glsl: handle memory qualifiers for struct with array of images
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue(state)) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 type = state->symbols->get_type(this->type_name);
2363 *name = this->type_name;
2364
2365 YYLTYPE loc = this->get_location();
2366 type = process_array_type(&loc, type, this->array_specifier, state);
2367
2368 return type;
2369 }
2370
2371 /**
2372 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2373 *
2374 * "The precision statement
2375 *
2376 * precision precision-qualifier type;
2377 *
2378 * can be used to establish a default precision qualifier. The type field can
2379 * be either int or float or any of the sampler types, (...) If type is float,
2380 * the directive applies to non-precision-qualified floating point type
2381 * (scalar, vector, and matrix) declarations. If type is int, the directive
2382 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2383 * and unsigned) declarations."
2384 *
2385 * We use the symbol table to keep the values of the default precisions for
2386 * each 'type' in each scope and we use the 'type' string from the precision
2387 * statement as key in the symbol table. When we want to retrieve the default
2388 * precision associated with a given glsl_type we need to know the type string
2389 * associated with it. This is what this function returns.
2390 */
2391 static const char *
2392 get_type_name_for_precision_qualifier(const glsl_type *type)
2393 {
2394 switch (type->base_type) {
2395 case GLSL_TYPE_FLOAT:
2396 return "float";
2397 case GLSL_TYPE_UINT:
2398 case GLSL_TYPE_INT:
2399 return "int";
2400 case GLSL_TYPE_ATOMIC_UINT:
2401 return "atomic_uint";
2402 case GLSL_TYPE_IMAGE:
2403 /* fallthrough */
2404 case GLSL_TYPE_SAMPLER: {
2405 const unsigned type_idx =
2406 type->sampler_array + 2 * type->sampler_shadow;
2407 const unsigned offset = type->is_sampler() ? 0 : 4;
2408 assert(type_idx < 4);
2409 switch (type->sampled_type) {
2410 case GLSL_TYPE_FLOAT:
2411 switch (type->sampler_dimensionality) {
2412 case GLSL_SAMPLER_DIM_1D: {
2413 assert(type->is_sampler());
2414 static const char *const names[4] = {
2415 "sampler1D", "sampler1DArray",
2416 "sampler1DShadow", "sampler1DArrayShadow"
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "sampler2D", "sampler2DArray",
2423 "sampler2DShadow", "sampler2DArrayShadow",
2424 "image2D", "image2DArray", NULL, NULL
2425 };
2426 return names[offset + type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_3D: {
2429 static const char *const names[8] = {
2430 "sampler3D", NULL, NULL, NULL,
2431 "image3D", NULL, NULL, NULL
2432 };
2433 return names[offset + type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_CUBE: {
2436 static const char *const names[8] = {
2437 "samplerCube", "samplerCubeArray",
2438 "samplerCubeShadow", "samplerCubeArrayShadow",
2439 "imageCube", NULL, NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_MS: {
2444 assert(type->is_sampler());
2445 static const char *const names[4] = {
2446 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_RECT: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "samplerRect", NULL, "samplerRectShadow", NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_BUF: {
2458 static const char *const names[8] = {
2459 "samplerBuffer", NULL, NULL, NULL,
2460 "imageBuffer", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_EXTERNAL: {
2465 assert(type->is_sampler());
2466 static const char *const names[4] = {
2467 "samplerExternalOES", NULL, NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 default:
2472 unreachable("Unsupported sampler/image dimensionality");
2473 } /* sampler/image float dimensionality */
2474 break;
2475 case GLSL_TYPE_INT:
2476 switch (type->sampler_dimensionality) {
2477 case GLSL_SAMPLER_DIM_1D: {
2478 assert(type->is_sampler());
2479 static const char *const names[4] = {
2480 "isampler1D", "isampler1DArray", NULL, NULL
2481 };
2482 return names[type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_2D: {
2485 static const char *const names[8] = {
2486 "isampler2D", "isampler2DArray", NULL, NULL,
2487 "iimage2D", "iimage2DArray", NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_3D: {
2492 static const char *const names[8] = {
2493 "isampler3D", NULL, NULL, NULL,
2494 "iimage3D", NULL, NULL, NULL
2495 };
2496 return names[offset + type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_CUBE: {
2499 static const char *const names[8] = {
2500 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2501 "iimageCube", NULL, NULL, NULL
2502 };
2503 return names[offset + type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_MS: {
2506 assert(type->is_sampler());
2507 static const char *const names[4] = {
2508 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2509 };
2510 return names[type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_RECT: {
2513 assert(type->is_sampler());
2514 static const char *const names[4] = {
2515 "isamplerRect", NULL, "isamplerRectShadow", NULL
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_BUF: {
2520 static const char *const names[8] = {
2521 "isamplerBuffer", NULL, NULL, NULL,
2522 "iimageBuffer", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 default:
2527 unreachable("Unsupported isampler/iimage dimensionality");
2528 } /* sampler/image int dimensionality */
2529 break;
2530 case GLSL_TYPE_UINT:
2531 switch (type->sampler_dimensionality) {
2532 case GLSL_SAMPLER_DIM_1D: {
2533 assert(type->is_sampler());
2534 static const char *const names[4] = {
2535 "usampler1D", "usampler1DArray", NULL, NULL
2536 };
2537 return names[type_idx];
2538 }
2539 case GLSL_SAMPLER_DIM_2D: {
2540 static const char *const names[8] = {
2541 "usampler2D", "usampler2DArray", NULL, NULL,
2542 "uimage2D", "uimage2DArray", NULL, NULL
2543 };
2544 return names[offset + type_idx];
2545 }
2546 case GLSL_SAMPLER_DIM_3D: {
2547 static const char *const names[8] = {
2548 "usampler3D", NULL, NULL, NULL,
2549 "uimage3D", NULL, NULL, NULL
2550 };
2551 return names[offset + type_idx];
2552 }
2553 case GLSL_SAMPLER_DIM_CUBE: {
2554 static const char *const names[8] = {
2555 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2556 "uimageCube", NULL, NULL, NULL
2557 };
2558 return names[offset + type_idx];
2559 }
2560 case GLSL_SAMPLER_DIM_MS: {
2561 assert(type->is_sampler());
2562 static const char *const names[4] = {
2563 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2564 };
2565 return names[type_idx];
2566 }
2567 case GLSL_SAMPLER_DIM_RECT: {
2568 assert(type->is_sampler());
2569 static const char *const names[4] = {
2570 "usamplerRect", NULL, "usamplerRectShadow", NULL
2571 };
2572 return names[type_idx];
2573 }
2574 case GLSL_SAMPLER_DIM_BUF: {
2575 static const char *const names[8] = {
2576 "usamplerBuffer", NULL, NULL, NULL,
2577 "uimageBuffer", NULL, NULL, NULL
2578 };
2579 return names[offset + type_idx];
2580 }
2581 default:
2582 unreachable("Unsupported usampler/uimage dimensionality");
2583 } /* sampler/image uint dimensionality */
2584 break;
2585 default:
2586 unreachable("Unsupported sampler/image type");
2587 } /* sampler/image type */
2588 break;
2589 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2590 break;
2591 default:
2592 unreachable("Unsupported type");
2593 } /* base type */
2594 }
2595
2596 static unsigned
2597 select_gles_precision(unsigned qual_precision,
2598 const glsl_type *type,
2599 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2600 {
2601 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2602 * In GLES we take the precision from the type qualifier if present,
2603 * otherwise, if the type of the variable allows precision qualifiers at
2604 * all, we look for the default precision qualifier for that type in the
2605 * current scope.
2606 */
2607 assert(state->es_shader);
2608
2609 unsigned precision = GLSL_PRECISION_NONE;
2610 if (qual_precision) {
2611 precision = qual_precision;
2612 } else if (precision_qualifier_allowed(type)) {
2613 const char *type_name =
2614 get_type_name_for_precision_qualifier(type->without_array());
2615 assert(type_name != NULL);
2616
2617 precision =
2618 state->symbols->get_default_precision_qualifier(type_name);
2619 if (precision == ast_precision_none) {
2620 _mesa_glsl_error(loc, state,
2621 "No precision specified in this scope for type `%s'",
2622 type->name);
2623 }
2624 }
2625
2626
2627 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2628 *
2629 * "The default precision of all atomic types is highp. It is an error to
2630 * declare an atomic type with a different precision or to specify the
2631 * default precision for an atomic type to be lowp or mediump."
2632 */
2633 if (type->is_atomic_uint() && precision != ast_precision_high) {
2634 _mesa_glsl_error(loc, state,
2635 "atomic_uint can only have highp precision qualifier");
2636 }
2637
2638 return precision;
2639 }
2640
2641 const glsl_type *
2642 ast_fully_specified_type::glsl_type(const char **name,
2643 struct _mesa_glsl_parse_state *state) const
2644 {
2645 return this->specifier->glsl_type(name, state);
2646 }
2647
2648 /**
2649 * Determine whether a toplevel variable declaration declares a varying. This
2650 * function operates by examining the variable's mode and the shader target,
2651 * so it correctly identifies linkage variables regardless of whether they are
2652 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2653 *
2654 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2655 * this function will produce undefined results.
2656 */
2657 static bool
2658 is_varying_var(ir_variable *var, gl_shader_stage target)
2659 {
2660 switch (target) {
2661 case MESA_SHADER_VERTEX:
2662 return var->data.mode == ir_var_shader_out;
2663 case MESA_SHADER_FRAGMENT:
2664 return var->data.mode == ir_var_shader_in;
2665 default:
2666 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2667 }
2668 }
2669
2670 static bool
2671 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2672 {
2673 if (is_varying_var(var, state->stage))
2674 return true;
2675
2676 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2677 * "Only variables output from a vertex shader can be candidates
2678 * for invariance".
2679 */
2680 if (!state->is_version(130, 0))
2681 return false;
2682
2683 /*
2684 * Later specs remove this language - so allowed invariant
2685 * on fragment shader outputs as well.
2686 */
2687 if (state->stage == MESA_SHADER_FRAGMENT &&
2688 var->data.mode == ir_var_shader_out)
2689 return true;
2690 return false;
2691 }
2692
2693 /**
2694 * Matrix layout qualifiers are only allowed on certain types
2695 */
2696 static void
2697 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2698 YYLTYPE *loc,
2699 const glsl_type *type,
2700 ir_variable *var)
2701 {
2702 if (var && !var->is_in_buffer_block()) {
2703 /* Layout qualifiers may only apply to interface blocks and fields in
2704 * them.
2705 */
2706 _mesa_glsl_error(loc, state,
2707 "uniform block layout qualifiers row_major and "
2708 "column_major may not be applied to variables "
2709 "outside of uniform blocks");
2710 } else if (!type->without_array()->is_matrix()) {
2711 /* The OpenGL ES 3.0 conformance tests did not originally allow
2712 * matrix layout qualifiers on non-matrices. However, the OpenGL
2713 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2714 * amended to specifically allow these layouts on all types. Emit
2715 * a warning so that people know their code may not be portable.
2716 */
2717 _mesa_glsl_warning(loc, state,
2718 "uniform block layout qualifiers row_major and "
2719 "column_major applied to non-matrix types may "
2720 "be rejected by older compilers");
2721 }
2722 }
2723
2724 static bool
2725 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2726 struct _mesa_glsl_parse_state *state,
2727 unsigned xfb_buffer) {
2728 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2729 _mesa_glsl_error(loc, state,
2730 "invalid xfb_buffer specified %d is larger than "
2731 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2732 xfb_buffer,
2733 state->Const.MaxTransformFeedbackBuffers - 1);
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 /* From the ARB_enhanced_layouts spec:
2741 *
2742 * "Variables and block members qualified with *xfb_offset* can be
2743 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2744 * The offset must be a multiple of the size of the first component of
2745 * the first qualified variable or block member, or a compile-time error
2746 * results. Further, if applied to an aggregate containing a double,
2747 * the offset must also be a multiple of 8, and the space taken in the
2748 * buffer will be a multiple of 8.
2749 */
2750 static bool
2751 validate_xfb_offset_qualifier(YYLTYPE *loc,
2752 struct _mesa_glsl_parse_state *state,
2753 int xfb_offset, const glsl_type *type,
2754 unsigned component_size) {
2755 const glsl_type *t_without_array = type->without_array();
2756
2757 if (xfb_offset != -1 && type->is_unsized_array()) {
2758 _mesa_glsl_error(loc, state,
2759 "xfb_offset can't be used with unsized arrays.");
2760 return false;
2761 }
2762
2763 /* Make sure nested structs don't contain unsized arrays, and validate
2764 * any xfb_offsets on interface members.
2765 */
2766 if (t_without_array->is_record() || t_without_array->is_interface())
2767 for (unsigned int i = 0; i < t_without_array->length; i++) {
2768 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2769
2770 /* When the interface block doesn't have an xfb_offset qualifier then
2771 * we apply the component size rules at the member level.
2772 */
2773 if (xfb_offset == -1)
2774 component_size = member_t->contains_double() ? 8 : 4;
2775
2776 int xfb_offset = t_without_array->fields.structure[i].offset;
2777 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2778 component_size);
2779 }
2780
2781 /* Nested structs or interface block without offset may not have had an
2782 * offset applied yet so return.
2783 */
2784 if (xfb_offset == -1) {
2785 return true;
2786 }
2787
2788 if (xfb_offset % component_size) {
2789 _mesa_glsl_error(loc, state,
2790 "invalid qualifier xfb_offset=%d must be a multiple "
2791 "of the first component size of the first qualified "
2792 "variable or block member. Or double if an aggregate "
2793 "that contains a double (%d).",
2794 xfb_offset, component_size);
2795 return false;
2796 }
2797
2798 return true;
2799 }
2800
2801 static bool
2802 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2803 unsigned stream)
2804 {
2805 if (stream >= state->ctx->Const.MaxVertexStreams) {
2806 _mesa_glsl_error(loc, state,
2807 "invalid stream specified %d is larger than "
2808 "MAX_VERTEX_STREAMS - 1 (%d).",
2809 stream, state->ctx->Const.MaxVertexStreams - 1);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static void
2817 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc,
2819 ir_variable *var,
2820 const glsl_type *type,
2821 const ast_type_qualifier *qual)
2822 {
2823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2824 _mesa_glsl_error(loc, state,
2825 "the \"binding\" qualifier only applies to uniforms and "
2826 "shader storage buffer objects");
2827 return;
2828 }
2829
2830 unsigned qual_binding;
2831 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2832 &qual_binding)) {
2833 return;
2834 }
2835
2836 const struct gl_context *const ctx = state->ctx;
2837 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2838 unsigned max_index = qual_binding + elements - 1;
2839 const glsl_type *base_type = type->without_array();
2840
2841 if (base_type->is_interface()) {
2842 /* UBOs. From page 60 of the GLSL 4.20 specification:
2843 * "If the binding point for any uniform block instance is less than zero,
2844 * or greater than or equal to the implementation-dependent maximum
2845 * number of uniform buffer bindings, a compilation error will occur.
2846 * When the binding identifier is used with a uniform block instanced as
2847 * an array of size N, all elements of the array from binding through
2848 * binding + N – 1 must be within this range."
2849 *
2850 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2851 */
2852 if (qual->flags.q.uniform &&
2853 max_index >= ctx->Const.MaxUniformBufferBindings) {
2854 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2855 "the maximum number of UBO binding points (%d)",
2856 qual_binding, elements,
2857 ctx->Const.MaxUniformBufferBindings);
2858 return;
2859 }
2860
2861 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2862 * "If the binding point for any uniform or shader storage block instance
2863 * is less than zero, or greater than or equal to the
2864 * implementation-dependent maximum number of uniform buffer bindings, a
2865 * compile-time error will occur. When the binding identifier is used
2866 * with a uniform or shader storage block instanced as an array of size
2867 * N, all elements of the array from binding through binding + N – 1 must
2868 * be within this range."
2869 */
2870 if (qual->flags.q.buffer &&
2871 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2872 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2873 "the maximum number of SSBO binding points (%d)",
2874 qual_binding, elements,
2875 ctx->Const.MaxShaderStorageBufferBindings);
2876 return;
2877 }
2878 } else if (base_type->is_sampler()) {
2879 /* Samplers. From page 63 of the GLSL 4.20 specification:
2880 * "If the binding is less than zero, or greater than or equal to the
2881 * implementation-dependent maximum supported number of units, a
2882 * compilation error will occur. When the binding identifier is used
2883 * with an array of size N, all elements of the array from binding
2884 * through binding + N - 1 must be within this range."
2885 */
2886 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2887
2888 if (max_index >= limit) {
2889 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2890 "exceeds the maximum number of texture image units "
2891 "(%u)", qual_binding, elements, limit);
2892
2893 return;
2894 }
2895 } else if (base_type->contains_atomic()) {
2896 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2897 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2899 "maximum number of atomic counter buffer bindings "
2900 "(%u)", qual_binding,
2901 ctx->Const.MaxAtomicBufferBindings);
2902
2903 return;
2904 }
2905 } else if ((state->is_version(420, 310) ||
2906 state->ARB_shading_language_420pack_enable) &&
2907 base_type->is_image()) {
2908 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2909 if (max_index >= ctx->Const.MaxImageUnits) {
2910 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2911 "maximum number of image units (%d)", max_index,
2912 ctx->Const.MaxImageUnits);
2913 return;
2914 }
2915
2916 } else {
2917 _mesa_glsl_error(loc, state,
2918 "the \"binding\" qualifier only applies to uniform "
2919 "blocks, storage blocks, opaque variables, or arrays "
2920 "thereof");
2921 return;
2922 }
2923
2924 var->data.explicit_binding = true;
2925 var->data.binding = qual_binding;
2926
2927 return;
2928 }
2929
2930 static void
2931 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2932 YYLTYPE *loc,
2933 const glsl_interp_mode interpolation,
2934 const struct glsl_type *var_type,
2935 ir_variable_mode mode)
2936 {
2937 if (state->stage != MESA_SHADER_FRAGMENT ||
2938 interpolation == INTERP_MODE_FLAT ||
2939 mode != ir_var_shader_in)
2940 return;
2941
2942 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2943 * so must integer vertex outputs.
2944 *
2945 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2946 * "Fragment shader inputs that are signed or unsigned integers or
2947 * integer vectors must be qualified with the interpolation qualifier
2948 * flat."
2949 *
2950 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2951 * "Fragment shader inputs that are, or contain, signed or unsigned
2952 * integers or integer vectors must be qualified with the
2953 * interpolation qualifier flat."
2954 *
2955 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2956 * "Vertex shader outputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * Note that prior to GLSL 1.50, this requirement applied to vertex
2961 * outputs rather than fragment inputs. That creates problems in the
2962 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2963 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2964 * apply the restriction to both vertex outputs and fragment inputs.
2965 *
2966 * Note also that the desktop GLSL specs are missing the text "or
2967 * contain"; this is presumably an oversight, since there is no
2968 * reasonable way to interpolate a fragment shader input that contains
2969 * an integer. See Khronos bug #15671.
2970 */
2971 if (state->is_version(130, 300)
2972 && var_type->contains_integer()) {
2973 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2974 "an integer, then it must be qualified with 'flat'");
2975 }
2976
2977 /* Double fragment inputs must be qualified with 'flat'.
2978 *
2979 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2980 * "This extension does not support interpolation of double-precision
2981 * values; doubles used as fragment shader inputs must be qualified as
2982 * "flat"."
2983 *
2984 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2985 * "Fragment shader inputs that are signed or unsigned integers, integer
2986 * vectors, or any double-precision floating-point type must be
2987 * qualified with the interpolation qualifier flat."
2988 *
2989 * Note that the GLSL specs are missing the text "or contain"; this is
2990 * presumably an oversight. See Khronos bug #15671.
2991 *
2992 * The 'double' type does not exist in GLSL ES so far.
2993 */
2994 if (state->has_double()
2995 && var_type->contains_double()) {
2996 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2997 "a double, then it must be qualified with 'flat'");
2998 }
2999
3000 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3001 *
3002 * From section 4.3.4 of the ARB_bindless_texture spec:
3003 *
3004 * "(modify last paragraph, p. 35, allowing samplers and images as
3005 * fragment shader inputs) ... Fragment inputs can only be signed and
3006 * unsigned integers and integer vectors, floating point scalars,
3007 * floating-point vectors, matrices, sampler and image types, or arrays
3008 * or structures of these. Fragment shader inputs that are signed or
3009 * unsigned integers, integer vectors, or any double-precision floating-
3010 * point type, or any sampler or image type must be qualified with the
3011 * interpolation qualifier "flat"."
3012 */
3013 if (state->has_bindless()
3014 && (var_type->contains_sampler() || var_type->contains_image())) {
3015 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3016 "a bindless sampler (or image), then it must be "
3017 "qualified with 'flat'");
3018 }
3019 }
3020
3021 static void
3022 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3023 YYLTYPE *loc,
3024 const glsl_interp_mode interpolation,
3025 const struct ast_type_qualifier *qual,
3026 const struct glsl_type *var_type,
3027 ir_variable_mode mode)
3028 {
3029 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3030 * not to vertex shader inputs nor fragment shader outputs.
3031 *
3032 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3033 * "Outputs from a vertex shader (out) and inputs to a fragment
3034 * shader (in) can be further qualified with one or more of these
3035 * interpolation qualifiers"
3036 * ...
3037 * "These interpolation qualifiers may only precede the qualifiers in,
3038 * centroid in, out, or centroid out in a declaration. They do not apply
3039 * to the deprecated storage qualifiers varying or centroid
3040 * varying. They also do not apply to inputs into a vertex shader or
3041 * outputs from a fragment shader."
3042 *
3043 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3044 * "Outputs from a shader (out) and inputs to a shader (in) can be
3045 * further qualified with one of these interpolation qualifiers."
3046 * ...
3047 * "These interpolation qualifiers may only precede the qualifiers
3048 * in, centroid in, out, or centroid out in a declaration. They do
3049 * not apply to inputs into a vertex shader or outputs from a
3050 * fragment shader."
3051 */
3052 if (state->is_version(130, 300)
3053 && interpolation != INTERP_MODE_NONE) {
3054 const char *i = interpolation_string(interpolation);
3055 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3056 _mesa_glsl_error(loc, state,
3057 "interpolation qualifier `%s' can only be applied to "
3058 "shader inputs or outputs.", i);
3059
3060 switch (state->stage) {
3061 case MESA_SHADER_VERTEX:
3062 if (mode == ir_var_shader_in) {
3063 _mesa_glsl_error(loc, state,
3064 "interpolation qualifier '%s' cannot be applied to "
3065 "vertex shader inputs", i);
3066 }
3067 break;
3068 case MESA_SHADER_FRAGMENT:
3069 if (mode == ir_var_shader_out) {
3070 _mesa_glsl_error(loc, state,
3071 "interpolation qualifier '%s' cannot be applied to "
3072 "fragment shader outputs", i);
3073 }
3074 break;
3075 default:
3076 break;
3077 }
3078 }
3079
3080 /* Interpolation qualifiers cannot be applied to 'centroid' and
3081 * 'centroid varying'.
3082 *
3083 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3084 * "interpolation qualifiers may only precede the qualifiers in,
3085 * centroid in, out, or centroid out in a declaration. They do not apply
3086 * to the deprecated storage qualifiers varying or centroid varying."
3087 *
3088 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3089 */
3090 if (state->is_version(130, 0)
3091 && interpolation != INTERP_MODE_NONE
3092 && qual->flags.q.varying) {
3093
3094 const char *i = interpolation_string(interpolation);
3095 const char *s;
3096 if (qual->flags.q.centroid)
3097 s = "centroid varying";
3098 else
3099 s = "varying";
3100
3101 _mesa_glsl_error(loc, state,
3102 "qualifier '%s' cannot be applied to the "
3103 "deprecated storage qualifier '%s'", i, s);
3104 }
3105
3106 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3107 var_type, mode);
3108 }
3109
3110 static glsl_interp_mode
3111 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3112 const struct glsl_type *var_type,
3113 ir_variable_mode mode,
3114 struct _mesa_glsl_parse_state *state,
3115 YYLTYPE *loc)
3116 {
3117 glsl_interp_mode interpolation;
3118 if (qual->flags.q.flat)
3119 interpolation = INTERP_MODE_FLAT;
3120 else if (qual->flags.q.noperspective)
3121 interpolation = INTERP_MODE_NOPERSPECTIVE;
3122 else if (qual->flags.q.smooth)
3123 interpolation = INTERP_MODE_SMOOTH;
3124 else if (state->es_shader &&
3125 ((mode == ir_var_shader_in &&
3126 state->stage != MESA_SHADER_VERTEX) ||
3127 (mode == ir_var_shader_out &&
3128 state->stage != MESA_SHADER_FRAGMENT)))
3129 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3130 *
3131 * "When no interpolation qualifier is present, smooth interpolation
3132 * is used."
