glsl: reject samplers not declared as uniform/function params earlier
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have image_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (image_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.image_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
448 type_a->base_type == GLSL_TYPE_DOUBLE);
449 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
450 type_b->base_type == GLSL_TYPE_DOUBLE);
451
452 /* "* The operator is add (+), subtract (-), or divide (/), and the
453 * operands are matrices with the same number of rows and the same
454 * number of columns. In this case, the operation is done component-
455 * wise resulting in the same size matrix."
456 * * The operator is multiply (*), where both operands are matrices or
457 * one operand is a vector and the other a matrix. A right vector
458 * operand is treated as a column vector and a left vector operand as a
459 * row vector. In all these cases, it is required that the number of
460 * columns of the left operand is equal to the number of rows of the
461 * right operand. Then, the multiply (*) operation does a linear
462 * algebraic multiply, yielding an object that has the same number of
463 * rows as the left operand and the same number of columns as the right
464 * operand. Section 5.10 "Vector and Matrix Operations" explains in
465 * more detail how vectors and matrices are operated on."
466 */
467 if (! multiply) {
468 if (type_a == type_b)
469 return type_a;
470 } else {
471 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
472
473 if (type == glsl_type::error_type) {
474 _mesa_glsl_error(loc, state,
475 "size mismatch for matrix multiplication");
476 }
477
478 return type;
479 }
480
481
482 /* "All other cases are illegal."
483 */
484 _mesa_glsl_error(loc, state, "type mismatch");
485 return glsl_type::error_type;
486 }
487
488
489 static const struct glsl_type *
490 unary_arithmetic_result_type(const struct glsl_type *type,
491 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
492 {
493 /* From GLSL 1.50 spec, page 57:
494 *
495 * "The arithmetic unary operators negate (-), post- and pre-increment
496 * and decrement (-- and ++) operate on integer or floating-point
497 * values (including vectors and matrices). All unary operators work
498 * component-wise on their operands. These result with the same type
499 * they operated on."
500 */
501 if (!type->is_numeric()) {
502 _mesa_glsl_error(loc, state,
503 "operands to arithmetic operators must be numeric");
504 return glsl_type::error_type;
505 }
506
507 return type;
508 }
509
510 /**
511 * \brief Return the result type of a bit-logic operation.
512 *
513 * If the given types to the bit-logic operator are invalid, return
514 * glsl_type::error_type.
515 *
516 * \param value_a LHS of bit-logic op
517 * \param value_b RHS of bit-logic op
518 */
519 static const struct glsl_type *
520 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
521 ast_operators op,
522 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
523 {
524 const glsl_type *type_a = value_a->type;
525 const glsl_type *type_b = value_b->type;
526
527 if (!state->check_bitwise_operations_allowed(loc)) {
528 return glsl_type::error_type;
529 }
530
531 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
532 *
533 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
534 * (|). The operands must be of type signed or unsigned integers or
535 * integer vectors."
536 */
537 if (!type_a->is_integer_32_64()) {
538 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
539 ast_expression::operator_string(op));
540 return glsl_type::error_type;
541 }
542 if (!type_b->is_integer_32_64()) {
543 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
544 ast_expression::operator_string(op));
545 return glsl_type::error_type;
546 }
547
548 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
549 * make sense for bitwise operations, as they don't operate on floats.
550 *
551 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
552 * here. It wasn't clear whether or not we should apply them to bitwise
553 * operations. However, Khronos has decided that they should in future
554 * language revisions. Applications also rely on this behavior. We opt
555 * to apply them in general, but issue a portability warning.
556 *
557 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
558 */
559 if (type_a->base_type != type_b->base_type) {
560 if (!apply_implicit_conversion(type_a, value_b, state)
561 && !apply_implicit_conversion(type_b, value_a, state)) {
562 _mesa_glsl_error(loc, state,
563 "could not implicitly convert operands to "
564 "`%s` operator",
565 ast_expression::operator_string(op));
566 return glsl_type::error_type;
567 } else {
568 _mesa_glsl_warning(loc, state,
569 "some implementations may not support implicit "
570 "int -> uint conversions for `%s' operators; "
571 "consider casting explicitly for portability",
572 ast_expression::operator_string(op));
573 }
574 type_a = value_a->type;
575 type_b = value_b->type;
576 }
577
578 /* "The fundamental types of the operands (signed or unsigned) must
579 * match,"
580 */
581 if (type_a->base_type != type_b->base_type) {
582 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
583 "base type", ast_expression::operator_string(op));
584 return glsl_type::error_type;
585 }
586
587 /* "The operands cannot be vectors of differing size." */
588 if (type_a->is_vector() &&
589 type_b->is_vector() &&
590 type_a->vector_elements != type_b->vector_elements) {
591 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
592 "different sizes", ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "If one operand is a scalar and the other a vector, the scalar is
597 * applied component-wise to the vector, resulting in the same type as
598 * the vector. The fundamental types of the operands [...] will be the
599 * resulting fundamental type."
600 */
601 if (type_a->is_scalar())
602 return type_b;
603 else
604 return type_a;
605 }
606
607 static const struct glsl_type *
608 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
609 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
610 {
611 const glsl_type *type_a = value_a->type;
612 const glsl_type *type_b = value_b->type;
613
614 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
615 return glsl_type::error_type;
616 }
617
618 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
619 *
620 * "The operator modulus (%) operates on signed or unsigned integers or
621 * integer vectors."
622 */
623 if (!type_a->is_integer_32_64()) {
624 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
625 return glsl_type::error_type;
626 }
627 if (!type_b->is_integer_32_64()) {
628 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
629 return glsl_type::error_type;
630 }
631
632 /* "If the fundamental types in the operands do not match, then the
633 * conversions from section 4.1.10 "Implicit Conversions" are applied
634 * to create matching types."
635 *
636 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
637 * int -> uint conversion rules. Prior to that, there were no implicit
638 * conversions. So it's harmless to apply them universally - no implicit
639 * conversions will exist. If the types don't match, we'll receive false,
640 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
641 *
642 * "The operand types must both be signed or unsigned."
643 */
644 if (!apply_implicit_conversion(type_a, value_b, state) &&
645 !apply_implicit_conversion(type_b, value_a, state)) {
646 _mesa_glsl_error(loc, state,
647 "could not implicitly convert operands to "
648 "modulus (%%) operator");
649 return glsl_type::error_type;
650 }
651 type_a = value_a->type;
652 type_b = value_b->type;
653
654 /* "The operands cannot be vectors of differing size. If one operand is
655 * a scalar and the other vector, then the scalar is applied component-
656 * wise to the vector, resulting in the same type as the vector. If both
657 * are vectors of the same size, the result is computed component-wise."
658 */
659 if (type_a->is_vector()) {
660 if (!type_b->is_vector()
661 || (type_a->vector_elements == type_b->vector_elements))
662 return type_a;
663 } else
664 return type_b;
665
666 /* "The operator modulus (%) is not defined for any other data types
667 * (non-integer types)."
668 */
669 _mesa_glsl_error(loc, state, "type mismatch");
670 return glsl_type::error_type;
671 }
672
673
674 static const struct glsl_type *
675 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
676 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
677 {
678 const glsl_type *type_a = value_a->type;
679 const glsl_type *type_b = value_b->type;
680
681 /* From GLSL 1.50 spec, page 56:
682 * "The relational operators greater than (>), less than (<), greater
683 * than or equal (>=), and less than or equal (<=) operate only on
684 * scalar integer and scalar floating-point expressions."
685 */
686 if (!type_a->is_numeric()
687 || !type_b->is_numeric()
688 || !type_a->is_scalar()
689 || !type_b->is_scalar()) {
690 _mesa_glsl_error(loc, state,
691 "operands to relational operators must be scalar and "
692 "numeric");
693 return glsl_type::error_type;
694 }
695
696 /* "Either the operands' types must match, or the conversions from
697 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
698 * operand, after which the types must match."
699 */
700 if (!apply_implicit_conversion(type_a, value_b, state)
701 && !apply_implicit_conversion(type_b, value_a, state)) {
702 _mesa_glsl_error(loc, state,
703 "could not implicitly convert operands to "
704 "relational operator");
705 return glsl_type::error_type;
706 }
707 type_a = value_a->type;
708 type_b = value_b->type;
709
710 if (type_a->base_type != type_b->base_type) {
711 _mesa_glsl_error(loc, state, "base type mismatch");
712 return glsl_type::error_type;
713 }
714
715 /* "The result is scalar Boolean."
716 */
717 return glsl_type::bool_type;
718 }
719
720 /**
721 * \brief Return the result type of a bit-shift operation.
722 *
723 * If the given types to the bit-shift operator are invalid, return
724 * glsl_type::error_type.
725 *
726 * \param type_a Type of LHS of bit-shift op
727 * \param type_b Type of RHS of bit-shift op
728 */
729 static const struct glsl_type *
730 shift_result_type(const struct glsl_type *type_a,
731 const struct glsl_type *type_b,
732 ast_operators op,
733 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
734 {
735 if (!state->check_bitwise_operations_allowed(loc)) {
736 return glsl_type::error_type;
737 }
738
739 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
740 *
741 * "The shift operators (<<) and (>>). For both operators, the operands
742 * must be signed or unsigned integers or integer vectors. One operand
743 * can be signed while the other is unsigned."
744 */
745 if (!type_a->is_integer_32_64()) {
746 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
747 "integer vector", ast_expression::operator_string(op));
748 return glsl_type::error_type;
749
750 }
751 if (!type_b->is_integer()) {
752 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
753 "integer vector", ast_expression::operator_string(op));
754 return glsl_type::error_type;
755 }
756
757 /* "If the first operand is a scalar, the second operand has to be
758 * a scalar as well."
759 */
760 if (type_a->is_scalar() && !type_b->is_scalar()) {
761 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
762 "second must be scalar as well",
763 ast_expression::operator_string(op));
764 return glsl_type::error_type;
765 }
766
767 /* If both operands are vectors, check that they have same number of
768 * elements.
769 */
770 if (type_a->is_vector() &&
771 type_b->is_vector() &&
772 type_a->vector_elements != type_b->vector_elements) {
773 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
774 "have same number of elements",
775 ast_expression::operator_string(op));
776 return glsl_type::error_type;
777 }
778
779 /* "In all cases, the resulting type will be the same type as the left
780 * operand."
781 */
782 return type_a;
783 }
784
785 /**
786 * Returns the innermost array index expression in an rvalue tree.
787 * This is the largest indexing level -- if an array of blocks, then
788 * it is the block index rather than an indexing expression for an
789 * array-typed member of an array of blocks.
790 */
791 static ir_rvalue *
792 find_innermost_array_index(ir_rvalue *rv)
793 {
794 ir_dereference_array *last = NULL;
795 while (rv) {
796 if (rv->as_dereference_array()) {
797 last = rv->as_dereference_array();
798 rv = last->array;
799 } else if (rv->as_dereference_record())
800 rv = rv->as_dereference_record()->record;
801 else if (rv->as_swizzle())
802 rv = rv->as_swizzle()->val;
803 else
804 rv = NULL;
805 }
806
807 if (last)
808 return last->array_index;
809
810 return NULL;
811 }
812
813 /**
814 * Validates that a value can be assigned to a location with a specified type
815 *
816 * Validates that \c rhs can be assigned to some location. If the types are
817 * not an exact match but an automatic conversion is possible, \c rhs will be
818 * converted.
819 *
820 * \return
821 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
822 * Otherwise the actual RHS to be assigned will be returned. This may be
823 * \c rhs, or it may be \c rhs after some type conversion.
824 *
825 * \note
826 * In addition to being used for assignments, this function is used to
827 * type-check return values.
828 */
829 static ir_rvalue *
830 validate_assignment(struct _mesa_glsl_parse_state *state,
831 YYLTYPE loc, ir_rvalue *lhs,
832 ir_rvalue *rhs, bool is_initializer)
833 {
834 /* If there is already some error in the RHS, just return it. Anything
835 * else will lead to an avalanche of error message back to the user.
836 */
837 if (rhs->type->is_error())
838 return rhs;
839
840 /* In the Tessellation Control Shader:
841 * If a per-vertex output variable is used as an l-value, it is an error
842 * if the expression indicating the vertex number is not the identifier
843 * `gl_InvocationID`.
844 */
845 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
846 ir_variable *var = lhs->variable_referenced();
847 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
848 ir_rvalue *index = find_innermost_array_index(lhs);
849 ir_variable *index_var = index ? index->variable_referenced() : NULL;
850 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
851 _mesa_glsl_error(&loc, state,
852 "Tessellation control shader outputs can only "
853 "be indexed by gl_InvocationID");
854 return NULL;
855 }
856 }
857 }
858
859 /* If the types are identical, the assignment can trivially proceed.
860 */
861 if (rhs->type == lhs->type)
862 return rhs;
863
864 /* If the array element types are the same and the LHS is unsized,
865 * the assignment is okay for initializers embedded in variable
866 * declarations.
867 *
868 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
869 * is handled by ir_dereference::is_lvalue.
870 */
871 const glsl_type *lhs_t = lhs->type;
872 const glsl_type *rhs_t = rhs->type;
873 bool unsized_array = false;
874 while(lhs_t->is_array()) {
875 if (rhs_t == lhs_t)
876 break; /* the rest of the inner arrays match so break out early */
877 if (!rhs_t->is_array()) {
878 unsized_array = false;
879 break; /* number of dimensions mismatch */
880 }
881 if (lhs_t->length == rhs_t->length) {
882 lhs_t = lhs_t->fields.array;
883 rhs_t = rhs_t->fields.array;
884 continue;
885 } else if (lhs_t->is_unsized_array()) {
886 unsized_array = true;
887 } else {
888 unsized_array = false;
889 break; /* sized array mismatch */
890 }
891 lhs_t = lhs_t->fields.array;
892 rhs_t = rhs_t->fields.array;
893 }
894 if (unsized_array) {
895 if (is_initializer) {
896 return rhs;
897 } else {
898 _mesa_glsl_error(&loc, state,
899 "implicitly sized arrays cannot be assigned");
900 return NULL;
901 }
902 }
903
904 /* Check for implicit conversion in GLSL 1.20 */
905 if (apply_implicit_conversion(lhs->type, rhs, state)) {
906 if (rhs->type == lhs->type)
907 return rhs;
908 }
909
910 _mesa_glsl_error(&loc, state,
911 "%s of type %s cannot be assigned to "
912 "variable of type %s",
913 is_initializer ? "initializer" : "value",
914 rhs->type->name, lhs->type->name);
915
916 return NULL;
917 }
918
919 static void
920 mark_whole_array_access(ir_rvalue *access)
921 {
922 ir_dereference_variable *deref = access->as_dereference_variable();
923
924 if (deref && deref->var) {
925 deref->var->data.max_array_access = deref->type->length - 1;
926 }
927 }
928
929 static bool
930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931 const char *non_lvalue_description,
932 ir_rvalue *lhs, ir_rvalue *rhs,
933 ir_rvalue **out_rvalue, bool needs_rvalue,
934 bool is_initializer,
935 YYLTYPE lhs_loc)
936 {
937 void *ctx = state;
938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940 ir_variable *lhs_var = lhs->variable_referenced();
941 if (lhs_var)
942 lhs_var->data.assigned = true;
943
944 if (!error_emitted) {
945 if (non_lvalue_description != NULL) {
946 _mesa_glsl_error(&lhs_loc, state,
947 "assignment to %s",
948 non_lvalue_description);
949 error_emitted = true;
950 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
951 (lhs_var->data.mode == ir_var_shader_storage &&
952 lhs_var->data.image_read_only))) {
953 /* We can have image_read_only set on both images and buffer variables,
954 * but in the former there is a distinction between assignments to
955 * the variable itself (read_only) and to the memory they point to
956 * (image_read_only), while in the case of buffer variables there is
957 * no such distinction, that is why this check here is limited to
958 * buffer variables alone.
959 */
960 _mesa_glsl_error(&lhs_loc, state,
961 "assignment to read-only variable '%s'",
962 lhs_var->name);
963 error_emitted = true;
964 } else if (lhs->type->is_array() &&
965 !state->check_version(120, 300, &lhs_loc,
966 "whole array assignment forbidden")) {
967 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
968 *
969 * "Other binary or unary expressions, non-dereferenced
970 * arrays, function names, swizzles with repeated fields,
971 * and constants cannot be l-values."
972 *
973 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
974 */
975 error_emitted = true;
976 } else if (!lhs->is_lvalue()) {
977 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
978 error_emitted = true;
979 }
980 }
981
982 ir_rvalue *new_rhs =
983 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
984 if (new_rhs != NULL) {
985 rhs = new_rhs;
986
987 /* If the LHS array was not declared with a size, it takes it size from
988 * the RHS. If the LHS is an l-value and a whole array, it must be a
989 * dereference of a variable. Any other case would require that the LHS
990 * is either not an l-value or not a whole array.
991 */
992 if (lhs->type->is_unsized_array()) {
993 ir_dereference *const d = lhs->as_dereference();
994
995 assert(d != NULL);
996
997 ir_variable *const var = d->variable_referenced();
998
999 assert(var != NULL);
1000
1001 if (var->data.max_array_access >= rhs->type->array_size()) {
1002 /* FINISHME: This should actually log the location of the RHS. */
1003 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1004 "previous access",
1005 var->data.max_array_access);
1006 }
1007
1008 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1009 rhs->type->array_size());
1010 d->type = var->type;
1011 }
1012 if (lhs->type->is_array()) {
1013 mark_whole_array_access(rhs);
1014 mark_whole_array_access(lhs);
1015 }
1016 }
1017
1018 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1019 * but not post_inc) need the converted assigned value as an rvalue
1020 * to handle things like:
1021 *
1022 * i = j += 1;
1023 */
1024 if (needs_rvalue) {
1025 ir_rvalue *rvalue;
1026 if (!error_emitted) {
1027 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1028 ir_var_temporary);
1029 instructions->push_tail(var);
1030 instructions->push_tail(assign(var, rhs));
1031
1032 ir_dereference_variable *deref_var =
1033 new(ctx) ir_dereference_variable(var);
1034 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1035 rvalue = new(ctx) ir_dereference_variable(var);
1036 } else {
1037 rvalue = ir_rvalue::error_value(ctx);
1038 }
1039 *out_rvalue = rvalue;
1040 } else {
1041 if (!error_emitted)
1042 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1043 *out_rvalue = NULL;
1044 }
1045
1046 return error_emitted;
1047 }
1048
1049 static ir_rvalue *
1050 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1051 {
1052 void *ctx = ralloc_parent(lvalue);
1053 ir_variable *var;
1054
1055 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1056 ir_var_temporary);
1057 instructions->push_tail(var);
1058
1059 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1060 lvalue));
1061
1062 return new(ctx) ir_dereference_variable(var);
1063 }
1064
1065
1066 ir_rvalue *
1067 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1068 {
1069 (void) instructions;
1070 (void) state;
1071
1072 return NULL;
1073 }
1074
1075 bool
1076 ast_node::has_sequence_subexpression() const
1077 {
1078 return false;
1079 }
1080
1081 void
1082 ast_node::set_is_lhs(bool /* new_value */)
1083 {
1084 }
1085
1086 void
1087 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1088 struct _mesa_glsl_parse_state *state)
1089 {
1090 (void)hir(instructions, state);
1091 }
1092
1093 void
1094 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1095 struct _mesa_glsl_parse_state *state)
1096 {
1097 (void)hir(instructions, state);
1098 }
1099
1100 static ir_rvalue *
1101 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1102 {
1103 int join_op;
1104 ir_rvalue *cmp = NULL;
1105
1106 if (operation == ir_binop_all_equal)
1107 join_op = ir_binop_logic_and;
1108 else
1109 join_op = ir_binop_logic_or;
1110
1111 switch (op0->type->base_type) {
1112 case GLSL_TYPE_FLOAT:
1113 case GLSL_TYPE_UINT:
1114 case GLSL_TYPE_INT:
1115 case GLSL_TYPE_BOOL:
1116 case GLSL_TYPE_DOUBLE:
1117 case GLSL_TYPE_UINT64:
1118 case GLSL_TYPE_INT64:
1119 return new(mem_ctx) ir_expression(operation, op0, op1);
1120
1121 case GLSL_TYPE_ARRAY: {
1122 for (unsigned int i = 0; i < op0->type->length; i++) {
1123 ir_rvalue *e0, *e1, *result;
1124
1125 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1128 new(mem_ctx) ir_constant(i));
1129 result = do_comparison(mem_ctx, operation, e0, e1);
1130
1131 if (cmp) {
1132 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1133 } else {
1134 cmp = result;
1135 }
1136 }
1137
1138 mark_whole_array_access(op0);
1139 mark_whole_array_access(op1);
1140 break;
1141 }
1142
1143 case GLSL_TYPE_STRUCT: {
1144 for (unsigned int i = 0; i < op0->type->length; i++) {
1145 ir_rvalue *e0, *e1, *result;
1146 const char *field_name = op0->type->fields.structure[i].name;
1147
1148 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1149 field_name);
1150 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1151 field_name);
1152 result = do_comparison(mem_ctx, operation, e0, e1);
1153
1154 if (cmp) {
1155 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1156 } else {
1157 cmp = result;
1158 }
1159 }
1160 break;
1161 }
1162
1163 case GLSL_TYPE_ERROR:
1164 case GLSL_TYPE_VOID:
1165 case GLSL_TYPE_SAMPLER:
1166 case GLSL_TYPE_IMAGE:
1167 case GLSL_TYPE_INTERFACE:
1168 case GLSL_TYPE_ATOMIC_UINT:
1169 case GLSL_TYPE_SUBROUTINE:
1170 case GLSL_TYPE_FUNCTION:
1171 /* I assume a comparison of a struct containing a sampler just
1172 * ignores the sampler present in the type.
1173 */
1174 break;
1175 }
1176
1177 if (cmp == NULL)
1178 cmp = new(mem_ctx) ir_constant(true);
1179
1180 return cmp;
1181 }
1182
1183 /* For logical operations, we want to ensure that the operands are
1184 * scalar booleans. If it isn't, emit an error and return a constant
1185 * boolean to avoid triggering cascading error messages.
1186 */
1187 ir_rvalue *
1188 get_scalar_boolean_operand(exec_list *instructions,
1189 struct _mesa_glsl_parse_state *state,
1190 ast_expression *parent_expr,
1191 int operand,
1192 const char *operand_name,
1193 bool *error_emitted)
1194 {
1195 ast_expression *expr = parent_expr->subexpressions[operand];
1196 void *ctx = state;
1197 ir_rvalue *val = expr->hir(instructions, state);
1198
1199 if (val->type->is_boolean() && val->type->is_scalar())
1200 return val;
1201
1202 if (!*error_emitted) {
1203 YYLTYPE loc = expr->get_location();
1204 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1205 operand_name,
1206 parent_expr->operator_string(parent_expr->oper));
1207 *error_emitted = true;
1208 }
1209
1210 return new(ctx) ir_constant(true);
1211 }
1212
1213 /**
1214 * If name refers to a builtin array whose maximum allowed size is less than
1215 * size, report an error and return true. Otherwise return false.
1216 */
1217 void
1218 check_builtin_array_max_size(const char *name, unsigned size,
1219 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1220 {
1221 if ((strcmp("gl_TexCoord", name) == 0)
1222 && (size > state->Const.MaxTextureCoords)) {
1223 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1224 *
1225 * "The size [of gl_TexCoord] can be at most
1226 * gl_MaxTextureCoords."
1227 */
1228 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1229 "be larger than gl_MaxTextureCoords (%u)",
1230 state->Const.MaxTextureCoords);
1231 } else if (strcmp("gl_ClipDistance", name) == 0) {
1232 state->clip_dist_size = size;
1233 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1234 /* From section 7.1 (Vertex Shader Special Variables) of the
1235 * GLSL 1.30 spec:
1236 *
1237 * "The gl_ClipDistance array is predeclared as unsized and
1238 * must be sized by the shader either redeclaring it with a
1239 * size or indexing it only with integral constant
1240 * expressions. ... The size can be at most
1241 * gl_MaxClipDistances."
1242 */
1243 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1244 "be larger than gl_MaxClipDistances (%u)",
1245 state->Const.MaxClipPlanes);
1246 }
1247 } else if (strcmp("gl_CullDistance", name) == 0) {
1248 state->cull_dist_size = size;
1249 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1250 /* From the ARB_cull_distance spec:
1251 *
1252 * "The gl_CullDistance array is predeclared as unsized and
1253 * must be sized by the shader either redeclaring it with
1254 * a size or indexing it only with integral constant
1255 * expressions. The size determines the number and set of
1256 * enabled cull distances and can be at most
1257 * gl_MaxCullDistances."
1258 */
1259 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1260 "be larger than gl_MaxCullDistances (%u)",
1261 state->Const.MaxClipPlanes);
1262 }
1263 }
1264 }
1265
1266 /**
1267 * Create the constant 1, of a which is appropriate for incrementing and
1268 * decrementing values of the given GLSL type. For example, if type is vec4,
1269 * this creates a constant value of 1.0 having type float.
