glsl: rework misleading block layout code
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 if (structure)
2363 type = structure->type;
2364 else
2365 type = state->symbols->get_type(this->type_name);
2366 *name = this->type_name;
2367
2368 YYLTYPE loc = this->get_location();
2369 type = process_array_type(&loc, type, this->array_specifier, state);
2370
2371 return type;
2372 }
2373
2374 /**
2375 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2376 *
2377 * "The precision statement
2378 *
2379 * precision precision-qualifier type;
2380 *
2381 * can be used to establish a default precision qualifier. The type field can
2382 * be either int or float or any of the sampler types, (...) If type is float,
2383 * the directive applies to non-precision-qualified floating point type
2384 * (scalar, vector, and matrix) declarations. If type is int, the directive
2385 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2386 * and unsigned) declarations."
2387 *
2388 * We use the symbol table to keep the values of the default precisions for
2389 * each 'type' in each scope and we use the 'type' string from the precision
2390 * statement as key in the symbol table. When we want to retrieve the default
2391 * precision associated with a given glsl_type we need to know the type string
2392 * associated with it. This is what this function returns.
2393 */
2394 static const char *
2395 get_type_name_for_precision_qualifier(const glsl_type *type)
2396 {
2397 switch (type->base_type) {
2398 case GLSL_TYPE_FLOAT:
2399 return "float";
2400 case GLSL_TYPE_UINT:
2401 case GLSL_TYPE_INT:
2402 return "int";
2403 case GLSL_TYPE_ATOMIC_UINT:
2404 return "atomic_uint";
2405 case GLSL_TYPE_IMAGE:
2406 /* fallthrough */
2407 case GLSL_TYPE_SAMPLER: {
2408 const unsigned type_idx =
2409 type->sampler_array + 2 * type->sampler_shadow;
2410 const unsigned offset = type->is_sampler() ? 0 : 4;
2411 assert(type_idx < 4);
2412 switch (type->sampled_type) {
2413 case GLSL_TYPE_FLOAT:
2414 switch (type->sampler_dimensionality) {
2415 case GLSL_SAMPLER_DIM_1D: {
2416 assert(type->is_sampler());
2417 static const char *const names[4] = {
2418 "sampler1D", "sampler1DArray",
2419 "sampler1DShadow", "sampler1DArrayShadow"
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_2D: {
2424 static const char *const names[8] = {
2425 "sampler2D", "sampler2DArray",
2426 "sampler2DShadow", "sampler2DArrayShadow",
2427 "image2D", "image2DArray", NULL, NULL
2428 };
2429 return names[offset + type_idx];
2430 }
2431 case GLSL_SAMPLER_DIM_3D: {
2432 static const char *const names[8] = {
2433 "sampler3D", NULL, NULL, NULL,
2434 "image3D", NULL, NULL, NULL
2435 };
2436 return names[offset + type_idx];
2437 }
2438 case GLSL_SAMPLER_DIM_CUBE: {
2439 static const char *const names[8] = {
2440 "samplerCube", "samplerCubeArray",
2441 "samplerCubeShadow", "samplerCubeArrayShadow",
2442 "imageCube", NULL, NULL, NULL
2443 };
2444 return names[offset + type_idx];
2445 }
2446 case GLSL_SAMPLER_DIM_MS: {
2447 assert(type->is_sampler());
2448 static const char *const names[4] = {
2449 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2450 };
2451 return names[type_idx];
2452 }
2453 case GLSL_SAMPLER_DIM_RECT: {
2454 assert(type->is_sampler());
2455 static const char *const names[4] = {
2456 "samplerRect", NULL, "samplerRectShadow", NULL
2457 };
2458 return names[type_idx];
2459 }
2460 case GLSL_SAMPLER_DIM_BUF: {
2461 static const char *const names[8] = {
2462 "samplerBuffer", NULL, NULL, NULL,
2463 "imageBuffer", NULL, NULL, NULL
2464 };
2465 return names[offset + type_idx];
2466 }
2467 case GLSL_SAMPLER_DIM_EXTERNAL: {
2468 assert(type->is_sampler());
2469 static const char *const names[4] = {
2470 "samplerExternalOES", NULL, NULL, NULL
2471 };
2472 return names[type_idx];
2473 }
2474 default:
2475 unreachable("Unsupported sampler/image dimensionality");
2476 } /* sampler/image float dimensionality */
2477 break;
2478 case GLSL_TYPE_INT:
2479 switch (type->sampler_dimensionality) {
2480 case GLSL_SAMPLER_DIM_1D: {
2481 assert(type->is_sampler());
2482 static const char *const names[4] = {
2483 "isampler1D", "isampler1DArray", NULL, NULL
2484 };
2485 return names[type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_2D: {
2488 static const char *const names[8] = {
2489 "isampler2D", "isampler2DArray", NULL, NULL,
2490 "iimage2D", "iimage2DArray", NULL, NULL
2491 };
2492 return names[offset + type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_3D: {
2495 static const char *const names[8] = {
2496 "isampler3D", NULL, NULL, NULL,
2497 "iimage3D", NULL, NULL, NULL
2498 };
2499 return names[offset + type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_CUBE: {
2502 static const char *const names[8] = {
2503 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2504 "iimageCube", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_MS: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 case GLSL_SAMPLER_DIM_RECT: {
2516 assert(type->is_sampler());
2517 static const char *const names[4] = {
2518 "isamplerRect", NULL, "isamplerRectShadow", NULL
2519 };
2520 return names[type_idx];
2521 }
2522 case GLSL_SAMPLER_DIM_BUF: {
2523 static const char *const names[8] = {
2524 "isamplerBuffer", NULL, NULL, NULL,
2525 "iimageBuffer", NULL, NULL, NULL
2526 };
2527 return names[offset + type_idx];
2528 }
2529 default:
2530 unreachable("Unsupported isampler/iimage dimensionality");
2531 } /* sampler/image int dimensionality */
2532 break;
2533 case GLSL_TYPE_UINT:
2534 switch (type->sampler_dimensionality) {
2535 case GLSL_SAMPLER_DIM_1D: {
2536 assert(type->is_sampler());
2537 static const char *const names[4] = {
2538 "usampler1D", "usampler1DArray", NULL, NULL
2539 };
2540 return names[type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_2D: {
2543 static const char *const names[8] = {
2544 "usampler2D", "usampler2DArray", NULL, NULL,
2545 "uimage2D", "uimage2DArray", NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_3D: {
2550 static const char *const names[8] = {
2551 "usampler3D", NULL, NULL, NULL,
2552 "uimage3D", NULL, NULL, NULL
2553 };
2554 return names[offset + type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_CUBE: {
2557 static const char *const names[8] = {
2558 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2559 "uimageCube", NULL, NULL, NULL
2560 };
2561 return names[offset + type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_MS: {
2564 assert(type->is_sampler());
2565 static const char *const names[4] = {
2566 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2567 };
2568 return names[type_idx];
2569 }
2570 case GLSL_SAMPLER_DIM_RECT: {
2571 assert(type->is_sampler());
2572 static const char *const names[4] = {
2573 "usamplerRect", NULL, "usamplerRectShadow", NULL
2574 };
2575 return names[type_idx];
2576 }
2577 case GLSL_SAMPLER_DIM_BUF: {
2578 static const char *const names[8] = {
2579 "usamplerBuffer", NULL, NULL, NULL,
2580 "uimageBuffer", NULL, NULL, NULL
2581 };
2582 return names[offset + type_idx];
2583 }
2584 default:
2585 unreachable("Unsupported usampler/uimage dimensionality");
2586 } /* sampler/image uint dimensionality */
2587 break;
2588 default:
2589 unreachable("Unsupported sampler/image type");
2590 } /* sampler/image type */
2591 break;
2592 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2593 break;
2594 default:
2595 unreachable("Unsupported type");
2596 } /* base type */
2597 }
2598
2599 static unsigned
2600 select_gles_precision(unsigned qual_precision,
2601 const glsl_type *type,
2602 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2603 {
2604 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2605 * In GLES we take the precision from the type qualifier if present,
2606 * otherwise, if the type of the variable allows precision qualifiers at
2607 * all, we look for the default precision qualifier for that type in the
2608 * current scope.
2609 */
2610 assert(state->es_shader);
2611
2612 unsigned precision = GLSL_PRECISION_NONE;
2613 if (qual_precision) {
2614 precision = qual_precision;
2615 } else if (precision_qualifier_allowed(type)) {
2616 const char *type_name =
2617 get_type_name_for_precision_qualifier(type->without_array());
2618 assert(type_name != NULL);
2619
2620 precision =
2621 state->symbols->get_default_precision_qualifier(type_name);
2622 if (precision == ast_precision_none) {
2623 _mesa_glsl_error(loc, state,
2624 "No precision specified in this scope for type `%s'",
2625 type->name);
2626 }
2627 }
2628
2629
2630 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2631 *
2632 * "The default precision of all atomic types is highp. It is an error to
2633 * declare an atomic type with a different precision or to specify the
2634 * default precision for an atomic type to be lowp or mediump."
2635 */
2636 if (type->is_atomic_uint() && precision != ast_precision_high) {
2637 _mesa_glsl_error(loc, state,
2638 "atomic_uint can only have highp precision qualifier");
2639 }
2640
2641 return precision;
2642 }
2643
2644 const glsl_type *
2645 ast_fully_specified_type::glsl_type(const char **name,
2646 struct _mesa_glsl_parse_state *state) const
2647 {
2648 return this->specifier->glsl_type(name, state);
2649 }
2650
2651 /**
2652 * Determine whether a toplevel variable declaration declares a varying. This
2653 * function operates by examining the variable's mode and the shader target,
2654 * so it correctly identifies linkage variables regardless of whether they are
2655 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2656 *
2657 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2658 * this function will produce undefined results.
2659 */
2660 static bool
2661 is_varying_var(ir_variable *var, gl_shader_stage target)
2662 {
2663 switch (target) {
2664 case MESA_SHADER_VERTEX:
2665 return var->data.mode == ir_var_shader_out;
2666 case MESA_SHADER_FRAGMENT:
2667 return var->data.mode == ir_var_shader_in;
2668 default:
2669 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2670 }
2671 }
2672
2673 static bool
2674 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2675 {
2676 if (is_varying_var(var, state->stage))
2677 return true;
2678
2679 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2680 * "Only variables output from a vertex shader can be candidates
2681 * for invariance".
2682 */
2683 if (!state->is_version(130, 0))
2684 return false;
2685
2686 /*
2687 * Later specs remove this language - so allowed invariant
2688 * on fragment shader outputs as well.
2689 */
2690 if (state->stage == MESA_SHADER_FRAGMENT &&
2691 var->data.mode == ir_var_shader_out)
2692 return true;
2693 return false;
2694 }
2695
2696 /**
2697 * Matrix layout qualifiers are only allowed on certain types
2698 */
2699 static void
2700 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2701 YYLTYPE *loc,
2702 const glsl_type *type,
2703 ir_variable *var)
2704 {
2705 if (var && !var->is_in_buffer_block()) {
2706 /* Layout qualifiers may only apply to interface blocks and fields in
2707 * them.
2708 */
2709 _mesa_glsl_error(loc, state,
2710 "uniform block layout qualifiers row_major and "
2711 "column_major may not be applied to variables "
2712 "outside of uniform blocks");
2713 } else if (!type->without_array()->is_matrix()) {
2714 /* The OpenGL ES 3.0 conformance tests did not originally allow
2715 * matrix layout qualifiers on non-matrices. However, the OpenGL
2716 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2717 * amended to specifically allow these layouts on all types. Emit
2718 * a warning so that people know their code may not be portable.
2719 */
2720 _mesa_glsl_warning(loc, state,
2721 "uniform block layout qualifiers row_major and "
2722 "column_major applied to non-matrix types may "
2723 "be rejected by older compilers");
2724 }
2725 }
2726
2727 static bool
2728 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2729 struct _mesa_glsl_parse_state *state,
2730 unsigned xfb_buffer) {
2731 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2732 _mesa_glsl_error(loc, state,
2733 "invalid xfb_buffer specified %d is larger than "
2734 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2735 xfb_buffer,
2736 state->Const.MaxTransformFeedbackBuffers - 1);
2737 return false;
2738 }
2739
2740 return true;
2741 }
2742
2743 /* From the ARB_enhanced_layouts spec:
2744 *
2745 * "Variables and block members qualified with *xfb_offset* can be
2746 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2747 * The offset must be a multiple of the size of the first component of
2748 * the first qualified variable or block member, or a compile-time error
2749 * results. Further, if applied to an aggregate containing a double,
2750 * the offset must also be a multiple of 8, and the space taken in the
2751 * buffer will be a multiple of 8.
2752 */
2753 static bool
2754 validate_xfb_offset_qualifier(YYLTYPE *loc,
2755 struct _mesa_glsl_parse_state *state,
2756 int xfb_offset, const glsl_type *type,
2757 unsigned component_size) {
2758 const glsl_type *t_without_array = type->without_array();
2759
2760 if (xfb_offset != -1 && type->is_unsized_array()) {
2761 _mesa_glsl_error(loc, state,
2762 "xfb_offset can't be used with unsized arrays.");
2763 return false;
2764 }
2765
2766 /* Make sure nested structs don't contain unsized arrays, and validate
2767 * any xfb_offsets on interface members.
2768 */
2769 if (t_without_array->is_record() || t_without_array->is_interface())
2770 for (unsigned int i = 0; i < t_without_array->length; i++) {
2771 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2772
2773 /* When the interface block doesn't have an xfb_offset qualifier then
2774 * we apply the component size rules at the member level.
2775 */
2776 if (xfb_offset == -1)
2777 component_size = member_t->contains_double() ? 8 : 4;
2778
2779 int xfb_offset = t_without_array->fields.structure[i].offset;
2780 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2781 component_size);
2782 }
2783
2784 /* Nested structs or interface block without offset may not have had an
2785 * offset applied yet so return.
2786 */
2787 if (xfb_offset == -1) {
2788 return true;
2789 }
2790
2791 if (xfb_offset % component_size) {
2792 _mesa_glsl_error(loc, state,
2793 "invalid qualifier xfb_offset=%d must be a multiple "
2794 "of the first component size of the first qualified "
2795 "variable or block member. Or double if an aggregate "
2796 "that contains a double (%d).",
2797 xfb_offset, component_size);
2798 return false;
2799 }
2800
2801 return true;
2802 }
2803
2804 static bool
2805 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2806 unsigned stream)
2807 {
2808 if (stream >= state->ctx->Const.MaxVertexStreams) {
2809 _mesa_glsl_error(loc, state,
2810 "invalid stream specified %d is larger than "
2811 "MAX_VERTEX_STREAMS - 1 (%d).",
2812 stream, state->ctx->Const.MaxVertexStreams - 1);
2813 return false;
2814 }
2815
2816 return true;
2817 }
2818
2819 static void
2820 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2821 YYLTYPE *loc,
2822 ir_variable *var,
2823 const glsl_type *type,
2824 const ast_type_qualifier *qual)
2825 {
2826 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2827 _mesa_glsl_error(loc, state,
2828 "the \"binding\" qualifier only applies to uniforms and "
2829 "shader storage buffer objects");
2830 return;
2831 }
2832
2833 unsigned qual_binding;
2834 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2835 &qual_binding)) {
2836 return;
2837 }
2838
2839 const struct gl_context *const ctx = state->ctx;
2840 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2841 unsigned max_index = qual_binding + elements - 1;
2842 const glsl_type *base_type = type->without_array();
2843
2844 if (base_type->is_interface()) {
2845 /* UBOs. From page 60 of the GLSL 4.20 specification:
2846 * "If the binding point for any uniform block instance is less than zero,
2847 * or greater than or equal to the implementation-dependent maximum
2848 * number of uniform buffer bindings, a compilation error will occur.
2849 * When the binding identifier is used with a uniform block instanced as
2850 * an array of size N, all elements of the array from binding through
2851 * binding + N – 1 must be within this range."
2852 *
2853 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2854 */
2855 if (qual->flags.q.uniform &&
2856 max_index >= ctx->Const.MaxUniformBufferBindings) {
2857 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2858 "the maximum number of UBO binding points (%d)",
2859 qual_binding, elements,
2860 ctx->Const.MaxUniformBufferBindings);
2861 return;
2862 }
2863
2864 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2865 * "If the binding point for any uniform or shader storage block instance
2866 * is less than zero, or greater than or equal to the
2867 * implementation-dependent maximum number of uniform buffer bindings, a
2868 * compile-time error will occur. When the binding identifier is used
2869 * with a uniform or shader storage block instanced as an array of size
2870 * N, all elements of the array from binding through binding + N – 1 must
2871 * be within this range."
2872 */
2873 if (qual->flags.q.buffer &&
2874 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2875 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2876 "the maximum number of SSBO binding points (%d)",
2877 qual_binding, elements,
2878 ctx->Const.MaxShaderStorageBufferBindings);
2879 return;
2880 }
2881 } else if (base_type->is_sampler()) {
2882 /* Samplers. From page 63 of the GLSL 4.20 specification:
2883 * "If the binding is less than zero, or greater than or equal to the
2884 * implementation-dependent maximum supported number of units, a
2885 * compilation error will occur. When the binding identifier is used
2886 * with an array of size N, all elements of the array from binding
2887 * through binding + N - 1 must be within this range."
2888 */
2889 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2890
2891 if (max_index >= limit) {
2892 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2893 "exceeds the maximum number of texture image units "
2894 "(%u)", qual_binding, elements, limit);
2895
2896 return;
2897 }
2898 } else if (base_type->contains_atomic()) {
2899 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2900 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2901 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2902 "maximum number of atomic counter buffer bindings "
2903 "(%u)", qual_binding,
2904 ctx->Const.MaxAtomicBufferBindings);
2905
2906 return;
2907 }
2908 } else if ((state->is_version(420, 310) ||
2909 state->ARB_shading_language_420pack_enable) &&
2910 base_type->is_image()) {
2911 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2912 if (max_index >= ctx->Const.MaxImageUnits) {
2913 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2914 "maximum number of image units (%d)", max_index,
2915 ctx->Const.MaxImageUnits);
2916 return;
2917 }
2918
2919 } else {
2920 _mesa_glsl_error(loc, state,
2921 "the \"binding\" qualifier only applies to uniform "
2922 "blocks, storage blocks, opaque variables, or arrays "
2923 "thereof");
2924 return;
2925 }
2926
2927 var->data.explicit_binding = true;
2928 var->data.binding = qual_binding;
2929
2930 return;
2931 }
2932
2933 static void
2934 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2935 YYLTYPE *loc,
2936 const glsl_interp_mode interpolation,
2937 const struct glsl_type *var_type,
2938 ir_variable_mode mode)
2939 {
2940 if (state->stage != MESA_SHADER_FRAGMENT ||
2941 interpolation == INTERP_MODE_FLAT ||
2942 mode != ir_var_shader_in)
2943 return;
2944
2945 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2946 * so must integer vertex outputs.
2947 *
2948 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2949 * "Fragment shader inputs that are signed or unsigned integers or
2950 * integer vectors must be qualified with the interpolation qualifier
2951 * flat."
2952 *
2953 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2954 * "Fragment shader inputs that are, or contain, signed or unsigned
2955 * integers or integer vectors must be qualified with the
2956 * interpolation qualifier flat."
2957 *
2958 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2959 * "Vertex shader outputs that are, or contain, signed or unsigned
2960 * integers or integer vectors must be qualified with the
2961 * interpolation qualifier flat."
2962 *
2963 * Note that prior to GLSL 1.50, this requirement applied to vertex
2964 * outputs rather than fragment inputs. That creates problems in the
2965 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2966 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2967 * apply the restriction to both vertex outputs and fragment inputs.
2968 *
2969 * Note also that the desktop GLSL specs are missing the text "or
2970 * contain"; this is presumably an oversight, since there is no
2971 * reasonable way to interpolate a fragment shader input that contains
2972 * an integer. See Khronos bug #15671.
2973 */
2974 if (state->is_version(130, 300)
2975 && var_type->contains_integer()) {
2976 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2977 "an integer, then it must be qualified with 'flat'");
2978 }
2979
2980 /* Double fragment inputs must be qualified with 'flat'.
2981 *
2982 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2983 * "This extension does not support interpolation of double-precision
2984 * values; doubles used as fragment shader inputs must be qualified as
2985 * "flat"."
2986 *
2987 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2988 * "Fragment shader inputs that are signed or unsigned integers, integer
2989 * vectors, or any double-precision floating-point type must be
2990 * qualified with the interpolation qualifier flat."
2991 *
2992 * Note that the GLSL specs are missing the text "or contain"; this is
2993 * presumably an oversight. See Khronos bug #15671.
2994 *
2995 * The 'double' type does not exist in GLSL ES so far.
2996 */
2997 if (state->has_double()
2998 && var_type->contains_double()) {
2999 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3000 "a double, then it must be qualified with 'flat'");
3001 }
3002
3003 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3004 *
3005 * From section 4.3.4 of the ARB_bindless_texture spec:
3006 *
3007 * "(modify last paragraph, p. 35, allowing samplers and images as
3008 * fragment shader inputs) ... Fragment inputs can only be signed and
3009 * unsigned integers and integer vectors, floating point scalars,
3010 * floating-point vectors, matrices, sampler and image types, or arrays
3011 * or structures of these. Fragment shader inputs that are signed or
3012 * unsigned integers, integer vectors, or any double-precision floating-
3013 * point type, or any sampler or image type must be qualified with the
3014 * interpolation qualifier "flat"."
3015 */
3016 if (state->has_bindless()
3017 && (var_type->contains_sampler() || var_type->contains_image())) {
3018 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3019 "a bindless sampler (or image), then it must be "
3020 "qualified with 'flat'");
3021 }
3022 }
3023
3024 static void
3025 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3026 YYLTYPE *loc,
3027 const glsl_interp_mode interpolation,
3028 const struct ast_type_qualifier *qual,
3029 const struct glsl_type *var_type,
3030 ir_variable_mode mode)
3031 {
3032 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3033 * not to vertex shader inputs nor fragment shader outputs.
3034 *
3035 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3036 * "Outputs from a vertex shader (out) and inputs to a fragment
3037 * shader (in) can be further qualified with one or more of these
3038 * interpolation qualifiers"
3039 * ...
3040 * "These interpolation qualifiers may only precede the qualifiers in,
3041 * centroid in, out, or centroid out in a declaration. They do not apply
3042 * to the deprecated storage qualifiers varying or centroid
3043 * varying. They also do not apply to inputs into a vertex shader or
3044 * outputs from a fragment shader."
3045 *
3046 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3047 * "Outputs from a shader (out) and inputs to a shader (in) can be
3048 * further qualified with one of these interpolation qualifiers."
3049 * ...
3050 * "These interpolation qualifiers may only precede the qualifiers
3051 * in, centroid in, out, or centroid out in a declaration. They do
3052 * not apply to inputs into a vertex shader or outputs from a
3053 * fragment shader."
3054 */
3055 if (state->is_version(130, 300)
3056 && interpolation != INTERP_MODE_NONE) {
3057 const char *i = interpolation_string(interpolation);
3058 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3059 _mesa_glsl_error(loc, state,
3060 "interpolation qualifier `%s' can only be applied to "
3061 "shader inputs or outputs.", i);
3062
3063 switch (state->stage) {
3064 case MESA_SHADER_VERTEX:
3065 if (mode == ir_var_shader_in) {
3066 _mesa_glsl_error(loc, state,
3067 "interpolation qualifier '%s' cannot be applied to "
3068 "vertex shader inputs", i);
3069 }
3070 break;
3071 case MESA_SHADER_FRAGMENT:
3072 if (mode == ir_var_shader_out) {
3073 _mesa_glsl_error(loc, state,
3074 "interpolation qualifier '%s' cannot be applied to "
3075 "fragment shader outputs", i);
3076 }
3077 break;
3078 default:
3079 break;
3080 }
3081 }
3082
3083 /* Interpolation qualifiers cannot be applied to 'centroid' and
3084 * 'centroid varying'.
3085 *
3086 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3087 * "interpolation qualifiers may only precede the qualifiers in,
3088 * centroid in, out, or centroid out in a declaration. They do not apply
3089 * to the deprecated storage qualifiers varying or centroid varying."
3090 *
3091 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3092 */
3093 if (state->is_version(130, 0)
3094 && interpolation != INTERP_MODE_NONE
3095 && qual->flags.q.varying) {
3096
3097 const char *i = interpolation_string(interpolation);
3098 const char *s;
3099 if (qual->flags.q.centroid)
3100 s = "centroid varying";
3101 else
3102 s = "varying";
3103
3104 _mesa_glsl_error(loc, state,
3105 "qualifier '%s' cannot be applied to the "
3106 "deprecated storage qualifier '%s'", i, s);
3107 }
3108
3109 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3110 var_type, mode);
3111 }
3112
3113 static glsl_interp_mode
3114 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3115 const struct glsl_type *var_type,
3116 ir_variable_mode mode,
3117 struct _mesa_glsl_parse_state *state,
3118 YYLTYPE *loc)
3119 {
3120 glsl_interp_mode interpolation;
3121 if (qual->flags.q.flat)
3122 interpolation = INTERP_MODE_FLAT;
3123 else if (qual->flags.q.noperspective)
3124 interpolation = INTERP_MODE_NOPERSPECTIVE;
3125 else if (qual->flags.q.smooth)
3126 interpolation = INTERP_MODE_SMOOTH;
3127 else if (state->es_shader &&
3128 ((mode == ir_var_shader_in &&
3129 state->stage != MESA_SHADER_VERTEX) ||
3130 (mode == ir_var_shader_out &&
3131 state->stage != MESA_SHADER_FRAGMENT)))
3132 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3133 *
3134 * "When no interpolation qualifier is present, smooth interpolation
3135 * is used."
