!state->check_explicit_attrib_location_allowed(loc, var))
3197 return;
3198
3199 break;
3200 }
3201
3202 if (var->data.mode == ir_var_shader_out) {
3203 if (!state->check_separate_shader_objects_allowed(loc, var))
3204 return;
3205
3206 break;
3207 }
3208
3209 fail = true;
3210 break;
3211
3212 case MESA_SHADER_TESS_CTRL:
3213 case MESA_SHADER_TESS_EVAL:
3214 case MESA_SHADER_GEOMETRY:
3215 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3216 if (!state->check_separate_shader_objects_allowed(loc, var))
3217 return;
3218
3219 break;
3220 }
3221
3222 fail = true;
3223 break;
3224
3225 case MESA_SHADER_FRAGMENT:
3226 if (var->data.mode == ir_var_shader_in) {
3227 if (!state->check_separate_shader_objects_allowed(loc, var))
3228 return;
3229
3230 break;
3231 }
3232
3233 if (var->data.mode == ir_var_shader_out) {
3234 if (!state->check_explicit_attrib_location_allowed(loc, var))
3235 return;
3236
3237 break;
3238 }
3239
3240 fail = true;
3241 break;
3242
3243 case MESA_SHADER_COMPUTE:
3244 _mesa_glsl_error(loc, state,
3245 "compute shader variables cannot be given "
3246 "explicit locations");
3247 return;
3248 default:
3249 fail = true;
3250 break;
3251 };
3252
3253 if (fail) {
3254 _mesa_glsl_error(loc, state,
3255 "%s cannot be given an explicit location in %s shader",
3256 mode_string(var),
3257 _mesa_shader_stage_to_string(state->stage));
3258 } else {
3259 var->data.explicit_location = true;
3260
3261 switch (state->stage) {
3262 case MESA_SHADER_VERTEX:
3263 var->data.location = (var->data.mode == ir_var_shader_in)
3264 ? (qual_location + VERT_ATTRIB_GENERIC0)
3265 : (qual_location + VARYING_SLOT_VAR0);
3266 break;
3267
3268 case MESA_SHADER_TESS_CTRL:
3269 case MESA_SHADER_TESS_EVAL:
3270 case MESA_SHADER_GEOMETRY:
3271 if (var->data.patch)
3272 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3273 else
3274 var->data.location = qual_location + VARYING_SLOT_VAR0;
3275 break;
3276
3277 case MESA_SHADER_FRAGMENT:
3278 var->data.location = (var->data.mode == ir_var_shader_out)
3279 ? (qual_location + FRAG_RESULT_DATA0)
3280 : (qual_location + VARYING_SLOT_VAR0);
3281 break;
3282 default:
3283 assert(!"Unexpected shader type");
3284 break;
3285 }
3286
3287 /* Check if index was set for the uniform instead of the function */
3288 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3289 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3290 "used with subroutine functions");
3291 return;
3292 }
3293
3294 unsigned qual_index;
3295 if (qual->flags.q.explicit_index &&
3296 process_qualifier_constant(state, loc, "index", qual->index,
3297 &qual_index)) {
3298 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3299 * Layout Qualifiers):
3300 *
3301 * "It is also a compile-time error if a fragment shader
3302 * sets a layout index to less than 0 or greater than 1."
3303 *
3304 * Older specifications don't mandate a behavior; we take
3305 * this as a clarification and always generate the error.
3306 */
3307 if (qual_index > 1) {
3308 _mesa_glsl_error(loc, state,
3309 "explicit index may only be 0 or 1");
3310 } else {
3311 var->data.explicit_index = true;
3312 var->data.index = qual_index;
3313 }
3314 }
3315 }
3316 }
3317
3318 static bool
3319 validate_storage_for_sampler_image_types(ir_variable *var,
3320 struct _mesa_glsl_parse_state *state,
3321 YYLTYPE *loc)
3322 {
3323 /* From section 4.1.7 of the GLSL 4.40 spec:
3324 *
3325 * "[Opaque types] can only be declared as function
3326 * parameters or uniform-qualified variables."
3327 *
3328 * From section 4.1.7 of the ARB_bindless_texture spec:
3329 *
3330 * "Samplers may be declared as shader inputs and outputs, as uniform
3331 * variables, as temporary variables, and as function parameters."
3332 *
3333 * From section 4.1.X of the ARB_bindless_texture spec:
3334 *
3335 * "Images may be declared as shader inputs and outputs, as uniform
3336 * variables, as temporary variables, and as function parameters."
3337 */
3338 if (state->has_bindless()) {
3339 if (var->data.mode != ir_var_auto &&
3340 var->data.mode != ir_var_uniform &&
3341 var->data.mode != ir_var_shader_in &&
3342 var->data.mode != ir_var_shader_out &&
3343 var->data.mode != ir_var_function_in &&
3344 var->data.mode != ir_var_function_out &&
3345 var->data.mode != ir_var_function_inout) {
3346 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3347 "only be declared as shader inputs and outputs, as "
3348 "uniform variables, as temporary variables and as "
3349 "function parameters");
3350 return false;
3351 }
3352 } else {
3353 if (var->data.mode != ir_var_uniform &&
3354 var->data.mode != ir_var_function_in) {
3355 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3356 "declared as function parameters or "
3357 "uniform-qualified global variables");
3358 return false;
3359 }
3360 }
3361 return true;
3362 }
3363
3364 static bool
3365 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3366 YYLTYPE *loc,
3367 const struct ast_type_qualifier *qual,
3368 const glsl_type *type)
3369 {
3370 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3371 *
3372 * "Memory qualifiers are only supported in the declarations of image
3373 * variables, buffer variables, and shader storage blocks; it is an error
3374 * to use such qualifiers in any other declarations.
3375 */
3376 if (!type->is_image() && !qual->flags.q.buffer) {
3377 if (qual->flags.q.read_only ||
3378 qual->flags.q.write_only ||
3379 qual->flags.q.coherent ||
3380 qual->flags.q._volatile ||
3381 qual->flags.q.restrict_flag) {
3382 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3383 "in the declarations of image variables, buffer "
3384 "variables, and shader storage blocks");
3385 return false;
3386 }
3387 }
3388 return true;
3389 }
3390
3391 static bool
3392 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3393 YYLTYPE *loc,
3394 const struct ast_type_qualifier *qual,
3395 const glsl_type *type)
3396 {
3397 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3398 *
3399 * "Format layout qualifiers can be used on image variable declarations
3400 * (those declared with a basic type having “image ” in its keyword)."
3401 */
3402 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3403 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3404 "applied to images");
3405 return false;
3406 }
3407 return true;
3408 }
3409
3410 static void
3411 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3412 ir_variable *var,
3413 struct _mesa_glsl_parse_state *state,
3414 YYLTYPE *loc)
3415 {
3416 const glsl_type *base_type = var->type->without_array();
3417
3418 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3419 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3420 return;
3421
3422 if (!base_type->is_image())
3423 return;
3424
3425 if (!validate_storage_for_sampler_image_types(var, state, loc))
3426 return;
3427
3428 var->data.memory_read_only |= qual->flags.q.read_only;
3429 var->data.memory_write_only |= qual->flags.q.write_only;
3430 var->data.memory_coherent |= qual->flags.q.coherent;
3431 var->data.memory_volatile |= qual->flags.q._volatile;
3432 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3433
3434 if (qual->flags.q.explicit_image_format) {
3435 if (var->data.mode == ir_var_function_in) {
3436 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3437 "image function parameters");
3438 }
3439
3440 if (qual->image_base_type != base_type->sampled_type) {
3441 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3442 "data type of the image");
3443 }
3444
3445 var->data.image_format = qual->image_format;
3446 } else {
3447 if (var->data.mode == ir_var_uniform) {
3448 if (state->es_shader) {
3449 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3450 "format layout qualifier");
3451 } else if (!qual->flags.q.write_only) {
3452 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3453 "`writeonly' must have a format layout qualifier");
3454 }
3455 }
3456 var->data.image_format = GL_NONE;
3457 }
3458
3459 /* From page 70 of the GLSL ES 3.1 specification:
3460 *
3461 * "Except for image variables qualified with the format qualifiers r32f,
3462 * r32i, and r32ui, image variables must specify either memory qualifier
3463 * readonly or the memory qualifier writeonly."
3464 */
3465 if (state->es_shader &&
3466 var->data.image_format != GL_R32F &&
3467 var->data.image_format != GL_R32I &&
3468 var->data.image_format != GL_R32UI &&
3469 !var->data.memory_read_only &&
3470 !var->data.memory_write_only) {
3471 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3472 "r32i or r32ui must be qualified `readonly' or "
3473 "`writeonly'");
3474 }
3475 }
3476
3477 static inline const char*
3478 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3479 {
3480 if (origin_upper_left && pixel_center_integer)
3481 return "origin_upper_left, pixel_center_integer";
3482 else if (origin_upper_left)
3483 return "origin_upper_left";
3484 else if (pixel_center_integer)
3485 return "pixel_center_integer";
3486 else
3487 return " ";
3488 }
3489
3490 static inline bool
3491 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3492 const struct ast_type_qualifier *qual)
3493 {
3494 /* If gl_FragCoord was previously declared, and the qualifiers were
3495 * different in any way, return true.
3496 */
3497 if (state->fs_redeclares_gl_fragcoord) {
3498 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3499 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3500 }
3501
3502 return false;
3503 }
3504
3505 static inline void
3506 validate_array_dimensions(const glsl_type *t,
3507 struct _mesa_glsl_parse_state *state,
3508 YYLTYPE *loc) {
3509 if (t->is_array()) {
3510 t = t->fields.array;
3511 while (t->is_array()) {
3512 if (t->is_unsized_array()) {
3513 _mesa_glsl_error(loc, state,
3514 "only the outermost array dimension can "
3515 "be unsized",
3516 t->name);
3517 break;
3518 }
3519 t = t->fields.array;
3520 }
3521 }
3522 }
3523
3524 static void
3525 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3526 ir_variable *var,
3527 struct _mesa_glsl_parse_state *state,
3528 YYLTYPE *loc)
3529 {
3530 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3531 qual->flags.q.bindless_image ||
3532 qual->flags.q.bound_sampler ||
3533 qual->flags.q.bound_image;
3534
3535 /* The ARB_bindless_texture spec says:
3536 *
3537 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3538 * spec"
3539 *
3540 * "If these layout qualifiers are applied to other types of default block
3541 * uniforms, or variables with non-uniform storage, a compile-time error
3542 * will be generated."
3543 */
3544 if (has_local_qualifiers && !qual->flags.q.uniform) {
3545 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3546 "can only be applied to default block uniforms or "
3547 "variables with uniform storage");
3548 return;
3549 }
3550
3551 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3552 * but it makes sense to only allow bindless_sampler/bound_sampler for
3553 * sampler types, and respectively bindless_image/bound_image for image
3554 * types.
3555 */
3556 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3557 !var->type->contains_sampler()) {
3558 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3559 "be applied to sampler types");
3560 return;
3561 }
3562
3563 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3564 !var->type->contains_image()) {
3565 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3566 "applied to image types");
3567 return;
3568 }
3569
3570 /* The bindless_sampler/bindless_image (and respectively
3571 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3572 * local scope.
3573 */
3574 if (var->type->contains_sampler() || var->type->contains_image()) {
3575 var->data.bindless = qual->flags.q.bindless_sampler ||
3576 qual->flags.q.bindless_image ||
3577 state->bindless_sampler_specified ||
3578 state->bindless_image_specified;
3579
3580 var->data.bound = qual->flags.q.bound_sampler ||
3581 qual->flags.q.bound_image ||
3582 state->bound_sampler_specified ||
3583 state->bound_image_specified;
3584 }
3585 }
3586
3587 static void
3588 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3589 ir_variable *var,
3590 struct _mesa_glsl_parse_state *state,
3591 YYLTYPE *loc)
3592 {
3593 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3594
3595 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3596 *
3597 * "Within any shader, the first redeclarations of gl_FragCoord
3598 * must appear before any use of gl_FragCoord."
3599 *
3600 * Generate a compiler error if above condition is not met by the
3601 * fragment shader.
3602 */
3603 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3604 if (earlier != NULL &&
3605 earlier->data.used &&
3606 !state->fs_redeclares_gl_fragcoord) {
3607 _mesa_glsl_error(loc, state,
3608 "gl_FragCoord used before its first redeclaration "
3609 "in fragment shader");
3610 }
3611
3612 /* Make sure all gl_FragCoord redeclarations specify the same layout
3613 * qualifiers.
3614 */
3615 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3616 const char *const qual_string =
3617 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3618 qual->flags.q.pixel_center_integer);
3619
3620 const char *const state_string =
3621 get_layout_qualifier_string(state->fs_origin_upper_left,
3622 state->fs_pixel_center_integer);
3623
3624 _mesa_glsl_error(loc, state,
3625 "gl_FragCoord redeclared with different layout "
3626 "qualifiers (%s) and (%s) ",
3627 state_string,
3628 qual_string);
3629 }
3630 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3631 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3632 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3633 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3634 state->fs_redeclares_gl_fragcoord =
3635 state->fs_origin_upper_left ||
3636 state->fs_pixel_center_integer ||
3637 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3638 }
3639
3640 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3641 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3642 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3643 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3644 const char *const qual_string = (qual->flags.q.origin_upper_left)
3645 ? "origin_upper_left" : "pixel_center_integer";
3646
3647 _mesa_glsl_error(loc, state,
3648 "layout qualifier `%s' can only be applied to "
3649 "fragment shader input `gl_FragCoord'",
3650 qual_string);
3651 }
3652
3653 if (qual->flags.q.explicit_location) {
3654 apply_explicit_location(qual, var, state, loc);
3655
3656 if (qual->flags.q.explicit_component) {
3657 unsigned qual_component;
3658 if (process_qualifier_constant(state, loc, "component",
3659 qual->component, &qual_component)) {
3660 const glsl_type *type = var->type->without_array();
3661 unsigned components = type->component_slots();
3662
3663 if (type->is_matrix() || type->is_record()) {
3664 _mesa_glsl_error(loc, state, "component layout qualifier "
3665 "cannot be applied to a matrix, a structure, "
3666 "a block, or an array containing any of "
3667 "these.");
3668 } else if (qual_component != 0 &&
3669 (qual_component + components - 1) > 3) {
3670 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3671 (qual_component + components - 1));
3672 } else if (qual_component == 1 && type->is_64bit()) {
3673 /* We don't bother checking for 3 as it should be caught by the
3674 * overflow check above.
3675 */
3676 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3677 "component 1 or 3");
3678 } else {
3679 var->data.explicit_component = true;
3680 var->data.location_frac = qual_component;
3681 }
3682 }
3683 }
3684 } else if (qual->flags.q.explicit_index) {
3685 if (!qual->subroutine_list)
3686 _mesa_glsl_error(loc, state,
3687 "explicit index requires explicit location");
3688 } else if (qual->flags.q.explicit_component) {
3689 _mesa_glsl_error(loc, state,
3690 "explicit component requires explicit location");
3691 }
3692
3693 if (qual->flags.q.explicit_binding) {
3694 apply_explicit_binding(state, loc, var, var->type, qual);
3695 }
3696
3697 if (state->stage == MESA_SHADER_GEOMETRY &&
3698 qual->flags.q.out && qual->flags.q.stream) {
3699 unsigned qual_stream;
3700 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3701 &qual_stream) &&
3702 validate_stream_qualifier(loc, state, qual_stream)) {
3703 var->data.stream = qual_stream;
3704 }
3705 }
3706
3707 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3708 unsigned qual_xfb_buffer;
3709 if (process_qualifier_constant(state, loc, "xfb_buffer",
3710 qual->xfb_buffer, &qual_xfb_buffer) &&
3711 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3712 var->data.xfb_buffer = qual_xfb_buffer;
3713 if (qual->flags.q.explicit_xfb_buffer)
3714 var->data.explicit_xfb_buffer = true;
3715 }
3716 }
3717
3718 if (qual->flags.q.explicit_xfb_offset) {
3719 unsigned qual_xfb_offset;
3720 unsigned component_size = var->type->contains_double() ? 8 : 4;
3721
3722 if (process_qualifier_constant(state, loc, "xfb_offset",
3723 qual->offset, &qual_xfb_offset) &&
3724 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3725 var->type, component_size)) {
3726 var->data.offset = qual_xfb_offset;
3727 var->data.explicit_xfb_offset = true;
3728 }
3729 }
3730
3731 if (qual->flags.q.explicit_xfb_stride) {
3732 unsigned qual_xfb_stride;
3733 if (process_qualifier_constant(state, loc, "xfb_stride",
3734 qual->xfb_stride, &qual_xfb_stride)) {
3735 var->data.xfb_stride = qual_xfb_stride;
3736 var->data.explicit_xfb_stride = true;
3737 }
3738 }
3739
3740 if (var->type->contains_atomic()) {
3741 if (var->data.mode == ir_var_uniform) {
3742 if (var->data.explicit_binding) {
3743 unsigned *offset =
3744 &state->atomic_counter_offsets[var->data.binding];
3745
3746 if (*offset % ATOMIC_COUNTER_SIZE)
3747 _mesa_glsl_error(loc, state,
3748 "misaligned atomic counter offset");
3749
3750 var->data.offset = *offset;
3751 *offset += var->type->atomic_size();
3752
3753 } else {
3754 _mesa_glsl_error(loc, state,
3755 "atomic counters require explicit binding point");
3756 }
3757 } else if (var->data.mode != ir_var_function_in) {
3758 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3759 "function parameters or uniform-qualified "
3760 "global variables");
3761 }
3762 }
3763
3764 if (var->type->contains_sampler() &&
3765 !validate_storage_for_sampler_image_types(var, state, loc))
3766 return;
3767
3768 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3769 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3770 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3771 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3772 * These extensions and all following extensions that add the 'layout'
3773 * keyword have been modified to require the use of 'in' or 'out'.
3774 *
3775 * The following extension do not allow the deprecated keywords:
3776 *
3777 * GL_AMD_conservative_depth
3778 * GL_ARB_conservative_depth
3779 * GL_ARB_gpu_shader5
3780 * GL_ARB_separate_shader_objects
3781 * GL_ARB_tessellation_shader
3782 * GL_ARB_transform_feedback3
3783 * GL_ARB_uniform_buffer_object
3784 *
3785 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3786 * allow layout with the deprecated keywords.
3787 */
3788 const bool relaxed_layout_qualifier_checking =
3789 state->ARB_fragment_coord_conventions_enable;
3790
3791 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3792 || qual->flags.q.varying;
3793 if (qual->has_layout() && uses_deprecated_qualifier) {
3794 if (relaxed_layout_qualifier_checking) {
3795 _mesa_glsl_warning(loc, state,
3796 "`layout' qualifier may not be used with "
3797 "`attribute' or `varying'");
3798 } else {
3799 _mesa_glsl_error(loc, state,
3800 "`layout' qualifier may not be used with "
3801 "`attribute' or `varying'");
3802 }
3803 }
3804
3805 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3806 * AMD_conservative_depth.
3807 */
3808 if (qual->flags.q.depth_type
3809 && !state->is_version(420, 0)
3810 && !state->AMD_conservative_depth_enable
3811 && !state->ARB_conservative_depth_enable) {
3812 _mesa_glsl_error(loc, state,
3813 "extension GL_AMD_conservative_depth or "
3814 "GL_ARB_conservative_depth must be enabled "
3815 "to use depth layout qualifiers");
3816 } else if (qual->flags.q.depth_type
3817 && strcmp(var->name, "gl_FragDepth") != 0) {
3818 _mesa_glsl_error(loc, state,
3819 "depth layout qualifiers can be applied only to "
3820 "gl_FragDepth");
3821 }
3822
3823 switch (qual->depth_type) {
3824 case ast_depth_any:
3825 var->data.depth_layout = ir_depth_layout_any;
3826 break;
3827 case ast_depth_greater:
3828 var->data.depth_layout = ir_depth_layout_greater;
3829 break;
3830 case ast_depth_less:
3831 var->data.depth_layout = ir_depth_layout_less;
3832 break;
3833 case ast_depth_unchanged:
3834 var->data.depth_layout = ir_depth_layout_unchanged;
3835 break;
3836 default:
3837 var->data.depth_layout = ir_depth_layout_none;
3838 break;
3839 }
3840
3841 if (qual->flags.q.std140 ||
3842 qual->flags.q.std430 ||
3843 qual->flags.q.packed ||
3844 qual->flags.q.shared) {
3845 _mesa_glsl_error(loc, state,
3846 "uniform and shader storage block layout qualifiers "
3847 "std140, std430, packed, and shared can only be "
3848 "applied to uniform or shader storage blocks, not "
3849 "members");
3850 }
3851
3852 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3853 validate_matrix_layout_for_type(state, loc, var->type, var);
3854 }
3855
3856 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3857 * Inputs):
3858 *
3859 * "Fragment shaders also allow the following layout qualifier on in only
3860 * (not with variable declarations)
3861 * layout-qualifier-id
3862 * early_fragment_tests
3863 * [...]"
3864 */
3865 if (qual->flags.q.early_fragment_tests) {
3866 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3867 "valid in fragment shader input layout declaration.");
3868 }
3869
3870 if (qual->flags.q.inner_coverage) {
3871 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3872 "valid in fragment shader input layout declaration.");
3873 }
3874
3875 if (qual->flags.q.post_depth_coverage) {
3876 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3877 "valid in fragment shader input layout declaration.");
3878 }
3879
3880 if (state->has_bindless())
3881 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3882 }
3883
3884 static void
3885 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3886 ir_variable *var,
3887 struct _mesa_glsl_parse_state *state,
3888 YYLTYPE *loc,
3889 bool is_parameter)
3890 {
3891 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3892
3893 if (qual->flags.q.invariant) {
3894 if (var->data.used) {
3895 _mesa_glsl_error(loc, state,
3896 "variable `%s' may not be redeclared "
3897 "`invariant' after being used",
3898 var->name);
3899 } else {
3900 var->data.invariant = 1;
3901 }
3902 }
3903
3904 if (qual->flags.q.precise) {
3905 if (var->data.used) {
3906 _mesa_glsl_error(loc, state,
3907 "variable `%s' may not be redeclared "
3908 "`precise' after being used",
3909 var->name);
3910 } else {
3911 var->data.precise = 1;
3912 }
3913 }
3914
3915 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3916 _mesa_glsl_error(loc, state,
3917 "`subroutine' may only be applied to uniforms, "
3918 "subroutine type declarations, or function definitions");
3919 }
3920
3921 if (qual->flags.q.constant || qual->flags.q.attribute
3922 || qual->flags.q.uniform
3923 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3924 var->data.read_only = 1;
3925
3926 if (qual->flags.q.centroid)
3927 var->data.centroid = 1;
3928
3929 if (qual->flags.q.sample)
3930 var->data.sample = 1;
3931
3932 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3933 if (state->es_shader) {
3934 var->data.precision =
3935 select_gles_precision(qual->precision, var->type, state, loc);
3936 }
3937
3938 if (qual->flags.q.patch)
3939 var->data.patch = 1;
3940
3941 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3942 var->type = glsl_type::error_type;
3943 _mesa_glsl_error(loc, state,
3944 "`attribute' variables may not be declared in the "
3945 "%s shader",
3946 _mesa_shader_stage_to_string(state->stage));
3947 }
3948
3949 /* Disallow layout qualifiers which may only appear on layout declarations. */
3950 if (qual->flags.q.prim_type) {
3951 _mesa_glsl_error(loc, state,
3952 "Primitive type may only be specified on GS input or output "
3953 "layout declaration, not on variables.");
3954 }
3955
3956 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3957 *
3958 * "However, the const qualifier cannot be used with out or inout."