3133 */
3134 interpolation = INTERP_MODE_SMOOTH;
3135 else
3136 interpolation = INTERP_MODE_NONE;
3137
3138 validate_interpolation_qualifier(state, loc,
3139 interpolation,
3140 qual, var_type, mode);
3141
3142 return interpolation;
3143 }
3144
3145
3146 static void
3147 apply_explicit_location(const struct ast_type_qualifier *qual,
3148 ir_variable *var,
3149 struct _mesa_glsl_parse_state *state,
3150 YYLTYPE *loc)
3151 {
3152 bool fail = false;
3153
3154 unsigned qual_location;
3155 if (!process_qualifier_constant(state, loc, "location", qual->location,
3156 &qual_location)) {
3157 return;
3158 }
3159
3160 /* Checks for GL_ARB_explicit_uniform_location. */
3161 if (qual->flags.q.uniform) {
3162 if (!state->check_explicit_uniform_location_allowed(loc, var))
3163 return;
3164
3165 const struct gl_context *const ctx = state->ctx;
3166 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3167
3168 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3169 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3170 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3171 ctx->Const.MaxUserAssignableUniformLocations);
3172 return;
3173 }
3174
3175 var->data.explicit_location = true;
3176 var->data.location = qual_location;
3177 return;
3178 }
3179
3180 /* Between GL_ARB_explicit_attrib_location an
3181 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3182 * stage can be assigned explicit locations. The checking here associates
3183 * the correct extension with the correct stage's input / output:
3184 *
3185 * input output
3186 * ----- ------
3187 * vertex explicit_loc sso
3188 * tess control sso sso
3189 * tess eval sso sso
3190 * geometry sso sso
3191 * fragment sso explicit_loc
3192 */
3193 switch (state->stage) {
3194 case MESA_SHADER_VERTEX:
3195 if (var->data.mode == ir_var_shader_in) {
3196 if (!state->check_explicit_attrib_location_allowed(loc, var))
3197 return;
3198
3199 break;
3200 }
3201
3202 if (var->data.mode == ir_var_shader_out) {
3203 if (!state->check_separate_shader_objects_allowed(loc, var))
3204 return;
3205
3206 break;
3207 }
3208
3209 fail = true;
3210 break;
3211
3212 case MESA_SHADER_TESS_CTRL:
3213 case MESA_SHADER_TESS_EVAL:
3214 case MESA_SHADER_GEOMETRY:
3215 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3216 if (!state->check_separate_shader_objects_allowed(loc, var))
3217 return;
3218
3219 break;
3220 }
3221
3222 fail = true;
3223 break;
3224
3225 case MESA_SHADER_FRAGMENT:
3226 if (var->data.mode == ir_var_shader_in) {
3227 if (!state->check_separate_shader_objects_allowed(loc, var))
3228 return;
3229
3230 break;
3231 }
3232
3233 if (var->data.mode == ir_var_shader_out) {
3234 if (!state->check_explicit_attrib_location_allowed(loc, var))
3235 return;
3236
3237 break;
3238 }
3239
3240 fail = true;
3241 break;
3242
3243 case MESA_SHADER_COMPUTE:
3244 _mesa_glsl_error(loc, state,
3245 "compute shader variables cannot be given "
3246 "explicit locations");
3247 return;
3248 };
3249
3250 if (fail) {
3251 _mesa_glsl_error(loc, state,
3252 "%s cannot be given an explicit location in %s shader",
3253 mode_string(var),
3254 _mesa_shader_stage_to_string(state->stage));
3255 } else {
3256 var->data.explicit_location = true;
3257
3258 switch (state->stage) {
3259 case MESA_SHADER_VERTEX:
3260 var->data.location = (var->data.mode == ir_var_shader_in)
3261 ? (qual_location + VERT_ATTRIB_GENERIC0)
3262 : (qual_location + VARYING_SLOT_VAR0);
3263 break;
3264
3265 case MESA_SHADER_TESS_CTRL:
3266 case MESA_SHADER_TESS_EVAL:
3267 case MESA_SHADER_GEOMETRY:
3268 if (var->data.patch)
3269 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3270 else
3271 var->data.location = qual_location + VARYING_SLOT_VAR0;
3272 break;
3273
3274 case MESA_SHADER_FRAGMENT:
3275 var->data.location = (var->data.mode == ir_var_shader_out)
3276 ? (qual_location + FRAG_RESULT_DATA0)
3277 : (qual_location + VARYING_SLOT_VAR0);
3278 break;
3279 case MESA_SHADER_COMPUTE:
3280 assert(!"Unexpected shader type");
3281 break;
3282 }
3283
3284 /* Check if index was set for the uniform instead of the function */
3285 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3286 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3287 "used with subroutine functions");
3288 return;
3289 }
3290
3291 unsigned qual_index;
3292 if (qual->flags.q.explicit_index &&
3293 process_qualifier_constant(state, loc, "index", qual->index,
3294 &qual_index)) {
3295 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3296 * Layout Qualifiers):
3297 *
3298 * "It is also a compile-time error if a fragment shader
3299 * sets a layout index to less than 0 or greater than 1."
3300 *
3301 * Older specifications don't mandate a behavior; we take
3302 * this as a clarification and always generate the error.
3303 */
3304 if (qual_index > 1) {
3305 _mesa_glsl_error(loc, state,
3306 "explicit index may only be 0 or 1");
3307 } else {
3308 var->data.explicit_index = true;
3309 var->data.index = qual_index;
3310 }
3311 }
3312 }
3313 }
3314
3315 static bool
3316 validate_storage_for_sampler_image_types(ir_variable *var,
3317 struct _mesa_glsl_parse_state *state,
3318 YYLTYPE *loc)
3319 {
3320 /* From section 4.1.7 of the GLSL 4.40 spec:
3321 *
3322 * "[Opaque types] can only be declared as function
3323 * parameters or uniform-qualified variables."
3324 *
3325 * From section 4.1.7 of the ARB_bindless_texture spec:
3326 *
3327 * "Samplers may be declared as shader inputs and outputs, as uniform
3328 * variables, as temporary variables, and as function parameters."
3329 *
3330 * From section 4.1.X of the ARB_bindless_texture spec:
3331 *
3332 * "Images may be declared as shader inputs and outputs, as uniform
3333 * variables, as temporary variables, and as function parameters."
3334 */
3335 if (state->has_bindless()) {
3336 if (var->data.mode != ir_var_auto &&
3337 var->data.mode != ir_var_uniform &&
3338 var->data.mode != ir_var_shader_in &&
3339 var->data.mode != ir_var_shader_out &&
3340 var->data.mode != ir_var_function_in &&
3341 var->data.mode != ir_var_function_out &&
3342 var->data.mode != ir_var_function_inout) {
3343 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3344 "only be declared as shader inputs and outputs, as "
3345 "uniform variables, as temporary variables and as "
3346 "function parameters");
3347 return false;
3348 }
3349 } else {
3350 if (var->data.mode != ir_var_uniform &&
3351 var->data.mode != ir_var_function_in) {
3352 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3353 "declared as function parameters or "
3354 "uniform-qualified global variables");
3355 return false;
3356 }
3357 }
3358 return true;
3359 }
3360
3361 static bool
3362 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3363 YYLTYPE *loc,
3364 const struct ast_type_qualifier *qual,
3365 const glsl_type *type)
3366 {
3367 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3368 *
3369 * "Memory qualifiers are only supported in the declarations of image
3370 * variables, buffer variables, and shader storage blocks; it is an error
3371 * to use such qualifiers in any other declarations.
3372 */
3373 if (!type->is_image() && !qual->flags.q.buffer) {
3374 if (qual->flags.q.read_only ||
3375 qual->flags.q.write_only ||
3376 qual->flags.q.coherent ||
3377 qual->flags.q._volatile ||
3378 qual->flags.q.restrict_flag) {
3379 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3380 "in the declarations of image variables, buffer "
3381 "variables, and shader storage blocks");
3382 return false;
3383 }
3384 }
3385 return true;
3386 }
3387
3388 static bool
3389 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3390 YYLTYPE *loc,
3391 const struct ast_type_qualifier *qual,
3392 const glsl_type *type)
3393 {
3394 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3395 *
3396 * "Format layout qualifiers can be used on image variable declarations
3397 * (those declared with a basic type having “image ” in its keyword)."
3398 */
3399 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3400 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3401 "applied to images");
3402 return false;
3403 }
3404 return true;
3405 }
3406
3407 static void
3408 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3409 ir_variable *var,
3410 struct _mesa_glsl_parse_state *state,
3411 YYLTYPE *loc)
3412 {
3413 const glsl_type *base_type = var->type->without_array();
3414
3415 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3416 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3417 return;
3418
3419 if (!base_type->is_image())
3420 return;
3421
3422 if (!validate_storage_for_sampler_image_types(var, state, loc))
3423 return;
3424
3425 var->data.memory_read_only |= qual->flags.q.read_only;
3426 var->data.memory_write_only |= qual->flags.q.write_only;
3427 var->data.memory_coherent |= qual->flags.q.coherent;
3428 var->data.memory_volatile |= qual->flags.q._volatile;
3429 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3430
3431 if (qual->flags.q.explicit_image_format) {
3432 if (var->data.mode == ir_var_function_in) {
3433 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3434 "image function parameters");
3435 }
3436
3437 if (qual->image_base_type != base_type->sampled_type) {
3438 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3439 "data type of the image");
3440 }
3441
3442 var->data.image_format = qual->image_format;
3443 } else {
3444 if (var->data.mode == ir_var_uniform) {
3445 if (state->es_shader) {
3446 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3447 "format layout qualifier");
3448 } else if (!qual->flags.q.write_only) {
3449 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3450 "`writeonly' must have a format layout qualifier");
3451 }
3452 }
3453 var->data.image_format = GL_NONE;
3454 }
3455
3456 /* From page 70 of the GLSL ES 3.1 specification:
3457 *
3458 * "Except for image variables qualified with the format qualifiers r32f,
3459 * r32i, and r32ui, image variables must specify either memory qualifier
3460 * readonly or the memory qualifier writeonly."
3461 */
3462 if (state->es_shader &&
3463 var->data.image_format != GL_R32F &&
3464 var->data.image_format != GL_R32I &&
3465 var->data.image_format != GL_R32UI &&
3466 !var->data.memory_read_only &&
3467 !var->data.memory_write_only) {
3468 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3469 "r32i or r32ui must be qualified `readonly' or "
3470 "`writeonly'");
3471 }
3472 }
3473
3474 static inline const char*
3475 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3476 {
3477 if (origin_upper_left && pixel_center_integer)
3478 return "origin_upper_left, pixel_center_integer";
3479 else if (origin_upper_left)
3480 return "origin_upper_left";
3481 else if (pixel_center_integer)
3482 return "pixel_center_integer";
3483 else
3484 return " ";
3485 }
3486
3487 static inline bool
3488 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3489 const struct ast_type_qualifier *qual)
3490 {
3491 /* If gl_FragCoord was previously declared, and the qualifiers were
3492 * different in any way, return true.
3493 */
3494 if (state->fs_redeclares_gl_fragcoord) {
3495 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3496 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3497 }
3498
3499 return false;
3500 }
3501
3502 static inline void
3503 validate_array_dimensions(const glsl_type *t,
3504 struct _mesa_glsl_parse_state *state,
3505 YYLTYPE *loc) {
3506 if (t->is_array()) {
3507 t = t->fields.array;
3508 while (t->is_array()) {
3509 if (t->is_unsized_array()) {
3510 _mesa_glsl_error(loc, state,
3511 "only the outermost array dimension can "
3512 "be unsized",
3513 t->name);
3514 break;
3515 }
3516 t = t->fields.array;
3517 }
3518 }
3519 }
3520
3521 static void
3522 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3523 ir_variable *var,
3524 struct _mesa_glsl_parse_state *state,
3525 YYLTYPE *loc)
3526 {
3527 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3528 qual->flags.q.bindless_image ||
3529 qual->flags.q.bound_sampler ||
3530 qual->flags.q.bound_image;
3531
3532 /* The ARB_bindless_texture spec says:
3533 *
3534 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3535 * spec"
3536 *
3537 * "If these layout qualifiers are applied to other types of default block
3538 * uniforms, or variables with non-uniform storage, a compile-time error
3539 * will be generated."
3540 */
3541 if (has_local_qualifiers && !qual->flags.q.uniform) {
3542 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3543 "can only be applied to default block uniforms or "
3544 "variables with uniform storage");
3545 return;
3546 }
3547
3548 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3549 * but it makes sense to only allow bindless_sampler/bound_sampler for
3550 * sampler types, and respectively bindless_image/bound_image for image
3551 * types.
3552 */
3553 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3554 !var->type->contains_sampler()) {
3555 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3556 "be applied to sampler types");
3557 return;
3558 }
3559
3560 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3561 !var->type->contains_image()) {
3562 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3563 "applied to image types");
3564 return;
3565 }
3566
3567 /* The bindless_sampler/bindless_image (and respectively
3568 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3569 * local scope.
3570 */
3571 if (var->type->contains_sampler() || var->type->contains_image()) {
3572 var->data.bindless = qual->flags.q.bindless_sampler ||
3573 qual->flags.q.bindless_image ||
3574 state->bindless_sampler_specified ||
3575 state->bindless_image_specified;
3576
3577 var->data.bound = qual->flags.q.bound_sampler ||
3578 qual->flags.q.bound_image ||
3579 state->bound_sampler_specified ||
3580 state->bound_image_specified;
3581 }
3582 }
3583
3584 static void
3585 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3586 ir_variable *var,
3587 struct _mesa_glsl_parse_state *state,
3588 YYLTYPE *loc)
3589 {
3590 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3591
3592 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3593 *
3594 * "Within any shader, the first redeclarations of gl_FragCoord
3595 * must appear before any use of gl_FragCoord."
3596 *
3597 * Generate a compiler error if above condition is not met by the
3598 * fragment shader.
3599 */
3600 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3601 if (earlier != NULL &&
3602 earlier->data.used &&
3603 !state->fs_redeclares_gl_fragcoord) {
3604 _mesa_glsl_error(loc, state,
3605 "gl_FragCoord used before its first redeclaration "
3606 "in fragment shader");
3607 }
3608
3609 /* Make sure all gl_FragCoord redeclarations specify the same layout
3610 * qualifiers.
3611 */
3612 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3613 const char *const qual_string =
3614 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3615 qual->flags.q.pixel_center_integer);
3616
3617 const char *const state_string =
3618 get_layout_qualifier_string(state->fs_origin_upper_left,
3619 state->fs_pixel_center_integer);
3620
3621 _mesa_glsl_error(loc, state,
3622 "gl_FragCoord redeclared with different layout "
3623 "qualifiers (%s) and (%s) ",
3624 state_string,
3625 qual_string);
3626 }
3627 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3628 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3629 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3630 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3631 state->fs_redeclares_gl_fragcoord =
3632 state->fs_origin_upper_left ||
3633 state->fs_pixel_center_integer ||
3634 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3635 }
3636
3637 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3638 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3639 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3640 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3641 const char *const qual_string = (qual->flags.q.origin_upper_left)
3642 ? "origin_upper_left" : "pixel_center_integer";
3643
3644 _mesa_glsl_error(loc, state,
3645 "layout qualifier `%s' can only be applied to "
3646 "fragment shader input `gl_FragCoord'",
3647 qual_string);
3648 }
3649
3650 if (qual->flags.q.explicit_location) {
3651 apply_explicit_location(qual, var, state, loc);
3652
3653 if (qual->flags.q.explicit_component) {
3654 unsigned qual_component;
3655 if (process_qualifier_constant(state, loc, "component",
3656 qual->component, &qual_component)) {
3657 const glsl_type *type = var->type->without_array();
3658 unsigned components = type->component_slots();
3659
3660 if (type->is_matrix() || type->is_record()) {
3661 _mesa_glsl_error(loc, state, "component layout qualifier "
3662 "cannot be applied to a matrix, a structure, "
3663 "a block, or an array containing any of "
3664 "these.");
3665 } else if (qual_component != 0 &&
3666 (qual_component + components - 1) > 3) {
3667 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3668 (qual_component + components - 1));
3669 } else if (qual_component == 1 && type->is_64bit()) {
3670 /* We don't bother checking for 3 as it should be caught by the
3671 * overflow check above.
3672 */
3673 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3674 "component 1 or 3");
3675 } else {
3676 var->data.explicit_component = true;
3677 var->data.location_frac = qual_component;
3678 }
3679 }
3680 }
3681 } else if (qual->flags.q.explicit_index) {
3682 if (!qual->subroutine_list)
3683 _mesa_glsl_error(loc, state,
3684 "explicit index requires explicit location");
3685 } else if (qual->flags.q.explicit_component) {
3686 _mesa_glsl_error(loc, state,
3687 "explicit component requires explicit location");
3688 }
3689
3690 if (qual->flags.q.explicit_binding) {
3691 apply_explicit_binding(state, loc, var, var->type, qual);
3692 }
3693
3694 if (state->stage == MESA_SHADER_GEOMETRY &&
3695 qual->flags.q.out && qual->flags.q.stream) {
3696 unsigned qual_stream;
3697 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3698 &qual_stream) &&
3699 validate_stream_qualifier(loc, state, qual_stream)) {
3700 var->data.stream = qual_stream;
3701 }
3702 }
3703
3704 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3705 unsigned qual_xfb_buffer;
3706 if (process_qualifier_constant(state, loc, "xfb_buffer",
3707 qual->xfb_buffer, &qual_xfb_buffer) &&
3708 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3709 var->data.xfb_buffer = qual_xfb_buffer;
3710 if (qual->flags.q.explicit_xfb_buffer)
3711 var->data.explicit_xfb_buffer = true;
3712 }
3713 }
3714
3715 if (qual->flags.q.explicit_xfb_offset) {
3716 unsigned qual_xfb_offset;
3717 unsigned component_size = var->type->contains_double() ? 8 : 4;
3718
3719 if (process_qualifier_constant(state, loc, "xfb_offset",
3720 qual->offset, &qual_xfb_offset) &&
3721 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3722 var->type, component_size)) {
3723 var->data.offset = qual_xfb_offset;
3724 var->data.explicit_xfb_offset = true;
3725 }
3726 }
3727
3728 if (qual->flags.q.explicit_xfb_stride) {
3729 unsigned qual_xfb_stride;
3730 if (process_qualifier_constant(state, loc, "xfb_stride",
3731 qual->xfb_stride, &qual_xfb_stride)) {
3732 var->data.xfb_stride = qual_xfb_stride;
3733 var->data.explicit_xfb_stride = true;
3734 }
3735 }
3736
3737 if (var->type->contains_atomic()) {
3738 if (var->data.mode == ir_var_uniform) {
3739 if (var->data.explicit_binding) {
3740 unsigned *offset =
3741 &state->atomic_counter_offsets[var->data.binding];
3742
3743 if (*offset % ATOMIC_COUNTER_SIZE)
3744 _mesa_glsl_error(loc, state,
3745 "misaligned atomic counter offset");
3746
3747 var->data.offset = *offset;
3748 *offset += var->type->atomic_size();
3749
3750 } else {
3751 _mesa_glsl_error(loc, state,
3752 "atomic counters require explicit binding point");
3753 }
3754 } else if (var->data.mode != ir_var_function_in) {
3755 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3756 "function parameters or uniform-qualified "
3757 "global variables");
3758 }
3759 }
3760
3761 if (var->type->contains_sampler() &&
3762 !validate_storage_for_sampler_image_types(var, state, loc))
3763 return;
3764
3765 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3766 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3767 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3768 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3769 * These extensions and all following extensions that add the 'layout'
3770 * keyword have been modified to require the use of 'in' or 'out'.
3771 *
3772 * The following extension do not allow the deprecated keywords:
3773 *
3774 * GL_AMD_conservative_depth
3775 * GL_ARB_conservative_depth
3776 * GL_ARB_gpu_shader5
3777 * GL_ARB_separate_shader_objects
3778 * GL_ARB_tessellation_shader
3779 * GL_ARB_transform_feedback3
3780 * GL_ARB_uniform_buffer_object
3781 *
3782 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3783 * allow layout with the deprecated keywords.
3784 */
3785 const bool relaxed_layout_qualifier_checking =
3786 state->ARB_fragment_coord_conventions_enable;
3787
3788 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3789 || qual->flags.q.varying;
3790 if (qual->has_layout() && uses_deprecated_qualifier) {
3791 if (relaxed_layout_qualifier_checking) {
3792 _mesa_glsl_warning(loc, state,
3793 "`layout' qualifier may not be used with "
3794 "`attribute' or `varying'");
3795 } else {
3796 _mesa_glsl_error(loc, state,
3797 "`layout' qualifier may not be used with "
3798 "`attribute' or `varying'");
3799 }
3800 }
3801
3802 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3803 * AMD_conservative_depth.
3804 */
3805 if (qual->flags.q.depth_type
3806 && !state->is_version(420, 0)
3807 && !state->AMD_conservative_depth_enable
3808 && !state->ARB_conservative_depth_enable) {
3809 _mesa_glsl_error(loc, state,
3810 "extension GL_AMD_conservative_depth or "
3811 "GL_ARB_conservative_depth must be enabled "
3812 "to use depth layout qualifiers");
3813 } else if (qual->flags.q.depth_type
3814 && strcmp(var->name, "gl_FragDepth") != 0) {
3815 _mesa_glsl_error(loc, state,
3816 "depth layout qualifiers can be applied only to "
3817 "gl_FragDepth");
3818 }
3819
3820 switch (qual->depth_type) {
3821 case ast_depth_any:
3822 var->data.depth_layout = ir_depth_layout_any;
3823 break;
3824 case ast_depth_greater:
3825 var->data.depth_layout = ir_depth_layout_greater;
3826 break;
3827 case ast_depth_less:
3828 var->data.depth_layout = ir_depth_layout_less;
3829 break;
3830 case ast_depth_unchanged:
3831 var->data.depth_layout = ir_depth_layout_unchanged;
3832 break;
3833 default:
3834 var->data.depth_layout = ir_depth_layout_none;
3835 break;
3836 }
3837
3838 if (qual->flags.q.std140 ||
3839 qual->flags.q.std430 ||
3840 qual->flags.q.packed ||
3841 qual->flags.q.shared) {
3842 _mesa_glsl_error(loc, state,
3843 "uniform and shader storage block layout qualifiers "
3844 "std140, std430, packed, and shared can only be "
3845 "applied to uniform or shader storage blocks, not "
3846 "members");
3847 }
3848
3849 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3850 validate_matrix_layout_for_type(state, loc, var->type, var);
3851 }
3852
3853 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3854 * Inputs):
3855 *
3856 * "Fragment shaders also allow the following layout qualifier on in only
3857 * (not with variable declarations)
3858 * layout-qualifier-id
3859 * early_fragment_tests
3860 * [...]"
3861 */
3862 if (qual->flags.q.early_fragment_tests) {
3863 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3864 "valid in fragment shader input layout declaration.");
3865 }
3866
3867 if (qual->flags.q.inner_coverage) {
3868 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3869 "valid in fragment shader input layout declaration.");
3870 }
3871
3872 if (qual->flags.q.post_depth_coverage) {
3873 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3874 "valid in fragment shader input layout declaration.");
3875 }
3876
3877 if (state->has_bindless())
3878 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3879 }
3880
3881 static void
3882 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3883 ir_variable *var,
3884 struct _mesa_glsl_parse_state *state,
3885 YYLTYPE *loc,
3886 bool is_parameter)
3887 {
3888 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3889
3890 if (qual->flags.q.invariant) {
3891 if (var->data.used) {
3892 _mesa_glsl_error(loc, state,
3893 "variable `%s' may not be redeclared "
3894 "`invariant' after being used",
3895 var->name);
3896 } else {
3897 var->data.invariant = 1;
3898 }
3899 }
3900
3901 if (qual->flags.q.precise) {
3902 if (var->data.used) {
3903 _mesa_glsl_error(loc, state,
3904 "variable `%s' may not be redeclared "
3905 "`precise' after being used",
3906 var->name);
3907 } else {
3908 var->data.precise = 1;
3909 }
3910 }
3911
3912 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3913 _mesa_glsl_error(loc, state,
3914 "`subroutine' may only be applied to uniforms, "
3915 "subroutine type declarations, or function definitions");
3916 }
3917
3918 if (qual->flags.q.constant || qual->flags.q.attribute
3919 || qual->flags.q.uniform
3920 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3921 var->data.read_only = 1;
3922
3923 if (qual->flags.q.centroid)
3924 var->data.centroid = 1;
3925
3926 if (qual->flags.q.sample)
3927 var->data.sample = 1;
3928
3929 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3930 if (state->es_shader) {
3931 var->data.precision =
3932 select_gles_precision(qual->precision, var->type, state, loc);
3933 }
3934
3935 if (qual->flags.q.patch)
3936 var->data.patch = 1;
3937
3938 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3939 var->type = glsl_type::error_type;
3940 _mesa_glsl_error(loc, state,
3941 "`attribute' variables may not be declared in the "
3942 "%s shader",
3943 _mesa_shader_stage_to_string(state->stage));
3944 }
3945
3946 /* Disallow layout qualifiers which may only appear on layout declarations. */
3947 if (qual->flags.q.prim_type) {
3948 _mesa_glsl_error(loc, state,
3949 "Primitive type may only be specified on GS input or output "
3950 "layout declaration, not on variables.");
3951 }
3952
3953 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3954 *
3955 * "However, the const qualifier cannot be used with out or inout."
3956 *
3957 * The same section of the GLSL 4.40 spec further clarifies this saying:
3958 *
3959 * "The const qualifier cannot be used with out or inout, or a
3960 * compile-time error results."
3961 */
3962 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3963 _mesa_glsl_error(loc, state,
3964 "`const' may not be applied to `out' or `inout' "
3965 "function parameters");
3966 }
3967
3968 /* If there is no qualifier that changes the mode of the variable, leave
3969 * the setting alone.
3970 */
3971 assert(var->data.mode != ir_var_temporary);
3972 if (qual->flags.q.in && qual->flags.q.out)
3973 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3974 else if (qual->flags.q.in)
3975 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3976 else if (qual->flags.q.attribute
3977 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3978 var->data.mode = ir_var_shader_in;
3979 else if (qual->flags.q.out)
3980 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3981 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3982 var->data.mode = ir_var_shader_out;
3983 else if (qual->flags.q.uniform)
3984 var->data.mode = ir_var_uniform;
3985 else if (qual->flags.q.buffer)
3986 var->data.mode = ir_var_shader_storage;
3987 else if (qual->flags.q.shared_storage)
3988 var->data.mode = ir_var_shader_shared;
3989
3990 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3991 qual->flags.q.in && qual->flags.q.out;
3992
3993 if (!is_parameter && is_varying_var(var, state->stage)) {
3994 /* User-defined ins/outs are not permitted in compute shaders. */
3995 if (state->stage == MESA_SHADER_COMPUTE) {
3996 _mesa_glsl_error(loc, state,
3997 "user-defined input and output variables are not "
3998 "permitted in compute shaders");
3999 }
4000
4001 /* This variable is being used to link data between shader stages (in
4002 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4003 * that is allowed for such purposes.