1270 *
1271 * If the given type is invalid for increment and decrement operators, return
1272 * a floating point 1--the error will be detected later.
1273 */
1274 static ir_rvalue *
1275 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1276 {
1277 switch (type->base_type) {
1278 case GLSL_TYPE_UINT:
1279 return new(ctx) ir_constant((unsigned) 1);
1280 case GLSL_TYPE_INT:
1281 return new(ctx) ir_constant(1);
1282 case GLSL_TYPE_UINT64:
1283 return new(ctx) ir_constant((uint64_t) 1);
1284 case GLSL_TYPE_INT64:
1285 return new(ctx) ir_constant((int64_t) 1);
1286 default:
1287 case GLSL_TYPE_FLOAT:
1288 return new(ctx) ir_constant(1.0f);
1289 }
1290 }
1291
1292 ir_rvalue *
1293 ast_expression::hir(exec_list *instructions,
1294 struct _mesa_glsl_parse_state *state)
1295 {
1296 return do_hir(instructions, state, true);
1297 }
1298
1299 void
1300 ast_expression::hir_no_rvalue(exec_list *instructions,
1301 struct _mesa_glsl_parse_state *state)
1302 {
1303 do_hir(instructions, state, false);
1304 }
1305
1306 void
1307 ast_expression::set_is_lhs(bool new_value)
1308 {
1309 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1310 * if we lack an identifier we can just skip it.
1311 */
1312 if (this->primary_expression.identifier == NULL)
1313 return;
1314
1315 this->is_lhs = new_value;
1316
1317 /* We need to go through the subexpressions tree to cover cases like
1318 * ast_field_selection
1319 */
1320 if (this->subexpressions[0] != NULL)
1321 this->subexpressions[0]->set_is_lhs(new_value);
1322 }
1323
1324 ir_rvalue *
1325 ast_expression::do_hir(exec_list *instructions,
1326 struct _mesa_glsl_parse_state *state,
1327 bool needs_rvalue)
1328 {
1329 void *ctx = state;
1330 static const int operations[AST_NUM_OPERATORS] = {
1331 -1, /* ast_assign doesn't convert to ir_expression. */
1332 -1, /* ast_plus doesn't convert to ir_expression. */
1333 ir_unop_neg,
1334 ir_binop_add,
1335 ir_binop_sub,
1336 ir_binop_mul,
1337 ir_binop_div,
1338 ir_binop_mod,
1339 ir_binop_lshift,
1340 ir_binop_rshift,
1341 ir_binop_less,
1342 ir_binop_greater,
1343 ir_binop_lequal,
1344 ir_binop_gequal,
1345 ir_binop_all_equal,
1346 ir_binop_any_nequal,
1347 ir_binop_bit_and,
1348 ir_binop_bit_xor,
1349 ir_binop_bit_or,
1350 ir_unop_bit_not,
1351 ir_binop_logic_and,
1352 ir_binop_logic_xor,
1353 ir_binop_logic_or,
1354 ir_unop_logic_not,
1355
1356 /* Note: The following block of expression types actually convert
1357 * to multiple IR instructions.
1358 */
1359 ir_binop_mul, /* ast_mul_assign */
1360 ir_binop_div, /* ast_div_assign */
1361 ir_binop_mod, /* ast_mod_assign */
1362 ir_binop_add, /* ast_add_assign */
1363 ir_binop_sub, /* ast_sub_assign */
1364 ir_binop_lshift, /* ast_ls_assign */
1365 ir_binop_rshift, /* ast_rs_assign */
1366 ir_binop_bit_and, /* ast_and_assign */
1367 ir_binop_bit_xor, /* ast_xor_assign */
1368 ir_binop_bit_or, /* ast_or_assign */
1369
1370 -1, /* ast_conditional doesn't convert to ir_expression. */
1371 ir_binop_add, /* ast_pre_inc. */
1372 ir_binop_sub, /* ast_pre_dec. */
1373 ir_binop_add, /* ast_post_inc. */
1374 ir_binop_sub, /* ast_post_dec. */
1375 -1, /* ast_field_selection doesn't conv to ir_expression. */
1376 -1, /* ast_array_index doesn't convert to ir_expression. */
1377 -1, /* ast_function_call doesn't conv to ir_expression. */
1378 -1, /* ast_identifier doesn't convert to ir_expression. */
1379 -1, /* ast_int_constant doesn't convert to ir_expression. */
1380 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1381 -1, /* ast_float_constant doesn't conv to ir_expression. */
1382 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1383 -1, /* ast_sequence doesn't convert to ir_expression. */
1384 -1, /* ast_aggregate shouldn't ever even get here. */
1385 };
1386 ir_rvalue *result = NULL;
1387 ir_rvalue *op[3];
1388 const struct glsl_type *type, *orig_type;
1389 bool error_emitted = false;
1390 YYLTYPE loc;
1391
1392 loc = this->get_location();
1393
1394 switch (this->oper) {
1395 case ast_aggregate:
1396 assert(!"ast_aggregate: Should never get here.");
1397 break;
1398
1399 case ast_assign: {
1400 this->subexpressions[0]->set_is_lhs(true);
1401 op[0] = this->subexpressions[0]->hir(instructions, state);
1402 op[1] = this->subexpressions[1]->hir(instructions, state);
1403
1404 error_emitted =
1405 do_assignment(instructions, state,
1406 this->subexpressions[0]->non_lvalue_description,
1407 op[0], op[1], &result, needs_rvalue, false,
1408 this->subexpressions[0]->get_location());
1409 break;
1410 }
1411
1412 case ast_plus:
1413 op[0] = this->subexpressions[0]->hir(instructions, state);
1414
1415 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1416
1417 error_emitted = type->is_error();
1418
1419 result = op[0];
1420 break;
1421
1422 case ast_neg:
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424
1425 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1426
1427 error_emitted = type->is_error();
1428
1429 result = new(ctx) ir_expression(operations[this->oper], type,
1430 op[0], NULL);
1431 break;
1432
1433 case ast_add:
1434 case ast_sub:
1435 case ast_mul:
1436 case ast_div:
1437 op[0] = this->subexpressions[0]->hir(instructions, state);
1438 op[1] = this->subexpressions[1]->hir(instructions, state);
1439
1440 type = arithmetic_result_type(op[0], op[1],
1441 (this->oper == ast_mul),
1442 state, & loc);
1443 error_emitted = type->is_error();
1444
1445 result = new(ctx) ir_expression(operations[this->oper], type,
1446 op[0], op[1]);
1447 break;
1448
1449 case ast_mod:
1450 op[0] = this->subexpressions[0]->hir(instructions, state);
1451 op[1] = this->subexpressions[1]->hir(instructions, state);
1452
1453 type = modulus_result_type(op[0], op[1], state, &loc);
1454
1455 assert(operations[this->oper] == ir_binop_mod);
1456
1457 result = new(ctx) ir_expression(operations[this->oper], type,
1458 op[0], op[1]);
1459 error_emitted = type->is_error();
1460 break;
1461
1462 case ast_lshift:
1463 case ast_rshift:
1464 if (!state->check_bitwise_operations_allowed(&loc)) {
1465 error_emitted = true;
1466 }
1467
1468 op[0] = this->subexpressions[0]->hir(instructions, state);
1469 op[1] = this->subexpressions[1]->hir(instructions, state);
1470 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1471 &loc);
1472 result = new(ctx) ir_expression(operations[this->oper], type,
1473 op[0], op[1]);
1474 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1475 break;
1476
1477 case ast_less:
1478 case ast_greater:
1479 case ast_lequal:
1480 case ast_gequal:
1481 op[0] = this->subexpressions[0]->hir(instructions, state);
1482 op[1] = this->subexpressions[1]->hir(instructions, state);
1483
1484 type = relational_result_type(op[0], op[1], state, & loc);
1485
1486 /* The relational operators must either generate an error or result
1487 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1488 */
1489 assert(type->is_error()
1490 || ((type->base_type == GLSL_TYPE_BOOL)
1491 && type->is_scalar()));
1492
1493 result = new(ctx) ir_expression(operations[this->oper], type,
1494 op[0], op[1]);
1495 error_emitted = type->is_error();
1496 break;
1497
1498 case ast_nequal:
1499 case ast_equal:
1500 op[0] = this->subexpressions[0]->hir(instructions, state);
1501 op[1] = this->subexpressions[1]->hir(instructions, state);
1502
1503 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1504 *
1505 * "The equality operators equal (==), and not equal (!=)
1506 * operate on all types. They result in a scalar Boolean. If
1507 * the operand types do not match, then there must be a
1508 * conversion from Section 4.1.10 "Implicit Conversions"
1509 * applied to one operand that can make them match, in which
1510 * case this conversion is done."
1511 */
1512
1513 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1514 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1515 "no operation `%1$s' exists that takes a left-hand "
1516 "operand of type 'void' or a right operand of type "
1517 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1518 error_emitted = true;
1519 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1520 && !apply_implicit_conversion(op[1]->type, op[0], state))
1521 || (op[0]->type != op[1]->type)) {
1522 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1523 "type", (this->oper == ast_equal) ? "==" : "!=");
1524 error_emitted = true;
1525 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1526 !state->check_version(120, 300, &loc,
1527 "array comparisons forbidden")) {
1528 error_emitted = true;
1529 } else if ((op[0]->type->contains_subroutine() ||
1530 op[1]->type->contains_subroutine())) {
1531 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1532 error_emitted = true;
1533 } else if ((op[0]->type->contains_opaque() ||
1534 op[1]->type->contains_opaque())) {
1535 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1536 error_emitted = true;
1537 }
1538
1539 if (error_emitted) {
1540 result = new(ctx) ir_constant(false);
1541 } else {
1542 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1543 assert(result->type == glsl_type::bool_type);
1544 }
1545 break;
1546
1547 case ast_bit_and:
1548 case ast_bit_xor:
1549 case ast_bit_or:
1550 op[0] = this->subexpressions[0]->hir(instructions, state);
1551 op[1] = this->subexpressions[1]->hir(instructions, state);
1552 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1553 result = new(ctx) ir_expression(operations[this->oper], type,
1554 op[0], op[1]);
1555 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1556 break;
1557
1558 case ast_bit_not:
1559 op[0] = this->subexpressions[0]->hir(instructions, state);
1560
1561 if (!state->check_bitwise_operations_allowed(&loc)) {
1562 error_emitted = true;
1563 }
1564
1565 if (!op[0]->type->is_integer_32_64()) {
1566 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1567 error_emitted = true;
1568 }
1569
1570 type = error_emitted ? glsl_type::error_type : op[0]->type;
1571 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1572 break;
1573
1574 case ast_logic_and: {
1575 exec_list rhs_instructions;
1576 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1577 "LHS", &error_emitted);
1578 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1579 "RHS", &error_emitted);
1580
1581 if (rhs_instructions.is_empty()) {
1582 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1583 type = result->type;
1584 } else {
1585 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1586 "and_tmp",
1587 ir_var_temporary);
1588 instructions->push_tail(tmp);
1589
1590 ir_if *const stmt = new(ctx) ir_if(op[0]);
1591 instructions->push_tail(stmt);
1592
1593 stmt->then_instructions.append_list(&rhs_instructions);
1594 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1595 ir_assignment *const then_assign =
1596 new(ctx) ir_assignment(then_deref, op[1]);
1597 stmt->then_instructions.push_tail(then_assign);
1598
1599 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1600 ir_assignment *const else_assign =
1601 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1602 stmt->else_instructions.push_tail(else_assign);
1603
1604 result = new(ctx) ir_dereference_variable(tmp);
1605 type = tmp->type;
1606 }
1607 break;
1608 }
1609
1610 case ast_logic_or: {
1611 exec_list rhs_instructions;
1612 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1613 "LHS", &error_emitted);
1614 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1615 "RHS", &error_emitted);
1616
1617 if (rhs_instructions.is_empty()) {
1618 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1619 type = result->type;
1620 } else {
1621 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1622 "or_tmp",
1623 ir_var_temporary);
1624 instructions->push_tail(tmp);
1625
1626 ir_if *const stmt = new(ctx) ir_if(op[0]);
1627 instructions->push_tail(stmt);
1628
1629 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1630 ir_assignment *const then_assign =
1631 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1632 stmt->then_instructions.push_tail(then_assign);
1633
1634 stmt->else_instructions.append_list(&rhs_instructions);
1635 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1636 ir_assignment *const else_assign =
1637 new(ctx) ir_assignment(else_deref, op[1]);
1638 stmt->else_instructions.push_tail(else_assign);
1639
1640 result = new(ctx) ir_dereference_variable(tmp);
1641 type = tmp->type;
1642 }
1643 break;
1644 }
1645
1646 case ast_logic_xor:
1647 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1648 *
1649 * "The logical binary operators and (&&), or ( | | ), and
1650 * exclusive or (^^). They operate only on two Boolean
1651 * expressions and result in a Boolean expression."
1652 */
1653 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1654 &error_emitted);
1655 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1656 &error_emitted);
1657
1658 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1659 op[0], op[1]);
1660 break;
1661
1662 case ast_logic_not:
1663 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1664 "operand", &error_emitted);
1665
1666 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1667 op[0], NULL);
1668 break;
1669
1670 case ast_mul_assign:
1671 case ast_div_assign:
1672 case ast_add_assign:
1673 case ast_sub_assign: {
1674 this->subexpressions[0]->set_is_lhs(true);
1675 op[0] = this->subexpressions[0]->hir(instructions, state);
1676 op[1] = this->subexpressions[1]->hir(instructions, state);
1677
1678 orig_type = op[0]->type;
1679 type = arithmetic_result_type(op[0], op[1],
1680 (this->oper == ast_mul_assign),
1681 state, & loc);
1682
1683 if (type != orig_type) {
1684 _mesa_glsl_error(& loc, state,
1685 "could not implicitly convert "
1686 "%s to %s", type->name, orig_type->name);
1687 type = glsl_type::error_type;
1688 }
1689
1690 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1691 op[0], op[1]);
1692
1693 error_emitted =
1694 do_assignment(instructions, state,
1695 this->subexpressions[0]->non_lvalue_description,
1696 op[0]->clone(ctx, NULL), temp_rhs,
1697 &result, needs_rvalue, false,
1698 this->subexpressions[0]->get_location());
1699
1700 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1701 * explicitly test for this because none of the binary expression
1702 * operators allow array operands either.
1703 */
1704
1705 break;
1706 }
1707
1708 case ast_mod_assign: {
1709 this->subexpressions[0]->set_is_lhs(true);
1710 op[0] = this->subexpressions[0]->hir(instructions, state);
1711 op[1] = this->subexpressions[1]->hir(instructions, state);
1712
1713 orig_type = op[0]->type;
1714 type = modulus_result_type(op[0], op[1], state, &loc);
1715
1716 if (type != orig_type) {
1717 _mesa_glsl_error(& loc, state,
1718 "could not implicitly convert "
1719 "%s to %s", type->name, orig_type->name);
1720 type = glsl_type::error_type;
1721 }
1722
1723 assert(operations[this->oper] == ir_binop_mod);
1724
1725 ir_rvalue *temp_rhs;
1726 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1727 op[0], op[1]);
1728
1729 error_emitted =
1730 do_assignment(instructions, state,
1731 this->subexpressions[0]->non_lvalue_description,
1732 op[0]->clone(ctx, NULL), temp_rhs,
1733 &result, needs_rvalue, false,
1734 this->subexpressions[0]->get_location());
1735 break;
1736 }
1737
1738 case ast_ls_assign:
1739 case ast_rs_assign: {
1740 this->subexpressions[0]->set_is_lhs(true);
1741 op[0] = this->subexpressions[0]->hir(instructions, state);
1742 op[1] = this->subexpressions[1]->hir(instructions, state);
1743 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1744 &loc);
1745 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1746 type, op[0], op[1]);
1747 error_emitted =
1748 do_assignment(instructions, state,
1749 this->subexpressions[0]->non_lvalue_description,
1750 op[0]->clone(ctx, NULL), temp_rhs,
1751 &result, needs_rvalue, false,
1752 this->subexpressions[0]->get_location());
1753 break;
1754 }
1755
1756 case ast_and_assign:
1757 case ast_xor_assign:
1758 case ast_or_assign: {
1759 this->subexpressions[0]->set_is_lhs(true);
1760 op[0] = this->subexpressions[0]->hir(instructions, state);
1761 op[1] = this->subexpressions[1]->hir(instructions, state);
1762
1763 orig_type = op[0]->type;
1764 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1765
1766 if (type != orig_type) {
1767 _mesa_glsl_error(& loc, state,
1768 "could not implicitly convert "
1769 "%s to %s", type->name, orig_type->name);
1770 type = glsl_type::error_type;
1771 }
1772
1773 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1774 type, op[0], op[1]);
1775 error_emitted =
1776 do_assignment(instructions, state,
1777 this->subexpressions[0]->non_lvalue_description,
1778 op[0]->clone(ctx, NULL), temp_rhs,
1779 &result, needs_rvalue, false,
1780 this->subexpressions[0]->get_location());
1781 break;
1782 }
1783
1784 case ast_conditional: {
1785 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1786 *
1787 * "The ternary selection operator (?:). It operates on three
1788 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1789 * first expression, which must result in a scalar Boolean."
1790 */
1791 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1792 "condition", &error_emitted);
1793
1794 /* The :? operator is implemented by generating an anonymous temporary
1795 * followed by an if-statement. The last instruction in each branch of
1796 * the if-statement assigns a value to the anonymous temporary. This
1797 * temporary is the r-value of the expression.
1798 */
1799 exec_list then_instructions;
1800 exec_list else_instructions;
1801
1802 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1803 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1804
1805 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1806 *
1807 * "The second and third expressions can be any type, as
1808 * long their types match, or there is a conversion in
1809 * Section 4.1.10 "Implicit Conversions" that can be applied
1810 * to one of the expressions to make their types match. This
1811 * resulting matching type is the type of the entire
1812 * expression."
1813 */
1814 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1815 && !apply_implicit_conversion(op[2]->type, op[1], state))
1816 || (op[1]->type != op[2]->type)) {
1817 YYLTYPE loc = this->subexpressions[1]->get_location();
1818
1819 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1820 "operator must have matching types");
1821 error_emitted = true;
1822 type = glsl_type::error_type;
1823 } else {
1824 type = op[1]->type;
1825 }
1826
1827 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1828 *
1829 * "The second and third expressions must be the same type, but can
1830 * be of any type other than an array."
1831 */
1832 if (type->is_array() &&
1833 !state->check_version(120, 300, &loc,
1834 "second and third operands of ?: operator "
1835 "cannot be arrays")) {
1836 error_emitted = true;
1837 }
1838
1839 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1840 *
1841 * "Except for array indexing, structure member selection, and
1842 * parentheses, opaque variables are not allowed to be operands in
1843 * expressions; such use results in a compile-time error."
1844 */
1845 if (type->contains_opaque()) {
1846 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1847 "of the ?: operator");
1848 error_emitted = true;
1849 }
1850
1851 ir_constant *cond_val = op[0]->constant_expression_value();
1852
1853 if (then_instructions.is_empty()
1854 && else_instructions.is_empty()
1855 && cond_val != NULL) {
1856 result = cond_val->value.b[0] ? op[1] : op[2];
1857 } else {
1858 /* The copy to conditional_tmp reads the whole array. */
1859 if (type->is_array()) {
1860 mark_whole_array_access(op[1]);
1861 mark_whole_array_access(op[2]);
1862 }
1863
1864 ir_variable *const tmp =
1865 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1866 instructions->push_tail(tmp);
1867
1868 ir_if *const stmt = new(ctx) ir_if(op[0]);
1869 instructions->push_tail(stmt);
1870
1871 then_instructions.move_nodes_to(& stmt->then_instructions);
1872 ir_dereference *const then_deref =
1873 new(ctx) ir_dereference_variable(tmp);
1874 ir_assignment *const then_assign =
1875 new(ctx) ir_assignment(then_deref, op[1]);
1876 stmt->then_instructions.push_tail(then_assign);
1877
1878 else_instructions.move_nodes_to(& stmt->else_instructions);
1879 ir_dereference *const else_deref =
1880 new(ctx) ir_dereference_variable(tmp);
1881 ir_assignment *const else_assign =
1882 new(ctx) ir_assignment(else_deref, op[2]);
1883 stmt->else_instructions.push_tail(else_assign);
1884
1885 result = new(ctx) ir_dereference_variable(tmp);
1886 }
1887 break;
1888 }
1889
1890 case ast_pre_inc:
1891 case ast_pre_dec: {
1892 this->non_lvalue_description = (this->oper == ast_pre_inc)
1893 ? "pre-increment operation" : "pre-decrement operation";
1894
1895 op[0] = this->subexpressions[0]->hir(instructions, state);
1896 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1897
1898 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1899
1900 ir_rvalue *temp_rhs;
1901 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1902 op[0], op[1]);
1903
1904 error_emitted =
1905 do_assignment(instructions, state,
1906 this->subexpressions[0]->non_lvalue_description,
1907 op[0]->clone(ctx, NULL), temp_rhs,
1908 &result, needs_rvalue, false,
1909 this->subexpressions[0]->get_location());
1910 break;
1911 }
1912
1913 case ast_post_inc:
1914 case ast_post_dec: {
1915 this->non_lvalue_description = (this->oper == ast_post_inc)
1916 ? "post-increment operation" : "post-decrement operation";
1917 op[0] = this->subexpressions[0]->hir(instructions, state);
1918 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1919
1920 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1921
1922 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1923
1924 ir_rvalue *temp_rhs;
1925 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1926 op[0], op[1]);
1927
1928 /* Get a temporary of a copy of the lvalue before it's modified.
1929 * This may get thrown away later.
1930 */
1931 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1932
1933 ir_rvalue *junk_rvalue;
1934 error_emitted =
1935 do_assignment(instructions, state,
1936 this->subexpressions[0]->non_lvalue_description,
1937 op[0]->clone(ctx, NULL), temp_rhs,
1938 &junk_rvalue, false, false,
1939 this->subexpressions[0]->get_location());
1940
1941 break;
1942 }
1943
1944 case ast_field_selection:
1945 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1946 break;
1947
1948 case ast_array_index: {
1949 YYLTYPE index_loc = subexpressions[1]->get_location();
1950
1951 /* Getting if an array is being used uninitialized is beyond what we get
1952 * from ir_value.data.assigned. Setting is_lhs as true would force to
1953 * not raise a uninitialized warning when using an array
1954 */
1955 subexpressions[0]->set_is_lhs(true);
1956 op[0] = subexpressions[0]->hir(instructions, state);
1957 op[1] = subexpressions[1]->hir(instructions, state);
1958
1959 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1960 loc, index_loc);
1961
1962 if (result->type->is_error())
1963 error_emitted = true;
1964
1965 break;
1966 }
1967
1968 case ast_unsized_array_dim:
1969 assert(!"ast_unsized_array_dim: Should never get here.");
1970 break;
1971
1972 case ast_function_call:
1973 /* Should *NEVER* get here. ast_function_call should always be handled
1974 * by ast_function_expression::hir.
1975 */
1976 assert(0);
1977 break;
1978
1979 case ast_identifier: {
1980 /* ast_identifier can appear several places in a full abstract syntax
1981 * tree. This particular use must be at location specified in the grammar
1982 * as 'variable_identifier'.
1983 */
1984 ir_variable *var =
1985 state->symbols->get_variable(this->primary_expression.identifier);
1986
1987 if (var == NULL) {
1988 /* the identifier might be a subroutine name */
1989 char *sub_name;
1990 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1991 var = state->symbols->get_variable(sub_name);
1992 ralloc_free(sub_name);
1993 }
1994
1995 if (var != NULL) {
1996 var->data.used = true;
1997 result = new(ctx) ir_dereference_variable(var);
1998
1999 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2000 && !this->is_lhs
2001 && result->variable_referenced()->data.assigned != true
2002 && !is_gl_identifier(var->name)) {
2003 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2004 this->primary_expression.identifier);
2005 }
2006 } else {
2007 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2008 this->primary_expression.identifier);
2009
2010 result = ir_rvalue::error_value(ctx);
2011 error_emitted = true;
2012 }
2013 break;
2014 }
2015
2016 case ast_int_constant:
2017 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2018 break;
2019
2020 case ast_uint_constant:
2021 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2022 break;
2023
2024 case ast_float_constant:
2025 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2026 break;
2027
2028 case ast_bool_constant:
2029 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2030 break;
2031
2032 case ast_double_constant:
2033 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2034 break;
2035
2036 case ast_uint64_constant:
2037 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2038 break;
2039
2040 case ast_int64_constant:
2041 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2042 break;
2043
2044 case ast_sequence: {
2045 /* It should not be possible to generate a sequence in the AST without
2046 * any expressions in it.
2047 */
2048 assert(!this->expressions.is_empty());
2049
2050 /* The r-value of a sequence is the last expression in the sequence. If
2051 * the other expressions in the sequence do not have side-effects (and
2052 * therefore add instructions to the instruction list), they get dropped
2053 * on the floor.