3136 */
3137 interpolation = INTERP_MODE_SMOOTH;
3138 else
3139 interpolation = INTERP_MODE_NONE;
3140
3141 validate_interpolation_qualifier(state, loc,
3142 interpolation,
3143 qual, var_type, mode);
3144
3145 return interpolation;
3146 }
3147
3148
3149 static void
3150 apply_explicit_location(const struct ast_type_qualifier *qual,
3151 ir_variable *var,
3152 struct _mesa_glsl_parse_state *state,
3153 YYLTYPE *loc)
3154 {
3155 bool fail = false;
3156
3157 unsigned qual_location;
3158 if (!process_qualifier_constant(state, loc, "location", qual->location,
3159 &qual_location)) {
3160 return;
3161 }
3162
3163 /* Checks for GL_ARB_explicit_uniform_location. */
3164 if (qual->flags.q.uniform) {
3165 if (!state->check_explicit_uniform_location_allowed(loc, var))
3166 return;
3167
3168 const struct gl_context *const ctx = state->ctx;
3169 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3170
3171 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3172 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3173 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3174 ctx->Const.MaxUserAssignableUniformLocations);
3175 return;
3176 }
3177
3178 var->data.explicit_location = true;
3179 var->data.location = qual_location;
3180 return;
3181 }
3182
3183 /* Between GL_ARB_explicit_attrib_location an
3184 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3185 * stage can be assigned explicit locations. The checking here associates
3186 * the correct extension with the correct stage's input / output:
3187 *
3188 * input output
3189 * ----- ------
3190 * vertex explicit_loc sso
3191 * tess control sso sso
3192 * tess eval sso sso
3193 * geometry sso sso
3194 * fragment sso explicit_loc
3195 */
3196 switch (state->stage) {
3197 case MESA_SHADER_VERTEX:
3198 if (var->data.mode == ir_var_shader_in) {
3199 if (!state->check_explicit_attrib_location_allowed(loc, var))
3200 return;
3201
3202 break;
3203 }
3204
3205 if (var->data.mode == ir_var_shader_out) {
3206 if (!state->check_separate_shader_objects_allowed(loc, var))
3207 return;
3208
3209 break;
3210 }
3211
3212 fail = true;
3213 break;
3214
3215 case MESA_SHADER_TESS_CTRL:
3216 case MESA_SHADER_TESS_EVAL:
3217 case MESA_SHADER_GEOMETRY:
3218 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3219 if (!state->check_separate_shader_objects_allowed(loc, var))
3220 return;
3221
3222 break;
3223 }
3224
3225 fail = true;
3226 break;
3227
3228 case MESA_SHADER_FRAGMENT:
3229 if (var->data.mode == ir_var_shader_in) {
3230 if (!state->check_separate_shader_objects_allowed(loc, var))
3231 return;
3232
3233 break;
3234 }
3235
3236 if (var->data.mode == ir_var_shader_out) {
3237 if (!state->check_explicit_attrib_location_allowed(loc, var))
3238 return;
3239
3240 break;
3241 }
3242
3243 fail = true;
3244 break;
3245
3246 case MESA_SHADER_COMPUTE:
3247 _mesa_glsl_error(loc, state,
3248 "compute shader variables cannot be given "
3249 "explicit locations");
3250 return;
3251 default:
3252 fail = true;
3253 break;
3254 };
3255
3256 if (fail) {
3257 _mesa_glsl_error(loc, state,
3258 "%s cannot be given an explicit location in %s shader",
3259 mode_string(var),
3260 _mesa_shader_stage_to_string(state->stage));
3261 } else {
3262 var->data.explicit_location = true;
3263
3264 switch (state->stage) {
3265 case MESA_SHADER_VERTEX:
3266 var->data.location = (var->data.mode == ir_var_shader_in)
3267 ? (qual_location + VERT_ATTRIB_GENERIC0)
3268 : (qual_location + VARYING_SLOT_VAR0);
3269 break;
3270
3271 case MESA_SHADER_TESS_CTRL:
3272 case MESA_SHADER_TESS_EVAL:
3273 case MESA_SHADER_GEOMETRY:
3274 if (var->data.patch)
3275 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3276 else
3277 var->data.location = qual_location + VARYING_SLOT_VAR0;
3278 break;
3279
3280 case MESA_SHADER_FRAGMENT:
3281 var->data.location = (var->data.mode == ir_var_shader_out)
3282 ? (qual_location + FRAG_RESULT_DATA0)
3283 : (qual_location + VARYING_SLOT_VAR0);
3284 break;
3285 default:
3286 assert(!"Unexpected shader type");
3287 break;
3288 }
3289
3290 /* Check if index was set for the uniform instead of the function */
3291 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3292 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3293 "used with subroutine functions");
3294 return;
3295 }
3296
3297 unsigned qual_index;
3298 if (qual->flags.q.explicit_index &&
3299 process_qualifier_constant(state, loc, "index", qual->index,
3300 &qual_index)) {
3301 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3302 * Layout Qualifiers):
3303 *
3304 * "It is also a compile-time error if a fragment shader
3305 * sets a layout index to less than 0 or greater than 1."
3306 *
3307 * Older specifications don't mandate a behavior; we take
3308 * this as a clarification and always generate the error.
3309 */
3310 if (qual_index > 1) {
3311 _mesa_glsl_error(loc, state,
3312 "explicit index may only be 0 or 1");
3313 } else {
3314 var->data.explicit_index = true;
3315 var->data.index = qual_index;
3316 }
3317 }
3318 }
3319 }
3320
3321 static bool
3322 validate_storage_for_sampler_image_types(ir_variable *var,
3323 struct _mesa_glsl_parse_state *state,
3324 YYLTYPE *loc)
3325 {
3326 /* From section 4.1.7 of the GLSL 4.40 spec:
3327 *
3328 * "[Opaque types] can only be declared as function
3329 * parameters or uniform-qualified variables."
3330 *
3331 * From section 4.1.7 of the ARB_bindless_texture spec:
3332 *
3333 * "Samplers may be declared as shader inputs and outputs, as uniform
3334 * variables, as temporary variables, and as function parameters."
3335 *
3336 * From section 4.1.X of the ARB_bindless_texture spec:
3337 *
3338 * "Images may be declared as shader inputs and outputs, as uniform
3339 * variables, as temporary variables, and as function parameters."
3340 */
3341 if (state->has_bindless()) {
3342 if (var->data.mode != ir_var_auto &&
3343 var->data.mode != ir_var_uniform &&
3344 var->data.mode != ir_var_shader_in &&
3345 var->data.mode != ir_var_shader_out &&
3346 var->data.mode != ir_var_function_in &&
3347 var->data.mode != ir_var_function_out &&
3348 var->data.mode != ir_var_function_inout) {
3349 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3350 "only be declared as shader inputs and outputs, as "
3351 "uniform variables, as temporary variables and as "
3352 "function parameters");
3353 return false;
3354 }
3355 } else {
3356 if (var->data.mode != ir_var_uniform &&
3357 var->data.mode != ir_var_function_in) {
3358 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3359 "declared as function parameters or "
3360 "uniform-qualified global variables");
3361 return false;
3362 }
3363 }
3364 return true;
3365 }
3366
3367 static bool
3368 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3369 YYLTYPE *loc,
3370 const struct ast_type_qualifier *qual,
3371 const glsl_type *type)
3372 {
3373 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3374 *
3375 * "Memory qualifiers are only supported in the declarations of image
3376 * variables, buffer variables, and shader storage blocks; it is an error
3377 * to use such qualifiers in any other declarations.
3378 */
3379 if (!type->is_image() && !qual->flags.q.buffer) {
3380 if (qual->flags.q.read_only ||
3381 qual->flags.q.write_only ||
3382 qual->flags.q.coherent ||
3383 qual->flags.q._volatile ||
3384 qual->flags.q.restrict_flag) {
3385 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3386 "in the declarations of image variables, buffer "
3387 "variables, and shader storage blocks");
3388 return false;
3389 }
3390 }
3391 return true;
3392 }
3393
3394 static bool
3395 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3396 YYLTYPE *loc,
3397 const struct ast_type_qualifier *qual,
3398 const glsl_type *type)
3399 {
3400 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3401 *
3402 * "Format layout qualifiers can be used on image variable declarations
3403 * (those declared with a basic type having “image ” in its keyword)."
3404 */
3405 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3406 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3407 "applied to images");
3408 return false;
3409 }
3410 return true;
3411 }
3412
3413 static void
3414 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3415 ir_variable *var,
3416 struct _mesa_glsl_parse_state *state,
3417 YYLTYPE *loc)
3418 {
3419 const glsl_type *base_type = var->type->without_array();
3420
3421 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3422 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3423 return;
3424
3425 if (!base_type->is_image())
3426 return;
3427
3428 if (!validate_storage_for_sampler_image_types(var, state, loc))
3429 return;
3430
3431 var->data.memory_read_only |= qual->flags.q.read_only;
3432 var->data.memory_write_only |= qual->flags.q.write_only;
3433 var->data.memory_coherent |= qual->flags.q.coherent;
3434 var->data.memory_volatile |= qual->flags.q._volatile;
3435 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3436
3437 if (qual->flags.q.explicit_image_format) {
3438 if (var->data.mode == ir_var_function_in) {
3439 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3440 "image function parameters");
3441 }
3442
3443 if (qual->image_base_type != base_type->sampled_type) {
3444 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3445 "data type of the image");
3446 }
3447
3448 var->data.image_format = qual->image_format;
3449 } else {
3450 if (var->data.mode == ir_var_uniform) {
3451 if (state->es_shader) {
3452 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3453 "format layout qualifier");
3454 } else if (!qual->flags.q.write_only) {
3455 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3456 "`writeonly' must have a format layout qualifier");
3457 }
3458 }
3459 var->data.image_format = GL_NONE;
3460 }
3461
3462 /* From page 70 of the GLSL ES 3.1 specification:
3463 *
3464 * "Except for image variables qualified with the format qualifiers r32f,
3465 * r32i, and r32ui, image variables must specify either memory qualifier
3466 * readonly or the memory qualifier writeonly."
3467 */
3468 if (state->es_shader &&
3469 var->data.image_format != GL_R32F &&
3470 var->data.image_format != GL_R32I &&
3471 var->data.image_format != GL_R32UI &&
3472 !var->data.memory_read_only &&
3473 !var->data.memory_write_only) {
3474 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3475 "r32i or r32ui must be qualified `readonly' or "
3476 "`writeonly'");
3477 }
3478 }
3479
3480 static inline const char*
3481 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3482 {
3483 if (origin_upper_left && pixel_center_integer)
3484 return "origin_upper_left, pixel_center_integer";
3485 else if (origin_upper_left)
3486 return "origin_upper_left";
3487 else if (pixel_center_integer)
3488 return "pixel_center_integer";
3489 else
3490 return " ";
3491 }
3492
3493 static inline bool
3494 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3495 const struct ast_type_qualifier *qual)
3496 {
3497 /* If gl_FragCoord was previously declared, and the qualifiers were
3498 * different in any way, return true.
3499 */
3500 if (state->fs_redeclares_gl_fragcoord) {
3501 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3502 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3503 }
3504
3505 return false;
3506 }
3507
3508 static inline void
3509 validate_array_dimensions(const glsl_type *t,
3510 struct _mesa_glsl_parse_state *state,
3511 YYLTYPE *loc) {
3512 if (t->is_array()) {
3513 t = t->fields.array;
3514 while (t->is_array()) {
3515 if (t->is_unsized_array()) {
3516 _mesa_glsl_error(loc, state,
3517 "only the outermost array dimension can "
3518 "be unsized",
3519 t->name);
3520 break;
3521 }
3522 t = t->fields.array;
3523 }
3524 }
3525 }
3526
3527 static void
3528 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3529 ir_variable *var,
3530 struct _mesa_glsl_parse_state *state,
3531 YYLTYPE *loc)
3532 {
3533 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3534 qual->flags.q.bindless_image ||
3535 qual->flags.q.bound_sampler ||
3536 qual->flags.q.bound_image;
3537
3538 /* The ARB_bindless_texture spec says:
3539 *
3540 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3541 * spec"
3542 *
3543 * "If these layout qualifiers are applied to other types of default block
3544 * uniforms, or variables with non-uniform storage, a compile-time error
3545 * will be generated."
3546 */
3547 if (has_local_qualifiers && !qual->flags.q.uniform) {
3548 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3549 "can only be applied to default block uniforms or "
3550 "variables with uniform storage");
3551 return;
3552 }
3553
3554 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3555 * but it makes sense to only allow bindless_sampler/bound_sampler for
3556 * sampler types, and respectively bindless_image/bound_image for image
3557 * types.
3558 */
3559 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3560 !var->type->contains_sampler()) {
3561 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3562 "be applied to sampler types");
3563 return;
3564 }
3565
3566 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3567 !var->type->contains_image()) {
3568 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3569 "applied to image types");
3570 return;
3571 }
3572
3573 /* The bindless_sampler/bindless_image (and respectively
3574 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3575 * local scope.
3576 */
3577 if (var->type->contains_sampler() || var->type->contains_image()) {
3578 var->data.bindless = qual->flags.q.bindless_sampler ||
3579 qual->flags.q.bindless_image ||
3580 state->bindless_sampler_specified ||
3581 state->bindless_image_specified;
3582
3583 var->data.bound = qual->flags.q.bound_sampler ||
3584 qual->flags.q.bound_image ||
3585 state->bound_sampler_specified ||
3586 state->bound_image_specified;
3587 }
3588 }
3589
3590 static void
3591 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3592 ir_variable *var,
3593 struct _mesa_glsl_parse_state *state,
3594 YYLTYPE *loc)
3595 {
3596 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3597
3598 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3599 *
3600 * "Within any shader, the first redeclarations of gl_FragCoord
3601 * must appear before any use of gl_FragCoord."
3602 *
3603 * Generate a compiler error if above condition is not met by the
3604 * fragment shader.
3605 */
3606 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3607 if (earlier != NULL &&
3608 earlier->data.used &&
3609 !state->fs_redeclares_gl_fragcoord) {
3610 _mesa_glsl_error(loc, state,
3611 "gl_FragCoord used before its first redeclaration "
3612 "in fragment shader");
3613 }
3614
3615 /* Make sure all gl_FragCoord redeclarations specify the same layout
3616 * qualifiers.
3617 */
3618 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3619 const char *const qual_string =
3620 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3621 qual->flags.q.pixel_center_integer);
3622
3623 const char *const state_string =
3624 get_layout_qualifier_string(state->fs_origin_upper_left,
3625 state->fs_pixel_center_integer);
3626
3627 _mesa_glsl_error(loc, state,
3628 "gl_FragCoord redeclared with different layout "
3629 "qualifiers (%s) and (%s) ",
3630 state_string,
3631 qual_string);
3632 }
3633 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3634 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3635 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3636 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3637 state->fs_redeclares_gl_fragcoord =
3638 state->fs_origin_upper_left ||
3639 state->fs_pixel_center_integer ||
3640 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3641 }
3642
3643 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3644 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3645 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3646 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3647 const char *const qual_string = (qual->flags.q.origin_upper_left)
3648 ? "origin_upper_left" : "pixel_center_integer";
3649
3650 _mesa_glsl_error(loc, state,
3651 "layout qualifier `%s' can only be applied to "
3652 "fragment shader input `gl_FragCoord'",
3653 qual_string);
3654 }
3655
3656 if (qual->flags.q.explicit_location) {
3657 apply_explicit_location(qual, var, state, loc);
3658
3659 if (qual->flags.q.explicit_component) {
3660 unsigned qual_component;
3661 if (process_qualifier_constant(state, loc, "component",
3662 qual->component, &qual_component)) {
3663 const glsl_type *type = var->type->without_array();
3664 unsigned components = type->component_slots();
3665
3666 if (type->is_matrix() || type->is_record()) {
3667 _mesa_glsl_error(loc, state, "component layout qualifier "
3668 "cannot be applied to a matrix, a structure, "
3669 "a block, or an array containing any of "
3670 "these.");
3671 } else if (qual_component != 0 &&
3672 (qual_component + components - 1) > 3) {
3673 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3674 (qual_component + components - 1));
3675 } else if (qual_component == 1 && type->is_64bit()) {
3676 /* We don't bother checking for 3 as it should be caught by the
3677 * overflow check above.
3678 */
3679 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3680 "component 1 or 3");
3681 } else {
3682 var->data.explicit_component = true;
3683 var->data.location_frac = qual_component;
3684 }
3685 }
3686 }
3687 } else if (qual->flags.q.explicit_index) {
3688 if (!qual->subroutine_list)
3689 _mesa_glsl_error(loc, state,
3690 "explicit index requires explicit location");
3691 } else if (qual->flags.q.explicit_component) {
3692 _mesa_glsl_error(loc, state,
3693 "explicit component requires explicit location");
3694 }
3695
3696 if (qual->flags.q.explicit_binding) {
3697 apply_explicit_binding(state, loc, var, var->type, qual);
3698 }
3699
3700 if (state->stage == MESA_SHADER_GEOMETRY &&
3701 qual->flags.q.out && qual->flags.q.stream) {
3702 unsigned qual_stream;
3703 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3704 &qual_stream) &&
3705 validate_stream_qualifier(loc, state, qual_stream)) {
3706 var->data.stream = qual_stream;
3707 }
3708 }
3709
3710 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3711 unsigned qual_xfb_buffer;
3712 if (process_qualifier_constant(state, loc, "xfb_buffer",
3713 qual->xfb_buffer, &qual_xfb_buffer) &&
3714 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3715 var->data.xfb_buffer = qual_xfb_buffer;
3716 if (qual->flags.q.explicit_xfb_buffer)
3717 var->data.explicit_xfb_buffer = true;
3718 }
3719 }
3720
3721 if (qual->flags.q.explicit_xfb_offset) {
3722 unsigned qual_xfb_offset;
3723 unsigned component_size = var->type->contains_double() ? 8 : 4;
3724
3725 if (process_qualifier_constant(state, loc, "xfb_offset",
3726 qual->offset, &qual_xfb_offset) &&
3727 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3728 var->type, component_size)) {
3729 var->data.offset = qual_xfb_offset;
3730 var->data.explicit_xfb_offset = true;
3731 }
3732 }
3733
3734 if (qual->flags.q.explicit_xfb_stride) {
3735 unsigned qual_xfb_stride;
3736 if (process_qualifier_constant(state, loc, "xfb_stride",
3737 qual->xfb_stride, &qual_xfb_stride)) {
3738 var->data.xfb_stride = qual_xfb_stride;
3739 var->data.explicit_xfb_stride = true;
3740 }
3741 }
3742
3743 if (var->type->contains_atomic()) {
3744 if (var->data.mode == ir_var_uniform) {
3745 if (var->data.explicit_binding) {
3746 unsigned *offset =
3747 &state->atomic_counter_offsets[var->data.binding];
3748
3749 if (*offset % ATOMIC_COUNTER_SIZE)
3750 _mesa_glsl_error(loc, state,
3751 "misaligned atomic counter offset");
3752
3753 var->data.offset = *offset;
3754 *offset += var->type->atomic_size();
3755
3756 } else {
3757 _mesa_glsl_error(loc, state,
3758 "atomic counters require explicit binding point");
3759 }
3760 } else if (var->data.mode != ir_var_function_in) {
3761 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3762 "function parameters or uniform-qualified "
3763 "global variables");
3764 }
3765 }
3766
3767 if (var->type->contains_sampler() &&
3768 !validate_storage_for_sampler_image_types(var, state, loc))
3769 return;
3770
3771 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3772 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3773 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3774 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3775 * These extensions and all following extensions that add the 'layout'
3776 * keyword have been modified to require the use of 'in' or 'out'.
3777 *
3778 * The following extension do not allow the deprecated keywords:
3779 *
3780 * GL_AMD_conservative_depth
3781 * GL_ARB_conservative_depth
3782 * GL_ARB_gpu_shader5
3783 * GL_ARB_separate_shader_objects
3784 * GL_ARB_tessellation_shader
3785 * GL_ARB_transform_feedback3
3786 * GL_ARB_uniform_buffer_object
3787 *
3788 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3789 * allow layout with the deprecated keywords.
3790 */
3791 const bool relaxed_layout_qualifier_checking =
3792 state->ARB_fragment_coord_conventions_enable;
3793
3794 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3795 || qual->flags.q.varying;
3796 if (qual->has_layout() && uses_deprecated_qualifier) {
3797 if (relaxed_layout_qualifier_checking) {
3798 _mesa_glsl_warning(loc, state,
3799 "`layout' qualifier may not be used with "
3800 "`attribute' or `varying'");
3801 } else {
3802 _mesa_glsl_error(loc, state,
3803 "`layout' qualifier may not be used with "
3804 "`attribute' or `varying'");
3805 }
3806 }
3807
3808 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3809 * AMD_conservative_depth.
3810 */
3811 if (qual->flags.q.depth_type
3812 && !state->is_version(420, 0)
3813 && !state->AMD_conservative_depth_enable
3814 && !state->ARB_conservative_depth_enable) {
3815 _mesa_glsl_error(loc, state,
3816 "extension GL_AMD_conservative_depth or "
3817 "GL_ARB_conservative_depth must be enabled "
3818 "to use depth layout qualifiers");
3819 } else if (qual->flags.q.depth_type
3820 && strcmp(var->name, "gl_FragDepth") != 0) {
3821 _mesa_glsl_error(loc, state,
3822 "depth layout qualifiers can be applied only to "
3823 "gl_FragDepth");
3824 }
3825
3826 switch (qual->depth_type) {
3827 case ast_depth_any:
3828 var->data.depth_layout = ir_depth_layout_any;
3829 break;
3830 case ast_depth_greater:
3831 var->data.depth_layout = ir_depth_layout_greater;
3832 break;
3833 case ast_depth_less:
3834 var->data.depth_layout = ir_depth_layout_less;
3835 break;
3836 case ast_depth_unchanged:
3837 var->data.depth_layout = ir_depth_layout_unchanged;
3838 break;
3839 default:
3840 var->data.depth_layout = ir_depth_layout_none;
3841 break;
3842 }
3843
3844 if (qual->flags.q.std140 ||
3845 qual->flags.q.std430 ||
3846 qual->flags.q.packed ||
3847 qual->flags.q.shared) {
3848 _mesa_glsl_error(loc, state,
3849 "uniform and shader storage block layout qualifiers "
3850 "std140, std430, packed, and shared can only be "
3851 "applied to uniform or shader storage blocks, not "
3852 "members");
3853 }
3854
3855 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3856 validate_matrix_layout_for_type(state, loc, var->type, var);
3857 }
3858
3859 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3860 * Inputs):
3861 *
3862 * "Fragment shaders also allow the following layout qualifier on in only
3863 * (not with variable declarations)
3864 * layout-qualifier-id
3865 * early_fragment_tests
3866 * [...]"
3867 */
3868 if (qual->flags.q.early_fragment_tests) {
3869 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3870 "valid in fragment shader input layout declaration.");
3871 }
3872
3873 if (qual->flags.q.inner_coverage) {
3874 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3875 "valid in fragment shader input layout declaration.");
3876 }
3877
3878 if (qual->flags.q.post_depth_coverage) {
3879 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3880 "valid in fragment shader input layout declaration.");
3881 }
3882
3883 if (state->has_bindless())
3884 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3885 }
3886
3887 static void
3888 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3889 ir_variable *var,
3890 struct _mesa_glsl_parse_state *state,
3891 YYLTYPE *loc,
3892 bool is_parameter)
3893 {
3894 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3895
3896 if (qual->flags.q.invariant) {
3897 if (var->data.used) {
3898 _mesa_glsl_error(loc, state,
3899 "variable `%s' may not be redeclared "
3900 "`invariant' after being used",
3901 var->name);
3902 } else {
3903 var->data.invariant = 1;
3904 }
3905 }
3906
3907 if (qual->flags.q.precise) {
3908 if (var->data.used) {
3909 _mesa_glsl_error(loc, state,
3910 "variable `%s' may not be redeclared "
3911 "`precise' after being used",
3912 var->name);
3913 } else {
3914 var->data.precise = 1;
3915 }
3916 }
3917
3918 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3919 _mesa_glsl_error(loc, state,
3920 "`subroutine' may only be applied to uniforms, "
3921 "subroutine type declarations, or function definitions");
3922 }
3923
3924 if (qual->flags.q.constant || qual->flags.q.attribute
3925 || qual->flags.q.uniform
3926 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3927 var->data.read_only = 1;
3928
3929 if (qual->flags.q.centroid)
3930 var->data.centroid = 1;
3931
3932 if (qual->flags.q.sample)
3933 var->data.sample = 1;
3934
3935 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3936 if (state->es_shader) {
3937 var->data.precision =
3938 select_gles_precision(qual->precision, var->type, state, loc);
3939 }
3940
3941 if (qual->flags.q.patch)
3942 var->data.patch = 1;
3943
3944 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3945 var->type = glsl_type::error_type;
3946 _mesa_glsl_error(loc, state,
3947 "`attribute' variables may not be declared in the "
3948 "%s shader",
3949 _mesa_shader_stage_to_string(state->stage));
3950 }
3951
3952 /* Disallow layout qualifiers which may only appear on layout declarations. */
3953 if (qual->flags.q.prim_type) {
3954 _mesa_glsl_error(loc, state,
3955 "Primitive type may only be specified on GS input or output "
3956 "layout declaration, not on variables.");
3957 }
3958
3959 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3960 *
3961 * "However, the const qualifier cannot be used with out or inout."
3962 *
3963 * The same section of the GLSL 4.40 spec further clarifies this saying:
3964 *
3965 * "The const qualifier cannot be used with out or inout, or a
3966 * compile-time error results."
