glsl: allow bindless samplers/images as out and inout parameters
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue()) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 type = state->symbols->get_type(this->type_name);
2363 *name = this->type_name;
2364
2365 YYLTYPE loc = this->get_location();
2366 type = process_array_type(&loc, type, this->array_specifier, state);
2367
2368 return type;
2369 }
2370
2371 /**
2372 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2373 *
2374 * "The precision statement
2375 *
2376 * precision precision-qualifier type;
2377 *
2378 * can be used to establish a default precision qualifier. The type field can
2379 * be either int or float or any of the sampler types, (...) If type is float,
2380 * the directive applies to non-precision-qualified floating point type
2381 * (scalar, vector, and matrix) declarations. If type is int, the directive
2382 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2383 * and unsigned) declarations."
2384 *
2385 * We use the symbol table to keep the values of the default precisions for
2386 * each 'type' in each scope and we use the 'type' string from the precision
2387 * statement as key in the symbol table. When we want to retrieve the default
2388 * precision associated with a given glsl_type we need to know the type string
2389 * associated with it. This is what this function returns.
2390 */
2391 static const char *
2392 get_type_name_for_precision_qualifier(const glsl_type *type)
2393 {
2394 switch (type->base_type) {
2395 case GLSL_TYPE_FLOAT:
2396 return "float";
2397 case GLSL_TYPE_UINT:
2398 case GLSL_TYPE_INT:
2399 return "int";
2400 case GLSL_TYPE_ATOMIC_UINT:
2401 return "atomic_uint";
2402 case GLSL_TYPE_IMAGE:
2403 /* fallthrough */
2404 case GLSL_TYPE_SAMPLER: {
2405 const unsigned type_idx =
2406 type->sampler_array + 2 * type->sampler_shadow;
2407 const unsigned offset = type->is_sampler() ? 0 : 4;
2408 assert(type_idx < 4);
2409 switch (type->sampled_type) {
2410 case GLSL_TYPE_FLOAT:
2411 switch (type->sampler_dimensionality) {
2412 case GLSL_SAMPLER_DIM_1D: {
2413 assert(type->is_sampler());
2414 static const char *const names[4] = {
2415 "sampler1D", "sampler1DArray",
2416 "sampler1DShadow", "sampler1DArrayShadow"
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "sampler2D", "sampler2DArray",
2423 "sampler2DShadow", "sampler2DArrayShadow",
2424 "image2D", "image2DArray", NULL, NULL
2425 };
2426 return names[offset + type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_3D: {
2429 static const char *const names[8] = {
2430 "sampler3D", NULL, NULL, NULL,
2431 "image3D", NULL, NULL, NULL
2432 };
2433 return names[offset + type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_CUBE: {
2436 static const char *const names[8] = {
2437 "samplerCube", "samplerCubeArray",
2438 "samplerCubeShadow", "samplerCubeArrayShadow",
2439 "imageCube", NULL, NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_MS: {
2444 assert(type->is_sampler());
2445 static const char *const names[4] = {
2446 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_RECT: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "samplerRect", NULL, "samplerRectShadow", NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_BUF: {
2458 static const char *const names[8] = {
2459 "samplerBuffer", NULL, NULL, NULL,
2460 "imageBuffer", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_EXTERNAL: {
2465 assert(type->is_sampler());
2466 static const char *const names[4] = {
2467 "samplerExternalOES", NULL, NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 default:
2472 unreachable("Unsupported sampler/image dimensionality");
2473 } /* sampler/image float dimensionality */
2474 break;
2475 case GLSL_TYPE_INT:
2476 switch (type->sampler_dimensionality) {
2477 case GLSL_SAMPLER_DIM_1D: {
2478 assert(type->is_sampler());
2479 static const char *const names[4] = {
2480 "isampler1D", "isampler1DArray", NULL, NULL
2481 };
2482 return names[type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_2D: {
2485 static const char *const names[8] = {
2486 "isampler2D", "isampler2DArray", NULL, NULL,
2487 "iimage2D", "iimage2DArray", NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_3D: {
2492 static const char *const names[8] = {
2493 "isampler3D", NULL, NULL, NULL,
2494 "iimage3D", NULL, NULL, NULL
2495 };
2496 return names[offset + type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_CUBE: {
2499 static const char *const names[8] = {
2500 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2501 "iimageCube", NULL, NULL, NULL
2502 };
2503 return names[offset + type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_MS: {
2506 assert(type->is_sampler());
2507 static const char *const names[4] = {
2508 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2509 };
2510 return names[type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_RECT: {
2513 assert(type->is_sampler());
2514 static const char *const names[4] = {
2515 "isamplerRect", NULL, "isamplerRectShadow", NULL
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_BUF: {
2520 static const char *const names[8] = {
2521 "isamplerBuffer", NULL, NULL, NULL,
2522 "iimageBuffer", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 default:
2527 unreachable("Unsupported isampler/iimage dimensionality");
2528 } /* sampler/image int dimensionality */
2529 break;
2530 case GLSL_TYPE_UINT:
2531 switch (type->sampler_dimensionality) {
2532 case GLSL_SAMPLER_DIM_1D: {
2533 assert(type->is_sampler());
2534 static const char *const names[4] = {
2535 "usampler1D", "usampler1DArray", NULL, NULL
2536 };
2537 return names[type_idx];
2538 }
2539 case GLSL_SAMPLER_DIM_2D: {
2540 static const char *const names[8] = {
2541 "usampler2D", "usampler2DArray", NULL, NULL,
2542 "uimage2D", "uimage2DArray", NULL, NULL
2543 };
2544 return names[offset + type_idx];
2545 }
2546 case GLSL_SAMPLER_DIM_3D: {
2547 static const char *const names[8] = {
2548 "usampler3D", NULL, NULL, NULL,
2549 "uimage3D", NULL, NULL, NULL
2550 };
2551 return names[offset + type_idx];
2552 }
2553 case GLSL_SAMPLER_DIM_CUBE: {
2554 static const char *const names[8] = {
2555 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2556 "uimageCube", NULL, NULL, NULL
2557 };
2558 return names[offset + type_idx];
2559 }
2560 case GLSL_SAMPLER_DIM_MS: {
2561 assert(type->is_sampler());
2562 static const char *const names[4] = {
2563 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2564 };
2565 return names[type_idx];
2566 }
2567 case GLSL_SAMPLER_DIM_RECT: {
2568 assert(type->is_sampler());
2569 static const char *const names[4] = {
2570 "usamplerRect", NULL, "usamplerRectShadow", NULL
2571 };
2572 return names[type_idx];
2573 }
2574 case GLSL_SAMPLER_DIM_BUF: {
2575 static const char *const names[8] = {
2576 "usamplerBuffer", NULL, NULL, NULL,
2577 "uimageBuffer", NULL, NULL, NULL
2578 };
2579 return names[offset + type_idx];
2580 }
2581 default:
2582 unreachable("Unsupported usampler/uimage dimensionality");
2583 } /* sampler/image uint dimensionality */
2584 break;
2585 default:
2586 unreachable("Unsupported sampler/image type");
2587 } /* sampler/image type */
2588 break;
2589 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2590 break;
2591 default:
2592 unreachable("Unsupported type");
2593 } /* base type */
2594 }
2595
2596 static unsigned
2597 select_gles_precision(unsigned qual_precision,
2598 const glsl_type *type,
2599 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2600 {
2601 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2602 * In GLES we take the precision from the type qualifier if present,
2603 * otherwise, if the type of the variable allows precision qualifiers at
2604 * all, we look for the default precision qualifier for that type in the
2605 * current scope.
2606 */
2607 assert(state->es_shader);
2608
2609 unsigned precision = GLSL_PRECISION_NONE;
2610 if (qual_precision) {
2611 precision = qual_precision;
2612 } else if (precision_qualifier_allowed(type)) {
2613 const char *type_name =
2614 get_type_name_for_precision_qualifier(type->without_array());
2615 assert(type_name != NULL);
2616
2617 precision =
2618 state->symbols->get_default_precision_qualifier(type_name);
2619 if (precision == ast_precision_none) {
2620 _mesa_glsl_error(loc, state,
2621 "No precision specified in this scope for type `%s'",
2622 type->name);
2623 }
2624 }
2625
2626
2627 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2628 *
2629 * "The default precision of all atomic types is highp. It is an error to
2630 * declare an atomic type with a different precision or to specify the
2631 * default precision for an atomic type to be lowp or mediump."
2632 */
2633 if (type->is_atomic_uint() && precision != ast_precision_high) {
2634 _mesa_glsl_error(loc, state,
2635 "atomic_uint can only have highp precision qualifier");
2636 }
2637
2638 return precision;
2639 }
2640
2641 const glsl_type *
2642 ast_fully_specified_type::glsl_type(const char **name,
2643 struct _mesa_glsl_parse_state *state) const
2644 {
2645 return this->specifier->glsl_type(name, state);
2646 }
2647
2648 /**
2649 * Determine whether a toplevel variable declaration declares a varying. This
2650 * function operates by examining the variable's mode and the shader target,
2651 * so it correctly identifies linkage variables regardless of whether they are
2652 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2653 *
2654 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2655 * this function will produce undefined results.
2656 */
2657 static bool
2658 is_varying_var(ir_variable *var, gl_shader_stage target)
2659 {
2660 switch (target) {
2661 case MESA_SHADER_VERTEX:
2662 return var->data.mode == ir_var_shader_out;
2663 case MESA_SHADER_FRAGMENT:
2664 return var->data.mode == ir_var_shader_in;
2665 default:
2666 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2667 }
2668 }
2669
2670 static bool
2671 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2672 {
2673 if (is_varying_var(var, state->stage))
2674 return true;
2675
2676 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2677 * "Only variables output from a vertex shader can be candidates
2678 * for invariance".
2679 */
2680 if (!state->is_version(130, 0))
2681 return false;
2682
2683 /*
2684 * Later specs remove this language - so allowed invariant
2685 * on fragment shader outputs as well.
2686 */
2687 if (state->stage == MESA_SHADER_FRAGMENT &&
2688 var->data.mode == ir_var_shader_out)
2689 return true;
2690 return false;
2691 }
2692
2693 /**
2694 * Matrix layout qualifiers are only allowed on certain types
2695 */
2696 static void
2697 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2698 YYLTYPE *loc,
2699 const glsl_type *type,
2700 ir_variable *var)
2701 {
2702 if (var && !var->is_in_buffer_block()) {
2703 /* Layout qualifiers may only apply to interface blocks and fields in
2704 * them.
2705 */
2706 _mesa_glsl_error(loc, state,
2707 "uniform block layout qualifiers row_major and "
2708 "column_major may not be applied to variables "
2709 "outside of uniform blocks");
2710 } else if (!type->without_array()->is_matrix()) {
2711 /* The OpenGL ES 3.0 conformance tests did not originally allow
2712 * matrix layout qualifiers on non-matrices. However, the OpenGL
2713 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2714 * amended to specifically allow these layouts on all types. Emit
2715 * a warning so that people know their code may not be portable.
2716 */
2717 _mesa_glsl_warning(loc, state,
2718 "uniform block layout qualifiers row_major and "
2719 "column_major applied to non-matrix types may "
2720 "be rejected by older compilers");
2721 }
2722 }
2723
2724 static bool
2725 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2726 struct _mesa_glsl_parse_state *state,
2727 unsigned xfb_buffer) {
2728 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2729 _mesa_glsl_error(loc, state,
2730 "invalid xfb_buffer specified %d is larger than "
2731 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2732 xfb_buffer,
2733 state->Const.MaxTransformFeedbackBuffers - 1);
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 /* From the ARB_enhanced_layouts spec:
2741 *
2742 * "Variables and block members qualified with *xfb_offset* can be
2743 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2744 * The offset must be a multiple of the size of the first component of
2745 * the first qualified variable or block member, or a compile-time error
2746 * results. Further, if applied to an aggregate containing a double,
2747 * the offset must also be a multiple of 8, and the space taken in the
2748 * buffer will be a multiple of 8.
2749 */
2750 static bool
2751 validate_xfb_offset_qualifier(YYLTYPE *loc,
2752 struct _mesa_glsl_parse_state *state,
2753 int xfb_offset, const glsl_type *type,
2754 unsigned component_size) {
2755 const glsl_type *t_without_array = type->without_array();
2756
2757 if (xfb_offset != -1 && type->is_unsized_array()) {
2758 _mesa_glsl_error(loc, state,
2759 "xfb_offset can't be used with unsized arrays.");
2760 return false;
2761 }
2762
2763 /* Make sure nested structs don't contain unsized arrays, and validate
2764 * any xfb_offsets on interface members.
2765 */
2766 if (t_without_array->is_record() || t_without_array->is_interface())
2767 for (unsigned int i = 0; i < t_without_array->length; i++) {
2768 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2769
2770 /* When the interface block doesn't have an xfb_offset qualifier then
2771 * we apply the component size rules at the member level.
2772 */
2773 if (xfb_offset == -1)
2774 component_size = member_t->contains_double() ? 8 : 4;
2775
2776 int xfb_offset = t_without_array->fields.structure[i].offset;
2777 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2778 component_size);
2779 }
2780
2781 /* Nested structs or interface block without offset may not have had an
2782 * offset applied yet so return.
2783 */
2784 if (xfb_offset == -1) {
2785 return true;
2786 }
2787
2788 if (xfb_offset % component_size) {
2789 _mesa_glsl_error(loc, state,
2790 "invalid qualifier xfb_offset=%d must be a multiple "
2791 "of the first component size of the first qualified "
2792 "variable or block member. Or double if an aggregate "
2793 "that contains a double (%d).",
2794 xfb_offset, component_size);
2795 return false;
2796 }
2797
2798 return true;
2799 }
2800
2801 static bool
2802 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2803 unsigned stream)
2804 {
2805 if (stream >= state->ctx->Const.MaxVertexStreams) {
2806 _mesa_glsl_error(loc, state,
2807 "invalid stream specified %d is larger than "
2808 "MAX_VERTEX_STREAMS - 1 (%d).",
2809 stream, state->ctx->Const.MaxVertexStreams - 1);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static void
2817 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc,
2819 ir_variable *var,
2820 const glsl_type *type,
2821 const ast_type_qualifier *qual)
2822 {
2823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2824 _mesa_glsl_error(loc, state,
2825 "the \"binding\" qualifier only applies to uniforms and "
2826 "shader storage buffer objects");
2827 return;
2828 }
2829
2830 unsigned qual_binding;
2831 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2832 &qual_binding)) {
2833 return;
2834 }
2835
2836 const struct gl_context *const ctx = state->ctx;
2837 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2838 unsigned max_index = qual_binding + elements - 1;
2839 const glsl_type *base_type = type->without_array();
2840
2841 if (base_type->is_interface()) {
2842 /* UBOs. From page 60 of the GLSL 4.20 specification:
2843 * "If the binding point for any uniform block instance is less than zero,
2844 * or greater than or equal to the implementation-dependent maximum
2845 * number of uniform buffer bindings, a compilation error will occur.
2846 * When the binding identifier is used with a uniform block instanced as
2847 * an array of size N, all elements of the array from binding through
2848 * binding + N – 1 must be within this range."
2849 *
2850 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2851 */
2852 if (qual->flags.q.uniform &&
2853 max_index >= ctx->Const.MaxUniformBufferBindings) {
2854 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2855 "the maximum number of UBO binding points (%d)",
2856 qual_binding, elements,
2857 ctx->Const.MaxUniformBufferBindings);
2858 return;
2859 }
2860
2861 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2862 * "If the binding point for any uniform or shader storage block instance
2863 * is less than zero, or greater than or equal to the
2864 * implementation-dependent maximum number of uniform buffer bindings, a
2865 * compile-time error will occur. When the binding identifier is used
2866 * with a uniform or shader storage block instanced as an array of size
2867 * N, all elements of the array from binding through binding + N – 1 must
2868 * be within this range."
2869 */
2870 if (qual->flags.q.buffer &&
2871 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2872 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2873 "the maximum number of SSBO binding points (%d)",
2874 qual_binding, elements,
2875 ctx->Const.MaxShaderStorageBufferBindings);
2876 return;
2877 }
2878 } else if (base_type->is_sampler()) {
2879 /* Samplers. From page 63 of the GLSL 4.20 specification:
2880 * "If the binding is less than zero, or greater than or equal to the
2881 * implementation-dependent maximum supported number of units, a
2882 * compilation error will occur. When the binding identifier is used
2883 * with an array of size N, all elements of the array from binding
2884 * through binding + N - 1 must be within this range."
2885 */
2886 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2887
2888 if (max_index >= limit) {
2889 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2890 "exceeds the maximum number of texture image units "
2891 "(%u)", qual_binding, elements, limit);
2892
2893 return;
2894 }
2895 } else if (base_type->contains_atomic()) {
2896 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2897 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2899 "maximum number of atomic counter buffer bindings "
2900 "(%u)", qual_binding,
2901 ctx->Const.MaxAtomicBufferBindings);
2902
2903 return;
2904 }
2905 } else if ((state->is_version(420, 310) ||
2906 state->ARB_shading_language_420pack_enable) &&
2907 base_type->is_image()) {
2908 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2909 if (max_index >= ctx->Const.MaxImageUnits) {
2910 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2911 "maximum number of image units (%d)", max_index,
2912 ctx->Const.MaxImageUnits);
2913 return;
2914 }
2915
2916 } else {
2917 _mesa_glsl_error(loc, state,
2918 "the \"binding\" qualifier only applies to uniform "
2919 "blocks, storage blocks, opaque variables, or arrays "
2920 "thereof");
2921 return;
2922 }
2923
2924 var->data.explicit_binding = true;
2925 var->data.binding = qual_binding;
2926
2927 return;
2928 }
2929
2930 static void
2931 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2932 YYLTYPE *loc,
2933 const glsl_interp_mode interpolation,
2934 const struct glsl_type *var_type,
2935 ir_variable_mode mode)
2936 {
2937 if (state->stage != MESA_SHADER_FRAGMENT ||
2938 interpolation == INTERP_MODE_FLAT ||
2939 mode != ir_var_shader_in)
2940 return;
2941
2942 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2943 * so must integer vertex outputs.
2944 *
2945 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2946 * "Fragment shader inputs that are signed or unsigned integers or
2947 * integer vectors must be qualified with the interpolation qualifier
2948 * flat."
2949 *
2950 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2951 * "Fragment shader inputs that are, or contain, signed or unsigned
2952 * integers or integer vectors must be qualified with the
2953 * interpolation qualifier flat."
2954 *
2955 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2956 * "Vertex shader outputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * Note that prior to GLSL 1.50, this requirement applied to vertex
2961 * outputs rather than fragment inputs. That creates problems in the
2962 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2963 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2964 * apply the restriction to both vertex outputs and fragment inputs.
2965 *
2966 * Note also that the desktop GLSL specs are missing the text "or
2967 * contain"; this is presumably an oversight, since there is no
2968 * reasonable way to interpolate a fragment shader input that contains
2969 * an integer. See Khronos bug #15671.
2970 */
2971 if (state->is_version(130, 300)
2972 && var_type->contains_integer()) {
2973 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2974 "an integer, then it must be qualified with 'flat'");
2975 }
2976
2977 /* Double fragment inputs must be qualified with 'flat'.
2978 *
2979 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2980 * "This extension does not support interpolation of double-precision
2981 * values; doubles used as fragment shader inputs must be qualified as
2982 * "flat"."
2983 *
2984 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2985 * "Fragment shader inputs that are signed or unsigned integers, integer
2986 * vectors, or any double-precision floating-point type must be
2987 * qualified with the interpolation qualifier flat."
2988 *
2989 * Note that the GLSL specs are missing the text "or contain"; this is
2990 * presumably an oversight. See Khronos bug #15671.
2991 *
2992 * The 'double' type does not exist in GLSL ES so far.
2993 */
2994 if (state->has_double()
2995 && var_type->contains_double()) {
2996 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2997 "a double, then it must be qualified with 'flat'");
2998 }
2999 }
3000
3001 static void
3002 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3003 YYLTYPE *loc,
3004 const glsl_interp_mode interpolation,
3005 const struct ast_type_qualifier *qual,
3006 const struct glsl_type *var_type,
3007 ir_variable_mode mode)
3008 {
3009 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3010 * not to vertex shader inputs nor fragment shader outputs.
3011 *
3012 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3013 * "Outputs from a vertex shader (out) and inputs to a fragment
3014 * shader (in) can be further qualified with one or more of these
3015 * interpolation qualifiers"
3016 * ...
3017 * "These interpolation qualifiers may only precede the qualifiers in,
3018 * centroid in, out, or centroid out in a declaration. They do not apply
3019 * to the deprecated storage qualifiers varying or centroid
3020 * varying. They also do not apply to inputs into a vertex shader or
3021 * outputs from a fragment shader."
3022 *
3023 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3024 * "Outputs from a shader (out) and inputs to a shader (in) can be
3025 * further qualified with one of these interpolation qualifiers."
3026 * ...
3027 * "These interpolation qualifiers may only precede the qualifiers
3028 * in, centroid in, out, or centroid out in a declaration. They do
3029 * not apply to inputs into a vertex shader or outputs from a
3030 * fragment shader."
3031 */
3032 if (state->is_version(130, 300)
3033 && interpolation != INTERP_MODE_NONE) {
3034 const char *i = interpolation_string(interpolation);
3035 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3036 _mesa_glsl_error(loc, state,
3037 "interpolation qualifier `%s' can only be applied to "
3038 "shader inputs or outputs.", i);
3039
3040 switch (state->stage) {
3041 case MESA_SHADER_VERTEX:
3042 if (mode == ir_var_shader_in) {
3043 _mesa_glsl_error(loc, state,
3044 "interpolation qualifier '%s' cannot be applied to "
3045 "vertex shader inputs", i);
3046 }
3047 break;
3048 case MESA_SHADER_FRAGMENT:
3049 if (mode == ir_var_shader_out) {
3050 _mesa_glsl_error(loc, state,
3051 "interpolation qualifier '%s' cannot be applied to "
3052 "fragment shader outputs", i);
3053 }
3054 break;
3055 default:
3056 break;
3057 }
3058 }
3059
3060 /* Interpolation qualifiers cannot be applied to 'centroid' and
3061 * 'centroid varying'.
3062 *
3063 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3064 * "interpolation qualifiers may only precede the qualifiers in,
3065 * centroid in, out, or centroid out in a declaration. They do not apply
3066 * to the deprecated storage qualifiers varying or centroid varying."
3067 *
3068 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3069 */
3070 if (state->is_version(130, 0)
3071 && interpolation != INTERP_MODE_NONE
3072 && qual->flags.q.varying) {
3073
3074 const char *i = interpolation_string(interpolation);
3075 const char *s;
3076 if (qual->flags.q.centroid)
3077 s = "centroid varying";
3078 else
3079 s = "varying";
3080
3081 _mesa_glsl_error(loc, state,
3082 "qualifier '%s' cannot be applied to the "
3083 "deprecated storage qualifier '%s'", i, s);
3084 }
3085
3086 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3087 var_type, mode);
3088 }
3089
3090 static glsl_interp_mode
3091 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3092 const struct glsl_type *var_type,
3093 ir_variable_mode mode,
3094 struct _mesa_glsl_parse_state *state,
3095 YYLTYPE *loc)
3096 {
3097 glsl_interp_mode interpolation;
3098 if (qual->flags.q.flat)
3099 interpolation = INTERP_MODE_FLAT;
3100 else if (qual->flags.q.noperspective)
3101 interpolation = INTERP_MODE_NOPERSPECTIVE;
3102 else if (qual->flags.q.smooth)
3103 interpolation = INTERP_MODE_SMOOTH;
3104 else if (state->es_shader &&
3105 ((mode == ir_var_shader_in &&
3106 state->stage != MESA_SHADER_VERTEX) ||
3107 (mode == ir_var_shader_out &&
3108 state->stage != MESA_SHADER_FRAGMENT)))
3109 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3110 *
3111 * "When no interpolation qualifier is present, smooth interpolation
3112 * is used."