2054 */
2055 exec_node *previous_tail = NULL;
2056 YYLTYPE previous_operand_loc = loc;
2057
2058 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2059 /* If one of the operands of comma operator does not generate any
2060 * code, we want to emit a warning. At each pass through the loop
2061 * previous_tail will point to the last instruction in the stream
2062 * *before* processing the previous operand. Naturally,
2063 * instructions->get_tail_raw() will point to the last instruction in
2064 * the stream *after* processing the previous operand. If the two
2065 * pointers match, then the previous operand had no effect.
2066 *
2067 * The warning behavior here differs slightly from GCC. GCC will
2068 * only emit a warning if none of the left-hand operands have an
2069 * effect. However, it will emit a warning for each. I believe that
2070 * there are some cases in C (especially with GCC extensions) where
2071 * it is useful to have an intermediate step in a sequence have no
2072 * effect, but I don't think these cases exist in GLSL. Either way,
2073 * it would be a giant hassle to replicate that behavior.
2074 */
2075 if (previous_tail == instructions->get_tail_raw()) {
2076 _mesa_glsl_warning(&previous_operand_loc, state,
2077 "left-hand operand of comma expression has "
2078 "no effect");
2079 }
2080
2081 /* The tail is directly accessed instead of using the get_tail()
2082 * method for performance reasons. get_tail() has extra code to
2083 * return NULL when the list is empty. We don't care about that
2084 * here, so using get_tail_raw() is fine.
2085 */
2086 previous_tail = instructions->get_tail_raw();
2087 previous_operand_loc = ast->get_location();
2088
2089 result = ast->hir(instructions, state);
2090 }
2091
2092 /* Any errors should have already been emitted in the loop above.
2093 */
2094 error_emitted = true;
2095 break;
2096 }
2097 }
2098 type = NULL; /* use result->type, not type. */
2099 assert(result != NULL || !needs_rvalue);
2100
2101 if (result && result->type->is_error() && !error_emitted)
2102 _mesa_glsl_error(& loc, state, "type mismatch");
2103
2104 return result;
2105 }
2106
2107 bool
2108 ast_expression::has_sequence_subexpression() const
2109 {
2110 switch (this->oper) {
2111 case ast_plus:
2112 case ast_neg:
2113 case ast_bit_not:
2114 case ast_logic_not:
2115 case ast_pre_inc:
2116 case ast_pre_dec:
2117 case ast_post_inc:
2118 case ast_post_dec:
2119 return this->subexpressions[0]->has_sequence_subexpression();
2120
2121 case ast_assign:
2122 case ast_add:
2123 case ast_sub:
2124 case ast_mul:
2125 case ast_div:
2126 case ast_mod:
2127 case ast_lshift:
2128 case ast_rshift:
2129 case ast_less:
2130 case ast_greater:
2131 case ast_lequal:
2132 case ast_gequal:
2133 case ast_nequal:
2134 case ast_equal:
2135 case ast_bit_and:
2136 case ast_bit_xor:
2137 case ast_bit_or:
2138 case ast_logic_and:
2139 case ast_logic_or:
2140 case ast_logic_xor:
2141 case ast_array_index:
2142 case ast_mul_assign:
2143 case ast_div_assign:
2144 case ast_add_assign:
2145 case ast_sub_assign:
2146 case ast_mod_assign:
2147 case ast_ls_assign:
2148 case ast_rs_assign:
2149 case ast_and_assign:
2150 case ast_xor_assign:
2151 case ast_or_assign:
2152 return this->subexpressions[0]->has_sequence_subexpression() ||
2153 this->subexpressions[1]->has_sequence_subexpression();
2154
2155 case ast_conditional:
2156 return this->subexpressions[0]->has_sequence_subexpression() ||
2157 this->subexpressions[1]->has_sequence_subexpression() ||
2158 this->subexpressions[2]->has_sequence_subexpression();
2159
2160 case ast_sequence:
2161 return true;
2162
2163 case ast_field_selection:
2164 case ast_identifier:
2165 case ast_int_constant:
2166 case ast_uint_constant:
2167 case ast_float_constant:
2168 case ast_bool_constant:
2169 case ast_double_constant:
2170 case ast_int64_constant:
2171 case ast_uint64_constant:
2172 return false;
2173
2174 case ast_aggregate:
2175 return false;
2176
2177 case ast_function_call:
2178 unreachable("should be handled by ast_function_expression::hir");
2179
2180 case ast_unsized_array_dim:
2181 unreachable("ast_unsized_array_dim: Should never get here.");
2182 }
2183
2184 return false;
2185 }
2186
2187 ir_rvalue *
2188 ast_expression_statement::hir(exec_list *instructions,
2189 struct _mesa_glsl_parse_state *state)
2190 {
2191 /* It is possible to have expression statements that don't have an
2192 * expression. This is the solitary semicolon:
2193 *
2194 * for (i = 0; i < 5; i++)
2195 * ;
2196 *
2197 * In this case the expression will be NULL. Test for NULL and don't do
2198 * anything in that case.
2199 */
2200 if (expression != NULL)
2201 expression->hir_no_rvalue(instructions, state);
2202
2203 /* Statements do not have r-values.
2204 */
2205 return NULL;
2206 }
2207
2208
2209 ir_rvalue *
2210 ast_compound_statement::hir(exec_list *instructions,
2211 struct _mesa_glsl_parse_state *state)
2212 {
2213 if (new_scope)
2214 state->symbols->push_scope();
2215
2216 foreach_list_typed (ast_node, ast, link, &this->statements)
2217 ast->hir(instructions, state);
2218
2219 if (new_scope)
2220 state->symbols->pop_scope();
2221
2222 /* Compound statements do not have r-values.
2223 */
2224 return NULL;
2225 }
2226
2227 /**
2228 * Evaluate the given exec_node (which should be an ast_node representing
2229 * a single array dimension) and return its integer value.
2230 */
2231 static unsigned
2232 process_array_size(exec_node *node,
2233 struct _mesa_glsl_parse_state *state)
2234 {
2235 exec_list dummy_instructions;
2236
2237 ast_node *array_size = exec_node_data(ast_node, node, link);
2238
2239 /**
2240 * Dimensions other than the outermost dimension can by unsized if they
2241 * are immediately sized by a constructor or initializer.
2242 */
2243 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2244 return 0;
2245
2246 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2247 YYLTYPE loc = array_size->get_location();
2248
2249 if (ir == NULL) {
2250 _mesa_glsl_error(& loc, state,
2251 "array size could not be resolved");
2252 return 0;
2253 }
2254
2255 if (!ir->type->is_integer()) {
2256 _mesa_glsl_error(& loc, state,
2257 "array size must be integer type");
2258 return 0;
2259 }
2260
2261 if (!ir->type->is_scalar()) {
2262 _mesa_glsl_error(& loc, state,
2263 "array size must be scalar type");
2264 return 0;
2265 }
2266
2267 ir_constant *const size = ir->constant_expression_value();
2268 if (size == NULL ||
2269 (state->is_version(120, 300) &&
2270 array_size->has_sequence_subexpression())) {
2271 _mesa_glsl_error(& loc, state, "array size must be a "
2272 "constant valued expression");
2273 return 0;
2274 }
2275
2276 if (size->value.i[0] <= 0) {
2277 _mesa_glsl_error(& loc, state, "array size must be > 0");
2278 return 0;
2279 }
2280
2281 assert(size->type == ir->type);
2282
2283 /* If the array size is const (and we've verified that
2284 * it is) then no instructions should have been emitted
2285 * when we converted it to HIR. If they were emitted,
2286 * then either the array size isn't const after all, or
2287 * we are emitting unnecessary instructions.
2288 */
2289 assert(dummy_instructions.is_empty());
2290
2291 return size->value.u[0];
2292 }
2293
2294 static const glsl_type *
2295 process_array_type(YYLTYPE *loc, const glsl_type *base,
2296 ast_array_specifier *array_specifier,
2297 struct _mesa_glsl_parse_state *state)
2298 {
2299 const glsl_type *array_type = base;
2300
2301 if (array_specifier != NULL) {
2302 if (base->is_array()) {
2303
2304 /* From page 19 (page 25) of the GLSL 1.20 spec:
2305 *
2306 * "Only one-dimensional arrays may be declared."
2307 */
2308 if (!state->check_arrays_of_arrays_allowed(loc)) {
2309 return glsl_type::error_type;
2310 }
2311 }
2312
2313 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2314 !node->is_head_sentinel(); node = node->prev) {
2315 unsigned array_size = process_array_size(node, state);
2316 array_type = glsl_type::get_array_instance(array_type, array_size);
2317 }
2318 }
2319
2320 return array_type;
2321 }
2322
2323 static bool
2324 precision_qualifier_allowed(const glsl_type *type)
2325 {
2326 /* Precision qualifiers apply to floating point, integer and opaque
2327 * types.
2328 *
2329 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2330 * "Any floating point or any integer declaration can have the type
2331 * preceded by one of these precision qualifiers [...] Literal
2332 * constants do not have precision qualifiers. Neither do Boolean
2333 * variables.
2334 *
2335 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2336 * spec also says:
2337 *
2338 * "Precision qualifiers are added for code portability with OpenGL
2339 * ES, not for functionality. They have the same syntax as in OpenGL
2340 * ES."
2341 *
2342 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2343 *
2344 * "uniform lowp sampler2D sampler;
2345 * highp vec2 coord;
2346 * ...
2347 * lowp vec4 col = texture2D (sampler, coord);
2348 * // texture2D returns lowp"
2349 *
2350 * From this, we infer that GLSL 1.30 (and later) should allow precision
2351 * qualifiers on sampler types just like float and integer types.
2352 */
2353 const glsl_type *const t = type->without_array();
2354
2355 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2356 !t->is_record();
2357 }
2358
2359 const glsl_type *
2360 ast_type_specifier::glsl_type(const char **name,
2361 struct _mesa_glsl_parse_state *state) const
2362 {
2363 const struct glsl_type *type;
2364
2365 type = state->symbols->get_type(this->type_name);
2366 *name = this->type_name;
2367
2368 YYLTYPE loc = this->get_location();
2369 type = process_array_type(&loc, type, this->array_specifier, state);
2370
2371 return type;
2372 }
2373
2374 /**
2375 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2376 *
2377 * "The precision statement
2378 *
2379 * precision precision-qualifier type;
2380 *
2381 * can be used to establish a default precision qualifier. The type field can
2382 * be either int or float or any of the sampler types, (...) If type is float,
2383 * the directive applies to non-precision-qualified floating point type
2384 * (scalar, vector, and matrix) declarations. If type is int, the directive
2385 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2386 * and unsigned) declarations."
2387 *
2388 * We use the symbol table to keep the values of the default precisions for
2389 * each 'type' in each scope and we use the 'type' string from the precision
2390 * statement as key in the symbol table. When we want to retrieve the default
2391 * precision associated with a given glsl_type we need to know the type string
2392 * associated with it. This is what this function returns.
2393 */
2394 static const char *
2395 get_type_name_for_precision_qualifier(const glsl_type *type)
2396 {
2397 switch (type->base_type) {
2398 case GLSL_TYPE_FLOAT:
2399 return "float";
2400 case GLSL_TYPE_UINT:
2401 case GLSL_TYPE_INT:
2402 return "int";
2403 case GLSL_TYPE_ATOMIC_UINT:
2404 return "atomic_uint";
2405 case GLSL_TYPE_IMAGE:
2406 /* fallthrough */
2407 case GLSL_TYPE_SAMPLER: {
2408 const unsigned type_idx =
2409 type->sampler_array + 2 * type->sampler_shadow;
2410 const unsigned offset = type->is_sampler() ? 0 : 4;
2411 assert(type_idx < 4);
2412 switch (type->sampled_type) {
2413 case GLSL_TYPE_FLOAT:
2414 switch (type->sampler_dimensionality) {
2415 case GLSL_SAMPLER_DIM_1D: {
2416 assert(type->is_sampler());
2417 static const char *const names[4] = {
2418 "sampler1D", "sampler1DArray",
2419 "sampler1DShadow", "sampler1DArrayShadow"
2420 };
2421 return names[type_idx];
2422 }
2423 case GLSL_SAMPLER_DIM_2D: {
2424 static const char *const names[8] = {
2425 "sampler2D", "sampler2DArray",
2426 "sampler2DShadow", "sampler2DArrayShadow",
2427 "image2D", "image2DArray", NULL, NULL
2428 };
2429 return names[offset + type_idx];
2430 }
2431 case GLSL_SAMPLER_DIM_3D: {
2432 static const char *const names[8] = {
2433 "sampler3D", NULL, NULL, NULL,
2434 "image3D", NULL, NULL, NULL
2435 };
2436 return names[offset + type_idx];
2437 }
2438 case GLSL_SAMPLER_DIM_CUBE: {
2439 static const char *const names[8] = {
2440 "samplerCube", "samplerCubeArray",
2441 "samplerCubeShadow", "samplerCubeArrayShadow",
2442 "imageCube", NULL, NULL, NULL
2443 };
2444 return names[offset + type_idx];
2445 }
2446 case GLSL_SAMPLER_DIM_MS: {
2447 assert(type->is_sampler());
2448 static const char *const names[4] = {
2449 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2450 };
2451 return names[type_idx];
2452 }
2453 case GLSL_SAMPLER_DIM_RECT: {
2454 assert(type->is_sampler());
2455 static const char *const names[4] = {
2456 "samplerRect", NULL, "samplerRectShadow", NULL
2457 };
2458 return names[type_idx];
2459 }
2460 case GLSL_SAMPLER_DIM_BUF: {
2461 static const char *const names[8] = {
2462 "samplerBuffer", NULL, NULL, NULL,
2463 "imageBuffer", NULL, NULL, NULL
2464 };
2465 return names[offset + type_idx];
2466 }
2467 case GLSL_SAMPLER_DIM_EXTERNAL: {
2468 assert(type->is_sampler());
2469 static const char *const names[4] = {
2470 "samplerExternalOES", NULL, NULL, NULL
2471 };
2472 return names[type_idx];
2473 }
2474 default:
2475 unreachable("Unsupported sampler/image dimensionality");
2476 } /* sampler/image float dimensionality */
2477 break;
2478 case GLSL_TYPE_INT:
2479 switch (type->sampler_dimensionality) {
2480 case GLSL_SAMPLER_DIM_1D: {
2481 assert(type->is_sampler());
2482 static const char *const names[4] = {
2483 "isampler1D", "isampler1DArray", NULL, NULL
2484 };
2485 return names[type_idx];
2486 }
2487 case GLSL_SAMPLER_DIM_2D: {
2488 static const char *const names[8] = {
2489 "isampler2D", "isampler2DArray", NULL, NULL,
2490 "iimage2D", "iimage2DArray", NULL, NULL
2491 };
2492 return names[offset + type_idx];
2493 }
2494 case GLSL_SAMPLER_DIM_3D: {
2495 static const char *const names[8] = {
2496 "isampler3D", NULL, NULL, NULL,
2497 "iimage3D", NULL, NULL, NULL
2498 };
2499 return names[offset + type_idx];
2500 }
2501 case GLSL_SAMPLER_DIM_CUBE: {
2502 static const char *const names[8] = {
2503 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2504 "iimageCube", NULL, NULL, NULL
2505 };
2506 return names[offset + type_idx];
2507 }
2508 case GLSL_SAMPLER_DIM_MS: {
2509 assert(type->is_sampler());
2510 static const char *const names[4] = {
2511 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2512 };
2513 return names[type_idx];
2514 }
2515 case GLSL_SAMPLER_DIM_RECT: {
2516 assert(type->is_sampler());
2517 static const char *const names[4] = {
2518 "isamplerRect", NULL, "isamplerRectShadow", NULL
2519 };
2520 return names[type_idx];
2521 }
2522 case GLSL_SAMPLER_DIM_BUF: {
2523 static const char *const names[8] = {
2524 "isamplerBuffer", NULL, NULL, NULL,
2525 "iimageBuffer", NULL, NULL, NULL
2526 };
2527 return names[offset + type_idx];
2528 }
2529 default:
2530 unreachable("Unsupported isampler/iimage dimensionality");
2531 } /* sampler/image int dimensionality */
2532 break;
2533 case GLSL_TYPE_UINT:
2534 switch (type->sampler_dimensionality) {
2535 case GLSL_SAMPLER_DIM_1D: {
2536 assert(type->is_sampler());
2537 static const char *const names[4] = {
2538 "usampler1D", "usampler1DArray", NULL, NULL
2539 };
2540 return names[type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_2D: {
2543 static const char *const names[8] = {
2544 "usampler2D", "usampler2DArray", NULL, NULL,
2545 "uimage2D", "uimage2DArray", NULL, NULL
2546 };
2547 return names[offset + type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_3D: {
2550 static const char *const names[8] = {
2551 "usampler3D", NULL, NULL, NULL,
2552 "uimage3D", NULL, NULL, NULL
2553 };
2554 return names[offset + type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_CUBE: {
2557 static const char *const names[8] = {
2558 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2559 "uimageCube", NULL, NULL, NULL
2560 };
2561 return names[offset + type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_MS: {
2564 assert(type->is_sampler());
2565 static const char *const names[4] = {
2566 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2567 };
2568 return names[type_idx];
2569 }
2570 case GLSL_SAMPLER_DIM_RECT: {
2571 assert(type->is_sampler());
2572 static const char *const names[4] = {
2573 "usamplerRect", NULL, "usamplerRectShadow", NULL
2574 };
2575 return names[type_idx];
2576 }
2577 case GLSL_SAMPLER_DIM_BUF: {
2578 static const char *const names[8] = {
2579 "usamplerBuffer", NULL, NULL, NULL,
2580 "uimageBuffer", NULL, NULL, NULL
2581 };
2582 return names[offset + type_idx];
2583 }
2584 default:
2585 unreachable("Unsupported usampler/uimage dimensionality");
2586 } /* sampler/image uint dimensionality */
2587 break;
2588 default:
2589 unreachable("Unsupported sampler/image type");
2590 } /* sampler/image type */
2591 break;
2592 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2593 break;
2594 default:
2595 unreachable("Unsupported type");
2596 } /* base type */
2597 }
2598
2599 static unsigned
2600 select_gles_precision(unsigned qual_precision,
2601 const glsl_type *type,
2602 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2603 {
2604 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2605 * In GLES we take the precision from the type qualifier if present,
2606 * otherwise, if the type of the variable allows precision qualifiers at
2607 * all, we look for the default precision qualifier for that type in the
2608 * current scope.
2609 */
2610 assert(state->es_shader);
2611
2612 unsigned precision = GLSL_PRECISION_NONE;
2613 if (qual_precision) {
2614 precision = qual_precision;
2615 } else if (precision_qualifier_allowed(type)) {
2616 const char *type_name =
2617 get_type_name_for_precision_qualifier(type->without_array());
2618 assert(type_name != NULL);
2619
2620 precision =
2621 state->symbols->get_default_precision_qualifier(type_name);
2622 if (precision == ast_precision_none) {
2623 _mesa_glsl_error(loc, state,
2624 "No precision specified in this scope for type `%s'",
2625 type->name);
2626 }
2627 }
2628
2629
2630 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2631 *
2632 * "The default precision of all atomic types is highp. It is an error to
2633 * declare an atomic type with a different precision or to specify the
2634 * default precision for an atomic type to be lowp or mediump."
2635 */
2636 if (type->base_type == GLSL_TYPE_ATOMIC_UINT &&
2637 precision != ast_precision_high) {
2638 _mesa_glsl_error(loc, state,
2639 "atomic_uint can only have highp precision qualifier");
2640 }
2641
2642 return precision;
2643 }
2644
2645 const glsl_type *
2646 ast_fully_specified_type::glsl_type(const char **name,
2647 struct _mesa_glsl_parse_state *state) const
2648 {
2649 return this->specifier->glsl_type(name, state);
2650 }
2651
2652 /**
2653 * Determine whether a toplevel variable declaration declares a varying. This
2654 * function operates by examining the variable's mode and the shader target,
2655 * so it correctly identifies linkage variables regardless of whether they are
2656 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2657 *
2658 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2659 * this function will produce undefined results.
2660 */
2661 static bool
2662 is_varying_var(ir_variable *var, gl_shader_stage target)
2663 {
2664 switch (target) {
2665 case MESA_SHADER_VERTEX:
2666 return var->data.mode == ir_var_shader_out;
2667 case MESA_SHADER_FRAGMENT:
2668 return var->data.mode == ir_var_shader_in;
2669 default:
2670 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2671 }
2672 }
2673
2674 static bool
2675 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2676 {
2677 if (is_varying_var(var, state->stage))
2678 return true;
2679
2680 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2681 * "Only variables output from a vertex shader can be candidates
2682 * for invariance".
2683 */
2684 if (!state->is_version(130, 0))
2685 return false;
2686
2687 /*
2688 * Later specs remove this language - so allowed invariant
2689 * on fragment shader outputs as well.
2690 */
2691 if (state->stage == MESA_SHADER_FRAGMENT &&
2692 var->data.mode == ir_var_shader_out)
2693 return true;
2694 return false;
2695 }
2696
2697 /**
2698 * Matrix layout qualifiers are only allowed on certain types
2699 */
2700 static void
2701 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2702 YYLTYPE *loc,
2703 const glsl_type *type,
2704 ir_variable *var)
2705 {
2706 if (var && !var->is_in_buffer_block()) {
2707 /* Layout qualifiers may only apply to interface blocks and fields in
2708 * them.
2709 */
2710 _mesa_glsl_error(loc, state,
2711 "uniform block layout qualifiers row_major and "
2712 "column_major may not be applied to variables "
2713 "outside of uniform blocks");
2714 } else if (!type->without_array()->is_matrix()) {
2715 /* The OpenGL ES 3.0 conformance tests did not originally allow
2716 * matrix layout qualifiers on non-matrices. However, the OpenGL
2717 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2718 * amended to specifically allow these layouts on all types. Emit
2719 * a warning so that people know their code may not be portable.
2720 */
2721 _mesa_glsl_warning(loc, state,
2722 "uniform block layout qualifiers row_major and "
2723 "column_major applied to non-matrix types may "
2724 "be rejected by older compilers");
2725 }
2726 }
2727
2728 static bool
2729 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2730 struct _mesa_glsl_parse_state *state,
2731 unsigned xfb_buffer) {
2732 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2733 _mesa_glsl_error(loc, state,
2734 "invalid xfb_buffer specified %d is larger than "
2735 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2736 xfb_buffer,
2737 state->Const.MaxTransformFeedbackBuffers - 1);
2738 return false;
2739 }
2740
2741 return true;
2742 }
2743
2744 /* From the ARB_enhanced_layouts spec:
2745 *
2746 * "Variables and block members qualified with *xfb_offset* can be
2747 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2748 * The offset must be a multiple of the size of the first component of
2749 * the first qualified variable or block member, or a compile-time error
2750 * results. Further, if applied to an aggregate containing a double,
2751 * the offset must also be a multiple of 8, and the space taken in the
2752 * buffer will be a multiple of 8.
2753 */
2754 static bool
2755 validate_xfb_offset_qualifier(YYLTYPE *loc,
2756 struct _mesa_glsl_parse_state *state,
2757 int xfb_offset, const glsl_type *type,
2758 unsigned component_size) {
2759 const glsl_type *t_without_array = type->without_array();
2760
2761 if (xfb_offset != -1 && type->is_unsized_array()) {
2762 _mesa_glsl_error(loc, state,
2763 "xfb_offset can't be used with unsized arrays.");
2764 return false;
2765 }
2766
2767 /* Make sure nested structs don't contain unsized arrays, and validate
2768 * any xfb_offsets on interface members.
2769 */
2770 if (t_without_array->is_record() || t_without_array->is_interface())
2771 for (unsigned int i = 0; i < t_without_array->length; i++) {
2772 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2773
2774 /* When the interface block doesn't have an xfb_offset qualifier then
2775 * we apply the component size rules at the member level.
2776 */
2777 if (xfb_offset == -1)
2778 component_size = member_t->contains_double() ? 8 : 4;
2779
2780 int xfb_offset = t_without_array->fields.structure[i].offset;
2781 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2782 component_size);
2783 }
2784
2785 /* Nested structs or interface block without offset may not have had an
2786 * offset applied yet so return.