4004 *
4005 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4006 *
4007 * "The varying qualifier can be used only with the data types
4008 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4009 * these."
4010 *
4011 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4012 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4013 *
4014 * "Fragment inputs can only be signed and unsigned integers and
4015 * integer vectors, float, floating-point vectors, matrices, or
4016 * arrays of these. Structures cannot be input.
4017 *
4018 * Similar text exists in the section on vertex shader outputs.
4019 *
4020 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4021 * 3.00 spec allows structs as well. Varying structs are also allowed
4022 * in GLSL 1.50.
4023 *
4024 * From section 4.3.4 of the ARB_bindless_texture spec:
4025 *
4026 * "(modify third paragraph of the section to allow sampler and image
4027 * types) ... Vertex shader inputs can only be float,
4028 * single-precision floating-point scalars, single-precision
4029 * floating-point vectors, matrices, signed and unsigned integers
4030 * and integer vectors, sampler and image types."
4031 *
4032 * From section 4.3.6 of the ARB_bindless_texture spec:
4033 *
4034 * "Output variables can only be floating-point scalars,
4035 * floating-point vectors, matrices, signed or unsigned integers or
4036 * integer vectors, sampler or image types, or arrays or structures
4037 * of any these."
4038 */
4039 switch (var->type->without_array()->base_type) {
4040 case GLSL_TYPE_FLOAT:
4041 /* Ok in all GLSL versions */
4042 break;
4043 case GLSL_TYPE_UINT:
4044 case GLSL_TYPE_INT:
4045 if (state->is_version(130, 300))
4046 break;
4047 _mesa_glsl_error(loc, state,
4048 "varying variables must be of base type float in %s",
4049 state->get_version_string());
4050 break;
4051 case GLSL_TYPE_STRUCT:
4052 if (state->is_version(150, 300))
4053 break;
4054 _mesa_glsl_error(loc, state,
4055 "varying variables may not be of type struct");
4056 break;
4057 case GLSL_TYPE_DOUBLE:
4058 case GLSL_TYPE_UINT64:
4059 case GLSL_TYPE_INT64:
4060 break;
4061 case GLSL_TYPE_SAMPLER:
4062 case GLSL_TYPE_IMAGE:
4063 if (state->has_bindless())
4064 break;
4065 /* fallthrough */
4066 default:
4067 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4068 break;
4069 }
4070 }
4071
4072 if (state->all_invariant && (state->current_function == NULL)) {
4073 switch (state->stage) {
4074 case MESA_SHADER_VERTEX:
4075 if (var->data.mode == ir_var_shader_out)
4076 var->data.invariant = true;
4077 break;
4078 case MESA_SHADER_TESS_CTRL:
4079 case MESA_SHADER_TESS_EVAL:
4080 case MESA_SHADER_GEOMETRY:
4081 if ((var->data.mode == ir_var_shader_in)
4082 || (var->data.mode == ir_var_shader_out))
4083 var->data.invariant = true;
4084 break;
4085 case MESA_SHADER_FRAGMENT:
4086 if (var->data.mode == ir_var_shader_in)
4087 var->data.invariant = true;
4088 break;
4089 case MESA_SHADER_COMPUTE:
4090 /* Invariance isn't meaningful in compute shaders. */
4091 break;
4092 }
4093 }
4094
4095 var->data.interpolation =
4096 interpret_interpolation_qualifier(qual, var->type,
4097 (ir_variable_mode) var->data.mode,
4098 state, loc);
4099
4100 /* Does the declaration use the deprecated 'attribute' or 'varying'
4101 * keywords?
4102 */
4103 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4104 || qual->flags.q.varying;
4105
4106
4107 /* Validate auxiliary storage qualifiers */
4108
4109 /* From section 4.3.4 of the GLSL 1.30 spec:
4110 * "It is an error to use centroid in in a vertex shader."
4111 *
4112 * From section 4.3.4 of the GLSL ES 3.00 spec:
4113 * "It is an error to use centroid in or interpolation qualifiers in
4114 * a vertex shader input."
4115 */
4116
4117 /* Section 4.3.6 of the GLSL 1.30 specification states:
4118 * "It is an error to use centroid out in a fragment shader."
4119 *
4120 * The GL_ARB_shading_language_420pack extension specification states:
4121 * "It is an error to use auxiliary storage qualifiers or interpolation
4122 * qualifiers on an output in a fragment shader."
4123 */
4124 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4125 _mesa_glsl_error(loc, state,
4126 "sample qualifier may only be used on `in` or `out` "
4127 "variables between shader stages");
4128 }
4129 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4130 _mesa_glsl_error(loc, state,
4131 "centroid qualifier may only be used with `in', "
4132 "`out' or `varying' variables between shader stages");
4133 }
4134
4135 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4136 _mesa_glsl_error(loc, state,
4137 "the shared storage qualifiers can only be used with "
4138 "compute shaders");
4139 }
4140
4141 apply_image_qualifier_to_variable(qual, var, state, loc);
4142 }
4143
4144 /**
4145 * Get the variable that is being redeclared by this declaration or if it
4146 * does not exist, the current declared variable.
4147 *
4148 * Semantic checks to verify the validity of the redeclaration are also
4149 * performed. If semantic checks fail, compilation error will be emitted via
4150 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4151 *
4152 * \returns
4153 * A pointer to an existing variable in the current scope if the declaration
4154 * is a redeclaration, current variable otherwise. \c is_declared boolean
4155 * will return \c true if the declaration is a redeclaration, \c false
4156 * otherwise.
4157 */
4158 static ir_variable *
4159 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4160 struct _mesa_glsl_parse_state *state,
4161 bool allow_all_redeclarations,
4162 bool *is_redeclaration)
4163 {
4164 /* Check if this declaration is actually a re-declaration, either to
4165 * resize an array or add qualifiers to an existing variable.
4166 *
4167 * This is allowed for variables in the current scope, or when at
4168 * global scope (for built-ins in the implicit outer scope).
4169 */
4170 ir_variable *earlier = state->symbols->get_variable(var->name);
4171 if (earlier == NULL ||
4172 (state->current_function != NULL &&
4173 !state->symbols->name_declared_this_scope(var->name))) {
4174 *is_redeclaration = false;
4175 return var;
4176 }
4177
4178 *is_redeclaration = true;
4179
4180 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4181 *
4182 * "It is legal to declare an array without a size and then
4183 * later re-declare the same name as an array of the same
4184 * type and specify a size."
4185 */
4186 if (earlier->type->is_unsized_array() && var->type->is_array()
4187 && (var->type->fields.array == earlier->type->fields.array)) {
4188 /* FINISHME: This doesn't match the qualifiers on the two
4189 * FINISHME: declarations. It's not 100% clear whether this is
4190 * FINISHME: required or not.
4191 */
4192
4193 const int size = var->type->array_size();
4194 check_builtin_array_max_size(var->name, size, loc, state);
4195 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4196 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4197 "previous access",
4198 earlier->data.max_array_access);
4199 }
4200
4201 earlier->type = var->type;
4202 delete var;
4203 var = NULL;
4204 } else if ((state->ARB_fragment_coord_conventions_enable ||
4205 state->is_version(150, 0))
4206 && strcmp(var->name, "gl_FragCoord") == 0
4207 && earlier->type == var->type
4208 && var->data.mode == ir_var_shader_in) {
4209 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4210 * qualifiers.
4211 */
4212 earlier->data.origin_upper_left = var->data.origin_upper_left;
4213 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4214
4215 /* According to section 4.3.7 of the GLSL 1.30 spec,
4216 * the following built-in varaibles can be redeclared with an
4217 * interpolation qualifier:
4218 * * gl_FrontColor
4219 * * gl_BackColor
4220 * * gl_FrontSecondaryColor
4221 * * gl_BackSecondaryColor
4222 * * gl_Color
4223 * * gl_SecondaryColor
4224 */
4225 } else if (state->is_version(130, 0)
4226 && (strcmp(var->name, "gl_FrontColor") == 0
4227 || strcmp(var->name, "gl_BackColor") == 0
4228 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4229 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4230 || strcmp(var->name, "gl_Color") == 0
4231 || strcmp(var->name, "gl_SecondaryColor") == 0)
4232 && earlier->type == var->type
4233 && earlier->data.mode == var->data.mode) {
4234 earlier->data.interpolation = var->data.interpolation;
4235
4236 /* Layout qualifiers for gl_FragDepth. */
4237 } else if ((state->is_version(420, 0) ||
4238 state->AMD_conservative_depth_enable ||
4239 state->ARB_conservative_depth_enable)
4240 && strcmp(var->name, "gl_FragDepth") == 0
4241 && earlier->type == var->type
4242 && earlier->data.mode == var->data.mode) {
4243
4244 /** From the AMD_conservative_depth spec:
4245 * Within any shader, the first redeclarations of gl_FragDepth
4246 * must appear before any use of gl_FragDepth.
4247 */
4248 if (earlier->data.used) {
4249 _mesa_glsl_error(&loc, state,
4250 "the first redeclaration of gl_FragDepth "
4251 "must appear before any use of gl_FragDepth");
4252 }
4253
4254 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4255 if (earlier->data.depth_layout != ir_depth_layout_none
4256 && earlier->data.depth_layout != var->data.depth_layout) {
4257 _mesa_glsl_error(&loc, state,
4258 "gl_FragDepth: depth layout is declared here "
4259 "as '%s, but it was previously declared as "
4260 "'%s'",
4261 depth_layout_string(var->data.depth_layout),
4262 depth_layout_string(earlier->data.depth_layout));
4263 }
4264
4265 earlier->data.depth_layout = var->data.depth_layout;
4266
4267 } else if (state->has_framebuffer_fetch() &&
4268 strcmp(var->name, "gl_LastFragData") == 0 &&
4269 var->type == earlier->type &&
4270 var->data.mode == ir_var_auto) {
4271 /* According to the EXT_shader_framebuffer_fetch spec:
4272 *
4273 * "By default, gl_LastFragData is declared with the mediump precision
4274 * qualifier. This can be changed by redeclaring the corresponding
4275 * variables with the desired precision qualifier."
4276 */
4277 earlier->data.precision = var->data.precision;
4278
4279 } else if (earlier->data.how_declared == ir_var_declared_implicitly &&
4280 state->allow_builtin_variable_redeclaration) {
4281 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4282 * valid, but some applications do it.
4283 */
4284 if (earlier->data.mode != var->data.mode &&
4285 !(earlier->data.mode == ir_var_system_value &&
4286 var->data.mode == ir_var_shader_in)) {
4287 _mesa_glsl_error(&loc, state,
4288 "redeclaration of `%s' with incorrect qualifiers",
4289 var->name);
4290 } else if (earlier->type != var->type) {
4291 _mesa_glsl_error(&loc, state,
4292 "redeclaration of `%s' has incorrect type",
4293 var->name);
4294 }
4295 } else if (allow_all_redeclarations) {
4296 if (earlier->data.mode != var->data.mode) {
4297 _mesa_glsl_error(&loc, state,
4298 "redeclaration of `%s' with incorrect qualifiers",
4299 var->name);
4300 } else if (earlier->type != var->type) {
4301 _mesa_glsl_error(&loc, state,
4302 "redeclaration of `%s' has incorrect type",
4303 var->name);
4304 }
4305 } else {
4306 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4307 }
4308
4309 return earlier;
4310 }
4311
4312 /**
4313 * Generate the IR for an initializer in a variable declaration
4314 */
4315 ir_rvalue *
4316 process_initializer(ir_variable *var, ast_declaration *decl,
4317 ast_fully_specified_type *type,
4318 exec_list *initializer_instructions,
4319 struct _mesa_glsl_parse_state *state)
4320 {
4321 ir_rvalue *result = NULL;
4322
4323 YYLTYPE initializer_loc = decl->initializer->get_location();
4324
4325 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4326 *
4327 * "All uniform variables are read-only and are initialized either
4328 * directly by an application via API commands, or indirectly by
4329 * OpenGL."
4330 */
4331 if (var->data.mode == ir_var_uniform) {
4332 state->check_version(120, 0, &initializer_loc,
4333 "cannot initialize uniform %s",
4334 var->name);
4335 }
4336
4337 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4338 *
4339 * "Buffer variables cannot have initializers."
4340 */
4341 if (var->data.mode == ir_var_shader_storage) {
4342 _mesa_glsl_error(&initializer_loc, state,
4343 "cannot initialize buffer variable %s",
4344 var->name);
4345 }
4346
4347 /* From section 4.1.7 of the GLSL 4.40 spec:
4348 *
4349 * "Opaque variables [...] are initialized only through the
4350 * OpenGL API; they cannot be declared with an initializer in a
4351 * shader."
4352 *
4353 * From section 4.1.7 of the ARB_bindless_texture spec:
4354 *
4355 * "Samplers may be declared as shader inputs and outputs, as uniform
4356 * variables, as temporary variables, and as function parameters."
4357 *
4358 * From section 4.1.X of the ARB_bindless_texture spec:
4359 *
4360 * "Images may be declared as shader inputs and outputs, as uniform
4361 * variables, as temporary variables, and as function parameters."
4362 */
4363 if (var->type->contains_atomic() ||
4364 (!state->has_bindless() && var->type->contains_opaque())) {
4365 _mesa_glsl_error(&initializer_loc, state,
4366 "cannot initialize %s variable %s",
4367 var->name, state->has_bindless() ? "atomic" : "opaque");
4368 }
4369
4370 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4371 _mesa_glsl_error(&initializer_loc, state,
4372 "cannot initialize %s shader input / %s %s",
4373 _mesa_shader_stage_to_string(state->stage),
4374 (state->stage == MESA_SHADER_VERTEX)
4375 ? "attribute" : "varying",
4376 var->name);
4377 }
4378
4379 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4380 _mesa_glsl_error(&initializer_loc, state,
4381 "cannot initialize %s shader output %s",
4382 _mesa_shader_stage_to_string(state->stage),
4383 var->name);
4384 }
4385
4386 /* If the initializer is an ast_aggregate_initializer, recursively store
4387 * type information from the LHS into it, so that its hir() function can do
4388 * type checking.
4389 */
4390 if (decl->initializer->oper == ast_aggregate)
4391 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4392
4393 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4394 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4395
4396 /* Calculate the constant value if this is a const or uniform
4397 * declaration.
4398 *
4399 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4400 *
4401 * "Declarations of globals without a storage qualifier, or with
4402 * just the const qualifier, may include initializers, in which case
4403 * they will be initialized before the first line of main() is
4404 * executed. Such initializers must be a constant expression."
4405 *
4406 * The same section of the GLSL ES 3.00.4 spec has similar language.
4407 */
4408 if (type->qualifier.flags.q.constant
4409 || type->qualifier.flags.q.uniform
4410 || (state->es_shader && state->current_function == NULL)) {
4411 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4412 lhs, rhs, true);
4413 if (new_rhs != NULL) {
4414 rhs = new_rhs;
4415
4416 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4417 * says:
4418 *
4419 * "A constant expression is one of
4420 *
4421 * ...
4422 *
4423 * - an expression formed by an operator on operands that are
4424 * all constant expressions, including getting an element of
4425 * a constant array, or a field of a constant structure, or
4426 * components of a constant vector. However, the sequence
4427 * operator ( , ) and the assignment operators ( =, +=, ...)
4428 * are not included in the operators that can create a
4429 * constant expression."
4430 *
4431 * Section 12.43 (Sequence operator and constant expressions) says:
4432 *
4433 * "Should the following construct be allowed?
4434 *
4435 * float a[2,3];
4436 *
4437 * The expression within the brackets uses the sequence operator
4438 * (',') and returns the integer 3 so the construct is declaring
4439 * a single-dimensional array of size 3. In some languages, the
4440 * construct declares a two-dimensional array. It would be
4441 * preferable to make this construct illegal to avoid confusion.
4442 *
4443 * One possibility is to change the definition of the sequence
4444 * operator so that it does not return a constant-expression and
4445 * hence cannot be used to declare an array size.
4446 *
4447 * RESOLUTION: The result of a sequence operator is not a
4448 * constant-expression."
4449 *
4450 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4451 * contains language almost identical to the section 4.3.3 in the
4452 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4453 * versions.
4454 */
4455 ir_constant *constant_value = rhs->constant_expression_value();
4456 if (!constant_value ||
4457 (state->is_version(430, 300) &&
4458 decl->initializer->has_sequence_subexpression())) {
4459 const char *const variable_mode =
4460 (type->qualifier.flags.q.constant)
4461 ? "const"
4462 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4463
4464 /* If ARB_shading_language_420pack is enabled, initializers of
4465 * const-qualified local variables do not have to be constant
4466 * expressions. Const-qualified global variables must still be
4467 * initialized with constant expressions.
4468 */
4469 if (!state->has_420pack()
4470 || state->current_function == NULL) {
4471 _mesa_glsl_error(& initializer_loc, state,
4472 "initializer of %s variable `%s' must be a "
4473 "constant expression",
4474 variable_mode,
4475 decl->identifier);
4476 if (var->type->is_numeric()) {
4477 /* Reduce cascading errors. */
4478 var->constant_value = type->qualifier.flags.q.constant
4479 ? ir_constant::zero(state, var->type) : NULL;
4480 }
4481 }
4482 } else {
4483 rhs = constant_value;
4484 var->constant_value = type->qualifier.flags.q.constant
4485 ? constant_value : NULL;
4486 }
4487 } else {
4488 if (var->type->is_numeric()) {
4489 /* Reduce cascading errors. */
4490 var->constant_value = type->qualifier.flags.q.constant
4491 ? ir_constant::zero(state, var->type) : NULL;
4492 }
4493 }
4494 }
4495
4496 if (rhs && !rhs->type->is_error()) {
4497 bool temp = var->data.read_only;
4498 if (type->qualifier.flags.q.constant)
4499 var->data.read_only = false;
4500
4501 /* Never emit code to initialize a uniform.
4502 */
4503 const glsl_type *initializer_type;
4504 if (!type->qualifier.flags.q.uniform) {
4505 do_assignment(initializer_instructions, state,
4506 NULL,
4507 lhs, rhs,
4508 &result, true,
4509 true,
4510 type->get_location());
4511 initializer_type = result->type;
4512 } else
4513 initializer_type = rhs->type;
4514
4515 var->constant_initializer = rhs->constant_expression_value();
4516 var->data.has_initializer = true;
4517
4518 /* If the declared variable is an unsized array, it must inherrit
4519 * its full type from the initializer. A declaration such as
4520 *
4521 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4522 *
4523 * becomes
4524 *
4525 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4526 *
4527 * The assignment generated in the if-statement (below) will also
4528 * automatically handle this case for non-uniforms.
4529 *
4530 * If the declared variable is not an array, the types must
4531 * already match exactly. As a result, the type assignment
4532 * here can be done unconditionally. For non-uniforms the call
4533 * to do_assignment can change the type of the initializer (via
4534 * the implicit conversion rules). For uniforms the initializer
4535 * must be a constant expression, and the type of that expression
4536 * was validated above.
4537 */
4538 var->type = initializer_type;
4539
4540 var->data.read_only = temp;
4541 }
4542
4543 return result;
4544 }
4545
4546 static void
4547 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4548 YYLTYPE loc, ir_variable *var,
4549 unsigned num_vertices,
4550 unsigned *size,
4551 const char *var_category)
4552 {
4553 if (var->type->is_unsized_array()) {
4554 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4555 *
4556 * All geometry shader input unsized array declarations will be
4557 * sized by an earlier input layout qualifier, when present, as per
4558 * the following table.
4559 *
4560 * Followed by a table mapping each allowed input layout qualifier to
4561 * the corresponding input length.
4562 *
4563 * Similarly for tessellation control shader outputs.
4564 */
4565 if (num_vertices != 0)
4566 var->type = glsl_type::get_array_instance(var->type->fields.array,
4567 num_vertices);
4568 } else {
4569 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4570 * includes the following examples of compile-time errors:
4571 *
4572 * // code sequence within one shader...
4573 * in vec4 Color1[]; // size unknown
4574 * ...Color1.length()...// illegal, length() unknown
4575 * in vec4 Color2[2]; // size is 2
4576 * ...Color1.length()...// illegal, Color1 still has no size
4577 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4578 * layout(lines) in; // legal, input size is 2, matching
4579 * in vec4 Color4[3]; // illegal, contradicts layout
4580 * ...
4581 *
4582 * To detect the case illustrated by Color3, we verify that the size of
4583 * an explicitly-sized array matches the size of any previously declared
4584 * explicitly-sized array. To detect the case illustrated by Color4, we
4585 * verify that the size of an explicitly-sized array is consistent with
4586 * any previously declared input layout.
4587 */
4588 if (num_vertices != 0 && var->type->length != num_vertices) {
4589 _mesa_glsl_error(&loc, state,
4590 "%s size contradicts previously declared layout "
4591 "(size is %u, but layout requires a size of %u)",
4592 var_category, var->type->length, num_vertices);
4593 } else if (*size != 0 && var->type->length != *size) {
4594 _mesa_glsl_error(&loc, state,
4595 "%s sizes are inconsistent (size is %u, but a "
4596 "previous declaration has size %u)",
4597 var_category, var->type->length, *size);
4598 } else {
4599 *size = var->type->length;
4600 }
4601 }
4602 }
4603
4604 static void
4605 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4606 YYLTYPE loc, ir_variable *var)
4607 {
4608 unsigned num_vertices = 0;
4609
4610 if (state->tcs_output_vertices_specified) {
4611 if (!state->out_qualifier->vertices->
4612 process_qualifier_constant(state, "vertices",
4613 &num_vertices, false)) {
4614 return;
4615 }
4616
4617 if (num_vertices > state->Const.MaxPatchVertices) {
4618 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4619 "GL_MAX_PATCH_VERTICES", num_vertices);
4620 return;
4621 }
4622 }
4623
4624 if (!var->type->is_array() && !var->data.patch) {
4625 _mesa_glsl_error(&loc, state,
4626 "tessellation control shader outputs must be arrays");
4627
4628 /* To avoid cascading failures, short circuit the checks below. */
4629 return;
4630 }
4631
4632 if (var->data.patch)
4633 return;
4634
4635 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4636 &state->tcs_output_size,
4637 "tessellation control shader output");
4638 }
4639
4640 /**
4641 * Do additional processing necessary for tessellation control/evaluation shader
4642 * input declarations. This covers both interface block arrays and bare input
4643 * variables.
4644 */
4645 static void
4646 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4647 YYLTYPE loc, ir_variable *var)
4648 {
4649 if (!var->type->is_array() && !var->data.patch) {
4650 _mesa_glsl_error(&loc, state,
4651 "per-vertex tessellation shader inputs must be arrays");
4652 /* Avoid cascading failures. */
4653 return;
4654 }
4655
4656 if (var->data.patch)
4657 return;
4658
4659 /* The ARB_tessellation_shader spec says:
4660 *
4661 * "Declaring an array size is optional. If no size is specified, it
4662 * will be taken from the implementation-dependent maximum patch size
4663 * (gl_MaxPatchVertices). If a size is specified, it must match the
4664 * maximum patch size; otherwise, a compile or link error will occur."
4665 *
4666 * This text appears twice, once for TCS inputs, and again for TES inputs.
4667 */
4668 if (var->type->is_unsized_array()) {
4669 var->type = glsl_type::get_array_instance(var->type->fields.array,
4670 state->Const.MaxPatchVertices);
4671 } else if (var->type->length != state->Const.MaxPatchVertices) {
4672 _mesa_glsl_error(&loc, state,
4673 "per-vertex tessellation shader input arrays must be "
4674 "sized to gl_MaxPatchVertices (%d).",
4675 state->Const.MaxPatchVertices);
4676 }
4677 }
4678
4679
4680 /**
4681 * Do additional processing necessary for geometry shader input declarations
4682 * (this covers both interface blocks arrays and bare input variables).
4683 */
4684 static void
4685 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4686 YYLTYPE loc, ir_variable *var)
4687 {
4688 unsigned num_vertices = 0;
4689
4690 if (state->gs_input_prim_type_specified) {
4691 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4692 }
4693
4694 /* Geometry shader input variables must be arrays. Caller should have
4695 * reported an error for this.
4696 */
4697 if (!var->type->is_array()) {
4698 assert(state->error);
4699
4700 /* To avoid cascading failures, short circuit the checks below. */
4701 return;
4702 }
4703
4704 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4705 &state->gs_input_size,
4706 "geometry shader input");
4707 }
4708
4709 void
4710 validate_identifier(const char *identifier, YYLTYPE loc,
4711 struct _mesa_glsl_parse_state *state)
4712 {
4713 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4714 *
4715 * "Identifiers starting with "gl_" are reserved for use by
4716 * OpenGL, and may not be declared in a shader as either a
4717 * variable or a function."
4718 */
4719 if (is_gl_identifier(identifier)) {
4720 _mesa_glsl_error(&loc, state,
4721 "identifier `%s' uses reserved `gl_' prefix",
4722 identifier);
4723 } else if (strstr(identifier, "__")) {
4724 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4725 * spec:
4726 *
4727 * "In addition, all identifiers containing two
4728 * consecutive underscores (__) are reserved as
4729 * possible future keywords."