3113 */
3114 interpolation = INTERP_MODE_SMOOTH;
3115 else
3116 interpolation = INTERP_MODE_NONE;
3117
3118 validate_interpolation_qualifier(state, loc,
3119 interpolation,
3120 qual, var_type, mode);
3121
3122 return interpolation;
3123 }
3124
3125
3126 static void
3127 apply_explicit_location(const struct ast_type_qualifier *qual,
3128 ir_variable *var,
3129 struct _mesa_glsl_parse_state *state,
3130 YYLTYPE *loc)
3131 {
3132 bool fail = false;
3133
3134 unsigned qual_location;
3135 if (!process_qualifier_constant(state, loc, "location", qual->location,
3136 &qual_location)) {
3137 return;
3138 }
3139
3140 /* Checks for GL_ARB_explicit_uniform_location. */
3141 if (qual->flags.q.uniform) {
3142 if (!state->check_explicit_uniform_location_allowed(loc, var))
3143 return;
3144
3145 const struct gl_context *const ctx = state->ctx;
3146 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3147
3148 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3149 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3150 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3151 ctx->Const.MaxUserAssignableUniformLocations);
3152 return;
3153 }
3154
3155 var->data.explicit_location = true;
3156 var->data.location = qual_location;
3157 return;
3158 }
3159
3160 /* Between GL_ARB_explicit_attrib_location an
3161 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3162 * stage can be assigned explicit locations. The checking here associates
3163 * the correct extension with the correct stage's input / output:
3164 *
3165 * input output
3166 * ----- ------
3167 * vertex explicit_loc sso
3168 * tess control sso sso
3169 * tess eval sso sso
3170 * geometry sso sso
3171 * fragment sso explicit_loc
3172 */
3173 switch (state->stage) {
3174 case MESA_SHADER_VERTEX:
3175 if (var->data.mode == ir_var_shader_in) {
3176 if (!state->check_explicit_attrib_location_allowed(loc, var))
3177 return;
3178
3179 break;
3180 }
3181
3182 if (var->data.mode == ir_var_shader_out) {
3183 if (!state->check_separate_shader_objects_allowed(loc, var))
3184 return;
3185
3186 break;
3187 }
3188
3189 fail = true;
3190 break;
3191
3192 case MESA_SHADER_TESS_CTRL:
3193 case MESA_SHADER_TESS_EVAL:
3194 case MESA_SHADER_GEOMETRY:
3195 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3196 if (!state->check_separate_shader_objects_allowed(loc, var))
3197 return;
3198
3199 break;
3200 }
3201
3202 fail = true;
3203 break;
3204
3205 case MESA_SHADER_FRAGMENT:
3206 if (var->data.mode == ir_var_shader_in) {
3207 if (!state->check_separate_shader_objects_allowed(loc, var))
3208 return;
3209
3210 break;
3211 }
3212
3213 if (var->data.mode == ir_var_shader_out) {
3214 if (!state->check_explicit_attrib_location_allowed(loc, var))
3215 return;
3216
3217 break;
3218 }
3219
3220 fail = true;
3221 break;
3222
3223 case MESA_SHADER_COMPUTE:
3224 _mesa_glsl_error(loc, state,
3225 "compute shader variables cannot be given "
3226 "explicit locations");
3227 return;
3228 };
3229
3230 if (fail) {
3231 _mesa_glsl_error(loc, state,
3232 "%s cannot be given an explicit location in %s shader",
3233 mode_string(var),
3234 _mesa_shader_stage_to_string(state->stage));
3235 } else {
3236 var->data.explicit_location = true;
3237
3238 switch (state->stage) {
3239 case MESA_SHADER_VERTEX:
3240 var->data.location = (var->data.mode == ir_var_shader_in)
3241 ? (qual_location + VERT_ATTRIB_GENERIC0)
3242 : (qual_location + VARYING_SLOT_VAR0);
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.patch)
3249 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3250 else
3251 var->data.location = qual_location + VARYING_SLOT_VAR0;
3252 break;
3253
3254 case MESA_SHADER_FRAGMENT:
3255 var->data.location = (var->data.mode == ir_var_shader_out)
3256 ? (qual_location + FRAG_RESULT_DATA0)
3257 : (qual_location + VARYING_SLOT_VAR0);
3258 break;
3259 case MESA_SHADER_COMPUTE:
3260 assert(!"Unexpected shader type");
3261 break;
3262 }
3263
3264 /* Check if index was set for the uniform instead of the function */
3265 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3266 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3267 "used with subroutine functions");
3268 return;
3269 }
3270
3271 unsigned qual_index;
3272 if (qual->flags.q.explicit_index &&
3273 process_qualifier_constant(state, loc, "index", qual->index,
3274 &qual_index)) {
3275 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3276 * Layout Qualifiers):
3277 *
3278 * "It is also a compile-time error if a fragment shader
3279 * sets a layout index to less than 0 or greater than 1."
3280 *
3281 * Older specifications don't mandate a behavior; we take
3282 * this as a clarification and always generate the error.
3283 */
3284 if (qual_index > 1) {
3285 _mesa_glsl_error(loc, state,
3286 "explicit index may only be 0 or 1");
3287 } else {
3288 var->data.explicit_index = true;
3289 var->data.index = qual_index;
3290 }
3291 }
3292 }
3293 }
3294
3295 static bool
3296 validate_storage_for_sampler_image_types(ir_variable *var,
3297 struct _mesa_glsl_parse_state *state,
3298 YYLTYPE *loc)
3299 {
3300 /* From section 4.1.7 of the GLSL 4.40 spec:
3301 *
3302 * "[Opaque types] can only be declared as function
3303 * parameters or uniform-qualified variables."
3304 *
3305 * From section 4.1.7 of the ARB_bindless_texture spec:
3306 *
3307 * "Samplers may be declared as shader inputs and outputs, as uniform
3308 * variables, as temporary variables, and as function parameters."
3309 *
3310 * From section 4.1.X of the ARB_bindless_texture spec:
3311 *
3312 * "Images may be declared as shader inputs and outputs, as uniform
3313 * variables, as temporary variables, and as function parameters."
3314 */
3315 if (state->has_bindless()) {
3316 if (var->data.mode != ir_var_auto &&
3317 var->data.mode != ir_var_uniform &&
3318 var->data.mode != ir_var_shader_in &&
3319 var->data.mode != ir_var_shader_out &&
3320 var->data.mode != ir_var_function_in &&
3321 var->data.mode != ir_var_function_out &&
3322 var->data.mode != ir_var_function_inout) {
3323 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3324 "only be declared as shader inputs and outputs, as "
3325 "uniform variables, as temporary variables and as "
3326 "function parameters");
3327 return false;
3328 }
3329 } else {
3330 if (var->data.mode != ir_var_uniform &&
3331 var->data.mode != ir_var_function_in) {
3332 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3333 "declared as function parameters or "
3334 "uniform-qualified global variables");
3335 return false;
3336 }
3337 }
3338 return true;
3339 }
3340
3341 static bool
3342 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3343 YYLTYPE *loc,
3344 const struct ast_type_qualifier *qual,
3345 const glsl_type *type)
3346 {
3347 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3348 *
3349 * "Memory qualifiers are only supported in the declarations of image
3350 * variables, buffer variables, and shader storage blocks; it is an error
3351 * to use such qualifiers in any other declarations.
3352 */
3353 if (!type->is_image() && !qual->flags.q.buffer) {
3354 if (qual->flags.q.read_only ||
3355 qual->flags.q.write_only ||
3356 qual->flags.q.coherent ||
3357 qual->flags.q._volatile ||
3358 qual->flags.q.restrict_flag) {
3359 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3360 "in the declarations of image variables, buffer "
3361 "variables, and shader storage blocks");
3362 return false;
3363 }
3364 }
3365 return true;
3366 }
3367
3368 static bool
3369 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3370 YYLTYPE *loc,
3371 const struct ast_type_qualifier *qual,
3372 const glsl_type *type)
3373 {
3374 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3375 *
3376 * "Format layout qualifiers can be used on image variable declarations
3377 * (those declared with a basic type having “image ” in its keyword)."
3378 */
3379 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3380 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3381 "applied to images");
3382 return false;
3383 }
3384 return true;
3385 }
3386
3387 static void
3388 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3389 ir_variable *var,
3390 struct _mesa_glsl_parse_state *state,
3391 YYLTYPE *loc)
3392 {
3393 const glsl_type *base_type = var->type->without_array();
3394
3395 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3396 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3397 return;
3398
3399 if (!base_type->is_image())
3400 return;
3401
3402 if (!validate_storage_for_sampler_image_types(var, state, loc))
3403 return;
3404
3405 var->data.memory_read_only |= qual->flags.q.read_only;
3406 var->data.memory_write_only |= qual->flags.q.write_only;
3407 var->data.memory_coherent |= qual->flags.q.coherent;
3408 var->data.memory_volatile |= qual->flags.q._volatile;
3409 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3410
3411 if (qual->flags.q.explicit_image_format) {
3412 if (var->data.mode == ir_var_function_in) {
3413 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3414 "image function parameters");
3415 }
3416
3417 if (qual->image_base_type != base_type->sampled_type) {
3418 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3419 "data type of the image");
3420 }
3421
3422 var->data.image_format = qual->image_format;
3423 } else {
3424 if (var->data.mode == ir_var_uniform) {
3425 if (state->es_shader) {
3426 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3427 "format layout qualifier");
3428 } else if (!qual->flags.q.write_only) {
3429 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3430 "`writeonly' must have a format layout qualifier");
3431 }
3432 }
3433 var->data.image_format = GL_NONE;
3434 }
3435
3436 /* From page 70 of the GLSL ES 3.1 specification:
3437 *
3438 * "Except for image variables qualified with the format qualifiers r32f,
3439 * r32i, and r32ui, image variables must specify either memory qualifier
3440 * readonly or the memory qualifier writeonly."
3441 */
3442 if (state->es_shader &&
3443 var->data.image_format != GL_R32F &&
3444 var->data.image_format != GL_R32I &&
3445 var->data.image_format != GL_R32UI &&
3446 !var->data.memory_read_only &&
3447 !var->data.memory_write_only) {
3448 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3449 "r32i or r32ui must be qualified `readonly' or "
3450 "`writeonly'");
3451 }
3452 }
3453
3454 static inline const char*
3455 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3456 {
3457 if (origin_upper_left && pixel_center_integer)
3458 return "origin_upper_left, pixel_center_integer";
3459 else if (origin_upper_left)
3460 return "origin_upper_left";
3461 else if (pixel_center_integer)
3462 return "pixel_center_integer";
3463 else
3464 return " ";
3465 }
3466
3467 static inline bool
3468 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3469 const struct ast_type_qualifier *qual)
3470 {
3471 /* If gl_FragCoord was previously declared, and the qualifiers were
3472 * different in any way, return true.
3473 */
3474 if (state->fs_redeclares_gl_fragcoord) {
3475 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3476 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3477 }
3478
3479 return false;
3480 }
3481
3482 static inline void
3483 validate_array_dimensions(const glsl_type *t,
3484 struct _mesa_glsl_parse_state *state,
3485 YYLTYPE *loc) {
3486 if (t->is_array()) {
3487 t = t->fields.array;
3488 while (t->is_array()) {
3489 if (t->is_unsized_array()) {
3490 _mesa_glsl_error(loc, state,
3491 "only the outermost array dimension can "
3492 "be unsized",
3493 t->name);
3494 break;
3495 }
3496 t = t->fields.array;
3497 }
3498 }
3499 }
3500
3501 static void
3502 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3503 ir_variable *var,
3504 struct _mesa_glsl_parse_state *state,
3505 YYLTYPE *loc)
3506 {
3507 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3508 qual->flags.q.bindless_image ||
3509 qual->flags.q.bound_sampler ||
3510 qual->flags.q.bound_image;
3511
3512 /* The ARB_bindless_texture spec says:
3513 *
3514 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3515 * spec"
3516 *
3517 * "If these layout qualifiers are applied to other types of default block
3518 * uniforms, or variables with non-uniform storage, a compile-time error
3519 * will be generated."
3520 */
3521 if (has_local_qualifiers && !qual->flags.q.uniform) {
3522 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3523 "can only be applied to default block uniforms or "
3524 "variables with uniform storage");
3525 return;
3526 }
3527
3528 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3529 * but it makes sense to only allow bindless_sampler/bound_sampler for
3530 * sampler types, and respectively bindless_image/bound_image for image
3531 * types.
3532 */
3533 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3534 !var->type->contains_sampler()) {
3535 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3536 "be applied to sampler types");
3537 return;
3538 }
3539
3540 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3541 !var->type->contains_image()) {
3542 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3543 "applied to image types");
3544 return;
3545 }
3546
3547 /* The bindless_sampler/bindless_image (and respectively
3548 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3549 * local scope.
3550 */
3551 if (var->type->contains_sampler() || var->type->contains_image()) {
3552 var->data.bindless = qual->flags.q.bindless_sampler ||
3553 qual->flags.q.bindless_image ||
3554 state->bindless_sampler_specified ||
3555 state->bindless_image_specified;
3556
3557 var->data.bound = qual->flags.q.bound_sampler ||
3558 qual->flags.q.bound_image ||
3559 state->bound_sampler_specified ||
3560 state->bound_image_specified;
3561 }
3562 }
3563
3564 static void
3565 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3566 ir_variable *var,
3567 struct _mesa_glsl_parse_state *state,
3568 YYLTYPE *loc)
3569 {
3570 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3571
3572 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3573 *
3574 * "Within any shader, the first redeclarations of gl_FragCoord
3575 * must appear before any use of gl_FragCoord."
3576 *
3577 * Generate a compiler error if above condition is not met by the
3578 * fragment shader.
3579 */
3580 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3581 if (earlier != NULL &&
3582 earlier->data.used &&
3583 !state->fs_redeclares_gl_fragcoord) {
3584 _mesa_glsl_error(loc, state,
3585 "gl_FragCoord used before its first redeclaration "
3586 "in fragment shader");
3587 }
3588
3589 /* Make sure all gl_FragCoord redeclarations specify the same layout
3590 * qualifiers.
3591 */
3592 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3593 const char *const qual_string =
3594 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3595 qual->flags.q.pixel_center_integer);
3596
3597 const char *const state_string =
3598 get_layout_qualifier_string(state->fs_origin_upper_left,
3599 state->fs_pixel_center_integer);
3600
3601 _mesa_glsl_error(loc, state,
3602 "gl_FragCoord redeclared with different layout "
3603 "qualifiers (%s) and (%s) ",
3604 state_string,
3605 qual_string);
3606 }
3607 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3608 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3609 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3610 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3611 state->fs_redeclares_gl_fragcoord =
3612 state->fs_origin_upper_left ||
3613 state->fs_pixel_center_integer ||
3614 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3615 }
3616
3617 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3618 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3619 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3620 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3621 const char *const qual_string = (qual->flags.q.origin_upper_left)
3622 ? "origin_upper_left" : "pixel_center_integer";
3623
3624 _mesa_glsl_error(loc, state,
3625 "layout qualifier `%s' can only be applied to "
3626 "fragment shader input `gl_FragCoord'",
3627 qual_string);
3628 }
3629
3630 if (qual->flags.q.explicit_location) {
3631 apply_explicit_location(qual, var, state, loc);
3632
3633 if (qual->flags.q.explicit_component) {
3634 unsigned qual_component;
3635 if (process_qualifier_constant(state, loc, "component",
3636 qual->component, &qual_component)) {
3637 const glsl_type *type = var->type->without_array();
3638 unsigned components = type->component_slots();
3639
3640 if (type->is_matrix() || type->is_record()) {
3641 _mesa_glsl_error(loc, state, "component layout qualifier "
3642 "cannot be applied to a matrix, a structure, "
3643 "a block, or an array containing any of "
3644 "these.");
3645 } else if (qual_component != 0 &&
3646 (qual_component + components - 1) > 3) {
3647 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3648 (qual_component + components - 1));
3649 } else if (qual_component == 1 && type->is_64bit()) {
3650 /* We don't bother checking for 3 as it should be caught by the
3651 * overflow check above.
3652 */
3653 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3654 "component 1 or 3");
3655 } else {
3656 var->data.explicit_component = true;
3657 var->data.location_frac = qual_component;
3658 }
3659 }
3660 }
3661 } else if (qual->flags.q.explicit_index) {
3662 if (!qual->subroutine_list)
3663 _mesa_glsl_error(loc, state,
3664 "explicit index requires explicit location");
3665 } else if (qual->flags.q.explicit_component) {
3666 _mesa_glsl_error(loc, state,
3667 "explicit component requires explicit location");
3668 }
3669
3670 if (qual->flags.q.explicit_binding) {
3671 apply_explicit_binding(state, loc, var, var->type, qual);
3672 }
3673
3674 if (state->stage == MESA_SHADER_GEOMETRY &&
3675 qual->flags.q.out && qual->flags.q.stream) {
3676 unsigned qual_stream;
3677 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3678 &qual_stream) &&
3679 validate_stream_qualifier(loc, state, qual_stream)) {
3680 var->data.stream = qual_stream;
3681 }
3682 }
3683
3684 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3685 unsigned qual_xfb_buffer;
3686 if (process_qualifier_constant(state, loc, "xfb_buffer",
3687 qual->xfb_buffer, &qual_xfb_buffer) &&
3688 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3689 var->data.xfb_buffer = qual_xfb_buffer;
3690 if (qual->flags.q.explicit_xfb_buffer)
3691 var->data.explicit_xfb_buffer = true;
3692 }
3693 }
3694
3695 if (qual->flags.q.explicit_xfb_offset) {
3696 unsigned qual_xfb_offset;
3697 unsigned component_size = var->type->contains_double() ? 8 : 4;
3698
3699 if (process_qualifier_constant(state, loc, "xfb_offset",
3700 qual->offset, &qual_xfb_offset) &&
3701 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3702 var->type, component_size)) {
3703 var->data.offset = qual_xfb_offset;
3704 var->data.explicit_xfb_offset = true;
3705 }
3706 }
3707
3708 if (qual->flags.q.explicit_xfb_stride) {
3709 unsigned qual_xfb_stride;
3710 if (process_qualifier_constant(state, loc, "xfb_stride",
3711 qual->xfb_stride, &qual_xfb_stride)) {
3712 var->data.xfb_stride = qual_xfb_stride;
3713 var->data.explicit_xfb_stride = true;
3714 }
3715 }
3716
3717 if (var->type->contains_atomic()) {
3718 if (var->data.mode == ir_var_uniform) {
3719 if (var->data.explicit_binding) {
3720 unsigned *offset =
3721 &state->atomic_counter_offsets[var->data.binding];
3722
3723 if (*offset % ATOMIC_COUNTER_SIZE)
3724 _mesa_glsl_error(loc, state,
3725 "misaligned atomic counter offset");
3726
3727 var->data.offset = *offset;
3728 *offset += var->type->atomic_size();
3729
3730 } else {
3731 _mesa_glsl_error(loc, state,
3732 "atomic counters require explicit binding point");
3733 }
3734 } else if (var->data.mode != ir_var_function_in) {
3735 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3736 "function parameters or uniform-qualified "
3737 "global variables");
3738 }
3739 }
3740
3741 if (var->type->contains_sampler() &&
3742 !validate_storage_for_sampler_image_types(var, state, loc))
3743 return;
3744
3745 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3746 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3747 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3748 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3749 * These extensions and all following extensions that add the 'layout'
3750 * keyword have been modified to require the use of 'in' or 'out'.
3751 *
3752 * The following extension do not allow the deprecated keywords:
3753 *
3754 * GL_AMD_conservative_depth
3755 * GL_ARB_conservative_depth
3756 * GL_ARB_gpu_shader5
3757 * GL_ARB_separate_shader_objects
3758 * GL_ARB_tessellation_shader
3759 * GL_ARB_transform_feedback3
3760 * GL_ARB_uniform_buffer_object
3761 *
3762 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3763 * allow layout with the deprecated keywords.
3764 */
3765 const bool relaxed_layout_qualifier_checking =
3766 state->ARB_fragment_coord_conventions_enable;
3767
3768 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3769 || qual->flags.q.varying;
3770 if (qual->has_layout() && uses_deprecated_qualifier) {
3771 if (relaxed_layout_qualifier_checking) {
3772 _mesa_glsl_warning(loc, state,
3773 "`layout' qualifier may not be used with "
3774 "`attribute' or `varying'");
3775 } else {
3776 _mesa_glsl_error(loc, state,
3777 "`layout' qualifier may not be used with "
3778 "`attribute' or `varying'");
3779 }
3780 }
3781
3782 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3783 * AMD_conservative_depth.
3784 */
3785 if (qual->flags.q.depth_type
3786 && !state->is_version(420, 0)
3787 && !state->AMD_conservative_depth_enable
3788 && !state->ARB_conservative_depth_enable) {
3789 _mesa_glsl_error(loc, state,
3790 "extension GL_AMD_conservative_depth or "
3791 "GL_ARB_conservative_depth must be enabled "
3792 "to use depth layout qualifiers");
3793 } else if (qual->flags.q.depth_type
3794 && strcmp(var->name, "gl_FragDepth") != 0) {
3795 _mesa_glsl_error(loc, state,
3796 "depth layout qualifiers can be applied only to "
3797 "gl_FragDepth");
3798 }
3799
3800 switch (qual->depth_type) {
3801 case ast_depth_any:
3802 var->data.depth_layout = ir_depth_layout_any;
3803 break;
3804 case ast_depth_greater:
3805 var->data.depth_layout = ir_depth_layout_greater;
3806 break;
3807 case ast_depth_less:
3808 var->data.depth_layout = ir_depth_layout_less;
3809 break;
3810 case ast_depth_unchanged:
3811 var->data.depth_layout = ir_depth_layout_unchanged;
3812 break;
3813 default:
3814 var->data.depth_layout = ir_depth_layout_none;
3815 break;
3816 }
3817
3818 if (qual->flags.q.std140 ||
3819 qual->flags.q.std430 ||
3820 qual->flags.q.packed ||
3821 qual->flags.q.shared) {
3822 _mesa_glsl_error(loc, state,
3823 "uniform and shader storage block layout qualifiers "
3824 "std140, std430, packed, and shared can only be "
3825 "applied to uniform or shader storage blocks, not "
3826 "members");
3827 }
3828
3829 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3830 validate_matrix_layout_for_type(state, loc, var->type, var);
3831 }
3832
3833 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3834 * Inputs):
3835 *
3836 * "Fragment shaders also allow the following layout qualifier on in only
3837 * (not with variable declarations)
3838 * layout-qualifier-id
3839 * early_fragment_tests
3840 * [...]"
3841 */
3842 if (qual->flags.q.early_fragment_tests) {
3843 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3844 "valid in fragment shader input layout declaration.");
3845 }
3846
3847 if (qual->flags.q.inner_coverage) {
3848 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3849 "valid in fragment shader input layout declaration.");
3850 }
3851
3852 if (qual->flags.q.post_depth_coverage) {
3853 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3854 "valid in fragment shader input layout declaration.");
3855 }
3856
3857 if (state->has_bindless())
3858 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3859 }
3860
3861 static void
3862 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3863 ir_variable *var,
3864 struct _mesa_glsl_parse_state *state,
3865 YYLTYPE *loc,
3866 bool is_parameter)
3867 {
3868 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3869
3870 if (qual->flags.q.invariant) {
3871 if (var->data.used) {
3872 _mesa_glsl_error(loc, state,
3873 "variable `%s' may not be redeclared "
3874 "`invariant' after being used",
3875 var->name);
3876 } else {
3877 var->data.invariant = 1;
3878 }
3879 }
3880
3881 if (qual->flags.q.precise) {
3882 if (var->data.used) {
3883 _mesa_glsl_error(loc, state,
3884 "variable `%s' may not be redeclared "
3885 "`precise' after being used",
3886 var->name);
3887 } else {
3888 var->data.precise = 1;
3889 }
3890 }
3891
3892 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3893 _mesa_glsl_error(loc, state,
3894 "`subroutine' may only be applied to uniforms, "
3895 "subroutine type declarations, or function definitions");
3896 }
3897
3898 if (qual->flags.q.constant || qual->flags.q.attribute
3899 || qual->flags.q.uniform
3900 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3901 var->data.read_only = 1;
3902
3903 if (qual->flags.q.centroid)
3904 var->data.centroid = 1;
3905
3906 if (qual->flags.q.sample)
3907 var->data.sample = 1;
3908
3909 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3910 if (state->es_shader) {
3911 var->data.precision =
3912 select_gles_precision(qual->precision, var->type, state, loc);
3913 }
3914
3915 if (qual->flags.q.patch)
3916 var->data.patch = 1;
3917
3918 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3919 var->type = glsl_type::error_type;
3920 _mesa_glsl_error(loc, state,
3921 "`attribute' variables may not be declared in the "
3922 "%s shader",
3923 _mesa_shader_stage_to_string(state->stage));
3924 }
3925
3926 /* Disallow layout qualifiers which may only appear on layout declarations. */
3927 if (qual->flags.q.prim_type) {
3928 _mesa_glsl_error(loc, state,
3929 "Primitive type may only be specified on GS input or output "
3930 "layout declaration, not on variables.");
3931 }
3932
3933 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3934 *
3935 * "However, the const qualifier cannot be used with out or inout."
3936 *
3937 * The same section of the GLSL 4.40 spec further clarifies this saying:
3938 *
3939 * "The const qualifier cannot be used with out or inout, or a
3940 * compile-time error results."
3941 */
3942 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3943 _mesa_glsl_error(loc, state,
3944 "`const' may not be applied to `out' or `inout' "
3945 "function parameters");
3946 }
3947
3948 /* If there is no qualifier that changes the mode of the variable, leave
3949 * the setting alone.