2787 */
2788 if (xfb_offset == -1) {
2789 return true;
2790 }
2791
2792 if (xfb_offset % component_size) {
2793 _mesa_glsl_error(loc, state,
2794 "invalid qualifier xfb_offset=%d must be a multiple "
2795 "of the first component size of the first qualified "
2796 "variable or block member. Or double if an aggregate "
2797 "that contains a double (%d).",
2798 xfb_offset, component_size);
2799 return false;
2800 }
2801
2802 return true;
2803 }
2804
2805 static bool
2806 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2807 unsigned stream)
2808 {
2809 if (stream >= state->ctx->Const.MaxVertexStreams) {
2810 _mesa_glsl_error(loc, state,
2811 "invalid stream specified %d is larger than "
2812 "MAX_VERTEX_STREAMS - 1 (%d).",
2813 stream, state->ctx->Const.MaxVertexStreams - 1);
2814 return false;
2815 }
2816
2817 return true;
2818 }
2819
2820 static void
2821 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2822 YYLTYPE *loc,
2823 ir_variable *var,
2824 const glsl_type *type,
2825 const ast_type_qualifier *qual)
2826 {
2827 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2828 _mesa_glsl_error(loc, state,
2829 "the \"binding\" qualifier only applies to uniforms and "
2830 "shader storage buffer objects");
2831 return;
2832 }
2833
2834 unsigned qual_binding;
2835 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2836 &qual_binding)) {
2837 return;
2838 }
2839
2840 const struct gl_context *const ctx = state->ctx;
2841 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2842 unsigned max_index = qual_binding + elements - 1;
2843 const glsl_type *base_type = type->without_array();
2844
2845 if (base_type->is_interface()) {
2846 /* UBOs. From page 60 of the GLSL 4.20 specification:
2847 * "If the binding point for any uniform block instance is less than zero,
2848 * or greater than or equal to the implementation-dependent maximum
2849 * number of uniform buffer bindings, a compilation error will occur.
2850 * When the binding identifier is used with a uniform block instanced as
2851 * an array of size N, all elements of the array from binding through
2852 * binding + N – 1 must be within this range."
2853 *
2854 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2855 */
2856 if (qual->flags.q.uniform &&
2857 max_index >= ctx->Const.MaxUniformBufferBindings) {
2858 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2859 "the maximum number of UBO binding points (%d)",
2860 qual_binding, elements,
2861 ctx->Const.MaxUniformBufferBindings);
2862 return;
2863 }
2864
2865 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2866 * "If the binding point for any uniform or shader storage block instance
2867 * is less than zero, or greater than or equal to the
2868 * implementation-dependent maximum number of uniform buffer bindings, a
2869 * compile-time error will occur. When the binding identifier is used
2870 * with a uniform or shader storage block instanced as an array of size
2871 * N, all elements of the array from binding through binding + N – 1 must
2872 * be within this range."
2873 */
2874 if (qual->flags.q.buffer &&
2875 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2876 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2877 "the maximum number of SSBO binding points (%d)",
2878 qual_binding, elements,
2879 ctx->Const.MaxShaderStorageBufferBindings);
2880 return;
2881 }
2882 } else if (base_type->is_sampler()) {
2883 /* Samplers. From page 63 of the GLSL 4.20 specification:
2884 * "If the binding is less than zero, or greater than or equal to the
2885 * implementation-dependent maximum supported number of units, a
2886 * compilation error will occur. When the binding identifier is used
2887 * with an array of size N, all elements of the array from binding
2888 * through binding + N - 1 must be within this range."
2889 */
2890 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2891
2892 if (max_index >= limit) {
2893 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2894 "exceeds the maximum number of texture image units "
2895 "(%u)", qual_binding, elements, limit);
2896
2897 return;
2898 }
2899 } else if (base_type->contains_atomic()) {
2900 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2901 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2902 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2903 " maximum number of atomic counter buffer bindings"
2904 "(%u)", qual_binding,
2905 ctx->Const.MaxAtomicBufferBindings);
2906
2907 return;
2908 }
2909 } else if ((state->is_version(420, 310) ||
2910 state->ARB_shading_language_420pack_enable) &&
2911 base_type->is_image()) {
2912 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2913 if (max_index >= ctx->Const.MaxImageUnits) {
2914 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2915 " maximum number of image units (%d)", max_index,
2916 ctx->Const.MaxImageUnits);
2917 return;
2918 }
2919
2920 } else {
2921 _mesa_glsl_error(loc, state,
2922 "the \"binding\" qualifier only applies to uniform "
2923 "blocks, opaque variables, or arrays thereof");
2924 return;
2925 }
2926
2927 var->data.explicit_binding = true;
2928 var->data.binding = qual_binding;
2929
2930 return;
2931 }
2932
2933
2934 static void
2935 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
2936 YYLTYPE *loc,
2937 const glsl_interp_mode interpolation,
2938 const struct ast_type_qualifier *qual,
2939 const struct glsl_type *var_type,
2940 ir_variable_mode mode)
2941 {
2942 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
2943 * not to vertex shader inputs nor fragment shader outputs.
2944 *
2945 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2946 * "Outputs from a vertex shader (out) and inputs to a fragment
2947 * shader (in) can be further qualified with one or more of these
2948 * interpolation qualifiers"
2949 * ...
2950 * "These interpolation qualifiers may only precede the qualifiers in,
2951 * centroid in, out, or centroid out in a declaration. They do not apply
2952 * to the deprecated storage qualifiers varying or centroid
2953 * varying. They also do not apply to inputs into a vertex shader or
2954 * outputs from a fragment shader."
2955 *
2956 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
2957 * "Outputs from a shader (out) and inputs to a shader (in) can be
2958 * further qualified with one of these interpolation qualifiers."
2959 * ...
2960 * "These interpolation qualifiers may only precede the qualifiers
2961 * in, centroid in, out, or centroid out in a declaration. They do
2962 * not apply to inputs into a vertex shader or outputs from a
2963 * fragment shader."
2964 */
2965 if (state->is_version(130, 300)
2966 && interpolation != INTERP_MODE_NONE) {
2967 const char *i = interpolation_string(interpolation);
2968 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
2969 _mesa_glsl_error(loc, state,
2970 "interpolation qualifier `%s' can only be applied to "
2971 "shader inputs or outputs.", i);
2972
2973 switch (state->stage) {
2974 case MESA_SHADER_VERTEX:
2975 if (mode == ir_var_shader_in) {
2976 _mesa_glsl_error(loc, state,
2977 "interpolation qualifier '%s' cannot be applied to "
2978 "vertex shader inputs", i);
2979 }
2980 break;
2981 case MESA_SHADER_FRAGMENT:
2982 if (mode == ir_var_shader_out) {
2983 _mesa_glsl_error(loc, state,
2984 "interpolation qualifier '%s' cannot be applied to "
2985 "fragment shader outputs", i);
2986 }
2987 break;
2988 default:
2989 break;
2990 }
2991 }
2992
2993 /* Interpolation qualifiers cannot be applied to 'centroid' and
2994 * 'centroid varying'.
2995 *
2996 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
2997 * "interpolation qualifiers may only precede the qualifiers in,
2998 * centroid in, out, or centroid out in a declaration. They do not apply
2999 * to the deprecated storage qualifiers varying or centroid varying."
3000 *
3001 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3002 */
3003 if (state->is_version(130, 0)
3004 && interpolation != INTERP_MODE_NONE
3005 && qual->flags.q.varying) {
3006
3007 const char *i = interpolation_string(interpolation);
3008 const char *s;
3009 if (qual->flags.q.centroid)
3010 s = "centroid varying";
3011 else
3012 s = "varying";
3013
3014 _mesa_glsl_error(loc, state,
3015 "qualifier '%s' cannot be applied to the "
3016 "deprecated storage qualifier '%s'", i, s);
3017 }
3018
3019 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3020 * so must integer vertex outputs.
3021 *
3022 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3023 * "Fragment shader inputs that are signed or unsigned integers or
3024 * integer vectors must be qualified with the interpolation qualifier
3025 * flat."
3026 *
3027 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3028 * "Fragment shader inputs that are, or contain, signed or unsigned
3029 * integers or integer vectors must be qualified with the
3030 * interpolation qualifier flat."
3031 *
3032 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3033 * "Vertex shader outputs that are, or contain, signed or unsigned
3034 * integers or integer vectors must be qualified with the
3035 * interpolation qualifier flat."
3036 *
3037 * Note that prior to GLSL 1.50, this requirement applied to vertex
3038 * outputs rather than fragment inputs. That creates problems in the
3039 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3040 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3041 * apply the restriction to both vertex outputs and fragment inputs.
3042 *
3043 * Note also that the desktop GLSL specs are missing the text "or
3044 * contain"; this is presumably an oversight, since there is no
3045 * reasonable way to interpolate a fragment shader input that contains
3046 * an integer. See Khronos bug #15671.
3047 */
3048 if (state->is_version(130, 300)
3049 && var_type->contains_integer()
3050 && interpolation != INTERP_MODE_FLAT
3051 && state->stage == MESA_SHADER_FRAGMENT
3052 && mode == ir_var_shader_in) {
3053 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3054 "an integer, then it must be qualified with 'flat'");
3055 }
3056
3057 /* Double fragment inputs must be qualified with 'flat'.
3058 *
3059 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3060 * "This extension does not support interpolation of double-precision
3061 * values; doubles used as fragment shader inputs must be qualified as
3062 * "flat"."
3063 *
3064 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3065 * "Fragment shader inputs that are signed or unsigned integers, integer
3066 * vectors, or any double-precision floating-point type must be
3067 * qualified with the interpolation qualifier flat."
3068 *
3069 * Note that the GLSL specs are missing the text "or contain"; this is
3070 * presumably an oversight. See Khronos bug #15671.
3071 *
3072 * The 'double' type does not exist in GLSL ES so far.
3073 */
3074 if (state->has_double()
3075 && var_type->contains_double()
3076 && interpolation != INTERP_MODE_FLAT
3077 && state->stage == MESA_SHADER_FRAGMENT
3078 && mode == ir_var_shader_in) {
3079 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3080 "a double, then it must be qualified with 'flat'");
3081 }
3082 }
3083
3084 static glsl_interp_mode
3085 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3086 const struct glsl_type *var_type,
3087 ir_variable_mode mode,
3088 struct _mesa_glsl_parse_state *state,
3089 YYLTYPE *loc)
3090 {
3091 glsl_interp_mode interpolation;
3092 if (qual->flags.q.flat)
3093 interpolation = INTERP_MODE_FLAT;
3094 else if (qual->flags.q.noperspective)
3095 interpolation = INTERP_MODE_NOPERSPECTIVE;
3096 else if (qual->flags.q.smooth)
3097 interpolation = INTERP_MODE_SMOOTH;
3098 else if (state->es_shader &&
3099 ((mode == ir_var_shader_in &&
3100 state->stage != MESA_SHADER_VERTEX) ||
3101 (mode == ir_var_shader_out &&
3102 state->stage != MESA_SHADER_FRAGMENT)))
3103 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3104 *
3105 * "When no interpolation qualifier is present, smooth interpolation
3106 * is used."
3107 */
3108 interpolation = INTERP_MODE_SMOOTH;
3109 else
3110 interpolation = INTERP_MODE_NONE;
3111
3112 validate_interpolation_qualifier(state, loc,
3113 interpolation,
3114 qual, var_type, mode);
3115
3116 return interpolation;
3117 }
3118
3119
3120 static void
3121 apply_explicit_location(const struct ast_type_qualifier *qual,
3122 ir_variable *var,
3123 struct _mesa_glsl_parse_state *state,
3124 YYLTYPE *loc)
3125 {
3126 bool fail = false;
3127
3128 unsigned qual_location;
3129 if (!process_qualifier_constant(state, loc, "location", qual->location,
3130 &qual_location)) {
3131 return;
3132 }
3133
3134 /* Checks for GL_ARB_explicit_uniform_location. */
3135 if (qual->flags.q.uniform) {
3136 if (!state->check_explicit_uniform_location_allowed(loc, var))
3137 return;
3138
3139 const struct gl_context *const ctx = state->ctx;
3140 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3141
3142 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3143 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3144 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3145 ctx->Const.MaxUserAssignableUniformLocations);
3146 return;
3147 }
3148
3149 var->data.explicit_location = true;
3150 var->data.location = qual_location;
3151 return;
3152 }
3153
3154 /* Between GL_ARB_explicit_attrib_location an
3155 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3156 * stage can be assigned explicit locations. The checking here associates
3157 * the correct extension with the correct stage's input / output:
3158 *
3159 * input output
3160 * ----- ------
3161 * vertex explicit_loc sso
3162 * tess control sso sso
3163 * tess eval sso sso
3164 * geometry sso sso
3165 * fragment sso explicit_loc
3166 */
3167 switch (state->stage) {
3168 case MESA_SHADER_VERTEX:
3169 if (var->data.mode == ir_var_shader_in) {
3170 if (!state->check_explicit_attrib_location_allowed(loc, var))
3171 return;
3172
3173 break;
3174 }
3175
3176 if (var->data.mode == ir_var_shader_out) {
3177 if (!state->check_separate_shader_objects_allowed(loc, var))
3178 return;
3179
3180 break;
3181 }
3182
3183 fail = true;
3184 break;
3185
3186 case MESA_SHADER_TESS_CTRL:
3187 case MESA_SHADER_TESS_EVAL:
3188 case MESA_SHADER_GEOMETRY:
3189 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3190 if (!state->check_separate_shader_objects_allowed(loc, var))
3191 return;
3192
3193 break;
3194 }
3195
3196 fail = true;
3197 break;
3198
3199 case MESA_SHADER_FRAGMENT:
3200 if (var->data.mode == ir_var_shader_in) {
3201 if (!state->check_separate_shader_objects_allowed(loc, var))
3202 return;
3203
3204 break;
3205 }
3206
3207 if (var->data.mode == ir_var_shader_out) {
3208 if (!state->check_explicit_attrib_location_allowed(loc, var))
3209 return;
3210
3211 break;
3212 }
3213
3214 fail = true;
3215 break;
3216
3217 case MESA_SHADER_COMPUTE:
3218 _mesa_glsl_error(loc, state,
3219 "compute shader variables cannot be given "
3220 "explicit locations");
3221 return;
3222 };
3223
3224 if (fail) {
3225 _mesa_glsl_error(loc, state,
3226 "%s cannot be given an explicit location in %s shader",
3227 mode_string(var),
3228 _mesa_shader_stage_to_string(state->stage));
3229 } else {
3230 var->data.explicit_location = true;
3231
3232 switch (state->stage) {
3233 case MESA_SHADER_VERTEX:
3234 var->data.location = (var->data.mode == ir_var_shader_in)
3235 ? (qual_location + VERT_ATTRIB_GENERIC0)
3236 : (qual_location + VARYING_SLOT_VAR0);
3237 break;
3238
3239 case MESA_SHADER_TESS_CTRL:
3240 case MESA_SHADER_TESS_EVAL:
3241 case MESA_SHADER_GEOMETRY:
3242 if (var->data.patch)
3243 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3244 else
3245 var->data.location = qual_location + VARYING_SLOT_VAR0;
3246 break;
3247
3248 case MESA_SHADER_FRAGMENT:
3249 var->data.location = (var->data.mode == ir_var_shader_out)
3250 ? (qual_location + FRAG_RESULT_DATA0)
3251 : (qual_location + VARYING_SLOT_VAR0);
3252 break;
3253 case MESA_SHADER_COMPUTE:
3254 assert(!"Unexpected shader type");
3255 break;
3256 }
3257
3258 /* Check if index was set for the uniform instead of the function */
3259 if (qual->flags.q.explicit_index && qual->flags.q.subroutine) {
3260 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3261 "used with subroutine functions");
3262 return;
3263 }
3264
3265 unsigned qual_index;
3266 if (qual->flags.q.explicit_index &&
3267 process_qualifier_constant(state, loc, "index", qual->index,
3268 &qual_index)) {
3269 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3270 * Layout Qualifiers):
3271 *
3272 * "It is also a compile-time error if a fragment shader
3273 * sets a layout index to less than 0 or greater than 1."
3274 *
3275 * Older specifications don't mandate a behavior; we take
3276 * this as a clarification and always generate the error.
3277 */
3278 if (qual_index > 1) {
3279 _mesa_glsl_error(loc, state,
3280 "explicit index may only be 0 or 1");
3281 } else {
3282 var->data.explicit_index = true;
3283 var->data.index = qual_index;
3284 }
3285 }
3286 }
3287 }
3288
3289 static void
3290 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3291 ir_variable *var,
3292 struct _mesa_glsl_parse_state *state,
3293 YYLTYPE *loc)
3294 {
3295 const glsl_type *base_type = var->type->without_array();
3296
3297 if (base_type->is_image()) {
3298 if (var->data.mode != ir_var_uniform &&
3299 var->data.mode != ir_var_function_in) {
3300 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3301 "function parameters or uniform-qualified "
3302 "global variables");
3303 }
3304
3305 var->data.image_read_only |= qual->flags.q.read_only;
3306 var->data.image_write_only |= qual->flags.q.write_only;
3307 var->data.image_coherent |= qual->flags.q.coherent;
3308 var->data.image_volatile |= qual->flags.q._volatile;
3309 var->data.image_restrict |= qual->flags.q.restrict_flag;
3310 var->data.read_only = true;
3311
3312 if (qual->flags.q.explicit_image_format) {
3313 if (var->data.mode == ir_var_function_in) {
3314 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
3315 "used on image function parameters");
3316 }
3317
3318 if (qual->image_base_type != base_type->sampled_type) {
3319 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
3320 "base data type of the image");
3321 }
3322
3323 var->data.image_format = qual->image_format;
3324 } else {
3325 if (var->data.mode == ir_var_uniform) {
3326 if (state->es_shader) {
3327 _mesa_glsl_error(loc, state, "all image uniforms "
3328 "must have a format layout qualifier");
3329
3330 } else if (!qual->flags.q.write_only) {
3331 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3332 "`writeonly' must have a format layout "
3333 "qualifier");
3334 }
3335 }
3336
3337 var->data.image_format = GL_NONE;
3338 }
3339
3340 /* From page 70 of the GLSL ES 3.1 specification:
3341 *
3342 * "Except for image variables qualified with the format qualifiers
3343 * r32f, r32i, and r32ui, image variables must specify either memory
3344 * qualifier readonly or the memory qualifier writeonly."
3345 */
3346 if (state->es_shader &&
3347 var->data.image_format != GL_R32F &&
3348 var->data.image_format != GL_R32I &&
3349 var->data.image_format != GL_R32UI &&
3350 !var->data.image_read_only &&
3351 !var->data.image_write_only) {
3352 _mesa_glsl_error(loc, state, "image variables of format other than "
3353 "r32f, r32i or r32ui must be qualified `readonly' or "
3354 "`writeonly'");
3355 }
3356
3357 } else if (qual->flags.q.read_only ||
3358 qual->flags.q.write_only ||
3359 qual->flags.q.coherent ||
3360 qual->flags.q._volatile ||
3361 qual->flags.q.restrict_flag ||
3362 qual->flags.q.explicit_image_format) {
3363 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
3364 "images");
3365 }
3366 }
3367
3368 static inline const char*
3369 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3370 {
3371 if (origin_upper_left && pixel_center_integer)
3372 return "origin_upper_left, pixel_center_integer";
3373 else if (origin_upper_left)
3374 return "origin_upper_left";
3375 else if (pixel_center_integer)
3376 return "pixel_center_integer";
3377 else
3378 return " ";
3379 }
3380
3381 static inline bool
3382 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3383 const struct ast_type_qualifier *qual)
3384 {
3385 /* If gl_FragCoord was previously declared, and the qualifiers were
3386 * different in any way, return true.
3387 */
3388 if (state->fs_redeclares_gl_fragcoord) {
3389 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3390 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3391 }
3392
3393 return false;
3394 }
3395
3396 static inline void
3397 validate_array_dimensions(const glsl_type *t,
3398 struct _mesa_glsl_parse_state *state,
3399 YYLTYPE *loc) {
3400 if (t->is_array()) {
3401 t = t->fields.array;
3402 while (t->is_array()) {
3403 if (t->is_unsized_array()) {
3404 _mesa_glsl_error(loc, state,
3405 "only the outermost array dimension can "
3406 "be unsized",
3407 t->name);
3408 break;
3409 }
3410 t = t->fields.array;
3411 }
3412 }
3413 }
3414
3415 static void
3416 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3417 ir_variable *var,
3418 struct _mesa_glsl_parse_state *state,
3419 YYLTYPE *loc)
3420 {
3421 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3422
3423 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3424 *
3425 * "Within any shader, the first redeclarations of gl_FragCoord
3426 * must appear before any use of gl_FragCoord."
3427 *
3428 * Generate a compiler error if above condition is not met by the
3429 * fragment shader.
3430 */
3431 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3432 if (earlier != NULL &&
3433 earlier->data.used &&
3434 !state->fs_redeclares_gl_fragcoord) {
3435 _mesa_glsl_error(loc, state,
3436 "gl_FragCoord used before its first redeclaration "
3437 "in fragment shader");
3438 }
3439
3440 /* Make sure all gl_FragCoord redeclarations specify the same layout
3441 * qualifiers.
3442 */
3443 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3444 const char *const qual_string =
3445 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3446 qual->flags.q.pixel_center_integer);
3447
3448 const char *const state_string =
3449 get_layout_qualifier_string(state->fs_origin_upper_left,
3450 state->fs_pixel_center_integer);
3451
3452 _mesa_glsl_error(loc, state,
3453 "gl_FragCoord redeclared with different layout "
3454 "qualifiers (%s) and (%s) ",
3455 state_string,
3456 qual_string);
3457 }
3458 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3459 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3460 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3461 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3462 state->fs_redeclares_gl_fragcoord =
3463 state->fs_origin_upper_left ||
3464 state->fs_pixel_center_integer ||
3465 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3466 }
3467
3468 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3469 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3470 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3471 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3472 const char *const qual_string = (qual->flags.q.origin_upper_left)
3473 ? "origin_upper_left" : "pixel_center_integer";
3474
3475 _mesa_glsl_error(loc, state,
3476 "layout qualifier `%s' can only be applied to "
3477 "fragment shader input `gl_FragCoord'",
3478 qual_string);
3479 }
3480
3481 if (qual->flags.q.explicit_location) {
3482 apply_explicit_location(qual, var, state, loc);
3483
3484 if (qual->flags.q.explicit_component) {
3485 unsigned qual_component;
3486 if (process_qualifier_constant(state, loc, "component",
3487 qual->component, &qual_component)) {
3488 const glsl_type *type = var->type->without_array();
3489 unsigned components = type->component_slots();
3490
3491 if (type->is_matrix() || type->is_record()) {
3492 _mesa_glsl_error(loc, state, "component layout qualifier "
3493 "cannot be applied to a matrix, a structure, "
3494 "a block, or an array containing any of "
3495 "these.");
3496 } else if (qual_component != 0 &&
3497 (qual_component + components - 1) > 3) {
3498 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3499 (qual_component + components - 1));
3500 } else if (qual_component == 1 && type->is_64bit()) {
3501 /* We don't bother checking for 3 as it should be caught by the
3502 * overflow check above.
3503 */
3504 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3505 "component 1 or 3");
3506 } else {
3507 var->data.explicit_component = true;
3508 var->data.location_frac = qual_component;
3509 }
3510 }
3511 }
3512 } else if (qual->flags.q.explicit_index) {
3513 if (!qual->flags.q.subroutine_def)
3514 _mesa_glsl_error(loc, state,
3515 "explicit index requires explicit location");
3516 } else if (qual->flags.q.explicit_component) {
3517 _mesa_glsl_error(loc, state,
3518 "explicit component requires explicit location");
3519 }
3520
3521 if (qual->flags.q.explicit_binding) {
3522 apply_explicit_binding(state, loc, var, var->type, qual);
3523 }
3524
3525 if (state->stage == MESA_SHADER_GEOMETRY &&
3526 qual->flags.q.out && qual->flags.q.stream) {
3527 unsigned qual_stream;
3528 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3529 &qual_stream) &&
3530 validate_stream_qualifier(loc, state, qual_stream)) {
3531 var->data.stream = qual_stream;
3532 }
3533 }
3534
3535 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3536 unsigned qual_xfb_buffer;
3537 if (process_qualifier_constant(state, loc, "xfb_buffer",
3538 qual->xfb_buffer, &qual_xfb_buffer) &&
3539 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3540 var->data.xfb_buffer = qual_xfb_buffer;
3541 if (qual->flags.q.explicit_xfb_buffer)
3542 var->data.explicit_xfb_buffer = true;
3543 }
3544 }
3545
3546 if (qual->flags.q.explicit_xfb_offset) {
3547 unsigned qual_xfb_offset;
3548 unsigned component_size = var->type->contains_double() ? 8 : 4;
3549
3550 if (process_qualifier_constant(state, loc, "xfb_offset",
3551 qual->offset, &qual_xfb_offset) &&
3552 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3553 var->type, component_size)) {
3554 var->data.offset = qual_xfb_offset;
3555 var->data.explicit_xfb_offset = true;
3556 }
3557 }
3558
3559 if (qual->flags.q.explicit_xfb_stride) {
3560 unsigned qual_xfb_stride;
3561 if (process_qualifier_constant(state, loc, "xfb_stride",
3562 qual->xfb_stride, &qual_xfb_stride)) {
3563 var->data.xfb_stride = qual_xfb_stride;
3564 var->data.explicit_xfb_stride = true;
3565 }
3566 }
3567
3568 if (var->type->contains_atomic()) {
3569 if (var->data.mode == ir_var_uniform) {
3570 if (var->data.explicit_binding) {
3571 unsigned *offset =
3572 &state->atomic_counter_offsets[var->data.binding];
3573
3574 if (*offset % ATOMIC_COUNTER_SIZE)
3575 _mesa_glsl_error(loc, state,
3576 "misaligned atomic counter offset");
3577
3578 var->data.offset = *offset;
3579 *offset += var->type->atomic_size();
3580
3581 } else {
3582 _mesa_glsl_error(loc, state,
3583 "atomic counters require explicit binding point");
3584 }
3585 } else if (var->data.mode != ir_var_function_in) {
3586 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3587 "function parameters or uniform-qualified "
3588 "global variables");
3589 }
3590 }
3591
3592 if (var->type->contains_sampler()) {
3593 if (var->data.mode != ir_var_uniform &&
3594 var->data.mode != ir_var_function_in) {
3595 _mesa_glsl_error(loc, state, "sampler variables may only be declared "
3596 "as function parameters or uniform-qualified "
3597 "global variables");
3598 }
3599 }
3600
3601 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3602 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3603 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3604 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3605 * These extensions and all following extensions that add the 'layout'
3606 * keyword have been modified to require the use of 'in' or 'out'.