4730 *
4731 * The intention is that names containing __ are reserved for internal
4732 * use by the implementation, and names prefixed with GL_ are reserved
4733 * for use by Khronos. Names simply containing __ are dangerous to use,
4734 * but should be allowed.
4735 *
4736 * A future version of the GLSL specification will clarify this.
4737 */
4738 _mesa_glsl_warning(&loc, state,
4739 "identifier `%s' uses reserved `__' string",
4740 identifier);
4741 }
4742 }
4743
4744 ir_rvalue *
4745 ast_declarator_list::hir(exec_list *instructions,
4746 struct _mesa_glsl_parse_state *state)
4747 {
4748 void *ctx = state;
4749 const struct glsl_type *decl_type;
4750 const char *type_name = NULL;
4751 ir_rvalue *result = NULL;
4752 YYLTYPE loc = this->get_location();
4753
4754 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4755 *
4756 * "To ensure that a particular output variable is invariant, it is
4757 * necessary to use the invariant qualifier. It can either be used to
4758 * qualify a previously declared variable as being invariant
4759 *
4760 * invariant gl_Position; // make existing gl_Position be invariant"
4761 *
4762 * In these cases the parser will set the 'invariant' flag in the declarator
4763 * list, and the type will be NULL.
4764 */
4765 if (this->invariant) {
4766 assert(this->type == NULL);
4767
4768 if (state->current_function != NULL) {
4769 _mesa_glsl_error(& loc, state,
4770 "all uses of `invariant' keyword must be at global "
4771 "scope");
4772 }
4773
4774 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4775 assert(decl->array_specifier == NULL);
4776 assert(decl->initializer == NULL);
4777
4778 ir_variable *const earlier =
4779 state->symbols->get_variable(decl->identifier);
4780 if (earlier == NULL) {
4781 _mesa_glsl_error(& loc, state,
4782 "undeclared variable `%s' cannot be marked "
4783 "invariant", decl->identifier);
4784 } else if (!is_allowed_invariant(earlier, state)) {
4785 _mesa_glsl_error(&loc, state,
4786 "`%s' cannot be marked invariant; interfaces between "
4787 "shader stages only.", decl->identifier);
4788 } else if (earlier->data.used) {
4789 _mesa_glsl_error(& loc, state,
4790 "variable `%s' may not be redeclared "
4791 "`invariant' after being used",
4792 earlier->name);
4793 } else {
4794 earlier->data.invariant = true;
4795 }
4796 }
4797
4798 /* Invariant redeclarations do not have r-values.
4799 */
4800 return NULL;
4801 }
4802
4803 if (this->precise) {
4804 assert(this->type == NULL);
4805
4806 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4807 assert(decl->array_specifier == NULL);
4808 assert(decl->initializer == NULL);
4809
4810 ir_variable *const earlier =
4811 state->symbols->get_variable(decl->identifier);
4812 if (earlier == NULL) {
4813 _mesa_glsl_error(& loc, state,
4814 "undeclared variable `%s' cannot be marked "
4815 "precise", decl->identifier);
4816 } else if (state->current_function != NULL &&
4817 !state->symbols->name_declared_this_scope(decl->identifier)) {
4818 /* Note: we have to check if we're in a function, since
4819 * builtins are treated as having come from another scope.
4820 */
4821 _mesa_glsl_error(& loc, state,
4822 "variable `%s' from an outer scope may not be "
4823 "redeclared `precise' in this scope",
4824 earlier->name);
4825 } else if (earlier->data.used) {
4826 _mesa_glsl_error(& loc, state,
4827 "variable `%s' may not be redeclared "
4828 "`precise' after being used",
4829 earlier->name);
4830 } else {
4831 earlier->data.precise = true;
4832 }
4833 }
4834
4835 /* Precise redeclarations do not have r-values either. */
4836 return NULL;
4837 }
4838
4839 assert(this->type != NULL);
4840 assert(!this->invariant);
4841 assert(!this->precise);
4842
4843 /* The type specifier may contain a structure definition. Process that
4844 * before any of the variable declarations.
4845 */
4846 (void) this->type->specifier->hir(instructions, state);
4847
4848 decl_type = this->type->glsl_type(& type_name, state);
4849
4850 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4851 * "Buffer variables may only be declared inside interface blocks
4852 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4853 * shader storage blocks. It is a compile-time error to declare buffer
4854 * variables at global scope (outside a block)."
4855 */
4856 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4857 _mesa_glsl_error(&loc, state,
4858 "buffer variables cannot be declared outside "
4859 "interface blocks");
4860 }
4861
4862 /* An offset-qualified atomic counter declaration sets the default
4863 * offset for the next declaration within the same atomic counter
4864 * buffer.
4865 */
4866 if (decl_type && decl_type->contains_atomic()) {
4867 if (type->qualifier.flags.q.explicit_binding &&
4868 type->qualifier.flags.q.explicit_offset) {
4869 unsigned qual_binding;
4870 unsigned qual_offset;
4871 if (process_qualifier_constant(state, &loc, "binding",
4872 type->qualifier.binding,
4873 &qual_binding)
4874 && process_qualifier_constant(state, &loc, "offset",
4875 type->qualifier.offset,
4876 &qual_offset)) {
4877 state->atomic_counter_offsets[qual_binding] = qual_offset;
4878 }
4879 }
4880
4881 ast_type_qualifier allowed_atomic_qual_mask;
4882 allowed_atomic_qual_mask.flags.i = 0;
4883 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4884 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4885 allowed_atomic_qual_mask.flags.q.uniform = 1;
4886
4887 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4888 "invalid layout qualifier for",
4889 "atomic_uint");
4890 }
4891
4892 if (this->declarations.is_empty()) {
4893 /* If there is no structure involved in the program text, there are two
4894 * possible scenarios:
4895 *
4896 * - The program text contained something like 'vec4;'. This is an
4897 * empty declaration. It is valid but weird. Emit a warning.
4898 *
4899 * - The program text contained something like 'S;' and 'S' is not the
4900 * name of a known structure type. This is both invalid and weird.
4901 * Emit an error.
4902 *
4903 * - The program text contained something like 'mediump float;'
4904 * when the programmer probably meant 'precision mediump
4905 * float;' Emit a warning with a description of what they
4906 * probably meant to do.
4907 *
4908 * Note that if decl_type is NULL and there is a structure involved,
4909 * there must have been some sort of error with the structure. In this
4910 * case we assume that an error was already generated on this line of
4911 * code for the structure. There is no need to generate an additional,
4912 * confusing error.
4913 */
4914 assert(this->type->specifier->structure == NULL || decl_type != NULL
4915 || state->error);
4916
4917 if (decl_type == NULL) {
4918 _mesa_glsl_error(&loc, state,
4919 "invalid type `%s' in empty declaration",
4920 type_name);
4921 } else {
4922 if (decl_type->is_array()) {
4923 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4924 * spec:
4925 *
4926 * "... any declaration that leaves the size undefined is
4927 * disallowed as this would add complexity and there are no
4928 * use-cases."
4929 */
4930 if (state->es_shader && decl_type->is_unsized_array()) {
4931 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4932 "or implicitly defined");
4933 }
4934
4935 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4936 *
4937 * "The combinations of types and qualifiers that cause
4938 * compile-time or link-time errors are the same whether or not
4939 * the declaration is empty."
4940 */
4941 validate_array_dimensions(decl_type, state, &loc);
4942 }
4943
4944 if (decl_type->is_atomic_uint()) {
4945 /* Empty atomic counter declarations are allowed and useful
4946 * to set the default offset qualifier.
4947 */
4948 return NULL;
4949 } else if (this->type->qualifier.precision != ast_precision_none) {
4950 if (this->type->specifier->structure != NULL) {
4951 _mesa_glsl_error(&loc, state,
4952 "precision qualifiers can't be applied "
4953 "to structures");
4954 } else {
4955 static const char *const precision_names[] = {
4956 "highp",
4957 "highp",
4958 "mediump",
4959 "lowp"
4960 };
4961
4962 _mesa_glsl_warning(&loc, state,
4963 "empty declaration with precision "
4964 "qualifier, to set the default precision, "
4965 "use `precision %s %s;'",
4966 precision_names[this->type->
4967 qualifier.precision],
4968 type_name);
4969 }
4970 } else if (this->type->specifier->structure == NULL) {
4971 _mesa_glsl_warning(&loc, state, "empty declaration");
4972 }
4973 }
4974 }
4975
4976 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4977 const struct glsl_type *var_type;
4978 ir_variable *var;
4979 const char *identifier = decl->identifier;
4980 /* FINISHME: Emit a warning if a variable declaration shadows a
4981 * FINISHME: declaration at a higher scope.
4982 */
4983
4984 if ((decl_type == NULL) || decl_type->is_void()) {
4985 if (type_name != NULL) {
4986 _mesa_glsl_error(& loc, state,
4987 "invalid type `%s' in declaration of `%s'",
4988 type_name, decl->identifier);
4989 } else {
4990 _mesa_glsl_error(& loc, state,
4991 "invalid type in declaration of `%s'",
4992 decl->identifier);
4993 }
4994 continue;
4995 }
4996
4997 if (this->type->qualifier.is_subroutine_decl()) {
4998 const glsl_type *t;
4999 const char *name;
5000
5001 t = state->symbols->get_type(this->type->specifier->type_name);
5002 if (!t)
5003 _mesa_glsl_error(& loc, state,
5004 "invalid type in declaration of `%s'",
5005 decl->identifier);
5006 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5007
5008 identifier = name;
5009
5010 }
5011 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5012 state);
5013
5014 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5015
5016 /* The 'varying in' and 'varying out' qualifiers can only be used with
5017 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5018 * yet.
5019 */
5020 if (this->type->qualifier.flags.q.varying) {
5021 if (this->type->qualifier.flags.q.in) {
5022 _mesa_glsl_error(& loc, state,
5023 "`varying in' qualifier in declaration of "
5024 "`%s' only valid for geometry shaders using "
5025 "ARB_geometry_shader4 or EXT_geometry_shader4",
5026 decl->identifier);
5027 } else if (this->type->qualifier.flags.q.out) {
5028 _mesa_glsl_error(& loc, state,
5029 "`varying out' qualifier in declaration of "
5030 "`%s' only valid for geometry shaders using "
5031 "ARB_geometry_shader4 or EXT_geometry_shader4",
5032 decl->identifier);
5033 }
5034 }
5035
5036 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5037 *
5038 * "Global variables can only use the qualifiers const,
5039 * attribute, uniform, or varying. Only one may be
5040 * specified.
5041 *
5042 * Local variables can only use the qualifier const."
5043 *
5044 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5045 * any extension that adds the 'layout' keyword.
5046 */
5047 if (!state->is_version(130, 300)
5048 && !state->has_explicit_attrib_location()
5049 && !state->has_separate_shader_objects()
5050 && !state->ARB_fragment_coord_conventions_enable) {
5051 if (this->type->qualifier.flags.q.out) {
5052 _mesa_glsl_error(& loc, state,
5053 "`out' qualifier in declaration of `%s' "
5054 "only valid for function parameters in %s",
5055 decl->identifier, state->get_version_string());
5056 }
5057 if (this->type->qualifier.flags.q.in) {
5058 _mesa_glsl_error(& loc, state,
5059 "`in' qualifier in declaration of `%s' "
5060 "only valid for function parameters in %s",
5061 decl->identifier, state->get_version_string());
5062 }
5063 /* FINISHME: Test for other invalid qualifiers. */
5064 }
5065
5066 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5067 & loc, false);
5068 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5069 &loc);
5070
5071 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
5072 && (var->type->is_numeric() || var->type->is_boolean())
5073 && state->zero_init) {
5074 const ir_constant_data data = { { 0 } };
5075 var->data.has_initializer = true;
5076 var->constant_initializer = new(var) ir_constant(var->type, &data);
5077 }
5078
5079 if (this->type->qualifier.flags.q.invariant) {
5080 if (!is_allowed_invariant(var, state)) {
5081 _mesa_glsl_error(&loc, state,
5082 "`%s' cannot be marked invariant; interfaces between "
5083 "shader stages only", var->name);
5084 }
5085 }
5086
5087 if (state->current_function != NULL) {
5088 const char *mode = NULL;
5089 const char *extra = "";
5090
5091 /* There is no need to check for 'inout' here because the parser will
5092 * only allow that in function parameter lists.
5093 */
5094 if (this->type->qualifier.flags.q.attribute) {
5095 mode = "attribute";
5096 } else if (this->type->qualifier.is_subroutine_decl()) {
5097 mode = "subroutine uniform";
5098 } else if (this->type->qualifier.flags.q.uniform) {
5099 mode = "uniform";
5100 } else if (this->type->qualifier.flags.q.varying) {
5101 mode = "varying";
5102 } else if (this->type->qualifier.flags.q.in) {
5103 mode = "in";
5104 extra = " or in function parameter list";
5105 } else if (this->type->qualifier.flags.q.out) {
5106 mode = "out";
5107 extra = " or in function parameter list";
5108 }
5109
5110 if (mode) {
5111 _mesa_glsl_error(& loc, state,
5112 "%s variable `%s' must be declared at "
5113 "global scope%s",
5114 mode, var->name, extra);
5115 }
5116 } else if (var->data.mode == ir_var_shader_in) {
5117 var->data.read_only = true;
5118
5119 if (state->stage == MESA_SHADER_VERTEX) {
5120 bool error_emitted = false;
5121
5122 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5123 *
5124 * "Vertex shader inputs can only be float, floating-point
5125 * vectors, matrices, signed and unsigned integers and integer
5126 * vectors. Vertex shader inputs can also form arrays of these
5127 * types, but not structures."
5128 *
5129 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5130 *
5131 * "Vertex shader inputs can only be float, floating-point
5132 * vectors, matrices, signed and unsigned integers and integer
5133 * vectors. They cannot be arrays or structures."
5134 *
5135 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5136 *
5137 * "The attribute qualifier can be used only with float,
5138 * floating-point vectors, and matrices. Attribute variables
5139 * cannot be declared as arrays or structures."
5140 *
5141 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5142 *
5143 * "Vertex shader inputs can only be float, floating-point
5144 * vectors, matrices, signed and unsigned integers and integer
5145 * vectors. Vertex shader inputs cannot be arrays or
5146 * structures."
5147 *
5148 * From section 4.3.4 of the ARB_bindless_texture spec:
5149 *
5150 * "(modify third paragraph of the section to allow sampler and
5151 * image types) ... Vertex shader inputs can only be float,
5152 * single-precision floating-point scalars, single-precision
5153 * floating-point vectors, matrices, signed and unsigned
5154 * integers and integer vectors, sampler and image types."
5155 */
5156 const glsl_type *check_type = var->type->without_array();
5157
5158 switch (check_type->base_type) {
5159 case GLSL_TYPE_FLOAT:
5160 break;
5161 case GLSL_TYPE_UINT64:
5162 case GLSL_TYPE_INT64:
5163 break;
5164 case GLSL_TYPE_UINT:
5165 case GLSL_TYPE_INT:
5166 if (state->is_version(120, 300))
5167 break;
5168 case GLSL_TYPE_DOUBLE:
5169 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
5170 break;
5171 case GLSL_TYPE_SAMPLER:
5172 if (check_type->is_sampler() && state->has_bindless())
5173 break;
5174 case GLSL_TYPE_IMAGE:
5175 if (check_type->is_image() && state->has_bindless())
5176 break;
5177 /* FALLTHROUGH */
5178 default:
5179 _mesa_glsl_error(& loc, state,
5180 "vertex shader input / attribute cannot have "
5181 "type %s`%s'",
5182 var->type->is_array() ? "array of " : "",
5183 check_type->name);
5184 error_emitted = true;
5185 }
5186
5187 if (!error_emitted && var->type->is_array() &&
5188 !state->check_version(150, 0, &loc,
5189 "vertex shader input / attribute "
5190 "cannot have array type")) {
5191 error_emitted = true;
5192 }
5193 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5194 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5195 *
5196 * Geometry shader input variables get the per-vertex values
5197 * written out by vertex shader output variables of the same
5198 * names. Since a geometry shader operates on a set of
5199 * vertices, each input varying variable (or input block, see
5200 * interface blocks below) needs to be declared as an array.
5201 */
5202 if (!var->type->is_array()) {
5203 _mesa_glsl_error(&loc, state,
5204 "geometry shader inputs must be arrays");
5205 }
5206
5207 handle_geometry_shader_input_decl(state, loc, var);
5208 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5209 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5210 *
5211 * It is a compile-time error to declare a fragment shader
5212 * input with, or that contains, any of the following types:
5213 *
5214 * * A boolean type
5215 * * An opaque type
5216 * * An array of arrays
5217 * * An array of structures
5218 * * A structure containing an array
5219 * * A structure containing a structure
5220 */
5221 if (state->es_shader) {
5222 const glsl_type *check_type = var->type->without_array();
5223 if (check_type->is_boolean() ||
5224 check_type->contains_opaque()) {
5225 _mesa_glsl_error(&loc, state,
5226 "fragment shader input cannot have type %s",
5227 check_type->name);
5228 }
5229 if (var->type->is_array() &&
5230 var->type->fields.array->is_array()) {
5231 _mesa_glsl_error(&loc, state,
5232 "%s shader output "
5233 "cannot have an array of arrays",
5234 _mesa_shader_stage_to_string(state->stage));
5235 }
5236 if (var->type->is_array() &&
5237 var->type->fields.array->is_record()) {
5238 _mesa_glsl_error(&loc, state,
5239 "fragment shader input "
5240 "cannot have an array of structs");
5241 }
5242 if (var->type->is_record()) {
5243 for (unsigned i = 0; i < var->type->length; i++) {
5244 if (var->type->fields.structure[i].type->is_array() ||
5245 var->type->fields.structure[i].type->is_record())
5246 _mesa_glsl_error(&loc, state,
5247 "fragement shader input cannot have "
5248 "a struct that contains an "
5249 "array or struct");
5250 }
5251 }
5252 }
5253 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5254 state->stage == MESA_SHADER_TESS_EVAL) {
5255 handle_tess_shader_input_decl(state, loc, var);
5256 }
5257 } else if (var->data.mode == ir_var_shader_out) {
5258 const glsl_type *check_type = var->type->without_array();
5259
5260 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5261 *
5262 * It is a compile-time error to declare a fragment shader output
5263 * that contains any of the following:
5264 *
5265 * * A Boolean type (bool, bvec2 ...)
5266 * * A double-precision scalar or vector (double, dvec2 ...)
5267 * * An opaque type
5268 * * Any matrix type
5269 * * A structure
5270 */
5271 if (state->stage == MESA_SHADER_FRAGMENT) {
5272 if (check_type->is_record() || check_type->is_matrix())
5273 _mesa_glsl_error(&loc, state,
5274 "fragment shader output "
5275 "cannot have struct or matrix type");
5276 switch (check_type->base_type) {
5277 case GLSL_TYPE_UINT:
5278 case GLSL_TYPE_INT:
5279 case GLSL_TYPE_FLOAT:
5280 break;
5281 default:
5282 _mesa_glsl_error(&loc, state,
5283 "fragment shader output cannot have "
5284 "type %s", check_type->name);
5285 }
5286 }
5287
5288 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5289 *
5290 * It is a compile-time error to declare a vertex shader output
5291 * with, or that contains, any of the following types:
5292 *
5293 * * A boolean type
5294 * * An opaque type
5295 * * An array of arrays
5296 * * An array of structures
5297 * * A structure containing an array
5298 * * A structure containing a structure
5299 *
5300 * It is a compile-time error to declare a fragment shader output
5301 * with, or that contains, any of the following types:
5302 *
5303 * * A boolean type
5304 * * An opaque type
5305 * * A matrix
5306 * * A structure
5307 * * An array of array
5308 *
5309 * ES 3.20 updates this to apply to tessellation and geometry shaders
5310 * as well. Because there are per-vertex arrays in the new stages,
5311 * it strikes the "array of..." rules and replaces them with these:
5312 *
5313 * * For per-vertex-arrayed variables (applies to tessellation
5314 * control, tessellation evaluation and geometry shaders):
5315 *
5316 * * Per-vertex-arrayed arrays of arrays
5317 * * Per-vertex-arrayed arrays of structures
5318 *
5319 * * For non-per-vertex-arrayed variables:
5320 *
5321 * * An array of arrays
5322 * * An array of structures
5323 *
5324 * which basically says to unwrap the per-vertex aspect and apply
5325 * the old rules.
5326 */
5327 if (state->es_shader) {
5328 if (var->type->is_array() &&
5329 var->type->fields.array->is_array()) {
5330 _mesa_glsl_error(&loc, state,
5331 "%s shader output "
5332 "cannot have an array of arrays",
5333 _mesa_shader_stage_to_string(state->stage));
5334 }
5335 if (state->stage <= MESA_SHADER_GEOMETRY) {
5336 const glsl_type *type = var->type;
5337
5338 if (state->stage == MESA_SHADER_TESS_CTRL &&
5339 !var->data.patch && var->type->is_array()) {
5340 type = var->type->fields.array;
5341 }
5342
5343 if (type->is_array() && type->fields.array->is_record()) {
5344 _mesa_glsl_error(&loc, state,
5345 "%s shader output cannot have "
5346 "an array of structs",
5347 _mesa_shader_stage_to_string(state->stage));
5348 }
5349 if (type->is_record()) {
5350 for (unsigned i = 0; i < type->length; i++) {
5351 if (type->fields.structure[i].type->is_array() ||
5352 type->fields.structure[i].type->is_record())
5353 _mesa_glsl_error(&loc, state,
5354 "%s shader output cannot have a "
5355 "struct that contains an "
5356 "array or struct",
5357 _mesa_shader_stage_to_string(state->stage));
5358 }
5359 }
5360 }
5361 }
5362
5363 if (state->stage == MESA_SHADER_TESS_CTRL) {
5364 handle_tess_ctrl_shader_output_decl(state, loc, var);
5365 }
5366 } else if (var->type->contains_subroutine()) {
5367 /* declare subroutine uniforms as hidden */
5368 var->data.how_declared = ir_var_hidden;
5369 }
5370
5371 /* From section 4.3.4 of the GLSL 4.00 spec:
5372 * "Input variables may not be declared using the patch in qualifier
5373 * in tessellation control or geometry shaders."
5374 *
5375 * From section 4.3.6 of the GLSL 4.00 spec:
5376 * "It is an error to use patch out in a vertex, tessellation
5377 * evaluation, or geometry shader."
5378 *
5379 * This doesn't explicitly forbid using them in a fragment shader, but
5380 * that's probably just an oversight.
5381 */
5382 if (state->stage != MESA_SHADER_TESS_EVAL
5383 && this->type->qualifier.flags.q.patch
5384 && this->type->qualifier.flags.q.in) {
5385
5386 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5387 "tessellation evaluation shader");
5388 }
5389
5390 if (state->stage != MESA_SHADER_TESS_CTRL
5391 && this->type->qualifier.flags.q.patch
5392 && this->type->qualifier.flags.q.out) {
5393
5394 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5395 "tessellation control shader");
5396 }
5397
5398 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5399 */
5400 if (this->type->qualifier.precision != ast_precision_none) {
5401 state->check_precision_qualifiers_allowed(&loc);
5402 }
5403
5404 if (this->type->qualifier.precision != ast_precision_none &&
5405 !precision_qualifier_allowed(var->type)) {
5406 _mesa_glsl_error(&loc, state,
5407 "precision qualifiers apply only to floating point"
5408 ", integer and opaque types");
5409 }
5410
5411 /* From section 4.1.7 of the GLSL 4.40 spec:
5412 *
5413 * "[Opaque types] can only be declared as function
5414 * parameters or uniform-qualified variables."
5415 *
5416 * From section 4.1.7 of the ARB_bindless_texture spec:
5417 *
5418 * "Samplers may be declared as shader inputs and outputs, as uniform
5419 * variables, as temporary variables, and as function parameters."
5420 *
5421 * From section 4.1.X of the ARB_bindless_texture spec:
5422 *
5423 * "Images may be declared as shader inputs and outputs, as uniform
5424 * variables, as temporary variables, and as function parameters."
5425 */
5426 if (!this->type->qualifier.flags.q.uniform &&
5427 (var_type->contains_atomic() ||
5428 (!state->has_bindless() && var_type->contains_opaque()))) {
5429 _mesa_glsl_error(&loc, state,
5430 "%s variables must be declared uniform",
5431 state->has_bindless() ? "atomic" : "opaque");
5432 }
5433
5434 /* Process the initializer and add its instructions to a temporary
5435 * list. This list will be added to the instruction stream (below) after
5436 * the declaration is added. This is done because in some cases (such as
5437 * redeclarations) the declaration may not actually be added to the
5438 * instruction stream.
5439 */
5440 exec_list initializer_instructions;
5441
5442 /* Examine var name here since var may get deleted in the next call */
5443 bool var_is_gl_id = is_gl_identifier(var->name);
5444
5445 bool is_redeclaration;
5446 ir_variable *declared_var =
5447 get_variable_being_redeclared(var, decl->get_location(), state,
5448 false /* allow_all_redeclarations */,
5449 &is_redeclaration);
5450 if (is_redeclaration) {
5451 if (var_is_gl_id &&
5452 declared_var->data.how_declared == ir_var_declared_in_block) {
5453 _mesa_glsl_error(&loc, state,
5454 "`%s' has already been redeclared using "
5455 "gl_PerVertex", declared_var->name);
5456 }
5457 declared_var->data.how_declared = ir_var_declared_normally;
5458 }
5459
5460 if (decl->initializer != NULL) {
5461 result = process_initializer(declared_var,
5462 decl, this->type,
5463 &initializer_instructions, state);
5464 } else {
5465 validate_array_dimensions(var_type, state, &loc);
5466 }
5467
5468 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5469 *
5470 * "It is an error to write to a const variable outside of
5471 * its declaration, so they must be initialized when
5472 * declared."