3950 */
3951 assert(var->data.mode != ir_var_temporary);
3952 if (qual->flags.q.in && qual->flags.q.out)
3953 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3954 else if (qual->flags.q.in)
3955 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3956 else if (qual->flags.q.attribute
3957 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3958 var->data.mode = ir_var_shader_in;
3959 else if (qual->flags.q.out)
3960 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3961 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3962 var->data.mode = ir_var_shader_out;
3963 else if (qual->flags.q.uniform)
3964 var->data.mode = ir_var_uniform;
3965 else if (qual->flags.q.buffer)
3966 var->data.mode = ir_var_shader_storage;
3967 else if (qual->flags.q.shared_storage)
3968 var->data.mode = ir_var_shader_shared;
3969
3970 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3971 qual->flags.q.in && qual->flags.q.out;
3972
3973 if (!is_parameter && is_varying_var(var, state->stage)) {
3974 /* User-defined ins/outs are not permitted in compute shaders. */
3975 if (state->stage == MESA_SHADER_COMPUTE) {
3976 _mesa_glsl_error(loc, state,
3977 "user-defined input and output variables are not "
3978 "permitted in compute shaders");
3979 }
3980
3981 /* This variable is being used to link data between shader stages (in
3982 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3983 * that is allowed for such purposes.
3984 *
3985 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3986 *
3987 * "The varying qualifier can be used only with the data types
3988 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3989 * these."
3990 *
3991 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3992 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3993 *
3994 * "Fragment inputs can only be signed and unsigned integers and
3995 * integer vectors, float, floating-point vectors, matrices, or
3996 * arrays of these. Structures cannot be input.
3997 *
3998 * Similar text exists in the section on vertex shader outputs.
3999 *
4000 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4001 * 3.00 spec allows structs as well. Varying structs are also allowed
4002 * in GLSL 1.50.
4003 */
4004 switch (var->type->without_array()->base_type) {
4005 case GLSL_TYPE_FLOAT:
4006 /* Ok in all GLSL versions */
4007 break;
4008 case GLSL_TYPE_UINT:
4009 case GLSL_TYPE_INT:
4010 if (state->is_version(130, 300))
4011 break;
4012 _mesa_glsl_error(loc, state,
4013 "varying variables must be of base type float in %s",
4014 state->get_version_string());
4015 break;
4016 case GLSL_TYPE_STRUCT:
4017 if (state->is_version(150, 300))
4018 break;
4019 _mesa_glsl_error(loc, state,
4020 "varying variables may not be of type struct");
4021 break;
4022 case GLSL_TYPE_DOUBLE:
4023 case GLSL_TYPE_UINT64:
4024 case GLSL_TYPE_INT64:
4025 break;
4026 default:
4027 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4028 break;
4029 }
4030 }
4031
4032 if (state->all_invariant && (state->current_function == NULL)) {
4033 switch (state->stage) {
4034 case MESA_SHADER_VERTEX:
4035 if (var->data.mode == ir_var_shader_out)
4036 var->data.invariant = true;
4037 break;
4038 case MESA_SHADER_TESS_CTRL:
4039 case MESA_SHADER_TESS_EVAL:
4040 case MESA_SHADER_GEOMETRY:
4041 if ((var->data.mode == ir_var_shader_in)
4042 || (var->data.mode == ir_var_shader_out))
4043 var->data.invariant = true;
4044 break;
4045 case MESA_SHADER_FRAGMENT:
4046 if (var->data.mode == ir_var_shader_in)
4047 var->data.invariant = true;
4048 break;
4049 case MESA_SHADER_COMPUTE:
4050 /* Invariance isn't meaningful in compute shaders. */
4051 break;
4052 }
4053 }
4054
4055 var->data.interpolation =
4056 interpret_interpolation_qualifier(qual, var->type,
4057 (ir_variable_mode) var->data.mode,
4058 state, loc);
4059
4060 /* Does the declaration use the deprecated 'attribute' or 'varying'
4061 * keywords?
4062 */
4063 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4064 || qual->flags.q.varying;
4065
4066
4067 /* Validate auxiliary storage qualifiers */
4068
4069 /* From section 4.3.4 of the GLSL 1.30 spec:
4070 * "It is an error to use centroid in in a vertex shader."
4071 *
4072 * From section 4.3.4 of the GLSL ES 3.00 spec:
4073 * "It is an error to use centroid in or interpolation qualifiers in
4074 * a vertex shader input."
4075 */
4076
4077 /* Section 4.3.6 of the GLSL 1.30 specification states:
4078 * "It is an error to use centroid out in a fragment shader."
4079 *
4080 * The GL_ARB_shading_language_420pack extension specification states:
4081 * "It is an error to use auxiliary storage qualifiers or interpolation
4082 * qualifiers on an output in a fragment shader."
4083 */
4084 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4085 _mesa_glsl_error(loc, state,
4086 "sample qualifier may only be used on `in` or `out` "
4087 "variables between shader stages");
4088 }
4089 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4090 _mesa_glsl_error(loc, state,
4091 "centroid qualifier may only be used with `in', "
4092 "`out' or `varying' variables between shader stages");
4093 }
4094
4095 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4096 _mesa_glsl_error(loc, state,
4097 "the shared storage qualifiers can only be used with "
4098 "compute shaders");
4099 }
4100
4101 apply_image_qualifier_to_variable(qual, var, state, loc);
4102 }
4103
4104 /**
4105 * Get the variable that is being redeclared by this declaration or if it
4106 * does not exist, the current declared variable.
4107 *
4108 * Semantic checks to verify the validity of the redeclaration are also
4109 * performed. If semantic checks fail, compilation error will be emitted via
4110 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4111 *
4112 * \returns
4113 * A pointer to an existing variable in the current scope if the declaration
4114 * is a redeclaration, current variable otherwise. \c is_declared boolean
4115 * will return \c true if the declaration is a redeclaration, \c false
4116 * otherwise.
4117 */
4118 static ir_variable *
4119 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4120 struct _mesa_glsl_parse_state *state,
4121 bool allow_all_redeclarations,
4122 bool *is_redeclaration)
4123 {
4124 /* Check if this declaration is actually a re-declaration, either to
4125 * resize an array or add qualifiers to an existing variable.
4126 *
4127 * This is allowed for variables in the current scope, or when at
4128 * global scope (for built-ins in the implicit outer scope).
4129 */
4130 ir_variable *earlier = state->symbols->get_variable(var->name);
4131 if (earlier == NULL ||
4132 (state->current_function != NULL &&
4133 !state->symbols->name_declared_this_scope(var->name))) {
4134 *is_redeclaration = false;
4135 return var;
4136 }
4137
4138 *is_redeclaration = true;
4139
4140 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4141 *
4142 * "It is legal to declare an array without a size and then
4143 * later re-declare the same name as an array of the same
4144 * type and specify a size."
4145 */
4146 if (earlier->type->is_unsized_array() && var->type->is_array()
4147 && (var->type->fields.array == earlier->type->fields.array)) {
4148 /* FINISHME: This doesn't match the qualifiers on the two
4149 * FINISHME: declarations. It's not 100% clear whether this is
4150 * FINISHME: required or not.
4151 */
4152
4153 const int size = var->type->array_size();
4154 check_builtin_array_max_size(var->name, size, loc, state);
4155 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4156 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4157 "previous access",
4158 earlier->data.max_array_access);
4159 }
4160
4161 earlier->type = var->type;
4162 delete var;
4163 var = NULL;
4164 } else if ((state->ARB_fragment_coord_conventions_enable ||
4165 state->is_version(150, 0))
4166 && strcmp(var->name, "gl_FragCoord") == 0
4167 && earlier->type == var->type
4168 && var->data.mode == ir_var_shader_in) {
4169 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4170 * qualifiers.
4171 */
4172 earlier->data.origin_upper_left = var->data.origin_upper_left;
4173 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4174
4175 /* According to section 4.3.7 of the GLSL 1.30 spec,
4176 * the following built-in varaibles can be redeclared with an
4177 * interpolation qualifier:
4178 * * gl_FrontColor
4179 * * gl_BackColor
4180 * * gl_FrontSecondaryColor
4181 * * gl_BackSecondaryColor
4182 * * gl_Color
4183 * * gl_SecondaryColor
4184 */
4185 } else if (state->is_version(130, 0)
4186 && (strcmp(var->name, "gl_FrontColor") == 0
4187 || strcmp(var->name, "gl_BackColor") == 0
4188 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4189 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4190 || strcmp(var->name, "gl_Color") == 0
4191 || strcmp(var->name, "gl_SecondaryColor") == 0)
4192 && earlier->type == var->type
4193 && earlier->data.mode == var->data.mode) {
4194 earlier->data.interpolation = var->data.interpolation;
4195
4196 /* Layout qualifiers for gl_FragDepth. */
4197 } else if ((state->is_version(420, 0) ||
4198 state->AMD_conservative_depth_enable ||
4199 state->ARB_conservative_depth_enable)
4200 && strcmp(var->name, "gl_FragDepth") == 0
4201 && earlier->type == var->type
4202 && earlier->data.mode == var->data.mode) {
4203
4204 /** From the AMD_conservative_depth spec:
4205 * Within any shader, the first redeclarations of gl_FragDepth
4206 * must appear before any use of gl_FragDepth.
4207 */
4208 if (earlier->data.used) {
4209 _mesa_glsl_error(&loc, state,
4210 "the first redeclaration of gl_FragDepth "
4211 "must appear before any use of gl_FragDepth");
4212 }
4213
4214 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4215 if (earlier->data.depth_layout != ir_depth_layout_none
4216 && earlier->data.depth_layout != var->data.depth_layout) {
4217 _mesa_glsl_error(&loc, state,
4218 "gl_FragDepth: depth layout is declared here "
4219 "as '%s, but it was previously declared as "
4220 "'%s'",
4221 depth_layout_string(var->data.depth_layout),
4222 depth_layout_string(earlier->data.depth_layout));
4223 }
4224
4225 earlier->data.depth_layout = var->data.depth_layout;
4226
4227 } else if (state->has_framebuffer_fetch() &&
4228 strcmp(var->name, "gl_LastFragData") == 0 &&
4229 var->type == earlier->type &&
4230 var->data.mode == ir_var_auto) {
4231 /* According to the EXT_shader_framebuffer_fetch spec:
4232 *
4233 * "By default, gl_LastFragData is declared with the mediump precision
4234 * qualifier. This can be changed by redeclaring the corresponding
4235 * variables with the desired precision qualifier."
4236 */
4237 earlier->data.precision = var->data.precision;
4238
4239 } else if (allow_all_redeclarations) {
4240 if (earlier->data.mode != var->data.mode) {
4241 _mesa_glsl_error(&loc, state,
4242 "redeclaration of `%s' with incorrect qualifiers",
4243 var->name);
4244 } else if (earlier->type != var->type) {
4245 _mesa_glsl_error(&loc, state,
4246 "redeclaration of `%s' has incorrect type",
4247 var->name);
4248 }
4249 } else {
4250 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4251 }
4252
4253 return earlier;
4254 }
4255
4256 /**
4257 * Generate the IR for an initializer in a variable declaration
4258 */
4259 ir_rvalue *
4260 process_initializer(ir_variable *var, ast_declaration *decl,
4261 ast_fully_specified_type *type,
4262 exec_list *initializer_instructions,
4263 struct _mesa_glsl_parse_state *state)
4264 {
4265 ir_rvalue *result = NULL;
4266
4267 YYLTYPE initializer_loc = decl->initializer->get_location();
4268
4269 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4270 *
4271 * "All uniform variables are read-only and are initialized either
4272 * directly by an application via API commands, or indirectly by
4273 * OpenGL."
4274 */
4275 if (var->data.mode == ir_var_uniform) {
4276 state->check_version(120, 0, &initializer_loc,
4277 "cannot initialize uniform %s",
4278 var->name);
4279 }
4280
4281 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4282 *
4283 * "Buffer variables cannot have initializers."
4284 */
4285 if (var->data.mode == ir_var_shader_storage) {
4286 _mesa_glsl_error(&initializer_loc, state,
4287 "cannot initialize buffer variable %s",
4288 var->name);
4289 }
4290
4291 /* From section 4.1.7 of the GLSL 4.40 spec:
4292 *
4293 * "Opaque variables [...] are initialized only through the
4294 * OpenGL API; they cannot be declared with an initializer in a
4295 * shader."
4296 */
4297 if (var->type->contains_opaque()) {
4298 _mesa_glsl_error(&initializer_loc, state,
4299 "cannot initialize opaque variable %s",
4300 var->name);
4301 }
4302
4303 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4304 _mesa_glsl_error(&initializer_loc, state,
4305 "cannot initialize %s shader input / %s %s",
4306 _mesa_shader_stage_to_string(state->stage),
4307 (state->stage == MESA_SHADER_VERTEX)
4308 ? "attribute" : "varying",
4309 var->name);
4310 }
4311
4312 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4313 _mesa_glsl_error(&initializer_loc, state,
4314 "cannot initialize %s shader output %s",
4315 _mesa_shader_stage_to_string(state->stage),
4316 var->name);
4317 }
4318
4319 /* If the initializer is an ast_aggregate_initializer, recursively store
4320 * type information from the LHS into it, so that its hir() function can do
4321 * type checking.
4322 */
4323 if (decl->initializer->oper == ast_aggregate)
4324 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4325
4326 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4327 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4328
4329 /* Calculate the constant value if this is a const or uniform
4330 * declaration.
4331 *
4332 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4333 *
4334 * "Declarations of globals without a storage qualifier, or with
4335 * just the const qualifier, may include initializers, in which case
4336 * they will be initialized before the first line of main() is
4337 * executed. Such initializers must be a constant expression."
4338 *
4339 * The same section of the GLSL ES 3.00.4 spec has similar language.
4340 */
4341 if (type->qualifier.flags.q.constant
4342 || type->qualifier.flags.q.uniform
4343 || (state->es_shader && state->current_function == NULL)) {
4344 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4345 lhs, rhs, true);
4346 if (new_rhs != NULL) {
4347 rhs = new_rhs;
4348
4349 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4350 * says:
4351 *
4352 * "A constant expression is one of
4353 *
4354 * ...
4355 *
4356 * - an expression formed by an operator on operands that are
4357 * all constant expressions, including getting an element of
4358 * a constant array, or a field of a constant structure, or
4359 * components of a constant vector. However, the sequence
4360 * operator ( , ) and the assignment operators ( =, +=, ...)
4361 * are not included in the operators that can create a
4362 * constant expression."
4363 *
4364 * Section 12.43 (Sequence operator and constant expressions) says:
4365 *
4366 * "Should the following construct be allowed?
4367 *
4368 * float a[2,3];
4369 *
4370 * The expression within the brackets uses the sequence operator
4371 * (',') and returns the integer 3 so the construct is declaring
4372 * a single-dimensional array of size 3. In some languages, the
4373 * construct declares a two-dimensional array. It would be
4374 * preferable to make this construct illegal to avoid confusion.
4375 *
4376 * One possibility is to change the definition of the sequence
4377 * operator so that it does not return a constant-expression and
4378 * hence cannot be used to declare an array size.
4379 *
4380 * RESOLUTION: The result of a sequence operator is not a
4381 * constant-expression."
4382 *
4383 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4384 * contains language almost identical to the section 4.3.3 in the
4385 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4386 * versions.
4387 */
4388 ir_constant *constant_value = rhs->constant_expression_value();
4389 if (!constant_value ||
4390 (state->is_version(430, 300) &&
4391 decl->initializer->has_sequence_subexpression())) {
4392 const char *const variable_mode =
4393 (type->qualifier.flags.q.constant)
4394 ? "const"
4395 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4396
4397 /* If ARB_shading_language_420pack is enabled, initializers of
4398 * const-qualified local variables do not have to be constant
4399 * expressions. Const-qualified global variables must still be
4400 * initialized with constant expressions.
4401 */
4402 if (!state->has_420pack()
4403 || state->current_function == NULL) {
4404 _mesa_glsl_error(& initializer_loc, state,
4405 "initializer of %s variable `%s' must be a "
4406 "constant expression",
4407 variable_mode,
4408 decl->identifier);
4409 if (var->type->is_numeric()) {
4410 /* Reduce cascading errors. */
4411 var->constant_value = type->qualifier.flags.q.constant
4412 ? ir_constant::zero(state, var->type) : NULL;
4413 }
4414 }
4415 } else {
4416 rhs = constant_value;
4417 var->constant_value = type->qualifier.flags.q.constant
4418 ? constant_value : NULL;
4419 }
4420 } else {
4421 if (var->type->is_numeric()) {
4422 /* Reduce cascading errors. */
4423 var->constant_value = type->qualifier.flags.q.constant
4424 ? ir_constant::zero(state, var->type) : NULL;
4425 }
4426 }
4427 }
4428
4429 if (rhs && !rhs->type->is_error()) {
4430 bool temp = var->data.read_only;
4431 if (type->qualifier.flags.q.constant)
4432 var->data.read_only = false;
4433
4434 /* Never emit code to initialize a uniform.
4435 */
4436 const glsl_type *initializer_type;
4437 if (!type->qualifier.flags.q.uniform) {
4438 do_assignment(initializer_instructions, state,
4439 NULL,
4440 lhs, rhs,
4441 &result, true,
4442 true,
4443 type->get_location());
4444 initializer_type = result->type;
4445 } else
4446 initializer_type = rhs->type;
4447
4448 var->constant_initializer = rhs->constant_expression_value();
4449 var->data.has_initializer = true;
4450
4451 /* If the declared variable is an unsized array, it must inherrit
4452 * its full type from the initializer. A declaration such as
4453 *
4454 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4455 *
4456 * becomes
4457 *
4458 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4459 *
4460 * The assignment generated in the if-statement (below) will also
4461 * automatically handle this case for non-uniforms.
4462 *
4463 * If the declared variable is not an array, the types must
4464 * already match exactly. As a result, the type assignment
4465 * here can be done unconditionally. For non-uniforms the call
4466 * to do_assignment can change the type of the initializer (via
4467 * the implicit conversion rules). For uniforms the initializer
4468 * must be a constant expression, and the type of that expression
4469 * was validated above.
4470 */
4471 var->type = initializer_type;
4472
4473 var->data.read_only = temp;
4474 }
4475
4476 return result;
4477 }
4478
4479 static void
4480 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4481 YYLTYPE loc, ir_variable *var,
4482 unsigned num_vertices,
4483 unsigned *size,
4484 const char *var_category)
4485 {
4486 if (var->type->is_unsized_array()) {
4487 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4488 *
4489 * All geometry shader input unsized array declarations will be
4490 * sized by an earlier input layout qualifier, when present, as per
4491 * the following table.
4492 *
4493 * Followed by a table mapping each allowed input layout qualifier to
4494 * the corresponding input length.
4495 *
4496 * Similarly for tessellation control shader outputs.
4497 */
4498 if (num_vertices != 0)
4499 var->type = glsl_type::get_array_instance(var->type->fields.array,
4500 num_vertices);
4501 } else {
4502 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4503 * includes the following examples of compile-time errors:
4504 *
4505 * // code sequence within one shader...
4506 * in vec4 Color1[]; // size unknown
4507 * ...Color1.length()...// illegal, length() unknown
4508 * in vec4 Color2[2]; // size is 2
4509 * ...Color1.length()...// illegal, Color1 still has no size
4510 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4511 * layout(lines) in; // legal, input size is 2, matching
4512 * in vec4 Color4[3]; // illegal, contradicts layout
4513 * ...
4514 *
4515 * To detect the case illustrated by Color3, we verify that the size of
4516 * an explicitly-sized array matches the size of any previously declared
4517 * explicitly-sized array. To detect the case illustrated by Color4, we
4518 * verify that the size of an explicitly-sized array is consistent with
4519 * any previously declared input layout.
4520 */
4521 if (num_vertices != 0 && var->type->length != num_vertices) {
4522 _mesa_glsl_error(&loc, state,
4523 "%s size contradicts previously declared layout "
4524 "(size is %u, but layout requires a size of %u)",
4525 var_category, var->type->length, num_vertices);
4526 } else if (*size != 0 && var->type->length != *size) {
4527 _mesa_glsl_error(&loc, state,
4528 "%s sizes are inconsistent (size is %u, but a "
4529 "previous declaration has size %u)",
4530 var_category, var->type->length, *size);
4531 } else {
4532 *size = var->type->length;
4533 }
4534 }
4535 }
4536
4537 static void
4538 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4539 YYLTYPE loc, ir_variable *var)
4540 {
4541 unsigned num_vertices = 0;
4542
4543 if (state->tcs_output_vertices_specified) {
4544 if (!state->out_qualifier->vertices->
4545 process_qualifier_constant(state, "vertices",
4546 &num_vertices, false)) {
4547 return;
4548 }
4549
4550 if (num_vertices > state->Const.MaxPatchVertices) {
4551 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4552 "GL_MAX_PATCH_VERTICES", num_vertices);
4553 return;
4554 }
4555 }
4556
4557 if (!var->type->is_array() && !var->data.patch) {
4558 _mesa_glsl_error(&loc, state,
4559 "tessellation control shader outputs must be arrays");
4560
4561 /* To avoid cascading failures, short circuit the checks below. */
4562 return;
4563 }
4564
4565 if (var->data.patch)
4566 return;
4567
4568 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4569 &state->tcs_output_size,
4570 "tessellation control shader output");
4571 }
4572
4573 /**
4574 * Do additional processing necessary for tessellation control/evaluation shader
4575 * input declarations. This covers both interface block arrays and bare input
4576 * variables.
4577 */
4578 static void
4579 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4580 YYLTYPE loc, ir_variable *var)
4581 {
4582 if (!var->type->is_array() && !var->data.patch) {
4583 _mesa_glsl_error(&loc, state,
4584 "per-vertex tessellation shader inputs must be arrays");
4585 /* Avoid cascading failures. */
4586 return;
4587 }
4588
4589 if (var->data.patch)
4590 return;
4591
4592 /* The ARB_tessellation_shader spec says:
4593 *
4594 * "Declaring an array size is optional. If no size is specified, it
4595 * will be taken from the implementation-dependent maximum patch size
4596 * (gl_MaxPatchVertices). If a size is specified, it must match the
4597 * maximum patch size; otherwise, a compile or link error will occur."
4598 *
4599 * This text appears twice, once for TCS inputs, and again for TES inputs.
4600 */
4601 if (var->type->is_unsized_array()) {
4602 var->type = glsl_type::get_array_instance(var->type->fields.array,
4603 state->Const.MaxPatchVertices);
4604 } else if (var->type->length != state->Const.MaxPatchVertices) {
4605 _mesa_glsl_error(&loc, state,
4606 "per-vertex tessellation shader input arrays must be "
4607 "sized to gl_MaxPatchVertices (%d).",
4608 state->Const.MaxPatchVertices);
4609 }
4610 }
4611
4612
4613 /**
4614 * Do additional processing necessary for geometry shader input declarations
4615 * (this covers both interface blocks arrays and bare input variables).
4616 */
4617 static void
4618 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4619 YYLTYPE loc, ir_variable *var)
4620 {
4621 unsigned num_vertices = 0;
4622
4623 if (state->gs_input_prim_type_specified) {
4624 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4625 }
4626
4627 /* Geometry shader input variables must be arrays. Caller should have
4628 * reported an error for this.
4629 */
4630 if (!var->type->is_array()) {
4631 assert(state->error);
4632
4633 /* To avoid cascading failures, short circuit the checks below. */
4634 return;
4635 }
4636
4637 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4638 &state->gs_input_size,
4639 "geometry shader input");
4640 }
4641
4642 void
4643 validate_identifier(const char *identifier, YYLTYPE loc,
4644 struct _mesa_glsl_parse_state *state)
4645 {
4646 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4647 *
4648 * "Identifiers starting with "gl_" are reserved for use by
4649 * OpenGL, and may not be declared in a shader as either a
4650 * variable or a function."
4651 */
4652 if (is_gl_identifier(identifier)) {
4653 _mesa_glsl_error(&loc, state,
4654 "identifier `%s' uses reserved `gl_' prefix",
4655 identifier);
4656 } else if (strstr(identifier, "__")) {
4657 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4658 * spec:
4659 *
4660 * "In addition, all identifiers containing two
4661 * consecutive underscores (__) are reserved as
4662 * possible future keywords."
4663 *
4664 * The intention is that names containing __ are reserved for internal
4665 * use by the implementation, and names prefixed with GL_ are reserved
4666 * for use by Khronos. Names simply containing __ are dangerous to use,
4667 * but should be allowed.
4668 *
4669 * A future version of the GLSL specification will clarify this.
4670 */
4671 _mesa_glsl_warning(&loc, state,
4672 "identifier `%s' uses reserved `__' string",
4673 identifier);
4674 }
4675 }
4676
4677 ir_rvalue *
4678 ast_declarator_list::hir(exec_list *instructions,
4679 struct _mesa_glsl_parse_state *state)
4680 {
4681 void *ctx = state;
4682 const struct glsl_type *decl_type;
4683 const char *type_name = NULL;
4684 ir_rvalue *result = NULL;
4685 YYLTYPE loc = this->get_location();
4686
4687 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4688 *
4689 * "To ensure that a particular output variable is invariant, it is
4690 * necessary to use the invariant qualifier. It can either be used to
4691 * qualify a previously declared variable as being invariant
4692 *
4693 * invariant gl_Position; // make existing gl_Position be invariant"
4694 *
4695 * In these cases the parser will set the 'invariant' flag in the declarator
4696 * list, and the type will be NULL.