3607 *
3608 * The following extension do not allow the deprecated keywords:
3609 *
3610 * GL_AMD_conservative_depth
3611 * GL_ARB_conservative_depth
3612 * GL_ARB_gpu_shader5
3613 * GL_ARB_separate_shader_objects
3614 * GL_ARB_tessellation_shader
3615 * GL_ARB_transform_feedback3
3616 * GL_ARB_uniform_buffer_object
3617 *
3618 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3619 * allow layout with the deprecated keywords.
3620 */
3621 const bool relaxed_layout_qualifier_checking =
3622 state->ARB_fragment_coord_conventions_enable;
3623
3624 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3625 || qual->flags.q.varying;
3626 if (qual->has_layout() && uses_deprecated_qualifier) {
3627 if (relaxed_layout_qualifier_checking) {
3628 _mesa_glsl_warning(loc, state,
3629 "`layout' qualifier may not be used with "
3630 "`attribute' or `varying'");
3631 } else {
3632 _mesa_glsl_error(loc, state,
3633 "`layout' qualifier may not be used with "
3634 "`attribute' or `varying'");
3635 }
3636 }
3637
3638 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3639 * AMD_conservative_depth.
3640 */
3641 if (qual->flags.q.depth_type
3642 && !state->is_version(420, 0)
3643 && !state->AMD_conservative_depth_enable
3644 && !state->ARB_conservative_depth_enable) {
3645 _mesa_glsl_error(loc, state,
3646 "extension GL_AMD_conservative_depth or "
3647 "GL_ARB_conservative_depth must be enabled "
3648 "to use depth layout qualifiers");
3649 } else if (qual->flags.q.depth_type
3650 && strcmp(var->name, "gl_FragDepth") != 0) {
3651 _mesa_glsl_error(loc, state,
3652 "depth layout qualifiers can be applied only to "
3653 "gl_FragDepth");
3654 }
3655
3656 switch (qual->depth_type) {
3657 case ast_depth_any:
3658 var->data.depth_layout = ir_depth_layout_any;
3659 break;
3660 case ast_depth_greater:
3661 var->data.depth_layout = ir_depth_layout_greater;
3662 break;
3663 case ast_depth_less:
3664 var->data.depth_layout = ir_depth_layout_less;
3665 break;
3666 case ast_depth_unchanged:
3667 var->data.depth_layout = ir_depth_layout_unchanged;
3668 break;
3669 default:
3670 var->data.depth_layout = ir_depth_layout_none;
3671 break;
3672 }
3673
3674 if (qual->flags.q.std140 ||
3675 qual->flags.q.std430 ||
3676 qual->flags.q.packed ||
3677 qual->flags.q.shared) {
3678 _mesa_glsl_error(loc, state,
3679 "uniform and shader storage block layout qualifiers "
3680 "std140, std430, packed, and shared can only be "
3681 "applied to uniform or shader storage blocks, not "
3682 "members");
3683 }
3684
3685 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3686 validate_matrix_layout_for_type(state, loc, var->type, var);
3687 }
3688
3689 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3690 * Inputs):
3691 *
3692 * "Fragment shaders also allow the following layout qualifier on in only
3693 * (not with variable declarations)
3694 * layout-qualifier-id
3695 * early_fragment_tests
3696 * [...]"
3697 */
3698 if (qual->flags.q.early_fragment_tests) {
3699 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3700 "valid in fragment shader input layout declaration.");
3701 }
3702
3703 if (qual->flags.q.inner_coverage) {
3704 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3705 "valid in fragment shader input layout declaration.");
3706 }
3707
3708 if (qual->flags.q.post_depth_coverage) {
3709 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3710 "valid in fragment shader input layout declaration.");
3711 }
3712 }
3713
3714 static void
3715 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3716 ir_variable *var,
3717 struct _mesa_glsl_parse_state *state,
3718 YYLTYPE *loc,
3719 bool is_parameter)
3720 {
3721 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3722
3723 if (qual->flags.q.invariant) {
3724 if (var->data.used) {
3725 _mesa_glsl_error(loc, state,
3726 "variable `%s' may not be redeclared "
3727 "`invariant' after being used",
3728 var->name);
3729 } else {
3730 var->data.invariant = 1;
3731 }
3732 }
3733
3734 if (qual->flags.q.precise) {
3735 if (var->data.used) {
3736 _mesa_glsl_error(loc, state,
3737 "variable `%s' may not be redeclared "
3738 "`precise' after being used",
3739 var->name);
3740 } else {
3741 var->data.precise = 1;
3742 }
3743 }
3744
3745 if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
3746 _mesa_glsl_error(loc, state,
3747 "`subroutine' may only be applied to uniforms, "
3748 "subroutine type declarations, or function definitions");
3749 }
3750
3751 if (qual->flags.q.constant || qual->flags.q.attribute
3752 || qual->flags.q.uniform
3753 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3754 var->data.read_only = 1;
3755
3756 if (qual->flags.q.centroid)
3757 var->data.centroid = 1;
3758
3759 if (qual->flags.q.sample)
3760 var->data.sample = 1;
3761
3762 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3763 if (state->es_shader) {
3764 var->data.precision =
3765 select_gles_precision(qual->precision, var->type, state, loc);
3766 }
3767
3768 if (qual->flags.q.patch)
3769 var->data.patch = 1;
3770
3771 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3772 var->type = glsl_type::error_type;
3773 _mesa_glsl_error(loc, state,
3774 "`attribute' variables may not be declared in the "
3775 "%s shader",
3776 _mesa_shader_stage_to_string(state->stage));
3777 }
3778
3779 /* Disallow layout qualifiers which may only appear on layout declarations. */
3780 if (qual->flags.q.prim_type) {
3781 _mesa_glsl_error(loc, state,
3782 "Primitive type may only be specified on GS input or output "
3783 "layout declaration, not on variables.");
3784 }
3785
3786 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3787 *
3788 * "However, the const qualifier cannot be used with out or inout."
3789 *
3790 * The same section of the GLSL 4.40 spec further clarifies this saying:
3791 *
3792 * "The const qualifier cannot be used with out or inout, or a
3793 * compile-time error results."
3794 */
3795 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3796 _mesa_glsl_error(loc, state,
3797 "`const' may not be applied to `out' or `inout' "
3798 "function parameters");
3799 }
3800
3801 /* If there is no qualifier that changes the mode of the variable, leave
3802 * the setting alone.
3803 */
3804 assert(var->data.mode != ir_var_temporary);
3805 if (qual->flags.q.in && qual->flags.q.out)
3806 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3807 else if (qual->flags.q.in)
3808 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3809 else if (qual->flags.q.attribute
3810 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3811 var->data.mode = ir_var_shader_in;
3812 else if (qual->flags.q.out)
3813 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3814 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3815 var->data.mode = ir_var_shader_out;
3816 else if (qual->flags.q.uniform)
3817 var->data.mode = ir_var_uniform;
3818 else if (qual->flags.q.buffer)
3819 var->data.mode = ir_var_shader_storage;
3820 else if (qual->flags.q.shared_storage)
3821 var->data.mode = ir_var_shader_shared;
3822
3823 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3824 qual->flags.q.in && qual->flags.q.out;
3825
3826 if (!is_parameter && is_varying_var(var, state->stage)) {
3827 /* User-defined ins/outs are not permitted in compute shaders. */
3828 if (state->stage == MESA_SHADER_COMPUTE) {
3829 _mesa_glsl_error(loc, state,
3830 "user-defined input and output variables are not "
3831 "permitted in compute shaders");
3832 }
3833
3834 /* This variable is being used to link data between shader stages (in
3835 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3836 * that is allowed for such purposes.
3837 *
3838 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3839 *
3840 * "The varying qualifier can be used only with the data types
3841 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3842 * these."
3843 *
3844 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3845 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3846 *
3847 * "Fragment inputs can only be signed and unsigned integers and
3848 * integer vectors, float, floating-point vectors, matrices, or
3849 * arrays of these. Structures cannot be input.
3850 *
3851 * Similar text exists in the section on vertex shader outputs.
3852 *
3853 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3854 * 3.00 spec allows structs as well. Varying structs are also allowed
3855 * in GLSL 1.50.
3856 */
3857 switch (var->type->get_scalar_type()->base_type) {
3858 case GLSL_TYPE_FLOAT:
3859 /* Ok in all GLSL versions */
3860 break;
3861 case GLSL_TYPE_UINT:
3862 case GLSL_TYPE_INT:
3863 if (state->is_version(130, 300))
3864 break;
3865 _mesa_glsl_error(loc, state,
3866 "varying variables must be of base type float in %s",
3867 state->get_version_string());
3868 break;
3869 case GLSL_TYPE_STRUCT:
3870 if (state->is_version(150, 300))
3871 break;
3872 _mesa_glsl_error(loc, state,
3873 "varying variables may not be of type struct");
3874 break;
3875 case GLSL_TYPE_DOUBLE:
3876 case GLSL_TYPE_UINT64:
3877 case GLSL_TYPE_INT64:
3878 break;
3879 default:
3880 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3881 break;
3882 }
3883 }
3884
3885 if (state->all_invariant && (state->current_function == NULL)) {
3886 switch (state->stage) {
3887 case MESA_SHADER_VERTEX:
3888 if (var->data.mode == ir_var_shader_out)
3889 var->data.invariant = true;
3890 break;
3891 case MESA_SHADER_TESS_CTRL:
3892 case MESA_SHADER_TESS_EVAL:
3893 case MESA_SHADER_GEOMETRY:
3894 if ((var->data.mode == ir_var_shader_in)
3895 || (var->data.mode == ir_var_shader_out))
3896 var->data.invariant = true;
3897 break;
3898 case MESA_SHADER_FRAGMENT:
3899 if (var->data.mode == ir_var_shader_in)
3900 var->data.invariant = true;
3901 break;
3902 case MESA_SHADER_COMPUTE:
3903 /* Invariance isn't meaningful in compute shaders. */
3904 break;
3905 }
3906 }
3907
3908 var->data.interpolation =
3909 interpret_interpolation_qualifier(qual, var->type,
3910 (ir_variable_mode) var->data.mode,
3911 state, loc);
3912
3913 /* Does the declaration use the deprecated 'attribute' or 'varying'
3914 * keywords?
3915 */
3916 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3917 || qual->flags.q.varying;
3918
3919
3920 /* Validate auxiliary storage qualifiers */
3921
3922 /* From section 4.3.4 of the GLSL 1.30 spec:
3923 * "It is an error to use centroid in in a vertex shader."
3924 *
3925 * From section 4.3.4 of the GLSL ES 3.00 spec:
3926 * "It is an error to use centroid in or interpolation qualifiers in
3927 * a vertex shader input."
3928 */
3929
3930 /* Section 4.3.6 of the GLSL 1.30 specification states:
3931 * "It is an error to use centroid out in a fragment shader."
3932 *
3933 * The GL_ARB_shading_language_420pack extension specification states:
3934 * "It is an error to use auxiliary storage qualifiers or interpolation
3935 * qualifiers on an output in a fragment shader."
3936 */
3937 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3938 _mesa_glsl_error(loc, state,
3939 "sample qualifier may only be used on `in` or `out` "
3940 "variables between shader stages");
3941 }
3942 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3943 _mesa_glsl_error(loc, state,
3944 "centroid qualifier may only be used with `in', "
3945 "`out' or `varying' variables between shader stages");
3946 }
3947
3948 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3949 _mesa_glsl_error(loc, state,
3950 "the shared storage qualifiers can only be used with "
3951 "compute shaders");
3952 }
3953
3954 apply_image_qualifier_to_variable(qual, var, state, loc);
3955 }
3956
3957 /**
3958 * Get the variable that is being redeclared by this declaration or if it
3959 * does not exist, the current declared variable.
3960 *
3961 * Semantic checks to verify the validity of the redeclaration are also
3962 * performed. If semantic checks fail, compilation error will be emitted via
3963 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
3964 *
3965 * \returns
3966 * A pointer to an existing variable in the current scope if the declaration
3967 * is a redeclaration, current variable otherwise. \c is_declared boolean
3968 * will return \c true if the declaration is a redeclaration, \c false
3969 * otherwise.
3970 */
3971 static ir_variable *
3972 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
3973 struct _mesa_glsl_parse_state *state,
3974 bool allow_all_redeclarations,
3975 bool *is_redeclaration)
3976 {
3977 /* Check if this declaration is actually a re-declaration, either to
3978 * resize an array or add qualifiers to an existing variable.
3979 *
3980 * This is allowed for variables in the current scope, or when at
3981 * global scope (for built-ins in the implicit outer scope).
3982 */
3983 ir_variable *earlier = state->symbols->get_variable(var->name);
3984 if (earlier == NULL ||
3985 (state->current_function != NULL &&
3986 !state->symbols->name_declared_this_scope(var->name))) {
3987 *is_redeclaration = false;
3988 return var;
3989 }
3990
3991 *is_redeclaration = true;
3992
3993 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
3994 *
3995 * "It is legal to declare an array without a size and then
3996 * later re-declare the same name as an array of the same
3997 * type and specify a size."
3998 */
3999 if (earlier->type->is_unsized_array() && var->type->is_array()
4000 && (var->type->fields.array == earlier->type->fields.array)) {
4001 /* FINISHME: This doesn't match the qualifiers on the two
4002 * FINISHME: declarations. It's not 100% clear whether this is
4003 * FINISHME: required or not.
4004 */
4005
4006 const int size = var->type->array_size();
4007 check_builtin_array_max_size(var->name, size, loc, state);
4008 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4009 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4010 "previous access",
4011 earlier->data.max_array_access);
4012 }
4013
4014 earlier->type = var->type;
4015 delete var;
4016 var = NULL;
4017 } else if ((state->ARB_fragment_coord_conventions_enable ||
4018 state->is_version(150, 0))
4019 && strcmp(var->name, "gl_FragCoord") == 0
4020 && earlier->type == var->type
4021 && var->data.mode == ir_var_shader_in) {
4022 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4023 * qualifiers.
4024 */
4025 earlier->data.origin_upper_left = var->data.origin_upper_left;
4026 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4027
4028 /* According to section 4.3.7 of the GLSL 1.30 spec,
4029 * the following built-in varaibles can be redeclared with an
4030 * interpolation qualifier:
4031 * * gl_FrontColor
4032 * * gl_BackColor
4033 * * gl_FrontSecondaryColor
4034 * * gl_BackSecondaryColor
4035 * * gl_Color
4036 * * gl_SecondaryColor
4037 */
4038 } else if (state->is_version(130, 0)
4039 && (strcmp(var->name, "gl_FrontColor") == 0
4040 || strcmp(var->name, "gl_BackColor") == 0
4041 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4042 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4043 || strcmp(var->name, "gl_Color") == 0
4044 || strcmp(var->name, "gl_SecondaryColor") == 0)
4045 && earlier->type == var->type
4046 && earlier->data.mode == var->data.mode) {
4047 earlier->data.interpolation = var->data.interpolation;
4048
4049 /* Layout qualifiers for gl_FragDepth. */
4050 } else if ((state->is_version(420, 0) ||
4051 state->AMD_conservative_depth_enable ||
4052 state->ARB_conservative_depth_enable)
4053 && strcmp(var->name, "gl_FragDepth") == 0
4054 && earlier->type == var->type
4055 && earlier->data.mode == var->data.mode) {
4056
4057 /** From the AMD_conservative_depth spec:
4058 * Within any shader, the first redeclarations of gl_FragDepth
4059 * must appear before any use of gl_FragDepth.
4060 */
4061 if (earlier->data.used) {
4062 _mesa_glsl_error(&loc, state,
4063 "the first redeclaration of gl_FragDepth "
4064 "must appear before any use of gl_FragDepth");
4065 }
4066
4067 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4068 if (earlier->data.depth_layout != ir_depth_layout_none
4069 && earlier->data.depth_layout != var->data.depth_layout) {
4070 _mesa_glsl_error(&loc, state,
4071 "gl_FragDepth: depth layout is declared here "
4072 "as '%s, but it was previously declared as "
4073 "'%s'",
4074 depth_layout_string(var->data.depth_layout),
4075 depth_layout_string(earlier->data.depth_layout));
4076 }
4077
4078 earlier->data.depth_layout = var->data.depth_layout;
4079
4080 } else if (state->has_framebuffer_fetch() &&
4081 strcmp(var->name, "gl_LastFragData") == 0 &&
4082 var->type == earlier->type &&
4083 var->data.mode == ir_var_auto) {
4084 /* According to the EXT_shader_framebuffer_fetch spec:
4085 *
4086 * "By default, gl_LastFragData is declared with the mediump precision
4087 * qualifier. This can be changed by redeclaring the corresponding
4088 * variables with the desired precision qualifier."
4089 */
4090 earlier->data.precision = var->data.precision;
4091
4092 } else if (allow_all_redeclarations) {
4093 if (earlier->data.mode != var->data.mode) {
4094 _mesa_glsl_error(&loc, state,
4095 "redeclaration of `%s' with incorrect qualifiers",
4096 var->name);
4097 } else if (earlier->type != var->type) {
4098 _mesa_glsl_error(&loc, state,
4099 "redeclaration of `%s' has incorrect type",
4100 var->name);
4101 }
4102 } else {
4103 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4104 }
4105
4106 return earlier;
4107 }
4108
4109 /**
4110 * Generate the IR for an initializer in a variable declaration
4111 */
4112 ir_rvalue *
4113 process_initializer(ir_variable *var, ast_declaration *decl,
4114 ast_fully_specified_type *type,
4115 exec_list *initializer_instructions,
4116 struct _mesa_glsl_parse_state *state)
4117 {
4118 ir_rvalue *result = NULL;
4119
4120 YYLTYPE initializer_loc = decl->initializer->get_location();
4121
4122 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4123 *
4124 * "All uniform variables are read-only and are initialized either
4125 * directly by an application via API commands, or indirectly by
4126 * OpenGL."
4127 */
4128 if (var->data.mode == ir_var_uniform) {
4129 state->check_version(120, 0, &initializer_loc,
4130 "cannot initialize uniform %s",
4131 var->name);
4132 }
4133
4134 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4135 *
4136 * "Buffer variables cannot have initializers."
4137 */
4138 if (var->data.mode == ir_var_shader_storage) {
4139 _mesa_glsl_error(&initializer_loc, state,
4140 "cannot initialize buffer variable %s",
4141 var->name);
4142 }
4143
4144 /* From section 4.1.7 of the GLSL 4.40 spec:
4145 *
4146 * "Opaque variables [...] are initialized only through the
4147 * OpenGL API; they cannot be declared with an initializer in a
4148 * shader."
4149 */
4150 if (var->type->contains_opaque()) {
4151 _mesa_glsl_error(&initializer_loc, state,
4152 "cannot initialize opaque variable %s",
4153 var->name);
4154 }
4155
4156 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4157 _mesa_glsl_error(&initializer_loc, state,
4158 "cannot initialize %s shader input / %s %s",
4159 _mesa_shader_stage_to_string(state->stage),
4160 (state->stage == MESA_SHADER_VERTEX)
4161 ? "attribute" : "varying",
4162 var->name);
4163 }
4164
4165 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4166 _mesa_glsl_error(&initializer_loc, state,
4167 "cannot initialize %s shader output %s",
4168 _mesa_shader_stage_to_string(state->stage),
4169 var->name);
4170 }
4171
4172 /* If the initializer is an ast_aggregate_initializer, recursively store
4173 * type information from the LHS into it, so that its hir() function can do
4174 * type checking.
4175 */
4176 if (decl->initializer->oper == ast_aggregate)
4177 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4178
4179 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4180 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4181
4182 /* Calculate the constant value if this is a const or uniform
4183 * declaration.
4184 *
4185 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4186 *
4187 * "Declarations of globals without a storage qualifier, or with
4188 * just the const qualifier, may include initializers, in which case
4189 * they will be initialized before the first line of main() is
4190 * executed. Such initializers must be a constant expression."
4191 *
4192 * The same section of the GLSL ES 3.00.4 spec has similar language.
4193 */
4194 if (type->qualifier.flags.q.constant
4195 || type->qualifier.flags.q.uniform
4196 || (state->es_shader && state->current_function == NULL)) {
4197 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4198 lhs, rhs, true);
4199 if (new_rhs != NULL) {
4200 rhs = new_rhs;
4201
4202 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4203 * says:
4204 *
4205 * "A constant expression is one of
4206 *
4207 * ...
4208 *
4209 * - an expression formed by an operator on operands that are
4210 * all constant expressions, including getting an element of
4211 * a constant array, or a field of a constant structure, or
4212 * components of a constant vector. However, the sequence
4213 * operator ( , ) and the assignment operators ( =, +=, ...)
4214 * are not included in the operators that can create a
4215 * constant expression."
4216 *
4217 * Section 12.43 (Sequence operator and constant expressions) says:
4218 *
4219 * "Should the following construct be allowed?
4220 *
4221 * float a[2,3];
4222 *
4223 * The expression within the brackets uses the sequence operator
4224 * (',') and returns the integer 3 so the construct is declaring
4225 * a single-dimensional array of size 3. In some languages, the
4226 * construct declares a two-dimensional array. It would be
4227 * preferable to make this construct illegal to avoid confusion.
4228 *
4229 * One possibility is to change the definition of the sequence
4230 * operator so that it does not return a constant-expression and
4231 * hence cannot be used to declare an array size.
4232 *
4233 * RESOLUTION: The result of a sequence operator is not a
4234 * constant-expression."
4235 *
4236 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4237 * contains language almost identical to the section 4.3.3 in the
4238 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4239 * versions.
4240 */
4241 ir_constant *constant_value = rhs->constant_expression_value();
4242 if (!constant_value ||
4243 (state->is_version(430, 300) &&
4244 decl->initializer->has_sequence_subexpression())) {
4245 const char *const variable_mode =
4246 (type->qualifier.flags.q.constant)
4247 ? "const"
4248 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4249
4250 /* If ARB_shading_language_420pack is enabled, initializers of
4251 * const-qualified local variables do not have to be constant
4252 * expressions. Const-qualified global variables must still be
4253 * initialized with constant expressions.
4254 */
4255 if (!state->has_420pack()
4256 || state->current_function == NULL) {
4257 _mesa_glsl_error(& initializer_loc, state,
4258 "initializer of %s variable `%s' must be a "
4259 "constant expression",
4260 variable_mode,
4261 decl->identifier);
4262 if (var->type->is_numeric()) {
4263 /* Reduce cascading errors. */
4264 var->constant_value = type->qualifier.flags.q.constant
4265 ? ir_constant::zero(state, var->type) : NULL;
4266 }
4267 }
4268 } else {
4269 rhs = constant_value;
4270 var->constant_value = type->qualifier.flags.q.constant
4271 ? constant_value : NULL;
4272 }
4273 } else {
4274 if (var->type->is_numeric()) {
4275 /* Reduce cascading errors. */
4276 var->constant_value = type->qualifier.flags.q.constant
4277 ? ir_constant::zero(state, var->type) : NULL;
4278 }
4279 }
4280 }
4281
4282 if (rhs && !rhs->type->is_error()) {
4283 bool temp = var->data.read_only;
4284 if (type->qualifier.flags.q.constant)
4285 var->data.read_only = false;
4286
4287 /* Never emit code to initialize a uniform.
4288 */
4289 const glsl_type *initializer_type;
4290 if (!type->qualifier.flags.q.uniform) {
4291 do_assignment(initializer_instructions, state,
4292 NULL,
4293 lhs, rhs,
4294 &result, true,
4295 true,
4296 type->get_location());
4297 initializer_type = result->type;
4298 } else
4299 initializer_type = rhs->type;
4300
4301 var->constant_initializer = rhs->constant_expression_value();
4302 var->data.has_initializer = true;
4303
4304 /* If the declared variable is an unsized array, it must inherrit
4305 * its full type from the initializer. A declaration such as
4306 *
4307 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4308 *
4309 * becomes
4310 *
4311 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4312 *
4313 * The assignment generated in the if-statement (below) will also
4314 * automatically handle this case for non-uniforms.