5473 */
5474 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5475 _mesa_glsl_error(& loc, state,
5476 "const declaration of `%s' must be initialized",
5477 decl->identifier);
5478 }
5479
5480 if (state->es_shader) {
5481 const glsl_type *const t = declared_var->type;
5482
5483 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5484 *
5485 * The GL_OES_tessellation_shader spec says about inputs:
5486 *
5487 * "Declaring an array size is optional. If no size is specified,
5488 * it will be taken from the implementation-dependent maximum
5489 * patch size (gl_MaxPatchVertices)."
5490 *
5491 * and about TCS outputs:
5492 *
5493 * "If no size is specified, it will be taken from output patch
5494 * size declared in the shader."
5495 *
5496 * The GL_OES_geometry_shader spec says:
5497 *
5498 * "All geometry shader input unsized array declarations will be
5499 * sized by an earlier input primitive layout qualifier, when
5500 * present, as per the following table."
5501 */
5502 const bool implicitly_sized =
5503 (declared_var->data.mode == ir_var_shader_in &&
5504 state->stage >= MESA_SHADER_TESS_CTRL &&
5505 state->stage <= MESA_SHADER_GEOMETRY) ||
5506 (declared_var->data.mode == ir_var_shader_out &&
5507 state->stage == MESA_SHADER_TESS_CTRL);
5508
5509 if (t->is_unsized_array() && !implicitly_sized)
5510 /* Section 10.17 of the GLSL ES 1.00 specification states that
5511 * unsized array declarations have been removed from the language.
5512 * Arrays that are sized using an initializer are still explicitly
5513 * sized. However, GLSL ES 1.00 does not allow array
5514 * initializers. That is only allowed in GLSL ES 3.00.
5515 *
5516 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5517 *
5518 * "An array type can also be formed without specifying a size
5519 * if the definition includes an initializer:
5520 *
5521 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5522 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5523 *
5524 * float a[5];
5525 * float b[] = a;"
5526 */
5527 _mesa_glsl_error(& loc, state,
5528 "unsized array declarations are not allowed in "
5529 "GLSL ES");
5530 }
5531
5532 /* If the declaration is not a redeclaration, there are a few additional
5533 * semantic checks that must be applied. In addition, variable that was
5534 * created for the declaration should be added to the IR stream.
5535 */
5536 if (!is_redeclaration) {
5537 validate_identifier(decl->identifier, loc, state);
5538
5539 /* Add the variable to the symbol table. Note that the initializer's
5540 * IR was already processed earlier (though it hasn't been emitted
5541 * yet), without the variable in scope.
5542 *
5543 * This differs from most C-like languages, but it follows the GLSL
5544 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5545 * spec:
5546 *
5547 * "Within a declaration, the scope of a name starts immediately
5548 * after the initializer if present or immediately after the name
5549 * being declared if not."
5550 */
5551 if (!state->symbols->add_variable(declared_var)) {
5552 YYLTYPE loc = this->get_location();
5553 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5554 "current scope", decl->identifier);
5555 continue;
5556 }
5557
5558 /* Push the variable declaration to the top. It means that all the
5559 * variable declarations will appear in a funny last-to-first order,
5560 * but otherwise we run into trouble if a function is prototyped, a
5561 * global var is decled, then the function is defined with usage of
5562 * the global var. See glslparsertest's CorrectModule.frag.
5563 */
5564 instructions->push_head(declared_var);
5565 }
5566
5567 instructions->append_list(&initializer_instructions);
5568 }
5569
5570
5571 /* Generally, variable declarations do not have r-values. However,
5572 * one is used for the declaration in
5573 *
5574 * while (bool b = some_condition()) {
5575 * ...
5576 * }
5577 *
5578 * so we return the rvalue from the last seen declaration here.
5579 */
5580 return result;
5581 }
5582
5583
5584 ir_rvalue *
5585 ast_parameter_declarator::hir(exec_list *instructions,
5586 struct _mesa_glsl_parse_state *state)
5587 {
5588 void *ctx = state;
5589 const struct glsl_type *type;
5590 const char *name = NULL;
5591 YYLTYPE loc = this->get_location();
5592
5593 type = this->type->glsl_type(& name, state);
5594
5595 if (type == NULL) {
5596 if (name != NULL) {
5597 _mesa_glsl_error(& loc, state,
5598 "invalid type `%s' in declaration of `%s'",
5599 name, this->identifier);
5600 } else {
5601 _mesa_glsl_error(& loc, state,
5602 "invalid type in declaration of `%s'",
5603 this->identifier);
5604 }
5605
5606 type = glsl_type::error_type;
5607 }
5608
5609 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5610 *
5611 * "Functions that accept no input arguments need not use void in the
5612 * argument list because prototypes (or definitions) are required and
5613 * therefore there is no ambiguity when an empty argument list "( )" is
5614 * declared. The idiom "(void)" as a parameter list is provided for
5615 * convenience."
5616 *
5617 * Placing this check here prevents a void parameter being set up
5618 * for a function, which avoids tripping up checks for main taking
5619 * parameters and lookups of an unnamed symbol.
5620 */
5621 if (type->is_void()) {
5622 if (this->identifier != NULL)
5623 _mesa_glsl_error(& loc, state,
5624 "named parameter cannot have type `void'");
5625
5626 is_void = true;
5627 return NULL;
5628 }
5629
5630 if (formal_parameter && (this->identifier == NULL)) {
5631 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5632 return NULL;
5633 }
5634
5635 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5636 * call already handled the "vec4[..] foo" case.
5637 */
5638 type = process_array_type(&loc, type, this->array_specifier, state);
5639
5640 if (!type->is_error() && type->is_unsized_array()) {
5641 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5642 "a declared size");
5643 type = glsl_type::error_type;
5644 }
5645
5646 is_void = false;
5647 ir_variable *var = new(ctx)
5648 ir_variable(type, this->identifier, ir_var_function_in);
5649
5650 /* Apply any specified qualifiers to the parameter declaration. Note that
5651 * for function parameters the default mode is 'in'.
5652 */
5653 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5654 true);
5655
5656 /* From section 4.1.7 of the GLSL 4.40 spec:
5657 *
5658 * "Opaque variables cannot be treated as l-values; hence cannot
5659 * be used as out or inout function parameters, nor can they be
5660 * assigned into."
5661 *
5662 * From section 4.1.7 of the ARB_bindless_texture spec:
5663 *
5664 * "Samplers can be used as l-values, so can be assigned into and used
5665 * as "out" and "inout" function parameters."
5666 *
5667 * From section 4.1.X of the ARB_bindless_texture spec:
5668 *
5669 * "Images can be used as l-values, so can be assigned into and used as
5670 * "out" and "inout" function parameters."
5671 */
5672 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5673 && (type->contains_atomic() ||
5674 (!state->has_bindless() && type->contains_opaque()))) {
5675 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5676 "contain %s variables",
5677 state->has_bindless() ? "atomic" : "opaque");
5678 type = glsl_type::error_type;
5679 }
5680
5681 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5682 *
5683 * "When calling a function, expressions that do not evaluate to
5684 * l-values cannot be passed to parameters declared as out or inout."
5685 *
5686 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5687 *
5688 * "Other binary or unary expressions, non-dereferenced arrays,
5689 * function names, swizzles with repeated fields, and constants
5690 * cannot be l-values."
5691 *
5692 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5693 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5694 */
5695 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5696 && type->is_array()
5697 && !state->check_version(120, 100, &loc,
5698 "arrays cannot be out or inout parameters")) {
5699 type = glsl_type::error_type;
5700 }
5701
5702 instructions->push_tail(var);
5703
5704 /* Parameter declarations do not have r-values.
5705 */
5706 return NULL;
5707 }
5708
5709
5710 void
5711 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5712 bool formal,
5713 exec_list *ir_parameters,
5714 _mesa_glsl_parse_state *state)
5715 {
5716 ast_parameter_declarator *void_param = NULL;
5717 unsigned count = 0;
5718
5719 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5720 param->formal_parameter = formal;
5721 param->hir(ir_parameters, state);
5722
5723 if (param->is_void)
5724 void_param = param;
5725
5726 count++;
5727 }
5728
5729 if ((void_param != NULL) && (count > 1)) {
5730 YYLTYPE loc = void_param->get_location();
5731
5732 _mesa_glsl_error(& loc, state,
5733 "`void' parameter must be only parameter");
5734 }
5735 }
5736
5737
5738 void
5739 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5740 {
5741 /* IR invariants disallow function declarations or definitions
5742 * nested within other function definitions. But there is no
5743 * requirement about the relative order of function declarations
5744 * and definitions with respect to one another. So simply insert
5745 * the new ir_function block at the end of the toplevel instruction
5746 * list.
5747 */
5748 state->toplevel_ir->push_tail(f);
5749 }
5750
5751
5752 ir_rvalue *
5753 ast_function::hir(exec_list *instructions,
5754 struct _mesa_glsl_parse_state *state)
5755 {
5756 void *ctx = state;
5757 ir_function *f = NULL;
5758 ir_function_signature *sig = NULL;
5759 exec_list hir_parameters;
5760 YYLTYPE loc = this->get_location();
5761
5762 const char *const name = identifier;
5763
5764 /* New functions are always added to the top-level IR instruction stream,
5765 * so this instruction list pointer is ignored. See also emit_function
5766 * (called below).
5767 */
5768 (void) instructions;
5769
5770 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5771 *
5772 * "Function declarations (prototypes) cannot occur inside of functions;
5773 * they must be at global scope, or for the built-in functions, outside
5774 * the global scope."
5775 *
5776 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5777 *
5778 * "User defined functions may only be defined within the global scope."
5779 *
5780 * Note that this language does not appear in GLSL 1.10.
5781 */
5782 if ((state->current_function != NULL) &&
5783 state->is_version(120, 100)) {
5784 YYLTYPE loc = this->get_location();
5785 _mesa_glsl_error(&loc, state,
5786 "declaration of function `%s' not allowed within "
5787 "function body", name);
5788 }
5789
5790 validate_identifier(name, this->get_location(), state);
5791
5792 /* Convert the list of function parameters to HIR now so that they can be
5793 * used below to compare this function's signature with previously seen
5794 * signatures for functions with the same name.
5795 */
5796 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5797 is_definition,
5798 & hir_parameters, state);
5799
5800 const char *return_type_name;
5801 const glsl_type *return_type =
5802 this->return_type->glsl_type(& return_type_name, state);
5803
5804 if (!return_type) {
5805 YYLTYPE loc = this->get_location();
5806 _mesa_glsl_error(&loc, state,
5807 "function `%s' has undeclared return type `%s'",
5808 name, return_type_name);
5809 return_type = glsl_type::error_type;
5810 }
5811
5812 /* ARB_shader_subroutine states:
5813 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5814 * subroutine(...) to a function declaration."
5815 */
5816 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5817 YYLTYPE loc = this->get_location();
5818 _mesa_glsl_error(&loc, state,
5819 "function declaration `%s' cannot have subroutine prepended",
5820 name);
5821 }
5822
5823 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5824 * "No qualifier is allowed on the return type of a function."
5825 */
5826 if (this->return_type->has_qualifiers(state)) {
5827 YYLTYPE loc = this->get_location();
5828 _mesa_glsl_error(& loc, state,
5829 "function `%s' return type has qualifiers", name);
5830 }
5831
5832 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5833 *
5834 * "Arrays are allowed as arguments and as the return type. In both
5835 * cases, the array must be explicitly sized."
5836 */
5837 if (return_type->is_unsized_array()) {
5838 YYLTYPE loc = this->get_location();
5839 _mesa_glsl_error(& loc, state,
5840 "function `%s' return type array must be explicitly "
5841 "sized", name);
5842 }
5843
5844 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
5845 *
5846 * "Arrays are allowed as arguments, but not as the return type. [...]
5847 * The return type can also be a structure if the structure does not
5848 * contain an array."
5849 */
5850 if (state->language_version == 100 && return_type->contains_array()) {
5851 YYLTYPE loc = this->get_location();
5852 _mesa_glsl_error(& loc, state,
5853 "function `%s' return type contains an array", name);
5854 }
5855
5856 /* From section 4.1.7 of the GLSL 4.40 spec:
5857 *
5858 * "[Opaque types] can only be declared as function parameters
5859 * or uniform-qualified variables."
5860 *
5861 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
5862 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
5863 * (Images)", this should be allowed.
5864 */
5865 if (return_type->contains_atomic() ||
5866 (!state->has_bindless() && return_type->contains_opaque())) {
5867 YYLTYPE loc = this->get_location();
5868 _mesa_glsl_error(&loc, state,
5869 "function `%s' return type can't contain an %s type",
5870 name, state->has_bindless() ? "atomic" : "opaque");
5871 }
5872
5873 /**/
5874 if (return_type->is_subroutine()) {
5875 YYLTYPE loc = this->get_location();
5876 _mesa_glsl_error(&loc, state,
5877 "function `%s' return type can't be a subroutine type",
5878 name);
5879 }
5880
5881
5882 /* Create an ir_function if one doesn't already exist. */
5883 f = state->symbols->get_function(name);
5884 if (f == NULL) {
5885 f = new(ctx) ir_function(name);
5886 if (!this->return_type->qualifier.is_subroutine_decl()) {
5887 if (!state->symbols->add_function(f)) {
5888 /* This function name shadows a non-function use of the same name. */
5889 YYLTYPE loc = this->get_location();
5890 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5891 "non-function", name);
5892 return NULL;
5893 }
5894 }
5895 emit_function(state, f);
5896 }
5897
5898 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5899 *
5900 * "A shader cannot redefine or overload built-in functions."
5901 *
5902 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5903 *
5904 * "User code can overload the built-in functions but cannot redefine
5905 * them."
5906 */
5907 if (state->es_shader) {
5908 /* Local shader has no exact candidates; check the built-ins. */
5909 _mesa_glsl_initialize_builtin_functions();
5910 if (state->language_version >= 300 &&
5911 _mesa_glsl_has_builtin_function(name)) {
5912 YYLTYPE loc = this->get_location();
5913 _mesa_glsl_error(& loc, state,
5914 "A shader cannot redefine or overload built-in "
5915 "function `%s' in GLSL ES 3.00", name);
5916 return NULL;
5917 }
5918
5919 if (state->language_version == 100) {
5920 ir_function_signature *sig =
5921 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
5922 if (sig && sig->is_builtin()) {
5923 _mesa_glsl_error(& loc, state,
5924 "A shader cannot redefine built-in "
5925 "function `%s' in GLSL ES 1.00", name);
5926 }
5927 }
5928 }
5929
5930 /* Verify that this function's signature either doesn't match a previously
5931 * seen signature for a function with the same name, or, if a match is found,
5932 * that the previously seen signature does not have an associated definition.
5933 */
5934 if (state->es_shader || f->has_user_signature()) {
5935 sig = f->exact_matching_signature(state, &hir_parameters);
5936 if (sig != NULL) {
5937 const char *badvar = sig->qualifiers_match(&hir_parameters);
5938 if (badvar != NULL) {
5939 YYLTYPE loc = this->get_location();
5940
5941 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5942 "qualifiers don't match prototype", name, badvar);
5943 }
5944
5945 if (sig->return_type != return_type) {
5946 YYLTYPE loc = this->get_location();
5947
5948 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5949 "match prototype", name);
5950 }
5951
5952 if (sig->is_defined) {
5953 if (is_definition) {
5954 YYLTYPE loc = this->get_location();
5955 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5956 } else {
5957 /* We just encountered a prototype that exactly matches a
5958 * function that's already been defined. This is redundant,
5959 * and we should ignore it.
5960 */
5961 return NULL;
5962 }
5963 } else if (state->language_version == 100 && !is_definition) {
5964 /* From the GLSL 1.00 spec, section 4.2.7:
5965 *
5966 * "A particular variable, structure or function declaration
5967 * may occur at most once within a scope with the exception
5968 * that a single function prototype plus the corresponding
5969 * function definition are allowed."
5970 */
5971 YYLTYPE loc = this->get_location();
5972 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
5973 }
5974 }
5975 }
5976
5977 /* Verify the return type of main() */
5978 if (strcmp(name, "main") == 0) {
5979 if (! return_type->is_void()) {
5980 YYLTYPE loc = this->get_location();
5981
5982 _mesa_glsl_error(& loc, state, "main() must return void");
5983 }
5984
5985 if (!hir_parameters.is_empty()) {
5986 YYLTYPE loc = this->get_location();
5987
5988 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5989 }
5990 }
5991
5992 /* Finish storing the information about this new function in its signature.
5993 */
5994 if (sig == NULL) {
5995 sig = new(ctx) ir_function_signature(return_type);
5996 f->add_signature(sig);
5997 }
5998
5999 sig->replace_parameters(&hir_parameters);
6000 signature = sig;
6001
6002 if (this->return_type->qualifier.subroutine_list) {
6003 int idx;
6004
6005 if (this->return_type->qualifier.flags.q.explicit_index) {
6006 unsigned qual_index;
6007 if (process_qualifier_constant(state, &loc, "index",
6008 this->return_type->qualifier.index,
6009 &qual_index)) {
6010 if (!state->has_explicit_uniform_location()) {
6011 _mesa_glsl_error(&loc, state, "subroutine index requires "
6012 "GL_ARB_explicit_uniform_location or "
6013 "GLSL 4.30");
6014 } else if (qual_index >= MAX_SUBROUTINES) {
6015 _mesa_glsl_error(&loc, state,
6016 "invalid subroutine index (%d) index must "
6017 "be a number between 0 and "
6018 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6019 MAX_SUBROUTINES - 1);
6020 } else {
6021 f->subroutine_index = qual_index;
6022 }
6023 }
6024 }
6025
6026 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6027 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6028 f->num_subroutine_types);
6029 idx = 0;
6030 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6031 const struct glsl_type *type;
6032 /* the subroutine type must be already declared */
6033 type = state->symbols->get_type(decl->identifier);
6034 if (!type) {
6035 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6036 }
6037
6038 for (int i = 0; i < state->num_subroutine_types; i++) {
6039 ir_function *fn = state->subroutine_types[i];
6040 ir_function_signature *tsig = NULL;
6041
6042 if (strcmp(fn->name, decl->identifier))
6043 continue;
6044
6045 tsig = fn->matching_signature(state, &sig->parameters,
6046 false);
6047 if (!tsig) {
6048 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6049 } else {
6050 if (tsig->return_type != sig->return_type) {
6051 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6052 }
6053 }
6054 }
6055 f->subroutine_types[idx++] = type;
6056 }
6057 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6058 ir_function *,
6059 state->num_subroutines + 1);
6060 state->subroutines[state->num_subroutines] = f;
6061 state->num_subroutines++;
6062
6063 }
6064
6065 if (this->return_type->qualifier.is_subroutine_decl()) {
6066 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6067 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6068 return NULL;
6069 }
6070 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6071 ir_function *,
6072 state->num_subroutine_types + 1);
6073 state->subroutine_types[state->num_subroutine_types] = f;
6074 state->num_subroutine_types++;
6075
6076 f->is_subroutine = true;
6077 }
6078
6079 /* Function declarations (prototypes) do not have r-values.
6080 */
6081 return NULL;
6082 }
6083
6084
6085 ir_rvalue *
6086 ast_function_definition::hir(exec_list *instructions,
6087 struct _mesa_glsl_parse_state *state)
6088 {
6089 prototype->is_definition = true;
6090 prototype->hir(instructions, state);
6091
6092 ir_function_signature *signature = prototype->signature;
6093 if (signature == NULL)
6094 return NULL;
6095
6096 assert(state->current_function == NULL);
6097 state->current_function = signature;
6098 state->found_return = false;
6099
6100 /* Duplicate parameters declared in the prototype as concrete variables.
6101 * Add these to the symbol table.
6102 */
6103 state->symbols->push_scope();
6104 foreach_in_list(ir_variable, var, &signature->parameters) {
6105 assert(var->as_variable() != NULL);
6106
6107 /* The only way a parameter would "exist" is if two parameters have
6108 * the same name.
6109 */
6110 if (state->symbols->name_declared_this_scope(var->name)) {
6111 YYLTYPE loc = this->get_location();
6112
6113 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6114 } else {
6115 state->symbols->add_variable(var);
6116 }
6117 }
6118
6119 /* Convert the body of the function to HIR. */
6120 this->body->hir(&signature->body, state);
6121 signature->is_defined = true;
6122
6123 state->symbols->pop_scope();
6124
6125 assert(state->current_function == signature);
6126 state->current_function = NULL;
6127
6128 if (!signature->return_type->is_void() && !state->found_return) {
6129 YYLTYPE loc = this->get_location();
6130 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6131 "%s, but no return statement",
6132 signature->function_name(),
6133 signature->return_type->name);
6134 }
6135
6136 /* Function definitions do not have r-values.
6137 */
6138 return NULL;
6139 }
6140
6141
6142 ir_rvalue *
6143 ast_jump_statement::hir(exec_list *instructions,
6144 struct _mesa_glsl_parse_state *state)
6145 {
6146 void *ctx = state;
6147
6148 switch (mode) {
6149 case ast_return: {
6150 ir_return *inst;
6151 assert(state->current_function);
6152
6153 if (opt_return_value) {
6154 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6155
6156 /* The value of the return type can be NULL if the shader says
6157 * 'return foo();' and foo() is a function that returns void.
6158 *
6159 * NOTE: The GLSL spec doesn't say that this is an error. The type
6160 * of the return value is void. If the return type of the function is
6161 * also void, then this should compile without error. Seriously.
6162 */
6163 const glsl_type *const ret_type =
6164 (ret == NULL) ? glsl_type::void_type : ret->type;
6165
6166 /* Implicit conversions are not allowed for return values prior to
6167 * ARB_shading_language_420pack.
6168 */
6169 if (state->current_function->return_type != ret_type) {
6170 YYLTYPE loc = this->get_location();
6171
6172 if (state->has_420pack()) {
6173 if (!apply_implicit_conversion(state->current_function->return_type,
6174 ret, state)) {
6175 _mesa_glsl_error(& loc, state,
6176 "could not implicitly convert return value "
6177 "to %s, in function `%s'",
6178 state->current_function->return_type->name,
6179 state->current_function->function_name());
6180 }
6181 } else {
6182 _mesa_glsl_error(& loc, state,
6183 "`return' with wrong type %s, in function `%s' "
6184 "returning %s",
6185 ret_type->name,
6186 state->current_function->function_name(),
6187 state->current_function->return_type->name);
6188 }
6189 } else if (state->current_function->return_type->base_type ==
6190 GLSL_TYPE_VOID) {
6191 YYLTYPE loc = this->get_location();
6192
6193 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6194 * specs add a clarification:
6195 *
6196 * "A void function can only use return without a return argument, even if
6197 * the return argument has void type. Return statements only accept values:
6198 *
6199 * void func1() { }
6200 * void func2() { return func1(); } // illegal return statement"
6201 */
6202 _mesa_glsl_error(& loc, state,
6203 "void functions can only use `return' without a "
6204 "return argument");
6205 }
6206
6207 inst = new(ctx) ir_return(ret);
6208 } else {
6209 if (state->current_function->return_type->base_type !=
6210 GLSL_TYPE_VOID) {
6211 YYLTYPE loc = this->get_location();
6212
6213 _mesa_glsl_error(& loc, state,
6214 "`return' with no value, in function %s returning "
6215 "non-void",
6216 state->current_function->function_name());
6217 }
6218 inst = new(ctx) ir_return;
6219 }
6220
6221 state->found_return = true;
6222 instructions->push_tail(inst);
6223 break;
6224 }
6225
6226 case ast_discard:
6227 if (state->stage != MESA_SHADER_FRAGMENT) {
6228 YYLTYPE loc = this->get_location();
6229
6230 _mesa_glsl_error(& loc, state,
6231 "`discard' may only appear in a fragment shader");
6232 }
6233 instructions->push_tail(new(ctx) ir_discard);
6234 break;
6235
6236 case ast_break:
6237 case ast_continue:
6238 if (mode == ast_continue &&
6239 state->loop_nesting_ast == NULL) {
6240 YYLTYPE loc = this->get_location();
6241
6242 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6243 } else if (mode == ast_break &&
6244 state->loop_nesting_ast == NULL &&
6245 state->switch_state.switch_nesting_ast == NULL) {
6246 YYLTYPE loc = this->get_location();
6247
6248 _mesa_glsl_error(& loc, state,
6249 "break may only appear in a loop or a switch");
6250 } else {
6251 /* For a loop, inline the for loop expression again, since we don't
6252 * know where near the end of the loop body the normal copy of it is
6253 * going to be placed. Same goes for the condition for a do-while
6254 * loop.
6255 */
6256 if (state->loop_nesting_ast != NULL &&
6257 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6258 if (state->loop_nesting_ast->rest_expression) {
6259 state->loop_nesting_ast->rest_expression->hir(instructions,
6260 state);
6261 }
6262 if (state->loop_nesting_ast->mode ==
6263 ast_iteration_statement::ast_do_while) {
6264 state->loop_nesting_ast->condition_to_hir(instructions, state);
6265 }
6266 }
6267
6268 if (state->switch_state.is_switch_innermost &&
6269 mode == ast_continue) {
6270 /* Set 'continue_inside' to true. */
6271 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6272 ir_dereference_variable *deref_continue_inside_var =
6273 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6274 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6275 true_val));
6276
6277 /* Break out from the switch, continue for the loop will
6278 * be called right after switch. */
6279 ir_loop_jump *const jump =
6280 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6281 instructions->push_tail(jump);
6282
6283 } else if (state->switch_state.is_switch_innermost &&
6284 mode == ast_break) {
6285 /* Force break out of switch by inserting a break. */
6286 ir_loop_jump *const jump =
6287 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6288 instructions->push_tail(jump);
6289 } else {
6290 ir_loop_jump *const jump =
6291 new(ctx) ir_loop_jump((mode == ast_break)
6292 ? ir_loop_jump::jump_break
6293 : ir_loop_jump::jump_continue);
6294 instructions->push_tail(jump);
6295 }
6296 }
6297
6298 break;
6299 }
6300
6301 /* Jump instructions do not have r-values.