4697 */
4698 if (this->invariant) {
4699 assert(this->type == NULL);
4700
4701 if (state->current_function != NULL) {
4702 _mesa_glsl_error(& loc, state,
4703 "all uses of `invariant' keyword must be at global "
4704 "scope");
4705 }
4706
4707 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4708 assert(decl->array_specifier == NULL);
4709 assert(decl->initializer == NULL);
4710
4711 ir_variable *const earlier =
4712 state->symbols->get_variable(decl->identifier);
4713 if (earlier == NULL) {
4714 _mesa_glsl_error(& loc, state,
4715 "undeclared variable `%s' cannot be marked "
4716 "invariant", decl->identifier);
4717 } else if (!is_allowed_invariant(earlier, state)) {
4718 _mesa_glsl_error(&loc, state,
4719 "`%s' cannot be marked invariant; interfaces between "
4720 "shader stages only.", decl->identifier);
4721 } else if (earlier->data.used) {
4722 _mesa_glsl_error(& loc, state,
4723 "variable `%s' may not be redeclared "
4724 "`invariant' after being used",
4725 earlier->name);
4726 } else {
4727 earlier->data.invariant = true;
4728 }
4729 }
4730
4731 /* Invariant redeclarations do not have r-values.
4732 */
4733 return NULL;
4734 }
4735
4736 if (this->precise) {
4737 assert(this->type == NULL);
4738
4739 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4740 assert(decl->array_specifier == NULL);
4741 assert(decl->initializer == NULL);
4742
4743 ir_variable *const earlier =
4744 state->symbols->get_variable(decl->identifier);
4745 if (earlier == NULL) {
4746 _mesa_glsl_error(& loc, state,
4747 "undeclared variable `%s' cannot be marked "
4748 "precise", decl->identifier);
4749 } else if (state->current_function != NULL &&
4750 !state->symbols->name_declared_this_scope(decl->identifier)) {
4751 /* Note: we have to check if we're in a function, since
4752 * builtins are treated as having come from another scope.
4753 */
4754 _mesa_glsl_error(& loc, state,
4755 "variable `%s' from an outer scope may not be "
4756 "redeclared `precise' in this scope",
4757 earlier->name);
4758 } else if (earlier->data.used) {
4759 _mesa_glsl_error(& loc, state,
4760 "variable `%s' may not be redeclared "
4761 "`precise' after being used",
4762 earlier->name);
4763 } else {
4764 earlier->data.precise = true;
4765 }
4766 }
4767
4768 /* Precise redeclarations do not have r-values either. */
4769 return NULL;
4770 }
4771
4772 assert(this->type != NULL);
4773 assert(!this->invariant);
4774 assert(!this->precise);
4775
4776 /* The type specifier may contain a structure definition. Process that
4777 * before any of the variable declarations.
4778 */
4779 (void) this->type->specifier->hir(instructions, state);
4780
4781 decl_type = this->type->glsl_type(& type_name, state);
4782
4783 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4784 * "Buffer variables may only be declared inside interface blocks
4785 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4786 * shader storage blocks. It is a compile-time error to declare buffer
4787 * variables at global scope (outside a block)."
4788 */
4789 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4790 _mesa_glsl_error(&loc, state,
4791 "buffer variables cannot be declared outside "
4792 "interface blocks");
4793 }
4794
4795 /* An offset-qualified atomic counter declaration sets the default
4796 * offset for the next declaration within the same atomic counter
4797 * buffer.
4798 */
4799 if (decl_type && decl_type->contains_atomic()) {
4800 if (type->qualifier.flags.q.explicit_binding &&
4801 type->qualifier.flags.q.explicit_offset) {
4802 unsigned qual_binding;
4803 unsigned qual_offset;
4804 if (process_qualifier_constant(state, &loc, "binding",
4805 type->qualifier.binding,
4806 &qual_binding)
4807 && process_qualifier_constant(state, &loc, "offset",
4808 type->qualifier.offset,
4809 &qual_offset)) {
4810 state->atomic_counter_offsets[qual_binding] = qual_offset;
4811 }
4812 }
4813
4814 ast_type_qualifier allowed_atomic_qual_mask;
4815 allowed_atomic_qual_mask.flags.i = 0;
4816 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4817 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4818 allowed_atomic_qual_mask.flags.q.uniform = 1;
4819
4820 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4821 "invalid layout qualifier for",
4822 "atomic_uint");
4823 }
4824
4825 if (this->declarations.is_empty()) {
4826 /* If there is no structure involved in the program text, there are two
4827 * possible scenarios:
4828 *
4829 * - The program text contained something like 'vec4;'. This is an
4830 * empty declaration. It is valid but weird. Emit a warning.
4831 *
4832 * - The program text contained something like 'S;' and 'S' is not the
4833 * name of a known structure type. This is both invalid and weird.
4834 * Emit an error.
4835 *
4836 * - The program text contained something like 'mediump float;'
4837 * when the programmer probably meant 'precision mediump
4838 * float;' Emit a warning with a description of what they
4839 * probably meant to do.
4840 *
4841 * Note that if decl_type is NULL and there is a structure involved,
4842 * there must have been some sort of error with the structure. In this
4843 * case we assume that an error was already generated on this line of
4844 * code for the structure. There is no need to generate an additional,
4845 * confusing error.
4846 */
4847 assert(this->type->specifier->structure == NULL || decl_type != NULL
4848 || state->error);
4849
4850 if (decl_type == NULL) {
4851 _mesa_glsl_error(&loc, state,
4852 "invalid type `%s' in empty declaration",
4853 type_name);
4854 } else {
4855 if (decl_type->is_array()) {
4856 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4857 * spec:
4858 *
4859 * "... any declaration that leaves the size undefined is
4860 * disallowed as this would add complexity and there are no
4861 * use-cases."
4862 */
4863 if (state->es_shader && decl_type->is_unsized_array()) {
4864 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4865 "or implicitly defined");
4866 }
4867
4868 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4869 *
4870 * "The combinations of types and qualifiers that cause
4871 * compile-time or link-time errors are the same whether or not
4872 * the declaration is empty."
4873 */
4874 validate_array_dimensions(decl_type, state, &loc);
4875 }
4876
4877 if (decl_type->is_atomic_uint()) {
4878 /* Empty atomic counter declarations are allowed and useful
4879 * to set the default offset qualifier.
4880 */
4881 return NULL;
4882 } else if (this->type->qualifier.precision != ast_precision_none) {
4883 if (this->type->specifier->structure != NULL) {
4884 _mesa_glsl_error(&loc, state,
4885 "precision qualifiers can't be applied "
4886 "to structures");
4887 } else {
4888 static const char *const precision_names[] = {
4889 "highp",
4890 "highp",
4891 "mediump",
4892 "lowp"
4893 };
4894
4895 _mesa_glsl_warning(&loc, state,
4896 "empty declaration with precision "
4897 "qualifier, to set the default precision, "
4898 "use `precision %s %s;'",
4899 precision_names[this->type->
4900 qualifier.precision],
4901 type_name);
4902 }
4903 } else if (this->type->specifier->structure == NULL) {
4904 _mesa_glsl_warning(&loc, state, "empty declaration");
4905 }
4906 }
4907 }
4908
4909 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4910 const struct glsl_type *var_type;
4911 ir_variable *var;
4912 const char *identifier = decl->identifier;
4913 /* FINISHME: Emit a warning if a variable declaration shadows a
4914 * FINISHME: declaration at a higher scope.
4915 */
4916
4917 if ((decl_type == NULL) || decl_type->is_void()) {
4918 if (type_name != NULL) {
4919 _mesa_glsl_error(& loc, state,
4920 "invalid type `%s' in declaration of `%s'",
4921 type_name, decl->identifier);
4922 } else {
4923 _mesa_glsl_error(& loc, state,
4924 "invalid type in declaration of `%s'",
4925 decl->identifier);
4926 }
4927 continue;
4928 }
4929
4930 if (this->type->qualifier.is_subroutine_decl()) {
4931 const glsl_type *t;
4932 const char *name;
4933
4934 t = state->symbols->get_type(this->type->specifier->type_name);
4935 if (!t)
4936 _mesa_glsl_error(& loc, state,
4937 "invalid type in declaration of `%s'",
4938 decl->identifier);
4939 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4940
4941 identifier = name;
4942
4943 }
4944 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4945 state);
4946
4947 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4948
4949 /* The 'varying in' and 'varying out' qualifiers can only be used with
4950 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4951 * yet.
4952 */
4953 if (this->type->qualifier.flags.q.varying) {
4954 if (this->type->qualifier.flags.q.in) {
4955 _mesa_glsl_error(& loc, state,
4956 "`varying in' qualifier in declaration of "
4957 "`%s' only valid for geometry shaders using "
4958 "ARB_geometry_shader4 or EXT_geometry_shader4",
4959 decl->identifier);
4960 } else if (this->type->qualifier.flags.q.out) {
4961 _mesa_glsl_error(& loc, state,
4962 "`varying out' qualifier in declaration of "
4963 "`%s' only valid for geometry shaders using "
4964 "ARB_geometry_shader4 or EXT_geometry_shader4",
4965 decl->identifier);
4966 }
4967 }
4968
4969 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4970 *
4971 * "Global variables can only use the qualifiers const,
4972 * attribute, uniform, or varying. Only one may be
4973 * specified.
4974 *
4975 * Local variables can only use the qualifier const."
4976 *
4977 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4978 * any extension that adds the 'layout' keyword.
4979 */
4980 if (!state->is_version(130, 300)
4981 && !state->has_explicit_attrib_location()
4982 && !state->has_separate_shader_objects()
4983 && !state->ARB_fragment_coord_conventions_enable) {
4984 if (this->type->qualifier.flags.q.out) {
4985 _mesa_glsl_error(& loc, state,
4986 "`out' qualifier in declaration of `%s' "
4987 "only valid for function parameters in %s",
4988 decl->identifier, state->get_version_string());
4989 }
4990 if (this->type->qualifier.flags.q.in) {
4991 _mesa_glsl_error(& loc, state,
4992 "`in' qualifier in declaration of `%s' "
4993 "only valid for function parameters in %s",
4994 decl->identifier, state->get_version_string());
4995 }
4996 /* FINISHME: Test for other invalid qualifiers. */
4997 }
4998
4999 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5000 & loc, false);
5001 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5002 &loc);
5003
5004 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5005 && (var->type->is_numeric() || var->type->is_boolean())
5006 && state->zero_init) {
5007 const ir_constant_data data = { { 0 } };
5008 var->data.has_initializer = true;
5009 var->constant_initializer = new(var) ir_constant(var->type, &data);
5010 }
5011
5012 if (this->type->qualifier.flags.q.invariant) {
5013 if (!is_allowed_invariant(var, state)) {
5014 _mesa_glsl_error(&loc, state,
5015 "`%s' cannot be marked invariant; interfaces between "
5016 "shader stages only", var->name);
5017 }
5018 }
5019
5020 if (state->current_function != NULL) {
5021 const char *mode = NULL;
5022 const char *extra = "";
5023
5024 /* There is no need to check for 'inout' here because the parser will
5025 * only allow that in function parameter lists.
5026 */
5027 if (this->type->qualifier.flags.q.attribute) {
5028 mode = "attribute";
5029 } else if (this->type->qualifier.is_subroutine_decl()) {
5030 mode = "subroutine uniform";
5031 } else if (this->type->qualifier.flags.q.uniform) {
5032 mode = "uniform";
5033 } else if (this->type->qualifier.flags.q.varying) {
5034 mode = "varying";
5035 } else if (this->type->qualifier.flags.q.in) {
5036 mode = "in";
5037 extra = " or in function parameter list";
5038 } else if (this->type->qualifier.flags.q.out) {
5039 mode = "out";
5040 extra = " or in function parameter list";
5041 }
5042
5043 if (mode) {
5044 _mesa_glsl_error(& loc, state,
5045 "%s variable `%s' must be declared at "
5046 "global scope%s",
5047 mode, var->name, extra);
5048 }
5049 } else if (var->data.mode == ir_var_shader_in) {
5050 var->data.read_only = true;
5051
5052 if (state->stage == MESA_SHADER_VERTEX) {
5053 bool error_emitted = false;
5054
5055 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5056 *
5057 * "Vertex shader inputs can only be float, floating-point
5058 * vectors, matrices, signed and unsigned integers and integer
5059 * vectors. Vertex shader inputs can also form arrays of these
5060 * types, but not structures."
5061 *
5062 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5063 *
5064 * "Vertex shader inputs can only be float, floating-point
5065 * vectors, matrices, signed and unsigned integers and integer
5066 * vectors. They cannot be arrays or structures."
5067 *
5068 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5069 *
5070 * "The attribute qualifier can be used only with float,
5071 * floating-point vectors, and matrices. Attribute variables
5072 * cannot be declared as arrays or structures."
5073 *
5074 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5075 *
5076 * "Vertex shader inputs can only be float, floating-point
5077 * vectors, matrices, signed and unsigned integers and integer
5078 * vectors. Vertex shader inputs cannot be arrays or
5079 * structures."
5080 */
5081 const glsl_type *check_type = var->type->without_array();
5082
5083 switch (check_type->base_type) {
5084 case GLSL_TYPE_FLOAT:
5085 break;
5086 case GLSL_TYPE_UINT64:
5087 case GLSL_TYPE_INT64:
5088 break;
5089 case GLSL_TYPE_UINT:
5090 case GLSL_TYPE_INT:
5091 if (state->is_version(120, 300))
5092 break;
5093 case GLSL_TYPE_DOUBLE:
5094 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5095 break;
5096 /* FALLTHROUGH */
5097 default:
5098 _mesa_glsl_error(& loc, state,
5099 "vertex shader input / attribute cannot have "
5100 "type %s`%s'",
5101 var->type->is_array() ? "array of " : "",
5102 check_type->name);
5103 error_emitted = true;
5104 }
5105
5106 if (!error_emitted && var->type->is_array() &&
5107 !state->check_version(150, 0, &loc,
5108 "vertex shader input / attribute "
5109 "cannot have array type")) {
5110 error_emitted = true;
5111 }
5112 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5113 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5114 *
5115 * Geometry shader input variables get the per-vertex values
5116 * written out by vertex shader output variables of the same
5117 * names. Since a geometry shader operates on a set of
5118 * vertices, each input varying variable (or input block, see
5119 * interface blocks below) needs to be declared as an array.
5120 */
5121 if (!var->type->is_array()) {
5122 _mesa_glsl_error(&loc, state,
5123 "geometry shader inputs must be arrays");
5124 }
5125
5126 handle_geometry_shader_input_decl(state, loc, var);
5127 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5128 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5129 *
5130 * It is a compile-time error to declare a fragment shader
5131 * input with, or that contains, any of the following types:
5132 *
5133 * * A boolean type
5134 * * An opaque type
5135 * * An array of arrays
5136 * * An array of structures
5137 * * A structure containing an array
5138 * * A structure containing a structure
5139 */
5140 if (state->es_shader) {
5141 const glsl_type *check_type = var->type->without_array();
5142 if (check_type->is_boolean() ||
5143 check_type->contains_opaque()) {
5144 _mesa_glsl_error(&loc, state,
5145 "fragment shader input cannot have type %s",
5146 check_type->name);
5147 }
5148 if (var->type->is_array() &&
5149 var->type->fields.array->is_array()) {
5150 _mesa_glsl_error(&loc, state,
5151 "%s shader output "
5152 "cannot have an array of arrays",
5153 _mesa_shader_stage_to_string(state->stage));
5154 }
5155 if (var->type->is_array() &&
5156 var->type->fields.array->is_record()) {
5157 _mesa_glsl_error(&loc, state,
5158 "fragment shader input "
5159 "cannot have an array of structs");
5160 }
5161 if (var->type->is_record()) {
5162 for (unsigned i = 0; i < var->type->length; i++) {
5163 if (var->type->fields.structure[i].type->is_array() ||
5164 var->type->fields.structure[i].type->is_record())
5165 _mesa_glsl_error(&loc, state,
5166 "fragement shader input cannot have "
5167 "a struct that contains an "
5168 "array or struct");
5169 }
5170 }
5171 }
5172 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5173 state->stage == MESA_SHADER_TESS_EVAL) {
5174 handle_tess_shader_input_decl(state, loc, var);
5175 }
5176 } else if (var->data.mode == ir_var_shader_out) {
5177 const glsl_type *check_type = var->type->without_array();
5178
5179 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5180 *
5181 * It is a compile-time error to declare a fragment shader output
5182 * that contains any of the following:
5183 *
5184 * * A Boolean type (bool, bvec2 ...)
5185 * * A double-precision scalar or vector (double, dvec2 ...)
5186 * * An opaque type
5187 * * Any matrix type
5188 * * A structure
5189 */
5190 if (state->stage == MESA_SHADER_FRAGMENT) {
5191 if (check_type->is_record() || check_type->is_matrix())
5192 _mesa_glsl_error(&loc, state,
5193 "fragment shader output "
5194 "cannot have struct or matrix type");
5195 switch (check_type->base_type) {
5196 case GLSL_TYPE_UINT:
5197 case GLSL_TYPE_INT:
5198 case GLSL_TYPE_FLOAT:
5199 break;
5200 default:
5201 _mesa_glsl_error(&loc, state,
5202 "fragment shader output cannot have "
5203 "type %s", check_type->name);
5204 }
5205 }
5206
5207 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5208 *
5209 * It is a compile-time error to declare a vertex shader output
5210 * with, or that contains, any of the following types:
5211 *
5212 * * A boolean type
5213 * * An opaque type
5214 * * An array of arrays
5215 * * An array of structures
5216 * * A structure containing an array
5217 * * A structure containing a structure
5218 *
5219 * It is a compile-time error to declare a fragment shader output
5220 * with, or that contains, any of the following types:
5221 *
5222 * * A boolean type
5223 * * An opaque type
5224 * * A matrix
5225 * * A structure
5226 * * An array of array
5227 *
5228 * ES 3.20 updates this to apply to tessellation and geometry shaders
5229 * as well. Because there are per-vertex arrays in the new stages,
5230 * it strikes the "array of..." rules and replaces them with these:
5231 *
5232 * * For per-vertex-arrayed variables (applies to tessellation
5233 * control, tessellation evaluation and geometry shaders):
5234 *
5235 * * Per-vertex-arrayed arrays of arrays
5236 * * Per-vertex-arrayed arrays of structures
5237 *
5238 * * For non-per-vertex-arrayed variables:
5239 *
5240 * * An array of arrays
5241 * * An array of structures
5242 *
5243 * which basically says to unwrap the per-vertex aspect and apply
5244 * the old rules.
5245 */
5246 if (state->es_shader) {
5247 if (var->type->is_array() &&
5248 var->type->fields.array->is_array()) {
5249 _mesa_glsl_error(&loc, state,
5250 "%s shader output "
5251 "cannot have an array of arrays",
5252 _mesa_shader_stage_to_string(state->stage));
5253 }
5254 if (state->stage <= MESA_SHADER_GEOMETRY) {
5255 const glsl_type *type = var->type;
5256
5257 if (state->stage == MESA_SHADER_TESS_CTRL &&
5258 !var->data.patch && var->type->is_array()) {
5259 type = var->type->fields.array;
5260 }
5261
5262 if (type->is_array() && type->fields.array->is_record()) {
5263 _mesa_glsl_error(&loc, state,
5264 "%s shader output cannot have "
5265 "an array of structs",
5266 _mesa_shader_stage_to_string(state->stage));
5267 }
5268 if (type->is_record()) {
5269 for (unsigned i = 0; i < type->length; i++) {
5270 if (type->fields.structure[i].type->is_array() ||
5271 type->fields.structure[i].type->is_record())
5272 _mesa_glsl_error(&loc, state,
5273 "%s shader output cannot have a "
5274 "struct that contains an "
5275 "array or struct",
5276 _mesa_shader_stage_to_string(state->stage));
5277 }
5278 }
5279 }
5280 }
5281
5282 if (state->stage == MESA_SHADER_TESS_CTRL) {
5283 handle_tess_ctrl_shader_output_decl(state, loc, var);
5284 }
5285 } else if (var->type->contains_subroutine()) {
5286 /* declare subroutine uniforms as hidden */
5287 var->data.how_declared = ir_var_hidden;
5288 }
5289
5290 /* From section 4.3.4 of the GLSL 4.00 spec:
5291 * "Input variables may not be declared using the patch in qualifier
5292 * in tessellation control or geometry shaders."
5293 *
5294 * From section 4.3.6 of the GLSL 4.00 spec:
5295 * "It is an error to use patch out in a vertex, tessellation
5296 * evaluation, or geometry shader."
5297 *
5298 * This doesn't explicitly forbid using them in a fragment shader, but
5299 * that's probably just an oversight.
5300 */
5301 if (state->stage != MESA_SHADER_TESS_EVAL
5302 && this->type->qualifier.flags.q.patch
5303 && this->type->qualifier.flags.q.in) {
5304
5305 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5306 "tessellation evaluation shader");
5307 }
5308
5309 if (state->stage != MESA_SHADER_TESS_CTRL
5310 && this->type->qualifier.flags.q.patch
5311 && this->type->qualifier.flags.q.out) {
5312
5313 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5314 "tessellation control shader");
5315 }
5316
5317 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5318 */
5319 if (this->type->qualifier.precision != ast_precision_none) {
5320 state->check_precision_qualifiers_allowed(&loc);
5321 }
5322
5323 if (this->type->qualifier.precision != ast_precision_none &&
5324 !precision_qualifier_allowed(var->type)) {
5325 _mesa_glsl_error(&loc, state,
5326 "precision qualifiers apply only to floating point"
5327 ", integer and opaque types");
5328 }
5329
5330 /* From section 4.1.7 of the GLSL 4.40 spec:
5331 *
5332 * "[Opaque types] can only be declared as function
5333 * parameters or uniform-qualified variables."
5334 *
5335 * From section 4.1.7 of the ARB_bindless_texture spec:
5336 *
5337 * "Samplers may be declared as shader inputs and outputs, as uniform
5338 * variables, as temporary variables, and as function parameters."
5339 *
5340 * From section 4.1.X of the ARB_bindless_texture spec:
5341 *
5342 * "Images may be declared as shader inputs and outputs, as uniform
5343 * variables, as temporary variables, and as function parameters."
5344 */
5345 if (!this->type->qualifier.flags.q.uniform &&
5346 (var_type->contains_atomic() ||
5347 (!state->has_bindless() && var_type->contains_opaque()))) {
5348 _mesa_glsl_error(&loc, state,
5349 "%s variables must be declared uniform",
5350 state->has_bindless() ? "atomic" : "opaque");
5351 }
5352
5353 /* Process the initializer and add its instructions to a temporary
5354 * list. This list will be added to the instruction stream (below) after
5355 * the declaration is added. This is done because in some cases (such as
5356 * redeclarations) the declaration may not actually be added to the
5357 * instruction stream.
5358 */
5359 exec_list initializer_instructions;
5360
5361 /* Examine var name here since var may get deleted in the next call */
5362 bool var_is_gl_id = is_gl_identifier(var->name);
5363
5364 bool is_redeclaration;
5365 ir_variable *declared_var =
5366 get_variable_being_redeclared(var, decl->get_location(), state,
5367 false /* allow_all_redeclarations */,
5368 &is_redeclaration);
5369 if (is_redeclaration) {
5370 if (var_is_gl_id &&
5371 declared_var->data.how_declared == ir_var_declared_in_block) {
5372 _mesa_glsl_error(&loc, state,
5373 "`%s' has already been redeclared using "
5374 "gl_PerVertex", declared_var->name);
5375 }
5376 declared_var->data.how_declared = ir_var_declared_normally;
5377 }
5378
5379 if (decl->initializer != NULL) {
5380 result = process_initializer(declared_var,
5381 decl, this->type,
5382 &initializer_instructions, state);
5383 } else {
5384 validate_array_dimensions(var_type, state, &loc);
5385 }
5386
5387 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5388 *
5389 * "It is an error to write to a const variable outside of
5390 * its declaration, so they must be initialized when
5391 * declared."
5392 */
5393 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5394 _mesa_glsl_error(& loc, state,
5395 "const declaration of `%s' must be initialized",
5396 decl->identifier);
5397 }
5398
5399 if (state->es_shader) {
5400 const glsl_type *const t = declared_var->type;
5401
5402 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5403 *
5404 * The GL_OES_tessellation_shader spec says about inputs:
5405 *
5406 * "Declaring an array size is optional. If no size is specified,
5407 * it will be taken from the implementation-dependent maximum
5408 * patch size (gl_MaxPatchVertices)."