4315 *
4316 * If the declared variable is not an array, the types must
4317 * already match exactly. As a result, the type assignment
4318 * here can be done unconditionally. For non-uniforms the call
4319 * to do_assignment can change the type of the initializer (via
4320 * the implicit conversion rules). For uniforms the initializer
4321 * must be a constant expression, and the type of that expression
4322 * was validated above.
4323 */
4324 var->type = initializer_type;
4325
4326 var->data.read_only = temp;
4327 }
4328
4329 return result;
4330 }
4331
4332 static void
4333 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4334 YYLTYPE loc, ir_variable *var,
4335 unsigned num_vertices,
4336 unsigned *size,
4337 const char *var_category)
4338 {
4339 if (var->type->is_unsized_array()) {
4340 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4341 *
4342 * All geometry shader input unsized array declarations will be
4343 * sized by an earlier input layout qualifier, when present, as per
4344 * the following table.
4345 *
4346 * Followed by a table mapping each allowed input layout qualifier to
4347 * the corresponding input length.
4348 *
4349 * Similarly for tessellation control shader outputs.
4350 */
4351 if (num_vertices != 0)
4352 var->type = glsl_type::get_array_instance(var->type->fields.array,
4353 num_vertices);
4354 } else {
4355 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4356 * includes the following examples of compile-time errors:
4357 *
4358 * // code sequence within one shader...
4359 * in vec4 Color1[]; // size unknown
4360 * ...Color1.length()...// illegal, length() unknown
4361 * in vec4 Color2[2]; // size is 2
4362 * ...Color1.length()...// illegal, Color1 still has no size
4363 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4364 * layout(lines) in; // legal, input size is 2, matching
4365 * in vec4 Color4[3]; // illegal, contradicts layout
4366 * ...
4367 *
4368 * To detect the case illustrated by Color3, we verify that the size of
4369 * an explicitly-sized array matches the size of any previously declared
4370 * explicitly-sized array. To detect the case illustrated by Color4, we
4371 * verify that the size of an explicitly-sized array is consistent with
4372 * any previously declared input layout.
4373 */
4374 if (num_vertices != 0 && var->type->length != num_vertices) {
4375 _mesa_glsl_error(&loc, state,
4376 "%s size contradicts previously declared layout "
4377 "(size is %u, but layout requires a size of %u)",
4378 var_category, var->type->length, num_vertices);
4379 } else if (*size != 0 && var->type->length != *size) {
4380 _mesa_glsl_error(&loc, state,
4381 "%s sizes are inconsistent (size is %u, but a "
4382 "previous declaration has size %u)",
4383 var_category, var->type->length, *size);
4384 } else {
4385 *size = var->type->length;
4386 }
4387 }
4388 }
4389
4390 static void
4391 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4392 YYLTYPE loc, ir_variable *var)
4393 {
4394 unsigned num_vertices = 0;
4395
4396 if (state->tcs_output_vertices_specified) {
4397 if (!state->out_qualifier->vertices->
4398 process_qualifier_constant(state, "vertices",
4399 &num_vertices, false)) {
4400 return;
4401 }
4402
4403 if (num_vertices > state->Const.MaxPatchVertices) {
4404 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4405 "GL_MAX_PATCH_VERTICES", num_vertices);
4406 return;
4407 }
4408 }
4409
4410 if (!var->type->is_array() && !var->data.patch) {
4411 _mesa_glsl_error(&loc, state,
4412 "tessellation control shader outputs must be arrays");
4413
4414 /* To avoid cascading failures, short circuit the checks below. */
4415 return;
4416 }
4417
4418 if (var->data.patch)
4419 return;
4420
4421 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4422 &state->tcs_output_size,
4423 "tessellation control shader output");
4424 }
4425
4426 /**
4427 * Do additional processing necessary for tessellation control/evaluation shader
4428 * input declarations. This covers both interface block arrays and bare input
4429 * variables.
4430 */
4431 static void
4432 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4433 YYLTYPE loc, ir_variable *var)
4434 {
4435 if (!var->type->is_array() && !var->data.patch) {
4436 _mesa_glsl_error(&loc, state,
4437 "per-vertex tessellation shader inputs must be arrays");
4438 /* Avoid cascading failures. */
4439 return;
4440 }
4441
4442 if (var->data.patch)
4443 return;
4444
4445 /* The ARB_tessellation_shader spec says:
4446 *
4447 * "Declaring an array size is optional. If no size is specified, it
4448 * will be taken from the implementation-dependent maximum patch size
4449 * (gl_MaxPatchVertices). If a size is specified, it must match the
4450 * maximum patch size; otherwise, a compile or link error will occur."
4451 *
4452 * This text appears twice, once for TCS inputs, and again for TES inputs.
4453 */
4454 if (var->type->is_unsized_array()) {
4455 var->type = glsl_type::get_array_instance(var->type->fields.array,
4456 state->Const.MaxPatchVertices);
4457 } else if (var->type->length != state->Const.MaxPatchVertices) {
4458 _mesa_glsl_error(&loc, state,
4459 "per-vertex tessellation shader input arrays must be "
4460 "sized to gl_MaxPatchVertices (%d).",
4461 state->Const.MaxPatchVertices);
4462 }
4463 }
4464
4465
4466 /**
4467 * Do additional processing necessary for geometry shader input declarations
4468 * (this covers both interface blocks arrays and bare input variables).
4469 */
4470 static void
4471 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4472 YYLTYPE loc, ir_variable *var)
4473 {
4474 unsigned num_vertices = 0;
4475
4476 if (state->gs_input_prim_type_specified) {
4477 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4478 }
4479
4480 /* Geometry shader input variables must be arrays. Caller should have
4481 * reported an error for this.
4482 */
4483 if (!var->type->is_array()) {
4484 assert(state->error);
4485
4486 /* To avoid cascading failures, short circuit the checks below. */
4487 return;
4488 }
4489
4490 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4491 &state->gs_input_size,
4492 "geometry shader input");
4493 }
4494
4495 void
4496 validate_identifier(const char *identifier, YYLTYPE loc,
4497 struct _mesa_glsl_parse_state *state)
4498 {
4499 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4500 *
4501 * "Identifiers starting with "gl_" are reserved for use by
4502 * OpenGL, and may not be declared in a shader as either a
4503 * variable or a function."
4504 */
4505 if (is_gl_identifier(identifier)) {
4506 _mesa_glsl_error(&loc, state,
4507 "identifier `%s' uses reserved `gl_' prefix",
4508 identifier);
4509 } else if (strstr(identifier, "__")) {
4510 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4511 * spec:
4512 *
4513 * "In addition, all identifiers containing two
4514 * consecutive underscores (__) are reserved as
4515 * possible future keywords."
4516 *
4517 * The intention is that names containing __ are reserved for internal
4518 * use by the implementation, and names prefixed with GL_ are reserved
4519 * for use by Khronos. Names simply containing __ are dangerous to use,
4520 * but should be allowed.
4521 *
4522 * A future version of the GLSL specification will clarify this.
4523 */
4524 _mesa_glsl_warning(&loc, state,
4525 "identifier `%s' uses reserved `__' string",
4526 identifier);
4527 }
4528 }
4529
4530 ir_rvalue *
4531 ast_declarator_list::hir(exec_list *instructions,
4532 struct _mesa_glsl_parse_state *state)
4533 {
4534 void *ctx = state;
4535 const struct glsl_type *decl_type;
4536 const char *type_name = NULL;
4537 ir_rvalue *result = NULL;
4538 YYLTYPE loc = this->get_location();
4539
4540 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4541 *
4542 * "To ensure that a particular output variable is invariant, it is
4543 * necessary to use the invariant qualifier. It can either be used to
4544 * qualify a previously declared variable as being invariant
4545 *
4546 * invariant gl_Position; // make existing gl_Position be invariant"
4547 *
4548 * In these cases the parser will set the 'invariant' flag in the declarator
4549 * list, and the type will be NULL.
4550 */
4551 if (this->invariant) {
4552 assert(this->type == NULL);
4553
4554 if (state->current_function != NULL) {
4555 _mesa_glsl_error(& loc, state,
4556 "all uses of `invariant' keyword must be at global "
4557 "scope");
4558 }
4559
4560 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4561 assert(decl->array_specifier == NULL);
4562 assert(decl->initializer == NULL);
4563
4564 ir_variable *const earlier =
4565 state->symbols->get_variable(decl->identifier);
4566 if (earlier == NULL) {
4567 _mesa_glsl_error(& loc, state,
4568 "undeclared variable `%s' cannot be marked "
4569 "invariant", decl->identifier);
4570 } else if (!is_allowed_invariant(earlier, state)) {
4571 _mesa_glsl_error(&loc, state,
4572 "`%s' cannot be marked invariant; interfaces between "
4573 "shader stages only.", decl->identifier);
4574 } else if (earlier->data.used) {
4575 _mesa_glsl_error(& loc, state,
4576 "variable `%s' may not be redeclared "
4577 "`invariant' after being used",
4578 earlier->name);
4579 } else {
4580 earlier->data.invariant = true;
4581 }
4582 }
4583
4584 /* Invariant redeclarations do not have r-values.
4585 */
4586 return NULL;
4587 }
4588
4589 if (this->precise) {
4590 assert(this->type == NULL);
4591
4592 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4593 assert(decl->array_specifier == NULL);
4594 assert(decl->initializer == NULL);
4595
4596 ir_variable *const earlier =
4597 state->symbols->get_variable(decl->identifier);
4598 if (earlier == NULL) {
4599 _mesa_glsl_error(& loc, state,
4600 "undeclared variable `%s' cannot be marked "
4601 "precise", decl->identifier);
4602 } else if (state->current_function != NULL &&
4603 !state->symbols->name_declared_this_scope(decl->identifier)) {
4604 /* Note: we have to check if we're in a function, since
4605 * builtins are treated as having come from another scope.
4606 */
4607 _mesa_glsl_error(& loc, state,
4608 "variable `%s' from an outer scope may not be "
4609 "redeclared `precise' in this scope",
4610 earlier->name);
4611 } else if (earlier->data.used) {
4612 _mesa_glsl_error(& loc, state,
4613 "variable `%s' may not be redeclared "
4614 "`precise' after being used",
4615 earlier->name);
4616 } else {
4617 earlier->data.precise = true;
4618 }
4619 }
4620
4621 /* Precise redeclarations do not have r-values either. */
4622 return NULL;
4623 }
4624
4625 assert(this->type != NULL);
4626 assert(!this->invariant);
4627 assert(!this->precise);
4628
4629 /* The type specifier may contain a structure definition. Process that
4630 * before any of the variable declarations.
4631 */
4632 (void) this->type->specifier->hir(instructions, state);
4633
4634 decl_type = this->type->glsl_type(& type_name, state);
4635
4636 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4637 * "Buffer variables may only be declared inside interface blocks
4638 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4639 * shader storage blocks. It is a compile-time error to declare buffer
4640 * variables at global scope (outside a block)."
4641 */
4642 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4643 _mesa_glsl_error(&loc, state,
4644 "buffer variables cannot be declared outside "
4645 "interface blocks");
4646 }
4647
4648 /* An offset-qualified atomic counter declaration sets the default
4649 * offset for the next declaration within the same atomic counter
4650 * buffer.
4651 */
4652 if (decl_type && decl_type->contains_atomic()) {
4653 if (type->qualifier.flags.q.explicit_binding &&
4654 type->qualifier.flags.q.explicit_offset) {
4655 unsigned qual_binding;
4656 unsigned qual_offset;
4657 if (process_qualifier_constant(state, &loc, "binding",
4658 type->qualifier.binding,
4659 &qual_binding)
4660 && process_qualifier_constant(state, &loc, "offset",
4661 type->qualifier.offset,
4662 &qual_offset)) {
4663 state->atomic_counter_offsets[qual_binding] = qual_offset;
4664 }
4665 }
4666
4667 ast_type_qualifier allowed_atomic_qual_mask;
4668 allowed_atomic_qual_mask.flags.i = 0;
4669 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4670 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4671 allowed_atomic_qual_mask.flags.q.uniform = 1;
4672
4673 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4674 "invalid layout qualifier for",
4675 "atomic_uint");
4676 }
4677
4678 if (this->declarations.is_empty()) {
4679 /* If there is no structure involved in the program text, there are two
4680 * possible scenarios:
4681 *
4682 * - The program text contained something like 'vec4;'. This is an
4683 * empty declaration. It is valid but weird. Emit a warning.
4684 *
4685 * - The program text contained something like 'S;' and 'S' is not the
4686 * name of a known structure type. This is both invalid and weird.
4687 * Emit an error.
4688 *
4689 * - The program text contained something like 'mediump float;'
4690 * when the programmer probably meant 'precision mediump
4691 * float;' Emit a warning with a description of what they
4692 * probably meant to do.
4693 *
4694 * Note that if decl_type is NULL and there is a structure involved,
4695 * there must have been some sort of error with the structure. In this
4696 * case we assume that an error was already generated on this line of
4697 * code for the structure. There is no need to generate an additional,
4698 * confusing error.
4699 */
4700 assert(this->type->specifier->structure == NULL || decl_type != NULL
4701 || state->error);
4702
4703 if (decl_type == NULL) {
4704 _mesa_glsl_error(&loc, state,
4705 "invalid type `%s' in empty declaration",
4706 type_name);
4707 } else {
4708 if (decl_type->base_type == GLSL_TYPE_ARRAY) {
4709 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4710 * spec:
4711 *
4712 * "... any declaration that leaves the size undefined is
4713 * disallowed as this would add complexity and there are no
4714 * use-cases."
4715 */
4716 if (state->es_shader && decl_type->is_unsized_array()) {
4717 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4718 "or implicitly defined");
4719 }
4720
4721 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4722 *
4723 * "The combinations of types and qualifiers that cause
4724 * compile-time or link-time errors are the same whether or not
4725 * the declaration is empty."
4726 */
4727 validate_array_dimensions(decl_type, state, &loc);
4728 }
4729
4730 if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
4731 /* Empty atomic counter declarations are allowed and useful
4732 * to set the default offset qualifier.
4733 */
4734 return NULL;
4735 } else if (this->type->qualifier.precision != ast_precision_none) {
4736 if (this->type->specifier->structure != NULL) {
4737 _mesa_glsl_error(&loc, state,
4738 "precision qualifiers can't be applied "
4739 "to structures");
4740 } else {
4741 static const char *const precision_names[] = {
4742 "highp",
4743 "highp",
4744 "mediump",
4745 "lowp"
4746 };
4747
4748 _mesa_glsl_warning(&loc, state,
4749 "empty declaration with precision "
4750 "qualifier, to set the default precision, "
4751 "use `precision %s %s;'",
4752 precision_names[this->type->
4753 qualifier.precision],
4754 type_name);
4755 }
4756 } else if (this->type->specifier->structure == NULL) {
4757 _mesa_glsl_warning(&loc, state, "empty declaration");
4758 }
4759 }
4760 }
4761
4762 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4763 const struct glsl_type *var_type;
4764 ir_variable *var;
4765 const char *identifier = decl->identifier;
4766 /* FINISHME: Emit a warning if a variable declaration shadows a
4767 * FINISHME: declaration at a higher scope.
4768 */
4769
4770 if ((decl_type == NULL) || decl_type->is_void()) {
4771 if (type_name != NULL) {
4772 _mesa_glsl_error(& loc, state,
4773 "invalid type `%s' in declaration of `%s'",
4774 type_name, decl->identifier);
4775 } else {
4776 _mesa_glsl_error(& loc, state,
4777 "invalid type in declaration of `%s'",
4778 decl->identifier);
4779 }
4780 continue;
4781 }
4782
4783 if (this->type->qualifier.flags.q.subroutine) {
4784 const glsl_type *t;
4785 const char *name;
4786
4787 t = state->symbols->get_type(this->type->specifier->type_name);
4788 if (!t)
4789 _mesa_glsl_error(& loc, state,
4790 "invalid type in declaration of `%s'",
4791 decl->identifier);
4792 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4793
4794 identifier = name;
4795
4796 }
4797 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4798 state);
4799
4800 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4801
4802 /* The 'varying in' and 'varying out' qualifiers can only be used with
4803 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4804 * yet.
4805 */
4806 if (this->type->qualifier.flags.q.varying) {
4807 if (this->type->qualifier.flags.q.in) {
4808 _mesa_glsl_error(& loc, state,
4809 "`varying in' qualifier in declaration of "
4810 "`%s' only valid for geometry shaders using "
4811 "ARB_geometry_shader4 or EXT_geometry_shader4",
4812 decl->identifier);
4813 } else if (this->type->qualifier.flags.q.out) {
4814 _mesa_glsl_error(& loc, state,
4815 "`varying out' qualifier in declaration of "
4816 "`%s' only valid for geometry shaders using "
4817 "ARB_geometry_shader4 or EXT_geometry_shader4",
4818 decl->identifier);
4819 }
4820 }
4821
4822 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4823 *
4824 * "Global variables can only use the qualifiers const,
4825 * attribute, uniform, or varying. Only one may be
4826 * specified.
4827 *
4828 * Local variables can only use the qualifier const."
4829 *
4830 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4831 * any extension that adds the 'layout' keyword.
4832 */
4833 if (!state->is_version(130, 300)
4834 && !state->has_explicit_attrib_location()
4835 && !state->has_separate_shader_objects()
4836 && !state->ARB_fragment_coord_conventions_enable) {
4837 if (this->type->qualifier.flags.q.out) {
4838 _mesa_glsl_error(& loc, state,
4839 "`out' qualifier in declaration of `%s' "
4840 "only valid for function parameters in %s",
4841 decl->identifier, state->get_version_string());
4842 }
4843 if (this->type->qualifier.flags.q.in) {
4844 _mesa_glsl_error(& loc, state,
4845 "`in' qualifier in declaration of `%s' "
4846 "only valid for function parameters in %s",
4847 decl->identifier, state->get_version_string());
4848 }
4849 /* FINISHME: Test for other invalid qualifiers. */
4850 }
4851
4852 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4853 & loc, false);
4854 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4855 &loc);
4856
4857 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4858 && (var->type->is_numeric() || var->type->is_boolean())
4859 && state->zero_init) {
4860 const ir_constant_data data = { { 0 } };
4861 var->data.has_initializer = true;
4862 var->constant_initializer = new(var) ir_constant(var->type, &data);
4863 }
4864
4865 if (this->type->qualifier.flags.q.invariant) {
4866 if (!is_allowed_invariant(var, state)) {
4867 _mesa_glsl_error(&loc, state,
4868 "`%s' cannot be marked invariant; interfaces between "
4869 "shader stages only", var->name);
4870 }
4871 }
4872
4873 if (state->current_function != NULL) {
4874 const char *mode = NULL;
4875 const char *extra = "";
4876
4877 /* There is no need to check for 'inout' here because the parser will
4878 * only allow that in function parameter lists.
4879 */
4880 if (this->type->qualifier.flags.q.attribute) {
4881 mode = "attribute";
4882 } else if (this->type->qualifier.flags.q.subroutine) {
4883 mode = "subroutine uniform";
4884 } else if (this->type->qualifier.flags.q.uniform) {
4885 mode = "uniform";
4886 } else if (this->type->qualifier.flags.q.varying) {
4887 mode = "varying";
4888 } else if (this->type->qualifier.flags.q.in) {
4889 mode = "in";
4890 extra = " or in function parameter list";
4891 } else if (this->type->qualifier.flags.q.out) {
4892 mode = "out";
4893 extra = " or in function parameter list";
4894 }
4895
4896 if (mode) {
4897 _mesa_glsl_error(& loc, state,
4898 "%s variable `%s' must be declared at "
4899 "global scope%s",
4900 mode, var->name, extra);
4901 }
4902 } else if (var->data.mode == ir_var_shader_in) {
4903 var->data.read_only = true;
4904
4905 if (state->stage == MESA_SHADER_VERTEX) {
4906 bool error_emitted = false;
4907
4908 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4909 *
4910 * "Vertex shader inputs can only be float, floating-point
4911 * vectors, matrices, signed and unsigned integers and integer
4912 * vectors. Vertex shader inputs can also form arrays of these
4913 * types, but not structures."
4914 *
4915 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4916 *
4917 * "Vertex shader inputs can only be float, floating-point
4918 * vectors, matrices, signed and unsigned integers and integer
4919 * vectors. They cannot be arrays or structures."
4920 *
4921 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4922 *
4923 * "The attribute qualifier can be used only with float,
4924 * floating-point vectors, and matrices. Attribute variables
4925 * cannot be declared as arrays or structures."
4926 *
4927 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4928 *
4929 * "Vertex shader inputs can only be float, floating-point
4930 * vectors, matrices, signed and unsigned integers and integer
4931 * vectors. Vertex shader inputs cannot be arrays or
4932 * structures."
4933 */
4934 const glsl_type *check_type = var->type->without_array();
4935
4936 switch (check_type->base_type) {
4937 case GLSL_TYPE_FLOAT:
4938 break;
4939 case GLSL_TYPE_UINT64:
4940 case GLSL_TYPE_INT64:
4941 break;
4942 case GLSL_TYPE_UINT:
4943 case GLSL_TYPE_INT:
4944 if (state->is_version(120, 300))
4945 break;
4946 case GLSL_TYPE_DOUBLE:
4947 if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4948 break;
4949 /* FALLTHROUGH */
4950 default:
4951 _mesa_glsl_error(& loc, state,
4952 "vertex shader input / attribute cannot have "
4953 "type %s`%s'",
4954 var->type->is_array() ? "array of " : "",
4955 check_type->name);
4956 error_emitted = true;
4957 }
4958
4959 if (!error_emitted && var->type->is_array() &&
4960 !state->check_version(150, 0, &loc,
4961 "vertex shader input / attribute "
4962 "cannot have array type")) {
4963 error_emitted = true;
4964 }
4965 } else if (state->stage == MESA_SHADER_GEOMETRY) {
4966 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4967 *
4968 * Geometry shader input variables get the per-vertex values
4969 * written out by vertex shader output variables of the same
4970 * names. Since a geometry shader operates on a set of
4971 * vertices, each input varying variable (or input block, see
4972 * interface blocks below) needs to be declared as an array.
4973 */
4974 if (!var->type->is_array()) {
4975 _mesa_glsl_error(&loc, state,
4976 "geometry shader inputs must be arrays");
4977 }
4978
4979 handle_geometry_shader_input_decl(state, loc, var);
4980 } else if (state->stage == MESA_SHADER_FRAGMENT) {
4981 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
4982 *
4983 * It is a compile-time error to declare a fragment shader
4984 * input with, or that contains, any of the following types:
4985 *
4986 * * A boolean type
4987 * * An opaque type
4988 * * An array of arrays
4989 * * An array of structures
4990 * * A structure containing an array
4991 * * A structure containing a structure
4992 */
4993 if (state->es_shader) {
4994 const glsl_type *check_type = var->type->without_array();
4995 if (check_type->is_boolean() ||
4996 check_type->contains_opaque()) {
4997 _mesa_glsl_error(&loc, state,
4998 "fragment shader input cannot have type %s",
4999 check_type->name);
5000 }
5001 if (var->type->is_array() &&
5002 var->type->fields.array->is_array()) {
5003 _mesa_glsl_error(&loc, state,
5004 "%s shader output "
5005 "cannot have an array of arrays",
5006 _mesa_shader_stage_to_string(state->stage));
5007 }
5008 if (var->type->is_array() &&
5009 var->type->fields.array->is_record()) {
5010 _mesa_glsl_error(&loc, state,
5011 "fragment shader input "
5012 "cannot have an array of structs");
5013 }
5014 if (var->type->is_record()) {
5015 for (unsigned i = 0; i < var->type->length; i++) {
5016 if (var->type->fields.structure[i].type->is_array() ||
5017 var->type->fields.structure[i].type->is_record())
5018 _mesa_glsl_error(&loc, state,
5019 "fragement shader input cannot have "
5020 "a struct that contains an "
5021 "array or struct");
5022 }
5023 }
5024 }
5025 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5026 state->stage == MESA_SHADER_TESS_EVAL) {
5027 handle_tess_shader_input_decl(state, loc, var);
5028 }
5029 } else if (var->data.mode == ir_var_shader_out) {
5030 const glsl_type *check_type = var->type->without_array();
5031
5032 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5033 *
5034 * It is a compile-time error to declare a vertex, tessellation
5035 * evaluation, tessellation control, or geometry shader output
5036 * that contains any of the following:
5037 *
5038 * * A Boolean type (bool, bvec2 ...)
5039 * * An opaque type
5040 */
5041 if (check_type->is_boolean() || check_type->contains_opaque())
5042 _mesa_glsl_error(&loc, state,
5043 "%s shader output cannot have type %s",
5044 _mesa_shader_stage_to_string(state->stage),
5045 check_type->name);
5046
5047 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5048 *
5049 * It is a compile-time error to declare a fragment shader output
5050 * that contains any of the following:
5051 *
5052 * * A Boolean type (bool, bvec2 ...)