3967 */
3968 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3969 _mesa_glsl_error(loc, state,
3970 "`const' may not be applied to `out' or `inout' "
3971 "function parameters");
3972 }
3973
3974 /* If there is no qualifier that changes the mode of the variable, leave
3975 * the setting alone.
3976 */
3977 assert(var->data.mode != ir_var_temporary);
3978 if (qual->flags.q.in && qual->flags.q.out)
3979 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3980 else if (qual->flags.q.in)
3981 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3982 else if (qual->flags.q.attribute
3983 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3984 var->data.mode = ir_var_shader_in;
3985 else if (qual->flags.q.out)
3986 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3987 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3988 var->data.mode = ir_var_shader_out;
3989 else if (qual->flags.q.uniform)
3990 var->data.mode = ir_var_uniform;
3991 else if (qual->flags.q.buffer)
3992 var->data.mode = ir_var_shader_storage;
3993 else if (qual->flags.q.shared_storage)
3994 var->data.mode = ir_var_shader_shared;
3995
3996 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3997 qual->flags.q.in && qual->flags.q.out;
3998
3999 if (!is_parameter && is_varying_var(var, state->stage)) {
4000 /* User-defined ins/outs are not permitted in compute shaders. */
4001 if (state->stage == MESA_SHADER_COMPUTE) {
4002 _mesa_glsl_error(loc, state,
4003 "user-defined input and output variables are not "
4004 "permitted in compute shaders");
4005 }
4006
4007 /* This variable is being used to link data between shader stages (in
4008 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4009 * that is allowed for such purposes.
4010 *
4011 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4012 *
4013 * "The varying qualifier can be used only with the data types
4014 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4015 * these."
4016 *
4017 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4018 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4019 *
4020 * "Fragment inputs can only be signed and unsigned integers and
4021 * integer vectors, float, floating-point vectors, matrices, or
4022 * arrays of these. Structures cannot be input.
4023 *
4024 * Similar text exists in the section on vertex shader outputs.
4025 *
4026 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4027 * 3.00 spec allows structs as well. Varying structs are also allowed
4028 * in GLSL 1.50.
4029 *
4030 * From section 4.3.4 of the ARB_bindless_texture spec:
4031 *
4032 * "(modify third paragraph of the section to allow sampler and image
4033 * types) ... Vertex shader inputs can only be float,
4034 * single-precision floating-point scalars, single-precision
4035 * floating-point vectors, matrices, signed and unsigned integers
4036 * and integer vectors, sampler and image types."
4037 *
4038 * From section 4.3.6 of the ARB_bindless_texture spec:
4039 *
4040 * "Output variables can only be floating-point scalars,
4041 * floating-point vectors, matrices, signed or unsigned integers or
4042 * integer vectors, sampler or image types, or arrays or structures
4043 * of any these."
4044 */
4045 switch (var->type->without_array()->base_type) {
4046 case GLSL_TYPE_FLOAT:
4047 /* Ok in all GLSL versions */
4048 break;
4049 case GLSL_TYPE_UINT:
4050 case GLSL_TYPE_INT:
4051 if (state->is_version(130, 300))
4052 break;
4053 _mesa_glsl_error(loc, state,
4054 "varying variables must be of base type float in %s",
4055 state->get_version_string());
4056 break;
4057 case GLSL_TYPE_STRUCT:
4058 if (state->is_version(150, 300))
4059 break;
4060 _mesa_glsl_error(loc, state,
4061 "varying variables may not be of type struct");
4062 break;
4063 case GLSL_TYPE_DOUBLE:
4064 case GLSL_TYPE_UINT64:
4065 case GLSL_TYPE_INT64:
4066 break;
4067 case GLSL_TYPE_SAMPLER:
4068 case GLSL_TYPE_IMAGE:
4069 if (state->has_bindless())
4070 break;
4071 /* fallthrough */
4072 default:
4073 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4074 break;
4075 }
4076 }
4077
4078 if (state->all_invariant && (state->current_function == NULL)) {
4079 switch (state->stage) {
4080 case MESA_SHADER_VERTEX:
4081 if (var->data.mode == ir_var_shader_out)
4082 var->data.invariant = true;
4083 break;
4084 case MESA_SHADER_TESS_CTRL:
4085 case MESA_SHADER_TESS_EVAL:
4086 case MESA_SHADER_GEOMETRY:
4087 if ((var->data.mode == ir_var_shader_in)
4088 || (var->data.mode == ir_var_shader_out))
4089 var->data.invariant = true;
4090 break;
4091 case MESA_SHADER_FRAGMENT:
4092 if (var->data.mode == ir_var_shader_in)
4093 var->data.invariant = true;
4094 break;
4095 case MESA_SHADER_COMPUTE:
4096 /* Invariance isn't meaningful in compute shaders. */
4097 break;
4098 default:
4099 break;
4100 }
4101 }
4102
4103 var->data.interpolation =
4104 interpret_interpolation_qualifier(qual, var->type,
4105 (ir_variable_mode) var->data.mode,
4106 state, loc);
4107
4108 /* Does the declaration use the deprecated 'attribute' or 'varying'
4109 * keywords?
4110 */
4111 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4112 || qual->flags.q.varying;
4113
4114
4115 /* Validate auxiliary storage qualifiers */
4116
4117 /* From section 4.3.4 of the GLSL 1.30 spec:
4118 * "It is an error to use centroid in in a vertex shader."
4119 *
4120 * From section 4.3.4 of the GLSL ES 3.00 spec:
4121 * "It is an error to use centroid in or interpolation qualifiers in
4122 * a vertex shader input."
4123 */
4124
4125 /* Section 4.3.6 of the GLSL 1.30 specification states:
4126 * "It is an error to use centroid out in a fragment shader."
4127 *
4128 * The GL_ARB_shading_language_420pack extension specification states:
4129 * "It is an error to use auxiliary storage qualifiers or interpolation
4130 * qualifiers on an output in a fragment shader."
4131 */
4132 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4133 _mesa_glsl_error(loc, state,
4134 "sample qualifier may only be used on `in` or `out` "
4135 "variables between shader stages");
4136 }
4137 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4138 _mesa_glsl_error(loc, state,
4139 "centroid qualifier may only be used with `in', "
4140 "`out' or `varying' variables between shader stages");
4141 }
4142
4143 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4144 _mesa_glsl_error(loc, state,
4145 "the shared storage qualifiers can only be used with "
4146 "compute shaders");
4147 }
4148
4149 apply_image_qualifier_to_variable(qual, var, state, loc);
4150 }
4151
4152 /**
4153 * Get the variable that is being redeclared by this declaration or if it
4154 * does not exist, the current declared variable.
4155 *
4156 * Semantic checks to verify the validity of the redeclaration are also
4157 * performed. If semantic checks fail, compilation error will be emitted via
4158 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4159 *
4160 * \returns
4161 * A pointer to an existing variable in the current scope if the declaration
4162 * is a redeclaration, current variable otherwise. \c is_declared boolean
4163 * will return \c true if the declaration is a redeclaration, \c false
4164 * otherwise.
4165 */
4166 static ir_variable *
4167 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4168 struct _mesa_glsl_parse_state *state,
4169 bool allow_all_redeclarations,
4170 bool *is_redeclaration)
4171 {
4172 /* Check if this declaration is actually a re-declaration, either to
4173 * resize an array or add qualifiers to an existing variable.
4174 *
4175 * This is allowed for variables in the current scope, or when at
4176 * global scope (for built-ins in the implicit outer scope).
4177 */
4178 ir_variable *earlier = state->symbols->get_variable(var->name);
4179 if (earlier == NULL ||
4180 (state->current_function != NULL &&
4181 !state->symbols->name_declared_this_scope(var->name))) {
4182 *is_redeclaration = false;
4183 return var;
4184 }
4185
4186 *is_redeclaration = true;
4187
4188 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4189 *
4190 * "It is legal to declare an array without a size and then
4191 * later re-declare the same name as an array of the same
4192 * type and specify a size."
4193 */
4194 if (earlier->type->is_unsized_array() && var->type->is_array()
4195 && (var->type->fields.array == earlier->type->fields.array)) {
4196 /* FINISHME: This doesn't match the qualifiers on the two
4197 * FINISHME: declarations. It's not 100% clear whether this is
4198 * FINISHME: required or not.
4199 */
4200
4201 const int size = var->type->array_size();
4202 check_builtin_array_max_size(var->name, size, loc, state);
4203 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4204 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4205 "previous access",
4206 earlier->data.max_array_access);
4207 }
4208
4209 earlier->type = var->type;
4210 delete var;
4211 var = NULL;
4212 } else if ((state->ARB_fragment_coord_conventions_enable ||
4213 state->is_version(150, 0))
4214 && strcmp(var->name, "gl_FragCoord") == 0
4215 && earlier->type == var->type
4216 && var->data.mode == ir_var_shader_in) {
4217 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4218 * qualifiers.
4219 */
4220 earlier->data.origin_upper_left = var->data.origin_upper_left;
4221 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4222
4223 /* According to section 4.3.7 of the GLSL 1.30 spec,
4224 * the following built-in varaibles can be redeclared with an
4225 * interpolation qualifier:
4226 * * gl_FrontColor
4227 * * gl_BackColor
4228 * * gl_FrontSecondaryColor
4229 * * gl_BackSecondaryColor
4230 * * gl_Color
4231 * * gl_SecondaryColor
4232 */
4233 } else if (state->is_version(130, 0)
4234 && (strcmp(var->name, "gl_FrontColor") == 0
4235 || strcmp(var->name, "gl_BackColor") == 0
4236 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4237 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4238 || strcmp(var->name, "gl_Color") == 0
4239 || strcmp(var->name, "gl_SecondaryColor") == 0)
4240 && earlier->type == var->type
4241 && earlier->data.mode == var->data.mode) {
4242 earlier->data.interpolation = var->data.interpolation;
4243
4244 /* Layout qualifiers for gl_FragDepth. */
4245 } else if ((state->is_version(420, 0) ||
4246 state->AMD_conservative_depth_enable ||
4247 state->ARB_conservative_depth_enable)
4248 && strcmp(var->name, "gl_FragDepth") == 0
4249 && earlier->type == var->type
4250 && earlier->data.mode == var->data.mode) {
4251
4252 /** From the AMD_conservative_depth spec:
4253 * Within any shader, the first redeclarations of gl_FragDepth
4254 * must appear before any use of gl_FragDepth.
4255 */
4256 if (earlier->data.used) {
4257 _mesa_glsl_error(&loc, state,
4258 "the first redeclaration of gl_FragDepth "
4259 "must appear before any use of gl_FragDepth");
4260 }
4261
4262 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4263 if (earlier->data.depth_layout != ir_depth_layout_none
4264 && earlier->data.depth_layout != var->data.depth_layout) {
4265 _mesa_glsl_error(&loc, state,
4266 "gl_FragDepth: depth layout is declared here "
4267 "as '%s, but it was previously declared as "
4268 "'%s'",
4269 depth_layout_string(var->data.depth_layout),
4270 depth_layout_string(earlier->data.depth_layout));
4271 }
4272
4273 earlier->data.depth_layout = var->data.depth_layout;
4274
4275 } else if (state->has_framebuffer_fetch() &&
4276 strcmp(var->name, "gl_LastFragData") == 0 &&
4277 var->type == earlier->type &&
4278 var->data.mode == ir_var_auto) {
4279 /* According to the EXT_shader_framebuffer_fetch spec:
4280 *
4281 * "By default, gl_LastFragData is declared with the mediump precision
4282 * qualifier. This can be changed by redeclaring the corresponding
4283 * variables with the desired precision qualifier."
4284 */
4285 earlier->data.precision = var->data.precision;
4286
4287 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4288 state->allow_builtin_variable_redeclaration) {
4289 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4290 * valid, but some applications do it.
4291 */
4292 if (earlier->data.mode != var->data.mode &&
4293 !(earlier->data.mode == ir_var_system_value &&
4294 var->data.mode == ir_var_shader_in)) {
4295 _mesa_glsl_error(&loc, state,
4296 "redeclaration of `%s' with incorrect qualifiers",
4297 var->name);
4298 } else if (earlier->type != var->type) {
4299 _mesa_glsl_error(&loc, state,
4300 "redeclaration of `%s' has incorrect type",
4301 var->name);
4302 }
4303 } else if (allow_all_redeclarations) {
4304 if (earlier->data.mode != var->data.mode) {
4305 _mesa_glsl_error(&loc, state,
4306 "redeclaration of `%s' with incorrect qualifiers",
4307 var->name);
4308 } else if (earlier->type != var->type) {
4309 _mesa_glsl_error(&loc, state,
4310 "redeclaration of `%s' has incorrect type",
4311 var->name);
4312 }
4313 } else {
4314 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4315 }
4316
4317 return earlier;
4318 }
4319
4320 /**
4321 * Generate the IR for an initializer in a variable declaration
4322 */
4323 ir_rvalue *
4324 process_initializer(ir_variable *var, ast_declaration *decl,
4325 ast_fully_specified_type *type,
4326 exec_list *initializer_instructions,
4327 struct _mesa_glsl_parse_state *state)
4328 {
4329 ir_rvalue *result = NULL;
4330
4331 YYLTYPE initializer_loc = decl->initializer->get_location();
4332
4333 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4334 *
4335 * "All uniform variables are read-only and are initialized either
4336 * directly by an application via API commands, or indirectly by
4337 * OpenGL."
4338 */
4339 if (var->data.mode == ir_var_uniform) {
4340 state->check_version(120, 0, &initializer_loc,
4341 "cannot initialize uniform %s",
4342 var->name);
4343 }
4344
4345 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4346 *
4347 * "Buffer variables cannot have initializers."
4348 */
4349 if (var->data.mode == ir_var_shader_storage) {
4350 _mesa_glsl_error(&initializer_loc, state,
4351 "cannot initialize buffer variable %s",
4352 var->name);
4353 }
4354
4355 /* From section 4.1.7 of the GLSL 4.40 spec:
4356 *
4357 * "Opaque variables [...] are initialized only through the
4358 * OpenGL API; they cannot be declared with an initializer in a
4359 * shader."
4360 *
4361 * From section 4.1.7 of the ARB_bindless_texture spec:
4362 *
4363 * "Samplers may be declared as shader inputs and outputs, as uniform
4364 * variables, as temporary variables, and as function parameters."
4365 *
4366 * From section 4.1.X of the ARB_bindless_texture spec:
4367 *
4368 * "Images may be declared as shader inputs and outputs, as uniform
4369 * variables, as temporary variables, and as function parameters."
4370 */
4371 if (var->type->contains_atomic() ||
4372 (!state->has_bindless() && var->type->contains_opaque())) {
4373 _mesa_glsl_error(&initializer_loc, state,
4374 "cannot initialize %s variable %s",
4375 var->name, state->has_bindless() ? "atomic" : "opaque");
4376 }
4377
4378 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4379 _mesa_glsl_error(&initializer_loc, state,
4380 "cannot initialize %s shader input / %s %s",
4381 _mesa_shader_stage_to_string(state->stage),
4382 (state->stage == MESA_SHADER_VERTEX)
4383 ? "attribute" : "varying",
4384 var->name);
4385 }
4386
4387 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4388 _mesa_glsl_error(&initializer_loc, state,
4389 "cannot initialize %s shader output %s",
4390 _mesa_shader_stage_to_string(state->stage),
4391 var->name);
4392 }
4393
4394 /* If the initializer is an ast_aggregate_initializer, recursively store
4395 * type information from the LHS into it, so that its hir() function can do
4396 * type checking.
4397 */
4398 if (decl->initializer->oper == ast_aggregate)
4399 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4400
4401 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4402 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4403
4404 /* Calculate the constant value if this is a const or uniform
4405 * declaration.
4406 *
4407 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4408 *
4409 * "Declarations of globals without a storage qualifier, or with
4410 * just the const qualifier, may include initializers, in which case
4411 * they will be initialized before the first line of main() is
4412 * executed. Such initializers must be a constant expression."
4413 *
4414 * The same section of the GLSL ES 3.00.4 spec has similar language.
4415 */
4416 if (type->qualifier.flags.q.constant
4417 || type->qualifier.flags.q.uniform
4418 || (state->es_shader && state->current_function == NULL)) {
4419 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4420 lhs, rhs, true);
4421 if (new_rhs != NULL) {
4422 rhs = new_rhs;
4423
4424 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4425 * says:
4426 *
4427 * "A constant expression is one of
4428 *
4429 * ...
4430 *
4431 * - an expression formed by an operator on operands that are
4432 * all constant expressions, including getting an element of
4433 * a constant array, or a field of a constant structure, or
4434 * components of a constant vector. However, the sequence
4435 * operator ( , ) and the assignment operators ( =, +=, ...)
4436 * are not included in the operators that can create a
4437 * constant expression."
4438 *
4439 * Section 12.43 (Sequence operator and constant expressions) says:
4440 *
4441 * "Should the following construct be allowed?
4442 *
4443 * float a[2,3];
4444 *
4445 * The expression within the brackets uses the sequence operator
4446 * (',') and returns the integer 3 so the construct is declaring
4447 * a single-dimensional array of size 3. In some languages, the
4448 * construct declares a two-dimensional array. It would be
4449 * preferable to make this construct illegal to avoid confusion.
4450 *
4451 * One possibility is to change the definition of the sequence
4452 * operator so that it does not return a constant-expression and
4453 * hence cannot be used to declare an array size.
4454 *
4455 * RESOLUTION: The result of a sequence operator is not a
4456 * constant-expression."
4457 *
4458 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4459 * contains language almost identical to the section 4.3.3 in the
4460 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4461 * versions.
4462 */
4463 ir_constant *constant_value = rhs->constant_expression_value();
4464 if (!constant_value ||
4465 (state->is_version(430, 300) &&
4466 decl->initializer->has_sequence_subexpression())) {
4467 const char *const variable_mode =
4468 (type->qualifier.flags.q.constant)
4469 ? "const"
4470 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4471
4472 /* If ARB_shading_language_420pack is enabled, initializers of
4473 * const-qualified local variables do not have to be constant
4474 * expressions. Const-qualified global variables must still be
4475 * initialized with constant expressions.
4476 */
4477 if (!state->has_420pack()
4478 || state->current_function == NULL) {
4479 _mesa_glsl_error(& initializer_loc, state,
4480 "initializer of %s variable `%s' must be a "
4481 "constant expression",
4482 variable_mode,
4483 decl->identifier);
4484 if (var->type->is_numeric()) {
4485 /* Reduce cascading errors. */
4486 var->constant_value = type->qualifier.flags.q.constant
4487 ? ir_constant::zero(state, var->type) : NULL;
4488 }
4489 }
4490 } else {
4491 rhs = constant_value;
4492 var->constant_value = type->qualifier.flags.q.constant
4493 ? constant_value : NULL;
4494 }
4495 } else {
4496 if (var->type->is_numeric()) {
4497 /* Reduce cascading errors. */
4498 var->constant_value = type->qualifier.flags.q.constant
4499 ? ir_constant::zero(state, var->type) : NULL;
4500 }
4501 }
4502 }
4503
4504 if (rhs && !rhs->type->is_error()) {
4505 bool temp = var->data.read_only;
4506 if (type->qualifier.flags.q.constant)
4507 var->data.read_only = false;
4508
4509 /* Never emit code to initialize a uniform.
4510 */
4511 const glsl_type *initializer_type;
4512 if (!type->qualifier.flags.q.uniform) {
4513 do_assignment(initializer_instructions, state,
4514 NULL,
4515 lhs, rhs,
4516 &result, true,
4517 true,
4518 type->get_location());
4519 initializer_type = result->type;
4520 } else
4521 initializer_type = rhs->type;
4522
4523 var->constant_initializer = rhs->constant_expression_value();
4524 var->data.has_initializer = true;
4525
4526 /* If the declared variable is an unsized array, it must inherrit
4527 * its full type from the initializer. A declaration such as
4528 *
4529 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4530 *
4531 * becomes
4532 *
4533 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4534 *
4535 * The assignment generated in the if-statement (below) will also
4536 * automatically handle this case for non-uniforms.
4537 *
4538 * If the declared variable is not an array, the types must
4539 * already match exactly. As a result, the type assignment
4540 * here can be done unconditionally. For non-uniforms the call
4541 * to do_assignment can change the type of the initializer (via
4542 * the implicit conversion rules). For uniforms the initializer
4543 * must be a constant expression, and the type of that expression
4544 * was validated above.
4545 */
4546 var->type = initializer_type;
4547
4548 var->data.read_only = temp;
4549 }
4550
4551 return result;
4552 }
4553
4554 static void
4555 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4556 YYLTYPE loc, ir_variable *var,
4557 unsigned num_vertices,
4558 unsigned *size,
4559 const char *var_category)
4560 {
4561 if (var->type->is_unsized_array()) {
4562 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4563 *
4564 * All geometry shader input unsized array declarations will be
4565 * sized by an earlier input layout qualifier, when present, as per
4566 * the following table.
4567 *
4568 * Followed by a table mapping each allowed input layout qualifier to
4569 * the corresponding input length.
4570 *
4571 * Similarly for tessellation control shader outputs.
4572 */
4573 if (num_vertices != 0)
4574 var->type = glsl_type::get_array_instance(var->type->fields.array,
4575 num_vertices);
4576 } else {
4577 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4578 * includes the following examples of compile-time errors:
4579 *
4580 * // code sequence within one shader...
4581 * in vec4 Color1[]; // size unknown
4582 * ...Color1.length()...// illegal, length() unknown
4583 * in vec4 Color2[2]; // size is 2
4584 * ...Color1.length()...// illegal, Color1 still has no size
4585 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4586 * layout(lines) in; // legal, input size is 2, matching
4587 * in vec4 Color4[3]; // illegal, contradicts layout
4588 * ...
4589 *
4590 * To detect the case illustrated by Color3, we verify that the size of
4591 * an explicitly-sized array matches the size of any previously declared
4592 * explicitly-sized array. To detect the case illustrated by Color4, we
4593 * verify that the size of an explicitly-sized array is consistent with
4594 * any previously declared input layout.
4595 */
4596 if (num_vertices != 0 && var->type->length != num_vertices) {
4597 _mesa_glsl_error(&loc, state,
4598 "%s size contradicts previously declared layout "
4599 "(size is %u, but layout requires a size of %u)",
4600 var_category, var->type->length, num_vertices);
4601 } else if (*size != 0 && var->type->length != *size) {
4602 _mesa_glsl_error(&loc, state,
4603 "%s sizes are inconsistent (size is %u, but a "
4604 "previous declaration has size %u)",
4605 var_category, var->type->length, *size);
4606 } else {
4607 *size = var->type->length;
4608 }
4609 }
4610 }
4611
4612 static void
4613 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4614 YYLTYPE loc, ir_variable *var)
4615 {
4616 unsigned num_vertices = 0;
4617
4618 if (state->tcs_output_vertices_specified) {
4619 if (!state->out_qualifier->vertices->
4620 process_qualifier_constant(state, "vertices",
4621 &num_vertices, false)) {
4622 return;
4623 }
4624
4625 if (num_vertices > state->Const.MaxPatchVertices) {
4626 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4627 "GL_MAX_PATCH_VERTICES", num_vertices);
4628 return;
4629 }
4630 }
4631
4632 if (!var->type->is_array() && !var->data.patch) {
4633 _mesa_glsl_error(&loc, state,
4634 "tessellation control shader outputs must be arrays");
4635
4636 /* To avoid cascading failures, short circuit the checks below. */
4637 return;
4638 }
4639
4640 if (var->data.patch)
4641 return;
4642
4643 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4644 &state->tcs_output_size,
4645 "tessellation control shader output");
4646 }
4647
4648 /**
4649 * Do additional processing necessary for tessellation control/evaluation shader
4650 * input declarations. This covers both interface block arrays and bare input
4651 * variables.
4652 */
4653 static void
4654 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4655 YYLTYPE loc, ir_variable *var)
4656 {
4657 if (!var->type->is_array() && !var->data.patch) {
4658 _mesa_glsl_error(&loc, state,
4659 "per-vertex tessellation shader inputs must be arrays");
4660 /* Avoid cascading failures. */
4661 return;
4662 }
4663
4664 if (var->data.patch)
4665 return;
4666
4667 /* The ARB_tessellation_shader spec says:
4668 *
4669 * "Declaring an array size is optional. If no size is specified, it
4670 * will be taken from the implementation-dependent maximum patch size
4671 * (gl_MaxPatchVertices). If a size is specified, it must match the
4672 * maximum patch size; otherwise, a compile or link error will occur."
4673 *
4674 * This text appears twice, once for TCS inputs, and again for TES inputs.
4675 */
4676 if (var->type->is_unsized_array()) {
4677 var->type = glsl_type::get_array_instance(var->type->fields.array,
4678 state->Const.MaxPatchVertices);
4679 } else if (var->type->length != state->Const.MaxPatchVertices) {
4680 _mesa_glsl_error(&loc, state,
4681 "per-vertex tessellation shader input arrays must be "
4682 "sized to gl_MaxPatchVertices (%d).",
4683 state->Const.MaxPatchVertices);
4684 }
4685 }
4686
4687
4688 /**
4689 * Do additional processing necessary for geometry shader input declarations
4690 * (this covers both interface blocks arrays and bare input variables).
4691 */
4692 static void
4693 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4694 YYLTYPE loc, ir_variable *var)
4695 {
4696 unsigned num_vertices = 0;
4697
4698 if (state->gs_input_prim_type_specified) {
4699 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4700 }
4701
4702 /* Geometry shader input variables must be arrays. Caller should have
4703 * reported an error for this.
4704 */
4705 if (!var->type->is_array()) {
4706 assert(state->error);
4707
4708 /* To avoid cascading failures, short circuit the checks below. */
4709 return;
4710 }
4711
4712 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4713 &state->gs_input_size,
4714 "geometry shader input");
4715 }
4716
4717 void
4718 validate_identifier(const char *identifier, YYLTYPE loc,
4719 struct _mesa_glsl_parse_state *state)
4720 {
4721 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4722 *
4723 * "Identifiers starting with "gl_" are reserved for use by
4724 * OpenGL, and may not be declared in a shader as either a
4725 * variable or a function."