5409 *
5410 * and about TCS outputs:
5411 *
5412 * "If no size is specified, it will be taken from output patch
5413 * size declared in the shader."
5414 *
5415 * The GL_OES_geometry_shader spec says:
5416 *
5417 * "All geometry shader input unsized array declarations will be
5418 * sized by an earlier input primitive layout qualifier, when
5419 * present, as per the following table."
5420 */
5421 const bool implicitly_sized =
5422 (declared_var->data.mode == ir_var_shader_in &&
5423 state->stage >= MESA_SHADER_TESS_CTRL &&
5424 state->stage <= MESA_SHADER_GEOMETRY) ||
5425 (declared_var->data.mode == ir_var_shader_out &&
5426 state->stage == MESA_SHADER_TESS_CTRL);
5427
5428 if (t->is_unsized_array() && !implicitly_sized)
5429 /* Section 10.17 of the GLSL ES 1.00 specification states that
5430 * unsized array declarations have been removed from the language.
5431 * Arrays that are sized using an initializer are still explicitly
5432 * sized. However, GLSL ES 1.00 does not allow array
5433 * initializers. That is only allowed in GLSL ES 3.00.
5434 *
5435 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5436 *
5437 * "An array type can also be formed without specifying a size
5438 * if the definition includes an initializer:
5439 *
5440 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5441 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5442 *
5443 * float a[5];
5444 * float b[] = a;"
5445 */
5446 _mesa_glsl_error(& loc, state,
5447 "unsized array declarations are not allowed in "
5448 "GLSL ES");
5449 }
5450
5451 /* If the declaration is not a redeclaration, there are a few additional
5452 * semantic checks that must be applied. In addition, variable that was
5453 * created for the declaration should be added to the IR stream.
5454 */
5455 if (!is_redeclaration) {
5456 validate_identifier(decl->identifier, loc, state);
5457
5458 /* Add the variable to the symbol table. Note that the initializer's
5459 * IR was already processed earlier (though it hasn't been emitted
5460 * yet), without the variable in scope.
5461 *
5462 * This differs from most C-like languages, but it follows the GLSL
5463 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5464 * spec:
5465 *
5466 * "Within a declaration, the scope of a name starts immediately
5467 * after the initializer if present or immediately after the name
5468 * being declared if not."
5469 */
5470 if (!state->symbols->add_variable(declared_var)) {
5471 YYLTYPE loc = this->get_location();
5472 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5473 "current scope", decl->identifier);
5474 continue;
5475 }
5476
5477 /* Push the variable declaration to the top. It means that all the
5478 * variable declarations will appear in a funny last-to-first order,
5479 * but otherwise we run into trouble if a function is prototyped, a
5480 * global var is decled, then the function is defined with usage of
5481 * the global var. See glslparsertest's CorrectModule.frag.
5482 */
5483 instructions->push_head(declared_var);
5484 }
5485
5486 instructions->append_list(&initializer_instructions);
5487 }
5488
5489
5490 /* Generally, variable declarations do not have r-values. However,
5491 * one is used for the declaration in
5492 *
5493 * while (bool b = some_condition()) {
5494 * ...
5495 * }
5496 *
5497 * so we return the rvalue from the last seen declaration here.
5498 */
5499 return result;
5500 }
5501
5502
5503 ir_rvalue *
5504 ast_parameter_declarator::hir(exec_list *instructions,
5505 struct _mesa_glsl_parse_state *state)
5506 {
5507 void *ctx = state;
5508 const struct glsl_type *type;
5509 const char *name = NULL;
5510 YYLTYPE loc = this->get_location();
5511
5512 type = this->type->glsl_type(& name, state);
5513
5514 if (type == NULL) {
5515 if (name != NULL) {
5516 _mesa_glsl_error(& loc, state,
5517 "invalid type `%s' in declaration of `%s'",
5518 name, this->identifier);
5519 } else {
5520 _mesa_glsl_error(& loc, state,
5521 "invalid type in declaration of `%s'",
5522 this->identifier);
5523 }
5524
5525 type = glsl_type::error_type;
5526 }
5527
5528 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5529 *
5530 * "Functions that accept no input arguments need not use void in the
5531 * argument list because prototypes (or definitions) are required and
5532 * therefore there is no ambiguity when an empty argument list "( )" is
5533 * declared. The idiom "(void)" as a parameter list is provided for
5534 * convenience."
5535 *
5536 * Placing this check here prevents a void parameter being set up
5537 * for a function, which avoids tripping up checks for main taking
5538 * parameters and lookups of an unnamed symbol.
5539 */
5540 if (type->is_void()) {
5541 if (this->identifier != NULL)
5542 _mesa_glsl_error(& loc, state,
5543 "named parameter cannot have type `void'");
5544
5545 is_void = true;
5546 return NULL;
5547 }
5548
5549 if (formal_parameter && (this->identifier == NULL)) {
5550 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5551 return NULL;
5552 }
5553
5554 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5555 * call already handled the "vec4[..] foo" case.
5556 */
5557 type = process_array_type(&loc, type, this->array_specifier, state);
5558
5559 if (!type->is_error() && type->is_unsized_array()) {
5560 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5561 "a declared size");
5562 type = glsl_type::error_type;
5563 }
5564
5565 is_void = false;
5566 ir_variable *var = new(ctx)
5567 ir_variable(type, this->identifier, ir_var_function_in);
5568
5569 /* Apply any specified qualifiers to the parameter declaration. Note that
5570 * for function parameters the default mode is 'in'.
5571 */
5572 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5573 true);
5574
5575 /* From section 4.1.7 of the GLSL 4.40 spec:
5576 *
5577 * "Opaque variables cannot be treated as l-values; hence cannot
5578 * be used as out or inout function parameters, nor can they be
5579 * assigned into."
5580 *
5581 * From section 4.1.7 of the ARB_bindless_texture spec:
5582 *
5583 * "Samplers can be used as l-values, so can be assigned into and used
5584 * as "out" and "inout" function parameters."
5585 *
5586 * From section 4.1.X of the ARB_bindless_texture spec:
5587 *
5588 * "Images can be used as l-values, so can be assigned into and used as
5589 * "out" and "inout" function parameters."
5590 */
5591 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5592 && (type->contains_atomic() ||
5593 (!state->has_bindless() && type->contains_opaque()))) {
5594 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5595 "contain %s variables",
5596 state->has_bindless() ? "atomic" : "opaque");
5597 type = glsl_type::error_type;
5598 }
5599
5600 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5601 *
5602 * "When calling a function, expressions that do not evaluate to
5603 * l-values cannot be passed to parameters declared as out or inout."
5604 *
5605 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5606 *
5607 * "Other binary or unary expressions, non-dereferenced arrays,
5608 * function names, swizzles with repeated fields, and constants
5609 * cannot be l-values."
5610 *
5611 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5612 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5613 */
5614 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5615 && type->is_array()
5616 && !state->check_version(120, 100, &loc,
5617 "arrays cannot be out or inout parameters")) {
5618 type = glsl_type::error_type;
5619 }
5620
5621 instructions->push_tail(var);
5622
5623 /* Parameter declarations do not have r-values.
5624 */
5625 return NULL;
5626 }
5627
5628
5629 void
5630 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5631 bool formal,
5632 exec_list *ir_parameters,
5633 _mesa_glsl_parse_state *state)
5634 {
5635 ast_parameter_declarator *void_param = NULL;
5636 unsigned count = 0;
5637
5638 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5639 param->formal_parameter = formal;
5640 param->hir(ir_parameters, state);
5641
5642 if (param->is_void)
5643 void_param = param;
5644
5645 count++;
5646 }
5647
5648 if ((void_param != NULL) && (count > 1)) {
5649 YYLTYPE loc = void_param->get_location();
5650
5651 _mesa_glsl_error(& loc, state,
5652 "`void' parameter must be only parameter");
5653 }
5654 }
5655
5656
5657 void
5658 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5659 {
5660 /* IR invariants disallow function declarations or definitions
5661 * nested within other function definitions. But there is no
5662 * requirement about the relative order of function declarations
5663 * and definitions with respect to one another. So simply insert
5664 * the new ir_function block at the end of the toplevel instruction
5665 * list.
5666 */
5667 state->toplevel_ir->push_tail(f);
5668 }
5669
5670
5671 ir_rvalue *
5672 ast_function::hir(exec_list *instructions,
5673 struct _mesa_glsl_parse_state *state)
5674 {
5675 void *ctx = state;
5676 ir_function *f = NULL;
5677 ir_function_signature *sig = NULL;
5678 exec_list hir_parameters;
5679 YYLTYPE loc = this->get_location();
5680
5681 const char *const name = identifier;
5682
5683 /* New functions are always added to the top-level IR instruction stream,
5684 * so this instruction list pointer is ignored. See also emit_function
5685 * (called below).
5686 */
5687 (void) instructions;
5688
5689 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5690 *
5691 * "Function declarations (prototypes) cannot occur inside of functions;
5692 * they must be at global scope, or for the built-in functions, outside
5693 * the global scope."
5694 *
5695 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5696 *
5697 * "User defined functions may only be defined within the global scope."
5698 *
5699 * Note that this language does not appear in GLSL 1.10.
5700 */
5701 if ((state->current_function != NULL) &&
5702 state->is_version(120, 100)) {
5703 YYLTYPE loc = this->get_location();
5704 _mesa_glsl_error(&loc, state,
5705 "declaration of function `%s' not allowed within "
5706 "function body", name);
5707 }
5708
5709 validate_identifier(name, this->get_location(), state);
5710
5711 /* Convert the list of function parameters to HIR now so that they can be
5712 * used below to compare this function's signature with previously seen
5713 * signatures for functions with the same name.
5714 */
5715 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5716 is_definition,
5717 & hir_parameters, state);
5718
5719 const char *return_type_name;
5720 const glsl_type *return_type =
5721 this->return_type->glsl_type(& return_type_name, state);
5722
5723 if (!return_type) {
5724 YYLTYPE loc = this->get_location();
5725 _mesa_glsl_error(&loc, state,
5726 "function `%s' has undeclared return type `%s'",
5727 name, return_type_name);
5728 return_type = glsl_type::error_type;
5729 }
5730
5731 /* ARB_shader_subroutine states:
5732 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5733 * subroutine(...) to a function declaration."
5734 */
5735 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5736 YYLTYPE loc = this->get_location();
5737 _mesa_glsl_error(&loc, state,
5738 "function declaration `%s' cannot have subroutine prepended",
5739 name);
5740 }
5741
5742 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5743 * "No qualifier is allowed on the return type of a function."
5744 */
5745 if (this->return_type->has_qualifiers(state)) {
5746 YYLTYPE loc = this->get_location();
5747 _mesa_glsl_error(& loc, state,
5748 "function `%s' return type has qualifiers", name);
5749 }
5750
5751 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5752 *
5753 * "Arrays are allowed as arguments and as the return type. In both
5754 * cases, the array must be explicitly sized."
5755 */
5756 if (return_type->is_unsized_array()) {
5757 YYLTYPE loc = this->get_location();
5758 _mesa_glsl_error(& loc, state,
5759 "function `%s' return type array must be explicitly "
5760 "sized", name);
5761 }
5762
5763 /* From section 4.1.7 of the GLSL 4.40 spec:
5764 *
5765 * "[Opaque types] can only be declared as function parameters
5766 * or uniform-qualified variables."
5767 */
5768 if (return_type->contains_opaque()) {
5769 YYLTYPE loc = this->get_location();
5770 _mesa_glsl_error(&loc, state,
5771 "function `%s' return type can't contain an opaque type",
5772 name);
5773 }
5774
5775 /**/
5776 if (return_type->is_subroutine()) {
5777 YYLTYPE loc = this->get_location();
5778 _mesa_glsl_error(&loc, state,
5779 "function `%s' return type can't be a subroutine type",
5780 name);
5781 }
5782
5783
5784 /* Create an ir_function if one doesn't already exist. */
5785 f = state->symbols->get_function(name);
5786 if (f == NULL) {
5787 f = new(ctx) ir_function(name);
5788 if (!this->return_type->qualifier.is_subroutine_decl()) {
5789 if (!state->symbols->add_function(f)) {
5790 /* This function name shadows a non-function use of the same name. */
5791 YYLTYPE loc = this->get_location();
5792 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5793 "non-function", name);
5794 return NULL;
5795 }
5796 }
5797 emit_function(state, f);
5798 }
5799
5800 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5801 *
5802 * "A shader cannot redefine or overload built-in functions."
5803 *
5804 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5805 *
5806 * "User code can overload the built-in functions but cannot redefine
5807 * them."
5808 */
5809 if (state->es_shader && state->language_version >= 300) {
5810 /* Local shader has no exact candidates; check the built-ins. */
5811 _mesa_glsl_initialize_builtin_functions();
5812 if (_mesa_glsl_has_builtin_function(name)) {
5813 YYLTYPE loc = this->get_location();
5814 _mesa_glsl_error(& loc, state,
5815 "A shader cannot redefine or overload built-in "
5816 "function `%s' in GLSL ES 3.00", name);
5817 return NULL;
5818 }
5819 }
5820
5821 /* Verify that this function's signature either doesn't match a previously
5822 * seen signature for a function with the same name, or, if a match is found,
5823 * that the previously seen signature does not have an associated definition.
5824 */
5825 if (state->es_shader || f->has_user_signature()) {
5826 sig = f->exact_matching_signature(state, &hir_parameters);
5827 if (sig != NULL) {
5828 const char *badvar = sig->qualifiers_match(&hir_parameters);
5829 if (badvar != NULL) {
5830 YYLTYPE loc = this->get_location();
5831
5832 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5833 "qualifiers don't match prototype", name, badvar);
5834 }
5835
5836 if (sig->return_type != return_type) {
5837 YYLTYPE loc = this->get_location();
5838
5839 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5840 "match prototype", name);
5841 }
5842
5843 if (sig->is_defined) {
5844 if (is_definition) {
5845 YYLTYPE loc = this->get_location();
5846 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5847 } else {
5848 /* We just encountered a prototype that exactly matches a
5849 * function that's already been defined. This is redundant,
5850 * and we should ignore it.
5851 */
5852 return NULL;
5853 }
5854 }
5855 }
5856 }
5857
5858 /* Verify the return type of main() */
5859 if (strcmp(name, "main") == 0) {
5860 if (! return_type->is_void()) {
5861 YYLTYPE loc = this->get_location();
5862
5863 _mesa_glsl_error(& loc, state, "main() must return void");
5864 }
5865
5866 if (!hir_parameters.is_empty()) {
5867 YYLTYPE loc = this->get_location();
5868
5869 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5870 }
5871 }
5872
5873 /* Finish storing the information about this new function in its signature.
5874 */
5875 if (sig == NULL) {
5876 sig = new(ctx) ir_function_signature(return_type);
5877 f->add_signature(sig);
5878 }
5879
5880 sig->replace_parameters(&hir_parameters);
5881 signature = sig;
5882
5883 if (this->return_type->qualifier.subroutine_list) {
5884 int idx;
5885
5886 if (this->return_type->qualifier.flags.q.explicit_index) {
5887 unsigned qual_index;
5888 if (process_qualifier_constant(state, &loc, "index",
5889 this->return_type->qualifier.index,
5890 &qual_index)) {
5891 if (!state->has_explicit_uniform_location()) {
5892 _mesa_glsl_error(&loc, state, "subroutine index requires "
5893 "GL_ARB_explicit_uniform_location or "
5894 "GLSL 4.30");
5895 } else if (qual_index >= MAX_SUBROUTINES) {
5896 _mesa_glsl_error(&loc, state,
5897 "invalid subroutine index (%d) index must "
5898 "be a number between 0 and "
5899 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5900 MAX_SUBROUTINES - 1);
5901 } else {
5902 f->subroutine_index = qual_index;
5903 }
5904 }
5905 }
5906
5907 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5908 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5909 f->num_subroutine_types);
5910 idx = 0;
5911 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5912 const struct glsl_type *type;
5913 /* the subroutine type must be already declared */
5914 type = state->symbols->get_type(decl->identifier);
5915 if (!type) {
5916 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5917 }
5918
5919 for (int i = 0; i < state->num_subroutine_types; i++) {
5920 ir_function *fn = state->subroutine_types[i];
5921 ir_function_signature *tsig = NULL;
5922
5923 if (strcmp(fn->name, decl->identifier))
5924 continue;
5925
5926 tsig = fn->matching_signature(state, &sig->parameters,
5927 false);
5928 if (!tsig) {
5929 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5930 } else {
5931 if (tsig->return_type != sig->return_type) {
5932 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5933 }
5934 }
5935 }
5936 f->subroutine_types[idx++] = type;
5937 }
5938 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5939 ir_function *,
5940 state->num_subroutines + 1);
5941 state->subroutines[state->num_subroutines] = f;
5942 state->num_subroutines++;
5943
5944 }
5945
5946 if (this->return_type->qualifier.is_subroutine_decl()) {
5947 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5948 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5949 return NULL;
5950 }
5951 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5952 ir_function *,
5953 state->num_subroutine_types + 1);
5954 state->subroutine_types[state->num_subroutine_types] = f;
5955 state->num_subroutine_types++;
5956
5957 f->is_subroutine = true;
5958 }
5959
5960 /* Function declarations (prototypes) do not have r-values.
5961 */
5962 return NULL;
5963 }
5964
5965
5966 ir_rvalue *
5967 ast_function_definition::hir(exec_list *instructions,
5968 struct _mesa_glsl_parse_state *state)
5969 {
5970 prototype->is_definition = true;
5971 prototype->hir(instructions, state);
5972
5973 ir_function_signature *signature = prototype->signature;
5974 if (signature == NULL)
5975 return NULL;
5976
5977 assert(state->current_function == NULL);
5978 state->current_function = signature;
5979 state->found_return = false;
5980
5981 /* Duplicate parameters declared in the prototype as concrete variables.
5982 * Add these to the symbol table.
5983 */
5984 state->symbols->push_scope();
5985 foreach_in_list(ir_variable, var, &signature->parameters) {
5986 assert(var->as_variable() != NULL);
5987
5988 /* The only way a parameter would "exist" is if two parameters have
5989 * the same name.
5990 */
5991 if (state->symbols->name_declared_this_scope(var->name)) {
5992 YYLTYPE loc = this->get_location();
5993
5994 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5995 } else {
5996 state->symbols->add_variable(var);
5997 }
5998 }
5999
6000 /* Convert the body of the function to HIR. */
6001 this->body->hir(&signature->body, state);
6002 signature->is_defined = true;
6003
6004 state->symbols->pop_scope();
6005
6006 assert(state->current_function == signature);
6007 state->current_function = NULL;
6008
6009 if (!signature->return_type->is_void() && !state->found_return) {
6010 YYLTYPE loc = this->get_location();
6011 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6012 "%s, but no return statement",
6013 signature->function_name(),
6014 signature->return_type->name);
6015 }
6016
6017 /* Function definitions do not have r-values.
6018 */
6019 return NULL;
6020 }
6021
6022
6023 ir_rvalue *
6024 ast_jump_statement::hir(exec_list *instructions,
6025 struct _mesa_glsl_parse_state *state)
6026 {
6027 void *ctx = state;
6028
6029 switch (mode) {
6030 case ast_return: {
6031 ir_return *inst;
6032 assert(state->current_function);
6033
6034 if (opt_return_value) {
6035 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6036
6037 /* The value of the return type can be NULL if the shader says
6038 * 'return foo();' and foo() is a function that returns void.
6039 *
6040 * NOTE: The GLSL spec doesn't say that this is an error. The type
6041 * of the return value is void. If the return type of the function is
6042 * also void, then this should compile without error. Seriously.
6043 */
6044 const glsl_type *const ret_type =
6045 (ret == NULL) ? glsl_type::void_type : ret->type;
6046
6047 /* Implicit conversions are not allowed for return values prior to
6048 * ARB_shading_language_420pack.
6049 */
6050 if (state->current_function->return_type != ret_type) {
6051 YYLTYPE loc = this->get_location();
6052
6053 if (state->has_420pack()) {
6054 if (!apply_implicit_conversion(state->current_function->return_type,
6055 ret, state)) {
6056 _mesa_glsl_error(& loc, state,
6057 "could not implicitly convert return value "
6058 "to %s, in function `%s'",
6059 state->current_function->return_type->name,
6060 state->current_function->function_name());
6061 }
6062 } else {
6063 _mesa_glsl_error(& loc, state,
6064 "`return' with wrong type %s, in function `%s' "
6065 "returning %s",
6066 ret_type->name,
6067 state->current_function->function_name(),
6068 state->current_function->return_type->name);
6069 }
6070 } else if (state->current_function->return_type->base_type ==
6071 GLSL_TYPE_VOID) {
6072 YYLTYPE loc = this->get_location();
6073
6074 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6075 * specs add a clarification:
6076 *
6077 * "A void function can only use return without a return argument, even if
6078 * the return argument has void type. Return statements only accept values:
6079 *
6080 * void func1() { }
6081 * void func2() { return func1(); } // illegal return statement"
6082 */
6083 _mesa_glsl_error(& loc, state,
6084 "void functions can only use `return' without a "
6085 "return argument");
6086 }
6087
6088 inst = new(ctx) ir_return(ret);
6089 } else {
6090 if (state->current_function->return_type->base_type !=
6091 GLSL_TYPE_VOID) {
6092 YYLTYPE loc = this->get_location();
6093
6094 _mesa_glsl_error(& loc, state,
6095 "`return' with no value, in function %s returning "
6096 "non-void",
6097 state->current_function->function_name());
6098 }
6099 inst = new(ctx) ir_return;
6100 }
6101
6102 state->found_return = true;
6103 instructions->push_tail(inst);
6104 break;
6105 }
6106
6107 case ast_discard:
6108 if (state->stage != MESA_SHADER_FRAGMENT) {
6109 YYLTYPE loc = this->get_location();
6110
6111 _mesa_glsl_error(& loc, state,
6112 "`discard' may only appear in a fragment shader");
6113 }
6114 instructions->push_tail(new(ctx) ir_discard);
6115 break;
6116
6117 case ast_break:
6118 case ast_continue:
6119 if (mode == ast_continue &&
6120 state->loop_nesting_ast == NULL) {
6121 YYLTYPE loc = this->get_location();
6122
6123 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6124 } else if (mode == ast_break &&
6125 state->loop_nesting_ast == NULL &&
6126 state->switch_state.switch_nesting_ast == NULL) {
6127 YYLTYPE loc = this->get_location();
6128
6129 _mesa_glsl_error(& loc, state,
6130 "break may only appear in a loop or a switch");
6131 } else {
6132 /* For a loop, inline the for loop expression again, since we don't
6133 * know where near the end of the loop body the normal copy of it is
6134 * going to be placed. Same goes for the condition for a do-while
6135 * loop.
6136 */
6137 if (state->loop_nesting_ast != NULL &&
6138 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6139 if (state->loop_nesting_ast->rest_expression) {
6140 state->loop_nesting_ast->rest_expression->hir(instructions,
6141 state);
6142 }
6143 if (state->loop_nesting_ast->mode ==
6144 ast_iteration_statement::ast_do_while) {
6145 state->loop_nesting_ast->condition_to_hir(instructions, state);
6146 }
6147 }
6148
6149 if (state->switch_state.is_switch_innermost &&
6150 mode == ast_continue) {
6151 /* Set 'continue_inside' to true. */
6152 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6153 ir_dereference_variable *deref_continue_inside_var =
6154 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6155 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6156 true_val));
6157
6158 /* Break out from the switch, continue for the loop will
6159 * be called right after switch. */
6160 ir_loop_jump *const jump =
6161 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6162 instructions->push_tail(jump);
6163
6164 } else if (state->switch_state.is_switch_innermost &&
6165 mode == ast_break) {
6166 /* Force break out of switch by inserting a break. */
6167 ir_loop_jump *const jump =
6168 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6169 instructions->push_tail(jump);
6170 } else {
6171 ir_loop_jump *const jump =
6172 new(ctx) ir_loop_jump((mode == ast_break)
6173 ? ir_loop_jump::jump_break
6174 : ir_loop_jump::jump_continue);
6175 instructions->push_tail(jump);
6176 }
6177 }
6178
6179 break;
6180 }
6181
6182 /* Jump instructions do not have r-values.
6183 */
6184 return NULL;
6185 }
6186
6187
6188 ir_rvalue *
6189 ast_selection_statement::hir(exec_list *instructions,
6190 struct _mesa_glsl_parse_state *state)
6191 {
6192 void *ctx = state;
6193
6194 ir_rvalue *const condition = this->condition->hir(instructions, state);
6195
6196 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6197 *
6198 * "Any expression whose type evaluates to a Boolean can be used as the
6199 * conditional expression bool-expression. Vector types are not accepted
6200 * as the expression to if."
6201 *
6202 * The checks are separated so that higher quality diagnostics can be
6203 * generated for cases where both rules are violated.