6302 */
6303 return NULL;
6304 }
6305
6306
6307 ir_rvalue *
6308 ast_selection_statement::hir(exec_list *instructions,
6309 struct _mesa_glsl_parse_state *state)
6310 {
6311 void *ctx = state;
6312
6313 ir_rvalue *const condition = this->condition->hir(instructions, state);
6314
6315 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6316 *
6317 * "Any expression whose type evaluates to a Boolean can be used as the
6318 * conditional expression bool-expression. Vector types are not accepted
6319 * as the expression to if."
6320 *
6321 * The checks are separated so that higher quality diagnostics can be
6322 * generated for cases where both rules are violated.
6323 */
6324 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6325 YYLTYPE loc = this->condition->get_location();
6326
6327 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6328 "boolean");
6329 }
6330
6331 ir_if *const stmt = new(ctx) ir_if(condition);
6332
6333 if (then_statement != NULL) {
6334 state->symbols->push_scope();
6335 then_statement->hir(& stmt->then_instructions, state);
6336 state->symbols->pop_scope();
6337 }
6338
6339 if (else_statement != NULL) {
6340 state->symbols->push_scope();
6341 else_statement->hir(& stmt->else_instructions, state);
6342 state->symbols->pop_scope();
6343 }
6344
6345 instructions->push_tail(stmt);
6346
6347 /* if-statements do not have r-values.
6348 */
6349 return NULL;
6350 }
6351
6352
6353 /* Used for detection of duplicate case values, compare
6354 * given contents directly.
6355 */
6356 static bool
6357 compare_case_value(const void *a, const void *b)
6358 {
6359 return *(unsigned *) a == *(unsigned *) b;
6360 }
6361
6362
6363 /* Used for detection of duplicate case values, just
6364 * returns key contents as is.
6365 */
6366 static unsigned
6367 key_contents(const void *key)
6368 {
6369 return *(unsigned *) key;
6370 }
6371
6372
6373 ir_rvalue *
6374 ast_switch_statement::hir(exec_list *instructions,
6375 struct _mesa_glsl_parse_state *state)
6376 {
6377 void *ctx = state;
6378
6379 ir_rvalue *const test_expression =
6380 this->test_expression->hir(instructions, state);
6381
6382 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6383 *
6384 * "The type of init-expression in a switch statement must be a
6385 * scalar integer."
6386 */
6387 if (!test_expression->type->is_scalar() ||
6388 !test_expression->type->is_integer()) {
6389 YYLTYPE loc = this->test_expression->get_location();
6390
6391 _mesa_glsl_error(& loc,
6392 state,
6393 "switch-statement expression must be scalar "
6394 "integer");
6395 }
6396
6397 /* Track the switch-statement nesting in a stack-like manner.
6398 */
6399 struct glsl_switch_state saved = state->switch_state;
6400
6401 state->switch_state.is_switch_innermost = true;
6402 state->switch_state.switch_nesting_ast = this;
6403 state->switch_state.labels_ht =
6404 _mesa_hash_table_create(NULL, key_contents,
6405 compare_case_value);
6406 state->switch_state.previous_default = NULL;
6407
6408 /* Initalize is_fallthru state to false.
6409 */
6410 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6411 state->switch_state.is_fallthru_var =
6412 new(ctx) ir_variable(glsl_type::bool_type,
6413 "switch_is_fallthru_tmp",
6414 ir_var_temporary);
6415 instructions->push_tail(state->switch_state.is_fallthru_var);
6416
6417 ir_dereference_variable *deref_is_fallthru_var =
6418 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6419 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6420 is_fallthru_val));
6421
6422 /* Initialize continue_inside state to false.
6423 */
6424 state->switch_state.continue_inside =
6425 new(ctx) ir_variable(glsl_type::bool_type,
6426 "continue_inside_tmp",
6427 ir_var_temporary);
6428 instructions->push_tail(state->switch_state.continue_inside);
6429
6430 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6431 ir_dereference_variable *deref_continue_inside_var =
6432 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6433 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6434 false_val));
6435
6436 state->switch_state.run_default =
6437 new(ctx) ir_variable(glsl_type::bool_type,
6438 "run_default_tmp",
6439 ir_var_temporary);
6440 instructions->push_tail(state->switch_state.run_default);
6441
6442 /* Loop around the switch is used for flow control. */
6443 ir_loop * loop = new(ctx) ir_loop();
6444 instructions->push_tail(loop);
6445
6446 /* Cache test expression.
6447 */
6448 test_to_hir(&loop->body_instructions, state);
6449
6450 /* Emit code for body of switch stmt.
6451 */
6452 body->hir(&loop->body_instructions, state);
6453
6454 /* Insert a break at the end to exit loop. */
6455 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6456 loop->body_instructions.push_tail(jump);
6457
6458 /* If we are inside loop, check if continue got called inside switch. */
6459 if (state->loop_nesting_ast != NULL) {
6460 ir_dereference_variable *deref_continue_inside =
6461 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6462 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6463 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6464
6465 if (state->loop_nesting_ast != NULL) {
6466 if (state->loop_nesting_ast->rest_expression) {
6467 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6468 state);
6469 }
6470 if (state->loop_nesting_ast->mode ==
6471 ast_iteration_statement::ast_do_while) {
6472 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6473 }
6474 }
6475 irif->then_instructions.push_tail(jump);
6476 instructions->push_tail(irif);
6477 }
6478
6479 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6480
6481 state->switch_state = saved;
6482
6483 /* Switch statements do not have r-values. */
6484 return NULL;
6485 }
6486
6487
6488 void
6489 ast_switch_statement::test_to_hir(exec_list *instructions,
6490 struct _mesa_glsl_parse_state *state)
6491 {
6492 void *ctx = state;
6493
6494 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6495 * on the switch test case. The first one would be already raised when
6496 * getting the test_expression at ast_switch_statement::hir
6497 */
6498 test_expression->set_is_lhs(true);
6499 /* Cache value of test expression. */
6500 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6501
6502 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6503 "switch_test_tmp",
6504 ir_var_temporary);
6505 ir_dereference_variable *deref_test_var =
6506 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6507
6508 instructions->push_tail(state->switch_state.test_var);
6509 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6510 }
6511
6512
6513 ir_rvalue *
6514 ast_switch_body::hir(exec_list *instructions,
6515 struct _mesa_glsl_parse_state *state)
6516 {
6517 if (stmts != NULL)
6518 stmts->hir(instructions, state);
6519
6520 /* Switch bodies do not have r-values. */
6521 return NULL;
6522 }
6523
6524 ir_rvalue *
6525 ast_case_statement_list::hir(exec_list *instructions,
6526 struct _mesa_glsl_parse_state *state)
6527 {
6528 exec_list default_case, after_default, tmp;
6529
6530 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6531 case_stmt->hir(&tmp, state);
6532
6533 /* Default case. */
6534 if (state->switch_state.previous_default && default_case.is_empty()) {
6535 default_case.append_list(&tmp);
6536 continue;
6537 }
6538
6539 /* If default case found, append 'after_default' list. */
6540 if (!default_case.is_empty())
6541 after_default.append_list(&tmp);
6542 else
6543 instructions->append_list(&tmp);
6544 }
6545
6546 /* Handle the default case. This is done here because default might not be
6547 * the last case. We need to add checks against following cases first to see
6548 * if default should be chosen or not.
6549 */
6550 if (!default_case.is_empty()) {
6551
6552 ir_rvalue *const true_val = new (state) ir_constant(true);
6553 ir_dereference_variable *deref_run_default_var =
6554 new(state) ir_dereference_variable(state->switch_state.run_default);
6555
6556 /* Choose to run default case initially, following conditional
6557 * assignments might change this.
6558 */
6559 ir_assignment *const init_var =
6560 new(state) ir_assignment(deref_run_default_var, true_val);
6561 instructions->push_tail(init_var);
6562
6563 /* Default case was the last one, no checks required. */
6564 if (after_default.is_empty()) {
6565 instructions->append_list(&default_case);
6566 return NULL;
6567 }
6568
6569 foreach_in_list(ir_instruction, ir, &after_default) {
6570 ir_assignment *assign = ir->as_assignment();
6571
6572 if (!assign)
6573 continue;
6574
6575 /* Clone the check between case label and init expression. */
6576 ir_expression *exp = (ir_expression*) assign->condition;
6577 ir_expression *clone = exp->clone(state, NULL);
6578
6579 ir_dereference_variable *deref_var =
6580 new(state) ir_dereference_variable(state->switch_state.run_default);
6581 ir_rvalue *const false_val = new (state) ir_constant(false);
6582
6583 ir_assignment *const set_false =
6584 new(state) ir_assignment(deref_var, false_val, clone);
6585
6586 instructions->push_tail(set_false);
6587 }
6588
6589 /* Append default case and all cases after it. */
6590 instructions->append_list(&default_case);
6591 instructions->append_list(&after_default);
6592 }
6593
6594 /* Case statements do not have r-values. */
6595 return NULL;
6596 }
6597
6598 ir_rvalue *
6599 ast_case_statement::hir(exec_list *instructions,
6600 struct _mesa_glsl_parse_state *state)
6601 {
6602 labels->hir(instructions, state);
6603
6604 /* Guard case statements depending on fallthru state. */
6605 ir_dereference_variable *const deref_fallthru_guard =
6606 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6607 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6608
6609 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6610 stmt->hir(& test_fallthru->then_instructions, state);
6611
6612 instructions->push_tail(test_fallthru);
6613
6614 /* Case statements do not have r-values. */
6615 return NULL;
6616 }
6617
6618
6619 ir_rvalue *
6620 ast_case_label_list::hir(exec_list *instructions,
6621 struct _mesa_glsl_parse_state *state)
6622 {
6623 foreach_list_typed (ast_case_label, label, link, & this->labels)
6624 label->hir(instructions, state);
6625
6626 /* Case labels do not have r-values. */
6627 return NULL;
6628 }
6629
6630 ir_rvalue *
6631 ast_case_label::hir(exec_list *instructions,
6632 struct _mesa_glsl_parse_state *state)
6633 {
6634 void *ctx = state;
6635
6636 ir_dereference_variable *deref_fallthru_var =
6637 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6638
6639 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6640
6641 /* If not default case, ... */
6642 if (this->test_value != NULL) {
6643 /* Conditionally set fallthru state based on
6644 * comparison of cached test expression value to case label.
6645 */
6646 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6647 ir_constant *label_const = label_rval->constant_expression_value();
6648
6649 if (!label_const) {
6650 YYLTYPE loc = this->test_value->get_location();
6651
6652 _mesa_glsl_error(& loc, state,
6653 "switch statement case label must be a "
6654 "constant expression");
6655
6656 /* Stuff a dummy value in to allow processing to continue. */
6657 label_const = new(ctx) ir_constant(0);
6658 } else {
6659 hash_entry *entry =
6660 _mesa_hash_table_search(state->switch_state.labels_ht,
6661 (void *)(uintptr_t)&label_const->value.u[0]);
6662
6663 if (entry) {
6664 ast_expression *previous_label = (ast_expression *) entry->data;
6665 YYLTYPE loc = this->test_value->get_location();
6666 _mesa_glsl_error(& loc, state, "duplicate case value");
6667
6668 loc = previous_label->get_location();
6669 _mesa_glsl_error(& loc, state, "this is the previous case label");
6670 } else {
6671 _mesa_hash_table_insert(state->switch_state.labels_ht,
6672 (void *)(uintptr_t)&label_const->value.u[0],
6673 this->test_value);
6674 }
6675 }
6676
6677 ir_dereference_variable *deref_test_var =
6678 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6679
6680 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6681 label_const,
6682 deref_test_var);
6683
6684 /*
6685 * From GLSL 4.40 specification section 6.2 ("Selection"):
6686 *
6687 * "The type of the init-expression value in a switch statement must
6688 * be a scalar int or uint. The type of the constant-expression value
6689 * in a case label also must be a scalar int or uint. When any pair
6690 * of these values is tested for "equal value" and the types do not
6691 * match, an implicit conversion will be done to convert the int to a
6692 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6693 * is done."
6694 */
6695 if (label_const->type != state->switch_state.test_var->type) {
6696 YYLTYPE loc = this->test_value->get_location();
6697
6698 const glsl_type *type_a = label_const->type;
6699 const glsl_type *type_b = state->switch_state.test_var->type;
6700
6701 /* Check if int->uint implicit conversion is supported. */
6702 bool integer_conversion_supported =
6703 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6704 state);
6705
6706 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6707 !integer_conversion_supported) {
6708 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6709 "init-expression and case label (%s != %s)",
6710 type_a->name, type_b->name);
6711 } else {
6712 /* Conversion of the case label. */
6713 if (type_a->base_type == GLSL_TYPE_INT) {
6714 if (!apply_implicit_conversion(glsl_type::uint_type,
6715 test_cond->operands[0], state))
6716 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6717 } else {
6718 /* Conversion of the init-expression value. */
6719 if (!apply_implicit_conversion(glsl_type::uint_type,
6720 test_cond->operands[1], state))
6721 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6722 }
6723 }
6724 }
6725
6726 ir_assignment *set_fallthru_on_test =
6727 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6728
6729 instructions->push_tail(set_fallthru_on_test);
6730 } else { /* default case */
6731 if (state->switch_state.previous_default) {
6732 YYLTYPE loc = this->get_location();
6733 _mesa_glsl_error(& loc, state,
6734 "multiple default labels in one switch");
6735
6736 loc = state->switch_state.previous_default->get_location();
6737 _mesa_glsl_error(& loc, state, "this is the first default label");
6738 }
6739 state->switch_state.previous_default = this;
6740
6741 /* Set fallthru condition on 'run_default' bool. */
6742 ir_dereference_variable *deref_run_default =
6743 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6744 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6745 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6746 cond_true,
6747 deref_run_default);
6748
6749 /* Set falltrhu state. */
6750 ir_assignment *set_fallthru =
6751 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6752
6753 instructions->push_tail(set_fallthru);
6754 }
6755
6756 /* Case statements do not have r-values. */
6757 return NULL;
6758 }
6759
6760 void
6761 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6762 struct _mesa_glsl_parse_state *state)
6763 {
6764 void *ctx = state;
6765
6766 if (condition != NULL) {
6767 ir_rvalue *const cond =
6768 condition->hir(instructions, state);
6769
6770 if ((cond == NULL)
6771 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6772 YYLTYPE loc = condition->get_location();
6773
6774 _mesa_glsl_error(& loc, state,
6775 "loop condition must be scalar boolean");
6776 } else {
6777 /* As the first code in the loop body, generate a block that looks
6778 * like 'if (!condition) break;' as the loop termination condition.
6779 */
6780 ir_rvalue *const not_cond =
6781 new(ctx) ir_expression(ir_unop_logic_not, cond);
6782
6783 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6784
6785 ir_jump *const break_stmt =
6786 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6787
6788 if_stmt->then_instructions.push_tail(break_stmt);
6789 instructions->push_tail(if_stmt);
6790 }
6791 }
6792 }
6793
6794
6795 ir_rvalue *
6796 ast_iteration_statement::hir(exec_list *instructions,
6797 struct _mesa_glsl_parse_state *state)
6798 {
6799 void *ctx = state;
6800
6801 /* For-loops and while-loops start a new scope, but do-while loops do not.
6802 */
6803 if (mode != ast_do_while)
6804 state->symbols->push_scope();
6805
6806 if (init_statement != NULL)
6807 init_statement->hir(instructions, state);
6808
6809 ir_loop *const stmt = new(ctx) ir_loop();
6810 instructions->push_tail(stmt);
6811
6812 /* Track the current loop nesting. */
6813 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6814
6815 state->loop_nesting_ast = this;
6816
6817 /* Likewise, indicate that following code is closest to a loop,
6818 * NOT closest to a switch.
6819 */
6820 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6821 state->switch_state.is_switch_innermost = false;
6822
6823 if (mode != ast_do_while)
6824 condition_to_hir(&stmt->body_instructions, state);
6825
6826 if (body != NULL)
6827 body->hir(& stmt->body_instructions, state);
6828
6829 if (rest_expression != NULL)
6830 rest_expression->hir(& stmt->body_instructions, state);
6831
6832 if (mode == ast_do_while)
6833 condition_to_hir(&stmt->body_instructions, state);
6834
6835 if (mode != ast_do_while)
6836 state->symbols->pop_scope();
6837
6838 /* Restore previous nesting before returning. */
6839 state->loop_nesting_ast = nesting_ast;
6840 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6841
6842 /* Loops do not have r-values.
6843 */
6844 return NULL;
6845 }
6846
6847
6848 /**
6849 * Determine if the given type is valid for establishing a default precision
6850 * qualifier.
6851 *
6852 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6853 *
6854 * "The precision statement
6855 *
6856 * precision precision-qualifier type;
6857 *
6858 * can be used to establish a default precision qualifier. The type field
6859 * can be either int or float or any of the sampler types, and the
6860 * precision-qualifier can be lowp, mediump, or highp."
6861 *
6862 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6863 * qualifiers on sampler types, but this seems like an oversight (since the
6864 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6865 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6866 * version.
6867 */
6868 static bool
6869 is_valid_default_precision_type(const struct glsl_type *const type)
6870 {
6871 if (type == NULL)
6872 return false;
6873
6874 switch (type->base_type) {
6875 case GLSL_TYPE_INT:
6876 case GLSL_TYPE_FLOAT:
6877 /* "int" and "float" are valid, but vectors and matrices are not. */
6878 return type->vector_elements == 1 && type->matrix_columns == 1;
6879 case GLSL_TYPE_SAMPLER:
6880 case GLSL_TYPE_IMAGE:
6881 case GLSL_TYPE_ATOMIC_UINT:
6882 return true;
6883 default:
6884 return false;
6885 }
6886 }
6887
6888
6889 ir_rvalue *
6890 ast_type_specifier::hir(exec_list *instructions,
6891 struct _mesa_glsl_parse_state *state)
6892 {
6893 if (this->default_precision == ast_precision_none && this->structure == NULL)
6894 return NULL;
6895
6896 YYLTYPE loc = this->get_location();
6897
6898 /* If this is a precision statement, check that the type to which it is
6899 * applied is either float or int.
6900 *
6901 * From section 4.5.3 of the GLSL 1.30 spec:
6902 * "The precision statement
6903 * precision precision-qualifier type;
6904 * can be used to establish a default precision qualifier. The type
6905 * field can be either int or float [...]. Any other types or
6906 * qualifiers will result in an error.
6907 */
6908 if (this->default_precision != ast_precision_none) {
6909 if (!state->check_precision_qualifiers_allowed(&loc))
6910 return NULL;
6911
6912 if (this->structure != NULL) {
6913 _mesa_glsl_error(&loc, state,
6914 "precision qualifiers do not apply to structures");
6915 return NULL;
6916 }
6917
6918 if (this->array_specifier != NULL) {
6919 _mesa_glsl_error(&loc, state,
6920 "default precision statements do not apply to "
6921 "arrays");
6922 return NULL;
6923 }
6924
6925 const struct glsl_type *const type =
6926 state->symbols->get_type(this->type_name);
6927 if (!is_valid_default_precision_type(type)) {
6928 _mesa_glsl_error(&loc, state,
6929 "default precision statements apply only to "
6930 "float, int, and opaque types");
6931 return NULL;
6932 }
6933
6934 if (state->es_shader) {
6935 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6936 * spec says:
6937 *
6938 * "Non-precision qualified declarations will use the precision
6939 * qualifier specified in the most recent precision statement
6940 * that is still in scope. The precision statement has the same
6941 * scoping rules as variable declarations. If it is declared
6942 * inside a compound statement, its effect stops at the end of
6943 * the innermost statement it was declared in. Precision
6944 * statements in nested scopes override precision statements in
6945 * outer scopes. Multiple precision statements for the same basic
6946 * type can appear inside the same scope, with later statements
6947 * overriding earlier statements within that scope."
6948 *
6949 * Default precision specifications follow the same scope rules as
6950 * variables. So, we can track the state of the default precision
6951 * qualifiers in the symbol table, and the rules will just work. This
6952 * is a slight abuse of the symbol table, but it has the semantics
6953 * that we want.
6954 */
6955 state->symbols->add_default_precision_qualifier(this->type_name,
6956 this->default_precision);
6957 }
6958
6959 /* FINISHME: Translate precision statements into IR. */
6960 return NULL;
6961 }
6962
6963 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6964 * process_record_constructor() can do type-checking on C-style initializer
6965 * expressions of structs, but ast_struct_specifier should only be translated
6966 * to HIR if it is declaring the type of a structure.
6967 *
6968 * The ->is_declaration field is false for initializers of variables
6969 * declared separately from the struct's type definition.
6970 *
6971 * struct S { ... }; (is_declaration = true)
6972 * struct T { ... } t = { ... }; (is_declaration = true)
6973 * S s = { ... }; (is_declaration = false)
6974 */
6975 if (this->structure != NULL && this->structure->is_declaration)
6976 return this->structure->hir(instructions, state);
6977
6978 return NULL;
6979 }
6980
6981
6982 /**
6983 * Process a structure or interface block tree into an array of structure fields
6984 *
6985 * After parsing, where there are some syntax differnces, structures and
6986 * interface blocks are almost identical. They are similar enough that the
6987 * AST for each can be processed the same way into a set of
6988 * \c glsl_struct_field to describe the members.
6989 *
6990 * If we're processing an interface block, var_mode should be the type of the
6991 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6992 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6993 * ir_var_auto.
6994 *
6995 * \return
6996 * The number of fields processed. A pointer to the array structure fields is
6997 * stored in \c *fields_ret.
6998 */
6999 static unsigned
7000 ast_process_struct_or_iface_block_members(exec_list *instructions,
7001 struct _mesa_glsl_parse_state *state,
7002 exec_list *declarations,
7003 glsl_struct_field **fields_ret,
7004 bool is_interface,
7005 enum glsl_matrix_layout matrix_layout,
7006 bool allow_reserved_names,
7007 ir_variable_mode var_mode,
7008 ast_type_qualifier *layout,
7009 unsigned block_stream,
7010 unsigned block_xfb_buffer,
7011 unsigned block_xfb_offset,
7012 unsigned expl_location,
7013 unsigned expl_align)
7014 {
7015 unsigned decl_count = 0;
7016 unsigned next_offset = 0;
7017
7018 /* Make an initial pass over the list of fields to determine how
7019 * many there are. Each element in this list is an ast_declarator_list.
7020 * This means that we actually need to count the number of elements in the
7021 * 'declarations' list in each of the elements.
7022 */
7023 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7024 decl_count += decl_list->declarations.length();
7025 }
7026
7027 /* Allocate storage for the fields and process the field
7028 * declarations. As the declarations are processed, try to also convert
7029 * the types to HIR. This ensures that structure definitions embedded in
7030 * other structure definitions or in interface blocks are processed.
7031 */
7032 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7033 decl_count);
7034
7035 bool first_member = true;
7036 bool first_member_has_explicit_location = false;
7037
7038 unsigned i = 0;
7039 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7040 const char *type_name;
7041 YYLTYPE loc = decl_list->get_location();
7042
7043 decl_list->type->specifier->hir(instructions, state);
7044
7045 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7046 *
7047 * "Anonymous structures are not supported; so embedded structures
7048 * must have a declarator. A name given to an embedded struct is
7049 * scoped at the same level as the struct it is embedded in."
7050 *
7051 * The same section of the GLSL 1.20 spec says:
7052 *
7053 * "Anonymous structures are not supported. Embedded structures are
7054 * not supported."
7055 *
7056 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7057 * embedded structures in 1.10 only.
7058 */
7059 if (state->language_version != 110 &&
7060 decl_list->type->specifier->structure != NULL)
7061 _mesa_glsl_error(&loc, state,
7062 "embedded structure declarations are not allowed");
7063
7064 const glsl_type *decl_type =
7065 decl_list->type->glsl_type(& type_name, state);
7066
7067 const struct ast_type_qualifier *const qual =
7068 &decl_list->type->qualifier;
7069
7070 /* From section 4.3.9 of the GLSL 4.40 spec:
7071 *
7072 * "[In interface blocks] opaque types are not allowed."
7073 *
7074 * It should be impossible for decl_type to be NULL here. Cases that
7075 * might naturally lead to decl_type being NULL, especially for the
7076 * is_interface case, will have resulted in compilation having
7077 * already halted due to a syntax error.
7078 */
7079 assert(decl_type);
7080
7081 if (is_interface) {
7082 /* From section 4.3.7 of the ARB_bindless_texture spec:
7083 *
7084 * "(remove the following bullet from the last list on p. 39,
7085 * thereby permitting sampler types in interface blocks; image
7086 * types are also permitted in blocks by this extension)"
7087 *
7088 * * sampler types are not allowed
7089 */
7090 if (decl_type->contains_atomic() ||
7091 (!state->has_bindless() && decl_type->contains_opaque())) {
7092 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7093 "interface block contains %s variable",
7094 state->has_bindless() ? "atomic" : "opaque");
7095 }
7096 } else {
7097 if (decl_type->contains_atomic()) {
7098 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7099 *
7100 * "Members of structures cannot be declared as atomic counter
7101 * types."