4726 */
4727 if (is_gl_identifier(identifier)) {
4728 _mesa_glsl_error(&loc, state,
4729 "identifier `%s' uses reserved `gl_' prefix",
4730 identifier);
4731 } else if (strstr(identifier, "__")) {
4732 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4733 * spec:
4734 *
4735 * "In addition, all identifiers containing two
4736 * consecutive underscores (__) are reserved as
4737 * possible future keywords."
4738 *
4739 * The intention is that names containing __ are reserved for internal
4740 * use by the implementation, and names prefixed with GL_ are reserved
4741 * for use by Khronos. Names simply containing __ are dangerous to use,
4742 * but should be allowed.
4743 *
4744 * A future version of the GLSL specification will clarify this.
4745 */
4746 _mesa_glsl_warning(&loc, state,
4747 "identifier `%s' uses reserved `__' string",
4748 identifier);
4749 }
4750 }
4751
4752 ir_rvalue *
4753 ast_declarator_list::hir(exec_list *instructions,
4754 struct _mesa_glsl_parse_state *state)
4755 {
4756 void *ctx = state;
4757 const struct glsl_type *decl_type;
4758 const char *type_name = NULL;
4759 ir_rvalue *result = NULL;
4760 YYLTYPE loc = this->get_location();
4761
4762 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4763 *
4764 * "To ensure that a particular output variable is invariant, it is
4765 * necessary to use the invariant qualifier. It can either be used to
4766 * qualify a previously declared variable as being invariant
4767 *
4768 * invariant gl_Position; // make existing gl_Position be invariant"
4769 *
4770 * In these cases the parser will set the 'invariant' flag in the declarator
4771 * list, and the type will be NULL.
4772 */
4773 if (this->invariant) {
4774 assert(this->type == NULL);
4775
4776 if (state->current_function != NULL) {
4777 _mesa_glsl_error(& loc, state,
4778 "all uses of `invariant' keyword must be at global "
4779 "scope");
4780 }
4781
4782 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4783 assert(decl->array_specifier == NULL);
4784 assert(decl->initializer == NULL);
4785
4786 ir_variable *const earlier =
4787 state->symbols->get_variable(decl->identifier);
4788 if (earlier == NULL) {
4789 _mesa_glsl_error(& loc, state,
4790 "undeclared variable `%s' cannot be marked "
4791 "invariant", decl->identifier);
4792 } else if (!is_allowed_invariant(earlier, state)) {
4793 _mesa_glsl_error(&loc, state,
4794 "`%s' cannot be marked invariant; interfaces between "
4795 "shader stages only.", decl->identifier);
4796 } else if (earlier->data.used) {
4797 _mesa_glsl_error(& loc, state,
4798 "variable `%s' may not be redeclared "
4799 "`invariant' after being used",
4800 earlier->name);
4801 } else {
4802 earlier->data.invariant = true;
4803 }
4804 }
4805
4806 /* Invariant redeclarations do not have r-values.
4807 */
4808 return NULL;
4809 }
4810
4811 if (this->precise) {
4812 assert(this->type == NULL);
4813
4814 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4815 assert(decl->array_specifier == NULL);
4816 assert(decl->initializer == NULL);
4817
4818 ir_variable *const earlier =
4819 state->symbols->get_variable(decl->identifier);
4820 if (earlier == NULL) {
4821 _mesa_glsl_error(& loc, state,
4822 "undeclared variable `%s' cannot be marked "
4823 "precise", decl->identifier);
4824 } else if (state->current_function != NULL &&
4825 !state->symbols->name_declared_this_scope(decl->identifier)) {
4826 /* Note: we have to check if we're in a function, since
4827 * builtins are treated as having come from another scope.
4828 */
4829 _mesa_glsl_error(& loc, state,
4830 "variable `%s' from an outer scope may not be "
4831 "redeclared `precise' in this scope",
4832 earlier->name);
4833 } else if (earlier->data.used) {
4834 _mesa_glsl_error(& loc, state,
4835 "variable `%s' may not be redeclared "
4836 "`precise' after being used",
4837 earlier->name);
4838 } else {
4839 earlier->data.precise = true;
4840 }
4841 }
4842
4843 /* Precise redeclarations do not have r-values either. */
4844 return NULL;
4845 }
4846
4847 assert(this->type != NULL);
4848 assert(!this->invariant);
4849 assert(!this->precise);
4850
4851 /* The type specifier may contain a structure definition. Process that
4852 * before any of the variable declarations.
4853 */
4854 (void) this->type->specifier->hir(instructions, state);
4855
4856 decl_type = this->type->glsl_type(& type_name, state);
4857
4858 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4859 * "Buffer variables may only be declared inside interface blocks
4860 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4861 * shader storage blocks. It is a compile-time error to declare buffer
4862 * variables at global scope (outside a block)."
4863 */
4864 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4865 _mesa_glsl_error(&loc, state,
4866 "buffer variables cannot be declared outside "
4867 "interface blocks");
4868 }
4869
4870 /* An offset-qualified atomic counter declaration sets the default
4871 * offset for the next declaration within the same atomic counter
4872 * buffer.
4873 */
4874 if (decl_type && decl_type->contains_atomic()) {
4875 if (type->qualifier.flags.q.explicit_binding &&
4876 type->qualifier.flags.q.explicit_offset) {
4877 unsigned qual_binding;
4878 unsigned qual_offset;
4879 if (process_qualifier_constant(state, &loc, "binding",
4880 type->qualifier.binding,
4881 &qual_binding)
4882 && process_qualifier_constant(state, &loc, "offset",
4883 type->qualifier.offset,
4884 &qual_offset)) {
4885 state->atomic_counter_offsets[qual_binding] = qual_offset;
4886 }
4887 }
4888
4889 ast_type_qualifier allowed_atomic_qual_mask;
4890 allowed_atomic_qual_mask.flags.i = 0;
4891 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4892 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4893 allowed_atomic_qual_mask.flags.q.uniform = 1;
4894
4895 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4896 "invalid layout qualifier for",
4897 "atomic_uint");
4898 }
4899
4900 if (this->declarations.is_empty()) {
4901 /* If there is no structure involved in the program text, there are two
4902 * possible scenarios:
4903 *
4904 * - The program text contained something like 'vec4;'. This is an
4905 * empty declaration. It is valid but weird. Emit a warning.
4906 *
4907 * - The program text contained something like 'S;' and 'S' is not the
4908 * name of a known structure type. This is both invalid and weird.
4909 * Emit an error.
4910 *
4911 * - The program text contained something like 'mediump float;'
4912 * when the programmer probably meant 'precision mediump
4913 * float;' Emit a warning with a description of what they
4914 * probably meant to do.
4915 *
4916 * Note that if decl_type is NULL and there is a structure involved,
4917 * there must have been some sort of error with the structure. In this
4918 * case we assume that an error was already generated on this line of
4919 * code for the structure. There is no need to generate an additional,
4920 * confusing error.
4921 */
4922 assert(this->type->specifier->structure == NULL || decl_type != NULL
4923 || state->error);
4924
4925 if (decl_type == NULL) {
4926 _mesa_glsl_error(&loc, state,
4927 "invalid type `%s' in empty declaration",
4928 type_name);
4929 } else {
4930 if (decl_type->is_array()) {
4931 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4932 * spec:
4933 *
4934 * "... any declaration that leaves the size undefined is
4935 * disallowed as this would add complexity and there are no
4936 * use-cases."
4937 */
4938 if (state->es_shader && decl_type->is_unsized_array()) {
4939 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4940 "or implicitly defined");
4941 }
4942
4943 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4944 *
4945 * "The combinations of types and qualifiers that cause
4946 * compile-time or link-time errors are the same whether or not
4947 * the declaration is empty."
4948 */
4949 validate_array_dimensions(decl_type, state, &loc);
4950 }
4951
4952 if (decl_type->is_atomic_uint()) {
4953 /* Empty atomic counter declarations are allowed and useful
4954 * to set the default offset qualifier.
4955 */
4956 return NULL;
4957 } else if (this->type->qualifier.precision != ast_precision_none) {
4958 if (this->type->specifier->structure != NULL) {
4959 _mesa_glsl_error(&loc, state,
4960 "precision qualifiers can't be applied "
4961 "to structures");
4962 } else {
4963 static const char *const precision_names[] = {
4964 "highp",
4965 "highp",
4966 "mediump",
4967 "lowp"
4968 };
4969
4970 _mesa_glsl_warning(&loc, state,
4971 "empty declaration with precision "
4972 "qualifier, to set the default precision, "
4973 "use `precision %s %s;'",
4974 precision_names[this->type->
4975 qualifier.precision],
4976 type_name);
4977 }
4978 } else if (this->type->specifier->structure == NULL) {
4979 _mesa_glsl_warning(&loc, state, "empty declaration");
4980 }
4981 }
4982 }
4983
4984 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4985 const struct glsl_type *var_type;
4986 ir_variable *var;
4987 const char *identifier = decl->identifier;
4988 /* FINISHME: Emit a warning if a variable declaration shadows a
4989 * FINISHME: declaration at a higher scope.
4990 */
4991
4992 if ((decl_type == NULL) || decl_type->is_void()) {
4993 if (type_name != NULL) {
4994 _mesa_glsl_error(& loc, state,
4995 "invalid type `%s' in declaration of `%s'",
4996 type_name, decl->identifier);
4997 } else {
4998 _mesa_glsl_error(& loc, state,
4999 "invalid type in declaration of `%s'",
5000 decl->identifier);
5001 }
5002 continue;
5003 }
5004
5005 if (this->type->qualifier.is_subroutine_decl()) {
5006 const glsl_type *t;
5007 const char *name;
5008
5009 t = state->symbols->get_type(this->type->specifier->type_name);
5010 if (!t)
5011 _mesa_glsl_error(& loc, state,
5012 "invalid type in declaration of `%s'",
5013 decl->identifier);
5014 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5015
5016 identifier = name;
5017
5018 }
5019 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5020 state);
5021
5022 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5023
5024 /* The 'varying in' and 'varying out' qualifiers can only be used with
5025 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5026 * yet.
5027 */
5028 if (this->type->qualifier.flags.q.varying) {
5029 if (this->type->qualifier.flags.q.in) {
5030 _mesa_glsl_error(& loc, state,
5031 "`varying in' qualifier in declaration of "
5032 "`%s' only valid for geometry shaders using "
5033 "ARB_geometry_shader4 or EXT_geometry_shader4",
5034 decl->identifier);
5035 } else if (this->type->qualifier.flags.q.out) {
5036 _mesa_glsl_error(& loc, state,
5037 "`varying out' qualifier in declaration of "
5038 "`%s' only valid for geometry shaders using "
5039 "ARB_geometry_shader4 or EXT_geometry_shader4",
5040 decl->identifier);
5041 }
5042 }
5043
5044 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5045 *
5046 * "Global variables can only use the qualifiers const,
5047 * attribute, uniform, or varying. Only one may be
5048 * specified.
5049 *
5050 * Local variables can only use the qualifier const."
5051 *
5052 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5053 * any extension that adds the 'layout' keyword.
5054 */
5055 if (!state->is_version(130, 300)
5056 && !state->has_explicit_attrib_location()
5057 && !state->has_separate_shader_objects()
5058 && !state->ARB_fragment_coord_conventions_enable) {
5059 if (this->type->qualifier.flags.q.out) {
5060 _mesa_glsl_error(& loc, state,
5061 "`out' qualifier in declaration of `%s' "
5062 "only valid for function parameters in %s",
5063 decl->identifier, state->get_version_string());
5064 }
5065 if (this->type->qualifier.flags.q.in) {
5066 _mesa_glsl_error(& loc, state,
5067 "`in' qualifier in declaration of `%s' "
5068 "only valid for function parameters in %s",
5069 decl->identifier, state->get_version_string());
5070 }
5071 /* FINISHME: Test for other invalid qualifiers. */
5072 }
5073
5074 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5075 & loc, false);
5076 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5077 &loc);
5078
5079 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5080 && (var->type->is_numeric() || var->type->is_boolean())
5081 && state->zero_init) {
5082 const ir_constant_data data = { { 0 } };
5083 var->data.has_initializer = true;
5084 var->constant_initializer = new(var) ir_constant(var->type, &data);
5085 }
5086
5087 if (this->type->qualifier.flags.q.invariant) {
5088 if (!is_allowed_invariant(var, state)) {
5089 _mesa_glsl_error(&loc, state,
5090 "`%s' cannot be marked invariant; interfaces between "
5091 "shader stages only", var->name);
5092 }
5093 }
5094
5095 if (state->current_function != NULL) {
5096 const char *mode = NULL;
5097 const char *extra = "";
5098
5099 /* There is no need to check for 'inout' here because the parser will
5100 * only allow that in function parameter lists.
5101 */
5102 if (this->type->qualifier.flags.q.attribute) {
5103 mode = "attribute";
5104 } else if (this->type->qualifier.is_subroutine_decl()) {
5105 mode = "subroutine uniform";
5106 } else if (this->type->qualifier.flags.q.uniform) {
5107 mode = "uniform";
5108 } else if (this->type->qualifier.flags.q.varying) {
5109 mode = "varying";
5110 } else if (this->type->qualifier.flags.q.in) {
5111 mode = "in";
5112 extra = " or in function parameter list";
5113 } else if (this->type->qualifier.flags.q.out) {
5114 mode = "out";
5115 extra = " or in function parameter list";
5116 }
5117
5118 if (mode) {
5119 _mesa_glsl_error(& loc, state,
5120 "%s variable `%s' must be declared at "
5121 "global scope%s",
5122 mode, var->name, extra);
5123 }
5124 } else if (var->data.mode == ir_var_shader_in) {
5125 var->data.read_only = true;
5126
5127 if (state->stage == MESA_SHADER_VERTEX) {
5128 bool error_emitted = false;
5129
5130 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5131 *
5132 * "Vertex shader inputs can only be float, floating-point
5133 * vectors, matrices, signed and unsigned integers and integer
5134 * vectors. Vertex shader inputs can also form arrays of these
5135 * types, but not structures."
5136 *
5137 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5138 *
5139 * "Vertex shader inputs can only be float, floating-point
5140 * vectors, matrices, signed and unsigned integers and integer
5141 * vectors. They cannot be arrays or structures."
5142 *
5143 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5144 *
5145 * "The attribute qualifier can be used only with float,
5146 * floating-point vectors, and matrices. Attribute variables
5147 * cannot be declared as arrays or structures."
5148 *
5149 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5150 *
5151 * "Vertex shader inputs can only be float, floating-point
5152 * vectors, matrices, signed and unsigned integers and integer
5153 * vectors. Vertex shader inputs cannot be arrays or
5154 * structures."
5155 *
5156 * From section 4.3.4 of the ARB_bindless_texture spec:
5157 *
5158 * "(modify third paragraph of the section to allow sampler and
5159 * image types) ... Vertex shader inputs can only be float,
5160 * single-precision floating-point scalars, single-precision
5161 * floating-point vectors, matrices, signed and unsigned
5162 * integers and integer vectors, sampler and image types."
5163 */
5164 const glsl_type *check_type = var->type->without_array();
5165
5166 switch (check_type->base_type) {
5167 case GLSL_TYPE_FLOAT:
5168 break;
5169 case GLSL_TYPE_UINT64:
5170 case GLSL_TYPE_INT64:
5171 break;
5172 case GLSL_TYPE_UINT:
5173 case GLSL_TYPE_INT:
5174 if (state->is_version(120, 300))
5175 break;
5176 case GLSL_TYPE_DOUBLE:
5177 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5178 break;
5179 case GLSL_TYPE_SAMPLER:
5180 if (check_type->is_sampler() && state->has_bindless())
5181 break;
5182 case GLSL_TYPE_IMAGE:
5183 if (check_type->is_image() && state->has_bindless())
5184 break;
5185 /* FALLTHROUGH */
5186 default:
5187 _mesa_glsl_error(& loc, state,
5188 "vertex shader input / attribute cannot have "
5189 "type %s`%s'",
5190 var->type->is_array() ? "array of " : "",
5191 check_type->name);
5192 error_emitted = true;
5193 }
5194
5195 if (!error_emitted && var->type->is_array() &&
5196 !state->check_version(150, 0, &loc,
5197 "vertex shader input / attribute "
5198 "cannot have array type")) {
5199 error_emitted = true;
5200 }
5201 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5202 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5203 *
5204 * Geometry shader input variables get the per-vertex values
5205 * written out by vertex shader output variables of the same
5206 * names. Since a geometry shader operates on a set of
5207 * vertices, each input varying variable (or input block, see
5208 * interface blocks below) needs to be declared as an array.
5209 */
5210 if (!var->type->is_array()) {
5211 _mesa_glsl_error(&loc, state,
5212 "geometry shader inputs must be arrays");
5213 }
5214
5215 handle_geometry_shader_input_decl(state, loc, var);
5216 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5217 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5218 *
5219 * It is a compile-time error to declare a fragment shader
5220 * input with, or that contains, any of the following types:
5221 *
5222 * * A boolean type
5223 * * An opaque type
5224 * * An array of arrays
5225 * * An array of structures
5226 * * A structure containing an array
5227 * * A structure containing a structure
5228 */
5229 if (state->es_shader) {
5230 const glsl_type *check_type = var->type->without_array();
5231 if (check_type->is_boolean() ||
5232 check_type->contains_opaque()) {
5233 _mesa_glsl_error(&loc, state,
5234 "fragment shader input cannot have type %s",
5235 check_type->name);
5236 }
5237 if (var->type->is_array() &&
5238 var->type->fields.array->is_array()) {
5239 _mesa_glsl_error(&loc, state,
5240 "%s shader output "
5241 "cannot have an array of arrays",
5242 _mesa_shader_stage_to_string(state->stage));
5243 }
5244 if (var->type->is_array() &&
5245 var->type->fields.array->is_record()) {
5246 _mesa_glsl_error(&loc, state,
5247 "fragment shader input "
5248 "cannot have an array of structs");
5249 }
5250 if (var->type->is_record()) {
5251 for (unsigned i = 0; i < var->type->length; i++) {
5252 if (var->type->fields.structure[i].type->is_array() ||
5253 var->type->fields.structure[i].type->is_record())
5254 _mesa_glsl_error(&loc, state,
5255 "fragement shader input cannot have "
5256 "a struct that contains an "
5257 "array or struct");
5258 }
5259 }
5260 }
5261 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5262 state->stage == MESA_SHADER_TESS_EVAL) {
5263 handle_tess_shader_input_decl(state, loc, var);
5264 }
5265 } else if (var->data.mode == ir_var_shader_out) {
5266 const glsl_type *check_type = var->type->without_array();
5267
5268 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5269 *
5270 * It is a compile-time error to declare a fragment shader output
5271 * that contains any of the following:
5272 *
5273 * * A Boolean type (bool, bvec2 ...)
5274 * * A double-precision scalar or vector (double, dvec2 ...)
5275 * * An opaque type
5276 * * Any matrix type
5277 * * A structure
5278 */
5279 if (state->stage == MESA_SHADER_FRAGMENT) {
5280 if (check_type->is_record() || check_type->is_matrix())
5281 _mesa_glsl_error(&loc, state,
5282 "fragment shader output "
5283 "cannot have struct or matrix type");
5284 switch (check_type->base_type) {
5285 case GLSL_TYPE_UINT:
5286 case GLSL_TYPE_INT:
5287 case GLSL_TYPE_FLOAT:
5288 break;
5289 default:
5290 _mesa_glsl_error(&loc, state,
5291 "fragment shader output cannot have "
5292 "type %s", check_type->name);
5293 }
5294 }
5295
5296 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5297 *
5298 * It is a compile-time error to declare a vertex shader output
5299 * with, or that contains, any of the following types:
5300 *
5301 * * A boolean type
5302 * * An opaque type
5303 * * An array of arrays
5304 * * An array of structures
5305 * * A structure containing an array
5306 * * A structure containing a structure
5307 *
5308 * It is a compile-time error to declare a fragment shader output
5309 * with, or that contains, any of the following types:
5310 *
5311 * * A boolean type
5312 * * An opaque type
5313 * * A matrix
5314 * * A structure
5315 * * An array of array
5316 *
5317 * ES 3.20 updates this to apply to tessellation and geometry shaders
5318 * as well. Because there are per-vertex arrays in the new stages,
5319 * it strikes the "array of..." rules and replaces them with these:
5320 *
5321 * * For per-vertex-arrayed variables (applies to tessellation
5322 * control, tessellation evaluation and geometry shaders):
5323 *
5324 * * Per-vertex-arrayed arrays of arrays
5325 * * Per-vertex-arrayed arrays of structures
5326 *
5327 * * For non-per-vertex-arrayed variables:
5328 *
5329 * * An array of arrays
5330 * * An array of structures
5331 *
5332 * which basically says to unwrap the per-vertex aspect and apply
5333 * the old rules.
5334 */
5335 if (state->es_shader) {
5336 if (var->type->is_array() &&
5337 var->type->fields.array->is_array()) {
5338 _mesa_glsl_error(&loc, state,
5339 "%s shader output "
5340 "cannot have an array of arrays",
5341 _mesa_shader_stage_to_string(state->stage));
5342 }
5343 if (state->stage <= MESA_SHADER_GEOMETRY) {
5344 const glsl_type *type = var->type;
5345
5346 if (state->stage == MESA_SHADER_TESS_CTRL &&
5347 !var->data.patch && var->type->is_array()) {
5348 type = var->type->fields.array;
5349 }
5350
5351 if (type->is_array() && type->fields.array->is_record()) {
5352 _mesa_glsl_error(&loc, state,
5353 "%s shader output cannot have "
5354 "an array of structs",
5355 _mesa_shader_stage_to_string(state->stage));
5356 }
5357 if (type->is_record()) {
5358 for (unsigned i = 0; i < type->length; i++) {
5359 if (type->fields.structure[i].type->is_array() ||
5360 type->fields.structure[i].type->is_record())
5361 _mesa_glsl_error(&loc, state,
5362 "%s shader output cannot have a "
5363 "struct that contains an "
5364 "array or struct",
5365 _mesa_shader_stage_to_string(state->stage));
5366 }
5367 }
5368 }
5369 }
5370
5371 if (state->stage == MESA_SHADER_TESS_CTRL) {
5372 handle_tess_ctrl_shader_output_decl(state, loc, var);
5373 }
5374 } else if (var->type->contains_subroutine()) {
5375 /* declare subroutine uniforms as hidden */
5376 var->data.how_declared = ir_var_hidden;
5377 }
5378
5379 /* From section 4.3.4 of the GLSL 4.00 spec:
5380 * "Input variables may not be declared using the patch in qualifier
5381 * in tessellation control or geometry shaders."
5382 *
5383 * From section 4.3.6 of the GLSL 4.00 spec:
5384 * "It is an error to use patch out in a vertex, tessellation
5385 * evaluation, or geometry shader."
5386 *
5387 * This doesn't explicitly forbid using them in a fragment shader, but
5388 * that's probably just an oversight.
5389 */
5390 if (state->stage != MESA_SHADER_TESS_EVAL
5391 && this->type->qualifier.flags.q.patch
5392 && this->type->qualifier.flags.q.in) {
5393
5394 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5395 "tessellation evaluation shader");
5396 }
5397
5398 if (state->stage != MESA_SHADER_TESS_CTRL
5399 && this->type->qualifier.flags.q.patch
5400 && this->type->qualifier.flags.q.out) {
5401
5402 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5403 "tessellation control shader");
5404 }
5405
5406 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5407 */
5408 if (this->type->qualifier.precision != ast_precision_none) {
5409 state->check_precision_qualifiers_allowed(&loc);
5410 }
5411
5412 if (this->type->qualifier.precision != ast_precision_none &&
5413 !precision_qualifier_allowed(var->type)) {
5414 _mesa_glsl_error(&loc, state,
5415 "precision qualifiers apply only to floating point"
5416 ", integer and opaque types");
5417 }
5418
5419 /* From section 4.1.7 of the GLSL 4.40 spec:
5420 *
5421 * "[Opaque types] can only be declared as function
5422 * parameters or uniform-qualified variables."
5423 *
5424 * From section 4.1.7 of the ARB_bindless_texture spec:
5425 *
5426 * "Samplers may be declared as shader inputs and outputs, as uniform
5427 * variables, as temporary variables, and as function parameters."
5428 *
5429 * From section 4.1.X of the ARB_bindless_texture spec:
5430 *
5431 * "Images may be declared as shader inputs and outputs, as uniform
5432 * variables, as temporary variables, and as function parameters."
5433 */
5434 if (!this->type->qualifier.flags.q.uniform &&
5435 (var_type->contains_atomic() ||
5436 (!state->has_bindless() && var_type->contains_opaque()))) {
5437 _mesa_glsl_error(&loc, state,
5438 "%s variables must be declared uniform",
5439 state->has_bindless() ? "atomic" : "opaque");
5440 }
5441
5442 /* Process the initializer and add its instructions to a temporary
5443 * list. This list will be added to the instruction stream (below) after
5444 * the declaration is added. This is done because in some cases (such as
5445 * redeclarations) the declaration may not actually be added to the
5446 * instruction stream.