6204 */
6205 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6206 YYLTYPE loc = this->condition->get_location();
6207
6208 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6209 "boolean");
6210 }
6211
6212 ir_if *const stmt = new(ctx) ir_if(condition);
6213
6214 if (then_statement != NULL) {
6215 state->symbols->push_scope();
6216 then_statement->hir(& stmt->then_instructions, state);
6217 state->symbols->pop_scope();
6218 }
6219
6220 if (else_statement != NULL) {
6221 state->symbols->push_scope();
6222 else_statement->hir(& stmt->else_instructions, state);
6223 state->symbols->pop_scope();
6224 }
6225
6226 instructions->push_tail(stmt);
6227
6228 /* if-statements do not have r-values.
6229 */
6230 return NULL;
6231 }
6232
6233
6234 /* Used for detection of duplicate case values, compare
6235 * given contents directly.
6236 */
6237 static bool
6238 compare_case_value(const void *a, const void *b)
6239 {
6240 return *(unsigned *) a == *(unsigned *) b;
6241 }
6242
6243
6244 /* Used for detection of duplicate case values, just
6245 * returns key contents as is.
6246 */
6247 static unsigned
6248 key_contents(const void *key)
6249 {
6250 return *(unsigned *) key;
6251 }
6252
6253
6254 ir_rvalue *
6255 ast_switch_statement::hir(exec_list *instructions,
6256 struct _mesa_glsl_parse_state *state)
6257 {
6258 void *ctx = state;
6259
6260 ir_rvalue *const test_expression =
6261 this->test_expression->hir(instructions, state);
6262
6263 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6264 *
6265 * "The type of init-expression in a switch statement must be a
6266 * scalar integer."
6267 */
6268 if (!test_expression->type->is_scalar() ||
6269 !test_expression->type->is_integer()) {
6270 YYLTYPE loc = this->test_expression->get_location();
6271
6272 _mesa_glsl_error(& loc,
6273 state,
6274 "switch-statement expression must be scalar "
6275 "integer");
6276 }
6277
6278 /* Track the switch-statement nesting in a stack-like manner.
6279 */
6280 struct glsl_switch_state saved = state->switch_state;
6281
6282 state->switch_state.is_switch_innermost = true;
6283 state->switch_state.switch_nesting_ast = this;
6284 state->switch_state.labels_ht =
6285 _mesa_hash_table_create(NULL, key_contents,
6286 compare_case_value);
6287 state->switch_state.previous_default = NULL;
6288
6289 /* Initalize is_fallthru state to false.
6290 */
6291 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6292 state->switch_state.is_fallthru_var =
6293 new(ctx) ir_variable(glsl_type::bool_type,
6294 "switch_is_fallthru_tmp",
6295 ir_var_temporary);
6296 instructions->push_tail(state->switch_state.is_fallthru_var);
6297
6298 ir_dereference_variable *deref_is_fallthru_var =
6299 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6300 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6301 is_fallthru_val));
6302
6303 /* Initialize continue_inside state to false.
6304 */
6305 state->switch_state.continue_inside =
6306 new(ctx) ir_variable(glsl_type::bool_type,
6307 "continue_inside_tmp",
6308 ir_var_temporary);
6309 instructions->push_tail(state->switch_state.continue_inside);
6310
6311 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6312 ir_dereference_variable *deref_continue_inside_var =
6313 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6314 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6315 false_val));
6316
6317 state->switch_state.run_default =
6318 new(ctx) ir_variable(glsl_type::bool_type,
6319 "run_default_tmp",
6320 ir_var_temporary);
6321 instructions->push_tail(state->switch_state.run_default);
6322
6323 /* Loop around the switch is used for flow control. */
6324 ir_loop * loop = new(ctx) ir_loop();
6325 instructions->push_tail(loop);
6326
6327 /* Cache test expression.
6328 */
6329 test_to_hir(&loop->body_instructions, state);
6330
6331 /* Emit code for body of switch stmt.
6332 */
6333 body->hir(&loop->body_instructions, state);
6334
6335 /* Insert a break at the end to exit loop. */
6336 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6337 loop->body_instructions.push_tail(jump);
6338
6339 /* If we are inside loop, check if continue got called inside switch. */
6340 if (state->loop_nesting_ast != NULL) {
6341 ir_dereference_variable *deref_continue_inside =
6342 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6343 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6344 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6345
6346 if (state->loop_nesting_ast != NULL) {
6347 if (state->loop_nesting_ast->rest_expression) {
6348 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6349 state);
6350 }
6351 if (state->loop_nesting_ast->mode ==
6352 ast_iteration_statement::ast_do_while) {
6353 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6354 }
6355 }
6356 irif->then_instructions.push_tail(jump);
6357 instructions->push_tail(irif);
6358 }
6359
6360 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6361
6362 state->switch_state = saved;
6363
6364 /* Switch statements do not have r-values. */
6365 return NULL;
6366 }
6367
6368
6369 void
6370 ast_switch_statement::test_to_hir(exec_list *instructions,
6371 struct _mesa_glsl_parse_state *state)
6372 {
6373 void *ctx = state;
6374
6375 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6376 * on the switch test case. The first one would be already raised when
6377 * getting the test_expression at ast_switch_statement::hir
6378 */
6379 test_expression->set_is_lhs(true);
6380 /* Cache value of test expression. */
6381 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6382
6383 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6384 "switch_test_tmp",
6385 ir_var_temporary);
6386 ir_dereference_variable *deref_test_var =
6387 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6388
6389 instructions->push_tail(state->switch_state.test_var);
6390 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6391 }
6392
6393
6394 ir_rvalue *
6395 ast_switch_body::hir(exec_list *instructions,
6396 struct _mesa_glsl_parse_state *state)
6397 {
6398 if (stmts != NULL)
6399 stmts->hir(instructions, state);
6400
6401 /* Switch bodies do not have r-values. */
6402 return NULL;
6403 }
6404
6405 ir_rvalue *
6406 ast_case_statement_list::hir(exec_list *instructions,
6407 struct _mesa_glsl_parse_state *state)
6408 {
6409 exec_list default_case, after_default, tmp;
6410
6411 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6412 case_stmt->hir(&tmp, state);
6413
6414 /* Default case. */
6415 if (state->switch_state.previous_default && default_case.is_empty()) {
6416 default_case.append_list(&tmp);
6417 continue;
6418 }
6419
6420 /* If default case found, append 'after_default' list. */
6421 if (!default_case.is_empty())
6422 after_default.append_list(&tmp);
6423 else
6424 instructions->append_list(&tmp);
6425 }
6426
6427 /* Handle the default case. This is done here because default might not be
6428 * the last case. We need to add checks against following cases first to see
6429 * if default should be chosen or not.
6430 */
6431 if (!default_case.is_empty()) {
6432
6433 ir_rvalue *const true_val = new (state) ir_constant(true);
6434 ir_dereference_variable *deref_run_default_var =
6435 new(state) ir_dereference_variable(state->switch_state.run_default);
6436
6437 /* Choose to run default case initially, following conditional
6438 * assignments might change this.
6439 */
6440 ir_assignment *const init_var =
6441 new(state) ir_assignment(deref_run_default_var, true_val);
6442 instructions->push_tail(init_var);
6443
6444 /* Default case was the last one, no checks required. */
6445 if (after_default.is_empty()) {
6446 instructions->append_list(&default_case);
6447 return NULL;
6448 }
6449
6450 foreach_in_list(ir_instruction, ir, &after_default) {
6451 ir_assignment *assign = ir->as_assignment();
6452
6453 if (!assign)
6454 continue;
6455
6456 /* Clone the check between case label and init expression. */
6457 ir_expression *exp = (ir_expression*) assign->condition;
6458 ir_expression *clone = exp->clone(state, NULL);
6459
6460 ir_dereference_variable *deref_var =
6461 new(state) ir_dereference_variable(state->switch_state.run_default);
6462 ir_rvalue *const false_val = new (state) ir_constant(false);
6463
6464 ir_assignment *const set_false =
6465 new(state) ir_assignment(deref_var, false_val, clone);
6466
6467 instructions->push_tail(set_false);
6468 }
6469
6470 /* Append default case and all cases after it. */
6471 instructions->append_list(&default_case);
6472 instructions->append_list(&after_default);
6473 }
6474
6475 /* Case statements do not have r-values. */
6476 return NULL;
6477 }
6478
6479 ir_rvalue *
6480 ast_case_statement::hir(exec_list *instructions,
6481 struct _mesa_glsl_parse_state *state)
6482 {
6483 labels->hir(instructions, state);
6484
6485 /* Guard case statements depending on fallthru state. */
6486 ir_dereference_variable *const deref_fallthru_guard =
6487 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6488 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6489
6490 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6491 stmt->hir(& test_fallthru->then_instructions, state);
6492
6493 instructions->push_tail(test_fallthru);
6494
6495 /* Case statements do not have r-values. */
6496 return NULL;
6497 }
6498
6499
6500 ir_rvalue *
6501 ast_case_label_list::hir(exec_list *instructions,
6502 struct _mesa_glsl_parse_state *state)
6503 {
6504 foreach_list_typed (ast_case_label, label, link, & this->labels)
6505 label->hir(instructions, state);
6506
6507 /* Case labels do not have r-values. */
6508 return NULL;
6509 }
6510
6511 ir_rvalue *
6512 ast_case_label::hir(exec_list *instructions,
6513 struct _mesa_glsl_parse_state *state)
6514 {
6515 void *ctx = state;
6516
6517 ir_dereference_variable *deref_fallthru_var =
6518 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6519
6520 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6521
6522 /* If not default case, ... */
6523 if (this->test_value != NULL) {
6524 /* Conditionally set fallthru state based on
6525 * comparison of cached test expression value to case label.
6526 */
6527 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6528 ir_constant *label_const = label_rval->constant_expression_value();
6529
6530 if (!label_const) {
6531 YYLTYPE loc = this->test_value->get_location();
6532
6533 _mesa_glsl_error(& loc, state,
6534 "switch statement case label must be a "
6535 "constant expression");
6536
6537 /* Stuff a dummy value in to allow processing to continue. */
6538 label_const = new(ctx) ir_constant(0);
6539 } else {
6540 hash_entry *entry =
6541 _mesa_hash_table_search(state->switch_state.labels_ht,
6542 (void *)(uintptr_t)&label_const->value.u[0]);
6543
6544 if (entry) {
6545 ast_expression *previous_label = (ast_expression *) entry->data;
6546 YYLTYPE loc = this->test_value->get_location();
6547 _mesa_glsl_error(& loc, state, "duplicate case value");
6548
6549 loc = previous_label->get_location();
6550 _mesa_glsl_error(& loc, state, "this is the previous case label");
6551 } else {
6552 _mesa_hash_table_insert(state->switch_state.labels_ht,
6553 (void *)(uintptr_t)&label_const->value.u[0],
6554 this->test_value);
6555 }
6556 }
6557
6558 ir_dereference_variable *deref_test_var =
6559 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6560
6561 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6562 label_const,
6563 deref_test_var);
6564
6565 /*
6566 * From GLSL 4.40 specification section 6.2 ("Selection"):
6567 *
6568 * "The type of the init-expression value in a switch statement must
6569 * be a scalar int or uint. The type of the constant-expression value
6570 * in a case label also must be a scalar int or uint. When any pair
6571 * of these values is tested for "equal value" and the types do not
6572 * match, an implicit conversion will be done to convert the int to a
6573 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6574 * is done."
6575 */
6576 if (label_const->type != state->switch_state.test_var->type) {
6577 YYLTYPE loc = this->test_value->get_location();
6578
6579 const glsl_type *type_a = label_const->type;
6580 const glsl_type *type_b = state->switch_state.test_var->type;
6581
6582 /* Check if int->uint implicit conversion is supported. */
6583 bool integer_conversion_supported =
6584 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6585 state);
6586
6587 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6588 !integer_conversion_supported) {
6589 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6590 "init-expression and case label (%s != %s)",
6591 type_a->name, type_b->name);
6592 } else {
6593 /* Conversion of the case label. */
6594 if (type_a->base_type == GLSL_TYPE_INT) {
6595 if (!apply_implicit_conversion(glsl_type::uint_type,
6596 test_cond->operands[0], state))
6597 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6598 } else {
6599 /* Conversion of the init-expression value. */
6600 if (!apply_implicit_conversion(glsl_type::uint_type,
6601 test_cond->operands[1], state))
6602 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6603 }
6604 }
6605 }
6606
6607 ir_assignment *set_fallthru_on_test =
6608 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6609
6610 instructions->push_tail(set_fallthru_on_test);
6611 } else { /* default case */
6612 if (state->switch_state.previous_default) {
6613 YYLTYPE loc = this->get_location();
6614 _mesa_glsl_error(& loc, state,
6615 "multiple default labels in one switch");
6616
6617 loc = state->switch_state.previous_default->get_location();
6618 _mesa_glsl_error(& loc, state, "this is the first default label");
6619 }
6620 state->switch_state.previous_default = this;
6621
6622 /* Set fallthru condition on 'run_default' bool. */
6623 ir_dereference_variable *deref_run_default =
6624 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6625 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6626 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6627 cond_true,
6628 deref_run_default);
6629
6630 /* Set falltrhu state. */
6631 ir_assignment *set_fallthru =
6632 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6633
6634 instructions->push_tail(set_fallthru);
6635 }
6636
6637 /* Case statements do not have r-values. */
6638 return NULL;
6639 }
6640
6641 void
6642 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6643 struct _mesa_glsl_parse_state *state)
6644 {
6645 void *ctx = state;
6646
6647 if (condition != NULL) {
6648 ir_rvalue *const cond =
6649 condition->hir(instructions, state);
6650
6651 if ((cond == NULL)
6652 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6653 YYLTYPE loc = condition->get_location();
6654
6655 _mesa_glsl_error(& loc, state,
6656 "loop condition must be scalar boolean");
6657 } else {
6658 /* As the first code in the loop body, generate a block that looks
6659 * like 'if (!condition) break;' as the loop termination condition.
6660 */
6661 ir_rvalue *const not_cond =
6662 new(ctx) ir_expression(ir_unop_logic_not, cond);
6663
6664 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6665
6666 ir_jump *const break_stmt =
6667 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6668
6669 if_stmt->then_instructions.push_tail(break_stmt);
6670 instructions->push_tail(if_stmt);
6671 }
6672 }
6673 }
6674
6675
6676 ir_rvalue *
6677 ast_iteration_statement::hir(exec_list *instructions,
6678 struct _mesa_glsl_parse_state *state)
6679 {
6680 void *ctx = state;
6681
6682 /* For-loops and while-loops start a new scope, but do-while loops do not.
6683 */
6684 if (mode != ast_do_while)
6685 state->symbols->push_scope();
6686
6687 if (init_statement != NULL)
6688 init_statement->hir(instructions, state);
6689
6690 ir_loop *const stmt = new(ctx) ir_loop();
6691 instructions->push_tail(stmt);
6692
6693 /* Track the current loop nesting. */
6694 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6695
6696 state->loop_nesting_ast = this;
6697
6698 /* Likewise, indicate that following code is closest to a loop,
6699 * NOT closest to a switch.
6700 */
6701 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6702 state->switch_state.is_switch_innermost = false;
6703
6704 if (mode != ast_do_while)
6705 condition_to_hir(&stmt->body_instructions, state);
6706
6707 if (body != NULL)
6708 body->hir(& stmt->body_instructions, state);
6709
6710 if (rest_expression != NULL)
6711 rest_expression->hir(& stmt->body_instructions, state);
6712
6713 if (mode == ast_do_while)
6714 condition_to_hir(&stmt->body_instructions, state);
6715
6716 if (mode != ast_do_while)
6717 state->symbols->pop_scope();
6718
6719 /* Restore previous nesting before returning. */
6720 state->loop_nesting_ast = nesting_ast;
6721 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6722
6723 /* Loops do not have r-values.
6724 */
6725 return NULL;
6726 }
6727
6728
6729 /**
6730 * Determine if the given type is valid for establishing a default precision
6731 * qualifier.
6732 *
6733 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6734 *
6735 * "The precision statement
6736 *
6737 * precision precision-qualifier type;
6738 *
6739 * can be used to establish a default precision qualifier. The type field
6740 * can be either int or float or any of the sampler types, and the
6741 * precision-qualifier can be lowp, mediump, or highp."
6742 *
6743 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6744 * qualifiers on sampler types, but this seems like an oversight (since the
6745 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6746 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6747 * version.
6748 */
6749 static bool
6750 is_valid_default_precision_type(const struct glsl_type *const type)
6751 {
6752 if (type == NULL)
6753 return false;
6754
6755 switch (type->base_type) {
6756 case GLSL_TYPE_INT:
6757 case GLSL_TYPE_FLOAT:
6758 /* "int" and "float" are valid, but vectors and matrices are not. */
6759 return type->vector_elements == 1 && type->matrix_columns == 1;
6760 case GLSL_TYPE_SAMPLER:
6761 case GLSL_TYPE_IMAGE:
6762 case GLSL_TYPE_ATOMIC_UINT:
6763 return true;
6764 default:
6765 return false;
6766 }
6767 }
6768
6769
6770 ir_rvalue *
6771 ast_type_specifier::hir(exec_list *instructions,
6772 struct _mesa_glsl_parse_state *state)
6773 {
6774 if (this->default_precision == ast_precision_none && this->structure == NULL)
6775 return NULL;
6776
6777 YYLTYPE loc = this->get_location();
6778
6779 /* If this is a precision statement, check that the type to which it is
6780 * applied is either float or int.
6781 *
6782 * From section 4.5.3 of the GLSL 1.30 spec:
6783 * "The precision statement
6784 * precision precision-qualifier type;
6785 * can be used to establish a default precision qualifier. The type
6786 * field can be either int or float [...]. Any other types or
6787 * qualifiers will result in an error.
6788 */
6789 if (this->default_precision != ast_precision_none) {
6790 if (!state->check_precision_qualifiers_allowed(&loc))
6791 return NULL;
6792
6793 if (this->structure != NULL) {
6794 _mesa_glsl_error(&loc, state,
6795 "precision qualifiers do not apply to structures");
6796 return NULL;
6797 }
6798
6799 if (this->array_specifier != NULL) {
6800 _mesa_glsl_error(&loc, state,
6801 "default precision statements do not apply to "
6802 "arrays");
6803 return NULL;
6804 }
6805
6806 const struct glsl_type *const type =
6807 state->symbols->get_type(this->type_name);
6808 if (!is_valid_default_precision_type(type)) {
6809 _mesa_glsl_error(&loc, state,
6810 "default precision statements apply only to "
6811 "float, int, and opaque types");
6812 return NULL;
6813 }
6814
6815 if (state->es_shader) {
6816 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6817 * spec says:
6818 *
6819 * "Non-precision qualified declarations will use the precision
6820 * qualifier specified in the most recent precision statement
6821 * that is still in scope. The precision statement has the same
6822 * scoping rules as variable declarations. If it is declared
6823 * inside a compound statement, its effect stops at the end of
6824 * the innermost statement it was declared in. Precision
6825 * statements in nested scopes override precision statements in
6826 * outer scopes. Multiple precision statements for the same basic
6827 * type can appear inside the same scope, with later statements
6828 * overriding earlier statements within that scope."
6829 *
6830 * Default precision specifications follow the same scope rules as
6831 * variables. So, we can track the state of the default precision
6832 * qualifiers in the symbol table, and the rules will just work. This
6833 * is a slight abuse of the symbol table, but it has the semantics
6834 * that we want.
6835 */
6836 state->symbols->add_default_precision_qualifier(this->type_name,
6837 this->default_precision);
6838 }
6839
6840 /* FINISHME: Translate precision statements into IR. */
6841 return NULL;
6842 }
6843
6844 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6845 * process_record_constructor() can do type-checking on C-style initializer
6846 * expressions of structs, but ast_struct_specifier should only be translated
6847 * to HIR if it is declaring the type of a structure.
6848 *
6849 * The ->is_declaration field is false for initializers of variables
6850 * declared separately from the struct's type definition.
6851 *
6852 * struct S { ... }; (is_declaration = true)
6853 * struct T { ... } t = { ... }; (is_declaration = true)
6854 * S s = { ... }; (is_declaration = false)
6855 */
6856 if (this->structure != NULL && this->structure->is_declaration)
6857 return this->structure->hir(instructions, state);
6858
6859 return NULL;
6860 }
6861
6862
6863 /**
6864 * Process a structure or interface block tree into an array of structure fields
6865 *
6866 * After parsing, where there are some syntax differnces, structures and
6867 * interface blocks are almost identical. They are similar enough that the
6868 * AST for each can be processed the same way into a set of
6869 * \c glsl_struct_field to describe the members.
6870 *
6871 * If we're processing an interface block, var_mode should be the type of the
6872 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6873 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6874 * ir_var_auto.
6875 *
6876 * \return
6877 * The number of fields processed. A pointer to the array structure fields is
6878 * stored in \c *fields_ret.
6879 */
6880 static unsigned
6881 ast_process_struct_or_iface_block_members(exec_list *instructions,
6882 struct _mesa_glsl_parse_state *state,
6883 exec_list *declarations,
6884 glsl_struct_field **fields_ret,
6885 bool is_interface,
6886 enum glsl_matrix_layout matrix_layout,
6887 bool allow_reserved_names,
6888 ir_variable_mode var_mode,
6889 ast_type_qualifier *layout,
6890 unsigned block_stream,
6891 unsigned block_xfb_buffer,
6892 unsigned block_xfb_offset,
6893 unsigned expl_location,
6894 unsigned expl_align)
6895 {
6896 unsigned decl_count = 0;
6897 unsigned next_offset = 0;
6898
6899 /* Make an initial pass over the list of fields to determine how
6900 * many there are. Each element in this list is an ast_declarator_list.
6901 * This means that we actually need to count the number of elements in the
6902 * 'declarations' list in each of the elements.
6903 */
6904 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6905 decl_count += decl_list->declarations.length();
6906 }
6907
6908 /* Allocate storage for the fields and process the field
6909 * declarations. As the declarations are processed, try to also convert
6910 * the types to HIR. This ensures that structure definitions embedded in
6911 * other structure definitions or in interface blocks are processed.
6912 */
6913 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6914 decl_count);
6915
6916 bool first_member = true;
6917 bool first_member_has_explicit_location = false;
6918
6919 unsigned i = 0;
6920 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6921 const char *type_name;
6922 YYLTYPE loc = decl_list->get_location();
6923
6924 decl_list->type->specifier->hir(instructions, state);
6925
6926 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6927 *
6928 * "Anonymous structures are not supported; so embedded structures
6929 * must have a declarator. A name given to an embedded struct is
6930 * scoped at the same level as the struct it is embedded in."
6931 *
6932 * The same section of the GLSL 1.20 spec says:
6933 *
6934 * "Anonymous structures are not supported. Embedded structures are
6935 * not supported."
6936 *
6937 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6938 * embedded structures in 1.10 only.
6939 */
6940 if (state->language_version != 110 &&
6941 decl_list->type->specifier->structure != NULL)
6942 _mesa_glsl_error(&loc, state,
6943 "embedded structure declarations are not allowed");
6944
6945 const glsl_type *decl_type =
6946 decl_list->type->glsl_type(& type_name, state);
6947
6948 const struct ast_type_qualifier *const qual =
6949 &decl_list->type->qualifier;
6950
6951 /* From section 4.3.9 of the GLSL 4.40 spec:
6952 *
6953 * "[In interface blocks] opaque types are not allowed."
6954 *
6955 * It should be impossible for decl_type to be NULL here. Cases that
6956 * might naturally lead to decl_type being NULL, especially for the
6957 * is_interface case, will have resulted in compilation having
6958 * already halted due to a syntax error.
6959 */
6960 assert(decl_type);
6961
6962 if (is_interface) {
6963 if (decl_type->contains_opaque()) {
6964 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6965 "interface block contains opaque variable");
6966 }
6967 } else {
6968 if (decl_type->contains_atomic()) {
6969 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6970 *
6971 * "Members of structures cannot be declared as atomic counter
6972 * types."
6973 */
6974 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6975 }
6976
6977 if (decl_type->contains_image()) {
6978 /* FINISHME: Same problem as with atomic counters.
6979 * FINISHME: Request clarification from Khronos and add
6980 * FINISHME: spec quotation here.