3959 *
3960 * The same section of the GLSL 4.40 spec further clarifies this saying:
3961 *
3962 * "The const qualifier cannot be used with out or inout, or a
3963 * compile-time error results."
3964 */
3965 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3966 _mesa_glsl_error(loc, state,
3967 "`const' may not be applied to `out' or `inout' "
3968 "function parameters");
3969 }
3970
3971 /* If there is no qualifier that changes the mode of the variable, leave
3972 * the setting alone.
3973 */
3974 assert(var->data.mode != ir_var_temporary);
3975 if (qual->flags.q.in && qual->flags.q.out)
3976 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3977 else if (qual->flags.q.in)
3978 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3979 else if (qual->flags.q.attribute
3980 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3981 var->data.mode = ir_var_shader_in;
3982 else if (qual->flags.q.out)
3983 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3984 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3985 var->data.mode = ir_var_shader_out;
3986 else if (qual->flags.q.uniform)
3987 var->data.mode = ir_var_uniform;
3988 else if (qual->flags.q.buffer)
3989 var->data.mode = ir_var_shader_storage;
3990 else if (qual->flags.q.shared_storage)
3991 var->data.mode = ir_var_shader_shared;
3992
3993 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3994 qual->flags.q.in && qual->flags.q.out;
3995
3996 if (!is_parameter && is_varying_var(var, state->stage)) {
3997 /* User-defined ins/outs are not permitted in compute shaders. */
3998 if (state->stage == MESA_SHADER_COMPUTE) {
3999 _mesa_glsl_error(loc, state,
4000 "user-defined input and output variables are not "
4001 "permitted in compute shaders");
4002 }
4003
4004 /* This variable is being used to link data between shader stages (in
4005 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4006 * that is allowed for such purposes.
4007 *
4008 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4009 *
4010 * "The varying qualifier can be used only with the data types
4011 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4012 * these."
4013 *
4014 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4015 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4016 *
4017 * "Fragment inputs can only be signed and unsigned integers and
4018 * integer vectors, float, floating-point vectors, matrices, or
4019 * arrays of these. Structures cannot be input.
4020 *
4021 * Similar text exists in the section on vertex shader outputs.
4022 *
4023 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4024 * 3.00 spec allows structs as well. Varying structs are also allowed
4025 * in GLSL 1.50.
4026 *
4027 * From section 4.3.4 of the ARB_bindless_texture spec:
4028 *
4029 * "(modify third paragraph of the section to allow sampler and image
4030 * types) ... Vertex shader inputs can only be float,
4031 * single-precision floating-point scalars, single-precision
4032 * floating-point vectors, matrices, signed and unsigned integers
4033 * and integer vectors, sampler and image types."
4034 *
4035 * From section 4.3.6 of the ARB_bindless_texture spec:
4036 *
4037 * "Output variables can only be floating-point scalars,
4038 * floating-point vectors, matrices, signed or unsigned integers or
4039 * integer vectors, sampler or image types, or arrays or structures
4040 * of any these."
4041 */
4042 switch (var->type->without_array()->base_type) {
4043 case GLSL_TYPE_FLOAT:
4044 /* Ok in all GLSL versions */
4045 break;
4046 case GLSL_TYPE_UINT:
4047 case GLSL_TYPE_INT:
4048 if (state->is_version(130, 300))
4049 break;
4050 _mesa_glsl_error(loc, state,
4051 "varying variables must be of base type float in %s",
4052 state->get_version_string());
4053 break;
4054 case GLSL_TYPE_STRUCT:
4055 if (state->is_version(150, 300))
4056 break;
4057 _mesa_glsl_error(loc, state,
4058 "varying variables may not be of type struct");
4059 break;
4060 case GLSL_TYPE_DOUBLE:
4061 case GLSL_TYPE_UINT64:
4062 case GLSL_TYPE_INT64:
4063 break;
4064 case GLSL_TYPE_SAMPLER:
4065 case GLSL_TYPE_IMAGE:
4066 if (state->has_bindless())
4067 break;
4068 /* fallthrough */
4069 default:
4070 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4071 break;
4072 }
4073 }
4074
4075 if (state->all_invariant && (state->current_function == NULL)) {
4076 switch (state->stage) {
4077 case MESA_SHADER_VERTEX:
4078 if (var->data.mode == ir_var_shader_out)
4079 var->data.invariant = true;
4080 break;
4081 case MESA_SHADER_TESS_CTRL:
4082 case MESA_SHADER_TESS_EVAL:
4083 case MESA_SHADER_GEOMETRY:
4084 if ((var->data.mode == ir_var_shader_in)
4085 || (var->data.mode == ir_var_shader_out))
4086 var->data.invariant = true;
4087 break;
4088 case MESA_SHADER_FRAGMENT:
4089 if (var->data.mode == ir_var_shader_in)
4090 var->data.invariant = true;
4091 break;
4092 case MESA_SHADER_COMPUTE:
4093 /* Invariance isn't meaningful in compute shaders. */
4094 break;
4095 default:
4096 break;
4097 }
4098 }
4099
4100 var->data.interpolation =
4101 interpret_interpolation_qualifier(qual, var->type,
4102 (ir_variable_mode) var->data.mode,
4103 state, loc);
4104
4105 /* Does the declaration use the deprecated 'attribute' or 'varying'
4106 * keywords?
4107 */
4108 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4109 || qual->flags.q.varying;
4110
4111
4112 /* Validate auxiliary storage qualifiers */
4113
4114 /* From section 4.3.4 of the GLSL 1.30 spec:
4115 * "It is an error to use centroid in in a vertex shader."
4116 *
4117 * From section 4.3.4 of the GLSL ES 3.00 spec:
4118 * "It is an error to use centroid in or interpolation qualifiers in
4119 * a vertex shader input."
4120 */
4121
4122 /* Section 4.3.6 of the GLSL 1.30 specification states:
4123 * "It is an error to use centroid out in a fragment shader."
4124 *
4125 * The GL_ARB_shading_language_420pack extension specification states:
4126 * "It is an error to use auxiliary storage qualifiers or interpolation
4127 * qualifiers on an output in a fragment shader."
4128 */
4129 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4130 _mesa_glsl_error(loc, state,
4131 "sample qualifier may only be used on `in` or `out` "
4132 "variables between shader stages");
4133 }
4134 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4135 _mesa_glsl_error(loc, state,
4136 "centroid qualifier may only be used with `in', "
4137 "`out' or `varying' variables between shader stages");
4138 }
4139
4140 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4141 _mesa_glsl_error(loc, state,
4142 "the shared storage qualifiers can only be used with "
4143 "compute shaders");
4144 }
4145
4146 apply_image_qualifier_to_variable(qual, var, state, loc);
4147 }
4148
4149 /**
4150 * Get the variable that is being redeclared by this declaration or if it
4151 * does not exist, the current declared variable.
4152 *
4153 * Semantic checks to verify the validity of the redeclaration are also
4154 * performed. If semantic checks fail, compilation error will be emitted via
4155 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4156 *
4157 * \returns
4158 * A pointer to an existing variable in the current scope if the declaration
4159 * is a redeclaration, current variable otherwise. \c is_declared boolean
4160 * will return \c true if the declaration is a redeclaration, \c false
4161 * otherwise.
4162 */
4163 static ir_variable *
4164 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4165 struct _mesa_glsl_parse_state *state,
4166 bool allow_all_redeclarations,
4167 bool *is_redeclaration)
4168 {
4169 /* Check if this declaration is actually a re-declaration, either to
4170 * resize an array or add qualifiers to an existing variable.
4171 *
4172 * This is allowed for variables in the current scope, or when at
4173 * global scope (for built-ins in the implicit outer scope).
4174 */
4175 ir_variable *earlier = state->symbols->get_variable(var->name);
4176 if (earlier == NULL ||
4177 (state->current_function != NULL &&
4178 !state->symbols->name_declared_this_scope(var->name))) {
4179 *is_redeclaration = false;
4180 return var;
4181 }
4182
4183 *is_redeclaration = true;
4184
4185 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4186 *
4187 * "It is legal to declare an array without a size and then
4188 * later re-declare the same name as an array of the same
4189 * type and specify a size."
4190 */
4191 if (earlier->type->is_unsized_array() && var->type->is_array()
4192 && (var->type->fields.array == earlier->type->fields.array)) {
4193 /* FINISHME: This doesn't match the qualifiers on the two
4194 * FINISHME: declarations. It's not 100% clear whether this is
4195 * FINISHME: required or not.
4196 */
4197
4198 const int size = var->type->array_size();
4199 check_builtin_array_max_size(var->name, size, loc, state);
4200 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4201 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4202 "previous access",
4203 earlier->data.max_array_access);
4204 }
4205
4206 earlier->type = var->type;
4207 delete var;
4208 var = NULL;
4209 } else if ((state->ARB_fragment_coord_conventions_enable ||
4210 state->is_version(150, 0))
4211 && strcmp(var->name, "gl_FragCoord") == 0
4212 && earlier->type == var->type
4213 && var->data.mode == ir_var_shader_in) {
4214 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4215 * qualifiers.
4216 */
4217 earlier->data.origin_upper_left = var->data.origin_upper_left;
4218 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4219
4220 /* According to section 4.3.7 of the GLSL 1.30 spec,
4221 * the following built-in varaibles can be redeclared with an
4222 * interpolation qualifier:
4223 * * gl_FrontColor
4224 * * gl_BackColor
4225 * * gl_FrontSecondaryColor
4226 * * gl_BackSecondaryColor
4227 * * gl_Color
4228 * * gl_SecondaryColor
4229 */
4230 } else if (state->is_version(130, 0)
4231 && (strcmp(var->name, "gl_FrontColor") == 0
4232 || strcmp(var->name, "gl_BackColor") == 0
4233 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4234 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4235 || strcmp(var->name, "gl_Color") == 0
4236 || strcmp(var->name, "gl_SecondaryColor") == 0)
4237 && earlier->type == var->type
4238 && earlier->data.mode == var->data.mode) {
4239 earlier->data.interpolation = var->data.interpolation;
4240
4241 /* Layout qualifiers for gl_FragDepth. */
4242 } else if ((state->is_version(420, 0) ||
4243 state->AMD_conservative_depth_enable ||
4244 state->ARB_conservative_depth_enable)
4245 && strcmp(var->name, "gl_FragDepth") == 0
4246 && earlier->type == var->type
4247 && earlier->data.mode == var->data.mode) {
4248
4249 /** From the AMD_conservative_depth spec:
4250 * Within any shader, the first redeclarations of gl_FragDepth
4251 * must appear before any use of gl_FragDepth.
4252 */
4253 if (earlier->data.used) {
4254 _mesa_glsl_error(&loc, state,
4255 "the first redeclaration of gl_FragDepth "
4256 "must appear before any use of gl_FragDepth");
4257 }
4258
4259 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4260 if (earlier->data.depth_layout != ir_depth_layout_none
4261 && earlier->data.depth_layout != var->data.depth_layout) {
4262 _mesa_glsl_error(&loc, state,
4263 "gl_FragDepth: depth layout is declared here "
4264 "as '%s, but it was previously declared as "
4265 "'%s'",
4266 depth_layout_string(var->data.depth_layout),
4267 depth_layout_string(earlier->data.depth_layout));
4268 }
4269
4270 earlier->data.depth_layout = var->data.depth_layout;
4271
4272 } else if (state->has_framebuffer_fetch() &&
4273 strcmp(var->name, "gl_LastFragData") == 0 &&
4274 var->type == earlier->type &&
4275 var->data.mode == ir_var_auto) {
4276 /* According to the EXT_shader_framebuffer_fetch spec:
4277 *
4278 * "By default, gl_LastFragData is declared with the mediump precision
4279 * qualifier. This can be changed by redeclaring the corresponding
4280 * variables with the desired precision qualifier."
4281 */
4282 earlier->data.precision = var->data.precision;
4283
4284 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4285 state->allow_builtin_variable_redeclaration) {
4286 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4287 * valid, but some applications do it.
4288 */
4289 if (earlier->data.mode != var->data.mode &&
4290 !(earlier->data.mode == ir_var_system_value &&
4291 var->data.mode == ir_var_shader_in)) {
4292 _mesa_glsl_error(&loc, state,
4293 "redeclaration of `%s' with incorrect qualifiers",
4294 var->name);
4295 } else if (earlier->type != var->type) {
4296 _mesa_glsl_error(&loc, state,
4297 "redeclaration of `%s' has incorrect type",
4298 var->name);
4299 }
4300 } else if (allow_all_redeclarations) {
4301 if (earlier->data.mode != var->data.mode) {
4302 _mesa_glsl_error(&loc, state,
4303 "redeclaration of `%s' with incorrect qualifiers",
4304 var->name);
4305 } else if (earlier->type != var->type) {
4306 _mesa_glsl_error(&loc, state,
4307 "redeclaration of `%s' has incorrect type",
4308 var->name);
4309 }
4310 } else {
4311 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4312 }
4313
4314 return earlier;
4315 }
4316
4317 /**
4318 * Generate the IR for an initializer in a variable declaration
4319 */
4320 ir_rvalue *
4321 process_initializer(ir_variable *var, ast_declaration *decl,
4322 ast_fully_specified_type *type,
4323 exec_list *initializer_instructions,
4324 struct _mesa_glsl_parse_state *state)
4325 {
4326 ir_rvalue *result = NULL;
4327
4328 YYLTYPE initializer_loc = decl->initializer->get_location();
4329
4330 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4331 *
4332 * "All uniform variables are read-only and are initialized either
4333 * directly by an application via API commands, or indirectly by
4334 * OpenGL."
4335 */
4336 if (var->data.mode == ir_var_uniform) {
4337 state->check_version(120, 0, &initializer_loc,
4338 "cannot initialize uniform %s",
4339 var->name);
4340 }
4341
4342 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4343 *
4344 * "Buffer variables cannot have initializers."
4345 */
4346 if (var->data.mode == ir_var_shader_storage) {
4347 _mesa_glsl_error(&initializer_loc, state,
4348 "cannot initialize buffer variable %s",
4349 var->name);
4350 }
4351
4352 /* From section 4.1.7 of the GLSL 4.40 spec:
4353 *
4354 * "Opaque variables [...] are initialized only through the
4355 * OpenGL API; they cannot be declared with an initializer in a
4356 * shader."
4357 *
4358 * From section 4.1.7 of the ARB_bindless_texture spec:
4359 *
4360 * "Samplers may be declared as shader inputs and outputs, as uniform
4361 * variables, as temporary variables, and as function parameters."
4362 *
4363 * From section 4.1.X of the ARB_bindless_texture spec:
4364 *
4365 * "Images may be declared as shader inputs and outputs, as uniform
4366 * variables, as temporary variables, and as function parameters."
4367 */
4368 if (var->type->contains_atomic() ||
4369 (!state->has_bindless() && var->type->contains_opaque())) {
4370 _mesa_glsl_error(&initializer_loc, state,
4371 "cannot initialize %s variable %s",
4372 var->name, state->has_bindless() ? "atomic" : "opaque");
4373 }
4374
4375 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4376 _mesa_glsl_error(&initializer_loc, state,
4377 "cannot initialize %s shader input / %s %s",
4378 _mesa_shader_stage_to_string(state->stage),
4379 (state->stage == MESA_SHADER_VERTEX)
4380 ? "attribute" : "varying",
4381 var->name);
4382 }
4383
4384 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4385 _mesa_glsl_error(&initializer_loc, state,
4386 "cannot initialize %s shader output %s",
4387 _mesa_shader_stage_to_string(state->stage),
4388 var->name);
4389 }
4390
4391 /* If the initializer is an ast_aggregate_initializer, recursively store
4392 * type information from the LHS into it, so that its hir() function can do
4393 * type checking.
4394 */
4395 if (decl->initializer->oper == ast_aggregate)
4396 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4397
4398 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4399 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4400
4401 /* Calculate the constant value if this is a const or uniform
4402 * declaration.
4403 *
4404 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4405 *
4406 * "Declarations of globals without a storage qualifier, or with
4407 * just the const qualifier, may include initializers, in which case
4408 * they will be initialized before the first line of main() is
4409 * executed. Such initializers must be a constant expression."
4410 *
4411 * The same section of the GLSL ES 3.00.4 spec has similar language.
4412 */
4413 if (type->qualifier.flags.q.constant
4414 || type->qualifier.flags.q.uniform
4415 || (state->es_shader && state->current_function == NULL)) {
4416 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4417 lhs, rhs, true);
4418 if (new_rhs != NULL) {
4419 rhs = new_rhs;
4420
4421 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4422 * says:
4423 *
4424 * "A constant expression is one of
4425 *
4426 * ...
4427 *
4428 * - an expression formed by an operator on operands that are
4429 * all constant expressions, including getting an element of
4430 * a constant array, or a field of a constant structure, or
4431 * components of a constant vector. However, the sequence
4432 * operator ( , ) and the assignment operators ( =, +=, ...)
4433 * are not included in the operators that can create a
4434 * constant expression."
4435 *
4436 * Section 12.43 (Sequence operator and constant expressions) says:
4437 *
4438 * "Should the following construct be allowed?
4439 *
4440 * float a[2,3];
4441 *
4442 * The expression within the brackets uses the sequence operator
4443 * (',') and returns the integer 3 so the construct is declaring
4444 * a single-dimensional array of size 3. In some languages, the
4445 * construct declares a two-dimensional array. It would be
4446 * preferable to make this construct illegal to avoid confusion.
4447 *
4448 * One possibility is to change the definition of the sequence
4449 * operator so that it does not return a constant-expression and
4450 * hence cannot be used to declare an array size.
4451 *
4452 * RESOLUTION: The result of a sequence operator is not a
4453 * constant-expression."
4454 *
4455 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4456 * contains language almost identical to the section 4.3.3 in the
4457 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4458 * versions.
4459 */
4460 ir_constant *constant_value = rhs->constant_expression_value();
4461 if (!constant_value ||
4462 (state->is_version(430, 300) &&
4463 decl->initializer->has_sequence_subexpression())) {
4464 const char *const variable_mode =
4465 (type->qualifier.flags.q.constant)
4466 ? "const"
4467 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4468
4469 /* If ARB_shading_language_420pack is enabled, initializers of
4470 * const-qualified local variables do not have to be constant
4471 * expressions. Const-qualified global variables must still be
4472 * initialized with constant expressions.
4473 */
4474 if (!state->has_420pack()
4475 || state->current_function == NULL) {
4476 _mesa_glsl_error(& initializer_loc, state,
4477 "initializer of %s variable `%s' must be a "
4478 "constant expression",
4479 variable_mode,
4480 decl->identifier);
4481 if (var->type->is_numeric()) {
4482 /* Reduce cascading errors. */
4483 var->constant_value = type->qualifier.flags.q.constant
4484 ? ir_constant::zero(state, var->type) : NULL;
4485 }
4486 }
4487 } else {
4488 rhs = constant_value;
4489 var->constant_value = type->qualifier.flags.q.constant
4490 ? constant_value : NULL;
4491 }
4492 } else {
4493 if (var->type->is_numeric()) {
4494 /* Reduce cascading errors. */
4495 var->constant_value = type->qualifier.flags.q.constant
4496 ? ir_constant::zero(state, var->type) : NULL;
4497 }
4498 }
4499 }
4500
4501 if (rhs && !rhs->type->is_error()) {
4502 bool temp = var->data.read_only;
4503 if (type->qualifier.flags.q.constant)
4504 var->data.read_only = false;
4505
4506 /* Never emit code to initialize a uniform.
4507 */
4508 const glsl_type *initializer_type;
4509 if (!type->qualifier.flags.q.uniform) {
4510 do_assignment(initializer_instructions, state,
4511 NULL,
4512 lhs, rhs,
4513 &result, true,
4514 true,
4515 type->get_location());
4516 initializer_type = result->type;
4517 } else
4518 initializer_type = rhs->type;
4519
4520 var->constant_initializer = rhs->constant_expression_value();
4521 var->data.has_initializer = true;
4522
4523 /* If the declared variable is an unsized array, it must inherrit
4524 * its full type from the initializer. A declaration such as
4525 *
4526 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4527 *
4528 * becomes
4529 *
4530 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4531 *
4532 * The assignment generated in the if-statement (below) will also
4533 * automatically handle this case for non-uniforms.
4534 *
4535 * If the declared variable is not an array, the types must
4536 * already match exactly. As a result, the type assignment
4537 * here can be done unconditionally. For non-uniforms the call
4538 * to do_assignment can change the type of the initializer (via
4539 * the implicit conversion rules). For uniforms the initializer
4540 * must be a constant expression, and the type of that expression
4541 * was validated above.
4542 */
4543 var->type = initializer_type;
4544
4545 var->data.read_only = temp;
4546 }
4547
4548 return result;
4549 }
4550
4551 static void
4552 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4553 YYLTYPE loc, ir_variable *var,
4554 unsigned num_vertices,
4555 unsigned *size,
4556 const char *var_category)
4557 {
4558 if (var->type->is_unsized_array()) {
4559 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4560 *
4561 * All geometry shader input unsized array declarations will be
4562 * sized by an earlier input layout qualifier, when present, as per
4563 * the following table.