5447 */
5448 exec_list initializer_instructions;
5449
5450 /* Examine var name here since var may get deleted in the next call */
5451 bool var_is_gl_id = is_gl_identifier(var->name);
5452
5453 bool is_redeclaration;
5454 ir_variable *declared_var =
5455 get_variable_being_redeclared(var, decl->get_location(), state,
5456 false /* allow_all_redeclarations */,
5457 &is_redeclaration);
5458 if (is_redeclaration) {
5459 if (var_is_gl_id &&
5460 declared_var->data.how_declared == ir_var_declared_in_block) {
5461 _mesa_glsl_error(&loc, state,
5462 "`%s' has already been redeclared using "
5463 "gl_PerVertex", declared_var->name);
5464 }
5465 declared_var->data.how_declared = ir_var_declared_normally;
5466 }
5467
5468 if (decl->initializer != NULL) {
5469 result = process_initializer(declared_var,
5470 decl, this->type,
5471 &initializer_instructions, state);
5472 } else {
5473 validate_array_dimensions(var_type, state, &loc);
5474 }
5475
5476 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5477 *
5478 * "It is an error to write to a const variable outside of
5479 * its declaration, so they must be initialized when
5480 * declared."
5481 */
5482 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5483 _mesa_glsl_error(& loc, state,
5484 "const declaration of `%s' must be initialized",
5485 decl->identifier);
5486 }
5487
5488 if (state->es_shader) {
5489 const glsl_type *const t = declared_var->type;
5490
5491 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5492 *
5493 * The GL_OES_tessellation_shader spec says about inputs:
5494 *
5495 * "Declaring an array size is optional. If no size is specified,
5496 * it will be taken from the implementation-dependent maximum
5497 * patch size (gl_MaxPatchVertices)."
5498 *
5499 * and about TCS outputs:
5500 *
5501 * "If no size is specified, it will be taken from output patch
5502 * size declared in the shader."
5503 *
5504 * The GL_OES_geometry_shader spec says:
5505 *
5506 * "All geometry shader input unsized array declarations will be
5507 * sized by an earlier input primitive layout qualifier, when
5508 * present, as per the following table."
5509 */
5510 const bool implicitly_sized =
5511 (declared_var->data.mode == ir_var_shader_in &&
5512 state->stage >= MESA_SHADER_TESS_CTRL &&
5513 state->stage <= MESA_SHADER_GEOMETRY) ||
5514 (declared_var->data.mode == ir_var_shader_out &&
5515 state->stage == MESA_SHADER_TESS_CTRL);
5516
5517 if (t->is_unsized_array() && !implicitly_sized)
5518 /* Section 10.17 of the GLSL ES 1.00 specification states that
5519 * unsized array declarations have been removed from the language.
5520 * Arrays that are sized using an initializer are still explicitly
5521 * sized. However, GLSL ES 1.00 does not allow array
5522 * initializers. That is only allowed in GLSL ES 3.00.
5523 *
5524 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5525 *
5526 * "An array type can also be formed without specifying a size
5527 * if the definition includes an initializer:
5528 *
5529 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5530 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5531 *
5532 * float a[5];
5533 * float b[] = a;"
5534 */
5535 _mesa_glsl_error(& loc, state,
5536 "unsized array declarations are not allowed in "
5537 "GLSL ES");
5538 }
5539
5540 /* If the declaration is not a redeclaration, there are a few additional
5541 * semantic checks that must be applied. In addition, variable that was
5542 * created for the declaration should be added to the IR stream.
5543 */
5544 if (!is_redeclaration) {
5545 validate_identifier(decl->identifier, loc, state);
5546
5547 /* Add the variable to the symbol table. Note that the initializer's
5548 * IR was already processed earlier (though it hasn't been emitted
5549 * yet), without the variable in scope.
5550 *
5551 * This differs from most C-like languages, but it follows the GLSL
5552 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5553 * spec:
5554 *
5555 * "Within a declaration, the scope of a name starts immediately
5556 * after the initializer if present or immediately after the name
5557 * being declared if not."
5558 */
5559 if (!state->symbols->add_variable(declared_var)) {
5560 YYLTYPE loc = this->get_location();
5561 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5562 "current scope", decl->identifier);
5563 continue;
5564 }
5565
5566 /* Push the variable declaration to the top. It means that all the
5567 * variable declarations will appear in a funny last-to-first order,
5568 * but otherwise we run into trouble if a function is prototyped, a
5569 * global var is decled, then the function is defined with usage of
5570 * the global var. See glslparsertest's CorrectModule.frag.
5571 */
5572 instructions->push_head(declared_var);
5573 }
5574
5575 instructions->append_list(&initializer_instructions);
5576 }
5577
5578
5579 /* Generally, variable declarations do not have r-values. However,
5580 * one is used for the declaration in
5581 *
5582 * while (bool b = some_condition()) {
5583 * ...
5584 * }
5585 *
5586 * so we return the rvalue from the last seen declaration here.
5587 */
5588 return result;
5589 }
5590
5591
5592 ir_rvalue *
5593 ast_parameter_declarator::hir(exec_list *instructions,
5594 struct _mesa_glsl_parse_state *state)
5595 {
5596 void *ctx = state;
5597 const struct glsl_type *type;
5598 const char *name = NULL;
5599 YYLTYPE loc = this->get_location();
5600
5601 type = this->type->glsl_type(& name, state);
5602
5603 if (type == NULL) {
5604 if (name != NULL) {
5605 _mesa_glsl_error(& loc, state,
5606 "invalid type `%s' in declaration of `%s'",
5607 name, this->identifier);
5608 } else {
5609 _mesa_glsl_error(& loc, state,
5610 "invalid type in declaration of `%s'",
5611 this->identifier);
5612 }
5613
5614 type = glsl_type::error_type;
5615 }
5616
5617 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5618 *
5619 * "Functions that accept no input arguments need not use void in the
5620 * argument list because prototypes (or definitions) are required and
5621 * therefore there is no ambiguity when an empty argument list "( )" is
5622 * declared. The idiom "(void)" as a parameter list is provided for
5623 * convenience."
5624 *
5625 * Placing this check here prevents a void parameter being set up
5626 * for a function, which avoids tripping up checks for main taking
5627 * parameters and lookups of an unnamed symbol.
5628 */
5629 if (type->is_void()) {
5630 if (this->identifier != NULL)
5631 _mesa_glsl_error(& loc, state,
5632 "named parameter cannot have type `void'");
5633
5634 is_void = true;
5635 return NULL;
5636 }
5637
5638 if (formal_parameter && (this->identifier == NULL)) {
5639 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5640 return NULL;
5641 }
5642
5643 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5644 * call already handled the "vec4[..] foo" case.
5645 */
5646 type = process_array_type(&loc, type, this->array_specifier, state);
5647
5648 if (!type->is_error() && type->is_unsized_array()) {
5649 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5650 "a declared size");
5651 type = glsl_type::error_type;
5652 }
5653
5654 is_void = false;
5655 ir_variable *var = new(ctx)
5656 ir_variable(type, this->identifier, ir_var_function_in);
5657
5658 /* Apply any specified qualifiers to the parameter declaration. Note that
5659 * for function parameters the default mode is 'in'.
5660 */
5661 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5662 true);
5663
5664 /* From section 4.1.7 of the GLSL 4.40 spec:
5665 *
5666 * "Opaque variables cannot be treated as l-values; hence cannot
5667 * be used as out or inout function parameters, nor can they be
5668 * assigned into."
5669 *
5670 * From section 4.1.7 of the ARB_bindless_texture spec:
5671 *
5672 * "Samplers can be used as l-values, so can be assigned into and used
5673 * as "out" and "inout" function parameters."
5674 *
5675 * From section 4.1.X of the ARB_bindless_texture spec:
5676 *
5677 * "Images can be used as l-values, so can be assigned into and used as
5678 * "out" and "inout" function parameters."
5679 */
5680 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5681 && (type->contains_atomic() ||
5682 (!state->has_bindless() && type->contains_opaque()))) {
5683 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5684 "contain %s variables",
5685 state->has_bindless() ? "atomic" : "opaque");
5686 type = glsl_type::error_type;
5687 }
5688
5689 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5690 *
5691 * "When calling a function, expressions that do not evaluate to
5692 * l-values cannot be passed to parameters declared as out or inout."
5693 *
5694 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5695 *
5696 * "Other binary or unary expressions, non-dereferenced arrays,
5697 * function names, swizzles with repeated fields, and constants
5698 * cannot be l-values."
5699 *
5700 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5701 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5702 */
5703 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5704 && type->is_array()
5705 && !state->check_version(120, 100, &loc,
5706 "arrays cannot be out or inout parameters")) {
5707 type = glsl_type::error_type;
5708 }
5709
5710 instructions->push_tail(var);
5711
5712 /* Parameter declarations do not have r-values.
5713 */
5714 return NULL;
5715 }
5716
5717
5718 void
5719 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5720 bool formal,
5721 exec_list *ir_parameters,
5722 _mesa_glsl_parse_state *state)
5723 {
5724 ast_parameter_declarator *void_param = NULL;
5725 unsigned count = 0;
5726
5727 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5728 param->formal_parameter = formal;
5729 param->hir(ir_parameters, state);
5730
5731 if (param->is_void)
5732 void_param = param;
5733
5734 count++;
5735 }
5736
5737 if ((void_param != NULL) && (count > 1)) {
5738 YYLTYPE loc = void_param->get_location();
5739
5740 _mesa_glsl_error(& loc, state,
5741 "`void' parameter must be only parameter");
5742 }
5743 }
5744
5745
5746 void
5747 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5748 {
5749 /* IR invariants disallow function declarations or definitions
5750 * nested within other function definitions. But there is no
5751 * requirement about the relative order of function declarations
5752 * and definitions with respect to one another. So simply insert
5753 * the new ir_function block at the end of the toplevel instruction
5754 * list.
5755 */
5756 state->toplevel_ir->push_tail(f);
5757 }
5758
5759
5760 ir_rvalue *
5761 ast_function::hir(exec_list *instructions,
5762 struct _mesa_glsl_parse_state *state)
5763 {
5764 void *ctx = state;
5765 ir_function *f = NULL;
5766 ir_function_signature *sig = NULL;
5767 exec_list hir_parameters;
5768 YYLTYPE loc = this->get_location();
5769
5770 const char *const name = identifier;
5771
5772 /* New functions are always added to the top-level IR instruction stream,
5773 * so this instruction list pointer is ignored. See also emit_function
5774 * (called below).
5775 */
5776 (void) instructions;
5777
5778 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5779 *
5780 * "Function declarations (prototypes) cannot occur inside of functions;
5781 * they must be at global scope, or for the built-in functions, outside
5782 * the global scope."
5783 *
5784 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5785 *
5786 * "User defined functions may only be defined within the global scope."
5787 *
5788 * Note that this language does not appear in GLSL 1.10.
5789 */
5790 if ((state->current_function != NULL) &&
5791 state->is_version(120, 100)) {
5792 YYLTYPE loc = this->get_location();
5793 _mesa_glsl_error(&loc, state,
5794 "declaration of function `%s' not allowed within "
5795 "function body", name);
5796 }
5797
5798 validate_identifier(name, this->get_location(), state);
5799
5800 /* Convert the list of function parameters to HIR now so that they can be
5801 * used below to compare this function's signature with previously seen
5802 * signatures for functions with the same name.
5803 */
5804 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5805 is_definition,
5806 & hir_parameters, state);
5807
5808 const char *return_type_name;
5809 const glsl_type *return_type =
5810 this->return_type->glsl_type(& return_type_name, state);
5811
5812 if (!return_type) {
5813 YYLTYPE loc = this->get_location();
5814 _mesa_glsl_error(&loc, state,
5815 "function `%s' has undeclared return type `%s'",
5816 name, return_type_name);
5817 return_type = glsl_type::error_type;
5818 }
5819
5820 /* ARB_shader_subroutine states:
5821 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5822 * subroutine(...) to a function declaration."
5823 */
5824 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5825 YYLTYPE loc = this->get_location();
5826 _mesa_glsl_error(&loc, state,
5827 "function declaration `%s' cannot have subroutine prepended",
5828 name);
5829 }
5830
5831 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5832 * "No qualifier is allowed on the return type of a function."
5833 */
5834 if (this->return_type->has_qualifiers(state)) {
5835 YYLTYPE loc = this->get_location();
5836 _mesa_glsl_error(& loc, state,
5837 "function `%s' return type has qualifiers", name);
5838 }
5839
5840 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5841 *
5842 * "Arrays are allowed as arguments and as the return type. In both
5843 * cases, the array must be explicitly sized."
5844 */
5845 if (return_type->is_unsized_array()) {
5846 YYLTYPE loc = this->get_location();
5847 _mesa_glsl_error(& loc, state,
5848 "function `%s' return type array must be explicitly "
5849 "sized", name);
5850 }
5851
5852 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5853 *
5854 * "Arrays are allowed as arguments, but not as the return type. [...]
5855 * The return type can also be a structure if the structure does not
5856 * contain an array."
5857 */
5858 if (state->language_version == 100 && return_type->contains_array()) {
5859 YYLTYPE loc = this->get_location();
5860 _mesa_glsl_error(& loc, state,
5861 "function `%s' return type contains an array", name);
5862 }
5863
5864 /* From section 4.1.7 of the GLSL 4.40 spec:
5865 *
5866 * "[Opaque types] can only be declared as function parameters
5867 * or uniform-qualified variables."
5868 *
5869 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5870 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5871 * (Images)", this should be allowed.
5872 */
5873 if (return_type->contains_atomic() ||
5874 (!state->has_bindless() && return_type->contains_opaque())) {
5875 YYLTYPE loc = this->get_location();
5876 _mesa_glsl_error(&loc, state,
5877 "function `%s' return type can't contain an %s type",
5878 name, state->has_bindless() ? "atomic" : "opaque");
5879 }
5880
5881 /**/
5882 if (return_type->is_subroutine()) {
5883 YYLTYPE loc = this->get_location();
5884 _mesa_glsl_error(&loc, state,
5885 "function `%s' return type can't be a subroutine type",
5886 name);
5887 }
5888
5889
5890 /* Create an ir_function if one doesn't already exist. */
5891 f = state->symbols->get_function(name);
5892 if (f == NULL) {
5893 f = new(ctx) ir_function(name);
5894 if (!this->return_type->qualifier.is_subroutine_decl()) {
5895 if (!state->symbols->add_function(f)) {
5896 /* This function name shadows a non-function use of the same name. */
5897 YYLTYPE loc = this->get_location();
5898 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5899 "non-function", name);
5900 return NULL;
5901 }
5902 }
5903 emit_function(state, f);
5904 }
5905
5906 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5907 *
5908 * "A shader cannot redefine or overload built-in functions."
5909 *
5910 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5911 *
5912 * "User code can overload the built-in functions but cannot redefine
5913 * them."
5914 */
5915 if (state->es_shader) {
5916 /* Local shader has no exact candidates; check the built-ins. */
5917 _mesa_glsl_initialize_builtin_functions();
5918 if (state->language_version >= 300 &&
5919 _mesa_glsl_has_builtin_function(state, name)) {
5920 YYLTYPE loc = this->get_location();
5921 _mesa_glsl_error(& loc, state,
5922 "A shader cannot redefine or overload built-in "
5923 "function `%s' in GLSL ES 3.00", name);
5924 return NULL;
5925 }
5926
5927 if (state->language_version == 100) {
5928 ir_function_signature *sig =
5929 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5930 if (sig && sig->is_builtin()) {
5931 _mesa_glsl_error(& loc, state,
5932 "A shader cannot redefine built-in "
5933 "function `%s' in GLSL ES 1.00", name);
5934 }
5935 }
5936 }
5937
5938 /* Verify that this function's signature either doesn't match a previously
5939 * seen signature for a function with the same name, or, if a match is found,
5940 * that the previously seen signature does not have an associated definition.
5941 */
5942 if (state->es_shader || f->has_user_signature()) {
5943 sig = f->exact_matching_signature(state, &hir_parameters);
5944 if (sig != NULL) {
5945 const char *badvar = sig->qualifiers_match(&hir_parameters);
5946 if (badvar != NULL) {
5947 YYLTYPE loc = this->get_location();
5948
5949 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5950 "qualifiers don't match prototype", name, badvar);
5951 }
5952
5953 if (sig->return_type != return_type) {
5954 YYLTYPE loc = this->get_location();
5955
5956 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5957 "match prototype", name);
5958 }
5959
5960 if (sig->is_defined) {
5961 if (is_definition) {
5962 YYLTYPE loc = this->get_location();
5963 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5964 } else {
5965 /* We just encountered a prototype that exactly matches a
5966 * function that's already been defined. This is redundant,
5967 * and we should ignore it.
5968 */
5969 return NULL;
5970 }
5971 } else if (state->language_version == 100 && !is_definition) {
5972 /* From the GLSL 1.00 spec, section 4.2.7:
5973 *
5974 * "A particular variable, structure or function declaration
5975 * may occur at most once within a scope with the exception
5976 * that a single function prototype plus the corresponding
5977 * function definition are allowed."
5978 */
5979 YYLTYPE loc = this->get_location();
5980 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5981 }
5982 }
5983 }
5984
5985 /* Verify the return type of main() */
5986 if (strcmp(name, "main") == 0) {
5987 if (! return_type->is_void()) {
5988 YYLTYPE loc = this->get_location();
5989
5990 _mesa_glsl_error(& loc, state, "main() must return void");
5991 }
5992
5993 if (!hir_parameters.is_empty()) {
5994 YYLTYPE loc = this->get_location();
5995
5996 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5997 }
5998 }
5999
6000 /* Finish storing the information about this new function in its signature.
6001 */
6002 if (sig == NULL) {
6003 sig = new(ctx) ir_function_signature(return_type);
6004 f->add_signature(sig);
6005 }
6006
6007 sig->replace_parameters(&hir_parameters);
6008 signature = sig;
6009
6010 if (this->return_type->qualifier.subroutine_list) {
6011 int idx;
6012
6013 if (this->return_type->qualifier.flags.q.explicit_index) {
6014 unsigned qual_index;
6015 if (process_qualifier_constant(state, &loc, "index",
6016 this->return_type->qualifier.index,
6017 &qual_index)) {
6018 if (!state->has_explicit_uniform_location()) {
6019 _mesa_glsl_error(&loc, state, "subroutine index requires "
6020 "GL_ARB_explicit_uniform_location or "
6021 "GLSL 4.30");
6022 } else if (qual_index >= MAX_SUBROUTINES) {
6023 _mesa_glsl_error(&loc, state,
6024 "invalid subroutine index (%d) index must "
6025 "be a number between 0 and "
6026 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6027 MAX_SUBROUTINES - 1);
6028 } else {
6029 f->subroutine_index = qual_index;
6030 }
6031 }
6032 }
6033
6034 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6035 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6036 f->num_subroutine_types);
6037 idx = 0;
6038 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6039 const struct glsl_type *type;
6040 /* the subroutine type must be already declared */
6041 type = state->symbols->get_type(decl->identifier);
6042 if (!type) {
6043 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6044 }
6045
6046 for (int i = 0; i < state->num_subroutine_types; i++) {
6047 ir_function *fn = state->subroutine_types[i];
6048 ir_function_signature *tsig = NULL;
6049
6050 if (strcmp(fn->name, decl->identifier))
6051 continue;
6052
6053 tsig = fn->matching_signature(state, &sig->parameters,
6054 false);
6055 if (!tsig) {
6056 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6057 } else {
6058 if (tsig->return_type != sig->return_type) {
6059 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6060 }
6061 }
6062 }
6063 f->subroutine_types[idx++] = type;
6064 }
6065 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6066 ir_function *,
6067 state->num_subroutines + 1);
6068 state->subroutines[state->num_subroutines] = f;
6069 state->num_subroutines++;
6070
6071 }
6072
6073 if (this->return_type->qualifier.is_subroutine_decl()) {
6074 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6075 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6076 return NULL;
6077 }
6078 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6079 ir_function *,
6080 state->num_subroutine_types + 1);
6081 state->subroutine_types[state->num_subroutine_types] = f;
6082 state->num_subroutine_types++;
6083
6084 f->is_subroutine = true;
6085 }
6086
6087 /* Function declarations (prototypes) do not have r-values.
6088 */
6089 return NULL;
6090 }
6091
6092
6093 ir_rvalue *
6094 ast_function_definition::hir(exec_list *instructions,
6095 struct _mesa_glsl_parse_state *state)
6096 {
6097 prototype->is_definition = true;
6098 prototype->hir(instructions, state);
6099
6100 ir_function_signature *signature = prototype->signature;
6101 if (signature == NULL)
6102 return NULL;
6103
6104 assert(state->current_function == NULL);
6105 state->current_function = signature;
6106 state->found_return = false;
6107
6108 /* Duplicate parameters declared in the prototype as concrete variables.
6109 * Add these to the symbol table.
6110 */
6111 state->symbols->push_scope();
6112 foreach_in_list(ir_variable, var, &signature->parameters) {
6113 assert(var->as_variable() != NULL);
6114
6115 /* The only way a parameter would "exist" is if two parameters have
6116 * the same name.
6117 */
6118 if (state->symbols->name_declared_this_scope(var->name)) {
6119 YYLTYPE loc = this->get_location();
6120
6121 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6122 } else {
6123 state->symbols->add_variable(var);
6124 }
6125 }
6126
6127 /* Convert the body of the function to HIR. */
6128 this->body->hir(&signature->body, state);
6129 signature->is_defined = true;
6130
6131 state->symbols->pop_scope();
6132
6133 assert(state->current_function == signature);
6134 state->current_function = NULL;
6135
6136 if (!signature->return_type->is_void() && !state->found_return) {
6137 YYLTYPE loc = this->get_location();
6138 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6139 "%s, but no return statement",
6140 signature->function_name(),
6141 signature->return_type->name);
6142 }
6143
6144 /* Function definitions do not have r-values.
6145 */
6146 return NULL;
6147 }
6148
6149
6150 ir_rvalue *
6151 ast_jump_statement::hir(exec_list *instructions,
6152 struct _mesa_glsl_parse_state *state)
6153 {
6154 void *ctx = state;
6155
6156 switch (mode) {
6157 case ast_return: {
6158 ir_return *inst;
6159 assert(state->current_function);
6160
6161 if (opt_return_value) {
6162 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6163
6164 /* The value of the return type can be NULL if the shader says
6165 * 'return foo();' and foo() is a function that returns void.
6166 *
6167 * NOTE: The GLSL spec doesn't say that this is an error. The type
6168 * of the return value is void. If the return type of the function is
6169 * also void, then this should compile without error. Seriously.
6170 */
6171 const glsl_type *const ret_type =
6172 (ret == NULL) ? glsl_type::void_type : ret->type;
6173
6174 /* Implicit conversions are not allowed for return values prior to
6175 * ARB_shading_language_420pack.
6176 */
6177 if (state->current_function->return_type != ret_type) {
6178 YYLTYPE loc = this->get_location();
6179
6180 if (state->has_420pack()) {
6181 if (!apply_implicit_conversion(state->current_function->return_type,
6182 ret, state)) {
6183 _mesa_glsl_error(& loc, state,
6184 "could not implicitly convert return value "
6185 "to %s, in function `%s'",
6186 state->current_function->return_type->name,
6187 state->current_function->function_name());
6188 }
6189 } else {
6190 _mesa_glsl_error(& loc, state,
6191 "`return' with wrong type %s, in function `%s' "
6192 "returning %s",
6193 ret_type->name,
6194 state->current_function->function_name(),
6195 state->current_function->return_type->name);
6196 }
6197 } else if (state->current_function->return_type->base_type ==
6198 GLSL_TYPE_VOID) {
6199 YYLTYPE loc = this->get_location();
6200
6201 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6202 * specs add a clarification:
6203 *
6204 * "A void function can only use return without a return argument, even if
6205 * the return argument has void type. Return statements only accept values:
6206 *
6207 * void func1() { }
6208 * void func2() { return func1(); } // illegal return statement"
6209 */
6210 _mesa_glsl_error(& loc, state,
6211 "void functions can only use `return' without a "
6212 "return argument");
6213 }
6214
6215 inst = new(ctx) ir_return(ret);
6216 } else {
6217 if (state->current_function->return_type->base_type !=
6218 GLSL_TYPE_VOID) {
6219 YYLTYPE loc = this->get_location();
6220
6221 _mesa_glsl_error(& loc, state,
6222 "`return' with no value, in function %s returning "
6223 "non-void",
6224 state->current_function->function_name());
6225 }
6226 inst = new(ctx) ir_return;
6227 }
6228
6229 state->found_return = true;
6230 instructions->push_tail(inst);
6231 break;
6232 }
6233
6234 case ast_discard:
6235 if (state->stage != MESA_SHADER_FRAGMENT) {
6236 YYLTYPE loc = this->get_location();
6237
6238 _mesa_glsl_error(& loc, state,
6239 "`discard' may only appear in a fragment shader");
6240 }
6241 instructions->push_tail(new(ctx) ir_discard);
6242 break;
6243
6244 case ast_break:
6245 case ast_continue:
6246 if (mode == ast_continue &&
6247 state->loop_nesting_ast == NULL) {
6248 YYLTYPE loc = this->get_location();
6249
6250 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6251 } else if (mode == ast_break &&
6252 state->loop_nesting_ast == NULL &&
6253 state->switch_state.switch_nesting_ast == NULL) {
6254 YYLTYPE loc = this->get_location();
6255
6256 _mesa_glsl_error(& loc, state,
6257 "break may only appear in a loop or a switch");
6258 } else {
6259 /* For a loop, inline the for loop expression again, since we don't
6260 * know where near the end of the loop body the normal copy of it is
6261 * going to be placed. Same goes for the condition for a do-while
6262 * loop.