5053 * * A double-precision scalar or vector (double, dvec2 ...)
5054 * * An opaque type
5055 * * Any matrix type
5056 * * A structure
5057 */
5058 if (state->stage == MESA_SHADER_FRAGMENT) {
5059 if (check_type->is_record() || check_type->is_matrix())
5060 _mesa_glsl_error(&loc, state,
5061 "fragment shader output "
5062 "cannot have struct or matrix type");
5063 switch (check_type->base_type) {
5064 case GLSL_TYPE_UINT:
5065 case GLSL_TYPE_INT:
5066 case GLSL_TYPE_FLOAT:
5067 break;
5068 default:
5069 _mesa_glsl_error(&loc, state,
5070 "fragment shader output cannot have "
5071 "type %s", check_type->name);
5072 }
5073 }
5074
5075 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5076 *
5077 * It is a compile-time error to declare a vertex shader output
5078 * with, or that contains, any of the following types:
5079 *
5080 * * A boolean type
5081 * * An opaque type
5082 * * An array of arrays
5083 * * An array of structures
5084 * * A structure containing an array
5085 * * A structure containing a structure
5086 *
5087 * It is a compile-time error to declare a fragment shader output
5088 * with, or that contains, any of the following types:
5089 *
5090 * * A boolean type
5091 * * An opaque type
5092 * * A matrix
5093 * * A structure
5094 * * An array of array
5095 *
5096 * ES 3.20 updates this to apply to tessellation and geometry shaders
5097 * as well. Because there are per-vertex arrays in the new stages,
5098 * it strikes the "array of..." rules and replaces them with these:
5099 *
5100 * * For per-vertex-arrayed variables (applies to tessellation
5101 * control, tessellation evaluation and geometry shaders):
5102 *
5103 * * Per-vertex-arrayed arrays of arrays
5104 * * Per-vertex-arrayed arrays of structures
5105 *
5106 * * For non-per-vertex-arrayed variables:
5107 *
5108 * * An array of arrays
5109 * * An array of structures
5110 *
5111 * which basically says to unwrap the per-vertex aspect and apply
5112 * the old rules.
5113 */
5114 if (state->es_shader) {
5115 if (var->type->is_array() &&
5116 var->type->fields.array->is_array()) {
5117 _mesa_glsl_error(&loc, state,
5118 "%s shader output "
5119 "cannot have an array of arrays",
5120 _mesa_shader_stage_to_string(state->stage));
5121 }
5122 if (state->stage <= MESA_SHADER_GEOMETRY) {
5123 const glsl_type *type = var->type;
5124
5125 if (state->stage == MESA_SHADER_TESS_CTRL &&
5126 !var->data.patch && var->type->is_array()) {
5127 type = var->type->fields.array;
5128 }
5129
5130 if (type->is_array() && type->fields.array->is_record()) {
5131 _mesa_glsl_error(&loc, state,
5132 "%s shader output cannot have "
5133 "an array of structs",
5134 _mesa_shader_stage_to_string(state->stage));
5135 }
5136 if (type->is_record()) {
5137 for (unsigned i = 0; i < type->length; i++) {
5138 if (type->fields.structure[i].type->is_array() ||
5139 type->fields.structure[i].type->is_record())
5140 _mesa_glsl_error(&loc, state,
5141 "%s shader output cannot have a "
5142 "struct that contains an "
5143 "array or struct",
5144 _mesa_shader_stage_to_string(state->stage));
5145 }
5146 }
5147 }
5148 }
5149
5150 if (state->stage == MESA_SHADER_TESS_CTRL) {
5151 handle_tess_ctrl_shader_output_decl(state, loc, var);
5152 }
5153 } else if (var->type->contains_subroutine()) {
5154 /* declare subroutine uniforms as hidden */
5155 var->data.how_declared = ir_var_hidden;
5156 }
5157
5158 /* From section 4.3.4 of the GLSL 4.00 spec:
5159 * "Input variables may not be declared using the patch in qualifier
5160 * in tessellation control or geometry shaders."
5161 *
5162 * From section 4.3.6 of the GLSL 4.00 spec:
5163 * "It is an error to use patch out in a vertex, tessellation
5164 * evaluation, or geometry shader."
5165 *
5166 * This doesn't explicitly forbid using them in a fragment shader, but
5167 * that's probably just an oversight.
5168 */
5169 if (state->stage != MESA_SHADER_TESS_EVAL
5170 && this->type->qualifier.flags.q.patch
5171 && this->type->qualifier.flags.q.in) {
5172
5173 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5174 "tessellation evaluation shader");
5175 }
5176
5177 if (state->stage != MESA_SHADER_TESS_CTRL
5178 && this->type->qualifier.flags.q.patch
5179 && this->type->qualifier.flags.q.out) {
5180
5181 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5182 "tessellation control shader");
5183 }
5184
5185 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5186 */
5187 if (this->type->qualifier.precision != ast_precision_none) {
5188 state->check_precision_qualifiers_allowed(&loc);
5189 }
5190
5191 if (this->type->qualifier.precision != ast_precision_none &&
5192 !precision_qualifier_allowed(var->type)) {
5193 _mesa_glsl_error(&loc, state,
5194 "precision qualifiers apply only to floating point"
5195 ", integer and opaque types");
5196 }
5197
5198 /* From section 4.1.7 of the GLSL 4.40 spec:
5199 *
5200 * "[Opaque types] can only be declared as function
5201 * parameters or uniform-qualified variables."
5202 */
5203 if (var_type->contains_opaque() &&
5204 !this->type->qualifier.flags.q.uniform) {
5205 _mesa_glsl_error(&loc, state,
5206 "opaque variables must be declared uniform");
5207 }
5208
5209 /* Process the initializer and add its instructions to a temporary
5210 * list. This list will be added to the instruction stream (below) after
5211 * the declaration is added. This is done because in some cases (such as
5212 * redeclarations) the declaration may not actually be added to the
5213 * instruction stream.
5214 */
5215 exec_list initializer_instructions;
5216
5217 /* Examine var name here since var may get deleted in the next call */
5218 bool var_is_gl_id = is_gl_identifier(var->name);
5219
5220 bool is_redeclaration;
5221 ir_variable *declared_var =
5222 get_variable_being_redeclared(var, decl->get_location(), state,
5223 false /* allow_all_redeclarations */,
5224 &is_redeclaration);
5225 if (is_redeclaration) {
5226 if (var_is_gl_id &&
5227 declared_var->data.how_declared == ir_var_declared_in_block) {
5228 _mesa_glsl_error(&loc, state,
5229 "`%s' has already been redeclared using "
5230 "gl_PerVertex", declared_var->name);
5231 }
5232 declared_var->data.how_declared = ir_var_declared_normally;
5233 }
5234
5235 if (decl->initializer != NULL) {
5236 result = process_initializer(declared_var,
5237 decl, this->type,
5238 &initializer_instructions, state);
5239 } else {
5240 validate_array_dimensions(var_type, state, &loc);
5241 }
5242
5243 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5244 *
5245 * "It is an error to write to a const variable outside of
5246 * its declaration, so they must be initialized when
5247 * declared."
5248 */
5249 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5250 _mesa_glsl_error(& loc, state,
5251 "const declaration of `%s' must be initialized",
5252 decl->identifier);
5253 }
5254
5255 if (state->es_shader) {
5256 const glsl_type *const t = declared_var->type;
5257
5258 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5259 *
5260 * The GL_OES_tessellation_shader spec says about inputs:
5261 *
5262 * "Declaring an array size is optional. If no size is specified,
5263 * it will be taken from the implementation-dependent maximum
5264 * patch size (gl_MaxPatchVertices)."
5265 *
5266 * and about TCS outputs:
5267 *
5268 * "If no size is specified, it will be taken from output patch
5269 * size declared in the shader."
5270 *
5271 * The GL_OES_geometry_shader spec says:
5272 *
5273 * "All geometry shader input unsized array declarations will be
5274 * sized by an earlier input primitive layout qualifier, when
5275 * present, as per the following table."
5276 */
5277 const bool implicitly_sized =
5278 (declared_var->data.mode == ir_var_shader_in &&
5279 state->stage >= MESA_SHADER_TESS_CTRL &&
5280 state->stage <= MESA_SHADER_GEOMETRY) ||
5281 (declared_var->data.mode == ir_var_shader_out &&
5282 state->stage == MESA_SHADER_TESS_CTRL);
5283
5284 if (t->is_unsized_array() && !implicitly_sized)
5285 /* Section 10.17 of the GLSL ES 1.00 specification states that
5286 * unsized array declarations have been removed from the language.
5287 * Arrays that are sized using an initializer are still explicitly
5288 * sized. However, GLSL ES 1.00 does not allow array
5289 * initializers. That is only allowed in GLSL ES 3.00.
5290 *
5291 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5292 *
5293 * "An array type can also be formed without specifying a size
5294 * if the definition includes an initializer:
5295 *
5296 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5297 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5298 *
5299 * float a[5];
5300 * float b[] = a;"
5301 */
5302 _mesa_glsl_error(& loc, state,
5303 "unsized array declarations are not allowed in "
5304 "GLSL ES");
5305 }
5306
5307 /* If the declaration is not a redeclaration, there are a few additional
5308 * semantic checks that must be applied. In addition, variable that was
5309 * created for the declaration should be added to the IR stream.
5310 */
5311 if (!is_redeclaration) {
5312 validate_identifier(decl->identifier, loc, state);
5313
5314 /* Add the variable to the symbol table. Note that the initializer's
5315 * IR was already processed earlier (though it hasn't been emitted
5316 * yet), without the variable in scope.
5317 *
5318 * This differs from most C-like languages, but it follows the GLSL
5319 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5320 * spec:
5321 *
5322 * "Within a declaration, the scope of a name starts immediately
5323 * after the initializer if present or immediately after the name
5324 * being declared if not."
5325 */
5326 if (!state->symbols->add_variable(declared_var)) {
5327 YYLTYPE loc = this->get_location();
5328 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5329 "current scope", decl->identifier);
5330 continue;
5331 }
5332
5333 /* Push the variable declaration to the top. It means that all the
5334 * variable declarations will appear in a funny last-to-first order,
5335 * but otherwise we run into trouble if a function is prototyped, a
5336 * global var is decled, then the function is defined with usage of
5337 * the global var. See glslparsertest's CorrectModule.frag.
5338 */
5339 instructions->push_head(declared_var);
5340 }
5341
5342 instructions->append_list(&initializer_instructions);
5343 }
5344
5345
5346 /* Generally, variable declarations do not have r-values. However,
5347 * one is used for the declaration in
5348 *
5349 * while (bool b = some_condition()) {
5350 * ...
5351 * }
5352 *
5353 * so we return the rvalue from the last seen declaration here.
5354 */
5355 return result;
5356 }
5357
5358
5359 ir_rvalue *
5360 ast_parameter_declarator::hir(exec_list *instructions,
5361 struct _mesa_glsl_parse_state *state)
5362 {
5363 void *ctx = state;
5364 const struct glsl_type *type;
5365 const char *name = NULL;
5366 YYLTYPE loc = this->get_location();
5367
5368 type = this->type->glsl_type(& name, state);
5369
5370 if (type == NULL) {
5371 if (name != NULL) {
5372 _mesa_glsl_error(& loc, state,
5373 "invalid type `%s' in declaration of `%s'",
5374 name, this->identifier);
5375 } else {
5376 _mesa_glsl_error(& loc, state,
5377 "invalid type in declaration of `%s'",
5378 this->identifier);
5379 }
5380
5381 type = glsl_type::error_type;
5382 }
5383
5384 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5385 *
5386 * "Functions that accept no input arguments need not use void in the
5387 * argument list because prototypes (or definitions) are required and
5388 * therefore there is no ambiguity when an empty argument list "( )" is
5389 * declared. The idiom "(void)" as a parameter list is provided for
5390 * convenience."
5391 *
5392 * Placing this check here prevents a void parameter being set up
5393 * for a function, which avoids tripping up checks for main taking
5394 * parameters and lookups of an unnamed symbol.
5395 */
5396 if (type->is_void()) {
5397 if (this->identifier != NULL)
5398 _mesa_glsl_error(& loc, state,
5399 "named parameter cannot have type `void'");
5400
5401 is_void = true;
5402 return NULL;
5403 }
5404
5405 if (formal_parameter && (this->identifier == NULL)) {
5406 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5407 return NULL;
5408 }
5409
5410 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5411 * call already handled the "vec4[..] foo" case.
5412 */
5413 type = process_array_type(&loc, type, this->array_specifier, state);
5414
5415 if (!type->is_error() && type->is_unsized_array()) {
5416 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5417 "a declared size");
5418 type = glsl_type::error_type;
5419 }
5420
5421 is_void = false;
5422 ir_variable *var = new(ctx)
5423 ir_variable(type, this->identifier, ir_var_function_in);
5424
5425 /* Apply any specified qualifiers to the parameter declaration. Note that
5426 * for function parameters the default mode is 'in'.
5427 */
5428 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5429 true);
5430
5431 /* From section 4.1.7 of the GLSL 4.40 spec:
5432 *
5433 * "Opaque variables cannot be treated as l-values; hence cannot
5434 * be used as out or inout function parameters, nor can they be
5435 * assigned into."
5436 */
5437 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5438 && type->contains_opaque()) {
5439 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5440 "contain opaque variables");
5441 type = glsl_type::error_type;
5442 }
5443
5444 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5445 *
5446 * "When calling a function, expressions that do not evaluate to
5447 * l-values cannot be passed to parameters declared as out or inout."
5448 *
5449 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5450 *
5451 * "Other binary or unary expressions, non-dereferenced arrays,
5452 * function names, swizzles with repeated fields, and constants
5453 * cannot be l-values."
5454 *
5455 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5456 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5457 */
5458 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5459 && type->is_array()
5460 && !state->check_version(120, 100, &loc,
5461 "arrays cannot be out or inout parameters")) {
5462 type = glsl_type::error_type;
5463 }
5464
5465 instructions->push_tail(var);
5466
5467 /* Parameter declarations do not have r-values.
5468 */
5469 return NULL;
5470 }
5471
5472
5473 void
5474 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5475 bool formal,
5476 exec_list *ir_parameters,
5477 _mesa_glsl_parse_state *state)
5478 {
5479 ast_parameter_declarator *void_param = NULL;
5480 unsigned count = 0;
5481
5482 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5483 param->formal_parameter = formal;
5484 param->hir(ir_parameters, state);
5485
5486 if (param->is_void)
5487 void_param = param;
5488
5489 count++;
5490 }
5491
5492 if ((void_param != NULL) && (count > 1)) {
5493 YYLTYPE loc = void_param->get_location();
5494
5495 _mesa_glsl_error(& loc, state,
5496 "`void' parameter must be only parameter");
5497 }
5498 }
5499
5500
5501 void
5502 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5503 {
5504 /* IR invariants disallow function declarations or definitions
5505 * nested within other function definitions. But there is no
5506 * requirement about the relative order of function declarations
5507 * and definitions with respect to one another. So simply insert
5508 * the new ir_function block at the end of the toplevel instruction
5509 * list.
5510 */
5511 state->toplevel_ir->push_tail(f);
5512 }
5513
5514
5515 ir_rvalue *
5516 ast_function::hir(exec_list *instructions,
5517 struct _mesa_glsl_parse_state *state)
5518 {
5519 void *ctx = state;
5520 ir_function *f = NULL;
5521 ir_function_signature *sig = NULL;
5522 exec_list hir_parameters;
5523 YYLTYPE loc = this->get_location();
5524
5525 const char *const name = identifier;
5526
5527 /* New functions are always added to the top-level IR instruction stream,
5528 * so this instruction list pointer is ignored. See also emit_function
5529 * (called below).
5530 */
5531 (void) instructions;
5532
5533 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5534 *
5535 * "Function declarations (prototypes) cannot occur inside of functions;
5536 * they must be at global scope, or for the built-in functions, outside
5537 * the global scope."
5538 *
5539 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5540 *
5541 * "User defined functions may only be defined within the global scope."
5542 *
5543 * Note that this language does not appear in GLSL 1.10.
5544 */
5545 if ((state->current_function != NULL) &&
5546 state->is_version(120, 100)) {
5547 YYLTYPE loc = this->get_location();
5548 _mesa_glsl_error(&loc, state,
5549 "declaration of function `%s' not allowed within "
5550 "function body", name);
5551 }
5552
5553 validate_identifier(name, this->get_location(), state);
5554
5555 /* Convert the list of function parameters to HIR now so that they can be
5556 * used below to compare this function's signature with previously seen
5557 * signatures for functions with the same name.
5558 */
5559 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5560 is_definition,
5561 & hir_parameters, state);
5562
5563 const char *return_type_name;
5564 const glsl_type *return_type =
5565 this->return_type->glsl_type(& return_type_name, state);
5566
5567 if (!return_type) {
5568 YYLTYPE loc = this->get_location();
5569 _mesa_glsl_error(&loc, state,
5570 "function `%s' has undeclared return type `%s'",
5571 name, return_type_name);
5572 return_type = glsl_type::error_type;
5573 }
5574
5575 /* ARB_shader_subroutine states:
5576 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5577 * subroutine(...) to a function declaration."
5578 */
5579 if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
5580 YYLTYPE loc = this->get_location();
5581 _mesa_glsl_error(&loc, state,
5582 "function declaration `%s' cannot have subroutine prepended",
5583 name);
5584 }
5585
5586 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5587 * "No qualifier is allowed on the return type of a function."
5588 */
5589 if (this->return_type->has_qualifiers(state)) {
5590 YYLTYPE loc = this->get_location();
5591 _mesa_glsl_error(& loc, state,
5592 "function `%s' return type has qualifiers", name);
5593 }
5594
5595 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5596 *
5597 * "Arrays are allowed as arguments and as the return type. In both
5598 * cases, the array must be explicitly sized."
5599 */
5600 if (return_type->is_unsized_array()) {
5601 YYLTYPE loc = this->get_location();
5602 _mesa_glsl_error(& loc, state,
5603 "function `%s' return type array must be explicitly "
5604 "sized", name);
5605 }
5606
5607 /* From section 4.1.7 of the GLSL 4.40 spec:
5608 *
5609 * "[Opaque types] can only be declared as function parameters
5610 * or uniform-qualified variables."
5611 */
5612 if (return_type->contains_opaque()) {
5613 YYLTYPE loc = this->get_location();
5614 _mesa_glsl_error(&loc, state,
5615 "function `%s' return type can't contain an opaque type",
5616 name);
5617 }
5618
5619 /**/
5620 if (return_type->is_subroutine()) {
5621 YYLTYPE loc = this->get_location();
5622 _mesa_glsl_error(&loc, state,
5623 "function `%s' return type can't be a subroutine type",
5624 name);
5625 }
5626
5627
5628 /* Create an ir_function if one doesn't already exist. */
5629 f = state->symbols->get_function(name);
5630 if (f == NULL) {
5631 f = new(ctx) ir_function(name);
5632 if (!this->return_type->qualifier.flags.q.subroutine) {
5633 if (!state->symbols->add_function(f)) {
5634 /* This function name shadows a non-function use of the same name. */
5635 YYLTYPE loc = this->get_location();
5636 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5637 "non-function", name);
5638 return NULL;
5639 }
5640 }
5641 emit_function(state, f);
5642 }
5643
5644 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5645 *
5646 * "A shader cannot redefine or overload built-in functions."
5647 *
5648 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5649 *
5650 * "User code can overload the built-in functions but cannot redefine
5651 * them."
5652 */
5653 if (state->es_shader && state->language_version >= 300) {
5654 /* Local shader has no exact candidates; check the built-ins. */
5655 _mesa_glsl_initialize_builtin_functions();
5656 if (_mesa_glsl_find_builtin_function_by_name(name)) {
5657 YYLTYPE loc = this->get_location();
5658 _mesa_glsl_error(& loc, state,
5659 "A shader cannot redefine or overload built-in "
5660 "function `%s' in GLSL ES 3.00", name);
5661 return NULL;
5662 }
5663 }
5664
5665 /* Verify that this function's signature either doesn't match a previously
5666 * seen signature for a function with the same name, or, if a match is found,
5667 * that the previously seen signature does not have an associated definition.
5668 */
5669 if (state->es_shader || f->has_user_signature()) {
5670 sig = f->exact_matching_signature(state, &hir_parameters);
5671 if (sig != NULL) {
5672 const char *badvar = sig->qualifiers_match(&hir_parameters);
5673 if (badvar != NULL) {
5674 YYLTYPE loc = this->get_location();
5675
5676 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5677 "qualifiers don't match prototype", name, badvar);
5678 }
5679
5680 if (sig->return_type != return_type) {
5681 YYLTYPE loc = this->get_location();
5682
5683 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5684 "match prototype", name);
5685 }
5686
5687 if (sig->is_defined) {
5688 if (is_definition) {
5689 YYLTYPE loc = this->get_location();
5690 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5691 } else {
5692 /* We just encountered a prototype that exactly matches a
5693 * function that's already been defined. This is redundant,
5694 * and we should ignore it.
5695 */
5696 return NULL;
5697 }
5698 }
5699 }
5700 }
5701
5702 /* Verify the return type of main() */
5703 if (strcmp(name, "main") == 0) {
5704 if (! return_type->is_void()) {
5705 YYLTYPE loc = this->get_location();
5706
5707 _mesa_glsl_error(& loc, state, "main() must return void");
5708 }
5709
5710 if (!hir_parameters.is_empty()) {
5711 YYLTYPE loc = this->get_location();
5712
5713 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5714 }
5715 }
5716
5717 /* Finish storing the information about this new function in its signature.
5718 */
5719 if (sig == NULL) {
5720 sig = new(ctx) ir_function_signature(return_type);
5721 f->add_signature(sig);
5722 }
5723
5724 sig->replace_parameters(&hir_parameters);
5725 signature = sig;
5726
5727 if (this->return_type->qualifier.flags.q.subroutine_def) {
5728 int idx;
5729
5730 if (this->return_type->qualifier.flags.q.explicit_index) {
5731 unsigned qual_index;
5732 if (process_qualifier_constant(state, &loc, "index",
5733 this->return_type->qualifier.index,
5734 &qual_index)) {
5735 if (!state->has_explicit_uniform_location()) {
5736 _mesa_glsl_error(&loc, state, "subroutine index requires "
5737 "GL_ARB_explicit_uniform_location or "
5738 "GLSL 4.30");
5739 } else if (qual_index >= MAX_SUBROUTINES) {
5740 _mesa_glsl_error(&loc, state,
5741 "invalid subroutine index (%d) index must "
5742 "be a number between 0 and "
5743 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5744 MAX_SUBROUTINES - 1);
5745 } else {
5746 f->subroutine_index = qual_index;
5747 }
5748 }
5749 }
5750
5751 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5752 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5753 f->num_subroutine_types);
5754 idx = 0;
5755 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5756 const struct glsl_type *type;
5757 /* the subroutine type must be already declared */
5758 type = state->symbols->get_type(decl->identifier);
5759 if (!type) {
5760 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5761 }
5762
5763 for (int i = 0; i < state->num_subroutine_types; i++) {
5764 ir_function *fn = state->subroutine_types[i];
5765 ir_function_signature *tsig = NULL;
5766
5767 if (strcmp(fn->name, decl->identifier))
5768 continue;
5769
5770 tsig = fn->matching_signature(state, &sig->parameters,
5771 false);
5772 if (!tsig) {
5773 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5774 } else {
5775 if (tsig->return_type != sig->return_type) {
5776 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5777 }
5778 }
5779 }
5780 f->subroutine_types[idx++] = type;
5781 }
5782 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5783 ir_function *,
5784 state->num_subroutines + 1);
5785 state->subroutines[state->num_subroutines] = f;
5786 state->num_subroutines++;
5787
5788 }
5789
5790 if (this->return_type->qualifier.flags.q.subroutine) {
5791 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5792 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5793 return NULL;
5794 }
5795 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5796 ir_function *,
5797 state->num_subroutine_types + 1);
5798 state->subroutine_types[state->num_subroutine_types] = f;
5799 state->num_subroutine_types++;
5800
5801 f->is_subroutine = true;
5802 }
5803
5804 /* Function declarations (prototypes) do not have r-values.
5805 */
5806 return NULL;
5807 }
5808
5809
5810 ir_rvalue *
5811 ast_function_definition::hir(exec_list *instructions,
5812 struct _mesa_glsl_parse_state *state)
5813 {
5814 prototype->is_definition = true;
5815 prototype->hir(instructions, state);
5816
5817 ir_function_signature *signature = prototype->signature;
5818 if (signature == NULL)
5819 return NULL;
5820
5821 assert(state->current_function == NULL);
5822 state->current_function = signature;
5823 state->found_return = false;
5824
5825 /* Duplicate parameters declared in the prototype as concrete variables.
5826 * Add these to the symbol table.
5827 */
5828 state->symbols->push_scope();
5829 foreach_in_list(ir_variable, var, &signature->parameters) {
5830 assert(var->as_variable() != NULL);
5831
5832 /* The only way a parameter would "exist" is if two parameters have
5833 * the same name.