7102 */
7103 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7104 }
7105
7106 if (!state->has_bindless() && decl_type->contains_image()) {
7107 /* FINISHME: Same problem as with atomic counters.
7108 * FINISHME: Request clarification from Khronos and add
7109 * FINISHME: spec quotation here.
7110 */
7111 _mesa_glsl_error(&loc, state, "image in structure");
7112 }
7113 }
7114
7115 if (qual->flags.q.explicit_binding) {
7116 _mesa_glsl_error(&loc, state,
7117 "binding layout qualifier cannot be applied "
7118 "to struct or interface block members");
7119 }
7120
7121 if (is_interface) {
7122 if (!first_member) {
7123 if (!layout->flags.q.explicit_location &&
7124 ((first_member_has_explicit_location &&
7125 !qual->flags.q.explicit_location) ||
7126 (!first_member_has_explicit_location &&
7127 qual->flags.q.explicit_location))) {
7128 _mesa_glsl_error(&loc, state,
7129 "when block-level location layout qualifier "
7130 "is not supplied either all members must "
7131 "have a location layout qualifier or all "
7132 "members must not have a location layout "
7133 "qualifier");
7134 }
7135 } else {
7136 first_member = false;
7137 first_member_has_explicit_location =
7138 qual->flags.q.explicit_location;
7139 }
7140 }
7141
7142 if (qual->flags.q.std140 ||
7143 qual->flags.q.std430 ||
7144 qual->flags.q.packed ||
7145 qual->flags.q.shared) {
7146 _mesa_glsl_error(&loc, state,
7147 "uniform/shader storage block layout qualifiers "
7148 "std140, std430, packed, and shared can only be "
7149 "applied to uniform/shader storage blocks, not "
7150 "members");
7151 }
7152
7153 if (qual->flags.q.constant) {
7154 _mesa_glsl_error(&loc, state,
7155 "const storage qualifier cannot be applied "
7156 "to struct or interface block members");
7157 }
7158
7159 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7160 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7161
7162 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7163 *
7164 * "A block member may be declared with a stream identifier, but
7165 * the specified stream must match the stream associated with the
7166 * containing block."
7167 */
7168 if (qual->flags.q.explicit_stream) {
7169 unsigned qual_stream;
7170 if (process_qualifier_constant(state, &loc, "stream",
7171 qual->stream, &qual_stream) &&
7172 qual_stream != block_stream) {
7173 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7174 "interface block member does not match "
7175 "the interface block (%u vs %u)", qual_stream,
7176 block_stream);
7177 }
7178 }
7179
7180 int xfb_buffer;
7181 unsigned explicit_xfb_buffer = 0;
7182 if (qual->flags.q.explicit_xfb_buffer) {
7183 unsigned qual_xfb_buffer;
7184 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7185 qual->xfb_buffer, &qual_xfb_buffer)) {
7186 explicit_xfb_buffer = 1;
7187 if (qual_xfb_buffer != block_xfb_buffer)
7188 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7189 "interface block member does not match "
7190 "the interface block (%u vs %u)",
7191 qual_xfb_buffer, block_xfb_buffer);
7192 }
7193 xfb_buffer = (int) qual_xfb_buffer;
7194 } else {
7195 if (layout)
7196 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7197 xfb_buffer = (int) block_xfb_buffer;
7198 }
7199
7200 int xfb_stride = -1;
7201 if (qual->flags.q.explicit_xfb_stride) {
7202 unsigned qual_xfb_stride;
7203 if (process_qualifier_constant(state, &loc, "xfb_stride",
7204 qual->xfb_stride, &qual_xfb_stride)) {
7205 xfb_stride = (int) qual_xfb_stride;
7206 }
7207 }
7208
7209 if (qual->flags.q.uniform && qual->has_interpolation()) {
7210 _mesa_glsl_error(&loc, state,
7211 "interpolation qualifiers cannot be used "
7212 "with uniform interface blocks");
7213 }
7214
7215 if ((qual->flags.q.uniform || !is_interface) &&
7216 qual->has_auxiliary_storage()) {
7217 _mesa_glsl_error(&loc, state,
7218 "auxiliary storage qualifiers cannot be used "
7219 "in uniform blocks or structures.");
7220 }
7221
7222 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7223 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7224 _mesa_glsl_error(&loc, state,
7225 "row_major and column_major can only be "
7226 "applied to interface blocks");
7227 } else
7228 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7229 }
7230
7231 if (qual->flags.q.read_only && qual->flags.q.write_only) {
7232 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
7233 "readonly and writeonly.");
7234 }
7235
7236 foreach_list_typed (ast_declaration, decl, link,
7237 &decl_list->declarations) {
7238 YYLTYPE loc = decl->get_location();
7239
7240 if (!allow_reserved_names)
7241 validate_identifier(decl->identifier, loc, state);
7242
7243 const struct glsl_type *field_type =
7244 process_array_type(&loc, decl_type, decl->array_specifier, state);
7245 validate_array_dimensions(field_type, state, &loc);
7246 fields[i].type = field_type;
7247 fields[i].name = decl->identifier;
7248 fields[i].interpolation =
7249 interpret_interpolation_qualifier(qual, field_type,
7250 var_mode, state, &loc);
7251 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7252 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7253 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7254 fields[i].precision = qual->precision;
7255 fields[i].offset = -1;
7256 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7257 fields[i].xfb_buffer = xfb_buffer;
7258 fields[i].xfb_stride = xfb_stride;
7259
7260 if (qual->flags.q.explicit_location) {
7261 unsigned qual_location;
7262 if (process_qualifier_constant(state, &loc, "location",
7263 qual->location, &qual_location)) {
7264 fields[i].location = qual_location +
7265 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7266 expl_location = fields[i].location +
7267 fields[i].type->count_attribute_slots(false);
7268 }
7269 } else {
7270 if (layout && layout->flags.q.explicit_location) {
7271 fields[i].location = expl_location;
7272 expl_location += fields[i].type->count_attribute_slots(false);
7273 } else {
7274 fields[i].location = -1;
7275 }
7276 }
7277
7278 /* Offset can only be used with std430 and std140 layouts an initial
7279 * value of 0 is used for error detection.
7280 */
7281 unsigned align = 0;
7282 unsigned size = 0;
7283 if (layout) {
7284 bool row_major;
7285 if (qual->flags.q.row_major ||
7286 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7287 row_major = true;
7288 } else {
7289 row_major = false;
7290 }
7291
7292 if(layout->flags.q.std140) {
7293 align = field_type->std140_base_alignment(row_major);
7294 size = field_type->std140_size(row_major);
7295 } else if (layout->flags.q.std430) {
7296 align = field_type->std430_base_alignment(row_major);
7297 size = field_type->std430_size(row_major);
7298 }
7299 }
7300
7301 if (qual->flags.q.explicit_offset) {
7302 unsigned qual_offset;
7303 if (process_qualifier_constant(state, &loc, "offset",
7304 qual->offset, &qual_offset)) {
7305 if (align != 0 && size != 0) {
7306 if (next_offset > qual_offset)
7307 _mesa_glsl_error(&loc, state, "layout qualifier "
7308 "offset overlaps previous member");
7309
7310 if (qual_offset % align) {
7311 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7312 "must be a multiple of the base "
7313 "alignment of %s", field_type->name);
7314 }
7315 fields[i].offset = qual_offset;
7316 next_offset = glsl_align(qual_offset + size, align);
7317 } else {
7318 _mesa_glsl_error(&loc, state, "offset can only be used "
7319 "with std430 and std140 layouts");
7320 }
7321 }
7322 }
7323
7324 if (qual->flags.q.explicit_align || expl_align != 0) {
7325 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7326 next_offset;
7327 if (align == 0 || size == 0) {
7328 _mesa_glsl_error(&loc, state, "align can only be used with "
7329 "std430 and std140 layouts");
7330 } else if (qual->flags.q.explicit_align) {
7331 unsigned member_align;
7332 if (process_qualifier_constant(state, &loc, "align",
7333 qual->align, &member_align)) {
7334 if (member_align == 0 ||
7335 member_align & (member_align - 1)) {
7336 _mesa_glsl_error(&loc, state, "align layout qualifier "
7337 "in not a power of 2");
7338 } else {
7339 fields[i].offset = glsl_align(offset, member_align);
7340 next_offset = glsl_align(fields[i].offset + size, align);
7341 }
7342 }
7343 } else {
7344 fields[i].offset = glsl_align(offset, expl_align);
7345 next_offset = glsl_align(fields[i].offset + size, align);
7346 }
7347 } else if (!qual->flags.q.explicit_offset) {
7348 if (align != 0 && size != 0)
7349 next_offset = glsl_align(next_offset + size, align);
7350 }
7351
7352 /* From the ARB_enhanced_layouts spec:
7353 *
7354 * "The given offset applies to the first component of the first
7355 * member of the qualified entity. Then, within the qualified
7356 * entity, subsequent components are each assigned, in order, to
7357 * the next available offset aligned to a multiple of that
7358 * component's size. Aggregate types are flattened down to the
7359 * component level to get this sequence of components."
7360 */
7361 if (qual->flags.q.explicit_xfb_offset) {
7362 unsigned xfb_offset;
7363 if (process_qualifier_constant(state, &loc, "xfb_offset",
7364 qual->offset, &xfb_offset)) {
7365 fields[i].offset = xfb_offset;
7366 block_xfb_offset = fields[i].offset +
7367 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7368 }
7369 } else {
7370 if (layout && layout->flags.q.explicit_xfb_offset) {
7371 unsigned align = field_type->is_64bit() ? 8 : 4;
7372 fields[i].offset = glsl_align(block_xfb_offset, align);
7373 block_xfb_offset +=
7374 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7375 }
7376 }
7377
7378 /* Propogate row- / column-major information down the fields of the
7379 * structure or interface block. Structures need this data because
7380 * the structure may contain a structure that contains ... a matrix
7381 * that need the proper layout.
7382 */
7383 if (is_interface && layout &&
7384 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7385 (field_type->without_array()->is_matrix()
7386 || field_type->without_array()->is_record())) {
7387 /* If no layout is specified for the field, inherit the layout
7388 * from the block.
7389 */
7390 fields[i].matrix_layout = matrix_layout;
7391
7392 if (qual->flags.q.row_major)
7393 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7394 else if (qual->flags.q.column_major)
7395 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7396
7397 /* If we're processing an uniform or buffer block, the matrix
7398 * layout must be decided by this point.
7399 */
7400 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7401 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7402 }
7403
7404 /* Memory qualifiers are allowed on buffer and image variables, while
7405 * the format qualifier is only accepted for images.
7406 */
7407 if (var_mode == ir_var_shader_storage ||
7408 field_type->without_array()->is_image()) {
7409 /* For readonly and writeonly qualifiers the field definition,
7410 * if set, overwrites the layout qualifier.
7411 */
7412 if (qual->flags.q.read_only) {
7413 fields[i].memory_read_only = true;
7414 fields[i].memory_write_only = false;
7415 } else if (qual->flags.q.write_only) {
7416 fields[i].memory_read_only = false;
7417 fields[i].memory_write_only = true;
7418 } else {
7419 fields[i].memory_read_only =
7420 layout ? layout->flags.q.read_only : 0;
7421 fields[i].memory_write_only =
7422 layout ? layout->flags.q.write_only : 0;
7423 }
7424
7425 /* For other qualifiers, we set the flag if either the layout
7426 * qualifier or the field qualifier are set
7427 */
7428 fields[i].memory_coherent = qual->flags.q.coherent ||
7429 (layout && layout->flags.q.coherent);
7430 fields[i].memory_volatile = qual->flags.q._volatile ||
7431 (layout && layout->flags.q._volatile);
7432 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7433 (layout && layout->flags.q.restrict_flag);
7434
7435 if (field_type->without_array()->is_image()) {
7436 if (qual->flags.q.explicit_image_format) {
7437 if (qual->image_base_type != field_type->sampled_type) {
7438 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7439 "match the base data type of the image");
7440 }
7441
7442 fields[i].image_format = qual->image_format;
7443 } else {
7444 if (!qual->flags.q.write_only) {
7445 _mesa_glsl_error(&loc, state, "image not qualified with "
7446 "`writeonly' must have a format layout "
7447 "qualifier");
7448 }
7449
7450 fields[i].image_format = GL_NONE;
7451 }
7452 }
7453 }
7454
7455 i++;
7456 }
7457 }
7458
7459 assert(i == decl_count);
7460
7461 *fields_ret = fields;
7462 return decl_count;
7463 }
7464
7465
7466 ir_rvalue *
7467 ast_struct_specifier::hir(exec_list *instructions,
7468 struct _mesa_glsl_parse_state *state)
7469 {
7470 YYLTYPE loc = this->get_location();
7471
7472 unsigned expl_location = 0;
7473 if (layout && layout->flags.q.explicit_location) {
7474 if (!process_qualifier_constant(state, &loc, "location",
7475 layout->location, &expl_location)) {
7476 return NULL;
7477 } else {
7478 expl_location = VARYING_SLOT_VAR0 + expl_location;
7479 }
7480 }
7481
7482 glsl_struct_field *fields;
7483 unsigned decl_count =
7484 ast_process_struct_or_iface_block_members(instructions,
7485 state,
7486 &this->declarations,
7487 &fields,
7488 false,
7489 GLSL_MATRIX_LAYOUT_INHERITED,
7490 false /* allow_reserved_names */,
7491 ir_var_auto,
7492 layout,
7493 0, /* for interface only */
7494 0, /* for interface only */
7495 0, /* for interface only */
7496 expl_location,
7497 0 /* for interface only */);
7498
7499 validate_identifier(this->name, loc, state);
7500
7501 const glsl_type *t =
7502 glsl_type::get_record_instance(fields, decl_count, this->name);
7503
7504 if (!state->symbols->add_type(name, t)) {
7505 const glsl_type *match = state->symbols->get_type(name);
7506 /* allow struct matching for desktop GL - older UE4 does this */
7507 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7508 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7509 else
7510 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7511 } else {
7512 const glsl_type **s = reralloc(state, state->user_structures,
7513 const glsl_type *,
7514 state->num_user_structures + 1);
7515 if (s != NULL) {
7516 s[state->num_user_structures] = t;
7517 state->user_structures = s;
7518 state->num_user_structures++;
7519 }
7520 }
7521
7522 /* Structure type definitions do not have r-values.
7523 */
7524 return NULL;
7525 }
7526
7527
7528 /**
7529 * Visitor class which detects whether a given interface block has been used.
7530 */
7531 class interface_block_usage_visitor : public ir_hierarchical_visitor
7532 {
7533 public:
7534 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7535 : mode(mode), block(block), found(false)
7536 {
7537 }
7538
7539 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7540 {
7541 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7542 found = true;
7543 return visit_stop;
7544 }
7545 return visit_continue;
7546 }
7547
7548 bool usage_found() const
7549 {
7550 return this->found;
7551 }
7552
7553 private:
7554 ir_variable_mode mode;
7555 const glsl_type *block;
7556 bool found;
7557 };
7558
7559 static bool
7560 is_unsized_array_last_element(ir_variable *v)
7561 {
7562 const glsl_type *interface_type = v->get_interface_type();
7563 int length = interface_type->length;
7564
7565 assert(v->type->is_unsized_array());
7566
7567 /* Check if it is the last element of the interface */
7568 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7569 return true;
7570 return false;
7571 }
7572
7573 static void
7574 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7575 {
7576 var->data.memory_read_only = field.memory_read_only;
7577 var->data.memory_write_only = field.memory_write_only;
7578 var->data.memory_coherent = field.memory_coherent;
7579 var->data.memory_volatile = field.memory_volatile;
7580 var->data.memory_restrict = field.memory_restrict;
7581 }
7582
7583 ir_rvalue *
7584 ast_interface_block::hir(exec_list *instructions,
7585 struct _mesa_glsl_parse_state *state)
7586 {
7587 YYLTYPE loc = this->get_location();
7588
7589 /* Interface blocks must be declared at global scope */
7590 if (state->current_function != NULL) {
7591 _mesa_glsl_error(&loc, state,
7592 "Interface block `%s' must be declared "
7593 "at global scope",
7594 this->block_name);
7595 }
7596
7597 /* Validate qualifiers:
7598 *
7599 * - Layout Qualifiers as per the table in Section 4.4
7600 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7601 *
7602 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7603 * GLSL 4.50 spec:
7604 *
7605 * "Additionally, memory qualifiers may also be used in the declaration
7606 * of shader storage blocks"
7607 *
7608 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7609 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7610 * Layout Qualifiers) of the GLSL 4.50 spec says:
7611 *
7612 * "The std430 qualifier is supported only for shader storage blocks;
7613 * using std430 on a uniform block will result in a compile-time error."
7614 */
7615 ast_type_qualifier allowed_blk_qualifiers;
7616 allowed_blk_qualifiers.flags.i = 0;
7617 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7618 allowed_blk_qualifiers.flags.q.shared = 1;
7619 allowed_blk_qualifiers.flags.q.packed = 1;
7620 allowed_blk_qualifiers.flags.q.std140 = 1;
7621 allowed_blk_qualifiers.flags.q.row_major = 1;
7622 allowed_blk_qualifiers.flags.q.column_major = 1;
7623 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7624 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7625 if (this->layout.flags.q.buffer) {
7626 allowed_blk_qualifiers.flags.q.buffer = 1;
7627 allowed_blk_qualifiers.flags.q.std430 = 1;
7628 allowed_blk_qualifiers.flags.q.coherent = 1;
7629 allowed_blk_qualifiers.flags.q._volatile = 1;
7630 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7631 allowed_blk_qualifiers.flags.q.read_only = 1;
7632 allowed_blk_qualifiers.flags.q.write_only = 1;
7633 } else {
7634 allowed_blk_qualifiers.flags.q.uniform = 1;
7635 }
7636 } else {
7637 /* Interface block */
7638 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7639
7640 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7641 if (this->layout.flags.q.out) {
7642 allowed_blk_qualifiers.flags.q.out = 1;
7643 if (state->stage == MESA_SHADER_GEOMETRY ||
7644 state->stage == MESA_SHADER_TESS_CTRL ||
7645 state->stage == MESA_SHADER_TESS_EVAL ||
7646 state->stage == MESA_SHADER_VERTEX ) {
7647 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7648 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7649 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7650 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7651 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7652 if (state->stage == MESA_SHADER_GEOMETRY) {
7653 allowed_blk_qualifiers.flags.q.stream = 1;
7654 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7655 }
7656 if (state->stage == MESA_SHADER_TESS_CTRL) {
7657 allowed_blk_qualifiers.flags.q.patch = 1;
7658 }
7659 }
7660 } else {
7661 allowed_blk_qualifiers.flags.q.in = 1;
7662 if (state->stage == MESA_SHADER_TESS_EVAL) {
7663 allowed_blk_qualifiers.flags.q.patch = 1;
7664 }
7665 }
7666 }
7667
7668 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7669 "invalid qualifier for block",
7670 this->block_name);
7671
7672 /* The ast_interface_block has a list of ast_declarator_lists. We
7673 * need to turn those into ir_variables with an association
7674 * with this uniform block.
7675 */
7676 enum glsl_interface_packing packing;
7677 if (this->layout.flags.q.shared) {
7678 packing = GLSL_INTERFACE_PACKING_SHARED;
7679 } else if (this->layout.flags.q.packed) {
7680 packing = GLSL_INTERFACE_PACKING_PACKED;
7681 } else if (this->layout.flags.q.std430) {
7682 packing = GLSL_INTERFACE_PACKING_STD430;
7683 } else {
7684 /* The default layout is std140.
7685 */
7686 packing = GLSL_INTERFACE_PACKING_STD140;
7687 }
7688
7689 ir_variable_mode var_mode;
7690 const char *iface_type_name;
7691 if (this->layout.flags.q.in) {
7692 var_mode = ir_var_shader_in;
7693 iface_type_name = "in";
7694 } else if (this->layout.flags.q.out) {
7695 var_mode = ir_var_shader_out;
7696 iface_type_name = "out";
7697 } else if (this->layout.flags.q.uniform) {
7698 var_mode = ir_var_uniform;
7699 iface_type_name = "uniform";
7700 } else if (this->layout.flags.q.buffer) {
7701 var_mode = ir_var_shader_storage;
7702 iface_type_name = "buffer";
7703 } else {
7704 var_mode = ir_var_auto;
7705 iface_type_name = "UNKNOWN";
7706 assert(!"interface block layout qualifier not found!");
7707 }
7708
7709 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7710 if (this->layout.flags.q.row_major)
7711 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7712 else if (this->layout.flags.q.column_major)
7713 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7714
7715 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7716 exec_list declared_variables;
7717 glsl_struct_field *fields;
7718
7719 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7720 * that we don't have incompatible qualifiers
7721 */
7722 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7723 _mesa_glsl_error(&loc, state,
7724 "Interface block sets both readonly and writeonly");
7725 }
7726
7727 unsigned qual_stream;
7728 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7729 &qual_stream) ||
7730 !validate_stream_qualifier(&loc, state, qual_stream)) {
7731 /* If the stream qualifier is invalid it doesn't make sense to continue
7732 * on and try to compare stream layouts on member variables against it
7733 * so just return early.
7734 */
7735 return NULL;
7736 }
7737
7738 unsigned qual_xfb_buffer;
7739 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7740 layout.xfb_buffer, &qual_xfb_buffer) ||
7741 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7742 return NULL;
7743 }
7744
7745 unsigned qual_xfb_offset;
7746 if (layout.flags.q.explicit_xfb_offset) {
7747 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7748 layout.offset, &qual_xfb_offset)) {
7749 return NULL;
7750 }
7751 }
7752
7753 unsigned qual_xfb_stride;
7754 if (layout.flags.q.explicit_xfb_stride) {
7755 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7756 layout.xfb_stride, &qual_xfb_stride)) {
7757 return NULL;
7758 }
7759 }
7760
7761 unsigned expl_location = 0;
7762 if (layout.flags.q.explicit_location) {
7763 if (!process_qualifier_constant(state, &loc, "location",
7764 layout.location, &expl_location)) {
7765 return NULL;
7766 } else {
7767 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7768 : VARYING_SLOT_VAR0;
7769 }
7770 }
7771
7772 unsigned expl_align = 0;
7773 if (layout.flags.q.explicit_align) {
7774 if (!process_qualifier_constant(state, &loc, "align",
7775 layout.align, &expl_align)) {
7776 return NULL;
7777 } else {
7778 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7779 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7780 "power of 2.");
7781 return NULL;
7782 }
7783 }
7784 }
7785
7786 unsigned int num_variables =
7787 ast_process_struct_or_iface_block_members(&declared_variables,
7788 state,
7789 &this->declarations,
7790 &fields,
7791 true,
7792 matrix_layout,
7793 redeclaring_per_vertex,
7794 var_mode,
7795 &this->layout,
7796 qual_stream,
7797 qual_xfb_buffer,
7798 qual_xfb_offset,
7799 expl_location,
7800 expl_align);
7801
7802 if (!redeclaring_per_vertex) {
7803 validate_identifier(this->block_name, loc, state);
7804
7805 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7806 *
7807 * "Block names have no other use within a shader beyond interface
7808 * matching; it is a compile-time error to use a block name at global
7809 * scope for anything other than as a block name."
7810 */
7811 ir_variable *var = state->symbols->get_variable(this->block_name);
7812 if (var && !var->type->is_interface()) {
7813 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7814 "already used in the scope.",
7815 this->block_name);
7816 }
7817 }
7818
7819 const glsl_type *earlier_per_vertex = NULL;
7820 if (redeclaring_per_vertex) {
7821 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7822 * the named interface block gl_in, we can find it by looking at the
7823 * previous declaration of gl_in. Otherwise we can find it by looking
7824 * at the previous decalartion of any of the built-in outputs,
7825 * e.g. gl_Position.
7826 *
7827 * Also check that the instance name and array-ness of the redeclaration
7828 * are correct.
7829 */
7830 switch (var_mode) {
7831 case ir_var_shader_in:
7832 if (ir_variable *earlier_gl_in =
7833 state->symbols->get_variable("gl_in")) {
7834 earlier_per_vertex = earlier_gl_in->get_interface_type();
7835 } else {
7836 _mesa_glsl_error(&loc, state,
7837 "redeclaration of gl_PerVertex input not allowed "
7838 "in the %s shader",
7839 _mesa_shader_stage_to_string(state->stage));
7840 }
7841 if (this->instance_name == NULL ||
7842 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7843 !this->array_specifier->is_single_dimension()) {
7844 _mesa_glsl_error(&loc, state,
7845 "gl_PerVertex input must be redeclared as "
7846 "gl_in[]");
7847 }
7848 break;
7849 case ir_var_shader_out:
7850 if (ir_variable *earlier_gl_Position =
7851 state->symbols->get_variable("gl_Position")) {
7852 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7853 } else if (ir_variable *earlier_gl_out =
7854 state->symbols->get_variable("gl_out")) {
7855 earlier_per_vertex = earlier_gl_out->get_interface_type();
7856 } else {
7857 _mesa_glsl_error(&loc, state,
7858 "redeclaration of gl_PerVertex output not "
7859 "allowed in the %s shader",
7860 _mesa_shader_stage_to_string(state->stage));
7861 }
7862 if (state->stage == MESA_SHADER_TESS_CTRL) {
7863 if (this->instance_name == NULL ||
7864 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7865 _mesa_glsl_error(&loc, state,
7866 "gl_PerVertex output must be redeclared as "
7867 "gl_out[]");
7868 }
7869 } else {
7870 if (this->instance_name != NULL) {
7871 _mesa_glsl_error(&loc, state,
7872 "gl_PerVertex output may not be redeclared with "
7873 "an instance name");
7874 }
7875 }
7876 break;
7877 default:
7878 _mesa_glsl_error(&loc, state,
7879 "gl_PerVertex must be declared as an input or an "
7880 "output");
7881 break;
7882 }
7883
7884 if (earlier_per_vertex == NULL) {
7885 /* An error has already been reported. Bail out to avoid null
7886 * dereferences later in this function.