6263 */
6264 if (state->loop_nesting_ast != NULL &&
6265 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6266 if (state->loop_nesting_ast->rest_expression) {
6267 state->loop_nesting_ast->rest_expression->hir(instructions,
6268 state);
6269 }
6270 if (state->loop_nesting_ast->mode ==
6271 ast_iteration_statement::ast_do_while) {
6272 state->loop_nesting_ast->condition_to_hir(instructions, state);
6273 }
6274 }
6275
6276 if (state->switch_state.is_switch_innermost &&
6277 mode == ast_continue) {
6278 /* Set 'continue_inside' to true. */
6279 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6280 ir_dereference_variable *deref_continue_inside_var =
6281 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6282 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6283 true_val));
6284
6285 /* Break out from the switch, continue for the loop will
6286 * be called right after switch. */
6287 ir_loop_jump *const jump =
6288 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6289 instructions->push_tail(jump);
6290
6291 } else if (state->switch_state.is_switch_innermost &&
6292 mode == ast_break) {
6293 /* Force break out of switch by inserting a break. */
6294 ir_loop_jump *const jump =
6295 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6296 instructions->push_tail(jump);
6297 } else {
6298 ir_loop_jump *const jump =
6299 new(ctx) ir_loop_jump((mode == ast_break)
6300 ? ir_loop_jump::jump_break
6301 : ir_loop_jump::jump_continue);
6302 instructions->push_tail(jump);
6303 }
6304 }
6305
6306 break;
6307 }
6308
6309 /* Jump instructions do not have r-values.
6310 */
6311 return NULL;
6312 }
6313
6314
6315 ir_rvalue *
6316 ast_selection_statement::hir(exec_list *instructions,
6317 struct _mesa_glsl_parse_state *state)
6318 {
6319 void *ctx = state;
6320
6321 ir_rvalue *const condition = this->condition->hir(instructions, state);
6322
6323 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6324 *
6325 * "Any expression whose type evaluates to a Boolean can be used as the
6326 * conditional expression bool-expression. Vector types are not accepted
6327 * as the expression to if."
6328 *
6329 * The checks are separated so that higher quality diagnostics can be
6330 * generated for cases where both rules are violated.
6331 */
6332 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6333 YYLTYPE loc = this->condition->get_location();
6334
6335 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6336 "boolean");
6337 }
6338
6339 ir_if *const stmt = new(ctx) ir_if(condition);
6340
6341 if (then_statement != NULL) {
6342 state->symbols->push_scope();
6343 then_statement->hir(& stmt->then_instructions, state);
6344 state->symbols->pop_scope();
6345 }
6346
6347 if (else_statement != NULL) {
6348 state->symbols->push_scope();
6349 else_statement->hir(& stmt->else_instructions, state);
6350 state->symbols->pop_scope();
6351 }
6352
6353 instructions->push_tail(stmt);
6354
6355 /* if-statements do not have r-values.
6356 */
6357 return NULL;
6358 }
6359
6360
6361 /* Used for detection of duplicate case values, compare
6362 * given contents directly.
6363 */
6364 static bool
6365 compare_case_value(const void *a, const void *b)
6366 {
6367 return *(unsigned *) a == *(unsigned *) b;
6368 }
6369
6370
6371 /* Used for detection of duplicate case values, just
6372 * returns key contents as is.
6373 */
6374 static unsigned
6375 key_contents(const void *key)
6376 {
6377 return *(unsigned *) key;
6378 }
6379
6380
6381 ir_rvalue *
6382 ast_switch_statement::hir(exec_list *instructions,
6383 struct _mesa_glsl_parse_state *state)
6384 {
6385 void *ctx = state;
6386
6387 ir_rvalue *const test_expression =
6388 this->test_expression->hir(instructions, state);
6389
6390 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6391 *
6392 * "The type of init-expression in a switch statement must be a
6393 * scalar integer."
6394 */
6395 if (!test_expression->type->is_scalar() ||
6396 !test_expression->type->is_integer()) {
6397 YYLTYPE loc = this->test_expression->get_location();
6398
6399 _mesa_glsl_error(& loc,
6400 state,
6401 "switch-statement expression must be scalar "
6402 "integer");
6403 }
6404
6405 /* Track the switch-statement nesting in a stack-like manner.
6406 */
6407 struct glsl_switch_state saved = state->switch_state;
6408
6409 state->switch_state.is_switch_innermost = true;
6410 state->switch_state.switch_nesting_ast = this;
6411 state->switch_state.labels_ht =
6412 _mesa_hash_table_create(NULL, key_contents,
6413 compare_case_value);
6414 state->switch_state.previous_default = NULL;
6415
6416 /* Initalize is_fallthru state to false.
6417 */
6418 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6419 state->switch_state.is_fallthru_var =
6420 new(ctx) ir_variable(glsl_type::bool_type,
6421 "switch_is_fallthru_tmp",
6422 ir_var_temporary);
6423 instructions->push_tail(state->switch_state.is_fallthru_var);
6424
6425 ir_dereference_variable *deref_is_fallthru_var =
6426 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6427 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6428 is_fallthru_val));
6429
6430 /* Initialize continue_inside state to false.
6431 */
6432 state->switch_state.continue_inside =
6433 new(ctx) ir_variable(glsl_type::bool_type,
6434 "continue_inside_tmp",
6435 ir_var_temporary);
6436 instructions->push_tail(state->switch_state.continue_inside);
6437
6438 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6439 ir_dereference_variable *deref_continue_inside_var =
6440 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6441 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6442 false_val));
6443
6444 state->switch_state.run_default =
6445 new(ctx) ir_variable(glsl_type::bool_type,
6446 "run_default_tmp",
6447 ir_var_temporary);
6448 instructions->push_tail(state->switch_state.run_default);
6449
6450 /* Loop around the switch is used for flow control. */
6451 ir_loop * loop = new(ctx) ir_loop();
6452 instructions->push_tail(loop);
6453
6454 /* Cache test expression.
6455 */
6456 test_to_hir(&loop->body_instructions, state);
6457
6458 /* Emit code for body of switch stmt.
6459 */
6460 body->hir(&loop->body_instructions, state);
6461
6462 /* Insert a break at the end to exit loop. */
6463 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6464 loop->body_instructions.push_tail(jump);
6465
6466 /* If we are inside loop, check if continue got called inside switch. */
6467 if (state->loop_nesting_ast != NULL) {
6468 ir_dereference_variable *deref_continue_inside =
6469 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6470 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6471 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6472
6473 if (state->loop_nesting_ast != NULL) {
6474 if (state->loop_nesting_ast->rest_expression) {
6475 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6476 state);
6477 }
6478 if (state->loop_nesting_ast->mode ==
6479 ast_iteration_statement::ast_do_while) {
6480 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6481 }
6482 }
6483 irif->then_instructions.push_tail(jump);
6484 instructions->push_tail(irif);
6485 }
6486
6487 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6488
6489 state->switch_state = saved;
6490
6491 /* Switch statements do not have r-values. */
6492 return NULL;
6493 }
6494
6495
6496 void
6497 ast_switch_statement::test_to_hir(exec_list *instructions,
6498 struct _mesa_glsl_parse_state *state)
6499 {
6500 void *ctx = state;
6501
6502 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6503 * on the switch test case. The first one would be already raised when
6504 * getting the test_expression at ast_switch_statement::hir
6505 */
6506 test_expression->set_is_lhs(true);
6507 /* Cache value of test expression. */
6508 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6509
6510 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6511 "switch_test_tmp",
6512 ir_var_temporary);
6513 ir_dereference_variable *deref_test_var =
6514 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6515
6516 instructions->push_tail(state->switch_state.test_var);
6517 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6518 }
6519
6520
6521 ir_rvalue *
6522 ast_switch_body::hir(exec_list *instructions,
6523 struct _mesa_glsl_parse_state *state)
6524 {
6525 if (stmts != NULL)
6526 stmts->hir(instructions, state);
6527
6528 /* Switch bodies do not have r-values. */
6529 return NULL;
6530 }
6531
6532 ir_rvalue *
6533 ast_case_statement_list::hir(exec_list *instructions,
6534 struct _mesa_glsl_parse_state *state)
6535 {
6536 exec_list default_case, after_default, tmp;
6537
6538 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6539 case_stmt->hir(&tmp, state);
6540
6541 /* Default case. */
6542 if (state->switch_state.previous_default && default_case.is_empty()) {
6543 default_case.append_list(&tmp);
6544 continue;
6545 }
6546
6547 /* If default case found, append 'after_default' list. */
6548 if (!default_case.is_empty())
6549 after_default.append_list(&tmp);
6550 else
6551 instructions->append_list(&tmp);
6552 }
6553
6554 /* Handle the default case. This is done here because default might not be
6555 * the last case. We need to add checks against following cases first to see
6556 * if default should be chosen or not.
6557 */
6558 if (!default_case.is_empty()) {
6559
6560 ir_rvalue *const true_val = new (state) ir_constant(true);
6561 ir_dereference_variable *deref_run_default_var =
6562 new(state) ir_dereference_variable(state->switch_state.run_default);
6563
6564 /* Choose to run default case initially, following conditional
6565 * assignments might change this.
6566 */
6567 ir_assignment *const init_var =
6568 new(state) ir_assignment(deref_run_default_var, true_val);
6569 instructions->push_tail(init_var);
6570
6571 /* Default case was the last one, no checks required. */
6572 if (after_default.is_empty()) {
6573 instructions->append_list(&default_case);
6574 return NULL;
6575 }
6576
6577 foreach_in_list(ir_instruction, ir, &after_default) {
6578 ir_assignment *assign = ir->as_assignment();
6579
6580 if (!assign)
6581 continue;
6582
6583 /* Clone the check between case label and init expression. */
6584 ir_expression *exp = (ir_expression*) assign->condition;
6585 ir_expression *clone = exp->clone(state, NULL);
6586
6587 ir_dereference_variable *deref_var =
6588 new(state) ir_dereference_variable(state->switch_state.run_default);
6589 ir_rvalue *const false_val = new (state) ir_constant(false);
6590
6591 ir_assignment *const set_false =
6592 new(state) ir_assignment(deref_var, false_val, clone);
6593
6594 instructions->push_tail(set_false);
6595 }
6596
6597 /* Append default case and all cases after it. */
6598 instructions->append_list(&default_case);
6599 instructions->append_list(&after_default);
6600 }
6601
6602 /* Case statements do not have r-values. */
6603 return NULL;
6604 }
6605
6606 ir_rvalue *
6607 ast_case_statement::hir(exec_list *instructions,
6608 struct _mesa_glsl_parse_state *state)
6609 {
6610 labels->hir(instructions, state);
6611
6612 /* Guard case statements depending on fallthru state. */
6613 ir_dereference_variable *const deref_fallthru_guard =
6614 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6615 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6616
6617 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6618 stmt->hir(& test_fallthru->then_instructions, state);
6619
6620 instructions->push_tail(test_fallthru);
6621
6622 /* Case statements do not have r-values. */
6623 return NULL;
6624 }
6625
6626
6627 ir_rvalue *
6628 ast_case_label_list::hir(exec_list *instructions,
6629 struct _mesa_glsl_parse_state *state)
6630 {
6631 foreach_list_typed (ast_case_label, label, link, & this->labels)
6632 label->hir(instructions, state);
6633
6634 /* Case labels do not have r-values. */
6635 return NULL;
6636 }
6637
6638 ir_rvalue *
6639 ast_case_label::hir(exec_list *instructions,
6640 struct _mesa_glsl_parse_state *state)
6641 {
6642 void *ctx = state;
6643
6644 ir_dereference_variable *deref_fallthru_var =
6645 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6646
6647 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6648
6649 /* If not default case, ... */
6650 if (this->test_value != NULL) {
6651 /* Conditionally set fallthru state based on
6652 * comparison of cached test expression value to case label.
6653 */
6654 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6655 ir_constant *label_const = label_rval->constant_expression_value();
6656
6657 if (!label_const) {
6658 YYLTYPE loc = this->test_value->get_location();
6659
6660 _mesa_glsl_error(& loc, state,
6661 "switch statement case label must be a "
6662 "constant expression");
6663
6664 /* Stuff a dummy value in to allow processing to continue. */
6665 label_const = new(ctx) ir_constant(0);
6666 } else {
6667 hash_entry *entry =
6668 _mesa_hash_table_search(state->switch_state.labels_ht,
6669 (void *)(uintptr_t)&label_const->value.u[0]);
6670
6671 if (entry) {
6672 ast_expression *previous_label = (ast_expression *) entry->data;
6673 YYLTYPE loc = this->test_value->get_location();
6674 _mesa_glsl_error(& loc, state, "duplicate case value");
6675
6676 loc = previous_label->get_location();
6677 _mesa_glsl_error(& loc, state, "this is the previous case label");
6678 } else {
6679 _mesa_hash_table_insert(state->switch_state.labels_ht,
6680 (void *)(uintptr_t)&label_const->value.u[0],
6681 this->test_value);
6682 }
6683 }
6684
6685 ir_dereference_variable *deref_test_var =
6686 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6687
6688 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6689 label_const,
6690 deref_test_var);
6691
6692 /*
6693 * From GLSL 4.40 specification section 6.2 ("Selection"):
6694 *
6695 * "The type of the init-expression value in a switch statement must
6696 * be a scalar int or uint. The type of the constant-expression value
6697 * in a case label also must be a scalar int or uint. When any pair
6698 * of these values is tested for "equal value" and the types do not
6699 * match, an implicit conversion will be done to convert the int to a
6700 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6701 * is done."
6702 */
6703 if (label_const->type != state->switch_state.test_var->type) {
6704 YYLTYPE loc = this->test_value->get_location();
6705
6706 const glsl_type *type_a = label_const->type;
6707 const glsl_type *type_b = state->switch_state.test_var->type;
6708
6709 /* Check if int->uint implicit conversion is supported. */
6710 bool integer_conversion_supported =
6711 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6712 state);
6713
6714 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6715 !integer_conversion_supported) {
6716 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6717 "init-expression and case label (%s != %s)",
6718 type_a->name, type_b->name);
6719 } else {
6720 /* Conversion of the case label. */
6721 if (type_a->base_type == GLSL_TYPE_INT) {
6722 if (!apply_implicit_conversion(glsl_type::uint_type,
6723 test_cond->operands[0], state))
6724 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6725 } else {
6726 /* Conversion of the init-expression value. */
6727 if (!apply_implicit_conversion(glsl_type::uint_type,
6728 test_cond->operands[1], state))
6729 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6730 }
6731 }
6732 }
6733
6734 ir_assignment *set_fallthru_on_test =
6735 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6736
6737 instructions->push_tail(set_fallthru_on_test);
6738 } else { /* default case */
6739 if (state->switch_state.previous_default) {
6740 YYLTYPE loc = this->get_location();
6741 _mesa_glsl_error(& loc, state,
6742 "multiple default labels in one switch");
6743
6744 loc = state->switch_state.previous_default->get_location();
6745 _mesa_glsl_error(& loc, state, "this is the first default label");
6746 }
6747 state->switch_state.previous_default = this;
6748
6749 /* Set fallthru condition on 'run_default' bool. */
6750 ir_dereference_variable *deref_run_default =
6751 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6752 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6753 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6754 cond_true,
6755 deref_run_default);
6756
6757 /* Set falltrhu state. */
6758 ir_assignment *set_fallthru =
6759 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6760
6761 instructions->push_tail(set_fallthru);
6762 }
6763
6764 /* Case statements do not have r-values. */
6765 return NULL;
6766 }
6767
6768 void
6769 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6770 struct _mesa_glsl_parse_state *state)
6771 {
6772 void *ctx = state;
6773
6774 if (condition != NULL) {
6775 ir_rvalue *const cond =
6776 condition->hir(instructions, state);
6777
6778 if ((cond == NULL)
6779 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6780 YYLTYPE loc = condition->get_location();
6781
6782 _mesa_glsl_error(& loc, state,
6783 "loop condition must be scalar boolean");
6784 } else {
6785 /* As the first code in the loop body, generate a block that looks
6786 * like 'if (!condition) break;' as the loop termination condition.
6787 */
6788 ir_rvalue *const not_cond =
6789 new(ctx) ir_expression(ir_unop_logic_not, cond);
6790
6791 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6792
6793 ir_jump *const break_stmt =
6794 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6795
6796 if_stmt->then_instructions.push_tail(break_stmt);
6797 instructions->push_tail(if_stmt);
6798 }
6799 }
6800 }
6801
6802
6803 ir_rvalue *
6804 ast_iteration_statement::hir(exec_list *instructions,
6805 struct _mesa_glsl_parse_state *state)
6806 {
6807 void *ctx = state;
6808
6809 /* For-loops and while-loops start a new scope, but do-while loops do not.
6810 */
6811 if (mode != ast_do_while)
6812 state->symbols->push_scope();
6813
6814 if (init_statement != NULL)
6815 init_statement->hir(instructions, state);
6816
6817 ir_loop *const stmt = new(ctx) ir_loop();
6818 instructions->push_tail(stmt);
6819
6820 /* Track the current loop nesting. */
6821 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6822
6823 state->loop_nesting_ast = this;
6824
6825 /* Likewise, indicate that following code is closest to a loop,
6826 * NOT closest to a switch.
6827 */
6828 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6829 state->switch_state.is_switch_innermost = false;
6830
6831 if (mode != ast_do_while)
6832 condition_to_hir(&stmt->body_instructions, state);
6833
6834 if (body != NULL)
6835 body->hir(& stmt->body_instructions, state);
6836
6837 if (rest_expression != NULL)
6838 rest_expression->hir(& stmt->body_instructions, state);
6839
6840 if (mode == ast_do_while)
6841 condition_to_hir(&stmt->body_instructions, state);
6842
6843 if (mode != ast_do_while)
6844 state->symbols->pop_scope();
6845
6846 /* Restore previous nesting before returning. */
6847 state->loop_nesting_ast = nesting_ast;
6848 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6849
6850 /* Loops do not have r-values.
6851 */
6852 return NULL;
6853 }
6854
6855
6856 /**
6857 * Determine if the given type is valid for establishing a default precision
6858 * qualifier.
6859 *
6860 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6861 *
6862 * "The precision statement
6863 *
6864 * precision precision-qualifier type;
6865 *
6866 * can be used to establish a default precision qualifier. The type field
6867 * can be either int or float or any of the sampler types, and the
6868 * precision-qualifier can be lowp, mediump, or highp."
6869 *
6870 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6871 * qualifiers on sampler types, but this seems like an oversight (since the
6872 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6873 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6874 * version.
6875 */
6876 static bool
6877 is_valid_default_precision_type(const struct glsl_type *const type)
6878 {
6879 if (type == NULL)
6880 return false;
6881
6882 switch (type->base_type) {
6883 case GLSL_TYPE_INT:
6884 case GLSL_TYPE_FLOAT:
6885 /* "int" and "float" are valid, but vectors and matrices are not. */
6886 return type->vector_elements == 1 && type->matrix_columns == 1;
6887 case GLSL_TYPE_SAMPLER:
6888 case GLSL_TYPE_IMAGE:
6889 case GLSL_TYPE_ATOMIC_UINT:
6890 return true;
6891 default:
6892 return false;
6893 }
6894 }
6895
6896
6897 ir_rvalue *
6898 ast_type_specifier::hir(exec_list *instructions,
6899 struct _mesa_glsl_parse_state *state)
6900 {
6901 if (this->default_precision == ast_precision_none && this->structure == NULL)
6902 return NULL;
6903
6904 YYLTYPE loc = this->get_location();
6905
6906 /* If this is a precision statement, check that the type to which it is
6907 * applied is either float or int.
6908 *
6909 * From section 4.5.3 of the GLSL 1.30 spec:
6910 * "The precision statement
6911 * precision precision-qualifier type;
6912 * can be used to establish a default precision qualifier. The type
6913 * field can be either int or float [...]. Any other types or
6914 * qualifiers will result in an error.
6915 */
6916 if (this->default_precision != ast_precision_none) {
6917 if (!state->check_precision_qualifiers_allowed(&loc))
6918 return NULL;
6919
6920 if (this->structure != NULL) {
6921 _mesa_glsl_error(&loc, state,
6922 "precision qualifiers do not apply to structures");
6923 return NULL;
6924 }
6925
6926 if (this->array_specifier != NULL) {
6927 _mesa_glsl_error(&loc, state,
6928 "default precision statements do not apply to "
6929 "arrays");
6930 return NULL;
6931 }
6932
6933 const struct glsl_type *const type =
6934 state->symbols->get_type(this->type_name);
6935 if (!is_valid_default_precision_type(type)) {
6936 _mesa_glsl_error(&loc, state,
6937 "default precision statements apply only to "
6938 "float, int, and opaque types");
6939 return NULL;
6940 }
6941
6942 if (state->es_shader) {
6943 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6944 * spec says:
6945 *
6946 * "Non-precision qualified declarations will use the precision
6947 * qualifier specified in the most recent precision statement
6948 * that is still in scope. The precision statement has the same
6949 * scoping rules as variable declarations. If it is declared
6950 * inside a compound statement, its effect stops at the end of
6951 * the innermost statement it was declared in. Precision
6952 * statements in nested scopes override precision statements in
6953 * outer scopes. Multiple precision statements for the same basic
6954 * type can appear inside the same scope, with later statements
6955 * overriding earlier statements within that scope."
6956 *
6957 * Default precision specifications follow the same scope rules as
6958 * variables. So, we can track the state of the default precision
6959 * qualifiers in the symbol table, and the rules will just work. This
6960 * is a slight abuse of the symbol table, but it has the semantics
6961 * that we want.
6962 */
6963 state->symbols->add_default_precision_qualifier(this->type_name,
6964 this->default_precision);
6965 }
6966
6967 /* FINISHME: Translate precision statements into IR. */
6968 return NULL;
6969 }
6970
6971 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6972 * process_record_constructor() can do type-checking on C-style initializer
6973 * expressions of structs, but ast_struct_specifier should only be translated
6974 * to HIR if it is declaring the type of a structure.
6975 *
6976 * The ->is_declaration field is false for initializers of variables
6977 * declared separately from the struct's type definition.
6978 *
6979 * struct S { ... }; (is_declaration = true)
6980 * struct T { ... } t = { ... }; (is_declaration = true)
6981 * S s = { ... }; (is_declaration = false)
6982 */
6983 if (this->structure != NULL && this->structure->is_declaration)
6984 return this->structure->hir(instructions, state);
6985
6986 return NULL;
6987 }
6988
6989
6990 /**
6991 * Process a structure or interface block tree into an array of structure fields
6992 *
6993 * After parsing, where there are some syntax differnces, structures and
6994 * interface blocks are almost identical. They are similar enough that the
6995 * AST for each can be processed the same way into a set of
6996 * \c glsl_struct_field to describe the members.
6997 *
6998 * If we're processing an interface block, var_mode should be the type of the
6999 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7000 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7001 * ir_var_auto.
7002 *
7003 * \return
7004 * The number of fields processed. A pointer to the array structure fields is
7005 * stored in \c *fields_ret.
7006 */
7007 static unsigned
7008 ast_process_struct_or_iface_block_members(exec_list *instructions,
7009 struct _mesa_glsl_parse_state *state,
7010 exec_list *declarations,
7011 glsl_struct_field **fields_ret,
7012 bool is_interface,
7013 enum glsl_matrix_layout matrix_layout,
7014 bool allow_reserved_names,
7015 ir_variable_mode var_mode,
7016 ast_type_qualifier *layout,
7017 unsigned block_stream,
7018 unsigned block_xfb_buffer,
7019 unsigned block_xfb_offset,
7020 unsigned expl_location,
7021 unsigned expl_align)
7022 {
7023 unsigned decl_count = 0;
7024 unsigned next_offset = 0;
7025
7026 /* Make an initial pass over the list of fields to determine how
7027 * many there are. Each element in this list is an ast_declarator_list.
7028 * This means that we actually need to count the number of elements in the
7029 * 'declarations' list in each of the elements.
7030 */
7031 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7032 decl_count += decl_list->declarations.length();
7033 }
7034
7035 /* Allocate storage for the fields and process the field
7036 * declarations. As the declarations are processed, try to also convert
7037 * the types to HIR. This ensures that structure definitions embedded in
7038 * other structure definitions or in interface blocks are processed.
7039 */
7040 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7041 decl_count);
7042
7043 bool first_member = true;
7044 bool first_member_has_explicit_location = false;
7045
7046 unsigned i = 0;
7047 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7048 const char *type_name;
7049 YYLTYPE loc = decl_list->get_location();
7050
7051 decl_list->type->specifier->hir(instructions, state);
7052
7053 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7054 *
7055 * "Anonymous structures are not supported; so embedded structures
7056 * must have a declarator. A name given to an embedded struct is
7057 * scoped at the same level as the struct it is embedded in."
7058 *
7059 * The same section of the GLSL 1.20 spec says:
7060 *
7061 * "Anonymous structures are not supported. Embedded structures are
7062 * not supported."
7063 *
7064 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7065 * embedded structures in 1.10 only.
7066 */
7067 if (state->language_version != 110 &&
7068 decl_list->type->specifier->structure != NULL)
7069 _mesa_glsl_error(&loc, state,
7070 "embedded structure declarations are not allowed");
7071
7072 const glsl_type *decl_type =
7073 decl_list->type->glsl_type(& type_name, state);
7074
7075 const struct ast_type_qualifier *const qual =
7076 &decl_list->type->qualifier;
7077
7078 /* From section 4.3.9 of the GLSL 4.40 spec:
7079 *
7080 * "[In interface blocks] opaque types are not allowed."
7081 *
7082 * It should be impossible for decl_type to be NULL here. Cases that
7083 * might naturally lead to decl_type being NULL, especially for the
7084 * is_interface case, will have resulted in compilation having
7085 * already halted due to a syntax error.
7086 */
7087 assert(decl_type);
7088
7089 if (is_interface) {
7090 /* From section 4.3.7 of the ARB_bindless_texture spec:
7091 *
7092 * "(remove the following bullet from the last list on p. 39,
7093 * thereby permitting sampler types in interface blocks; image
7094 * types are also permitted in blocks by this extension)"
7095 *
7096 * * sampler types are not allowed
7097 */
7098 if (decl_type->contains_atomic() ||
7099 (!state->has_bindless() && decl_type->contains_opaque())) {
7100 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7101 "interface block contains %s variable",
7102 state->has_bindless() ? "atomic" : "opaque");
7103 }
7104 } else {
7105 if (decl_type->contains_atomic()) {
7106 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7107 *
7108 * "Members of structures cannot be declared as atomic counter
7109 * types."