4564 *
4565 * Followed by a table mapping each allowed input layout qualifier to
4566 * the corresponding input length.
4567 *
4568 * Similarly for tessellation control shader outputs.
4569 */
4570 if (num_vertices != 0)
4571 var->type = glsl_type::get_array_instance(var->type->fields.array,
4572 num_vertices);
4573 } else {
4574 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4575 * includes the following examples of compile-time errors:
4576 *
4577 * // code sequence within one shader...
4578 * in vec4 Color1[]; // size unknown
4579 * ...Color1.length()...// illegal, length() unknown
4580 * in vec4 Color2[2]; // size is 2
4581 * ...Color1.length()...// illegal, Color1 still has no size
4582 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4583 * layout(lines) in; // legal, input size is 2, matching
4584 * in vec4 Color4[3]; // illegal, contradicts layout
4585 * ...
4586 *
4587 * To detect the case illustrated by Color3, we verify that the size of
4588 * an explicitly-sized array matches the size of any previously declared
4589 * explicitly-sized array. To detect the case illustrated by Color4, we
4590 * verify that the size of an explicitly-sized array is consistent with
4591 * any previously declared input layout.
4592 */
4593 if (num_vertices != 0 && var->type->length != num_vertices) {
4594 _mesa_glsl_error(&loc, state,
4595 "%s size contradicts previously declared layout "
4596 "(size is %u, but layout requires a size of %u)",
4597 var_category, var->type->length, num_vertices);
4598 } else if (*size != 0 && var->type->length != *size) {
4599 _mesa_glsl_error(&loc, state,
4600 "%s sizes are inconsistent (size is %u, but a "
4601 "previous declaration has size %u)",
4602 var_category, var->type->length, *size);
4603 } else {
4604 *size = var->type->length;
4605 }
4606 }
4607 }
4608
4609 static void
4610 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4611 YYLTYPE loc, ir_variable *var)
4612 {
4613 unsigned num_vertices = 0;
4614
4615 if (state->tcs_output_vertices_specified) {
4616 if (!state->out_qualifier->vertices->
4617 process_qualifier_constant(state, "vertices",
4618 &num_vertices, false)) {
4619 return;
4620 }
4621
4622 if (num_vertices > state->Const.MaxPatchVertices) {
4623 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4624 "GL_MAX_PATCH_VERTICES", num_vertices);
4625 return;
4626 }
4627 }
4628
4629 if (!var->type->is_array() && !var->data.patch) {
4630 _mesa_glsl_error(&loc, state,
4631 "tessellation control shader outputs must be arrays");
4632
4633 /* To avoid cascading failures, short circuit the checks below. */
4634 return;
4635 }
4636
4637 if (var->data.patch)
4638 return;
4639
4640 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4641 &state->tcs_output_size,
4642 "tessellation control shader output");
4643 }
4644
4645 /**
4646 * Do additional processing necessary for tessellation control/evaluation shader
4647 * input declarations. This covers both interface block arrays and bare input
4648 * variables.
4649 */
4650 static void
4651 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4652 YYLTYPE loc, ir_variable *var)
4653 {
4654 if (!var->type->is_array() && !var->data.patch) {
4655 _mesa_glsl_error(&loc, state,
4656 "per-vertex tessellation shader inputs must be arrays");
4657 /* Avoid cascading failures. */
4658 return;
4659 }
4660
4661 if (var->data.patch)
4662 return;
4663
4664 /* The ARB_tessellation_shader spec says:
4665 *
4666 * "Declaring an array size is optional. If no size is specified, it
4667 * will be taken from the implementation-dependent maximum patch size
4668 * (gl_MaxPatchVertices). If a size is specified, it must match the
4669 * maximum patch size; otherwise, a compile or link error will occur."
4670 *
4671 * This text appears twice, once for TCS inputs, and again for TES inputs.
4672 */
4673 if (var->type->is_unsized_array()) {
4674 var->type = glsl_type::get_array_instance(var->type->fields.array,
4675 state->Const.MaxPatchVertices);
4676 } else if (var->type->length != state->Const.MaxPatchVertices) {
4677 _mesa_glsl_error(&loc, state,
4678 "per-vertex tessellation shader input arrays must be "
4679 "sized to gl_MaxPatchVertices (%d).",
4680 state->Const.MaxPatchVertices);
4681 }
4682 }
4683
4684
4685 /**
4686 * Do additional processing necessary for geometry shader input declarations
4687 * (this covers both interface blocks arrays and bare input variables).
4688 */
4689 static void
4690 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4691 YYLTYPE loc, ir_variable *var)
4692 {
4693 unsigned num_vertices = 0;
4694
4695 if (state->gs_input_prim_type_specified) {
4696 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4697 }
4698
4699 /* Geometry shader input variables must be arrays. Caller should have
4700 * reported an error for this.
4701 */
4702 if (!var->type->is_array()) {
4703 assert(state->error);
4704
4705 /* To avoid cascading failures, short circuit the checks below. */
4706 return;
4707 }
4708
4709 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4710 &state->gs_input_size,
4711 "geometry shader input");
4712 }
4713
4714 void
4715 validate_identifier(const char *identifier, YYLTYPE loc,
4716 struct _mesa_glsl_parse_state *state)
4717 {
4718 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4719 *
4720 * "Identifiers starting with "gl_" are reserved for use by
4721 * OpenGL, and may not be declared in a shader as either a
4722 * variable or a function."
4723 */
4724 if (is_gl_identifier(identifier)) {
4725 _mesa_glsl_error(&loc, state,
4726 "identifier `%s' uses reserved `gl_' prefix",
4727 identifier);
4728 } else if (strstr(identifier, "__")) {
4729 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4730 * spec:
4731 *
4732 * "In addition, all identifiers containing two
4733 * consecutive underscores (__) are reserved as
4734 * possible future keywords."
4735 *
4736 * The intention is that names containing __ are reserved for internal
4737 * use by the implementation, and names prefixed with GL_ are reserved
4738 * for use by Khronos. Names simply containing __ are dangerous to use,
4739 * but should be allowed.
4740 *
4741 * A future version of the GLSL specification will clarify this.
4742 */
4743 _mesa_glsl_warning(&loc, state,
4744 "identifier `%s' uses reserved `__' string",
4745 identifier);
4746 }
4747 }
4748
4749 ir_rvalue *
4750 ast_declarator_list::hir(exec_list *instructions,
4751 struct _mesa_glsl_parse_state *state)
4752 {
4753 void *ctx = state;
4754 const struct glsl_type *decl_type;
4755 const char *type_name = NULL;
4756 ir_rvalue *result = NULL;
4757 YYLTYPE loc = this->get_location();
4758
4759 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4760 *
4761 * "To ensure that a particular output variable is invariant, it is
4762 * necessary to use the invariant qualifier. It can either be used to
4763 * qualify a previously declared variable as being invariant
4764 *
4765 * invariant gl_Position; // make existing gl_Position be invariant"
4766 *
4767 * In these cases the parser will set the 'invariant' flag in the declarator
4768 * list, and the type will be NULL.
4769 */
4770 if (this->invariant) {
4771 assert(this->type == NULL);
4772
4773 if (state->current_function != NULL) {
4774 _mesa_glsl_error(& loc, state,
4775 "all uses of `invariant' keyword must be at global "
4776 "scope");
4777 }
4778
4779 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4780 assert(decl->array_specifier == NULL);
4781 assert(decl->initializer == NULL);
4782
4783 ir_variable *const earlier =
4784 state->symbols->get_variable(decl->identifier);
4785 if (earlier == NULL) {
4786 _mesa_glsl_error(& loc, state,
4787 "undeclared variable `%s' cannot be marked "
4788 "invariant", decl->identifier);
4789 } else if (!is_allowed_invariant(earlier, state)) {
4790 _mesa_glsl_error(&loc, state,
4791 "`%s' cannot be marked invariant; interfaces between "
4792 "shader stages only.", decl->identifier);
4793 } else if (earlier->data.used) {
4794 _mesa_glsl_error(& loc, state,
4795 "variable `%s' may not be redeclared "
4796 "`invariant' after being used",
4797 earlier->name);
4798 } else {
4799 earlier->data.invariant = true;
4800 }
4801 }
4802
4803 /* Invariant redeclarations do not have r-values.
4804 */
4805 return NULL;
4806 }
4807
4808 if (this->precise) {
4809 assert(this->type == NULL);
4810
4811 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4812 assert(decl->array_specifier == NULL);
4813 assert(decl->initializer == NULL);
4814
4815 ir_variable *const earlier =
4816 state->symbols->get_variable(decl->identifier);
4817 if (earlier == NULL) {
4818 _mesa_glsl_error(& loc, state,
4819 "undeclared variable `%s' cannot be marked "
4820 "precise", decl->identifier);
4821 } else if (state->current_function != NULL &&
4822 !state->symbols->name_declared_this_scope(decl->identifier)) {
4823 /* Note: we have to check if we're in a function, since
4824 * builtins are treated as having come from another scope.
4825 */
4826 _mesa_glsl_error(& loc, state,
4827 "variable `%s' from an outer scope may not be "
4828 "redeclared `precise' in this scope",
4829 earlier->name);
4830 } else if (earlier->data.used) {
4831 _mesa_glsl_error(& loc, state,
4832 "variable `%s' may not be redeclared "
4833 "`precise' after being used",
4834 earlier->name);
4835 } else {
4836 earlier->data.precise = true;
4837 }
4838 }
4839
4840 /* Precise redeclarations do not have r-values either. */
4841 return NULL;
4842 }
4843
4844 assert(this->type != NULL);
4845 assert(!this->invariant);
4846 assert(!this->precise);
4847
4848 /* The type specifier may contain a structure definition. Process that
4849 * before any of the variable declarations.
4850 */
4851 (void) this->type->specifier->hir(instructions, state);
4852
4853 decl_type = this->type->glsl_type(& type_name, state);
4854
4855 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4856 * "Buffer variables may only be declared inside interface blocks
4857 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4858 * shader storage blocks. It is a compile-time error to declare buffer
4859 * variables at global scope (outside a block)."
4860 */
4861 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4862 _mesa_glsl_error(&loc, state,
4863 "buffer variables cannot be declared outside "
4864 "interface blocks");
4865 }
4866
4867 /* An offset-qualified atomic counter declaration sets the default
4868 * offset for the next declaration within the same atomic counter
4869 * buffer.
4870 */
4871 if (decl_type && decl_type->contains_atomic()) {
4872 if (type->qualifier.flags.q.explicit_binding &&
4873 type->qualifier.flags.q.explicit_offset) {
4874 unsigned qual_binding;
4875 unsigned qual_offset;
4876 if (process_qualifier_constant(state, &loc, "binding",
4877 type->qualifier.binding,
4878 &qual_binding)
4879 && process_qualifier_constant(state, &loc, "offset",
4880 type->qualifier.offset,
4881 &qual_offset)) {
4882 state->atomic_counter_offsets[qual_binding] = qual_offset;
4883 }
4884 }
4885
4886 ast_type_qualifier allowed_atomic_qual_mask;
4887 allowed_atomic_qual_mask.flags.i = 0;
4888 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4889 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4890 allowed_atomic_qual_mask.flags.q.uniform = 1;
4891
4892 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4893 "invalid layout qualifier for",
4894 "atomic_uint");
4895 }
4896
4897 if (this->declarations.is_empty()) {
4898 /* If there is no structure involved in the program text, there are two
4899 * possible scenarios:
4900 *
4901 * - The program text contained something like 'vec4;'. This is an
4902 * empty declaration. It is valid but weird. Emit a warning.
4903 *
4904 * - The program text contained something like 'S;' and 'S' is not the
4905 * name of a known structure type. This is both invalid and weird.
4906 * Emit an error.
4907 *
4908 * - The program text contained something like 'mediump float;'
4909 * when the programmer probably meant 'precision mediump
4910 * float;' Emit a warning with a description of what they
4911 * probably meant to do.
4912 *
4913 * Note that if decl_type is NULL and there is a structure involved,
4914 * there must have been some sort of error with the structure. In this
4915 * case we assume that an error was already generated on this line of
4916 * code for the structure. There is no need to generate an additional,
4917 * confusing error.
4918 */
4919 assert(this->type->specifier->structure == NULL || decl_type != NULL
4920 || state->error);
4921
4922 if (decl_type == NULL) {
4923 _mesa_glsl_error(&loc, state,
4924 "invalid type `%s' in empty declaration",
4925 type_name);
4926 } else {
4927 if (decl_type->is_array()) {
4928 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4929 * spec:
4930 *
4931 * "... any declaration that leaves the size undefined is
4932 * disallowed as this would add complexity and there are no
4933 * use-cases."
4934 */
4935 if (state->es_shader && decl_type->is_unsized_array()) {
4936 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4937 "or implicitly defined");
4938 }
4939
4940 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4941 *
4942 * "The combinations of types and qualifiers that cause
4943 * compile-time or link-time errors are the same whether or not
4944 * the declaration is empty."
4945 */
4946 validate_array_dimensions(decl_type, state, &loc);
4947 }
4948
4949 if (decl_type->is_atomic_uint()) {
4950 /* Empty atomic counter declarations are allowed and useful
4951 * to set the default offset qualifier.
4952 */
4953 return NULL;
4954 } else if (this->type->qualifier.precision != ast_precision_none) {
4955 if (this->type->specifier->structure != NULL) {
4956 _mesa_glsl_error(&loc, state,
4957 "precision qualifiers can't be applied "
4958 "to structures");
4959 } else {
4960 static const char *const precision_names[] = {
4961 "highp",
4962 "highp",
4963 "mediump",
4964 "lowp"
4965 };
4966
4967 _mesa_glsl_warning(&loc, state,
4968 "empty declaration with precision "
4969 "qualifier, to set the default precision, "
4970 "use `precision %s %s;'",
4971 precision_names[this->type->
4972 qualifier.precision],
4973 type_name);
4974 }
4975 } else if (this->type->specifier->structure == NULL) {
4976 _mesa_glsl_warning(&loc, state, "empty declaration");
4977 }
4978 }
4979 }
4980
4981 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4982 const struct glsl_type *var_type;
4983 ir_variable *var;
4984 const char *identifier = decl->identifier;
4985 /* FINISHME: Emit a warning if a variable declaration shadows a
4986 * FINISHME: declaration at a higher scope.
4987 */
4988
4989 if ((decl_type == NULL) || decl_type->is_void()) {
4990 if (type_name != NULL) {
4991 _mesa_glsl_error(& loc, state,
4992 "invalid type `%s' in declaration of `%s'",
4993 type_name, decl->identifier);
4994 } else {
4995 _mesa_glsl_error(& loc, state,
4996 "invalid type in declaration of `%s'",
4997 decl->identifier);
4998 }
4999 continue;
5000 }
5001
5002 if (this->type->qualifier.is_subroutine_decl()) {
5003 const glsl_type *t;
5004 const char *name;
5005
5006 t = state->symbols->get_type(this->type->specifier->type_name);
5007 if (!t)
5008 _mesa_glsl_error(& loc, state,
5009 "invalid type in declaration of `%s'",
5010 decl->identifier);
5011 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5012
5013 identifier = name;
5014
5015 }
5016 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5017 state);
5018
5019 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5020
5021 /* The 'varying in' and 'varying out' qualifiers can only be used with
5022 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5023 * yet.
5024 */
5025 if (this->type->qualifier.flags.q.varying) {
5026 if (this->type->qualifier.flags.q.in) {
5027 _mesa_glsl_error(& loc, state,
5028 "`varying in' qualifier in declaration of "
5029 "`%s' only valid for geometry shaders using "
5030 "ARB_geometry_shader4 or EXT_geometry_shader4",
5031 decl->identifier);
5032 } else if (this->type->qualifier.flags.q.out) {
5033 _mesa_glsl_error(& loc, state,
5034 "`varying out' qualifier in declaration of "
5035 "`%s' only valid for geometry shaders using "
5036 "ARB_geometry_shader4 or EXT_geometry_shader4",
5037 decl->identifier);
5038 }
5039 }
5040
5041 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5042 *
5043 * "Global variables can only use the qualifiers const,
5044 * attribute, uniform, or varying. Only one may be
5045 * specified.
5046 *
5047 * Local variables can only use the qualifier const."
5048 *
5049 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5050 * any extension that adds the 'layout' keyword.
5051 */
5052 if (!state->is_version(130, 300)
5053 && !state->has_explicit_attrib_location()
5054 && !state->has_separate_shader_objects()
5055 && !state->ARB_fragment_coord_conventions_enable) {
5056 if (this->type->qualifier.flags.q.out) {
5057 _mesa_glsl_error(& loc, state,
5058 "`out' qualifier in declaration of `%s' "
5059 "only valid for function parameters in %s",
5060 decl->identifier, state->get_version_string());
5061 }
5062 if (this->type->qualifier.flags.q.in) {
5063 _mesa_glsl_error(& loc, state,
5064 "`in' qualifier in declaration of `%s' "
5065 "only valid for function parameters in %s",
5066 decl->identifier, state->get_version_string());
5067 }
5068 /* FINISHME: Test for other invalid qualifiers. */
5069 }
5070
5071 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5072 & loc, false);
5073 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5074 &loc);
5075
5076 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5077 && (var->type->is_numeric() || var->type->is_boolean())
5078 && state->zero_init) {
5079 const ir_constant_data data = { { 0 } };
5080 var->data.has_initializer = true;
5081 var->constant_initializer = new(var) ir_constant(var->type, &data);
5082 }
5083
5084 if (this->type->qualifier.flags.q.invariant) {
5085 if (!is_allowed_invariant(var, state)) {
5086 _mesa_glsl_error(&loc, state,
5087 "`%s' cannot be marked invariant; interfaces between "
5088 "shader stages only", var->name);
5089 }
5090 }
5091
5092 if (state->current_function != NULL) {
5093 const char *mode = NULL;
5094 const char *extra = "";
5095
5096 /* There is no need to check for 'inout' here because the parser will
5097 * only allow that in function parameter lists.
5098 */
5099 if (this->type->qualifier.flags.q.attribute) {
5100 mode = "attribute";
5101 } else if (this->type->qualifier.is_subroutine_decl()) {
5102 mode = "subroutine uniform";
5103 } else if (this->type->qualifier.flags.q.uniform) {
5104 mode = "uniform";
5105 } else if (this->type->qualifier.flags.q.varying) {
5106 mode = "varying";
5107 } else if (this->type->qualifier.flags.q.in) {
5108 mode = "in";
5109 extra = " or in function parameter list";
5110 } else if (this->type->qualifier.flags.q.out) {
5111 mode = "out";
5112 extra = " or in function parameter list";
5113 }
5114
5115 if (mode) {
5116 _mesa_glsl_error(& loc, state,
5117 "%s variable `%s' must be declared at "
5118 "global scope%s",
5119 mode, var->name, extra);
5120 }
5121 } else if (var->data.mode == ir_var_shader_in) {
5122 var->data.read_only = true;
5123
5124 if (state->stage == MESA_SHADER_VERTEX) {
5125 bool error_emitted = false;
5126
5127 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5128 *
5129 * "Vertex shader inputs can only be float, floating-point
5130 * vectors, matrices, signed and unsigned integers and integer
5131 * vectors. Vertex shader inputs can also form arrays of these
5132 * types, but not structures."
5133 *
5134 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5135 *
5136 * "Vertex shader inputs can only be float, floating-point
5137 * vectors, matrices, signed and unsigned integers and integer
5138 * vectors. They cannot be arrays or structures."
5139 *
5140 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5141 *
5142 * "The attribute qualifier can be used only with float,
5143 * floating-point vectors, and matrices. Attribute variables
5144 * cannot be declared as arrays or structures."
5145 *
5146 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5147 *
5148 * "Vertex shader inputs can only be float, floating-point
5149 * vectors, matrices, signed and unsigned integers and integer
5150 * vectors. Vertex shader inputs cannot be arrays or
5151 * structures."
5152 *
5153 * From section 4.3.4 of the ARB_bindless_texture spec:
5154 *
5155 * "(modify third paragraph of the section to allow sampler and
5156 * image types) ... Vertex shader inputs can only be float,
5157 * single-precision floating-point scalars, single-precision
5158 * floating-point vectors, matrices, signed and unsigned
5159 * integers and integer vectors, sampler and image types."
5160 */
5161 const glsl_type *check_type = var->type->without_array();
5162
5163 switch (check_type->base_type) {
5164 case GLSL_TYPE_FLOAT:
5165 break;
5166 case GLSL_TYPE_UINT64:
5167 case GLSL_TYPE_INT64:
5168 break;
5169 case GLSL_TYPE_UINT:
5170 case GLSL_TYPE_INT:
5171 if (state->is_version(120, 300))
5172 break;
5173 case GLSL_TYPE_DOUBLE:
5174 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5175 break;
5176 case GLSL_TYPE_SAMPLER:
5177 if (check_type->is_sampler() && state->has_bindless())
5178 break;
5179 case GLSL_TYPE_IMAGE:
5180 if (check_type->is_image() && state->has_bindless())
5181 break;
5182 /* FALLTHROUGH */
5183 default:
5184 _mesa_glsl_error(& loc, state,
5185 "vertex shader input / attribute cannot have "
5186 "type %s`%s'",
5187 var->type->is_array() ? "array of " : "",
5188 check_type->name);
5189 error_emitted = true;
5190 }
5191
5192 if (!error_emitted && var->type->is_array() &&
5193 !state->check_version(150, 0, &loc,
5194 "vertex shader input / attribute "
5195 "cannot have array type")) {
5196 error_emitted = true;
5197 }
5198 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5199 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5200 *
5201 * Geometry shader input variables get the per-vertex values
5202 * written out by vertex shader output variables of the same
5203 * names. Since a geometry shader operates on a set of
5204 * vertices, each input varying variable (or input block, see
5205 * interface blocks below) needs to be declared as an array.