6981 */
6982 _mesa_glsl_error(&loc, state, "image in structure");
6983 }
6984 }
6985
6986 if (qual->flags.q.explicit_binding) {
6987 _mesa_glsl_error(&loc, state,
6988 "binding layout qualifier cannot be applied "
6989 "to struct or interface block members");
6990 }
6991
6992 if (is_interface) {
6993 if (!first_member) {
6994 if (!layout->flags.q.explicit_location &&
6995 ((first_member_has_explicit_location &&
6996 !qual->flags.q.explicit_location) ||
6997 (!first_member_has_explicit_location &&
6998 qual->flags.q.explicit_location))) {
6999 _mesa_glsl_error(&loc, state,
7000 "when block-level location layout qualifier "
7001 "is not supplied either all members must "
7002 "have a location layout qualifier or all "
7003 "members must not have a location layout "
7004 "qualifier");
7005 }
7006 } else {
7007 first_member = false;
7008 first_member_has_explicit_location =
7009 qual->flags.q.explicit_location;
7010 }
7011 }
7012
7013 if (qual->flags.q.std140 ||
7014 qual->flags.q.std430 ||
7015 qual->flags.q.packed ||
7016 qual->flags.q.shared) {
7017 _mesa_glsl_error(&loc, state,
7018 "uniform/shader storage block layout qualifiers "
7019 "std140, std430, packed, and shared can only be "
7020 "applied to uniform/shader storage blocks, not "
7021 "members");
7022 }
7023
7024 if (qual->flags.q.constant) {
7025 _mesa_glsl_error(&loc, state,
7026 "const storage qualifier cannot be applied "
7027 "to struct or interface block members");
7028 }
7029
7030 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7031 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7032
7033 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7034 *
7035 * "A block member may be declared with a stream identifier, but
7036 * the specified stream must match the stream associated with the
7037 * containing block."
7038 */
7039 if (qual->flags.q.explicit_stream) {
7040 unsigned qual_stream;
7041 if (process_qualifier_constant(state, &loc, "stream",
7042 qual->stream, &qual_stream) &&
7043 qual_stream != block_stream) {
7044 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7045 "interface block member does not match "
7046 "the interface block (%u vs %u)", qual_stream,
7047 block_stream);
7048 }
7049 }
7050
7051 int xfb_buffer;
7052 unsigned explicit_xfb_buffer = 0;
7053 if (qual->flags.q.explicit_xfb_buffer) {
7054 unsigned qual_xfb_buffer;
7055 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7056 qual->xfb_buffer, &qual_xfb_buffer)) {
7057 explicit_xfb_buffer = 1;
7058 if (qual_xfb_buffer != block_xfb_buffer)
7059 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7060 "interface block member does not match "
7061 "the interface block (%u vs %u)",
7062 qual_xfb_buffer, block_xfb_buffer);
7063 }
7064 xfb_buffer = (int) qual_xfb_buffer;
7065 } else {
7066 if (layout)
7067 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7068 xfb_buffer = (int) block_xfb_buffer;
7069 }
7070
7071 int xfb_stride = -1;
7072 if (qual->flags.q.explicit_xfb_stride) {
7073 unsigned qual_xfb_stride;
7074 if (process_qualifier_constant(state, &loc, "xfb_stride",
7075 qual->xfb_stride, &qual_xfb_stride)) {
7076 xfb_stride = (int) qual_xfb_stride;
7077 }
7078 }
7079
7080 if (qual->flags.q.uniform && qual->has_interpolation()) {
7081 _mesa_glsl_error(&loc, state,
7082 "interpolation qualifiers cannot be used "
7083 "with uniform interface blocks");
7084 }
7085
7086 if ((qual->flags.q.uniform || !is_interface) &&
7087 qual->has_auxiliary_storage()) {
7088 _mesa_glsl_error(&loc, state,
7089 "auxiliary storage qualifiers cannot be used "
7090 "in uniform blocks or structures.");
7091 }
7092
7093 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7094 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7095 _mesa_glsl_error(&loc, state,
7096 "row_major and column_major can only be "
7097 "applied to interface blocks");
7098 } else
7099 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7100 }
7101
7102 if (qual->flags.q.read_only && qual->flags.q.write_only) {
7103 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
7104 "readonly and writeonly.");
7105 }
7106
7107 foreach_list_typed (ast_declaration, decl, link,
7108 &decl_list->declarations) {
7109 YYLTYPE loc = decl->get_location();
7110
7111 if (!allow_reserved_names)
7112 validate_identifier(decl->identifier, loc, state);
7113
7114 const struct glsl_type *field_type =
7115 process_array_type(&loc, decl_type, decl->array_specifier, state);
7116 validate_array_dimensions(field_type, state, &loc);
7117 fields[i].type = field_type;
7118 fields[i].name = decl->identifier;
7119 fields[i].interpolation =
7120 interpret_interpolation_qualifier(qual, field_type,
7121 var_mode, state, &loc);
7122 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7123 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7124 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7125 fields[i].precision = qual->precision;
7126 fields[i].offset = -1;
7127 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7128 fields[i].xfb_buffer = xfb_buffer;
7129 fields[i].xfb_stride = xfb_stride;
7130
7131 if (qual->flags.q.explicit_location) {
7132 unsigned qual_location;
7133 if (process_qualifier_constant(state, &loc, "location",
7134 qual->location, &qual_location)) {
7135 fields[i].location = qual_location +
7136 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7137 expl_location = fields[i].location +
7138 fields[i].type->count_attribute_slots(false);
7139 }
7140 } else {
7141 if (layout && layout->flags.q.explicit_location) {
7142 fields[i].location = expl_location;
7143 expl_location += fields[i].type->count_attribute_slots(false);
7144 } else {
7145 fields[i].location = -1;
7146 }
7147 }
7148
7149 /* Offset can only be used with std430 and std140 layouts an initial
7150 * value of 0 is used for error detection.
7151 */
7152 unsigned align = 0;
7153 unsigned size = 0;
7154 if (layout) {
7155 bool row_major;
7156 if (qual->flags.q.row_major ||
7157 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7158 row_major = true;
7159 } else {
7160 row_major = false;
7161 }
7162
7163 if(layout->flags.q.std140) {
7164 align = field_type->std140_base_alignment(row_major);
7165 size = field_type->std140_size(row_major);
7166 } else if (layout->flags.q.std430) {
7167 align = field_type->std430_base_alignment(row_major);
7168 size = field_type->std430_size(row_major);
7169 }
7170 }
7171
7172 if (qual->flags.q.explicit_offset) {
7173 unsigned qual_offset;
7174 if (process_qualifier_constant(state, &loc, "offset",
7175 qual->offset, &qual_offset)) {
7176 if (align != 0 && size != 0) {
7177 if (next_offset > qual_offset)
7178 _mesa_glsl_error(&loc, state, "layout qualifier "
7179 "offset overlaps previous member");
7180
7181 if (qual_offset % align) {
7182 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7183 "must be a multiple of the base "
7184 "alignment of %s", field_type->name);
7185 }
7186 fields[i].offset = qual_offset;
7187 next_offset = glsl_align(qual_offset + size, align);
7188 } else {
7189 _mesa_glsl_error(&loc, state, "offset can only be used "
7190 "with std430 and std140 layouts");
7191 }
7192 }
7193 }
7194
7195 if (qual->flags.q.explicit_align || expl_align != 0) {
7196 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7197 next_offset;
7198 if (align == 0 || size == 0) {
7199 _mesa_glsl_error(&loc, state, "align can only be used with "
7200 "std430 and std140 layouts");
7201 } else if (qual->flags.q.explicit_align) {
7202 unsigned member_align;
7203 if (process_qualifier_constant(state, &loc, "align",
7204 qual->align, &member_align)) {
7205 if (member_align == 0 ||
7206 member_align & (member_align - 1)) {
7207 _mesa_glsl_error(&loc, state, "align layout qualifier "
7208 "in not a power of 2");
7209 } else {
7210 fields[i].offset = glsl_align(offset, member_align);
7211 next_offset = glsl_align(fields[i].offset + size, align);
7212 }
7213 }
7214 } else {
7215 fields[i].offset = glsl_align(offset, expl_align);
7216 next_offset = glsl_align(fields[i].offset + size, align);
7217 }
7218 } else if (!qual->flags.q.explicit_offset) {
7219 if (align != 0 && size != 0)
7220 next_offset = glsl_align(next_offset + size, align);
7221 }
7222
7223 /* From the ARB_enhanced_layouts spec:
7224 *
7225 * "The given offset applies to the first component of the first
7226 * member of the qualified entity. Then, within the qualified
7227 * entity, subsequent components are each assigned, in order, to
7228 * the next available offset aligned to a multiple of that
7229 * component's size. Aggregate types are flattened down to the
7230 * component level to get this sequence of components."
7231 */
7232 if (qual->flags.q.explicit_xfb_offset) {
7233 unsigned xfb_offset;
7234 if (process_qualifier_constant(state, &loc, "xfb_offset",
7235 qual->offset, &xfb_offset)) {
7236 fields[i].offset = xfb_offset;
7237 block_xfb_offset = fields[i].offset +
7238 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7239 }
7240 } else {
7241 if (layout && layout->flags.q.explicit_xfb_offset) {
7242 unsigned align = field_type->is_64bit() ? 8 : 4;
7243 fields[i].offset = glsl_align(block_xfb_offset, align);
7244 block_xfb_offset +=
7245 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7246 }
7247 }
7248
7249 /* Propogate row- / column-major information down the fields of the
7250 * structure or interface block. Structures need this data because
7251 * the structure may contain a structure that contains ... a matrix
7252 * that need the proper layout.
7253 */
7254 if (is_interface && layout &&
7255 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7256 (field_type->without_array()->is_matrix()
7257 || field_type->without_array()->is_record())) {
7258 /* If no layout is specified for the field, inherit the layout
7259 * from the block.
7260 */
7261 fields[i].matrix_layout = matrix_layout;
7262
7263 if (qual->flags.q.row_major)
7264 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7265 else if (qual->flags.q.column_major)
7266 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7267
7268 /* If we're processing an uniform or buffer block, the matrix
7269 * layout must be decided by this point.
7270 */
7271 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7272 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7273 }
7274
7275 /* Image qualifiers are allowed on buffer variables, which can only
7276 * be defined inside shader storage buffer objects
7277 */
7278 if (layout && var_mode == ir_var_shader_storage) {
7279 /* For readonly and writeonly qualifiers the field definition,
7280 * if set, overwrites the layout qualifier.
7281 */
7282 if (qual->flags.q.read_only) {
7283 fields[i].memory_read_only = true;
7284 fields[i].memory_write_only = false;
7285 } else if (qual->flags.q.write_only) {
7286 fields[i].memory_read_only = false;
7287 fields[i].memory_write_only = true;
7288 } else {
7289 fields[i].memory_read_only = layout->flags.q.read_only;
7290 fields[i].memory_write_only = layout->flags.q.write_only;
7291 }
7292
7293 /* For other qualifiers, we set the flag if either the layout
7294 * qualifier or the field qualifier are set
7295 */
7296 fields[i].memory_coherent = qual->flags.q.coherent ||
7297 layout->flags.q.coherent;
7298 fields[i].memory_volatile = qual->flags.q._volatile ||
7299 layout->flags.q._volatile;
7300 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7301 layout->flags.q.restrict_flag;
7302 }
7303
7304 i++;
7305 }
7306 }
7307
7308 assert(i == decl_count);
7309
7310 *fields_ret = fields;
7311 return decl_count;
7312 }
7313
7314
7315 ir_rvalue *
7316 ast_struct_specifier::hir(exec_list *instructions,
7317 struct _mesa_glsl_parse_state *state)
7318 {
7319 YYLTYPE loc = this->get_location();
7320
7321 unsigned expl_location = 0;
7322 if (layout && layout->flags.q.explicit_location) {
7323 if (!process_qualifier_constant(state, &loc, "location",
7324 layout->location, &expl_location)) {
7325 return NULL;
7326 } else {
7327 expl_location = VARYING_SLOT_VAR0 + expl_location;
7328 }
7329 }
7330
7331 glsl_struct_field *fields;
7332 unsigned decl_count =
7333 ast_process_struct_or_iface_block_members(instructions,
7334 state,
7335 &this->declarations,
7336 &fields,
7337 false,
7338 GLSL_MATRIX_LAYOUT_INHERITED,
7339 false /* allow_reserved_names */,
7340 ir_var_auto,
7341 layout,
7342 0, /* for interface only */
7343 0, /* for interface only */
7344 0, /* for interface only */
7345 expl_location,
7346 0 /* for interface only */);
7347
7348 validate_identifier(this->name, loc, state);
7349
7350 const glsl_type *t =
7351 glsl_type::get_record_instance(fields, decl_count, this->name);
7352
7353 if (!state->symbols->add_type(name, t)) {
7354 const glsl_type *match = state->symbols->get_type(name);
7355 /* allow struct matching for desktop GL - older UE4 does this */
7356 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7357 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7358 else
7359 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7360 } else {
7361 const glsl_type **s = reralloc(state, state->user_structures,
7362 const glsl_type *,
7363 state->num_user_structures + 1);
7364 if (s != NULL) {
7365 s[state->num_user_structures] = t;
7366 state->user_structures = s;
7367 state->num_user_structures++;
7368 }
7369 }
7370
7371 /* Structure type definitions do not have r-values.
7372 */
7373 return NULL;
7374 }
7375
7376
7377 /**
7378 * Visitor class which detects whether a given interface block has been used.
7379 */
7380 class interface_block_usage_visitor : public ir_hierarchical_visitor
7381 {
7382 public:
7383 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7384 : mode(mode), block(block), found(false)
7385 {
7386 }
7387
7388 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7389 {
7390 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7391 found = true;
7392 return visit_stop;
7393 }
7394 return visit_continue;
7395 }
7396
7397 bool usage_found() const
7398 {
7399 return this->found;
7400 }
7401
7402 private:
7403 ir_variable_mode mode;
7404 const glsl_type *block;
7405 bool found;
7406 };
7407
7408 static bool
7409 is_unsized_array_last_element(ir_variable *v)
7410 {
7411 const glsl_type *interface_type = v->get_interface_type();
7412 int length = interface_type->length;
7413
7414 assert(v->type->is_unsized_array());
7415
7416 /* Check if it is the last element of the interface */
7417 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7418 return true;
7419 return false;
7420 }
7421
7422 static void
7423 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7424 {
7425 var->data.memory_read_only = field.memory_read_only;
7426 var->data.memory_write_only = field.memory_write_only;
7427 var->data.memory_coherent = field.memory_coherent;
7428 var->data.memory_volatile = field.memory_volatile;
7429 var->data.memory_restrict = field.memory_restrict;
7430 }
7431
7432 ir_rvalue *
7433 ast_interface_block::hir(exec_list *instructions,
7434 struct _mesa_glsl_parse_state *state)
7435 {
7436 YYLTYPE loc = this->get_location();
7437
7438 /* Interface blocks must be declared at global scope */
7439 if (state->current_function != NULL) {
7440 _mesa_glsl_error(&loc, state,
7441 "Interface block `%s' must be declared "
7442 "at global scope",
7443 this->block_name);
7444 }
7445
7446 /* Validate qualifiers:
7447 *
7448 * - Layout Qualifiers as per the table in Section 4.4
7449 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7450 *
7451 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7452 * GLSL 4.50 spec:
7453 *
7454 * "Additionally, memory qualifiers may also be used in the declaration
7455 * of shader storage blocks"
7456 *
7457 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7458 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7459 * Layout Qualifiers) of the GLSL 4.50 spec says:
7460 *
7461 * "The std430 qualifier is supported only for shader storage blocks;
7462 * using std430 on a uniform block will result in a compile-time error."
7463 */
7464 ast_type_qualifier allowed_blk_qualifiers;
7465 allowed_blk_qualifiers.flags.i = 0;
7466 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7467 allowed_blk_qualifiers.flags.q.shared = 1;
7468 allowed_blk_qualifiers.flags.q.packed = 1;
7469 allowed_blk_qualifiers.flags.q.std140 = 1;
7470 allowed_blk_qualifiers.flags.q.row_major = 1;
7471 allowed_blk_qualifiers.flags.q.column_major = 1;
7472 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7473 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7474 if (this->layout.flags.q.buffer) {
7475 allowed_blk_qualifiers.flags.q.buffer = 1;
7476 allowed_blk_qualifiers.flags.q.std430 = 1;
7477 allowed_blk_qualifiers.flags.q.coherent = 1;
7478 allowed_blk_qualifiers.flags.q._volatile = 1;
7479 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7480 allowed_blk_qualifiers.flags.q.read_only = 1;
7481 allowed_blk_qualifiers.flags.q.write_only = 1;
7482 } else {
7483 allowed_blk_qualifiers.flags.q.uniform = 1;
7484 }
7485 } else {
7486 /* Interface block */
7487 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7488
7489 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7490 if (this->layout.flags.q.out) {
7491 allowed_blk_qualifiers.flags.q.out = 1;
7492 if (state->stage == MESA_SHADER_GEOMETRY ||
7493 state->stage == MESA_SHADER_TESS_CTRL ||
7494 state->stage == MESA_SHADER_TESS_EVAL ||
7495 state->stage == MESA_SHADER_VERTEX ) {
7496 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7497 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7498 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7499 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7500 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7501 if (state->stage == MESA_SHADER_GEOMETRY) {
7502 allowed_blk_qualifiers.flags.q.stream = 1;
7503 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7504 }
7505 if (state->stage == MESA_SHADER_TESS_CTRL) {
7506 allowed_blk_qualifiers.flags.q.patch = 1;
7507 }
7508 }
7509 } else {
7510 allowed_blk_qualifiers.flags.q.in = 1;
7511 if (state->stage == MESA_SHADER_TESS_EVAL) {
7512 allowed_blk_qualifiers.flags.q.patch = 1;
7513 }
7514 }
7515 }
7516
7517 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7518 "invalid qualifier for block",
7519 this->block_name);
7520
7521 /* The ast_interface_block has a list of ast_declarator_lists. We
7522 * need to turn those into ir_variables with an association
7523 * with this uniform block.
7524 */
7525 enum glsl_interface_packing packing;
7526 if (this->layout.flags.q.shared) {
7527 packing = GLSL_INTERFACE_PACKING_SHARED;
7528 } else if (this->layout.flags.q.packed) {
7529 packing = GLSL_INTERFACE_PACKING_PACKED;
7530 } else if (this->layout.flags.q.std430) {
7531 packing = GLSL_INTERFACE_PACKING_STD430;
7532 } else {
7533 /* The default layout is std140.
7534 */
7535 packing = GLSL_INTERFACE_PACKING_STD140;
7536 }
7537
7538 ir_variable_mode var_mode;
7539 const char *iface_type_name;
7540 if (this->layout.flags.q.in) {
7541 var_mode = ir_var_shader_in;
7542 iface_type_name = "in";
7543 } else if (this->layout.flags.q.out) {
7544 var_mode = ir_var_shader_out;
7545 iface_type_name = "out";
7546 } else if (this->layout.flags.q.uniform) {
7547 var_mode = ir_var_uniform;
7548 iface_type_name = "uniform";
7549 } else if (this->layout.flags.q.buffer) {
7550 var_mode = ir_var_shader_storage;
7551 iface_type_name = "buffer";
7552 } else {
7553 var_mode = ir_var_auto;
7554 iface_type_name = "UNKNOWN";
7555 assert(!"interface block layout qualifier not found!");
7556 }
7557
7558 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7559 if (this->layout.flags.q.row_major)
7560 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7561 else if (this->layout.flags.q.column_major)
7562 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7563
7564 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7565 exec_list declared_variables;
7566 glsl_struct_field *fields;
7567
7568 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7569 * that we don't have incompatible qualifiers
7570 */
7571 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7572 _mesa_glsl_error(&loc, state,
7573 "Interface block sets both readonly and writeonly");
7574 }
7575
7576 unsigned qual_stream;
7577 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7578 &qual_stream) ||
7579 !validate_stream_qualifier(&loc, state, qual_stream)) {
7580 /* If the stream qualifier is invalid it doesn't make sense to continue
7581 * on and try to compare stream layouts on member variables against it
7582 * so just return early.
7583 */
7584 return NULL;
7585 }
7586
7587 unsigned qual_xfb_buffer;
7588 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7589 layout.xfb_buffer, &qual_xfb_buffer) ||
7590 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7591 return NULL;
7592 }
7593
7594 unsigned qual_xfb_offset;
7595 if (layout.flags.q.explicit_xfb_offset) {
7596 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7597 layout.offset, &qual_xfb_offset)) {
7598 return NULL;
7599 }
7600 }
7601
7602 unsigned qual_xfb_stride;
7603 if (layout.flags.q.explicit_xfb_stride) {
7604 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7605 layout.xfb_stride, &qual_xfb_stride)) {
7606 return NULL;
7607 }
7608 }
7609
7610 unsigned expl_location = 0;
7611 if (layout.flags.q.explicit_location) {
7612 if (!process_qualifier_constant(state, &loc, "location",
7613 layout.location, &expl_location)) {
7614 return NULL;
7615 } else {
7616 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7617 : VARYING_SLOT_VAR0;
7618 }
7619 }
7620
7621 unsigned expl_align = 0;
7622 if (layout.flags.q.explicit_align) {
7623 if (!process_qualifier_constant(state, &loc, "align",
7624 layout.align, &expl_align)) {
7625 return NULL;
7626 } else {
7627 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7628 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7629 "power of 2.");
7630 return NULL;
7631 }
7632 }
7633 }
7634
7635 unsigned int num_variables =
7636 ast_process_struct_or_iface_block_members(&declared_variables,
7637 state,
7638 &this->declarations,
7639 &fields,
7640 true,
7641 matrix_layout,
7642 redeclaring_per_vertex,
7643 var_mode,
7644 &this->layout,
7645 qual_stream,
7646 qual_xfb_buffer,
7647 qual_xfb_offset,
7648 expl_location,
7649 expl_align);
7650
7651 if (!redeclaring_per_vertex) {
7652 validate_identifier(this->block_name, loc, state);
7653
7654 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7655 *
7656 * "Block names have no other use within a shader beyond interface
7657 * matching; it is a compile-time error to use a block name at global
7658 * scope for anything other than as a block name."
7659 */
7660 ir_variable *var = state->symbols->get_variable(this->block_name);
7661 if (var && !var->type->is_interface()) {
7662 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7663 "already used in the scope.",
7664 this->block_name);
7665 }
7666 }
7667
7668 const glsl_type *earlier_per_vertex = NULL;
7669 if (redeclaring_per_vertex) {
7670 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7671 * the named interface block gl_in, we can find it by looking at the
7672 * previous declaration of gl_in. Otherwise we can find it by looking
7673 * at the previous decalartion of any of the built-in outputs,
7674 * e.g. gl_Position.
7675 *
7676 * Also check that the instance name and array-ness of the redeclaration
7677 * are correct.
7678 */
7679 switch (var_mode) {
7680 case ir_var_shader_in:
7681 if (ir_variable *earlier_gl_in =
7682 state->symbols->get_variable("gl_in")) {
7683 earlier_per_vertex = earlier_gl_in->get_interface_type();
7684 } else {
7685 _mesa_glsl_error(&loc, state,
7686 "redeclaration of gl_PerVertex input not allowed "
7687 "in the %s shader",
7688 _mesa_shader_stage_to_string(state->stage));
7689 }
7690 if (this->instance_name == NULL ||
7691 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7692 !this->array_specifier->is_single_dimension()) {
7693 _mesa_glsl_error(&loc, state,
7694 "gl_PerVertex input must be redeclared as "
7695 "gl_in[]");
7696 }
7697 break;
7698 case ir_var_shader_out:
7699 if (ir_variable *earlier_gl_Position =
7700 state->symbols->get_variable("gl_Position")) {
7701 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7702 } else if (ir_variable *earlier_gl_out =
7703 state->symbols->get_variable("gl_out")) {
7704 earlier_per_vertex = earlier_gl_out->get_interface_type();
7705 } else {
7706 _mesa_glsl_error(&loc, state,
7707 "redeclaration of gl_PerVertex output not "
7708 "allowed in the %s shader",
7709 _mesa_shader_stage_to_string(state->stage));
7710 }
7711 if (state->stage == MESA_SHADER_TESS_CTRL) {
7712 if (this->instance_name == NULL ||
7713 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7714 _mesa_glsl_error(&loc, state,
7715 "gl_PerVertex output must be redeclared as "
7716 "gl_out[]");
7717 }
7718 } else {
7719 if (this->instance_name != NULL) {
7720 _mesa_glsl_error(&loc, state,
7721 "gl_PerVertex output may not be redeclared with "
7722 "an instance name");
7723 }
7724 }
7725 break;
7726 default:
7727 _mesa_glsl_error(&loc, state,
7728 "gl_PerVertex must be declared as an input or an "
7729 "output");
7730 break;
7731 }
7732
7733 if (earlier_per_vertex == NULL) {
7734 /* An error has already been reported. Bail out to avoid null
7735 * dereferences later in this function.