7110 */
7111 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7112 }
7113
7114 if (!state->has_bindless() && decl_type->contains_image()) {
7115 /* FINISHME: Same problem as with atomic counters.
7116 * FINISHME: Request clarification from Khronos and add
7117 * FINISHME: spec quotation here.
7118 */
7119 _mesa_glsl_error(&loc, state, "image in structure");
7120 }
7121 }
7122
7123 if (qual->flags.q.explicit_binding) {
7124 _mesa_glsl_error(&loc, state,
7125 "binding layout qualifier cannot be applied "
7126 "to struct or interface block members");
7127 }
7128
7129 if (is_interface) {
7130 if (!first_member) {
7131 if (!layout->flags.q.explicit_location &&
7132 ((first_member_has_explicit_location &&
7133 !qual->flags.q.explicit_location) ||
7134 (!first_member_has_explicit_location &&
7135 qual->flags.q.explicit_location))) {
7136 _mesa_glsl_error(&loc, state,
7137 "when block-level location layout qualifier "
7138 "is not supplied either all members must "
7139 "have a location layout qualifier or all "
7140 "members must not have a location layout "
7141 "qualifier");
7142 }
7143 } else {
7144 first_member = false;
7145 first_member_has_explicit_location =
7146 qual->flags.q.explicit_location;
7147 }
7148 }
7149
7150 if (qual->flags.q.std140 ||
7151 qual->flags.q.std430 ||
7152 qual->flags.q.packed ||
7153 qual->flags.q.shared) {
7154 _mesa_glsl_error(&loc, state,
7155 "uniform/shader storage block layout qualifiers "
7156 "std140, std430, packed, and shared can only be "
7157 "applied to uniform/shader storage blocks, not "
7158 "members");
7159 }
7160
7161 if (qual->flags.q.constant) {
7162 _mesa_glsl_error(&loc, state,
7163 "const storage qualifier cannot be applied "
7164 "to struct or interface block members");
7165 }
7166
7167 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7168 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7169
7170 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7171 *
7172 * "A block member may be declared with a stream identifier, but
7173 * the specified stream must match the stream associated with the
7174 * containing block."
7175 */
7176 if (qual->flags.q.explicit_stream) {
7177 unsigned qual_stream;
7178 if (process_qualifier_constant(state, &loc, "stream",
7179 qual->stream, &qual_stream) &&
7180 qual_stream != block_stream) {
7181 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7182 "interface block member does not match "
7183 "the interface block (%u vs %u)", qual_stream,
7184 block_stream);
7185 }
7186 }
7187
7188 int xfb_buffer;
7189 unsigned explicit_xfb_buffer = 0;
7190 if (qual->flags.q.explicit_xfb_buffer) {
7191 unsigned qual_xfb_buffer;
7192 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7193 qual->xfb_buffer, &qual_xfb_buffer)) {
7194 explicit_xfb_buffer = 1;
7195 if (qual_xfb_buffer != block_xfb_buffer)
7196 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7197 "interface block member does not match "
7198 "the interface block (%u vs %u)",
7199 qual_xfb_buffer, block_xfb_buffer);
7200 }
7201 xfb_buffer = (int) qual_xfb_buffer;
7202 } else {
7203 if (layout)
7204 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7205 xfb_buffer = (int) block_xfb_buffer;
7206 }
7207
7208 int xfb_stride = -1;
7209 if (qual->flags.q.explicit_xfb_stride) {
7210 unsigned qual_xfb_stride;
7211 if (process_qualifier_constant(state, &loc, "xfb_stride",
7212 qual->xfb_stride, &qual_xfb_stride)) {
7213 xfb_stride = (int) qual_xfb_stride;
7214 }
7215 }
7216
7217 if (qual->flags.q.uniform && qual->has_interpolation()) {
7218 _mesa_glsl_error(&loc, state,
7219 "interpolation qualifiers cannot be used "
7220 "with uniform interface blocks");
7221 }
7222
7223 if ((qual->flags.q.uniform || !is_interface) &&
7224 qual->has_auxiliary_storage()) {
7225 _mesa_glsl_error(&loc, state,
7226 "auxiliary storage qualifiers cannot be used "
7227 "in uniform blocks or structures.");
7228 }
7229
7230 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7231 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7232 _mesa_glsl_error(&loc, state,
7233 "row_major and column_major can only be "
7234 "applied to interface blocks");
7235 } else
7236 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7237 }
7238
7239 if (qual->flags.q.read_only && qual->flags.q.write_only) {
7240 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
7241 "readonly and writeonly.");
7242 }
7243
7244 foreach_list_typed (ast_declaration, decl, link,
7245 &decl_list->declarations) {
7246 YYLTYPE loc = decl->get_location();
7247
7248 if (!allow_reserved_names)
7249 validate_identifier(decl->identifier, loc, state);
7250
7251 const struct glsl_type *field_type =
7252 process_array_type(&loc, decl_type, decl->array_specifier, state);
7253 validate_array_dimensions(field_type, state, &loc);
7254 fields[i].type = field_type;
7255 fields[i].name = decl->identifier;
7256 fields[i].interpolation =
7257 interpret_interpolation_qualifier(qual, field_type,
7258 var_mode, state, &loc);
7259 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7260 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7261 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7262 fields[i].precision = qual->precision;
7263 fields[i].offset = -1;
7264 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7265 fields[i].xfb_buffer = xfb_buffer;
7266 fields[i].xfb_stride = xfb_stride;
7267
7268 if (qual->flags.q.explicit_location) {
7269 unsigned qual_location;
7270 if (process_qualifier_constant(state, &loc, "location",
7271 qual->location, &qual_location)) {
7272 fields[i].location = qual_location +
7273 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7274 expl_location = fields[i].location +
7275 fields[i].type->count_attribute_slots(false);
7276 }
7277 } else {
7278 if (layout && layout->flags.q.explicit_location) {
7279 fields[i].location = expl_location;
7280 expl_location += fields[i].type->count_attribute_slots(false);
7281 } else {
7282 fields[i].location = -1;
7283 }
7284 }
7285
7286 /* Offset can only be used with std430 and std140 layouts an initial
7287 * value of 0 is used for error detection.
7288 */
7289 unsigned align = 0;
7290 unsigned size = 0;
7291 if (layout) {
7292 bool row_major;
7293 if (qual->flags.q.row_major ||
7294 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7295 row_major = true;
7296 } else {
7297 row_major = false;
7298 }
7299
7300 if(layout->flags.q.std140) {
7301 align = field_type->std140_base_alignment(row_major);
7302 size = field_type->std140_size(row_major);
7303 } else if (layout->flags.q.std430) {
7304 align = field_type->std430_base_alignment(row_major);
7305 size = field_type->std430_size(row_major);
7306 }
7307 }
7308
7309 if (qual->flags.q.explicit_offset) {
7310 unsigned qual_offset;
7311 if (process_qualifier_constant(state, &loc, "offset",
7312 qual->offset, &qual_offset)) {
7313 if (align != 0 && size != 0) {
7314 if (next_offset > qual_offset)
7315 _mesa_glsl_error(&loc, state, "layout qualifier "
7316 "offset overlaps previous member");
7317
7318 if (qual_offset % align) {
7319 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7320 "must be a multiple of the base "
7321 "alignment of %s", field_type->name);
7322 }
7323 fields[i].offset = qual_offset;
7324 next_offset = glsl_align(qual_offset + size, align);
7325 } else {
7326 _mesa_glsl_error(&loc, state, "offset can only be used "
7327 "with std430 and std140 layouts");
7328 }
7329 }
7330 }
7331
7332 if (qual->flags.q.explicit_align || expl_align != 0) {
7333 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7334 next_offset;
7335 if (align == 0 || size == 0) {
7336 _mesa_glsl_error(&loc, state, "align can only be used with "
7337 "std430 and std140 layouts");
7338 } else if (qual->flags.q.explicit_align) {
7339 unsigned member_align;
7340 if (process_qualifier_constant(state, &loc, "align",
7341 qual->align, &member_align)) {
7342 if (member_align == 0 ||
7343 member_align & (member_align - 1)) {
7344 _mesa_glsl_error(&loc, state, "align layout qualifier "
7345 "in not a power of 2");
7346 } else {
7347 fields[i].offset = glsl_align(offset, member_align);
7348 next_offset = glsl_align(fields[i].offset + size, align);
7349 }
7350 }
7351 } else {
7352 fields[i].offset = glsl_align(offset, expl_align);
7353 next_offset = glsl_align(fields[i].offset + size, align);
7354 }
7355 } else if (!qual->flags.q.explicit_offset) {
7356 if (align != 0 && size != 0)
7357 next_offset = glsl_align(next_offset + size, align);
7358 }
7359
7360 /* From the ARB_enhanced_layouts spec:
7361 *
7362 * "The given offset applies to the first component of the first
7363 * member of the qualified entity. Then, within the qualified
7364 * entity, subsequent components are each assigned, in order, to
7365 * the next available offset aligned to a multiple of that
7366 * component's size. Aggregate types are flattened down to the
7367 * component level to get this sequence of components."
7368 */
7369 if (qual->flags.q.explicit_xfb_offset) {
7370 unsigned xfb_offset;
7371 if (process_qualifier_constant(state, &loc, "xfb_offset",
7372 qual->offset, &xfb_offset)) {
7373 fields[i].offset = xfb_offset;
7374 block_xfb_offset = fields[i].offset +
7375 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7376 }
7377 } else {
7378 if (layout && layout->flags.q.explicit_xfb_offset) {
7379 unsigned align = field_type->is_64bit() ? 8 : 4;
7380 fields[i].offset = glsl_align(block_xfb_offset, align);
7381 block_xfb_offset +=
7382 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7383 }
7384 }
7385
7386 /* Propogate row- / column-major information down the fields of the
7387 * structure or interface block. Structures need this data because
7388 * the structure may contain a structure that contains ... a matrix
7389 * that need the proper layout.
7390 */
7391 if (is_interface && layout &&
7392 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7393 (field_type->without_array()->is_matrix()
7394 || field_type->without_array()->is_record())) {
7395 /* If no layout is specified for the field, inherit the layout
7396 * from the block.
7397 */
7398 fields[i].matrix_layout = matrix_layout;
7399
7400 if (qual->flags.q.row_major)
7401 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7402 else if (qual->flags.q.column_major)
7403 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7404
7405 /* If we're processing an uniform or buffer block, the matrix
7406 * layout must be decided by this point.
7407 */
7408 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7409 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7410 }
7411
7412 /* Memory qualifiers are allowed on buffer and image variables, while
7413 * the format qualifier is only accepted for images.
7414 */
7415 if (var_mode == ir_var_shader_storage ||
7416 field_type->without_array()->is_image()) {
7417 /* For readonly and writeonly qualifiers the field definition,
7418 * if set, overwrites the layout qualifier.
7419 */
7420 if (qual->flags.q.read_only) {
7421 fields[i].memory_read_only = true;
7422 fields[i].memory_write_only = false;
7423 } else if (qual->flags.q.write_only) {
7424 fields[i].memory_read_only = false;
7425 fields[i].memory_write_only = true;
7426 } else {
7427 fields[i].memory_read_only =
7428 layout ? layout->flags.q.read_only : 0;
7429 fields[i].memory_write_only =
7430 layout ? layout->flags.q.write_only : 0;
7431 }
7432
7433 /* For other qualifiers, we set the flag if either the layout
7434 * qualifier or the field qualifier are set
7435 */
7436 fields[i].memory_coherent = qual->flags.q.coherent ||
7437 (layout && layout->flags.q.coherent);
7438 fields[i].memory_volatile = qual->flags.q._volatile ||
7439 (layout && layout->flags.q._volatile);
7440 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7441 (layout && layout->flags.q.restrict_flag);
7442
7443 if (field_type->without_array()->is_image()) {
7444 if (qual->flags.q.explicit_image_format) {
7445 if (qual->image_base_type !=
7446 field_type->without_array()->sampled_type) {
7447 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7448 "match the base data type of the image");
7449 }
7450
7451 fields[i].image_format = qual->image_format;
7452 } else {
7453 if (!qual->flags.q.write_only) {
7454 _mesa_glsl_error(&loc, state, "image not qualified with "
7455 "`writeonly' must have a format layout "
7456 "qualifier");
7457 }
7458
7459 fields[i].image_format = GL_NONE;
7460 }
7461 }
7462 }
7463
7464 i++;
7465 }
7466 }
7467
7468 assert(i == decl_count);
7469
7470 *fields_ret = fields;
7471 return decl_count;
7472 }
7473
7474
7475 ir_rvalue *
7476 ast_struct_specifier::hir(exec_list *instructions,
7477 struct _mesa_glsl_parse_state *state)
7478 {
7479 YYLTYPE loc = this->get_location();
7480
7481 unsigned expl_location = 0;
7482 if (layout && layout->flags.q.explicit_location) {
7483 if (!process_qualifier_constant(state, &loc, "location",
7484 layout->location, &expl_location)) {
7485 return NULL;
7486 } else {
7487 expl_location = VARYING_SLOT_VAR0 + expl_location;
7488 }
7489 }
7490
7491 glsl_struct_field *fields;
7492 unsigned decl_count =
7493 ast_process_struct_or_iface_block_members(instructions,
7494 state,
7495 &this->declarations,
7496 &fields,
7497 false,
7498 GLSL_MATRIX_LAYOUT_INHERITED,
7499 false /* allow_reserved_names */,
7500 ir_var_auto,
7501 layout,
7502 0, /* for interface only */
7503 0, /* for interface only */
7504 0, /* for interface only */
7505 expl_location,
7506 0 /* for interface only */);
7507
7508 validate_identifier(this->name, loc, state);
7509
7510 type = glsl_type::get_record_instance(fields, decl_count, this->name);
7511
7512 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7513 const glsl_type *match = state->symbols->get_type(name);
7514 /* allow struct matching for desktop GL - older UE4 does this */
7515 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, false))
7516 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7517 else
7518 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7519 } else {
7520 const glsl_type **s = reralloc(state, state->user_structures,
7521 const glsl_type *,
7522 state->num_user_structures + 1);
7523 if (s != NULL) {
7524 s[state->num_user_structures] = type;
7525 state->user_structures = s;
7526 state->num_user_structures++;
7527 }
7528 }
7529
7530 /* Structure type definitions do not have r-values.
7531 */
7532 return NULL;
7533 }
7534
7535
7536 /**
7537 * Visitor class which detects whether a given interface block has been used.
7538 */
7539 class interface_block_usage_visitor : public ir_hierarchical_visitor
7540 {
7541 public:
7542 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7543 : mode(mode), block(block), found(false)
7544 {
7545 }
7546
7547 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7548 {
7549 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7550 found = true;
7551 return visit_stop;
7552 }
7553 return visit_continue;
7554 }
7555
7556 bool usage_found() const
7557 {
7558 return this->found;
7559 }
7560
7561 private:
7562 ir_variable_mode mode;
7563 const glsl_type *block;
7564 bool found;
7565 };
7566
7567 static bool
7568 is_unsized_array_last_element(ir_variable *v)
7569 {
7570 const glsl_type *interface_type = v->get_interface_type();
7571 int length = interface_type->length;
7572
7573 assert(v->type->is_unsized_array());
7574
7575 /* Check if it is the last element of the interface */
7576 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7577 return true;
7578 return false;
7579 }
7580
7581 static void
7582 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7583 {
7584 var->data.memory_read_only = field.memory_read_only;
7585 var->data.memory_write_only = field.memory_write_only;
7586 var->data.memory_coherent = field.memory_coherent;
7587 var->data.memory_volatile = field.memory_volatile;
7588 var->data.memory_restrict = field.memory_restrict;
7589 }
7590
7591 ir_rvalue *
7592 ast_interface_block::hir(exec_list *instructions,
7593 struct _mesa_glsl_parse_state *state)
7594 {
7595 YYLTYPE loc = this->get_location();
7596
7597 /* Interface blocks must be declared at global scope */
7598 if (state->current_function != NULL) {
7599 _mesa_glsl_error(&loc, state,
7600 "Interface block `%s' must be declared "
7601 "at global scope",
7602 this->block_name);
7603 }
7604
7605 /* Validate qualifiers:
7606 *
7607 * - Layout Qualifiers as per the table in Section 4.4
7608 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7609 *
7610 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7611 * GLSL 4.50 spec:
7612 *
7613 * "Additionally, memory qualifiers may also be used in the declaration
7614 * of shader storage blocks"
7615 *
7616 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7617 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7618 * Layout Qualifiers) of the GLSL 4.50 spec says:
7619 *
7620 * "The std430 qualifier is supported only for shader storage blocks;
7621 * using std430 on a uniform block will result in a compile-time error."
7622 */
7623 ast_type_qualifier allowed_blk_qualifiers;
7624 allowed_blk_qualifiers.flags.i = 0;
7625 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7626 allowed_blk_qualifiers.flags.q.shared = 1;
7627 allowed_blk_qualifiers.flags.q.packed = 1;
7628 allowed_blk_qualifiers.flags.q.std140 = 1;
7629 allowed_blk_qualifiers.flags.q.row_major = 1;
7630 allowed_blk_qualifiers.flags.q.column_major = 1;
7631 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7632 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7633 if (this->layout.flags.q.buffer) {
7634 allowed_blk_qualifiers.flags.q.buffer = 1;
7635 allowed_blk_qualifiers.flags.q.std430 = 1;
7636 allowed_blk_qualifiers.flags.q.coherent = 1;
7637 allowed_blk_qualifiers.flags.q._volatile = 1;
7638 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7639 allowed_blk_qualifiers.flags.q.read_only = 1;
7640 allowed_blk_qualifiers.flags.q.write_only = 1;
7641 } else {
7642 allowed_blk_qualifiers.flags.q.uniform = 1;
7643 }
7644 } else {
7645 /* Interface block */
7646 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7647
7648 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7649 if (this->layout.flags.q.out) {
7650 allowed_blk_qualifiers.flags.q.out = 1;
7651 if (state->stage == MESA_SHADER_GEOMETRY ||
7652 state->stage == MESA_SHADER_TESS_CTRL ||
7653 state->stage == MESA_SHADER_TESS_EVAL ||
7654 state->stage == MESA_SHADER_VERTEX ) {
7655 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7656 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7657 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7658 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7659 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7660 if (state->stage == MESA_SHADER_GEOMETRY) {
7661 allowed_blk_qualifiers.flags.q.stream = 1;
7662 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7663 }
7664 if (state->stage == MESA_SHADER_TESS_CTRL) {
7665 allowed_blk_qualifiers.flags.q.patch = 1;
7666 }
7667 }
7668 } else {
7669 allowed_blk_qualifiers.flags.q.in = 1;
7670 if (state->stage == MESA_SHADER_TESS_EVAL) {
7671 allowed_blk_qualifiers.flags.q.patch = 1;
7672 }
7673 }
7674 }
7675
7676 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7677 "invalid qualifier for block",
7678 this->block_name);
7679
7680 enum glsl_interface_packing packing;
7681 if (this->layout.flags.q.std140) {
7682 packing = GLSL_INTERFACE_PACKING_STD140;
7683 } else if (this->layout.flags.q.packed) {
7684 packing = GLSL_INTERFACE_PACKING_PACKED;
7685 } else if (this->layout.flags.q.std430) {
7686 packing = GLSL_INTERFACE_PACKING_STD430;
7687 } else {
7688 /* The default layout is shared.
7689 */
7690 packing = GLSL_INTERFACE_PACKING_SHARED;
7691 }
7692
7693 ir_variable_mode var_mode;
7694 const char *iface_type_name;
7695 if (this->layout.flags.q.in) {
7696 var_mode = ir_var_shader_in;
7697 iface_type_name = "in";
7698 } else if (this->layout.flags.q.out) {
7699 var_mode = ir_var_shader_out;
7700 iface_type_name = "out";
7701 } else if (this->layout.flags.q.uniform) {
7702 var_mode = ir_var_uniform;
7703 iface_type_name = "uniform";
7704 } else if (this->layout.flags.q.buffer) {
7705 var_mode = ir_var_shader_storage;
7706 iface_type_name = "buffer";
7707 } else {
7708 var_mode = ir_var_auto;
7709 iface_type_name = "UNKNOWN";
7710 assert(!"interface block layout qualifier not found!");
7711 }
7712
7713 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7714 if (this->layout.flags.q.row_major)
7715 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7716 else if (this->layout.flags.q.column_major)
7717 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7718
7719 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7720 exec_list declared_variables;
7721 glsl_struct_field *fields;
7722
7723 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7724 * that we don't have incompatible qualifiers
7725 */
7726 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7727 _mesa_glsl_error(&loc, state,
7728 "Interface block sets both readonly and writeonly");
7729 }
7730
7731 unsigned qual_stream;
7732 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7733 &qual_stream) ||
7734 !validate_stream_qualifier(&loc, state, qual_stream)) {
7735 /* If the stream qualifier is invalid it doesn't make sense to continue
7736 * on and try to compare stream layouts on member variables against it
7737 * so just return early.
7738 */
7739 return NULL;
7740 }
7741
7742 unsigned qual_xfb_buffer;
7743 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7744 layout.xfb_buffer, &qual_xfb_buffer) ||
7745 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7746 return NULL;
7747 }
7748
7749 unsigned qual_xfb_offset;
7750 if (layout.flags.q.explicit_xfb_offset) {
7751 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7752 layout.offset, &qual_xfb_offset)) {
7753 return NULL;
7754 }
7755 }
7756
7757 unsigned qual_xfb_stride;
7758 if (layout.flags.q.explicit_xfb_stride) {
7759 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7760 layout.xfb_stride, &qual_xfb_stride)) {
7761 return NULL;
7762 }
7763 }
7764
7765 unsigned expl_location = 0;
7766 if (layout.flags.q.explicit_location) {
7767 if (!process_qualifier_constant(state, &loc, "location",
7768 layout.location, &expl_location)) {
7769 return NULL;
7770 } else {
7771 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7772 : VARYING_SLOT_VAR0;
7773 }
7774 }
7775
7776 unsigned expl_align = 0;
7777 if (layout.flags.q.explicit_align) {
7778 if (!process_qualifier_constant(state, &loc, "align",
7779 layout.align, &expl_align)) {
7780 return NULL;
7781 } else {
7782 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7783 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7784 "power of 2.");
7785 return NULL;
7786 }
7787 }
7788 }
7789
7790 unsigned int num_variables =
7791 ast_process_struct_or_iface_block_members(&declared_variables,
7792 state,
7793 &this->declarations,
7794 &fields,
7795 true,
7796 matrix_layout,
7797 redeclaring_per_vertex,
7798 var_mode,
7799 &this->layout,
7800 qual_stream,
7801 qual_xfb_buffer,
7802 qual_xfb_offset,
7803 expl_location,
7804 expl_align);
7805
7806 if (!redeclaring_per_vertex) {
7807 validate_identifier(this->block_name, loc, state);
7808
7809 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7810 *
7811 * "Block names have no other use within a shader beyond interface
7812 * matching; it is a compile-time error to use a block name at global
7813 * scope for anything other than as a block name."
7814 */
7815 ir_variable *var = state->symbols->get_variable(this->block_name);
7816 if (var && !var->type->is_interface()) {
7817 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7818 "already used in the scope.",
7819 this->block_name);
7820 }
7821 }
7822
7823 const glsl_type *earlier_per_vertex = NULL;
7824 if (redeclaring_per_vertex) {
7825 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7826 * the named interface block gl_in, we can find it by looking at the
7827 * previous declaration of gl_in. Otherwise we can find it by looking
7828 * at the previous decalartion of any of the built-in outputs,
7829 * e.g. gl_Position.
7830 *
7831 * Also check that the instance name and array-ness of the redeclaration
7832 * are correct.
7833 */
7834 switch (var_mode) {
7835 case ir_var_shader_in:
7836 if (ir_variable *earlier_gl_in =
7837 state->symbols->get_variable("gl_in")) {
7838 earlier_per_vertex = earlier_gl_in->get_interface_type();
7839 } else {
7840 _mesa_glsl_error(&loc, state,
7841 "redeclaration of gl_PerVertex input not allowed "
7842 "in the %s shader",
7843 _mesa_shader_stage_to_string(state->stage));
7844 }
7845 if (this->instance_name == NULL ||
7846 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7847 !this->array_specifier->is_single_dimension()) {
7848 _mesa_glsl_error(&loc, state,
7849 "gl_PerVertex input must be redeclared as "
7850 "gl_in[]");
7851 }
7852 break;
7853 case ir_var_shader_out:
7854 if (ir_variable *earlier_gl_Position =
7855 state->symbols->get_variable("gl_Position")) {
7856 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7857 } else if (ir_variable *earlier_gl_out =
7858 state->symbols->get_variable("gl_out")) {
7859 earlier_per_vertex = earlier_gl_out->get_interface_type();
7860 } else {
7861 _mesa_glsl_error(&loc, state,
7862 "redeclaration of gl_PerVertex output not "
7863 "allowed in the %s shader",
7864 _mesa_shader_stage_to_string(state->stage));
7865 }
7866 if (state->stage == MESA_SHADER_TESS_CTRL) {
7867 if (this->instance_name == NULL ||
7868 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7869 _mesa_glsl_error(&loc, state,
7870 "gl_PerVertex output must be redeclared as "
7871 "gl_out[]");
7872 }
7873 } else {
7874 if (this->instance_name != NULL) {
7875 _mesa_glsl_error(&loc, state,
7876 "gl_PerVertex output may not be redeclared with "
7877 "an instance name");
7878 }
7879 }
7880 break;
7881 default:
7882 _mesa_glsl_error(&loc, state,
7883 "gl_PerVertex must be declared as an input or an "
7884 "output");
7885 break;
7886 }
7887
7888 if (earlier_per_vertex == NULL) {
7889 /* An error has already been reported. Bail out to avoid null
7890 * dereferences later in this function.