7887 */
7888 return NULL;
7889 }
7890
7891 /* Copy locations from the old gl_PerVertex interface block. */
7892 for (unsigned i = 0; i < num_variables; i++) {
7893 int j = earlier_per_vertex->field_index(fields[i].name);
7894 if (j == -1) {
7895 _mesa_glsl_error(&loc, state,
7896 "redeclaration of gl_PerVertex must be a subset "
7897 "of the built-in members of gl_PerVertex");
7898 } else {
7899 fields[i].location =
7900 earlier_per_vertex->fields.structure[j].location;
7901 fields[i].offset =
7902 earlier_per_vertex->fields.structure[j].offset;
7903 fields[i].interpolation =
7904 earlier_per_vertex->fields.structure[j].interpolation;
7905 fields[i].centroid =
7906 earlier_per_vertex->fields.structure[j].centroid;
7907 fields[i].sample =
7908 earlier_per_vertex->fields.structure[j].sample;
7909 fields[i].patch =
7910 earlier_per_vertex->fields.structure[j].patch;
7911 fields[i].precision =
7912 earlier_per_vertex->fields.structure[j].precision;
7913 fields[i].explicit_xfb_buffer =
7914 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7915 fields[i].xfb_buffer =
7916 earlier_per_vertex->fields.structure[j].xfb_buffer;
7917 fields[i].xfb_stride =
7918 earlier_per_vertex->fields.structure[j].xfb_stride;
7919 }
7920 }
7921
7922 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7923 * spec:
7924 *
7925 * If a built-in interface block is redeclared, it must appear in
7926 * the shader before any use of any member included in the built-in
7927 * declaration, or a compilation error will result.
7928 *
7929 * This appears to be a clarification to the behaviour established for
7930 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7931 * regardless of GLSL version.
7932 */
7933 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7934 v.run(instructions);
7935 if (v.usage_found()) {
7936 _mesa_glsl_error(&loc, state,
7937 "redeclaration of a built-in interface block must "
7938 "appear before any use of any member of the "
7939 "interface block");
7940 }
7941 }
7942
7943 const glsl_type *block_type =
7944 glsl_type::get_interface_instance(fields,
7945 num_variables,
7946 packing,
7947 matrix_layout ==
7948 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7949 this->block_name);
7950
7951 unsigned component_size = block_type->contains_double() ? 8 : 4;
7952 int xfb_offset =
7953 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7954 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7955 component_size);
7956
7957 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7958 YYLTYPE loc = this->get_location();
7959 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7960 "already taken in the current scope",
7961 this->block_name, iface_type_name);
7962 }
7963
7964 /* Since interface blocks cannot contain statements, it should be
7965 * impossible for the block to generate any instructions.
7966 */
7967 assert(declared_variables.is_empty());
7968
7969 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7970 *
7971 * Geometry shader input variables get the per-vertex values written
7972 * out by vertex shader output variables of the same names. Since a
7973 * geometry shader operates on a set of vertices, each input varying
7974 * variable (or input block, see interface blocks below) needs to be
7975 * declared as an array.
7976 */
7977 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7978 var_mode == ir_var_shader_in) {
7979 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7980 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7981 state->stage == MESA_SHADER_TESS_EVAL) &&
7982 !this->layout.flags.q.patch &&
7983 this->array_specifier == NULL &&
7984 var_mode == ir_var_shader_in) {
7985 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7986 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7987 !this->layout.flags.q.patch &&
7988 this->array_specifier == NULL &&
7989 var_mode == ir_var_shader_out) {
7990 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7991 }
7992
7993
7994 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7995 * says:
7996 *
7997 * "If an instance name (instance-name) is used, then it puts all the
7998 * members inside a scope within its own name space, accessed with the
7999 * field selector ( . ) operator (analogously to structures)."
8000 */
8001 if (this->instance_name) {
8002 if (redeclaring_per_vertex) {
8003 /* When a built-in in an unnamed interface block is redeclared,
8004 * get_variable_being_redeclared() calls
8005 * check_builtin_array_max_size() to make sure that built-in array
8006 * variables aren't redeclared to illegal sizes. But we're looking
8007 * at a redeclaration of a named built-in interface block. So we
8008 * have to manually call check_builtin_array_max_size() for all parts
8009 * of the interface that are arrays.
8010 */
8011 for (unsigned i = 0; i < num_variables; i++) {
8012 if (fields[i].type->is_array()) {
8013 const unsigned size = fields[i].type->array_size();
8014 check_builtin_array_max_size(fields[i].name, size, loc, state);
8015 }
8016 }
8017 } else {
8018 validate_identifier(this->instance_name, loc, state);
8019 }
8020
8021 ir_variable *var;
8022
8023 if (this->array_specifier != NULL) {
8024 const glsl_type *block_array_type =
8025 process_array_type(&loc, block_type, this->array_specifier, state);
8026
8027 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8028 *
8029 * For uniform blocks declared an array, each individual array
8030 * element corresponds to a separate buffer object backing one
8031 * instance of the block. As the array size indicates the number
8032 * of buffer objects needed, uniform block array declarations
8033 * must specify an array size.
8034 *
8035 * And a few paragraphs later:
8036 *
8037 * Geometry shader input blocks must be declared as arrays and
8038 * follow the array declaration and linking rules for all
8039 * geometry shader inputs. All other input and output block
8040 * arrays must specify an array size.
8041 *
8042 * The same applies to tessellation shaders.
8043 *
8044 * The upshot of this is that the only circumstance where an
8045 * interface array size *doesn't* need to be specified is on a
8046 * geometry shader input, tessellation control shader input,
8047 * tessellation control shader output, and tessellation evaluation
8048 * shader input.
8049 */
8050 if (block_array_type->is_unsized_array()) {
8051 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8052 state->stage == MESA_SHADER_TESS_CTRL ||
8053 state->stage == MESA_SHADER_TESS_EVAL;
8054 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8055
8056 if (this->layout.flags.q.in) {
8057 if (!allow_inputs)
8058 _mesa_glsl_error(&loc, state,
8059 "unsized input block arrays not allowed in "
8060 "%s shader",
8061 _mesa_shader_stage_to_string(state->stage));
8062 } else if (this->layout.flags.q.out) {
8063 if (!allow_outputs)
8064 _mesa_glsl_error(&loc, state,
8065 "unsized output block arrays not allowed in "
8066 "%s shader",
8067 _mesa_shader_stage_to_string(state->stage));
8068 } else {
8069 /* by elimination, this is a uniform block array */
8070 _mesa_glsl_error(&loc, state,
8071 "unsized uniform block arrays not allowed in "
8072 "%s shader",
8073 _mesa_shader_stage_to_string(state->stage));
8074 }
8075 }
8076
8077 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8078 *
8079 * * Arrays of arrays of blocks are not allowed
8080 */
8081 if (state->es_shader && block_array_type->is_array() &&
8082 block_array_type->fields.array->is_array()) {
8083 _mesa_glsl_error(&loc, state,
8084 "arrays of arrays interface blocks are "
8085 "not allowed");
8086 }
8087
8088 var = new(state) ir_variable(block_array_type,
8089 this->instance_name,
8090 var_mode);
8091 } else {
8092 var = new(state) ir_variable(block_type,
8093 this->instance_name,
8094 var_mode);
8095 }
8096
8097 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8098 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8099
8100 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8101 var->data.read_only = true;
8102
8103 var->data.patch = this->layout.flags.q.patch;
8104
8105 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8106 handle_geometry_shader_input_decl(state, loc, var);
8107 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8108 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8109 handle_tess_shader_input_decl(state, loc, var);
8110 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8111 handle_tess_ctrl_shader_output_decl(state, loc, var);
8112
8113 for (unsigned i = 0; i < num_variables; i++) {
8114 if (var->data.mode == ir_var_shader_storage)
8115 apply_memory_qualifiers(var, fields[i]);
8116 }
8117
8118 if (ir_variable *earlier =
8119 state->symbols->get_variable(this->instance_name)) {
8120 if (!redeclaring_per_vertex) {
8121 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8122 this->instance_name);
8123 }
8124 earlier->data.how_declared = ir_var_declared_normally;
8125 earlier->type = var->type;
8126 earlier->reinit_interface_type(block_type);
8127 delete var;
8128 } else {
8129 if (this->layout.flags.q.explicit_binding) {
8130 apply_explicit_binding(state, &loc, var, var->type,
8131 &this->layout);
8132 }
8133
8134 var->data.stream = qual_stream;
8135 if (layout.flags.q.explicit_location) {
8136 var->data.location = expl_location;
8137 var->data.explicit_location = true;
8138 }
8139
8140 state->symbols->add_variable(var);
8141 instructions->push_tail(var);
8142 }
8143 } else {
8144 /* In order to have an array size, the block must also be declared with
8145 * an instance name.
8146 */
8147 assert(this->array_specifier == NULL);
8148
8149 for (unsigned i = 0; i < num_variables; i++) {
8150 ir_variable *var =
8151 new(state) ir_variable(fields[i].type,
8152 ralloc_strdup(state, fields[i].name),
8153 var_mode);
8154 var->data.interpolation = fields[i].interpolation;
8155 var->data.centroid = fields[i].centroid;
8156 var->data.sample = fields[i].sample;
8157 var->data.patch = fields[i].patch;
8158 var->data.stream = qual_stream;
8159 var->data.location = fields[i].location;
8160
8161 if (fields[i].location != -1)
8162 var->data.explicit_location = true;
8163
8164 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8165 var->data.xfb_buffer = fields[i].xfb_buffer;
8166
8167 if (fields[i].offset != -1)
8168 var->data.explicit_xfb_offset = true;
8169 var->data.offset = fields[i].offset;
8170
8171 var->init_interface_type(block_type);
8172
8173 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8174 var->data.read_only = true;
8175
8176 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8177 if (state->es_shader) {
8178 var->data.precision =
8179 select_gles_precision(fields[i].precision, fields[i].type,
8180 state, &loc);
8181 }
8182
8183 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8184 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8185 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8186 } else {
8187 var->data.matrix_layout = fields[i].matrix_layout;
8188 }
8189
8190 if (var->data.mode == ir_var_shader_storage)
8191 apply_memory_qualifiers(var, fields[i]);
8192
8193 /* Examine var name here since var may get deleted in the next call */
8194 bool var_is_gl_id = is_gl_identifier(var->name);
8195
8196 if (redeclaring_per_vertex) {
8197 bool is_redeclaration;
8198 ir_variable *declared_var =
8199 get_variable_being_redeclared(var, loc, state,
8200 true /* allow_all_redeclarations */,
8201 &is_redeclaration);
8202 if (!var_is_gl_id || !is_redeclaration) {
8203 _mesa_glsl_error(&loc, state,
8204 "redeclaration of gl_PerVertex can only "
8205 "include built-in variables");
8206 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
8207 _mesa_glsl_error(&loc, state,
8208 "`%s' has already been redeclared",
8209 declared_var->name);
8210 } else {
8211 declared_var->data.how_declared = ir_var_declared_in_block;
8212 declared_var->reinit_interface_type(block_type);
8213 }
8214 continue;
8215 }
8216
8217 if (state->symbols->get_variable(var->name) != NULL)
8218 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8219
8220 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8221 * The UBO declaration itself doesn't get an ir_variable unless it
8222 * has an instance name. This is ugly.
8223 */
8224 if (this->layout.flags.q.explicit_binding) {
8225 apply_explicit_binding(state, &loc, var,
8226 var->get_interface_type(), &this->layout);
8227 }
8228
8229 if (var->type->is_unsized_array()) {
8230 if (var->is_in_shader_storage_block() &&
8231 is_unsized_array_last_element(var)) {
8232 var->data.from_ssbo_unsized_array = true;
8233 } else {
8234 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8235 *
8236 * "If an array is declared as the last member of a shader storage
8237 * block and the size is not specified at compile-time, it is
8238 * sized at run-time. In all other cases, arrays are sized only
8239 * at compile-time."
8240 *
8241 * In desktop GLSL it is allowed to have unsized-arrays that are
8242 * not last, as long as we can determine that they are implicitly
8243 * sized.
8244 */
8245 if (state->es_shader) {
8246 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8247 "definition: only last member of a shader "
8248 "storage block can be defined as unsized "
8249 "array", fields[i].name);
8250 }
8251 }
8252 }
8253
8254 state->symbols->add_variable(var);
8255 instructions->push_tail(var);
8256 }
8257
8258 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8259 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8260 *
8261 * It is also a compilation error ... to redeclare a built-in
8262 * block and then use a member from that built-in block that was
8263 * not included in the redeclaration.
8264 *
8265 * This appears to be a clarification to the behaviour established
8266 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8267 * behaviour regardless of GLSL version.
8268 *
8269 * To prevent the shader from using a member that was not included in
8270 * the redeclaration, we disable any ir_variables that are still
8271 * associated with the old declaration of gl_PerVertex (since we've
8272 * already updated all of the variables contained in the new
8273 * gl_PerVertex to point to it).
8274 *
8275 * As a side effect this will prevent
8276 * validate_intrastage_interface_blocks() from getting confused and
8277 * thinking there are conflicting definitions of gl_PerVertex in the
8278 * shader.
8279 */
8280 foreach_in_list_safe(ir_instruction, node, instructions) {
8281 ir_variable *const var = node->as_variable();
8282 if (var != NULL &&
8283 var->get_interface_type() == earlier_per_vertex &&
8284 var->data.mode == var_mode) {
8285 if (var->data.how_declared == ir_var_declared_normally) {
8286 _mesa_glsl_error(&loc, state,
8287 "redeclaration of gl_PerVertex cannot "
8288 "follow a redeclaration of `%s'",
8289 var->name);
8290 }
8291 state->symbols->disable_variable(var->name);
8292 var->remove();
8293 }
8294 }
8295 }
8296 }
8297
8298 return NULL;
8299 }
8300
8301
8302 ir_rvalue *
8303 ast_tcs_output_layout::hir(exec_list *instructions,
8304 struct _mesa_glsl_parse_state *state)
8305 {
8306 YYLTYPE loc = this->get_location();
8307
8308 unsigned num_vertices;
8309 if (!state->out_qualifier->vertices->
8310 process_qualifier_constant(state, "vertices", &num_vertices,
8311 false)) {
8312 /* return here to stop cascading incorrect error messages */
8313 return NULL;
8314 }
8315
8316 /* If any shader outputs occurred before this declaration and specified an
8317 * array size, make sure the size they specified is consistent with the
8318 * primitive type.
8319 */
8320 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8321 _mesa_glsl_error(&loc, state,
8322 "this tessellation control shader output layout "
8323 "specifies %u vertices, but a previous output "
8324 "is declared with size %u",
8325 num_vertices, state->tcs_output_size);
8326 return NULL;
8327 }
8328
8329 state->tcs_output_vertices_specified = true;
8330
8331 /* If any shader outputs occurred before this declaration and did not
8332 * specify an array size, their size is determined now.
8333 */
8334 foreach_in_list (ir_instruction, node, instructions) {
8335 ir_variable *var = node->as_variable();
8336 if (var == NULL || var->data.mode != ir_var_shader_out)
8337 continue;
8338
8339 /* Note: Not all tessellation control shader output are arrays. */
8340 if (!var->type->is_unsized_array() || var->data.patch)
8341 continue;
8342
8343 if (var->data.max_array_access >= (int)num_vertices) {
8344 _mesa_glsl_error(&loc, state,
8345 "this tessellation control shader output layout "
8346 "specifies %u vertices, but an access to element "
8347 "%u of output `%s' already exists", num_vertices,
8348 var->data.max_array_access, var->name);
8349 } else {
8350 var->type = glsl_type::get_array_instance(var->type->fields.array,
8351 num_vertices);
8352 }
8353 }
8354
8355 return NULL;
8356 }
8357
8358
8359 ir_rvalue *
8360 ast_gs_input_layout::hir(exec_list *instructions,
8361 struct _mesa_glsl_parse_state *state)
8362 {
8363 YYLTYPE loc = this->get_location();
8364
8365 /* Should have been prevented by the parser. */
8366 assert(!state->gs_input_prim_type_specified
8367 || state->in_qualifier->prim_type == this->prim_type);
8368
8369 /* If any shader inputs occurred before this declaration and specified an
8370 * array size, make sure the size they specified is consistent with the
8371 * primitive type.
8372 */
8373 unsigned num_vertices = vertices_per_prim(this->prim_type);
8374 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8375 _mesa_glsl_error(&loc, state,
8376 "this geometry shader input layout implies %u vertices"
8377 " per primitive, but a previous input is declared"
8378 " with size %u", num_vertices, state->gs_input_size);
8379 return NULL;
8380 }
8381
8382 state->gs_input_prim_type_specified = true;
8383
8384 /* If any shader inputs occurred before this declaration and did not
8385 * specify an array size, their size is determined now.
8386 */
8387 foreach_in_list(ir_instruction, node, instructions) {
8388 ir_variable *var = node->as_variable();
8389 if (var == NULL || var->data.mode != ir_var_shader_in)
8390 continue;
8391
8392 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8393 * array; skip it.
8394 */
8395
8396 if (var->type->is_unsized_array()) {
8397 if (var->data.max_array_access >= (int)num_vertices) {
8398 _mesa_glsl_error(&loc, state,
8399 "this geometry shader input layout implies %u"
8400 " vertices, but an access to element %u of input"
8401 " `%s' already exists", num_vertices,
8402 var->data.max_array_access, var->name);
8403 } else {
8404 var->type = glsl_type::get_array_instance(var->type->fields.array,
8405 num_vertices);
8406 }
8407 }
8408 }
8409
8410 return NULL;
8411 }
8412
8413
8414 ir_rvalue *
8415 ast_cs_input_layout::hir(exec_list *instructions,
8416 struct _mesa_glsl_parse_state *state)
8417 {
8418 YYLTYPE loc = this->get_location();
8419
8420 /* From the ARB_compute_shader specification:
8421 *
8422 * If the local size of the shader in any dimension is greater
8423 * than the maximum size supported by the implementation for that
8424 * dimension, a compile-time error results.
8425 *
8426 * It is not clear from the spec how the error should be reported if
8427 * the total size of the work group exceeds
8428 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8429 * report it at compile time as well.
8430 */
8431 GLuint64 total_invocations = 1;
8432 unsigned qual_local_size[3];
8433 for (int i = 0; i < 3; i++) {
8434
8435 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8436 'x' + i);
8437 /* Infer a local_size of 1 for unspecified dimensions */
8438 if (this->local_size[i] == NULL) {
8439 qual_local_size[i] = 1;
8440 } else if (!this->local_size[i]->
8441 process_qualifier_constant(state, local_size_str,
8442 &qual_local_size[i], false)) {
8443 ralloc_free(local_size_str);
8444 return NULL;
8445 }
8446 ralloc_free(local_size_str);
8447
8448 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8449 _mesa_glsl_error(&loc, state,
8450 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8451 " (%d)", 'x' + i,
8452 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8453 break;
8454 }
8455 total_invocations *= qual_local_size[i];
8456 if (total_invocations >
8457 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8458 _mesa_glsl_error(&loc, state,
8459 "product of local_sizes exceeds "
8460 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8461 state->ctx->Const.MaxComputeWorkGroupInvocations);
8462 break;
8463 }
8464 }
8465
8466 /* If any compute input layout declaration preceded this one, make sure it
8467 * was consistent with this one.
8468 */
8469 if (state->cs_input_local_size_specified) {
8470 for (int i = 0; i < 3; i++) {
8471 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8472 _mesa_glsl_error(&loc, state,
8473 "compute shader input layout does not match"
8474 " previous declaration");
8475 return NULL;
8476 }
8477 }
8478 }
8479
8480 /* The ARB_compute_variable_group_size spec says:
8481 *
8482 * If a compute shader including a *local_size_variable* qualifier also
8483 * declares a fixed local group size using the *local_size_x*,
8484 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8485 * results
8486 */
8487 if (state->cs_input_local_size_variable_specified) {
8488 _mesa_glsl_error(&loc, state,
8489 "compute shader can't include both a variable and a "
8490 "fixed local group size");
8491 return NULL;
8492 }
8493
8494 state->cs_input_local_size_specified = true;
8495 for (int i = 0; i < 3; i++)
8496 state->cs_input_local_size[i] = qual_local_size[i];
8497
8498 /* We may now declare the built-in constant gl_WorkGroupSize (see
8499 * builtin_variable_generator::generate_constants() for why we didn't
8500 * declare it earlier).
8501 */
8502 ir_variable *var = new(state->symbols)
8503 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8504 var->data.how_declared = ir_var_declared_implicitly;
8505 var->data.read_only = true;
8506 instructions->push_tail(var);
8507 state->symbols->add_variable(var);
8508 ir_constant_data data;
8509 memset(&data, 0, sizeof(data));
8510 for (int i = 0; i < 3; i++)
8511 data.u[i] = qual_local_size[i];
8512 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8513 var->constant_initializer =
8514 new(var) ir_constant(glsl_type::uvec3_type, &data);
8515 var->data.has_initializer = true;
8516
8517 return NULL;
8518 }
8519
8520
8521 static void
8522 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8523 exec_list *instructions)
8524 {
8525 bool gl_FragColor_assigned = false;
8526 bool gl_FragData_assigned = false;
8527 bool gl_FragSecondaryColor_assigned = false;
8528 bool gl_FragSecondaryData_assigned = false;
8529 bool user_defined_fs_output_assigned = false;
8530 ir_variable *user_defined_fs_output = NULL;
8531
8532 /* It would be nice to have proper location information. */
8533 YYLTYPE loc;
8534 memset(&loc, 0, sizeof(loc));
8535
8536 foreach_in_list(ir_instruction, node, instructions) {
8537 ir_variable *var = node->as_variable();
8538
8539 if (!var || !var->data.assigned)
8540 continue;
8541
8542 if (strcmp(var->name, "gl_FragColor") == 0)
8543 gl_FragColor_assigned = true;
8544 else if (strcmp(var->name, "gl_FragData") == 0)
8545 gl_FragData_assigned = true;
8546 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8547 gl_FragSecondaryColor_assigned = true;
8548 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8549 gl_FragSecondaryData_assigned = true;
8550 else if (!is_gl_identifier(var->name)) {
8551 if (state->stage == MESA_SHADER_FRAGMENT &&
8552 var->data.mode == ir_var_shader_out) {
8553 user_defined_fs_output_assigned = true;
8554 user_defined_fs_output = var;
8555 }
8556 }
8557 }
8558
8559 /* From the GLSL 1.30 spec:
8560 *
8561 * "If a shader statically assigns a value to gl_FragColor, it
8562 * may not assign a value to any element of gl_FragData. If a
8563 * shader statically writes a value to any element of
8564 * gl_FragData, it may not assign a value to
8565 * gl_FragColor. That is, a shader may assign values to either
8566 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8567 * linked together must also consistently write just one of
8568 * these variables. Similarly, if user declared output
8569 * variables are in use (statically assigned to), then the
8570 * built-in variables gl_FragColor and gl_FragData may not be
8571 * assigned to. These incorrect usages all generate compile
8572 * time errors."
8573 */
8574 if (gl_FragColor_assigned && gl_FragData_assigned) {
8575 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8576 "`gl_FragColor' and `gl_FragData'");
8577 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8578 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8579 "`gl_FragColor' and `%s'",
8580 user_defined_fs_output->name);
8581 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8582 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8583 "`gl_FragSecondaryColorEXT' and"
8584 " `gl_FragSecondaryDataEXT'");
8585 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8586 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8587 "`gl_FragColor' and"
8588 " `gl_FragSecondaryDataEXT'");
8589 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8590 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8591 "`gl_FragData' and"
8592 " `gl_FragSecondaryColorEXT'");
8593 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8594 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8595 "`gl_FragData' and `%s'",
8596 user_defined_fs_output->name);
8597 }
8598
8599 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8600 !state->EXT_blend_func_extended_enable) {
8601 _mesa_glsl_error(&loc, state,
8602 "Dual source blending requires EXT_blend_func_extended");
8603 }
8604 }
8605
8606
8607 static void
8608 remove_per_vertex_blocks(exec_list *instructions,
8609 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8610 {
8611 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8612 * if it exists in this shader type.
8613 */
8614 const glsl_type *per_vertex = NULL;
8615 switch (mode) {
8616 case ir_var_shader_in:
8617 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8618 per_vertex = gl_in->get_interface_type();
8619 break;
8620 case ir_var_shader_out:
8621 if (ir_variable *gl_Position =
8622 state->symbols->get_variable("gl_Position")) {
8623 per_vertex = gl_Position->get_interface_type();
8624 }
8625 break;
8626 default:
8627 assert(!"Unexpected mode");
8628 break;
8629 }
8630
8631 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8632 * need to do anything.
8633 */
8634 if (per_vertex == NULL)
8635 return;
8636
8637 /* If the interface block is used by the shader, then we don't need to do
8638 * anything.
8639 */
8640 interface_block_usage_visitor v(mode, per_vertex);
8641 v.run(instructions);
8642 if (v.usage_found())
8643 return;
8644
8645 /* Remove any ir_variable declarations that refer to the interface block
8646 * we're removing.
8647 */
8648 foreach_in_list_safe(ir_instruction, node, instructions) {
8649 ir_variable *const var = node->as_variable();
8650 if (var != NULL && var->get_interface_type() == per_vertex &&
8651 var->data.mode == mode) {
8652 state->symbols->disable_variable(var->name);
8653 var->remove();
8654 }
8655 }
8656 }