5206 */
5207 if (!var->type->is_array()) {
5208 _mesa_glsl_error(&loc, state,
5209 "geometry shader inputs must be arrays");
5210 }
5211
5212 handle_geometry_shader_input_decl(state, loc, var);
5213 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5214 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5215 *
5216 * It is a compile-time error to declare a fragment shader
5217 * input with, or that contains, any of the following types:
5218 *
5219 * * A boolean type
5220 * * An opaque type
5221 * * An array of arrays
5222 * * An array of structures
5223 * * A structure containing an array
5224 * * A structure containing a structure
5225 */
5226 if (state->es_shader) {
5227 const glsl_type *check_type = var->type->without_array();
5228 if (check_type->is_boolean() ||
5229 check_type->contains_opaque()) {
5230 _mesa_glsl_error(&loc, state,
5231 "fragment shader input cannot have type %s",
5232 check_type->name);
5233 }
5234 if (var->type->is_array() &&
5235 var->type->fields.array->is_array()) {
5236 _mesa_glsl_error(&loc, state,
5237 "%s shader output "
5238 "cannot have an array of arrays",
5239 _mesa_shader_stage_to_string(state->stage));
5240 }
5241 if (var->type->is_array() &&
5242 var->type->fields.array->is_record()) {
5243 _mesa_glsl_error(&loc, state,
5244 "fragment shader input "
5245 "cannot have an array of structs");
5246 }
5247 if (var->type->is_record()) {
5248 for (unsigned i = 0; i < var->type->length; i++) {
5249 if (var->type->fields.structure[i].type->is_array() ||
5250 var->type->fields.structure[i].type->is_record())
5251 _mesa_glsl_error(&loc, state,
5252 "fragement shader input cannot have "
5253 "a struct that contains an "
5254 "array or struct");
5255 }
5256 }
5257 }
5258 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5259 state->stage == MESA_SHADER_TESS_EVAL) {
5260 handle_tess_shader_input_decl(state, loc, var);
5261 }
5262 } else if (var->data.mode == ir_var_shader_out) {
5263 const glsl_type *check_type = var->type->without_array();
5264
5265 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5266 *
5267 * It is a compile-time error to declare a fragment shader output
5268 * that contains any of the following:
5269 *
5270 * * A Boolean type (bool, bvec2 ...)
5271 * * A double-precision scalar or vector (double, dvec2 ...)
5272 * * An opaque type
5273 * * Any matrix type
5274 * * A structure
5275 */
5276 if (state->stage == MESA_SHADER_FRAGMENT) {
5277 if (check_type->is_record() || check_type->is_matrix())
5278 _mesa_glsl_error(&loc, state,
5279 "fragment shader output "
5280 "cannot have struct or matrix type");
5281 switch (check_type->base_type) {
5282 case GLSL_TYPE_UINT:
5283 case GLSL_TYPE_INT:
5284 case GLSL_TYPE_FLOAT:
5285 break;
5286 default:
5287 _mesa_glsl_error(&loc, state,
5288 "fragment shader output cannot have "
5289 "type %s", check_type->name);
5290 }
5291 }
5292
5293 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5294 *
5295 * It is a compile-time error to declare a vertex shader output
5296 * with, or that contains, any of the following types:
5297 *
5298 * * A boolean type
5299 * * An opaque type
5300 * * An array of arrays
5301 * * An array of structures
5302 * * A structure containing an array
5303 * * A structure containing a structure
5304 *
5305 * It is a compile-time error to declare a fragment shader output
5306 * with, or that contains, any of the following types:
5307 *
5308 * * A boolean type
5309 * * An opaque type
5310 * * A matrix
5311 * * A structure
5312 * * An array of array
5313 *
5314 * ES 3.20 updates this to apply to tessellation and geometry shaders
5315 * as well. Because there are per-vertex arrays in the new stages,
5316 * it strikes the "array of..." rules and replaces them with these:
5317 *
5318 * * For per-vertex-arrayed variables (applies to tessellation
5319 * control, tessellation evaluation and geometry shaders):
5320 *
5321 * * Per-vertex-arrayed arrays of arrays
5322 * * Per-vertex-arrayed arrays of structures
5323 *
5324 * * For non-per-vertex-arrayed variables:
5325 *
5326 * * An array of arrays
5327 * * An array of structures
5328 *
5329 * which basically says to unwrap the per-vertex aspect and apply
5330 * the old rules.
5331 */
5332 if (state->es_shader) {
5333 if (var->type->is_array() &&
5334 var->type->fields.array->is_array()) {
5335 _mesa_glsl_error(&loc, state,
5336 "%s shader output "
5337 "cannot have an array of arrays",
5338 _mesa_shader_stage_to_string(state->stage));
5339 }
5340 if (state->stage <= MESA_SHADER_GEOMETRY) {
5341 const glsl_type *type = var->type;
5342
5343 if (state->stage == MESA_SHADER_TESS_CTRL &&
5344 !var->data.patch && var->type->is_array()) {
5345 type = var->type->fields.array;
5346 }
5347
5348 if (type->is_array() && type->fields.array->is_record()) {
5349 _mesa_glsl_error(&loc, state,
5350 "%s shader output cannot have "
5351 "an array of structs",
5352 _mesa_shader_stage_to_string(state->stage));
5353 }
5354 if (type->is_record()) {
5355 for (unsigned i = 0; i < type->length; i++) {
5356 if (type->fields.structure[i].type->is_array() ||
5357 type->fields.structure[i].type->is_record())
5358 _mesa_glsl_error(&loc, state,
5359 "%s shader output cannot have a "
5360 "struct that contains an "
5361 "array or struct",
5362 _mesa_shader_stage_to_string(state->stage));
5363 }
5364 }
5365 }
5366 }
5367
5368 if (state->stage == MESA_SHADER_TESS_CTRL) {
5369 handle_tess_ctrl_shader_output_decl(state, loc, var);
5370 }
5371 } else if (var->type->contains_subroutine()) {
5372 /* declare subroutine uniforms as hidden */
5373 var->data.how_declared = ir_var_hidden;
5374 }
5375
5376 /* From section 4.3.4 of the GLSL 4.00 spec:
5377 * "Input variables may not be declared using the patch in qualifier
5378 * in tessellation control or geometry shaders."
5379 *
5380 * From section 4.3.6 of the GLSL 4.00 spec:
5381 * "It is an error to use patch out in a vertex, tessellation
5382 * evaluation, or geometry shader."
5383 *
5384 * This doesn't explicitly forbid using them in a fragment shader, but
5385 * that's probably just an oversight.
5386 */
5387 if (state->stage != MESA_SHADER_TESS_EVAL
5388 && this->type->qualifier.flags.q.patch
5389 && this->type->qualifier.flags.q.in) {
5390
5391 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5392 "tessellation evaluation shader");
5393 }
5394
5395 if (state->stage != MESA_SHADER_TESS_CTRL
5396 && this->type->qualifier.flags.q.patch
5397 && this->type->qualifier.flags.q.out) {
5398
5399 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5400 "tessellation control shader");
5401 }
5402
5403 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5404 */
5405 if (this->type->qualifier.precision != ast_precision_none) {
5406 state->check_precision_qualifiers_allowed(&loc);
5407 }
5408
5409 if (this->type->qualifier.precision != ast_precision_none &&
5410 !precision_qualifier_allowed(var->type)) {
5411 _mesa_glsl_error(&loc, state,
5412 "precision qualifiers apply only to floating point"
5413 ", integer and opaque types");
5414 }
5415
5416 /* From section 4.1.7 of the GLSL 4.40 spec:
5417 *
5418 * "[Opaque types] can only be declared as function
5419 * parameters or uniform-qualified variables."
5420 *
5421 * From section 4.1.7 of the ARB_bindless_texture spec:
5422 *
5423 * "Samplers may be declared as shader inputs and outputs, as uniform
5424 * variables, as temporary variables, and as function parameters."
5425 *
5426 * From section 4.1.X of the ARB_bindless_texture spec:
5427 *
5428 * "Images may be declared as shader inputs and outputs, as uniform
5429 * variables, as temporary variables, and as function parameters."
5430 */
5431 if (!this->type->qualifier.flags.q.uniform &&
5432 (var_type->contains_atomic() ||
5433 (!state->has_bindless() && var_type->contains_opaque()))) {
5434 _mesa_glsl_error(&loc, state,
5435 "%s variables must be declared uniform",
5436 state->has_bindless() ? "atomic" : "opaque");
5437 }
5438
5439 /* Process the initializer and add its instructions to a temporary
5440 * list. This list will be added to the instruction stream (below) after
5441 * the declaration is added. This is done because in some cases (such as
5442 * redeclarations) the declaration may not actually be added to the
5443 * instruction stream.
5444 */
5445 exec_list initializer_instructions;
5446
5447 /* Examine var name here since var may get deleted in the next call */
5448 bool var_is_gl_id = is_gl_identifier(var->name);
5449
5450 bool is_redeclaration;
5451 ir_variable *declared_var =
5452 get_variable_being_redeclared(var, decl->get_location(), state,
5453 false /* allow_all_redeclarations */,
5454 &is_redeclaration);
5455 if (is_redeclaration) {
5456 if (var_is_gl_id &&
5457 declared_var->data.how_declared == ir_var_declared_in_block) {
5458 _mesa_glsl_error(&loc, state,
5459 "`%s' has already been redeclared using "
5460 "gl_PerVertex", declared_var->name);
5461 }
5462 declared_var->data.how_declared = ir_var_declared_normally;
5463 }
5464
5465 if (decl->initializer != NULL) {
5466 result = process_initializer(declared_var,
5467 decl, this->type,
5468 &initializer_instructions, state);
5469 } else {
5470 validate_array_dimensions(var_type, state, &loc);
5471 }
5472
5473 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5474 *
5475 * "It is an error to write to a const variable outside of
5476 * its declaration, so they must be initialized when
5477 * declared."
5478 */
5479 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5480 _mesa_glsl_error(& loc, state,
5481 "const declaration of `%s' must be initialized",
5482 decl->identifier);
5483 }
5484
5485 if (state->es_shader) {
5486 const glsl_type *const t = declared_var->type;
5487
5488 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5489 *
5490 * The GL_OES_tessellation_shader spec says about inputs:
5491 *
5492 * "Declaring an array size is optional. If no size is specified,
5493 * it will be taken from the implementation-dependent maximum
5494 * patch size (gl_MaxPatchVertices)."
5495 *
5496 * and about TCS outputs:
5497 *
5498 * "If no size is specified, it will be taken from output patch
5499 * size declared in the shader."
5500 *
5501 * The GL_OES_geometry_shader spec says:
5502 *
5503 * "All geometry shader input unsized array declarations will be
5504 * sized by an earlier input primitive layout qualifier, when
5505 * present, as per the following table."
5506 */
5507 const bool implicitly_sized =
5508 (declared_var->data.mode == ir_var_shader_in &&
5509 state->stage >= MESA_SHADER_TESS_CTRL &&
5510 state->stage <= MESA_SHADER_GEOMETRY) ||
5511 (declared_var->data.mode == ir_var_shader_out &&
5512 state->stage == MESA_SHADER_TESS_CTRL);
5513
5514 if (t->is_unsized_array() && !implicitly_sized)
5515 /* Section 10.17 of the GLSL ES 1.00 specification states that
5516 * unsized array declarations have been removed from the language.
5517 * Arrays that are sized using an initializer are still explicitly
5518 * sized. However, GLSL ES 1.00 does not allow array
5519 * initializers. That is only allowed in GLSL ES 3.00.
5520 *
5521 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5522 *
5523 * "An array type can also be formed without specifying a size
5524 * if the definition includes an initializer:
5525 *
5526 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5527 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5528 *
5529 * float a[5];
5530 * float b[] = a;"
5531 */
5532 _mesa_glsl_error(& loc, state,
5533 "unsized array declarations are not allowed in "
5534 "GLSL ES");
5535 }
5536
5537 /* If the declaration is not a redeclaration, there are a few additional
5538 * semantic checks that must be applied. In addition, variable that was
5539 * created for the declaration should be added to the IR stream.
5540 */
5541 if (!is_redeclaration) {
5542 validate_identifier(decl->identifier, loc, state);
5543
5544 /* Add the variable to the symbol table. Note that the initializer's
5545 * IR was already processed earlier (though it hasn't been emitted
5546 * yet), without the variable in scope.
5547 *
5548 * This differs from most C-like languages, but it follows the GLSL
5549 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5550 * spec:
5551 *
5552 * "Within a declaration, the scope of a name starts immediately
5553 * after the initializer if present or immediately after the name
5554 * being declared if not."
5555 */
5556 if (!state->symbols->add_variable(declared_var)) {
5557 YYLTYPE loc = this->get_location();
5558 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5559 "current scope", decl->identifier);
5560 continue;
5561 }
5562
5563 /* Push the variable declaration to the top. It means that all the
5564 * variable declarations will appear in a funny last-to-first order,
5565 * but otherwise we run into trouble if a function is prototyped, a
5566 * global var is decled, then the function is defined with usage of
5567 * the global var. See glslparsertest's CorrectModule.frag.
5568 */
5569 instructions->push_head(declared_var);
5570 }
5571
5572 instructions->append_list(&initializer_instructions);
5573 }
5574
5575
5576 /* Generally, variable declarations do not have r-values. However,
5577 * one is used for the declaration in
5578 *
5579 * while (bool b = some_condition()) {
5580 * ...
5581 * }
5582 *
5583 * so we return the rvalue from the last seen declaration here.
5584 */
5585 return result;
5586 }
5587
5588
5589 ir_rvalue *
5590 ast_parameter_declarator::hir(exec_list *instructions,
5591 struct _mesa_glsl_parse_state *state)
5592 {
5593 void *ctx = state;
5594 const struct glsl_type *type;
5595 const char *name = NULL;
5596 YYLTYPE loc = this->get_location();
5597
5598 type = this->type->glsl_type(& name, state);
5599
5600 if (type == NULL) {
5601 if (name != NULL) {
5602 _mesa_glsl_error(& loc, state,
5603 "invalid type `%s' in declaration of `%s'",
5604 name, this->identifier);
5605 } else {
5606 _mesa_glsl_error(& loc, state,
5607 "invalid type in declaration of `%s'",
5608 this->identifier);
5609 }
5610
5611 type = glsl_type::error_type;
5612 }
5613
5614 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5615 *
5616 * "Functions that accept no input arguments need not use void in the
5617 * argument list because prototypes (or definitions) are required and
5618 * therefore there is no ambiguity when an empty argument list "( )" is
5619 * declared. The idiom "(void)" as a parameter list is provided for
5620 * convenience."
5621 *
5622 * Placing this check here prevents a void parameter being set up
5623 * for a function, which avoids tripping up checks for main taking
5624 * parameters and lookups of an unnamed symbol.
5625 */
5626 if (type->is_void()) {
5627 if (this->identifier != NULL)
5628 _mesa_glsl_error(& loc, state,
5629 "named parameter cannot have type `void'");
5630
5631 is_void = true;
5632 return NULL;
5633 }
5634
5635 if (formal_parameter && (this->identifier == NULL)) {
5636 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5637 return NULL;
5638 }
5639
5640 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5641 * call already handled the "vec4[..] foo" case.
5642 */
5643 type = process_array_type(&loc, type, this->array_specifier, state);
5644
5645 if (!type->is_error() && type->is_unsized_array()) {
5646 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5647 "a declared size");
5648 type = glsl_type::error_type;
5649 }
5650
5651 is_void = false;
5652 ir_variable *var = new(ctx)
5653 ir_variable(type, this->identifier, ir_var_function_in);
5654
5655 /* Apply any specified qualifiers to the parameter declaration. Note that
5656 * for function parameters the default mode is 'in'.
5657 */
5658 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5659 true);
5660
5661 /* From section 4.1.7 of the GLSL 4.40 spec:
5662 *
5663 * "Opaque variables cannot be treated as l-values; hence cannot
5664 * be used as out or inout function parameters, nor can they be
5665 * assigned into."
5666 *
5667 * From section 4.1.7 of the ARB_bindless_texture spec:
5668 *
5669 * "Samplers can be used as l-values, so can be assigned into and used
5670 * as "out" and "inout" function parameters."
5671 *
5672 * From section 4.1.X of the ARB_bindless_texture spec:
5673 *
5674 * "Images can be used as l-values, so can be assigned into and used as
5675 * "out" and "inout" function parameters."
5676 */
5677 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5678 && (type->contains_atomic() ||
5679 (!state->has_bindless() && type->contains_opaque()))) {
5680 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5681 "contain %s variables",
5682 state->has_bindless() ? "atomic" : "opaque");
5683 type = glsl_type::error_type;
5684 }
5685
5686 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5687 *
5688 * "When calling a function, expressions that do not evaluate to
5689 * l-values cannot be passed to parameters declared as out or inout."
5690 *
5691 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5692 *
5693 * "Other binary or unary expressions, non-dereferenced arrays,
5694 * function names, swizzles with repeated fields, and constants
5695 * cannot be l-values."
5696 *
5697 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5698 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5699 */
5700 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5701 && type->is_array()
5702 && !state->check_version(120, 100, &loc,
5703 "arrays cannot be out or inout parameters")) {
5704 type = glsl_type::error_type;
5705 }
5706
5707 instructions->push_tail(var);
5708
5709 /* Parameter declarations do not have r-values.
5710 */
5711 return NULL;
5712 }
5713
5714
5715 void
5716 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5717 bool formal,
5718 exec_list *ir_parameters,
5719 _mesa_glsl_parse_state *state)
5720 {
5721 ast_parameter_declarator *void_param = NULL;
5722 unsigned count = 0;
5723
5724 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5725 param->formal_parameter = formal;
5726 param->hir(ir_parameters, state);
5727
5728 if (param->is_void)
5729 void_param = param;
5730
5731 count++;
5732 }
5733
5734 if ((void_param != NULL) && (count > 1)) {
5735 YYLTYPE loc = void_param->get_location();
5736
5737 _mesa_glsl_error(& loc, state,
5738 "`void' parameter must be only parameter");
5739 }
5740 }
5741
5742
5743 void
5744 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5745 {
5746 /* IR invariants disallow function declarations or definitions
5747 * nested within other function definitions. But there is no
5748 * requirement about the relative order of function declarations
5749 * and definitions with respect to one another. So simply insert
5750 * the new ir_function block at the end of the toplevel instruction
5751 * list.
5752 */
5753 state->toplevel_ir->push_tail(f);
5754 }
5755
5756
5757 ir_rvalue *
5758 ast_function::hir(exec_list *instructions,
5759 struct _mesa_glsl_parse_state *state)
5760 {
5761 void *ctx = state;
5762 ir_function *f = NULL;
5763 ir_function_signature *sig = NULL;
5764 exec_list hir_parameters;
5765 YYLTYPE loc = this->get_location();
5766
5767 const char *const name = identifier;
5768
5769 /* New functions are always added to the top-level IR instruction stream,
5770 * so this instruction list pointer is ignored. See also emit_function
5771 * (called below).
5772 */
5773 (void) instructions;
5774
5775 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5776 *
5777 * "Function declarations (prototypes) cannot occur inside of functions;
5778 * they must be at global scope, or for the built-in functions, outside
5779 * the global scope."
5780 *
5781 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5782 *
5783 * "User defined functions may only be defined within the global scope."
5784 *
5785 * Note that this language does not appear in GLSL 1.10.
5786 */
5787 if ((state->current_function != NULL) &&
5788 state->is_version(120, 100)) {
5789 YYLTYPE loc = this->get_location();
5790 _mesa_glsl_error(&loc, state,
5791 "declaration of function `%s' not allowed within "
5792 "function body", name);
5793 }
5794
5795 validate_identifier(name, this->get_location(), state);
5796
5797 /* Convert the list of function parameters to HIR now so that they can be
5798 * used below to compare this function's signature with previously seen
5799 * signatures for functions with the same name.
5800 */
5801 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5802 is_definition,
5803 & hir_parameters, state);
5804
5805 const char *return_type_name;
5806 const glsl_type *return_type =
5807 this->return_type->glsl_type(& return_type_name, state);
5808
5809 if (!return_type) {
5810 YYLTYPE loc = this->get_location();
5811 _mesa_glsl_error(&loc, state,
5812 "function `%s' has undeclared return type `%s'",
5813 name, return_type_name);
5814 return_type = glsl_type::error_type;
5815 }
5816
5817 /* ARB_shader_subroutine states:
5818 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5819 * subroutine(...) to a function declaration."
5820 */
5821 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5822 YYLTYPE loc = this->get_location();
5823 _mesa_glsl_error(&loc, state,
5824 "function declaration `%s' cannot have subroutine prepended",
5825 name);
5826 }
5827
5828 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5829 * "No qualifier is allowed on the return type of a function."
5830 */
5831 if (this->return_type->has_qualifiers(state)) {
5832 YYLTYPE loc = this->get_location();
5833 _mesa_glsl_error(& loc, state,
5834 "function `%s' return type has qualifiers", name);
5835 }
5836
5837 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5838 *
5839 * "Arrays are allowed as arguments and as the return type. In both
5840 * cases, the array must be explicitly sized."
5841 */
5842 if (return_type->is_unsized_array()) {
5843 YYLTYPE loc = this->get_location();
5844 _mesa_glsl_error(& loc, state,
5845 "function `%s' return type array must be explicitly "
5846 "sized", name);
5847 }
5848
5849 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5850 *
5851 * "Arrays are allowed as arguments, but not as the return type. [...]
5852 * The return type can also be a structure if the structure does not
5853 * contain an array."
5854 */
5855 if (state->language_version == 100 && return_type->contains_array()) {
5856 YYLTYPE loc = this->get_location();
5857 _mesa_glsl_error(& loc, state,
5858 "function `%s' return type contains an array", name);
5859 }
5860
5861 /* From section 4.1.7 of the GLSL 4.40 spec:
5862 *
5863 * "[Opaque types] can only be declared as function parameters
5864 * or uniform-qualified variables."
5865 *
5866 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5867 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5868 * (Images)", this should be allowed.
5869 */
5870 if (return_type->contains_atomic() ||
5871 (!state->has_bindless() && return_type->contains_opaque())) {
5872 YYLTYPE loc = this->get_location();
5873 _mesa_glsl_error(&loc, state,
5874 "function `%s' return type can't contain an %s type",
5875 name, state->has_bindless() ? "atomic" : "opaque");
5876 }
5877
5878 /**/
5879 if (return_type->is_subroutine()) {
5880 YYLTYPE loc = this->get_location();
5881 _mesa_glsl_error(&loc, state,
5882 "function `%s' return type can't be a subroutine type",
5883 name);
5884 }
5885
5886
5887 /* Create an ir_function if one doesn't already exist. */
5888 f = state->symbols->get_function(name);
5889 if (f == NULL) {
5890 f = new(ctx) ir_function(name);
5891 if (!this->return_type->qualifier.is_subroutine_decl()) {
5892 if (!state->symbols->add_function(f)) {
5893 /* This function name shadows a non-function use of the same name. */
5894 YYLTYPE loc = this->get_location();
5895 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5896 "non-function", name);
5897 return NULL;
5898 }
5899 }
5900 emit_function(state, f);
5901 }
5902
5903 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5904 *
5905 * "A shader cannot redefine or overload built-in functions."