7891 */
7892 return NULL;
7893 }
7894
7895 /* Copy locations from the old gl_PerVertex interface block. */
7896 for (unsigned i = 0; i < num_variables; i++) {
7897 int j = earlier_per_vertex->field_index(fields[i].name);
7898 if (j == -1) {
7899 _mesa_glsl_error(&loc, state,
7900 "redeclaration of gl_PerVertex must be a subset "
7901 "of the built-in members of gl_PerVertex");
7902 } else {
7903 fields[i].location =
7904 earlier_per_vertex->fields.structure[j].location;
7905 fields[i].offset =
7906 earlier_per_vertex->fields.structure[j].offset;
7907 fields[i].interpolation =
7908 earlier_per_vertex->fields.structure[j].interpolation;
7909 fields[i].centroid =
7910 earlier_per_vertex->fields.structure[j].centroid;
7911 fields[i].sample =
7912 earlier_per_vertex->fields.structure[j].sample;
7913 fields[i].patch =
7914 earlier_per_vertex->fields.structure[j].patch;
7915 fields[i].precision =
7916 earlier_per_vertex->fields.structure[j].precision;
7917 fields[i].explicit_xfb_buffer =
7918 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7919 fields[i].xfb_buffer =
7920 earlier_per_vertex->fields.structure[j].xfb_buffer;
7921 fields[i].xfb_stride =
7922 earlier_per_vertex->fields.structure[j].xfb_stride;
7923 }
7924 }
7925
7926 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7927 * spec:
7928 *
7929 * If a built-in interface block is redeclared, it must appear in
7930 * the shader before any use of any member included in the built-in
7931 * declaration, or a compilation error will result.
7932 *
7933 * This appears to be a clarification to the behaviour established for
7934 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7935 * regardless of GLSL version.
7936 */
7937 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7938 v.run(instructions);
7939 if (v.usage_found()) {
7940 _mesa_glsl_error(&loc, state,
7941 "redeclaration of a built-in interface block must "
7942 "appear before any use of any member of the "
7943 "interface block");
7944 }
7945 }
7946
7947 const glsl_type *block_type =
7948 glsl_type::get_interface_instance(fields,
7949 num_variables,
7950 packing,
7951 matrix_layout ==
7952 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7953 this->block_name);
7954
7955 unsigned component_size = block_type->contains_double() ? 8 : 4;
7956 int xfb_offset =
7957 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7958 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7959 component_size);
7960
7961 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7962 YYLTYPE loc = this->get_location();
7963 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7964 "already taken in the current scope",
7965 this->block_name, iface_type_name);
7966 }
7967
7968 /* Since interface blocks cannot contain statements, it should be
7969 * impossible for the block to generate any instructions.
7970 */
7971 assert(declared_variables.is_empty());
7972
7973 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7974 *
7975 * Geometry shader input variables get the per-vertex values written
7976 * out by vertex shader output variables of the same names. Since a
7977 * geometry shader operates on a set of vertices, each input varying
7978 * variable (or input block, see interface blocks below) needs to be
7979 * declared as an array.
7980 */
7981 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7982 var_mode == ir_var_shader_in) {
7983 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7984 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7985 state->stage == MESA_SHADER_TESS_EVAL) &&
7986 !this->layout.flags.q.patch &&
7987 this->array_specifier == NULL &&
7988 var_mode == ir_var_shader_in) {
7989 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7990 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7991 !this->layout.flags.q.patch &&
7992 this->array_specifier == NULL &&
7993 var_mode == ir_var_shader_out) {
7994 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7995 }
7996
7997
7998 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7999 * says:
8000 *
8001 * "If an instance name (instance-name) is used, then it puts all the
8002 * members inside a scope within its own name space, accessed with the
8003 * field selector ( . ) operator (analogously to structures)."
8004 */
8005 if (this->instance_name) {
8006 if (redeclaring_per_vertex) {
8007 /* When a built-in in an unnamed interface block is redeclared,
8008 * get_variable_being_redeclared() calls
8009 * check_builtin_array_max_size() to make sure that built-in array
8010 * variables aren't redeclared to illegal sizes. But we're looking
8011 * at a redeclaration of a named built-in interface block. So we
8012 * have to manually call check_builtin_array_max_size() for all parts
8013 * of the interface that are arrays.
8014 */
8015 for (unsigned i = 0; i < num_variables; i++) {
8016 if (fields[i].type->is_array()) {
8017 const unsigned size = fields[i].type->array_size();
8018 check_builtin_array_max_size(fields[i].name, size, loc, state);
8019 }
8020 }
8021 } else {
8022 validate_identifier(this->instance_name, loc, state);
8023 }
8024
8025 ir_variable *var;
8026
8027 if (this->array_specifier != NULL) {
8028 const glsl_type *block_array_type =
8029 process_array_type(&loc, block_type, this->array_specifier, state);
8030
8031 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8032 *
8033 * For uniform blocks declared an array, each individual array
8034 * element corresponds to a separate buffer object backing one
8035 * instance of the block. As the array size indicates the number
8036 * of buffer objects needed, uniform block array declarations
8037 * must specify an array size.
8038 *
8039 * And a few paragraphs later:
8040 *
8041 * Geometry shader input blocks must be declared as arrays and
8042 * follow the array declaration and linking rules for all
8043 * geometry shader inputs. All other input and output block
8044 * arrays must specify an array size.
8045 *
8046 * The same applies to tessellation shaders.
8047 *
8048 * The upshot of this is that the only circumstance where an
8049 * interface array size *doesn't* need to be specified is on a
8050 * geometry shader input, tessellation control shader input,
8051 * tessellation control shader output, and tessellation evaluation
8052 * shader input.
8053 */
8054 if (block_array_type->is_unsized_array()) {
8055 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8056 state->stage == MESA_SHADER_TESS_CTRL ||
8057 state->stage == MESA_SHADER_TESS_EVAL;
8058 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8059
8060 if (this->layout.flags.q.in) {
8061 if (!allow_inputs)
8062 _mesa_glsl_error(&loc, state,
8063 "unsized input block arrays not allowed in "
8064 "%s shader",
8065 _mesa_shader_stage_to_string(state->stage));
8066 } else if (this->layout.flags.q.out) {
8067 if (!allow_outputs)
8068 _mesa_glsl_error(&loc, state,
8069 "unsized output block arrays not allowed in "
8070 "%s shader",
8071 _mesa_shader_stage_to_string(state->stage));
8072 } else {
8073 /* by elimination, this is a uniform block array */
8074 _mesa_glsl_error(&loc, state,
8075 "unsized uniform block arrays not allowed in "
8076 "%s shader",
8077 _mesa_shader_stage_to_string(state->stage));
8078 }
8079 }
8080
8081 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8082 *
8083 * * Arrays of arrays of blocks are not allowed
8084 */
8085 if (state->es_shader && block_array_type->is_array() &&
8086 block_array_type->fields.array->is_array()) {
8087 _mesa_glsl_error(&loc, state,
8088 "arrays of arrays interface blocks are "
8089 "not allowed");
8090 }
8091
8092 var = new(state) ir_variable(block_array_type,
8093 this->instance_name,
8094 var_mode);
8095 } else {
8096 var = new(state) ir_variable(block_type,
8097 this->instance_name,
8098 var_mode);
8099 }
8100
8101 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8102 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8103
8104 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8105 var->data.read_only = true;
8106
8107 var->data.patch = this->layout.flags.q.patch;
8108
8109 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8110 handle_geometry_shader_input_decl(state, loc, var);
8111 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8112 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8113 handle_tess_shader_input_decl(state, loc, var);
8114 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8115 handle_tess_ctrl_shader_output_decl(state, loc, var);
8116
8117 for (unsigned i = 0; i < num_variables; i++) {
8118 if (var->data.mode == ir_var_shader_storage)
8119 apply_memory_qualifiers(var, fields[i]);
8120 }
8121
8122 if (ir_variable *earlier =
8123 state->symbols->get_variable(this->instance_name)) {
8124 if (!redeclaring_per_vertex) {
8125 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8126 this->instance_name);
8127 }
8128 earlier->data.how_declared = ir_var_declared_normally;
8129 earlier->type = var->type;
8130 earlier->reinit_interface_type(block_type);
8131 delete var;
8132 } else {
8133 if (this->layout.flags.q.explicit_binding) {
8134 apply_explicit_binding(state, &loc, var, var->type,
8135 &this->layout);
8136 }
8137
8138 var->data.stream = qual_stream;
8139 if (layout.flags.q.explicit_location) {
8140 var->data.location = expl_location;
8141 var->data.explicit_location = true;
8142 }
8143
8144 state->symbols->add_variable(var);
8145 instructions->push_tail(var);
8146 }
8147 } else {
8148 /* In order to have an array size, the block must also be declared with
8149 * an instance name.
8150 */
8151 assert(this->array_specifier == NULL);
8152
8153 for (unsigned i = 0; i < num_variables; i++) {
8154 ir_variable *var =
8155 new(state) ir_variable(fields[i].type,
8156 ralloc_strdup(state, fields[i].name),
8157 var_mode);
8158 var->data.interpolation = fields[i].interpolation;
8159 var->data.centroid = fields[i].centroid;
8160 var->data.sample = fields[i].sample;
8161 var->data.patch = fields[i].patch;
8162 var->data.stream = qual_stream;
8163 var->data.location = fields[i].location;
8164
8165 if (fields[i].location != -1)
8166 var->data.explicit_location = true;
8167
8168 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8169 var->data.xfb_buffer = fields[i].xfb_buffer;
8170
8171 if (fields[i].offset != -1)
8172 var->data.explicit_xfb_offset = true;
8173 var->data.offset = fields[i].offset;
8174
8175 var->init_interface_type(block_type);
8176
8177 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8178 var->data.read_only = true;
8179
8180 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8181 if (state->es_shader) {
8182 var->data.precision =
8183 select_gles_precision(fields[i].precision, fields[i].type,
8184 state, &loc);
8185 }
8186
8187 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8188 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8189 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8190 } else {
8191 var->data.matrix_layout = fields[i].matrix_layout;
8192 }
8193
8194 if (var->data.mode == ir_var_shader_storage)
8195 apply_memory_qualifiers(var, fields[i]);
8196
8197 /* Examine var name here since var may get deleted in the next call */
8198 bool var_is_gl_id = is_gl_identifier(var->name);
8199
8200 if (redeclaring_per_vertex) {
8201 bool is_redeclaration;
8202 ir_variable *declared_var =
8203 get_variable_being_redeclared(var, loc, state,
8204 true /* allow_all_redeclarations */,
8205 &is_redeclaration);
8206 if (!var_is_gl_id || !is_redeclaration) {
8207 _mesa_glsl_error(&loc, state,
8208 "redeclaration of gl_PerVertex can only "
8209 "include built-in variables");
8210 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
8211 _mesa_glsl_error(&loc, state,
8212 "`%s' has already been redeclared",
8213 declared_var->name);
8214 } else {
8215 declared_var->data.how_declared = ir_var_declared_in_block;
8216 declared_var->reinit_interface_type(block_type);
8217 }
8218 continue;
8219 }
8220
8221 if (state->symbols->get_variable(var->name) != NULL)
8222 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8223
8224 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8225 * The UBO declaration itself doesn't get an ir_variable unless it
8226 * has an instance name. This is ugly.
8227 */
8228 if (this->layout.flags.q.explicit_binding) {
8229 apply_explicit_binding(state, &loc, var,
8230 var->get_interface_type(), &this->layout);
8231 }
8232
8233 if (var->type->is_unsized_array()) {
8234 if (var->is_in_shader_storage_block() &&
8235 is_unsized_array_last_element(var)) {
8236 var->data.from_ssbo_unsized_array = true;
8237 } else {
8238 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8239 *
8240 * "If an array is declared as the last member of a shader storage
8241 * block and the size is not specified at compile-time, it is
8242 * sized at run-time. In all other cases, arrays are sized only
8243 * at compile-time."
8244 *
8245 * In desktop GLSL it is allowed to have unsized-arrays that are
8246 * not last, as long as we can determine that they are implicitly
8247 * sized.
8248 */
8249 if (state->es_shader) {
8250 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8251 "definition: only last member of a shader "
8252 "storage block can be defined as unsized "
8253 "array", fields[i].name);
8254 }
8255 }
8256 }
8257
8258 state->symbols->add_variable(var);
8259 instructions->push_tail(var);
8260 }
8261
8262 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8263 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8264 *
8265 * It is also a compilation error ... to redeclare a built-in
8266 * block and then use a member from that built-in block that was
8267 * not included in the redeclaration.
8268 *
8269 * This appears to be a clarification to the behaviour established
8270 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8271 * behaviour regardless of GLSL version.
8272 *
8273 * To prevent the shader from using a member that was not included in
8274 * the redeclaration, we disable any ir_variables that are still
8275 * associated with the old declaration of gl_PerVertex (since we've
8276 * already updated all of the variables contained in the new
8277 * gl_PerVertex to point to it).
8278 *
8279 * As a side effect this will prevent
8280 * validate_intrastage_interface_blocks() from getting confused and
8281 * thinking there are conflicting definitions of gl_PerVertex in the
8282 * shader.
8283 */
8284 foreach_in_list_safe(ir_instruction, node, instructions) {
8285 ir_variable *const var = node->as_variable();
8286 if (var != NULL &&
8287 var->get_interface_type() == earlier_per_vertex &&
8288 var->data.mode == var_mode) {
8289 if (var->data.how_declared == ir_var_declared_normally) {
8290 _mesa_glsl_error(&loc, state,
8291 "redeclaration of gl_PerVertex cannot "
8292 "follow a redeclaration of `%s'",
8293 var->name);
8294 }
8295 state->symbols->disable_variable(var->name);
8296 var->remove();
8297 }
8298 }
8299 }
8300 }
8301
8302 return NULL;
8303 }
8304
8305
8306 ir_rvalue *
8307 ast_tcs_output_layout::hir(exec_list *instructions,
8308 struct _mesa_glsl_parse_state *state)
8309 {
8310 YYLTYPE loc = this->get_location();
8311
8312 unsigned num_vertices;
8313 if (!state->out_qualifier->vertices->
8314 process_qualifier_constant(state, "vertices", &num_vertices,
8315 false)) {
8316 /* return here to stop cascading incorrect error messages */
8317 return NULL;
8318 }
8319
8320 /* If any shader outputs occurred before this declaration and specified an
8321 * array size, make sure the size they specified is consistent with the
8322 * primitive type.
8323 */
8324 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8325 _mesa_glsl_error(&loc, state,
8326 "this tessellation control shader output layout "
8327 "specifies %u vertices, but a previous output "
8328 "is declared with size %u",
8329 num_vertices, state->tcs_output_size);
8330 return NULL;
8331 }
8332
8333 state->tcs_output_vertices_specified = true;
8334
8335 /* If any shader outputs occurred before this declaration and did not
8336 * specify an array size, their size is determined now.
8337 */
8338 foreach_in_list (ir_instruction, node, instructions) {
8339 ir_variable *var = node->as_variable();
8340 if (var == NULL || var->data.mode != ir_var_shader_out)
8341 continue;
8342
8343 /* Note: Not all tessellation control shader output are arrays. */
8344 if (!var->type->is_unsized_array() || var->data.patch)
8345 continue;
8346
8347 if (var->data.max_array_access >= (int)num_vertices) {
8348 _mesa_glsl_error(&loc, state,
8349 "this tessellation control shader output layout "
8350 "specifies %u vertices, but an access to element "
8351 "%u of output `%s' already exists", num_vertices,
8352 var->data.max_array_access, var->name);
8353 } else {
8354 var->type = glsl_type::get_array_instance(var->type->fields.array,
8355 num_vertices);
8356 }
8357 }
8358
8359 return NULL;
8360 }
8361
8362
8363 ir_rvalue *
8364 ast_gs_input_layout::hir(exec_list *instructions,
8365 struct _mesa_glsl_parse_state *state)
8366 {
8367 YYLTYPE loc = this->get_location();
8368
8369 /* Should have been prevented by the parser. */
8370 assert(!state->gs_input_prim_type_specified
8371 || state->in_qualifier->prim_type == this->prim_type);
8372
8373 /* If any shader inputs occurred before this declaration and specified an
8374 * array size, make sure the size they specified is consistent with the
8375 * primitive type.
8376 */
8377 unsigned num_vertices = vertices_per_prim(this->prim_type);
8378 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8379 _mesa_glsl_error(&loc, state,
8380 "this geometry shader input layout implies %u vertices"
8381 " per primitive, but a previous input is declared"
8382 " with size %u", num_vertices, state->gs_input_size);
8383 return NULL;
8384 }
8385
8386 state->gs_input_prim_type_specified = true;
8387
8388 /* If any shader inputs occurred before this declaration and did not
8389 * specify an array size, their size is determined now.
8390 */
8391 foreach_in_list(ir_instruction, node, instructions) {
8392 ir_variable *var = node->as_variable();
8393 if (var == NULL || var->data.mode != ir_var_shader_in)
8394 continue;
8395
8396 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8397 * array; skip it.
8398 */
8399
8400 if (var->type->is_unsized_array()) {
8401 if (var->data.max_array_access >= (int)num_vertices) {
8402 _mesa_glsl_error(&loc, state,
8403 "this geometry shader input layout implies %u"
8404 " vertices, but an access to element %u of input"
8405 " `%s' already exists", num_vertices,
8406 var->data.max_array_access, var->name);
8407 } else {
8408 var->type = glsl_type::get_array_instance(var->type->fields.array,
8409 num_vertices);
8410 }
8411 }
8412 }
8413
8414 return NULL;
8415 }
8416
8417
8418 ir_rvalue *
8419 ast_cs_input_layout::hir(exec_list *instructions,
8420 struct _mesa_glsl_parse_state *state)
8421 {
8422 YYLTYPE loc = this->get_location();
8423
8424 /* From the ARB_compute_shader specification:
8425 *
8426 * If the local size of the shader in any dimension is greater
8427 * than the maximum size supported by the implementation for that
8428 * dimension, a compile-time error results.
8429 *
8430 * It is not clear from the spec how the error should be reported if
8431 * the total size of the work group exceeds
8432 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8433 * report it at compile time as well.
8434 */
8435 GLuint64 total_invocations = 1;
8436 unsigned qual_local_size[3];
8437 for (int i = 0; i < 3; i++) {
8438
8439 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8440 'x' + i);
8441 /* Infer a local_size of 1 for unspecified dimensions */
8442 if (this->local_size[i] == NULL) {
8443 qual_local_size[i] = 1;
8444 } else if (!this->local_size[i]->
8445 process_qualifier_constant(state, local_size_str,
8446 &qual_local_size[i], false)) {
8447 ralloc_free(local_size_str);
8448 return NULL;
8449 }
8450 ralloc_free(local_size_str);
8451
8452 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8453 _mesa_glsl_error(&loc, state,
8454 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8455 " (%d)", 'x' + i,
8456 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8457 break;
8458 }
8459 total_invocations *= qual_local_size[i];
8460 if (total_invocations >
8461 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8462 _mesa_glsl_error(&loc, state,
8463 "product of local_sizes exceeds "
8464 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8465 state->ctx->Const.MaxComputeWorkGroupInvocations);
8466 break;
8467 }
8468 }
8469
8470 /* If any compute input layout declaration preceded this one, make sure it
8471 * was consistent with this one.
8472 */
8473 if (state->cs_input_local_size_specified) {
8474 for (int i = 0; i < 3; i++) {
8475 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8476 _mesa_glsl_error(&loc, state,
8477 "compute shader input layout does not match"
8478 " previous declaration");
8479 return NULL;
8480 }
8481 }
8482 }
8483
8484 /* The ARB_compute_variable_group_size spec says:
8485 *
8486 * If a compute shader including a *local_size_variable* qualifier also
8487 * declares a fixed local group size using the *local_size_x*,
8488 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8489 * results
8490 */
8491 if (state->cs_input_local_size_variable_specified) {
8492 _mesa_glsl_error(&loc, state,
8493 "compute shader can't include both a variable and a "
8494 "fixed local group size");
8495 return NULL;
8496 }
8497
8498 state->cs_input_local_size_specified = true;
8499 for (int i = 0; i < 3; i++)
8500 state->cs_input_local_size[i] = qual_local_size[i];
8501
8502 /* We may now declare the built-in constant gl_WorkGroupSize (see
8503 * builtin_variable_generator::generate_constants() for why we didn't
8504 * declare it earlier).
8505 */
8506 ir_variable *var = new(state->symbols)
8507 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8508 var->data.how_declared = ir_var_declared_implicitly;
8509 var->data.read_only = true;
8510 instructions->push_tail(var);
8511 state->symbols->add_variable(var);
8512 ir_constant_data data;
8513 memset(&data, 0, sizeof(data));
8514 for (int i = 0; i < 3; i++)
8515 data.u[i] = qual_local_size[i];
8516 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8517 var->constant_initializer =
8518 new(var) ir_constant(glsl_type::uvec3_type, &data);
8519 var->data.has_initializer = true;
8520
8521 return NULL;
8522 }
8523
8524
8525 static void
8526 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8527 exec_list *instructions)
8528 {
8529 bool gl_FragColor_assigned = false;
8530 bool gl_FragData_assigned = false;
8531 bool gl_FragSecondaryColor_assigned = false;
8532 bool gl_FragSecondaryData_assigned = false;
8533 bool user_defined_fs_output_assigned = false;
8534 ir_variable *user_defined_fs_output = NULL;
8535
8536 /* It would be nice to have proper location information. */
8537 YYLTYPE loc;
8538 memset(&loc, 0, sizeof(loc));
8539
8540 foreach_in_list(ir_instruction, node, instructions) {
8541 ir_variable *var = node->as_variable();
8542
8543 if (!var || !var->data.assigned)
8544 continue;
8545
8546 if (strcmp(var->name, "gl_FragColor") == 0)
8547 gl_FragColor_assigned = true;
8548 else if (strcmp(var->name, "gl_FragData") == 0)
8549 gl_FragData_assigned = true;
8550 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8551 gl_FragSecondaryColor_assigned = true;
8552 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8553 gl_FragSecondaryData_assigned = true;
8554 else if (!is_gl_identifier(var->name)) {
8555 if (state->stage == MESA_SHADER_FRAGMENT &&
8556 var->data.mode == ir_var_shader_out) {
8557 user_defined_fs_output_assigned = true;
8558 user_defined_fs_output = var;
8559 }
8560 }
8561 }
8562
8563 /* From the GLSL 1.30 spec:
8564 *
8565 * "If a shader statically assigns a value to gl_FragColor, it
8566 * may not assign a value to any element of gl_FragData. If a
8567 * shader statically writes a value to any element of
8568 * gl_FragData, it may not assign a value to
8569 * gl_FragColor. That is, a shader may assign values to either
8570 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8571 * linked together must also consistently write just one of
8572 * these variables. Similarly, if user declared output
8573 * variables are in use (statically assigned to), then the
8574 * built-in variables gl_FragColor and gl_FragData may not be
8575 * assigned to. These incorrect usages all generate compile
8576 * time errors."
8577 */
8578 if (gl_FragColor_assigned && gl_FragData_assigned) {
8579 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8580 "`gl_FragColor' and `gl_FragData'");
8581 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8582 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8583 "`gl_FragColor' and `%s'",
8584 user_defined_fs_output->name);
8585 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8586 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8587 "`gl_FragSecondaryColorEXT' and"
8588 " `gl_FragSecondaryDataEXT'");
8589 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8590 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8591 "`gl_FragColor' and"
8592 " `gl_FragSecondaryDataEXT'");
8593 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8594 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8595 "`gl_FragData' and"
8596 " `gl_FragSecondaryColorEXT'");
8597 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8598 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8599 "`gl_FragData' and `%s'",
8600 user_defined_fs_output->name);
8601 }
8602
8603 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8604 !state->EXT_blend_func_extended_enable) {
8605 _mesa_glsl_error(&loc, state,
8606 "Dual source blending requires EXT_blend_func_extended");
8607 }
8608 }
8609
8610
8611 static void
8612 remove_per_vertex_blocks(exec_list *instructions,
8613 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8614 {
8615 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8616 * if it exists in this shader type.
8617 */
8618 const glsl_type *per_vertex = NULL;
8619 switch (mode) {
8620 case ir_var_shader_in:
8621 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8622 per_vertex = gl_in->get_interface_type();
8623 break;
8624 case ir_var_shader_out:
8625 if (ir_variable *gl_Position =
8626 state->symbols->get_variable("gl_Position")) {
8627 per_vertex = gl_Position->get_interface_type();
8628 }
8629 break;
8630 default:
8631 assert(!"Unexpected mode");
8632 break;
8633 }
8634
8635 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8636 * need to do anything.
8637 */
8638 if (per_vertex == NULL)
8639 return;
8640
8641 /* If the interface block is used by the shader, then we don't need to do
8642 * anything.
8643 */
8644 interface_block_usage_visitor v(mode, per_vertex);
8645 v.run(instructions);
8646 if (v.usage_found())
8647 return;
8648
8649 /* Remove any ir_variable declarations that refer to the interface block
8650 * we're removing.
8651 */
8652 foreach_in_list_safe(ir_instruction, node, instructions) {
8653 ir_variable *const var = node->as_variable();
8654 if (var != NULL && var->get_interface_type() == per_vertex &&
8655 var->data.mode == mode) {
8656 state->symbols->disable_variable(var->name);
8657 var->remove();
8658 }
8659 }
8660 }