7736 */
7737 return NULL;
7738 }
7739
7740 /* Copy locations from the old gl_PerVertex interface block. */
7741 for (unsigned i = 0; i < num_variables; i++) {
7742 int j = earlier_per_vertex->field_index(fields[i].name);
7743 if (j == -1) {
7744 _mesa_glsl_error(&loc, state,
7745 "redeclaration of gl_PerVertex must be a subset "
7746 "of the built-in members of gl_PerVertex");
7747 } else {
7748 fields[i].location =
7749 earlier_per_vertex->fields.structure[j].location;
7750 fields[i].offset =
7751 earlier_per_vertex->fields.structure[j].offset;
7752 fields[i].interpolation =
7753 earlier_per_vertex->fields.structure[j].interpolation;
7754 fields[i].centroid =
7755 earlier_per_vertex->fields.structure[j].centroid;
7756 fields[i].sample =
7757 earlier_per_vertex->fields.structure[j].sample;
7758 fields[i].patch =
7759 earlier_per_vertex->fields.structure[j].patch;
7760 fields[i].precision =
7761 earlier_per_vertex->fields.structure[j].precision;
7762 fields[i].explicit_xfb_buffer =
7763 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7764 fields[i].xfb_buffer =
7765 earlier_per_vertex->fields.structure[j].xfb_buffer;
7766 fields[i].xfb_stride =
7767 earlier_per_vertex->fields.structure[j].xfb_stride;
7768 }
7769 }
7770
7771 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7772 * spec:
7773 *
7774 * If a built-in interface block is redeclared, it must appear in
7775 * the shader before any use of any member included in the built-in
7776 * declaration, or a compilation error will result.
7777 *
7778 * This appears to be a clarification to the behaviour established for
7779 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7780 * regardless of GLSL version.
7781 */
7782 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7783 v.run(instructions);
7784 if (v.usage_found()) {
7785 _mesa_glsl_error(&loc, state,
7786 "redeclaration of a built-in interface block must "
7787 "appear before any use of any member of the "
7788 "interface block");
7789 }
7790 }
7791
7792 const glsl_type *block_type =
7793 glsl_type::get_interface_instance(fields,
7794 num_variables,
7795 packing,
7796 matrix_layout ==
7797 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7798 this->block_name);
7799
7800 unsigned component_size = block_type->contains_double() ? 8 : 4;
7801 int xfb_offset =
7802 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7803 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7804 component_size);
7805
7806 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7807 YYLTYPE loc = this->get_location();
7808 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7809 "already taken in the current scope",
7810 this->block_name, iface_type_name);
7811 }
7812
7813 /* Since interface blocks cannot contain statements, it should be
7814 * impossible for the block to generate any instructions.
7815 */
7816 assert(declared_variables.is_empty());
7817
7818 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7819 *
7820 * Geometry shader input variables get the per-vertex values written
7821 * out by vertex shader output variables of the same names. Since a
7822 * geometry shader operates on a set of vertices, each input varying
7823 * variable (or input block, see interface blocks below) needs to be
7824 * declared as an array.
7825 */
7826 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7827 var_mode == ir_var_shader_in) {
7828 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7829 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7830 state->stage == MESA_SHADER_TESS_EVAL) &&
7831 !this->layout.flags.q.patch &&
7832 this->array_specifier == NULL &&
7833 var_mode == ir_var_shader_in) {
7834 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7835 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7836 !this->layout.flags.q.patch &&
7837 this->array_specifier == NULL &&
7838 var_mode == ir_var_shader_out) {
7839 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7840 }
7841
7842
7843 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7844 * says:
7845 *
7846 * "If an instance name (instance-name) is used, then it puts all the
7847 * members inside a scope within its own name space, accessed with the
7848 * field selector ( . ) operator (analogously to structures)."
7849 */
7850 if (this->instance_name) {
7851 if (redeclaring_per_vertex) {
7852 /* When a built-in in an unnamed interface block is redeclared,
7853 * get_variable_being_redeclared() calls
7854 * check_builtin_array_max_size() to make sure that built-in array
7855 * variables aren't redeclared to illegal sizes. But we're looking
7856 * at a redeclaration of a named built-in interface block. So we
7857 * have to manually call check_builtin_array_max_size() for all parts
7858 * of the interface that are arrays.
7859 */
7860 for (unsigned i = 0; i < num_variables; i++) {
7861 if (fields[i].type->is_array()) {
7862 const unsigned size = fields[i].type->array_size();
7863 check_builtin_array_max_size(fields[i].name, size, loc, state);
7864 }
7865 }
7866 } else {
7867 validate_identifier(this->instance_name, loc, state);
7868 }
7869
7870 ir_variable *var;
7871
7872 if (this->array_specifier != NULL) {
7873 const glsl_type *block_array_type =
7874 process_array_type(&loc, block_type, this->array_specifier, state);
7875
7876 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7877 *
7878 * For uniform blocks declared an array, each individual array
7879 * element corresponds to a separate buffer object backing one
7880 * instance of the block. As the array size indicates the number
7881 * of buffer objects needed, uniform block array declarations
7882 * must specify an array size.
7883 *
7884 * And a few paragraphs later:
7885 *
7886 * Geometry shader input blocks must be declared as arrays and
7887 * follow the array declaration and linking rules for all
7888 * geometry shader inputs. All other input and output block
7889 * arrays must specify an array size.
7890 *
7891 * The same applies to tessellation shaders.
7892 *
7893 * The upshot of this is that the only circumstance where an
7894 * interface array size *doesn't* need to be specified is on a
7895 * geometry shader input, tessellation control shader input,
7896 * tessellation control shader output, and tessellation evaluation
7897 * shader input.
7898 */
7899 if (block_array_type->is_unsized_array()) {
7900 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7901 state->stage == MESA_SHADER_TESS_CTRL ||
7902 state->stage == MESA_SHADER_TESS_EVAL;
7903 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7904
7905 if (this->layout.flags.q.in) {
7906 if (!allow_inputs)
7907 _mesa_glsl_error(&loc, state,
7908 "unsized input block arrays not allowed in "
7909 "%s shader",
7910 _mesa_shader_stage_to_string(state->stage));
7911 } else if (this->layout.flags.q.out) {
7912 if (!allow_outputs)
7913 _mesa_glsl_error(&loc, state,
7914 "unsized output block arrays not allowed in "
7915 "%s shader",
7916 _mesa_shader_stage_to_string(state->stage));
7917 } else {
7918 /* by elimination, this is a uniform block array */
7919 _mesa_glsl_error(&loc, state,
7920 "unsized uniform block arrays not allowed in "
7921 "%s shader",
7922 _mesa_shader_stage_to_string(state->stage));
7923 }
7924 }
7925
7926 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7927 *
7928 * * Arrays of arrays of blocks are not allowed
7929 */
7930 if (state->es_shader && block_array_type->is_array() &&
7931 block_array_type->fields.array->is_array()) {
7932 _mesa_glsl_error(&loc, state,
7933 "arrays of arrays interface blocks are "
7934 "not allowed");
7935 }
7936
7937 var = new(state) ir_variable(block_array_type,
7938 this->instance_name,
7939 var_mode);
7940 } else {
7941 var = new(state) ir_variable(block_type,
7942 this->instance_name,
7943 var_mode);
7944 }
7945
7946 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7947 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7948
7949 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7950 var->data.read_only = true;
7951
7952 var->data.patch = this->layout.flags.q.patch;
7953
7954 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7955 handle_geometry_shader_input_decl(state, loc, var);
7956 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7957 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7958 handle_tess_shader_input_decl(state, loc, var);
7959 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7960 handle_tess_ctrl_shader_output_decl(state, loc, var);
7961
7962 for (unsigned i = 0; i < num_variables; i++) {
7963 if (var->data.mode == ir_var_shader_storage)
7964 apply_memory_qualifiers(var, fields[i]);
7965 }
7966
7967 if (ir_variable *earlier =
7968 state->symbols->get_variable(this->instance_name)) {
7969 if (!redeclaring_per_vertex) {
7970 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7971 this->instance_name);
7972 }
7973 earlier->data.how_declared = ir_var_declared_normally;
7974 earlier->type = var->type;
7975 earlier->reinit_interface_type(block_type);
7976 delete var;
7977 } else {
7978 if (this->layout.flags.q.explicit_binding) {
7979 apply_explicit_binding(state, &loc, var, var->type,
7980 &this->layout);
7981 }
7982
7983 var->data.stream = qual_stream;
7984 if (layout.flags.q.explicit_location) {
7985 var->data.location = expl_location;
7986 var->data.explicit_location = true;
7987 }
7988
7989 state->symbols->add_variable(var);
7990 instructions->push_tail(var);
7991 }
7992 } else {
7993 /* In order to have an array size, the block must also be declared with
7994 * an instance name.
7995 */
7996 assert(this->array_specifier == NULL);
7997
7998 for (unsigned i = 0; i < num_variables; i++) {
7999 ir_variable *var =
8000 new(state) ir_variable(fields[i].type,
8001 ralloc_strdup(state, fields[i].name),
8002 var_mode);
8003 var->data.interpolation = fields[i].interpolation;
8004 var->data.centroid = fields[i].centroid;
8005 var->data.sample = fields[i].sample;
8006 var->data.patch = fields[i].patch;
8007 var->data.stream = qual_stream;
8008 var->data.location = fields[i].location;
8009
8010 if (fields[i].location != -1)
8011 var->data.explicit_location = true;
8012
8013 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8014 var->data.xfb_buffer = fields[i].xfb_buffer;
8015
8016 if (fields[i].offset != -1)
8017 var->data.explicit_xfb_offset = true;
8018 var->data.offset = fields[i].offset;
8019
8020 var->init_interface_type(block_type);
8021
8022 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8023 var->data.read_only = true;
8024
8025 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8026 if (state->es_shader) {
8027 var->data.precision =
8028 select_gles_precision(fields[i].precision, fields[i].type,
8029 state, &loc);
8030 }
8031
8032 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8033 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8034 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8035 } else {
8036 var->data.matrix_layout = fields[i].matrix_layout;
8037 }
8038
8039 if (var->data.mode == ir_var_shader_storage)
8040 apply_memory_qualifiers(var, fields[i]);
8041
8042 /* Examine var name here since var may get deleted in the next call */
8043 bool var_is_gl_id = is_gl_identifier(var->name);
8044
8045 if (redeclaring_per_vertex) {
8046 bool is_redeclaration;
8047 ir_variable *declared_var =
8048 get_variable_being_redeclared(var, loc, state,
8049 true /* allow_all_redeclarations */,
8050 &is_redeclaration);
8051 if (!var_is_gl_id || !is_redeclaration) {
8052 _mesa_glsl_error(&loc, state,
8053 "redeclaration of gl_PerVertex can only "
8054 "include built-in variables");
8055 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
8056 _mesa_glsl_error(&loc, state,
8057 "`%s' has already been redeclared",
8058 declared_var->name);
8059 } else {
8060 declared_var->data.how_declared = ir_var_declared_in_block;
8061 declared_var->reinit_interface_type(block_type);
8062 }
8063 continue;
8064 }
8065
8066 if (state->symbols->get_variable(var->name) != NULL)
8067 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8068
8069 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8070 * The UBO declaration itself doesn't get an ir_variable unless it
8071 * has an instance name. This is ugly.
8072 */
8073 if (this->layout.flags.q.explicit_binding) {
8074 apply_explicit_binding(state, &loc, var,
8075 var->get_interface_type(), &this->layout);
8076 }
8077
8078 if (var->type->is_unsized_array()) {
8079 if (var->is_in_shader_storage_block() &&
8080 is_unsized_array_last_element(var)) {
8081 var->data.from_ssbo_unsized_array = true;
8082 } else {
8083 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8084 *
8085 * "If an array is declared as the last member of a shader storage
8086 * block and the size is not specified at compile-time, it is
8087 * sized at run-time. In all other cases, arrays are sized only
8088 * at compile-time."
8089 *
8090 * In desktop GLSL it is allowed to have unsized-arrays that are
8091 * not last, as long as we can determine that they are implicitly
8092 * sized.
8093 */
8094 if (state->es_shader) {
8095 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8096 "definition: only last member of a shader "
8097 "storage block can be defined as unsized "
8098 "array", fields[i].name);
8099 }
8100 }
8101 }
8102
8103 state->symbols->add_variable(var);
8104 instructions->push_tail(var);
8105 }
8106
8107 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8108 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8109 *
8110 * It is also a compilation error ... to redeclare a built-in
8111 * block and then use a member from that built-in block that was
8112 * not included in the redeclaration.
8113 *
8114 * This appears to be a clarification to the behaviour established
8115 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8116 * behaviour regardless of GLSL version.
8117 *
8118 * To prevent the shader from using a member that was not included in
8119 * the redeclaration, we disable any ir_variables that are still
8120 * associated with the old declaration of gl_PerVertex (since we've
8121 * already updated all of the variables contained in the new
8122 * gl_PerVertex to point to it).
8123 *
8124 * As a side effect this will prevent
8125 * validate_intrastage_interface_blocks() from getting confused and
8126 * thinking there are conflicting definitions of gl_PerVertex in the
8127 * shader.
8128 */
8129 foreach_in_list_safe(ir_instruction, node, instructions) {
8130 ir_variable *const var = node->as_variable();
8131 if (var != NULL &&
8132 var->get_interface_type() == earlier_per_vertex &&
8133 var->data.mode == var_mode) {
8134 if (var->data.how_declared == ir_var_declared_normally) {
8135 _mesa_glsl_error(&loc, state,
8136 "redeclaration of gl_PerVertex cannot "
8137 "follow a redeclaration of `%s'",
8138 var->name);
8139 }
8140 state->symbols->disable_variable(var->name);
8141 var->remove();
8142 }
8143 }
8144 }
8145 }
8146
8147 return NULL;
8148 }
8149
8150
8151 ir_rvalue *
8152 ast_tcs_output_layout::hir(exec_list *instructions,
8153 struct _mesa_glsl_parse_state *state)
8154 {
8155 YYLTYPE loc = this->get_location();
8156
8157 unsigned num_vertices;
8158 if (!state->out_qualifier->vertices->
8159 process_qualifier_constant(state, "vertices", &num_vertices,
8160 false)) {
8161 /* return here to stop cascading incorrect error messages */
8162 return NULL;
8163 }
8164
8165 /* If any shader outputs occurred before this declaration and specified an
8166 * array size, make sure the size they specified is consistent with the
8167 * primitive type.
8168 */
8169 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8170 _mesa_glsl_error(&loc, state,
8171 "this tessellation control shader output layout "
8172 "specifies %u vertices, but a previous output "
8173 "is declared with size %u",
8174 num_vertices, state->tcs_output_size);
8175 return NULL;
8176 }
8177
8178 state->tcs_output_vertices_specified = true;
8179
8180 /* If any shader outputs occurred before this declaration and did not
8181 * specify an array size, their size is determined now.
8182 */
8183 foreach_in_list (ir_instruction, node, instructions) {
8184 ir_variable *var = node->as_variable();
8185 if (var == NULL || var->data.mode != ir_var_shader_out)
8186 continue;
8187
8188 /* Note: Not all tessellation control shader output are arrays. */
8189 if (!var->type->is_unsized_array() || var->data.patch)
8190 continue;
8191
8192 if (var->data.max_array_access >= (int)num_vertices) {
8193 _mesa_glsl_error(&loc, state,
8194 "this tessellation control shader output layout "
8195 "specifies %u vertices, but an access to element "
8196 "%u of output `%s' already exists", num_vertices,
8197 var->data.max_array_access, var->name);
8198 } else {
8199 var->type = glsl_type::get_array_instance(var->type->fields.array,
8200 num_vertices);
8201 }
8202 }
8203
8204 return NULL;
8205 }
8206
8207
8208 ir_rvalue *
8209 ast_gs_input_layout::hir(exec_list *instructions,
8210 struct _mesa_glsl_parse_state *state)
8211 {
8212 YYLTYPE loc = this->get_location();
8213
8214 /* Should have been prevented by the parser. */
8215 assert(!state->gs_input_prim_type_specified
8216 || state->in_qualifier->prim_type == this->prim_type);
8217
8218 /* If any shader inputs occurred before this declaration and specified an
8219 * array size, make sure the size they specified is consistent with the
8220 * primitive type.
8221 */
8222 unsigned num_vertices = vertices_per_prim(this->prim_type);
8223 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8224 _mesa_glsl_error(&loc, state,
8225 "this geometry shader input layout implies %u vertices"
8226 " per primitive, but a previous input is declared"
8227 " with size %u", num_vertices, state->gs_input_size);
8228 return NULL;
8229 }
8230
8231 state->gs_input_prim_type_specified = true;
8232
8233 /* If any shader inputs occurred before this declaration and did not
8234 * specify an array size, their size is determined now.
8235 */
8236 foreach_in_list(ir_instruction, node, instructions) {
8237 ir_variable *var = node->as_variable();
8238 if (var == NULL || var->data.mode != ir_var_shader_in)
8239 continue;
8240
8241 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8242 * array; skip it.
8243 */
8244
8245 if (var->type->is_unsized_array()) {
8246 if (var->data.max_array_access >= (int)num_vertices) {
8247 _mesa_glsl_error(&loc, state,
8248 "this geometry shader input layout implies %u"
8249 " vertices, but an access to element %u of input"
8250 " `%s' already exists", num_vertices,
8251 var->data.max_array_access, var->name);
8252 } else {
8253 var->type = glsl_type::get_array_instance(var->type->fields.array,
8254 num_vertices);
8255 }
8256 }
8257 }
8258
8259 return NULL;
8260 }
8261
8262
8263 ir_rvalue *
8264 ast_cs_input_layout::hir(exec_list *instructions,
8265 struct _mesa_glsl_parse_state *state)
8266 {
8267 YYLTYPE loc = this->get_location();
8268
8269 /* From the ARB_compute_shader specification:
8270 *
8271 * If the local size of the shader in any dimension is greater
8272 * than the maximum size supported by the implementation for that
8273 * dimension, a compile-time error results.
8274 *
8275 * It is not clear from the spec how the error should be reported if
8276 * the total size of the work group exceeds
8277 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8278 * report it at compile time as well.
8279 */
8280 GLuint64 total_invocations = 1;
8281 unsigned qual_local_size[3];
8282 for (int i = 0; i < 3; i++) {
8283
8284 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8285 'x' + i);
8286 /* Infer a local_size of 1 for unspecified dimensions */
8287 if (this->local_size[i] == NULL) {
8288 qual_local_size[i] = 1;
8289 } else if (!this->local_size[i]->
8290 process_qualifier_constant(state, local_size_str,
8291 &qual_local_size[i], false)) {
8292 ralloc_free(local_size_str);
8293 return NULL;
8294 }
8295 ralloc_free(local_size_str);
8296
8297 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8298 _mesa_glsl_error(&loc, state,
8299 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8300 " (%d)", 'x' + i,
8301 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8302 break;
8303 }
8304 total_invocations *= qual_local_size[i];
8305 if (total_invocations >
8306 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8307 _mesa_glsl_error(&loc, state,
8308 "product of local_sizes exceeds "
8309 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8310 state->ctx->Const.MaxComputeWorkGroupInvocations);
8311 break;
8312 }
8313 }
8314
8315 /* If any compute input layout declaration preceded this one, make sure it
8316 * was consistent with this one.
8317 */
8318 if (state->cs_input_local_size_specified) {
8319 for (int i = 0; i < 3; i++) {
8320 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8321 _mesa_glsl_error(&loc, state,
8322 "compute shader input layout does not match"
8323 " previous declaration");
8324 return NULL;
8325 }
8326 }
8327 }
8328
8329 /* The ARB_compute_variable_group_size spec says:
8330 *
8331 * If a compute shader including a *local_size_variable* qualifier also
8332 * declares a fixed local group size using the *local_size_x*,
8333 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8334 * results
8335 */
8336 if (state->cs_input_local_size_variable_specified) {
8337 _mesa_glsl_error(&loc, state,
8338 "compute shader can't include both a variable and a "
8339 "fixed local group size");
8340 return NULL;
8341 }
8342
8343 state->cs_input_local_size_specified = true;
8344 for (int i = 0; i < 3; i++)
8345 state->cs_input_local_size[i] = qual_local_size[i];
8346
8347 /* We may now declare the built-in constant gl_WorkGroupSize (see
8348 * builtin_variable_generator::generate_constants() for why we didn't
8349 * declare it earlier).
8350 */
8351 ir_variable *var = new(state->symbols)
8352 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8353 var->data.how_declared = ir_var_declared_implicitly;
8354 var->data.read_only = true;
8355 instructions->push_tail(var);
8356 state->symbols->add_variable(var);
8357 ir_constant_data data;
8358 memset(&data, 0, sizeof(data));
8359 for (int i = 0; i < 3; i++)
8360 data.u[i] = qual_local_size[i];
8361 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8362 var->constant_initializer =
8363 new(var) ir_constant(glsl_type::uvec3_type, &data);
8364 var->data.has_initializer = true;
8365
8366 return NULL;
8367 }
8368
8369
8370 static void
8371 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8372 exec_list *instructions)
8373 {
8374 bool gl_FragColor_assigned = false;
8375 bool gl_FragData_assigned = false;
8376 bool gl_FragSecondaryColor_assigned = false;
8377 bool gl_FragSecondaryData_assigned = false;
8378 bool user_defined_fs_output_assigned = false;
8379 ir_variable *user_defined_fs_output = NULL;
8380
8381 /* It would be nice to have proper location information. */
8382 YYLTYPE loc;
8383 memset(&loc, 0, sizeof(loc));
8384
8385 foreach_in_list(ir_instruction, node, instructions) {
8386 ir_variable *var = node->as_variable();
8387
8388 if (!var || !var->data.assigned)
8389 continue;
8390
8391 if (strcmp(var->name, "gl_FragColor") == 0)
8392 gl_FragColor_assigned = true;
8393 else if (strcmp(var->name, "gl_FragData") == 0)
8394 gl_FragData_assigned = true;
8395 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8396 gl_FragSecondaryColor_assigned = true;
8397 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8398 gl_FragSecondaryData_assigned = true;
8399 else if (!is_gl_identifier(var->name)) {
8400 if (state->stage == MESA_SHADER_FRAGMENT &&
8401 var->data.mode == ir_var_shader_out) {
8402 user_defined_fs_output_assigned = true;
8403 user_defined_fs_output = var;
8404 }
8405 }
8406 }
8407
8408 /* From the GLSL 1.30 spec:
8409 *
8410 * "If a shader statically assigns a value to gl_FragColor, it
8411 * may not assign a value to any element of gl_FragData. If a
8412 * shader statically writes a value to any element of
8413 * gl_FragData, it may not assign a value to
8414 * gl_FragColor. That is, a shader may assign values to either
8415 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8416 * linked together must also consistently write just one of
8417 * these variables. Similarly, if user declared output
8418 * variables are in use (statically assigned to), then the
8419 * built-in variables gl_FragColor and gl_FragData may not be
8420 * assigned to. These incorrect usages all generate compile
8421 * time errors."
8422 */
8423 if (gl_FragColor_assigned && gl_FragData_assigned) {
8424 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8425 "`gl_FragColor' and `gl_FragData'");
8426 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8427 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8428 "`gl_FragColor' and `%s'",
8429 user_defined_fs_output->name);
8430 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8431 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8432 "`gl_FragSecondaryColorEXT' and"
8433 " `gl_FragSecondaryDataEXT'");
8434 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8435 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8436 "`gl_FragColor' and"
8437 " `gl_FragSecondaryDataEXT'");
8438 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8439 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8440 "`gl_FragData' and"
8441 " `gl_FragSecondaryColorEXT'");
8442 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8443 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8444 "`gl_FragData' and `%s'",
8445 user_defined_fs_output->name);
8446 }
8447
8448 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8449 !state->EXT_blend_func_extended_enable) {
8450 _mesa_glsl_error(&loc, state,
8451 "Dual source blending requires EXT_blend_func_extended");
8452 }
8453 }
8454
8455
8456 static void
8457 remove_per_vertex_blocks(exec_list *instructions,
8458 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8459 {
8460 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8461 * if it exists in this shader type.
8462 */
8463 const glsl_type *per_vertex = NULL;
8464 switch (mode) {
8465 case ir_var_shader_in:
8466 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8467 per_vertex = gl_in->get_interface_type();
8468 break;
8469 case ir_var_shader_out:
8470 if (ir_variable *gl_Position =
8471 state->symbols->get_variable("gl_Position")) {
8472 per_vertex = gl_Position->get_interface_type();
8473 }
8474 break;
8475 default:
8476 assert(!"Unexpected mode");
8477 break;
8478 }
8479
8480 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8481 * need to do anything.
8482 */
8483 if (per_vertex == NULL)
8484 return;
8485
8486 /* If the interface block is used by the shader, then we don't need to do
8487 * anything.
8488 */
8489 interface_block_usage_visitor v(mode, per_vertex);
8490 v.run(instructions);
8491 if (v.usage_found())
8492 return;
8493
8494 /* Remove any ir_variable declarations that refer to the interface block
8495 * we're removing.
8496 */
8497 foreach_in_list_safe(ir_instruction, node, instructions) {
8498 ir_variable *const var = node->as_variable();
8499 if (var != NULL && var->get_interface_type() == per_vertex &&
8500 var->data.mode == mode) {
8501 state->symbols->disable_variable(var->name);
8502 var->remove();
8503 }
8504 }
8505 }