5906 *
5907 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5908 *
5909 * "User code can overload the built-in functions but cannot redefine
5910 * them."
5911 */
5912 if (state->es_shader) {
5913 /* Local shader has no exact candidates; check the built-ins. */
5914 _mesa_glsl_initialize_builtin_functions();
5915 if (state->language_version >= 300 &&
5916 _mesa_glsl_has_builtin_function(name)) {
5917 YYLTYPE loc = this->get_location();
5918 _mesa_glsl_error(& loc, state,
5919 "A shader cannot redefine or overload built-in "
5920 "function `%s' in GLSL ES 3.00", name);
5921 return NULL;
5922 }
5923
5924 if (state->language_version == 100) {
5925 ir_function_signature *sig =
5926 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5927 if (sig && sig->is_builtin()) {
5928 _mesa_glsl_error(& loc, state,
5929 "A shader cannot redefine built-in "
5930 "function `%s' in GLSL ES 1.00", name);
5931 }
5932 }
5933 }
5934
5935 /* Verify that this function's signature either doesn't match a previously
5936 * seen signature for a function with the same name, or, if a match is found,
5937 * that the previously seen signature does not have an associated definition.
5938 */
5939 if (state->es_shader || f->has_user_signature()) {
5940 sig = f->exact_matching_signature(state, &hir_parameters);
5941 if (sig != NULL) {
5942 const char *badvar = sig->qualifiers_match(&hir_parameters);
5943 if (badvar != NULL) {
5944 YYLTYPE loc = this->get_location();
5945
5946 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5947 "qualifiers don't match prototype", name, badvar);
5948 }
5949
5950 if (sig->return_type != return_type) {
5951 YYLTYPE loc = this->get_location();
5952
5953 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5954 "match prototype", name);
5955 }
5956
5957 if (sig->is_defined) {
5958 if (is_definition) {
5959 YYLTYPE loc = this->get_location();
5960 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5961 } else {
5962 /* We just encountered a prototype that exactly matches a
5963 * function that's already been defined. This is redundant,
5964 * and we should ignore it.
5965 */
5966 return NULL;
5967 }
5968 } else if (state->language_version == 100 && !is_definition) {
5969 /* From the GLSL 1.00 spec, section 4.2.7:
5970 *
5971 * "A particular variable, structure or function declaration
5972 * may occur at most once within a scope with the exception
5973 * that a single function prototype plus the corresponding
5974 * function definition are allowed."
5975 */
5976 YYLTYPE loc = this->get_location();
5977 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5978 }
5979 }
5980 }
5981
5982 /* Verify the return type of main() */
5983 if (strcmp(name, "main") == 0) {
5984 if (! return_type->is_void()) {
5985 YYLTYPE loc = this->get_location();
5986
5987 _mesa_glsl_error(& loc, state, "main() must return void");
5988 }
5989
5990 if (!hir_parameters.is_empty()) {
5991 YYLTYPE loc = this->get_location();
5992
5993 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5994 }
5995 }
5996
5997 /* Finish storing the information about this new function in its signature.
5998 */
5999 if (sig == NULL) {
6000 sig = new(ctx) ir_function_signature(return_type);
6001 f->add_signature(sig);
6002 }
6003
6004 sig->replace_parameters(&hir_parameters);
6005 signature = sig;
6006
6007 if (this->return_type->qualifier.subroutine_list) {
6008 int idx;
6009
6010 if (this->return_type->qualifier.flags.q.explicit_index) {
6011 unsigned qual_index;
6012 if (process_qualifier_constant(state, &loc, "index",
6013 this->return_type->qualifier.index,
6014 &qual_index)) {
6015 if (!state->has_explicit_uniform_location()) {
6016 _mesa_glsl_error(&loc, state, "subroutine index requires "
6017 "GL_ARB_explicit_uniform_location or "
6018 "GLSL 4.30");
6019 } else if (qual_index >= MAX_SUBROUTINES) {
6020 _mesa_glsl_error(&loc, state,
6021 "invalid subroutine index (%d) index must "
6022 "be a number between 0 and "
6023 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6024 MAX_SUBROUTINES - 1);
6025 } else {
6026 f->subroutine_index = qual_index;
6027 }
6028 }
6029 }
6030
6031 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6032 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6033 f->num_subroutine_types);
6034 idx = 0;
6035 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6036 const struct glsl_type *type;
6037 /* the subroutine type must be already declared */
6038 type = state->symbols->get_type(decl->identifier);
6039 if (!type) {
6040 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6041 }
6042
6043 for (int i = 0; i < state->num_subroutine_types; i++) {
6044 ir_function *fn = state->subroutine_types[i];
6045 ir_function_signature *tsig = NULL;
6046
6047 if (strcmp(fn->name, decl->identifier))
6048 continue;
6049
6050 tsig = fn->matching_signature(state, &sig->parameters,
6051 false);
6052 if (!tsig) {
6053 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6054 } else {
6055 if (tsig->return_type != sig->return_type) {
6056 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6057 }
6058 }
6059 }
6060 f->subroutine_types[idx++] = type;
6061 }
6062 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6063 ir_function *,
6064 state->num_subroutines + 1);
6065 state->subroutines[state->num_subroutines] = f;
6066 state->num_subroutines++;
6067
6068 }
6069
6070 if (this->return_type->qualifier.is_subroutine_decl()) {
6071 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6072 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6073 return NULL;
6074 }
6075 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6076 ir_function *,
6077 state->num_subroutine_types + 1);
6078 state->subroutine_types[state->num_subroutine_types] = f;
6079 state->num_subroutine_types++;
6080
6081 f->is_subroutine = true;
6082 }
6083
6084 /* Function declarations (prototypes) do not have r-values.
6085 */
6086 return NULL;
6087 }
6088
6089
6090 ir_rvalue *
6091 ast_function_definition::hir(exec_list *instructions,
6092 struct _mesa_glsl_parse_state *state)
6093 {
6094 prototype->is_definition = true;
6095 prototype->hir(instructions, state);
6096
6097 ir_function_signature *signature = prototype->signature;
6098 if (signature == NULL)
6099 return NULL;
6100
6101 assert(state->current_function == NULL);
6102 state->current_function = signature;
6103 state->found_return = false;
6104
6105 /* Duplicate parameters declared in the prototype as concrete variables.
6106 * Add these to the symbol table.
6107 */
6108 state->symbols->push_scope();
6109 foreach_in_list(ir_variable, var, &signature->parameters) {
6110 assert(var->as_variable() != NULL);
6111
6112 /* The only way a parameter would "exist" is if two parameters have
6113 * the same name.
6114 */
6115 if (state->symbols->name_declared_this_scope(var->name)) {
6116 YYLTYPE loc = this->get_location();
6117
6118 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6119 } else {
6120 state->symbols->add_variable(var);
6121 }
6122 }
6123
6124 /* Convert the body of the function to HIR. */
6125 this->body->hir(&signature->body, state);
6126 signature->is_defined = true;
6127
6128 state->symbols->pop_scope();
6129
6130 assert(state->current_function == signature);
6131 state->current_function = NULL;
6132
6133 if (!signature->return_type->is_void() && !state->found_return) {
6134 YYLTYPE loc = this->get_location();
6135 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6136 "%s, but no return statement",
6137 signature->function_name(),
6138 signature->return_type->name);
6139 }
6140
6141 /* Function definitions do not have r-values.
6142 */
6143 return NULL;
6144 }
6145
6146
6147 ir_rvalue *
6148 ast_jump_statement::hir(exec_list *instructions,
6149 struct _mesa_glsl_parse_state *state)
6150 {
6151 void *ctx = state;
6152
6153 switch (mode) {
6154 case ast_return: {
6155 ir_return *inst;
6156 assert(state->current_function);
6157
6158 if (opt_return_value) {
6159 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6160
6161 /* The value of the return type can be NULL if the shader says
6162 * 'return foo();' and foo() is a function that returns void.
6163 *
6164 * NOTE: The GLSL spec doesn't say that this is an error. The type
6165 * of the return value is void. If the return type of the function is
6166 * also void, then this should compile without error. Seriously.
6167 */
6168 const glsl_type *const ret_type =
6169 (ret == NULL) ? glsl_type::void_type : ret->type;
6170
6171 /* Implicit conversions are not allowed for return values prior to
6172 * ARB_shading_language_420pack.
6173 */
6174 if (state->current_function->return_type != ret_type) {
6175 YYLTYPE loc = this->get_location();
6176
6177 if (state->has_420pack()) {
6178 if (!apply_implicit_conversion(state->current_function->return_type,
6179 ret, state)) {
6180 _mesa_glsl_error(& loc, state,
6181 "could not implicitly convert return value "
6182 "to %s, in function `%s'",
6183 state->current_function->return_type->name,
6184 state->current_function->function_name());
6185 }
6186 } else {
6187 _mesa_glsl_error(& loc, state,
6188 "`return' with wrong type %s, in function `%s' "
6189 "returning %s",
6190 ret_type->name,
6191 state->current_function->function_name(),
6192 state->current_function->return_type->name);
6193 }
6194 } else if (state->current_function->return_type->base_type ==
6195 GLSL_TYPE_VOID) {
6196 YYLTYPE loc = this->get_location();
6197
6198 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6199 * specs add a clarification:
6200 *
6201 * "A void function can only use return without a return argument, even if
6202 * the return argument has void type. Return statements only accept values:
6203 *
6204 * void func1() { }
6205 * void func2() { return func1(); } // illegal return statement"
6206 */
6207 _mesa_glsl_error(& loc, state,
6208 "void functions can only use `return' without a "
6209 "return argument");
6210 }
6211
6212 inst = new(ctx) ir_return(ret);
6213 } else {
6214 if (state->current_function->return_type->base_type !=
6215 GLSL_TYPE_VOID) {
6216 YYLTYPE loc = this->get_location();
6217
6218 _mesa_glsl_error(& loc, state,
6219 "`return' with no value, in function %s returning "
6220 "non-void",
6221 state->current_function->function_name());
6222 }
6223 inst = new(ctx) ir_return;
6224 }
6225
6226 state->found_return = true;
6227 instructions->push_tail(inst);
6228 break;
6229 }
6230
6231 case ast_discard:
6232 if (state->stage != MESA_SHADER_FRAGMENT) {
6233 YYLTYPE loc = this->get_location();
6234
6235 _mesa_glsl_error(& loc, state,
6236 "`discard' may only appear in a fragment shader");
6237 }
6238 instructions->push_tail(new(ctx) ir_discard);
6239 break;
6240
6241 case ast_break:
6242 case ast_continue:
6243 if (mode == ast_continue &&
6244 state->loop_nesting_ast == NULL) {
6245 YYLTYPE loc = this->get_location();
6246
6247 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6248 } else if (mode == ast_break &&
6249 state->loop_nesting_ast == NULL &&
6250 state->switch_state.switch_nesting_ast == NULL) {
6251 YYLTYPE loc = this->get_location();
6252
6253 _mesa_glsl_error(& loc, state,
6254 "break may only appear in a loop or a switch");
6255 } else {
6256 /* For a loop, inline the for loop expression again, since we don't
6257 * know where near the end of the loop body the normal copy of it is
6258 * going to be placed. Same goes for the condition for a do-while
6259 * loop.
6260 */
6261 if (state->loop_nesting_ast != NULL &&
6262 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6263 if (state->loop_nesting_ast->rest_expression) {
6264 state->loop_nesting_ast->rest_expression->hir(instructions,
6265 state);
6266 }
6267 if (state->loop_nesting_ast->mode ==
6268 ast_iteration_statement::ast_do_while) {
6269 state->loop_nesting_ast->condition_to_hir(instructions, state);
6270 }
6271 }
6272
6273 if (state->switch_state.is_switch_innermost &&
6274 mode == ast_continue) {
6275 /* Set 'continue_inside' to true. */
6276 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6277 ir_dereference_variable *deref_continue_inside_var =
6278 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6279 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6280 true_val));
6281
6282 /* Break out from the switch, continue for the loop will
6283 * be called right after switch. */
6284 ir_loop_jump *const jump =
6285 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6286 instructions->push_tail(jump);
6287
6288 } else if (state->switch_state.is_switch_innermost &&
6289 mode == ast_break) {
6290 /* Force break out of switch by inserting a break. */
6291 ir_loop_jump *const jump =
6292 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6293 instructions->push_tail(jump);
6294 } else {
6295 ir_loop_jump *const jump =
6296 new(ctx) ir_loop_jump((mode == ast_break)
6297 ? ir_loop_jump::jump_break
6298 : ir_loop_jump::jump_continue);
6299 instructions->push_tail(jump);
6300 }
6301 }
6302
6303 break;
6304 }
6305
6306 /* Jump instructions do not have r-values.
6307 */
6308 return NULL;
6309 }
6310
6311
6312 ir_rvalue *
6313 ast_selection_statement::hir(exec_list *instructions,
6314 struct _mesa_glsl_parse_state *state)
6315 {
6316 void *ctx = state;
6317
6318 ir_rvalue *const condition = this->condition->hir(instructions, state);
6319
6320 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6321 *
6322 * "Any expression whose type evaluates to a Boolean can be used as the
6323 * conditional expression bool-expression. Vector types are not accepted
6324 * as the expression to if."
6325 *
6326 * The checks are separated so that higher quality diagnostics can be
6327 * generated for cases where both rules are violated.
6328 */
6329 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6330 YYLTYPE loc = this->condition->get_location();
6331
6332 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6333 "boolean");
6334 }
6335
6336 ir_if *const stmt = new(ctx) ir_if(condition);
6337
6338 if (then_statement != NULL) {
6339 state->symbols->push_scope();
6340 then_statement->hir(& stmt->then_instructions, state);
6341 state->symbols->pop_scope();
6342 }
6343
6344 if (else_statement != NULL) {
6345 state->symbols->push_scope();
6346 else_statement->hir(& stmt->else_instructions, state);
6347 state->symbols->pop_scope();
6348 }
6349
6350 instructions->push_tail(stmt);
6351
6352 /* if-statements do not have r-values.
6353 */
6354 return NULL;
6355 }
6356
6357
6358 /* Used for detection of duplicate case values, compare
6359 * given contents directly.
6360 */
6361 static bool
6362 compare_case_value(const void *a, const void *b)
6363 {
6364 return *(unsigned *) a == *(unsigned *) b;
6365 }
6366
6367
6368 /* Used for detection of duplicate case values, just
6369 * returns key contents as is.
6370 */
6371 static unsigned
6372 key_contents(const void *key)
6373 {
6374 return *(unsigned *) key;
6375 }
6376
6377
6378 ir_rvalue *
6379 ast_switch_statement::hir(exec_list *instructions,
6380 struct _mesa_glsl_parse_state *state)
6381 {
6382 void *ctx = state;
6383
6384 ir_rvalue *const test_expression =
6385 this->test_expression->hir(instructions, state);
6386
6387 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6388 *
6389 * "The type of init-expression in a switch statement must be a
6390 * scalar integer."
6391 */
6392 if (!test_expression->type->is_scalar() ||
6393 !test_expression->type->is_integer()) {
6394 YYLTYPE loc = this->test_expression->get_location();
6395
6396 _mesa_glsl_error(& loc,
6397 state,
6398 "switch-statement expression must be scalar "
6399 "integer");
6400 }
6401
6402 /* Track the switch-statement nesting in a stack-like manner.
6403 */
6404 struct glsl_switch_state saved = state->switch_state;
6405
6406 state->switch_state.is_switch_innermost = true;
6407 state->switch_state.switch_nesting_ast = this;
6408 state->switch_state.labels_ht =
6409 _mesa_hash_table_create(NULL, key_contents,
6410 compare_case_value);
6411 state->switch_state.previous_default = NULL;
6412
6413 /* Initalize is_fallthru state to false.
6414 */
6415 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6416 state->switch_state.is_fallthru_var =
6417 new(ctx) ir_variable(glsl_type::bool_type,
6418 "switch_is_fallthru_tmp",
6419 ir_var_temporary);
6420 instructions->push_tail(state->switch_state.is_fallthru_var);
6421
6422 ir_dereference_variable *deref_is_fallthru_var =
6423 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6424 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6425 is_fallthru_val));
6426
6427 /* Initialize continue_inside state to false.
6428 */
6429 state->switch_state.continue_inside =
6430 new(ctx) ir_variable(glsl_type::bool_type,
6431 "continue_inside_tmp",
6432 ir_var_temporary);
6433 instructions->push_tail(state->switch_state.continue_inside);
6434
6435 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6436 ir_dereference_variable *deref_continue_inside_var =
6437 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6438 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6439 false_val));
6440
6441 state->switch_state.run_default =
6442 new(ctx) ir_variable(glsl_type::bool_type,
6443 "run_default_tmp",
6444 ir_var_temporary);
6445 instructions->push_tail(state->switch_state.run_default);
6446
6447 /* Loop around the switch is used for flow control. */
6448 ir_loop * loop = new(ctx) ir_loop();
6449 instructions->push_tail(loop);
6450
6451 /* Cache test expression.
6452 */
6453 test_to_hir(&loop->body_instructions, state);
6454
6455 /* Emit code for body of switch stmt.
6456 */
6457 body->hir(&loop->body_instructions, state);
6458
6459 /* Insert a break at the end to exit loop. */
6460 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6461 loop->body_instructions.push_tail(jump);
6462
6463 /* If we are inside loop, check if continue got called inside switch. */
6464 if (state->loop_nesting_ast != NULL) {
6465 ir_dereference_variable *deref_continue_inside =
6466 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6467 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6468 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6469
6470 if (state->loop_nesting_ast != NULL) {
6471 if (state->loop_nesting_ast->rest_expression) {
6472 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6473 state);
6474 }
6475 if (state->loop_nesting_ast->mode ==
6476 ast_iteration_statement::ast_do_while) {
6477 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6478 }
6479 }
6480 irif->then_instructions.push_tail(jump);
6481 instructions->push_tail(irif);
6482 }
6483
6484 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6485
6486 state->switch_state = saved;
6487
6488 /* Switch statements do not have r-values. */
6489 return NULL;
6490 }
6491
6492
6493 void
6494 ast_switch_statement::test_to_hir(exec_list *instructions,
6495 struct _mesa_glsl_parse_state *state)
6496 {
6497 void *ctx = state;
6498
6499 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6500 * on the switch test case. The first one would be already raised when
6501 * getting the test_expression at ast_switch_statement::hir
6502 */
6503 test_expression->set_is_lhs(true);
6504 /* Cache value of test expression. */
6505 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6506
6507 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6508 "switch_test_tmp",
6509 ir_var_temporary);
6510 ir_dereference_variable *deref_test_var =
6511 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6512
6513 instructions->push_tail(state->switch_state.test_var);
6514 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6515 }
6516
6517
6518 ir_rvalue *
6519 ast_switch_body::hir(exec_list *instructions,
6520 struct _mesa_glsl_parse_state *state)
6521 {
6522 if (stmts != NULL)
6523 stmts->hir(instructions, state);
6524
6525 /* Switch bodies do not have r-values. */
6526 return NULL;
6527 }
6528
6529 ir_rvalue *
6530 ast_case_statement_list::hir(exec_list *instructions,
6531 struct _mesa_glsl_parse_state *state)
6532 {
6533 exec_list default_case, after_default, tmp;
6534
6535 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6536 case_stmt->hir(&tmp, state);
6537
6538 /* Default case. */
6539 if (state->switch_state.previous_default && default_case.is_empty()) {
6540 default_case.append_list(&tmp);
6541 continue;
6542 }
6543
6544 /* If default case found, append 'after_default' list. */
6545 if (!default_case.is_empty())
6546 after_default.append_list(&tmp);
6547 else
6548 instructions->append_list(&tmp);
6549 }
6550
6551 /* Handle the default case. This is done here because default might not be
6552 * the last case. We need to add checks against following cases first to see
6553 * if default should be chosen or not.
6554 */
6555 if (!default_case.is_empty()) {
6556
6557 ir_rvalue *const true_val = new (state) ir_constant(true);
6558 ir_dereference_variable *deref_run_default_var =
6559 new(state) ir_dereference_variable(state->switch_state.run_default);
6560
6561 /* Choose to run default case initially, following conditional
6562 * assignments might change this.
6563 */
6564 ir_assignment *const init_var =
6565 new(state) ir_assignment(deref_run_default_var, true_val);
6566 instructions->push_tail(init_var);
6567
6568 /* Default case was the last one, no checks required. */
6569 if (after_default.is_empty()) {
6570 instructions->append_list(&default_case);
6571 return NULL;
6572 }
6573
6574 foreach_in_list(ir_instruction, ir, &after_default) {
6575 ir_assignment *assign = ir->as_assignment();
6576
6577 if (!assign)
6578 continue;
6579
6580 /* Clone the check between case label and init expression. */
6581 ir_expression *exp = (ir_expression*) assign->condition;
6582 ir_expression *clone = exp->clone(state, NULL);
6583
6584 ir_dereference_variable *deref_var =
6585 new(state) ir_dereference_variable(state->switch_state.run_default);
6586 ir_rvalue *const false_val = new (state) ir_constant(false);
6587
6588 ir_assignment *const set_false =
6589 new(state) ir_assignment(deref_var, false_val, clone);
6590
6591 instructions->push_tail(set_false);
6592 }
6593
6594 /* Append default case and all cases after it. */
6595 instructions->append_list(&default_case);
6596 instructions->append_list(&after_default);
6597 }
6598
6599 /* Case statements do not have r-values. */
6600 return NULL;
6601 }
6602
6603 ir_rvalue *
6604 ast_case_statement::hir(exec_list *instructions,
6605 struct _mesa_glsl_parse_state *state)
6606 {
6607 labels->hir(instructions, state);
6608
6609 /* Guard case statements depending on fallthru state. */
6610 ir_dereference_variable *const deref_fallthru_guard =
6611 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6612 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6613
6614 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6615 stmt->hir(& test_fallthru->then_instructions, state);
6616
6617 instructions->push_tail(test_fallthru);
6618
6619 /* Case statements do not have r-values. */
6620 return NULL;
6621 }
6622
6623
6624 ir_rvalue *
6625 ast_case_label_list::hir(exec_list *instructions,
6626 struct _mesa_glsl_parse_state *state)
6627 {
6628 foreach_list_typed (ast_case_label, label, link, & this->labels)
6629 label->hir(instructions, state);
6630
6631 /* Case labels do not have r-values. */
6632 return NULL;
6633 }
6634
6635 ir_rvalue *
6636 ast_case_label::hir(exec_list *instructions,
6637 struct _mesa_glsl_parse_state *state)
6638 {
6639 void *ctx = state;
6640
6641 ir_dereference_variable *deref_fallthru_var =
6642 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6643
6644 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6645
6646 /* If not default case, ... */
6647 if (this->test_value != NULL) {
6648 /* Conditionally set fallthru state based on
6649 * comparison of cached test expression value to case label.
6650 */
6651 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6652 ir_constant *label_const = label_rval->constant_expression_value();
6653
6654 if (!label_const) {
6655 YYLTYPE loc = this->test_value->get_location();
6656
6657 _mesa_glsl_error(& loc, state,
6658 "switch statement case label must be a "
6659 "constant expression");
6660
6661 /* Stuff a dummy value in to allow processing to continue. */
6662 label_const = new(ctx) ir_constant(0);
6663 } else {
6664 hash_entry *entry =
6665 _mesa_hash_table_search(state->switch_state.labels_ht,
6666 (void *)(uintptr_t)&label_const->value.u[0]);
6667
6668 if (entry) {
6669 ast_expression *previous_label = (ast_expression *) entry->data;
6670 YYLTYPE loc = this->test_value->get_location();
6671 _mesa_glsl_error(& loc, state, "duplicate case value");
6672
6673 loc = previous_label->get_location();
6674 _mesa_glsl_error(& loc, state, "this is the previous case label");
6675 } else {
6676 _mesa_hash_table_insert(state->switch_state.labels_ht,
6677 (void *)(uintptr_t)&label_const->value.u[0],
6678 this->test_value);
6679 }
6680 }
6681
6682 ir_dereference_variable *deref_test_var =
6683 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6684
6685 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6686 label_const,
6687 deref_test_var);
6688
6689 /*
6690 * From GLSL 4.40 specification section 6.2 ("Selection"):
6691 *
6692 * "The type of the init-expression value in a switch statement must
6693 * be a scalar int or uint. The type of the constant-expression value
6694 * in a case label also must be a scalar int or uint. When any pair
6695 * of these values is tested for "equal value" and the types do not
6696 * match, an implicit conversion will be done to convert the int to a
6697 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6698 * is done."
6699 */
6700 if (label_const->type != state->switch_state.test_var->type) {
6701 YYLTYPE loc = this->test_value->get_location();
6702
6703 const glsl_type *type_a = label_const->type;
6704 const glsl_type *type_b = state->switch_state.test_var->type;
6705
6706 /* Check if int->uint implicit conversion is supported. */
6707 bool integer_conversion_supported =
6708 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6709 state);
6710
6711 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6712 !integer_conversion_supported) {
6713 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6714 "init-expression and case label (%s != %s)",
6715 type_a->name, type_b->name);
6716 } else {
6717 /* Conversion of the case label. */
6718 if (type_a->base_type == GLSL_TYPE_INT) {
6719 if (!apply_implicit_conversion(glsl_type::uint_type,
6720 test_cond->operands[0], state))
6721 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6722 } else {
6723 /* Conversion of the init-expression value. */
6724 if (!apply_implicit_conversion(glsl_type::uint_type,
6725 test_cond->operands[1], state))
6726 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6727 }
6728 }
6729 }
6730
6731 ir_assignment *set_fallthru_on_test =
6732 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6733
6734 instructions->push_tail(set_fallthru_on_test);
6735 } else { /* default case */
6736 if (state->switch_state.previous_default) {
6737 YYLTYPE loc = this->get_location();
6738 _mesa_glsl_error(& loc, state,
6739 "multiple default labels in one switch");
6740
6741 loc = state->switch_state.previous_default->get_location();
6742 _mesa_glsl_error(& loc, state, "this is the first default label");
6743 }
6744 state->switch_state.previous_default = this;
6745
6746 /* Set fallthru condition on 'run_default' bool. */
6747 ir_dereference_variable *deref_run_default =
6748 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6749 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6750 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6751 cond_true,
6752 deref_run_default);
6753
6754 /* Set falltrhu state. */
6755 ir_assignment *set_fallthru =
6756 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6757
6758 instructions->push_tail(set_fallthru);
6759 }
6760
6761 /* Case statements do not have r-values. */
6762 return NULL;
6763 }
6764
6765 void
6766 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6767 struct _mesa_glsl_parse_state *state)
6768 {
6769 void *ctx = state;
6770
6771 if (condition != NULL) {
6772 ir_rvalue *const cond =
6773 condition->hir(instructions, state);
6774
6775 if ((cond == NULL)
6776 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6777 YYLTYPE loc = condition->get_location();
6778
6779 _mesa_glsl_error(& loc, state,
6780 "loop condition must be scalar boolean");
6781 } else {
6782 /* As the first code in the loop body, generate a block that looks
6783 * like 'if (!condition) break;' as the loop termination condition.
6784 */
6785 ir_rvalue *const not_cond =
6786 new(ctx) ir_expression(ir_unop_logic_not, cond);
6787
6788 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6789
6790 ir_jump *const break_stmt =
6791 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6792
6793 if_stmt->then_instructions.push_tail(break_stmt);
6794 instructions->push_tail(if_stmt);
6795 }
6796 }
6797 }
6798
6799
6800 ir_rvalue *
6801 ast_iteration_statement::hir(exec_list *instructions,
6802 struct _mesa_glsl_parse_state *state)
6803 {
6804 void *ctx = state;
6805
6806 /* For-loops and while-loops start a new scope, but do-while loops do not.
6807 */
6808 if (mode != ast_do_while)
6809 state->symbols->push_scope();
6810
6811 if (init_statement != NULL)
6812 init_statement->hir(instructions, state);
6813
6814 ir_loop *const stmt = new(ctx) ir_loop();
6815 instructions->push_tail(stmt);
6816
6817 /* Track the current loop nesting. */
6818 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6819
6820 state->loop_nesting_ast = this;
6821
6822 /* Likewise, indicate that following code is closest to a loop,
6823 * NOT closest to a switch.
6824 */
6825 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6826 state->switch_state.is_switch_innermost = false;
6827
6828 if (mode != ast_do_while)
6829 condition_to_hir(&stmt->body_instructions, state);
6830
6831 if (body != NULL)
6832 body->hir(& stmt->body_instructions, state);
6833
6834 if (rest_expression != NULL)
6835 rest_expression->hir(& stmt->body_instructions, state);
6836
6837 if (mode == ast_do_while)
6838 condition_to_hir(&stmt->body_instructions, state);
6839
6840 if (mode != ast_do_while)
6841 state->symbols->pop_scope();
6842
6843 /* Restore previous nesting before returning. */
6844 state->loop_nesting_ast = nesting_ast;
6845 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6846
6847 /* Loops do not have r-values.
6848 */
6849 return NULL;
6850 }
6851
6852
6853 /**
6854 * Determine if the given type is valid for establishing a default precision
6855 * qualifier.
6856 *
6857 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6858 *
6859 * "The precision statement
6860 *
6861 * precision precision-qualifier type;
6862 *
6863 * can be used to establish a default precision qualifier. The type field
6864 * can be either int or float or any of the sampler types, and the
6865 * precision-qualifier can be lowp, mediump, or highp."
6866 *
6867 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6868 * qualifiers on sampler types, but this seems like an oversight (since the
6869 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6870 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6871 * version.
6872 */
6873 static bool
6874 is_valid_default_precision_type(const struct glsl_type *const type)
6875 {
6876 if (type == NULL)
6877 return false;
6878
6879 switch (type->base_type) {
6880 case GLSL_TYPE_INT:
6881 case GLSL_TYPE_FLOAT:
6882 /* "int" and "float" are valid, but vectors and matrices are not. */
6883 return type->vector_elements == 1 && type->matrix_columns == 1;
6884 case GLSL_TYPE_SAMPLER:
6885 case GLSL_TYPE_IMAGE:
6886 case GLSL_TYPE_ATOMIC_UINT:
6887 return true;
6888 default:
6889 return false;
6890 }
6891 }
6892
6893
6894 ir_rvalue *
6895 ast_type_specifier::hir(exec_list *instructions,
6896 struct _mesa_glsl_parse_state *state)
6897 {
6898 if (this->default_precision == ast_precision_none && this->structure == NULL)
6899 return NULL;
6900
6901 YYLTYPE loc = this->get_location();
6902
6903 /* If this is a precision statement, check that the type to which it is
6904 * applied is either float or int.
6905 *
6906 * From section 4.5.3 of the GLSL 1.30 spec:
6907 * "The precision statement
6908 * precision precision-qualifier type;
6909 * can be used to establish a default precision qualifier. The type
6910 * field can be either int or float [...]. Any other types or
6911 * qualifiers will result in an error.
6912 */
6913 if (this->default_precision != ast_precision_none) {
6914 if (!state->check_precision_qualifiers_allowed(&loc))
6915 return NULL;
6916
6917 if (this->structure != NULL) {
6918 _mesa_glsl_error(&loc, state,
6919 "precision qualifiers do not apply to structures");
6920 return NULL;
6921 }
6922
6923 if (this->array_specifier != NULL) {
6924 _mesa_glsl_error(&loc, state,
6925 "default precision statements do not apply to "
6926 "arrays");
6927 return NULL;
6928 }
6929
6930 const struct glsl_type *const type =
6931 state->symbols->get_type(this->type_name);
6932 if (!is_valid_default_precision_type(type)) {
6933 _mesa_glsl_error(&loc, state,
6934 "default precision statements apply only to "
6935 "float, int, and opaque types");
6936 return NULL;
6937 }
6938
6939 if (state->es_shader) {
6940 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6941 * spec says:
6942 *
6943 * "Non-precision qualified declarations will use the precision
6944 * qualifier specified in the most recent precision statement
6945 * that is still in scope. The precision statement has the same
6946 * scoping rules as variable declarations. If it is declared
6947 * inside a compound statement, its effect stops at the end of
6948 * the innermost statement it was declared in. Precision
6949 * statements in nested scopes override precision statements in
6950 * outer scopes. Multiple precision statements for the same basic
6951 * type can appear inside the same scope, with later statements
6952 * overriding earlier statements within that scope."
6953 *
6954 * Default precision specifications follow the same scope rules as
6955 * variables. So, we can track the state of the default precision
6956 * qualifiers in the symbol table, and the rules will just work. This
6957 * is a slight abuse of the symbol table, but it has the semantics
6958 * that we want.
6959 */
6960 state->symbols->add_default_precision_qualifier(this->type_name,
6961 this->default_precision);
6962 }
6963
6964 /* FINISHME: Translate precision statements into IR. */
6965 return NULL;
6966 }
6967
6968 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6969 * process_record_constructor() can do type-checking on C-style initializer
6970 * expressions of structs, but ast_struct_specifier should only be translated
6971 * to HIR if it is declaring the type of a structure.
6972 *
6973 * The ->is_declaration field is false for initializers of variables
6974 * declared separately from the struct's type definition.
6975 *
6976 * struct S { ... }; (is_declaration = true)
6977 * struct T { ... } t = { ... }; (is_declaration = true)
6978 * S s = { ... }; (is_declaration = false)
6979 */
6980 if (this->structure != NULL && this->structure->is_declaration)
6981 return this->structure->hir(instructions, state);
6982
6983 return NULL;
6984 }
6985
6986
6987 /**
6988 * Process a structure or interface block tree into an array of structure fields
6989 *
6990 * After parsing, where there are some syntax differnces, structures and
6991 * interface blocks are almost identical. They are similar enough that the
6992 * AST for each can be processed the same way into a set of
6993 * \c glsl_struct_field to describe the members.
6994 *
6995 * If we're processing an interface block, var_mode should be the type of the
6996 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6997 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6998 * ir_var_auto.
6999 *
7000 * \return
7001 * The number of fields processed. A pointer to the array structure fields is
7002 * stored in \c *fields_ret.
7003 */
7004 static unsigned
7005 ast_process_struct_or_iface_block_members(exec_list *instructions,
7006 struct _mesa_glsl_parse_state *state,
7007 exec_list *declarations,
7008 glsl_struct_field **fields_ret,
7009 bool is_interface,
7010 enum glsl_matrix_layout matrix_layout,
7011 bool allow_reserved_names,
7012 ir_variable_mode var_mode,
7013 ast_type_qualifier *layout,
7014 unsigned block_stream,
7015 unsigned block_xfb_buffer,
7016 unsigned block_xfb_offset,
7017 unsigned expl_location,
7018 unsigned expl_align)
7019 {
7020 unsigned decl_count = 0;
7021 unsigned next_offset = 0;
7022
7023 /* Make an initial pass over the list of fields to determine how
7024 * many there are. Each element in this list is an ast_declarator_list.
7025 * This means that we actually need to count the number of elements in the
7026 * 'declarations' list in each of the elements.
7027 */
7028 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7029 decl_count += decl_list->declarations.length();
7030 }
7031
7032 /* Allocate storage for the fields and process the field
7033 * declarations. As the declarations are processed, try to also convert
7034 * the types to HIR. This ensures that structure definitions embedded in
7035 * other structure definitions or in interface blocks are processed.
7036 */
7037 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7038 decl_count);
7039
7040 bool first_member = true;
7041 bool first_member_has_explicit_location = false;
7042
7043 unsigned i = 0;
7044 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7045 const char *type_name;
7046 YYLTYPE loc = decl_list->get_location();
7047
7048 decl_list->type->specifier->hir(instructions, state);
7049
7050 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7051 *
7052 * "Anonymous structures are not supported; so embedded structures
7053 * must have a declarator. A name given to an embedded struct is
7054 * scoped at the same level as the struct it is embedded in."
7055 *
7056 * The same section of the GLSL 1.20 spec says:
7057 *
7058 * "Anonymous structures are not supported. Embedded structures are
7059 * not supported."
7060 *
7061 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7062 * embedded structures in 1.10 only.
7063 */
7064 if (state->language_version != 110 &&
7065 decl_list->type->specifier->structure != NULL)
7066 _mesa_glsl_error(&loc, state,
7067 "embedded structure declarations are not allowed");
7068
7069 const glsl_type *decl_type =
7070 decl_list->type->glsl_type(& type_name, state);
7071
7072 const struct ast_type_qualifier *const qual =
7073 &decl_list->type->qualifier;
7074
7075 /* From section 4.3.9 of the GLSL 4.40 spec:
7076 *
7077 * "[In interface blocks] opaque types are not allowed."
7078 *
7079 * It should be impossible for decl_type to be NULL here. Cases that
7080 * might naturally lead to decl_type being NULL, especially for the
7081 * is_interface case, will have resulted in compilation having
7082 * already halted due to a syntax error.
7083 */
7084 assert(decl_type);
7085
7086 if (is_interface) {
7087 /* From section 4.3.7 of the ARB_bindless_texture spec:
7088 *
7089 * "(remove the following bullet from the last list on p. 39,
7090 * thereby permitting sampler types in interface blocks; image
7091 * types are also permitted in blocks by this extension)"
7092 *
7093 * * sampler types are not allowed
7094 */
7095 if (decl_type->contains_atomic() ||
7096 (!state->has_bindless() && decl_type->contains_opaque())) {
7097 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7098 "interface block contains %s variable",
7099 state->has_bindless() ? "atomic" : "opaque");
7100 }
7101 } else {
7102 if (decl_type->contains_atomic()) {
7103 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7104 *
7105 * "Members of structures cannot be declared as atomic counter
7106 * types."
7107 */
7108 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7109 }
7110
7111 if (!state->has_bindless() && decl_type->contains_image()) {
7112 /* FINISHME: Same problem as with atomic counters.
7113 * FINISHME: Request clarification from Khronos and add
7114 * FINISHME: spec quotation here.
7115 */
7116 _mesa_glsl_error(&loc, state, "image in structure");
7117 }
7118 }
7119
7120 if (qual->flags.q.explicit_binding) {
7121 _mesa_glsl_error(&loc, state,
7122 "binding layout qualifier cannot be applied "
7123 "to struct or interface block members");
7124 }
7125
7126 if (is_interface) {
7127 if (!first_member) {
7128 if (!layout->flags.q.explicit_location &&
7129 ((first_member_has_explicit_location &&
7130 !qual->flags.q.explicit_location) ||
7131 (!first_member_has_explicit_location &&
7132 qual->flags.q.explicit_location))) {
7133 _mesa_glsl_error(&loc, state,
7134 "when block-level location layout qualifier "
7135 "is not supplied either all members must "
7136 "have a location layout qualifier or all "
7137 "members must not have a location layout "
7138 "qualifier");
7139 }
7140 } else {
7141 first_member = false;
7142 first_member_has_explicit_location =
7143 qual->flags.q.explicit_location;
7144 }
7145 }
7146
7147 if (qual->flags.q.std140 ||
7148 qual->flags.q.std430 ||
7149 qual->flags.q.packed ||
7150 qual->flags.q.shared) {
7151 _mesa_glsl_error(&loc, state,
7152 "uniform/shader storage block layout qualifiers "
7153 "std140, std430, packed, and shared can only be "
7154 "applied to uniform/shader storage blocks, not "
7155 "members");
7156 }
7157
7158 if (qual->flags.q.constant) {
7159 _mesa_glsl_error(&loc, state,
7160 "const storage qualifier cannot be applied "
7161 "to struct or interface block members");
7162 }
7163
7164 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7165 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7166
7167 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7168 *
7169 * "A block member may be declared with a stream identifier, but
7170 * the specified stream must match the stream associated with the
7171 * containing block."
7172 */
7173 if (qual->flags.q.explicit_stream) {
7174 unsigned qual_stream;
7175 if (process_qualifier_constant(state, &loc, "stream",
7176 qual->stream, &qual_stream) &&
7177 qual_stream != block_stream) {
7178 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7179 "interface block member does not match "
7180 "the interface block (%u vs %u)", qual_stream,
7181 block_stream);
7182 }
7183 }
7184
7185 int xfb_buffer;
7186 unsigned explicit_xfb_buffer = 0;
7187 if (qual->flags.q.explicit_xfb_buffer) {
7188 unsigned qual_xfb_buffer;
7189 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7190 qual->xfb_buffer, &qual_xfb_buffer)) {
7191 explicit_xfb_buffer = 1;
7192 if (qual_xfb_buffer != block_xfb_buffer)
7193 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7194 "interface block member does not match "
7195 "the interface block (%u vs %u)",
7196 qual_xfb_buffer, block_xfb_buffer);
7197 }
7198 xfb_buffer = (int) qual_xfb_buffer;
7199 } else {
7200 if (layout)
7201 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7202 xfb_buffer = (int) block_xfb_buffer;
7203 }
7204
7205 int xfb_stride = -1;
7206 if (qual->flags.q.explicit_xfb_stride) {
7207 unsigned qual_xfb_stride;
7208 if (process_qualifier_constant(state, &loc, "xfb_stride",
7209 qual->xfb_stride, &qual_xfb_stride)) {
7210 xfb_stride = (int) qual_xfb_stride;
7211 }
7212 }
7213
7214 if (qual->flags.q.uniform && qual->has_interpolation()) {
7215 _mesa_glsl_error(&loc, state,
7216 "interpolation qualifiers cannot be used "
7217 "with uniform interface blocks");
7218 }
7219
7220 if ((qual->flags.q.uniform || !is_interface) &&
7221 qual->has_auxiliary_storage()) {
7222 _mesa_glsl_error(&loc, state,
7223 "auxiliary storage qualifiers cannot be used "
7224 "in uniform blocks or structures.");
7225 }
7226
7227 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7228 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7229 _mesa_glsl_error(&loc, state,
7230 "row_major and column_major can only be "
7231 "applied to interface blocks");
7232 } else
7233 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7234 }
7235
7236 if (qual->flags.q.read_only && qual->flags.q.write_only) {
7237 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
7238 "readonly and writeonly.");
7239 }
7240
7241 foreach_list_typed (ast_declaration, decl, link,
7242 &decl_list->declarations) {
7243 YYLTYPE loc = decl->get_location();
7244
7245 if (!allow_reserved_names)
7246 validate_identifier(decl->identifier, loc, state);
7247
7248 const struct glsl_type *field_type =
7249 process_array_type(&loc, decl_type, decl->array_specifier, state);
7250 validate_array_dimensions(field_type, state, &loc);
7251 fields[i].type = field_type;
7252 fields[i].name = decl->identifier;
7253 fields[i].interpolation =
7254 interpret_interpolation_qualifier(qual, field_type,
7255 var_mode, state, &loc);
7256 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7257 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7258 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7259 fields[i].precision = qual->precision;
7260 fields[i].offset = -1;
7261 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7262 fields[i].xfb_buffer = xfb_buffer;
7263 fields[i].xfb_stride = xfb_stride;
7264
7265 if (qual->flags.q.explicit_location) {
7266 unsigned qual_location;
7267 if (process_qualifier_constant(state, &loc, "location",
7268 qual->location, &qual_location)) {
7269 fields[i].location = qual_location +
7270 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7271 expl_location = fields[i].location +
7272 fields[i].type->count_attribute_slots(false);
7273 }
7274 } else {
7275 if (layout && layout->flags.q.explicit_location) {
7276 fields[i].location = expl_location;
7277 expl_location += fields[i].type->count_attribute_slots(false);
7278 } else {
7279 fields[i].location = -1;
7280 }
7281 }
7282
7283 /* Offset can only be used with std430 and std140 layouts an initial
7284 * value of 0 is used for error detection.
7285 */
7286 unsigned align = 0;
7287 unsigned size = 0;
7288 if (layout) {
7289 bool row_major;
7290 if (qual->flags.q.row_major ||
7291 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7292 row_major = true;
7293 } else {
7294 row_major = false;
7295 }
7296
7297 if(layout->flags.q.std140) {
7298 align = field_type->std140_base_alignment(row_major);
7299 size = field_type->std140_size(row_major);
7300 } else if (layout->flags.q.std430) {
7301 align = field_type->std430_base_alignment(row_major);
7302 size = field_type->std430_size(row_major);
7303 }
7304 }
7305
7306 if (qual->flags.q.explicit_offset) {
7307 unsigned qual_offset;
7308 if (process_qualifier_constant(state, &loc, "offset",
7309 qual->offset, &qual_offset)) {
7310 if (align != 0 && size != 0) {
7311 if (next_offset > qual_offset)
7312 _mesa_glsl_error(&loc, state, "layout qualifier "
7313 "offset overlaps previous member");
7314
7315 if (qual_offset % align) {
7316 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7317 "must be a multiple of the base "
7318 "alignment of %s", field_type->name);
7319 }
7320 fields[i].offset = qual_offset;
7321 next_offset = glsl_align(qual_offset + size, align);
7322 } else {
7323 _mesa_glsl_error(&loc, state, "offset can only be used "
7324 "with std430 and std140 layouts");
7325 }
7326 }
7327 }
7328
7329 if (qual->flags.q.explicit_align || expl_align != 0) {
7330 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7331 next_offset;
7332 if (align == 0 || size == 0) {
7333 _mesa_glsl_error(&loc, state, "align can only be used with "
7334 "std430 and std140 layouts");
7335 } else if (qual->flags.q.explicit_align) {
7336 unsigned member_align;
7337 if (process_qualifier_constant(state, &loc, "align",
7338 qual->align, &member_align)) {
7339 if (member_align == 0 ||
7340 member_align & (member_align - 1)) {
7341 _mesa_glsl_error(&loc, state, "align layout qualifier "
7342 "in not a power of 2");
7343 } else {
7344 fields[i].offset = glsl_align(offset, member_align);
7345 next_offset = glsl_align(fields[i].offset + size, align);
7346 }
7347 }
7348 } else {
7349 fields[i].offset = glsl_align(offset, expl_align);
7350 next_offset = glsl_align(fields[i].offset + size, align);
7351 }
7352 } else if (!qual->flags.q.explicit_offset) {
7353 if (align != 0 && size != 0)
7354 next_offset = glsl_align(next_offset + size, align);
7355 }
7356
7357 /* From the ARB_enhanced_layouts spec:
7358 *
7359 * "The given offset applies to the first component of the first
7360 * member of the qualified entity. Then, within the qualified
7361 * entity, subsequent components are each assigned, in order, to
7362 * the next available offset aligned to a multiple of that
7363 * component's size. Aggregate types are flattened down to the
7364 * component level to get this sequence of components."
7365 */
7366 if (qual->flags.q.explicit_xfb_offset) {
7367 unsigned xfb_offset;
7368 if (process_qualifier_constant(state, &loc, "xfb_offset",
7369 qual->offset, &xfb_offset)) {
7370 fields[i].offset = xfb_offset;
7371 block_xfb_offset = fields[i].offset +
7372 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7373 }
7374 } else {
7375 if (layout && layout->flags.q.explicit_xfb_offset) {
7376 unsigned align = field_type->is_64bit() ? 8 : 4;
7377 fields[i].offset = glsl_align(block_xfb_offset, align);
7378 block_xfb_offset +=
7379 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7380 }
7381 }
7382
7383 /* Propogate row- / column-major information down the fields of the
7384 * structure or interface block. Structures need this data because
7385 * the structure may contain a structure that contains ... a matrix
7386 * that need the proper layout.
7387 */
7388 if (is_interface && layout &&
7389 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7390 (field_type->without_array()->is_matrix()
7391 || field_type->without_array()->is_record())) {
7392 /* If no layout is specified for the field, inherit the layout
7393 * from the block.
7394 */
7395 fields[i].matrix_layout = matrix_layout;
7396
7397 if (qual->flags.q.row_major)
7398 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7399 else if (qual->flags.q.column_major)
7400 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7401
7402 /* If we're processing an uniform or buffer block, the matrix
7403 * layout must be decided by this point.
7404 */
7405 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7406 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7407 }
7408
7409 /* Memory qualifiers are allowed on buffer and image variables, while
7410 * the format qualifier is only accepted for images.
7411 */
7412 if (var_mode == ir_var_shader_storage ||
7413 field_type->without_array()->is_image()) {
7414 /* For readonly and writeonly qualifiers the field definition,
7415 * if set, overwrites the layout qualifier.
7416 */
7417 if (qual->flags.q.read_only) {
7418 fields[i].memory_read_only = true;
7419 fields[i].memory_write_only = false;
7420 } else if (qual->flags.q.write_only) {
7421 fields[i].memory_read_only = false;
7422 fields[i].memory_write_only = true;
7423 } else {
7424 fields[i].memory_read_only =
7425 layout ? layout->flags.q.read_only : 0;
7426 fields[i].memory_write_only =
7427 layout ? layout->flags.q.write_only : 0;
7428 }
7429
7430 /* For other qualifiers, we set the flag if either the layout
7431 * qualifier or the field qualifier are set
7432 */
7433 fields[i].memory_coherent = qual->flags.q.coherent ||
7434 (layout && layout->flags.q.coherent);
7435 fields[i].memory_volatile = qual->flags.q._volatile ||
7436 (layout && layout->flags.q._volatile);
7437 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7438 (layout && layout->flags.q.restrict_flag);
7439
7440 if (field_type->without_array()->is_image()) {
7441 if (qual->flags.q.explicit_image_format) {
7442 if (qual->image_base_type !=
7443 field_type->without_array()->sampled_type) {
7444 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7445 "match the base data type of the image");
7446 }
7447
7448 fields[i].image_format = qual->image_format;
7449 } else {
7450 if (!qual->flags.q.write_only) {
7451 _mesa_glsl_error(&loc, state, "image not qualified with "
7452 "`writeonly' must have a format layout "
7453 "qualifier");
7454 }
7455
7456 fields[i].image_format = GL_NONE;
7457 }
7458 }
7459 }
7460
7461 i++;
7462 }
7463 }
7464
7465 assert(i == decl_count);
7466
7467 *fields_ret = fields;
7468 return decl_count;
7469 }
7470
7471
7472 ir_rvalue *
7473 ast_struct_specifier::hir(exec_list *instructions,
7474 struct _mesa_glsl_parse_state *state)
7475 {
7476 YYLTYPE loc = this->get_location();
7477
7478 unsigned expl_location = 0;
7479 if (layout && layout->flags.q.explicit_location) {
7480 if (!process_qualifier_constant(state, &loc, "location",
7481 layout->location, &expl_location)) {
7482 return NULL;
7483 } else {
7484 expl_location = VARYING_SLOT_VAR0 + expl_location;
7485 }
7486 }
7487
7488 glsl_struct_field *fields;
7489 unsigned decl_count =
7490 ast_process_struct_or_iface_block_members(instructions,
7491 state,
7492 &this->declarations,
7493 &fields,
7494 false,
7495 GLSL_MATRIX_LAYOUT_INHERITED,
7496 false /* allow_reserved_names */,
7497 ir_var_auto,
7498 layout,
7499 0, /* for interface only */
7500 0, /* for interface only */
7501 0, /* for interface only */
7502 expl_location,
7503 0 /* for interface only */);
7504
7505 validate_identifier(this->name, loc, state);
7506
7507 const glsl_type *t =
7508 glsl_type::get_record_instance(fields, decl_count, this->name);
7509
7510 if (!state->symbols->add_type(name, t)) {
7511 const glsl_type *match = state->symbols->get_type(name);
7512 /* allow struct matching for desktop GL - older UE4 does this */
7513 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7514 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7515 else
7516 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7517 } else {
7518 const glsl_type **s = reralloc(state, state->user_structures,
7519 const glsl_type *,
7520 state->num_user_structures + 1);
7521 if (s != NULL) {
7522 s[state->num_user_structures] = t;
7523 state->user_structures = s;
7524 state->num_user_structures++;
7525 }
7526 }
7527
7528 /* Structure type definitions do not have r-values.
7529 */
7530 return NULL;
7531 }
7532
7533
7534 /**
7535 * Visitor class which detects whether a given interface block has been used.
7536 */
7537 class interface_block_usage_visitor : public ir_hierarchical_visitor
7538 {
7539 public:
7540 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7541 : mode(mode), block(block), found(false)
7542 {
7543 }
7544
7545 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7546 {
7547 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7548 found = true;
7549 return visit_stop;
7550 }
7551 return visit_continue;
7552 }
7553
7554 bool usage_found() const
7555 {
7556 return this->found;
7557 }
7558
7559 private:
7560 ir_variable_mode mode;
7561 const glsl_type *block;
7562 bool found;
7563 };
7564
7565 static bool
7566 is_unsized_array_last_element(ir_variable *v)
7567 {
7568 const glsl_type *interface_type = v->get_interface_type();
7569 int length = interface_type->length;
7570
7571 assert(v->type->is_unsized_array());
7572
7573 /* Check if it is the last element of the interface */
7574 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7575 return true;
7576 return false;
7577 }
7578
7579 static void
7580 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7581 {
7582 var->data.memory_read_only = field.memory_read_only;
7583 var->data.memory_write_only = field.memory_write_only;
7584 var->data.memory_coherent = field.memory_coherent;
7585 var->data.memory_volatile = field.memory_volatile;
7586 var->data.memory_restrict = field.memory_restrict;
7587 }
7588
7589 ir_rvalue *
7590 ast_interface_block::hir(exec_list *instructions,
7591 struct _mesa_glsl_parse_state *state)
7592 {
7593 YYLTYPE loc = this->get_location();
7594
7595 /* Interface blocks must be declared at global scope */
7596 if (state->current_function != NULL) {
7597 _mesa_glsl_error(&loc, state,
7598 "Interface block `%s' must be declared "
7599 "at global scope",
7600 this->block_name);
7601 }
7602
7603 /* Validate qualifiers:
7604 *
7605 * - Layout Qualifiers as per the table in Section 4.4
7606 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7607 *
7608 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7609 * GLSL 4.50 spec:
7610 *
7611 * "Additionally, memory qualifiers may also be used in the declaration
7612 * of shader storage blocks"
7613 *
7614 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7615 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7616 * Layout Qualifiers) of the GLSL 4.50 spec says:
7617 *
7618 * "The std430 qualifier is supported only for shader storage blocks;
7619 * using std430 on a uniform block will result in a compile-time error."
7620 */
7621 ast_type_qualifier allowed_blk_qualifiers;
7622 allowed_blk_qualifiers.flags.i = 0;
7623 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7624 allowed_blk_qualifiers.flags.q.shared = 1;
7625 allowed_blk_qualifiers.flags.q.packed = 1;
7626 allowed_blk_qualifiers.flags.q.std140 = 1;
7627 allowed_blk_qualifiers.flags.q.row_major = 1;
7628 allowed_blk_qualifiers.flags.q.column_major = 1;
7629 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7630 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7631 if (this->layout.flags.q.buffer) {
7632 allowed_blk_qualifiers.flags.q.buffer = 1;
7633 allowed_blk_qualifiers.flags.q.std430 = 1;
7634 allowed_blk_qualifiers.flags.q.coherent = 1;
7635 allowed_blk_qualifiers.flags.q._volatile = 1;
7636 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7637 allowed_blk_qualifiers.flags.q.read_only = 1;
7638 allowed_blk_qualifiers.flags.q.write_only = 1;
7639 } else {
7640 allowed_blk_qualifiers.flags.q.uniform = 1;
7641 }
7642 } else {
7643 /* Interface block */
7644 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7645
7646 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7647 if (this->layout.flags.q.out) {
7648 allowed_blk_qualifiers.flags.q.out = 1;
7649 if (state->stage == MESA_SHADER_GEOMETRY ||
7650 state->stage == MESA_SHADER_TESS_CTRL ||
7651 state->stage == MESA_SHADER_TESS_EVAL ||
7652 state->stage == MESA_SHADER_VERTEX ) {
7653 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7654 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7655 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7656 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7657 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7658 if (state->stage == MESA_SHADER_GEOMETRY) {
7659 allowed_blk_qualifiers.flags.q.stream = 1;
7660 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7661 }
7662 if (state->stage == MESA_SHADER_TESS_CTRL) {
7663 allowed_blk_qualifiers.flags.q.patch = 1;
7664 }
7665 }
7666 } else {
7667 allowed_blk_qualifiers.flags.q.in = 1;
7668 if (state->stage == MESA_SHADER_TESS_EVAL) {
7669 allowed_blk_qualifiers.flags.q.patch = 1;
7670 }
7671 }
7672 }
7673
7674 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7675 "invalid qualifier for block",
7676 this->block_name);
7677
7678 /* The ast_interface_block has a list of ast_declarator_lists. We
7679 * need to turn those into ir_variables with an association
7680 * with this uniform block.
7681 */
7682 enum glsl_interface_packing packing;
7683 if (this->layout.flags.q.shared) {
7684 packing = GLSL_INTERFACE_PACKING_SHARED;
7685 } else if (this->layout.flags.q.packed) {
7686 packing = GLSL_INTERFACE_PACKING_PACKED;
7687 } else if (this->layout.flags.q.std430) {
7688 packing = GLSL_INTERFACE_PACKING_STD430;
7689 } else {
7690 /* The default layout is std140.
7691 */
7692 packing = GLSL_INTERFACE_PACKING_STD140;
7693 }
7694
7695 ir_variable_mode var_mode;
7696 const char *iface_type_name;
7697 if (this->layout.flags.q.in) {
7698 var_mode = ir_var_shader_in;
7699 iface_type_name = "in";
7700 } else if (this->layout.flags.q.out) {
7701 var_mode = ir_var_shader_out;
7702 iface_type_name = "out";
7703 } else if (this->layout.flags.q.uniform) {
7704 var_mode = ir_var_uniform;
7705 iface_type_name = "uniform";
7706 } else if (this->layout.flags.q.buffer) {
7707 var_mode = ir_var_shader_storage;
7708 iface_type_name = "buffer";
7709 } else {
7710 var_mode = ir_var_auto;
7711 iface_type_name = "UNKNOWN";
7712 assert(!"interface block layout qualifier not found!");
7713 }
7714
7715 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7716 if (this->layout.flags.q.row_major)
7717 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7718 else if (this->layout.flags.q.column_major)
7719 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7720
7721 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7722 exec_list declared_variables;
7723 glsl_struct_field *fields;
7724
7725 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7726 * that we don't have incompatible qualifiers
7727 */
7728 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7729 _mesa_glsl_error(&loc, state,
7730 "Interface block sets both readonly and writeonly");
7731 }
7732
7733 unsigned qual_stream;
7734 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7735 &qual_stream) ||
7736 !validate_stream_qualifier(&loc, state, qual_stream)) {
7737 /* If the stream qualifier is invalid it doesn't make sense to continue
7738 * on and try to compare stream layouts on member variables against it
7739 * so just return early.
7740 */
7741 return NULL;
7742 }
7743
7744 unsigned qual_xfb_buffer;
7745 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7746 layout.xfb_buffer, &qual_xfb_buffer) ||
7747 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7748 return NULL;
7749 }
7750
7751 unsigned qual_xfb_offset;
7752 if (layout.flags.q.explicit_xfb_offset) {
7753 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7754 layout.offset, &qual_xfb_offset)) {
7755 return NULL;
7756 }
7757 }
7758
7759 unsigned qual_xfb_stride;
7760 if (layout.flags.q.explicit_xfb_stride) {
7761 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7762 layout.xfb_stride, &qual_xfb_stride)) {
7763 return NULL;
7764 }
7765 }
7766
7767 unsigned expl_location = 0;
7768 if (layout.flags.q.explicit_location) {
7769 if (!process_qualifier_constant(state, &loc, "location",
7770 layout.location, &expl_location)) {
7771 return NULL;
7772 } else {
7773 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7774 : VARYING_SLOT_VAR0;
7775 }
7776 }
7777
7778 unsigned expl_align = 0;
7779 if (layout.flags.q.explicit_align) {
7780 if (!process_qualifier_constant(state, &loc, "align",
7781 layout.align, &expl_align)) {
7782 return NULL;
7783 } else {
7784 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7785 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7786 "power of 2.");
7787 return NULL;
7788 }
7789 }
7790 }
7791
7792 unsigned int num_variables =
7793 ast_process_struct_or_iface_block_members(&declared_variables,
7794 state,
7795 &this->declarations,
7796 &fields,
7797 true,
7798 matrix_layout,
7799 redeclaring_per_vertex,
7800 var_mode,
7801 &this->layout,
7802 qual_stream,
7803 qual_xfb_buffer,
7804 qual_xfb_offset,
7805 expl_location,
7806 expl_align);
7807
7808 if (!redeclaring_per_vertex) {
7809 validate_identifier(this->block_name, loc, state);
7810
7811 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7812 *
7813 * "Block names have no other use within a shader beyond interface
7814 * matching; it is a compile-time error to use a block name at global
7815 * scope for anything other than as a block name."
7816 */
7817 ir_variable *var = state->symbols->get_variable(this->block_name);
7818 if (var && !var->type->is_interface()) {
7819 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7820 "already used in the scope.",
7821 this->block_name);
7822 }
7823 }
7824
7825 const glsl_type *earlier_per_vertex = NULL;
7826 if (redeclaring_per_vertex) {
7827 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7828 * the named interface block gl_in, we can find it by looking at the
7829 * previous declaration of gl_in. Otherwise we can find it by looking
7830 * at the previous decalartion of any of the built-in outputs,
7831 * e.g. gl_Position.
7832 *
7833 * Also check that the instance name and array-ness of the redeclaration
7834 * are correct.
7835 */
7836 switch (var_mode) {
7837 case ir_var_shader_in:
7838 if (ir_variable *earlier_gl_in =
7839 state->symbols->get_variable("gl_in")) {
7840 earlier_per_vertex = earlier_gl_in->get_interface_type();
7841 } else {
7842 _mesa_glsl_error(&loc, state,
7843 "redeclaration of gl_PerVertex input not allowed "
7844 "in the %s shader",
7845 _mesa_shader_stage_to_string(state->stage));
7846 }
7847 if (this->instance_name == NULL ||
7848 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7849 !this->array_specifier->is_single_dimension()) {
7850 _mesa_glsl_error(&loc, state,
7851 "gl_PerVertex input must be redeclared as "
7852 "gl_in[]");
7853 }
7854 break;
7855 case ir_var_shader_out:
7856 if (ir_variable *earlier_gl_Position =
7857 state->symbols->get_variable("gl_Position")) {
7858 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7859 } else if (ir_variable *earlier_gl_out =
7860 state->symbols->get_variable("gl_out")) {
7861 earlier_per_vertex = earlier_gl_out->get_interface_type();
7862 } else {
7863 _mesa_glsl_error(&loc, state,
7864 "redeclaration of gl_PerVertex output not "
7865 "allowed in the %s shader",
7866 _mesa_shader_stage_to_string(state->stage));
7867 }
7868 if (state->stage == MESA_SHADER_TESS_CTRL) {
7869 if (this->instance_name == NULL ||
7870 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7871 _mesa_glsl_error(&loc, state,
7872 "gl_PerVertex output must be redeclared as "
7873 "gl_out[]");
7874 }
7875 } else {
7876 if (this->instance_name != NULL) {
7877 _mesa_glsl_error(&loc, state,
7878 "gl_PerVertex output may not be redeclared with "
7879 "an instance name");
7880 }
7881 }
7882 break;
7883 default:
7884 _mesa_glsl_error(&loc, state,
7885 "gl_PerVertex must be declared as an input or an "
7886 "output");
7887 break;
7888 }
7889
7890 if (earlier_per_vertex == NULL) {
7891 /* An error has already been reported. Bail out to avoid null
7892 * dereferences later in this function.
7893 */
7894 return NULL;
7895 }
7896
7897 /* Copy locations from the old gl_PerVertex interface block. */
7898 for (unsigned i = 0; i < num_variables; i++) {
7899 int j = earlier_per_vertex->field_index(fields[i].name);
7900 if (j == -1) {
7901 _mesa_glsl_error(&loc, state,
7902 "redeclaration of gl_PerVertex must be a subset "
7903 "of the built-in members of gl_PerVertex");
7904 } else {
7905 fields[i].location =
7906 earlier_per_vertex->fields.structure[j].location;
7907 fields[i].offset =
7908 earlier_per_vertex->fields.structure[j].offset;
7909 fields[i].interpolation =
7910 earlier_per_vertex->fields.structure[j].interpolation;
7911 fields[i].centroid =
7912 earlier_per_vertex->fields.structure[j].centroid;
7913 fields[i].sample =
7914 earlier_per_vertex->fields.structure[j].sample;
7915 fields[i].patch =
7916 earlier_per_vertex->fields.structure[j].patch;
7917 fields[i].precision =
7918 earlier_per_vertex->fields.structure[j].precision;
7919 fields[i].explicit_xfb_buffer =
7920 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7921 fields[i].xfb_buffer =
7922 earlier_per_vertex->fields.structure[j].xfb_buffer;
7923 fields[i].xfb_stride =
7924 earlier_per_vertex->fields.structure[j].xfb_stride;
7925 }
7926 }
7927
7928 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7929 * spec:
7930 *
7931 * If a built-in interface block is redeclared, it must appear in
7932 * the shader before any use of any member included in the built-in
7933 * declaration, or a compilation error will result.
7934 *
7935 * This appears to be a clarification to the behaviour established for
7936 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7937 * regardless of GLSL version.
7938 */
7939 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7940 v.run(instructions);
7941 if (v.usage_found()) {
7942 _mesa_glsl_error(&loc, state,
7943 "redeclaration of a built-in interface block must "
7944 "appear before any use of any member of the "
7945 "interface block");
7946 }
7947 }
7948
7949 const glsl_type *block_type =
7950 glsl_type::get_interface_instance(fields,
7951 num_variables,
7952 packing,
7953 matrix_layout ==
7954 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7955 this->block_name);
7956
7957 unsigned component_size = block_type->contains_double() ? 8 : 4;
7958 int xfb_offset =
7959 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7960 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7961 component_size);
7962
7963 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7964 YYLTYPE loc = this->get_location();
7965 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7966 "already taken in the current scope",
7967 this->block_name, iface_type_name);
7968 }
7969
7970 /* Since interface blocks cannot contain statements, it should be
7971 * impossible for the block to generate any instructions.
7972 */
7973 assert(declared_variables.is_empty());
7974
7975 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7976 *
7977 * Geometry shader input variables get the per-vertex values written
7978 * out by vertex shader output variables of the same names. Since a
7979 * geometry shader operates on a set of vertices, each input varying
7980 * variable (or input block, see interface blocks below) needs to be
7981 * declared as an array.
7982 */
7983 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7984 var_mode == ir_var_shader_in) {
7985 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7986 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7987 state->stage == MESA_SHADER_TESS_EVAL) &&
7988 !this->layout.flags.q.patch &&
7989 this->array_specifier == NULL &&
7990 var_mode == ir_var_shader_in) {
7991 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7992 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7993 !this->layout.flags.q.patch &&
7994 this->array_specifier == NULL &&
7995 var_mode == ir_var_shader_out) {
7996 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7997 }
7998
7999
8000 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8001 * says:
8002 *
8003 * "If an instance name (instance-name) is used, then it puts all the
8004 * members inside a scope within its own name space, accessed with the
8005 * field selector ( . ) operator (analogously to structures)."
8006 */
8007 if (this->instance_name) {
8008 if (redeclaring_per_vertex) {
8009 /* When a built-in in an unnamed interface block is redeclared,
8010 * get_variable_being_redeclared() calls
8011 * check_builtin_array_max_size() to make sure that built-in array
8012 * variables aren't redeclared to illegal sizes. But we're looking
8013 * at a redeclaration of a named built-in interface block. So we
8014 * have to manually call check_builtin_array_max_size() for all parts
8015 * of the interface that are arrays.
8016 */
8017 for (unsigned i = 0; i < num_variables; i++) {
8018 if (fields[i].type->is_array()) {
8019 const unsigned size = fields[i].type->array_size();
8020 check_builtin_array_max_size(fields[i].name, size, loc, state);
8021 }
8022 }
8023 } else {
8024 validate_identifier(this->instance_name, loc, state);
8025 }
8026
8027 ir_variable *var;
8028
8029 if (this->array_specifier != NULL) {
8030 const glsl_type *block_array_type =
8031 process_array_type(&loc, block_type, this->array_specifier, state);
8032
8033 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8034 *
8035 * For uniform blocks declared an array, each individual array
8036 * element corresponds to a separate buffer object backing one
8037 * instance of the block. As the array size indicates the number
8038 * of buffer objects needed, uniform block array declarations
8039 * must specify an array size.
8040 *
8041 * And a few paragraphs later:
8042 *
8043 * Geometry shader input blocks must be declared as arrays and
8044 * follow the array declaration and linking rules for all
8045 * geometry shader inputs. All other input and output block
8046 * arrays must specify an array size.
8047 *
8048 * The same applies to tessellation shaders.
8049 *
8050 * The upshot of this is that the only circumstance where an
8051 * interface array size *doesn't* need to be specified is on a
8052 * geometry shader input, tessellation control shader input,
8053 * tessellation control shader output, and tessellation evaluation
8054 * shader input.
8055 */
8056 if (block_array_type->is_unsized_array()) {
8057 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8058 state->stage == MESA_SHADER_TESS_CTRL ||
8059 state->stage == MESA_SHADER_TESS_EVAL;
8060 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8061
8062 if (this->layout.flags.q.in) {
8063 if (!allow_inputs)
8064 _mesa_glsl_error(&loc, state,
8065 "unsized input block arrays not allowed in "
8066 "%s shader",
8067 _mesa_shader_stage_to_string(state->stage));
8068 } else if (this->layout.flags.q.out) {
8069 if (!allow_outputs)
8070 _mesa_glsl_error(&loc, state,
8071 "unsized output block arrays not allowed in "
8072 "%s shader",
8073 _mesa_shader_stage_to_string(state->stage));
8074 } else {
8075 /* by elimination, this is a uniform block array */
8076 _mesa_glsl_error(&loc, state,
8077 "unsized uniform block arrays not allowed in "
8078 "%s shader",
8079 _mesa_shader_stage_to_string(state->stage));
8080 }
8081 }
8082
8083 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8084 *
8085 * * Arrays of arrays of blocks are not allowed
8086 */
8087 if (state->es_shader && block_array_type->is_array() &&
8088 block_array_type->fields.array->is_array()) {
8089 _mesa_glsl_error(&loc, state,
8090 "arrays of arrays interface blocks are "
8091 "not allowed");
8092 }
8093
8094 var = new(state) ir_variable(block_array_type,
8095 this->instance_name,
8096 var_mode);
8097 } else {
8098 var = new(state) ir_variable(block_type,
8099 this->instance_name,
8100 var_mode);
8101 }
8102
8103 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8104 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8105
8106 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8107 var->data.read_only = true;
8108
8109 var->data.patch = this->layout.flags.q.patch;
8110
8111 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8112 handle_geometry_shader_input_decl(state, loc, var);
8113 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8114 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8115 handle_tess_shader_input_decl(state, loc, var);
8116 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8117 handle_tess_ctrl_shader_output_decl(state, loc, var);
8118
8119 for (unsigned i = 0; i < num_variables; i++) {
8120 if (var->data.mode == ir_var_shader_storage)
8121 apply_memory_qualifiers(var, fields[i]);
8122 }
8123
8124 if (ir_variable *earlier =
8125 state->symbols->get_variable(this->instance_name)) {
8126 if (!redeclaring_per_vertex) {
8127 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8128 this->instance_name);
8129 }
8130 earlier->data.how_declared = ir_var_declared_normally;
8131 earlier->type = var->type;
8132 earlier->reinit_interface_type(block_type);
8133 delete var;
8134 } else {
8135 if (this->layout.flags.q.explicit_binding) {
8136 apply_explicit_binding(state, &loc, var, var->type,
8137 &this->layout);
8138 }
8139
8140 var->data.stream = qual_stream;
8141 if (layout.flags.q.explicit_location) {
8142 var->data.location = expl_location;
8143 var->data.explicit_location = true;
8144 }
8145
8146 state->symbols->add_variable(var);
8147 instructions->push_tail(var);
8148 }
8149 } else {
8150 /* In order to have an array size, the block must also be declared with
8151 * an instance name.
8152 */
8153 assert(this->array_specifier == NULL);
8154
8155 for (unsigned i = 0; i < num_variables; i++) {
8156 ir_variable *var =
8157 new(state) ir_variable(fields[i].type,
8158 ralloc_strdup(state, fields[i].name),
8159 var_mode);
8160 var->data.interpolation = fields[i].interpolation;
8161 var->data.centroid = fields[i].centroid;
8162 var->data.sample = fields[i].sample;
8163 var->data.patch = fields[i].patch;
8164 var->data.stream = qual_stream;
8165 var->data.location = fields[i].location;
8166
8167 if (fields[i].location != -1)
8168 var->data.explicit_location = true;
8169
8170 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8171 var->data.xfb_buffer = fields[i].xfb_buffer;
8172
8173 if (fields[i].offset != -1)
8174 var->data.explicit_xfb_offset = true;
8175 var->data.offset = fields[i].offset;
8176
8177 var->init_interface_type(block_type);
8178
8179 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8180 var->data.read_only = true;
8181
8182 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8183 if (state->es_shader) {
8184 var->data.precision =
8185 select_gles_precision(fields[i].precision, fields[i].type,
8186 state, &loc);
8187 }
8188
8189 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8190 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8191 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8192 } else {
8193 var->data.matrix_layout = fields[i].matrix_layout;
8194 }
8195
8196 if (var->data.mode == ir_var_shader_storage)
8197 apply_memory_qualifiers(var, fields[i]);
8198
8199 /* Examine var name here since var may get deleted in the next call */
8200 bool var_is_gl_id = is_gl_identifier(var->name);
8201
8202 if (redeclaring_per_vertex) {
8203 bool is_redeclaration;
8204 ir_variable *declared_var =
8205 get_variable_being_redeclared(var, loc, state,
8206 true /* allow_all_redeclarations */,
8207 &is_redeclaration);
8208 if (!var_is_gl_id || !is_redeclaration) {
8209 _mesa_glsl_error(&loc, state,
8210 "redeclaration of gl_PerVertex can only "
8211 "include built-in variables");
8212 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
8213 _mesa_glsl_error(&loc, state,
8214 "`%s' has already been redeclared",
8215 declared_var->name);
8216 } else {
8217 declared_var->data.how_declared = ir_var_declared_in_block;
8218 declared_var->reinit_interface_type(block_type);
8219 }
8220 continue;
8221 }
8222
8223 if (state->symbols->get_variable(var->name) != NULL)
8224 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8225
8226 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8227 * The UBO declaration itself doesn't get an ir_variable unless it
8228 * has an instance name. This is ugly.
8229 */
8230 if (this->layout.flags.q.explicit_binding) {
8231 apply_explicit_binding(state, &loc, var,
8232 var->get_interface_type(), &this->layout);
8233 }
8234
8235 if (var->type->is_unsized_array()) {
8236 if (var->is_in_shader_storage_block() &&
8237 is_unsized_array_last_element(var)) {
8238 var->data.from_ssbo_unsized_array = true;
8239 } else {
8240 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8241 *
8242 * "If an array is declared as the last member of a shader storage
8243 * block and the size is not specified at compile-time, it is
8244 * sized at run-time. In all other cases, arrays are sized only
8245 * at compile-time."
8246 *
8247 * In desktop GLSL it is allowed to have unsized-arrays that are
8248 * not last, as long as we can determine that they are implicitly
8249 * sized.
8250 */
8251 if (state->es_shader) {
8252 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8253 "definition: only last member of a shader "
8254 "storage block can be defined as unsized "
8255 "array", fields[i].name);
8256 }
8257 }
8258 }
8259
8260 state->symbols->add_variable(var);
8261 instructions->push_tail(var);
8262 }
8263
8264 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8265 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8266 *
8267 * It is also a compilation error ... to redeclare a built-in
8268 * block and then use a member from that built-in block that was
8269 * not included in the redeclaration.
8270 *
8271 * This appears to be a clarification to the behaviour established
8272 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8273 * behaviour regardless of GLSL version.
8274 *
8275 * To prevent the shader from using a member that was not included in
8276 * the redeclaration, we disable any ir_variables that are still
8277 * associated with the old declaration of gl_PerVertex (since we've
8278 * already updated all of the variables contained in the new
8279 * gl_PerVertex to point to it).
8280 *
8281 * As a side effect this will prevent
8282 * validate_intrastage_interface_blocks() from getting confused and
8283 * thinking there are conflicting definitions of gl_PerVertex in the
8284 * shader.
8285 */
8286 foreach_in_list_safe(ir_instruction, node, instructions) {
8287 ir_variable *const var = node->as_variable();
8288 if (var != NULL &&
8289 var->get_interface_type() == earlier_per_vertex &&
8290 var->data.mode == var_mode) {
8291 if (var->data.how_declared == ir_var_declared_normally) {
8292 _mesa_glsl_error(&loc, state,
8293 "redeclaration of gl_PerVertex cannot "
8294 "follow a redeclaration of `%s'",
8295 var->name);
8296 }
8297 state->symbols->disable_variable(var->name);
8298 var->remove();
8299 }
8300 }
8301 }
8302 }
8303
8304 return NULL;
8305 }
8306
8307
8308 ir_rvalue *
8309 ast_tcs_output_layout::hir(exec_list *instructions,
8310 struct _mesa_glsl_parse_state *state)
8311 {
8312 YYLTYPE loc = this->get_location();
8313
8314 unsigned num_vertices;
8315 if (!state->out_qualifier->vertices->
8316 process_qualifier_constant(state, "vertices", &num_vertices,
8317 false)) {
8318 /* return here to stop cascading incorrect error messages */
8319 return NULL;
8320 }
8321
8322 /* If any shader outputs occurred before this declaration and specified an
8323 * array size, make sure the size they specified is consistent with the
8324 * primitive type.
8325 */
8326 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8327 _mesa_glsl_error(&loc, state,
8328 "this tessellation control shader output layout "
8329 "specifies %u vertices, but a previous output "
8330 "is declared with size %u",
8331 num_vertices, state->tcs_output_size);
8332 return NULL;
8333 }
8334
8335 state->tcs_output_vertices_specified = true;
8336
8337 /* If any shader outputs occurred before this declaration and did not
8338 * specify an array size, their size is determined now.
8339 */
8340 foreach_in_list (ir_instruction, node, instructions) {
8341 ir_variable *var = node->as_variable();
8342 if (var == NULL || var->data.mode != ir_var_shader_out)
8343 continue;
8344
8345 /* Note: Not all tessellation control shader output are arrays. */
8346 if (!var->type->is_unsized_array() || var->data.patch)
8347 continue;
8348
8349 if (var->data.max_array_access >= (int)num_vertices) {
8350 _mesa_glsl_error(&loc, state,
8351 "this tessellation control shader output layout "
8352 "specifies %u vertices, but an access to element "
8353 "%u of output `%s' already exists", num_vertices,
8354 var->data.max_array_access, var->name);
8355 } else {
8356 var->type = glsl_type::get_array_instance(var->type->fields.array,
8357 num_vertices);
8358 }
8359 }
8360
8361 return NULL;
8362 }
8363
8364
8365 ir_rvalue *
8366 ast_gs_input_layout::hir(exec_list *instructions,
8367 struct _mesa_glsl_parse_state *state)
8368 {
8369 YYLTYPE loc = this->get_location();
8370
8371 /* Should have been prevented by the parser. */
8372 assert(!state->gs_input_prim_type_specified
8373 || state->in_qualifier->prim_type == this->prim_type);
8374
8375 /* If any shader inputs occurred before this declaration and specified an
8376 * array size, make sure the size they specified is consistent with the
8377 * primitive type.
8378 */
8379 unsigned num_vertices = vertices_per_prim(this->prim_type);
8380 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8381 _mesa_glsl_error(&loc, state,
8382 "this geometry shader input layout implies %u vertices"
8383 " per primitive, but a previous input is declared"
8384 " with size %u", num_vertices, state->gs_input_size);
8385 return NULL;
8386 }
8387
8388 state->gs_input_prim_type_specified = true;
8389
8390 /* If any shader inputs occurred before this declaration and did not
8391 * specify an array size, their size is determined now.
8392 */
8393 foreach_in_list(ir_instruction, node, instructions) {
8394 ir_variable *var = node->as_variable();
8395 if (var == NULL || var->data.mode != ir_var_shader_in)
8396 continue;
8397
8398 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8399 * array; skip it.
8400 */
8401
8402 if (var->type->is_unsized_array()) {
8403 if (var->data.max_array_access >= (int)num_vertices) {
8404 _mesa_glsl_error(&loc, state,
8405 "this geometry shader input layout implies %u"
8406 " vertices, but an access to element %u of input"
8407 " `%s' already exists", num_vertices,
8408 var->data.max_array_access, var->name);
8409 } else {
8410 var->type = glsl_type::get_array_instance(var->type->fields.array,
8411 num_vertices);
8412 }
8413 }
8414 }
8415
8416 return NULL;
8417 }
8418
8419
8420 ir_rvalue *
8421 ast_cs_input_layout::hir(exec_list *instructions,
8422 struct _mesa_glsl_parse_state *state)
8423 {
8424 YYLTYPE loc = this->get_location();
8425
8426 /* From the ARB_compute_shader specification:
8427 *
8428 * If the local size of the shader in any dimension is greater
8429 * than the maximum size supported by the implementation for that
8430 * dimension, a compile-time error results.
8431 *
8432 * It is not clear from the spec how the error should be reported if
8433 * the total size of the work group exceeds
8434 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8435 * report it at compile time as well.
8436 */
8437 GLuint64 total_invocations = 1;
8438 unsigned qual_local_size[3];
8439 for (int i = 0; i < 3; i++) {
8440
8441 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8442 'x' + i);
8443 /* Infer a local_size of 1 for unspecified dimensions */
8444 if (this->local_size[i] == NULL) {
8445 qual_local_size[i] = 1;
8446 } else if (!this->local_size[i]->
8447 process_qualifier_constant(state, local_size_str,
8448 &qual_local_size[i], false)) {
8449 ralloc_free(local_size_str);
8450 return NULL;
8451 }
8452 ralloc_free(local_size_str);
8453
8454 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8455 _mesa_glsl_error(&loc, state,
8456 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8457 " (%d)", 'x' + i,
8458 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8459 break;
8460 }
8461 total_invocations *= qual_local_size[i];
8462 if (total_invocations >
8463 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8464 _mesa_glsl_error(&loc, state,
8465 "product of local_sizes exceeds "
8466 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8467 state->ctx->Const.MaxComputeWorkGroupInvocations);
8468 break;
8469 }
8470 }
8471
8472 /* If any compute input layout declaration preceded this one, make sure it
8473 * was consistent with this one.
8474 */
8475 if (state->cs_input_local_size_specified) {
8476 for (int i = 0; i < 3; i++) {
8477 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8478 _mesa_glsl_error(&loc, state,
8479 "compute shader input layout does not match"
8480 " previous declaration");
8481 return NULL;
8482 }
8483 }
8484 }
8485
8486 /* The ARB_compute_variable_group_size spec says:
8487 *
8488 * If a compute shader including a *local_size_variable* qualifier also
8489 * declares a fixed local group size using the *local_size_x*,
8490 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8491 * results
8492 */
8493 if (state->cs_input_local_size_variable_specified) {
8494 _mesa_glsl_error(&loc, state,
8495 "compute shader can't include both a variable and a "
8496 "fixed local group size");
8497 return NULL;
8498 }
8499
8500 state->cs_input_local_size_specified = true;
8501 for (int i = 0; i < 3; i++)
8502 state->cs_input_local_size[i] = qual_local_size[i];
8503
8504 /* We may now declare the built-in constant gl_WorkGroupSize (see
8505 * builtin_variable_generator::generate_constants() for why we didn't
8506 * declare it earlier).
8507 */
8508 ir_variable *var = new(state->symbols)
8509 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8510 var->data.how_declared = ir_var_declared_implicitly;
8511 var->data.read_only = true;
8512 instructions->push_tail(var);
8513 state->symbols->add_variable(var);
8514 ir_constant_data data;
8515 memset(&data, 0, sizeof(data));
8516 for (int i = 0; i < 3; i++)
8517 data.u[i] = qual_local_size[i];
8518 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8519 var->constant_initializer =
8520 new(var) ir_constant(glsl_type::uvec3_type, &data);
8521 var->data.has_initializer = true;
8522
8523 return NULL;
8524 }
8525
8526
8527 static void
8528 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8529 exec_list *instructions)
8530 {
8531 bool gl_FragColor_assigned = false;
8532 bool gl_FragData_assigned = false;
8533 bool gl_FragSecondaryColor_assigned = false;
8534 bool gl_FragSecondaryData_assigned = false;
8535 bool user_defined_fs_output_assigned = false;
8536 ir_variable *user_defined_fs_output = NULL;
8537
8538 /* It would be nice to have proper location information. */
8539 YYLTYPE loc;
8540 memset(&loc, 0, sizeof(loc));
8541
8542 foreach_in_list(ir_instruction, node, instructions) {
8543 ir_variable *var = node->as_variable();
8544
8545 if (!var || !var->data.assigned)
8546 continue;
8547
8548 if (strcmp(var->name, "gl_FragColor") == 0)
8549 gl_FragColor_assigned = true;
8550 else if (strcmp(var->name, "gl_FragData") == 0)
8551 gl_FragData_assigned = true;
8552 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8553 gl_FragSecondaryColor_assigned = true;
8554 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8555 gl_FragSecondaryData_assigned = true;
8556 else if (!is_gl_identifier(var->name)) {
8557 if (state->stage == MESA_SHADER_FRAGMENT &&
8558 var->data.mode == ir_var_shader_out) {
8559 user_defined_fs_output_assigned = true;
8560 user_defined_fs_output = var;
8561 }
8562 }
8563 }
8564
8565 /* From the GLSL 1.30 spec:
8566 *
8567 * "If a shader statically assigns a value to gl_FragColor, it
8568 * may not assign a value to any element of gl_FragData. If a
8569 * shader statically writes a value to any element of
8570 * gl_FragData, it may not assign a value to
8571 * gl_FragColor. That is, a shader may assign values to either
8572 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8573 * linked together must also consistently write just one of
8574 * these variables. Similarly, if user declared output
8575 * variables are in use (statically assigned to), then the
8576 * built-in variables gl_FragColor and gl_FragData may not be
8577 * assigned to. These incorrect usages all generate compile
8578 * time errors."
8579 */
8580 if (gl_FragColor_assigned && gl_FragData_assigned) {
8581 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8582 "`gl_FragColor' and `gl_FragData'");
8583 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8584 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8585 "`gl_FragColor' and `%s'",
8586 user_defined_fs_output->name);
8587 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8588 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8589 "`gl_FragSecondaryColorEXT' and"
8590 " `gl_FragSecondaryDataEXT'");
8591 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8592 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8593 "`gl_FragColor' and"
8594 " `gl_FragSecondaryDataEXT'");
8595 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8596 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8597 "`gl_FragData' and"
8598 " `gl_FragSecondaryColorEXT'");
8599 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8600 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8601 "`gl_FragData' and `%s'",
8602 user_defined_fs_output->name);
8603 }
8604
8605 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8606 !state->EXT_blend_func_extended_enable) {
8607 _mesa_glsl_error(&loc, state,
8608 "Dual source blending requires EXT_blend_func_extended");
8609 }
8610 }
8611
8612
8613 static void
8614 remove_per_vertex_blocks(exec_list *instructions,
8615 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8616 {
8617 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8618 * if it exists in this shader type.
8619 */
8620 const glsl_type *per_vertex = NULL;
8621 switch (mode) {
8622 case ir_var_shader_in:
8623 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8624 per_vertex = gl_in->get_interface_type();
8625 break;
8626 case ir_var_shader_out:
8627 if (ir_variable *gl_Position =
8628 state->symbols->get_variable("gl_Position")) {
8629 per_vertex = gl_Position->get_interface_type();
8630 }
8631 break;
8632 default:
8633 assert(!"Unexpected mode");
8634 break;
8635 }
8636
8637 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8638 * need to do anything.
8639 */
8640 if (per_vertex == NULL)
8641 return;
8642
8643 /* If the interface block is used by the shader, then we don't need to do
8644 * anything.
8645 */
8646 interface_block_usage_visitor v(mode, per_vertex);
8647 v.run(instructions);
8648 if (v.usage_found())
8649 return;
8650
8651 /* Remove any ir_variable declarations that refer to the interface block
8652 * we're removing.
8653 */
8654 foreach_in_list_safe(ir_instruction, node, instructions) {
8655 ir_variable *const var = node->as_variable();
8656 if (var != NULL && var->get_interface_type() == per_vertex &&
8657 var->data.mode == mode) {
8658 state->symbols->disable_variable(var->name);
8659 var->remove();
8660 }
8661 }
8662 }