5834 */
5835 if (state->symbols->name_declared_this_scope(var->name)) {
5836 YYLTYPE loc = this->get_location();
5837
5838 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5839 } else {
5840 state->symbols->add_variable(var);
5841 }
5842 }
5843
5844 /* Convert the body of the function to HIR. */
5845 this->body->hir(&signature->body, state);
5846 signature->is_defined = true;
5847
5848 state->symbols->pop_scope();
5849
5850 assert(state->current_function == signature);
5851 state->current_function = NULL;
5852
5853 if (!signature->return_type->is_void() && !state->found_return) {
5854 YYLTYPE loc = this->get_location();
5855 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5856 "%s, but no return statement",
5857 signature->function_name(),
5858 signature->return_type->name);
5859 }
5860
5861 /* Function definitions do not have r-values.
5862 */
5863 return NULL;
5864 }
5865
5866
5867 ir_rvalue *
5868 ast_jump_statement::hir(exec_list *instructions,
5869 struct _mesa_glsl_parse_state *state)
5870 {
5871 void *ctx = state;
5872
5873 switch (mode) {
5874 case ast_return: {
5875 ir_return *inst;
5876 assert(state->current_function);
5877
5878 if (opt_return_value) {
5879 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5880
5881 /* The value of the return type can be NULL if the shader says
5882 * 'return foo();' and foo() is a function that returns void.
5883 *
5884 * NOTE: The GLSL spec doesn't say that this is an error. The type
5885 * of the return value is void. If the return type of the function is
5886 * also void, then this should compile without error. Seriously.
5887 */
5888 const glsl_type *const ret_type =
5889 (ret == NULL) ? glsl_type::void_type : ret->type;
5890
5891 /* Implicit conversions are not allowed for return values prior to
5892 * ARB_shading_language_420pack.
5893 */
5894 if (state->current_function->return_type != ret_type) {
5895 YYLTYPE loc = this->get_location();
5896
5897 if (state->has_420pack()) {
5898 if (!apply_implicit_conversion(state->current_function->return_type,
5899 ret, state)) {
5900 _mesa_glsl_error(& loc, state,
5901 "could not implicitly convert return value "
5902 "to %s, in function `%s'",
5903 state->current_function->return_type->name,
5904 state->current_function->function_name());
5905 }
5906 } else {
5907 _mesa_glsl_error(& loc, state,
5908 "`return' with wrong type %s, in function `%s' "
5909 "returning %s",
5910 ret_type->name,
5911 state->current_function->function_name(),
5912 state->current_function->return_type->name);
5913 }
5914 } else if (state->current_function->return_type->base_type ==
5915 GLSL_TYPE_VOID) {
5916 YYLTYPE loc = this->get_location();
5917
5918 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5919 * specs add a clarification:
5920 *
5921 * "A void function can only use return without a return argument, even if
5922 * the return argument has void type. Return statements only accept values:
5923 *
5924 * void func1() { }
5925 * void func2() { return func1(); } // illegal return statement"
5926 */
5927 _mesa_glsl_error(& loc, state,
5928 "void functions can only use `return' without a "
5929 "return argument");
5930 }
5931
5932 inst = new(ctx) ir_return(ret);
5933 } else {
5934 if (state->current_function->return_type->base_type !=
5935 GLSL_TYPE_VOID) {
5936 YYLTYPE loc = this->get_location();
5937
5938 _mesa_glsl_error(& loc, state,
5939 "`return' with no value, in function %s returning "
5940 "non-void",
5941 state->current_function->function_name());
5942 }
5943 inst = new(ctx) ir_return;
5944 }
5945
5946 state->found_return = true;
5947 instructions->push_tail(inst);
5948 break;
5949 }
5950
5951 case ast_discard:
5952 if (state->stage != MESA_SHADER_FRAGMENT) {
5953 YYLTYPE loc = this->get_location();
5954
5955 _mesa_glsl_error(& loc, state,
5956 "`discard' may only appear in a fragment shader");
5957 }
5958 instructions->push_tail(new(ctx) ir_discard);
5959 break;
5960
5961 case ast_break:
5962 case ast_continue:
5963 if (mode == ast_continue &&
5964 state->loop_nesting_ast == NULL) {
5965 YYLTYPE loc = this->get_location();
5966
5967 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5968 } else if (mode == ast_break &&
5969 state->loop_nesting_ast == NULL &&
5970 state->switch_state.switch_nesting_ast == NULL) {
5971 YYLTYPE loc = this->get_location();
5972
5973 _mesa_glsl_error(& loc, state,
5974 "break may only appear in a loop or a switch");
5975 } else {
5976 /* For a loop, inline the for loop expression again, since we don't
5977 * know where near the end of the loop body the normal copy of it is
5978 * going to be placed. Same goes for the condition for a do-while
5979 * loop.
5980 */
5981 if (state->loop_nesting_ast != NULL &&
5982 mode == ast_continue && !state->switch_state.is_switch_innermost) {
5983 if (state->loop_nesting_ast->rest_expression) {
5984 state->loop_nesting_ast->rest_expression->hir(instructions,
5985 state);
5986 }
5987 if (state->loop_nesting_ast->mode ==
5988 ast_iteration_statement::ast_do_while) {
5989 state->loop_nesting_ast->condition_to_hir(instructions, state);
5990 }
5991 }
5992
5993 if (state->switch_state.is_switch_innermost &&
5994 mode == ast_continue) {
5995 /* Set 'continue_inside' to true. */
5996 ir_rvalue *const true_val = new (ctx) ir_constant(true);
5997 ir_dereference_variable *deref_continue_inside_var =
5998 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
5999 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6000 true_val));
6001
6002 /* Break out from the switch, continue for the loop will
6003 * be called right after switch. */
6004 ir_loop_jump *const jump =
6005 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6006 instructions->push_tail(jump);
6007
6008 } else if (state->switch_state.is_switch_innermost &&
6009 mode == ast_break) {
6010 /* Force break out of switch by inserting a break. */
6011 ir_loop_jump *const jump =
6012 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6013 instructions->push_tail(jump);
6014 } else {
6015 ir_loop_jump *const jump =
6016 new(ctx) ir_loop_jump((mode == ast_break)
6017 ? ir_loop_jump::jump_break
6018 : ir_loop_jump::jump_continue);
6019 instructions->push_tail(jump);
6020 }
6021 }
6022
6023 break;
6024 }
6025
6026 /* Jump instructions do not have r-values.
6027 */
6028 return NULL;
6029 }
6030
6031
6032 ir_rvalue *
6033 ast_selection_statement::hir(exec_list *instructions,
6034 struct _mesa_glsl_parse_state *state)
6035 {
6036 void *ctx = state;
6037
6038 ir_rvalue *const condition = this->condition->hir(instructions, state);
6039
6040 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6041 *
6042 * "Any expression whose type evaluates to a Boolean can be used as the
6043 * conditional expression bool-expression. Vector types are not accepted
6044 * as the expression to if."
6045 *
6046 * The checks are separated so that higher quality diagnostics can be
6047 * generated for cases where both rules are violated.
6048 */
6049 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6050 YYLTYPE loc = this->condition->get_location();
6051
6052 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6053 "boolean");
6054 }
6055
6056 ir_if *const stmt = new(ctx) ir_if(condition);
6057
6058 if (then_statement != NULL) {
6059 state->symbols->push_scope();
6060 then_statement->hir(& stmt->then_instructions, state);
6061 state->symbols->pop_scope();
6062 }
6063
6064 if (else_statement != NULL) {
6065 state->symbols->push_scope();
6066 else_statement->hir(& stmt->else_instructions, state);
6067 state->symbols->pop_scope();
6068 }
6069
6070 instructions->push_tail(stmt);
6071
6072 /* if-statements do not have r-values.
6073 */
6074 return NULL;
6075 }
6076
6077
6078 /* Used for detection of duplicate case values, compare
6079 * given contents directly.
6080 */
6081 static bool
6082 compare_case_value(const void *a, const void *b)
6083 {
6084 return *(unsigned *) a == *(unsigned *) b;
6085 }
6086
6087
6088 /* Used for detection of duplicate case values, just
6089 * returns key contents as is.
6090 */
6091 static unsigned
6092 key_contents(const void *key)
6093 {
6094 return *(unsigned *) key;
6095 }
6096
6097
6098 ir_rvalue *
6099 ast_switch_statement::hir(exec_list *instructions,
6100 struct _mesa_glsl_parse_state *state)
6101 {
6102 void *ctx = state;
6103
6104 ir_rvalue *const test_expression =
6105 this->test_expression->hir(instructions, state);
6106
6107 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6108 *
6109 * "The type of init-expression in a switch statement must be a
6110 * scalar integer."
6111 */
6112 if (!test_expression->type->is_scalar() ||
6113 !test_expression->type->is_integer()) {
6114 YYLTYPE loc = this->test_expression->get_location();
6115
6116 _mesa_glsl_error(& loc,
6117 state,
6118 "switch-statement expression must be scalar "
6119 "integer");
6120 }
6121
6122 /* Track the switch-statement nesting in a stack-like manner.
6123 */
6124 struct glsl_switch_state saved = state->switch_state;
6125
6126 state->switch_state.is_switch_innermost = true;
6127 state->switch_state.switch_nesting_ast = this;
6128 state->switch_state.labels_ht =
6129 _mesa_hash_table_create(NULL, key_contents,
6130 compare_case_value);
6131 state->switch_state.previous_default = NULL;
6132
6133 /* Initalize is_fallthru state to false.
6134 */
6135 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6136 state->switch_state.is_fallthru_var =
6137 new(ctx) ir_variable(glsl_type::bool_type,
6138 "switch_is_fallthru_tmp",
6139 ir_var_temporary);
6140 instructions->push_tail(state->switch_state.is_fallthru_var);
6141
6142 ir_dereference_variable *deref_is_fallthru_var =
6143 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6144 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6145 is_fallthru_val));
6146
6147 /* Initialize continue_inside state to false.
6148 */
6149 state->switch_state.continue_inside =
6150 new(ctx) ir_variable(glsl_type::bool_type,
6151 "continue_inside_tmp",
6152 ir_var_temporary);
6153 instructions->push_tail(state->switch_state.continue_inside);
6154
6155 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6156 ir_dereference_variable *deref_continue_inside_var =
6157 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6158 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6159 false_val));
6160
6161 state->switch_state.run_default =
6162 new(ctx) ir_variable(glsl_type::bool_type,
6163 "run_default_tmp",
6164 ir_var_temporary);
6165 instructions->push_tail(state->switch_state.run_default);
6166
6167 /* Loop around the switch is used for flow control. */
6168 ir_loop * loop = new(ctx) ir_loop();
6169 instructions->push_tail(loop);
6170
6171 /* Cache test expression.
6172 */
6173 test_to_hir(&loop->body_instructions, state);
6174
6175 /* Emit code for body of switch stmt.
6176 */
6177 body->hir(&loop->body_instructions, state);
6178
6179 /* Insert a break at the end to exit loop. */
6180 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6181 loop->body_instructions.push_tail(jump);
6182
6183 /* If we are inside loop, check if continue got called inside switch. */
6184 if (state->loop_nesting_ast != NULL) {
6185 ir_dereference_variable *deref_continue_inside =
6186 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6187 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6188 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6189
6190 if (state->loop_nesting_ast != NULL) {
6191 if (state->loop_nesting_ast->rest_expression) {
6192 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6193 state);
6194 }
6195 if (state->loop_nesting_ast->mode ==
6196 ast_iteration_statement::ast_do_while) {
6197 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6198 }
6199 }
6200 irif->then_instructions.push_tail(jump);
6201 instructions->push_tail(irif);
6202 }
6203
6204 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6205
6206 state->switch_state = saved;
6207
6208 /* Switch statements do not have r-values. */
6209 return NULL;
6210 }
6211
6212
6213 void
6214 ast_switch_statement::test_to_hir(exec_list *instructions,
6215 struct _mesa_glsl_parse_state *state)
6216 {
6217 void *ctx = state;
6218
6219 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6220 * on the switch test case. The first one would be already raised when
6221 * getting the test_expression at ast_switch_statement::hir
6222 */
6223 test_expression->set_is_lhs(true);
6224 /* Cache value of test expression. */
6225 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6226
6227 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6228 "switch_test_tmp",
6229 ir_var_temporary);
6230 ir_dereference_variable *deref_test_var =
6231 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6232
6233 instructions->push_tail(state->switch_state.test_var);
6234 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6235 }
6236
6237
6238 ir_rvalue *
6239 ast_switch_body::hir(exec_list *instructions,
6240 struct _mesa_glsl_parse_state *state)
6241 {
6242 if (stmts != NULL)
6243 stmts->hir(instructions, state);
6244
6245 /* Switch bodies do not have r-values. */
6246 return NULL;
6247 }
6248
6249 ir_rvalue *
6250 ast_case_statement_list::hir(exec_list *instructions,
6251 struct _mesa_glsl_parse_state *state)
6252 {
6253 exec_list default_case, after_default, tmp;
6254
6255 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6256 case_stmt->hir(&tmp, state);
6257
6258 /* Default case. */
6259 if (state->switch_state.previous_default && default_case.is_empty()) {
6260 default_case.append_list(&tmp);
6261 continue;
6262 }
6263
6264 /* If default case found, append 'after_default' list. */
6265 if (!default_case.is_empty())
6266 after_default.append_list(&tmp);
6267 else
6268 instructions->append_list(&tmp);
6269 }
6270
6271 /* Handle the default case. This is done here because default might not be
6272 * the last case. We need to add checks against following cases first to see
6273 * if default should be chosen or not.
6274 */
6275 if (!default_case.is_empty()) {
6276
6277 ir_rvalue *const true_val = new (state) ir_constant(true);
6278 ir_dereference_variable *deref_run_default_var =
6279 new(state) ir_dereference_variable(state->switch_state.run_default);
6280
6281 /* Choose to run default case initially, following conditional
6282 * assignments might change this.
6283 */
6284 ir_assignment *const init_var =
6285 new(state) ir_assignment(deref_run_default_var, true_val);
6286 instructions->push_tail(init_var);
6287
6288 /* Default case was the last one, no checks required. */
6289 if (after_default.is_empty()) {
6290 instructions->append_list(&default_case);
6291 return NULL;
6292 }
6293
6294 foreach_in_list(ir_instruction, ir, &after_default) {
6295 ir_assignment *assign = ir->as_assignment();
6296
6297 if (!assign)
6298 continue;
6299
6300 /* Clone the check between case label and init expression. */
6301 ir_expression *exp = (ir_expression*) assign->condition;
6302 ir_expression *clone = exp->clone(state, NULL);
6303
6304 ir_dereference_variable *deref_var =
6305 new(state) ir_dereference_variable(state->switch_state.run_default);
6306 ir_rvalue *const false_val = new (state) ir_constant(false);
6307
6308 ir_assignment *const set_false =
6309 new(state) ir_assignment(deref_var, false_val, clone);
6310
6311 instructions->push_tail(set_false);
6312 }
6313
6314 /* Append default case and all cases after it. */
6315 instructions->append_list(&default_case);
6316 instructions->append_list(&after_default);
6317 }
6318
6319 /* Case statements do not have r-values. */
6320 return NULL;
6321 }
6322
6323 ir_rvalue *
6324 ast_case_statement::hir(exec_list *instructions,
6325 struct _mesa_glsl_parse_state *state)
6326 {
6327 labels->hir(instructions, state);
6328
6329 /* Guard case statements depending on fallthru state. */
6330 ir_dereference_variable *const deref_fallthru_guard =
6331 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6332 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6333
6334 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6335 stmt->hir(& test_fallthru->then_instructions, state);
6336
6337 instructions->push_tail(test_fallthru);
6338
6339 /* Case statements do not have r-values. */
6340 return NULL;
6341 }
6342
6343
6344 ir_rvalue *
6345 ast_case_label_list::hir(exec_list *instructions,
6346 struct _mesa_glsl_parse_state *state)
6347 {
6348 foreach_list_typed (ast_case_label, label, link, & this->labels)
6349 label->hir(instructions, state);
6350
6351 /* Case labels do not have r-values. */
6352 return NULL;
6353 }
6354
6355 ir_rvalue *
6356 ast_case_label::hir(exec_list *instructions,
6357 struct _mesa_glsl_parse_state *state)
6358 {
6359 void *ctx = state;
6360
6361 ir_dereference_variable *deref_fallthru_var =
6362 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6363
6364 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6365
6366 /* If not default case, ... */
6367 if (this->test_value != NULL) {
6368 /* Conditionally set fallthru state based on
6369 * comparison of cached test expression value to case label.
6370 */
6371 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6372 ir_constant *label_const = label_rval->constant_expression_value();
6373
6374 if (!label_const) {
6375 YYLTYPE loc = this->test_value->get_location();
6376
6377 _mesa_glsl_error(& loc, state,
6378 "switch statement case label must be a "
6379 "constant expression");
6380
6381 /* Stuff a dummy value in to allow processing to continue. */
6382 label_const = new(ctx) ir_constant(0);
6383 } else {
6384 hash_entry *entry =
6385 _mesa_hash_table_search(state->switch_state.labels_ht,
6386 (void *)(uintptr_t)&label_const->value.u[0]);
6387
6388 if (entry) {
6389 ast_expression *previous_label = (ast_expression *) entry->data;
6390 YYLTYPE loc = this->test_value->get_location();
6391 _mesa_glsl_error(& loc, state, "duplicate case value");
6392
6393 loc = previous_label->get_location();
6394 _mesa_glsl_error(& loc, state, "this is the previous case label");
6395 } else {
6396 _mesa_hash_table_insert(state->switch_state.labels_ht,
6397 (void *)(uintptr_t)&label_const->value.u[0],
6398 this->test_value);
6399 }
6400 }
6401
6402 ir_dereference_variable *deref_test_var =
6403 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6404
6405 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6406 label_const,
6407 deref_test_var);
6408
6409 /*
6410 * From GLSL 4.40 specification section 6.2 ("Selection"):
6411 *
6412 * "The type of the init-expression value in a switch statement must
6413 * be a scalar int or uint. The type of the constant-expression value
6414 * in a case label also must be a scalar int or uint. When any pair
6415 * of these values is tested for "equal value" and the types do not
6416 * match, an implicit conversion will be done to convert the int to a
6417 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6418 * is done."
6419 */
6420 if (label_const->type != state->switch_state.test_var->type) {
6421 YYLTYPE loc = this->test_value->get_location();
6422
6423 const glsl_type *type_a = label_const->type;
6424 const glsl_type *type_b = state->switch_state.test_var->type;
6425
6426 /* Check if int->uint implicit conversion is supported. */
6427 bool integer_conversion_supported =
6428 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6429 state);
6430
6431 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6432 !integer_conversion_supported) {
6433 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6434 "init-expression and case label (%s != %s)",
6435 type_a->name, type_b->name);
6436 } else {
6437 /* Conversion of the case label. */
6438 if (type_a->base_type == GLSL_TYPE_INT) {
6439 if (!apply_implicit_conversion(glsl_type::uint_type,
6440 test_cond->operands[0], state))
6441 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6442 } else {
6443 /* Conversion of the init-expression value. */
6444 if (!apply_implicit_conversion(glsl_type::uint_type,
6445 test_cond->operands[1], state))
6446 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6447 }
6448 }
6449 }
6450
6451 ir_assignment *set_fallthru_on_test =
6452 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6453
6454 instructions->push_tail(set_fallthru_on_test);
6455 } else { /* default case */
6456 if (state->switch_state.previous_default) {
6457 YYLTYPE loc = this->get_location();
6458 _mesa_glsl_error(& loc, state,
6459 "multiple default labels in one switch");
6460
6461 loc = state->switch_state.previous_default->get_location();
6462 _mesa_glsl_error(& loc, state, "this is the first default label");
6463 }
6464 state->switch_state.previous_default = this;
6465
6466 /* Set fallthru condition on 'run_default' bool. */
6467 ir_dereference_variable *deref_run_default =
6468 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6469 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6470 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6471 cond_true,
6472 deref_run_default);
6473
6474 /* Set falltrhu state. */
6475 ir_assignment *set_fallthru =
6476 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6477
6478 instructions->push_tail(set_fallthru);
6479 }
6480
6481 /* Case statements do not have r-values. */
6482 return NULL;
6483 }
6484
6485 void
6486 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6487 struct _mesa_glsl_parse_state *state)
6488 {
6489 void *ctx = state;
6490
6491 if (condition != NULL) {
6492 ir_rvalue *const cond =
6493 condition->hir(instructions, state);
6494
6495 if ((cond == NULL)
6496 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6497 YYLTYPE loc = condition->get_location();
6498
6499 _mesa_glsl_error(& loc, state,
6500 "loop condition must be scalar boolean");
6501 } else {
6502 /* As the first code in the loop body, generate a block that looks
6503 * like 'if (!condition) break;' as the loop termination condition.
6504 */
6505 ir_rvalue *const not_cond =
6506 new(ctx) ir_expression(ir_unop_logic_not, cond);
6507
6508 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6509
6510 ir_jump *const break_stmt =
6511 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6512
6513 if_stmt->then_instructions.push_tail(break_stmt);
6514 instructions->push_tail(if_stmt);
6515 }
6516 }
6517 }
6518
6519
6520 ir_rvalue *
6521 ast_iteration_statement::hir(exec_list *instructions,
6522 struct _mesa_glsl_parse_state *state)
6523 {
6524 void *ctx = state;
6525
6526 /* For-loops and while-loops start a new scope, but do-while loops do not.
6527 */
6528 if (mode != ast_do_while)
6529 state->symbols->push_scope();
6530
6531 if (init_statement != NULL)
6532 init_statement->hir(instructions, state);
6533
6534 ir_loop *const stmt = new(ctx) ir_loop();
6535 instructions->push_tail(stmt);
6536
6537 /* Track the current loop nesting. */
6538 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6539
6540 state->loop_nesting_ast = this;
6541
6542 /* Likewise, indicate that following code is closest to a loop,
6543 * NOT closest to a switch.
6544 */
6545 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6546 state->switch_state.is_switch_innermost = false;
6547
6548 if (mode != ast_do_while)
6549 condition_to_hir(&stmt->body_instructions, state);
6550
6551 if (body != NULL)
6552 body->hir(& stmt->body_instructions, state);
6553
6554 if (rest_expression != NULL)
6555 rest_expression->hir(& stmt->body_instructions, state);
6556
6557 if (mode == ast_do_while)
6558 condition_to_hir(&stmt->body_instructions, state);
6559
6560 if (mode != ast_do_while)
6561 state->symbols->pop_scope();
6562
6563 /* Restore previous nesting before returning. */
6564 state->loop_nesting_ast = nesting_ast;
6565 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6566
6567 /* Loops do not have r-values.
6568 */
6569 return NULL;
6570 }
6571
6572
6573 /**
6574 * Determine if the given type is valid for establishing a default precision
6575 * qualifier.
6576 *
6577 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6578 *
6579 * "The precision statement
6580 *
6581 * precision precision-qualifier type;
6582 *
6583 * can be used to establish a default precision qualifier. The type field
6584 * can be either int or float or any of the sampler types, and the
6585 * precision-qualifier can be lowp, mediump, or highp."
6586 *
6587 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6588 * qualifiers on sampler types, but this seems like an oversight (since the
6589 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6590 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6591 * version.
6592 */
6593 static bool
6594 is_valid_default_precision_type(const struct glsl_type *const type)
6595 {
6596 if (type == NULL)
6597 return false;
6598
6599 switch (type->base_type) {
6600 case GLSL_TYPE_INT:
6601 case GLSL_TYPE_FLOAT:
6602 /* "int" and "float" are valid, but vectors and matrices are not. */
6603 return type->vector_elements == 1 && type->matrix_columns == 1;
6604 case GLSL_TYPE_SAMPLER:
6605 case GLSL_TYPE_IMAGE:
6606 case GLSL_TYPE_ATOMIC_UINT:
6607 return true;
6608 default:
6609 return false;
6610 }
6611 }
6612
6613
6614 ir_rvalue *
6615 ast_type_specifier::hir(exec_list *instructions,
6616 struct _mesa_glsl_parse_state *state)
6617 {
6618 if (this->default_precision == ast_precision_none && this->structure == NULL)
6619 return NULL;
6620
6621 YYLTYPE loc = this->get_location();
6622
6623 /* If this is a precision statement, check that the type to which it is
6624 * applied is either float or int.
6625 *
6626 * From section 4.5.3 of the GLSL 1.30 spec:
6627 * "The precision statement
6628 * precision precision-qualifier type;
6629 * can be used to establish a default precision qualifier. The type
6630 * field can be either int or float [...]. Any other types or
6631 * qualifiers will result in an error.
6632 */
6633 if (this->default_precision != ast_precision_none) {
6634 if (!state->check_precision_qualifiers_allowed(&loc))
6635 return NULL;
6636
6637 if (this->structure != NULL) {
6638 _mesa_glsl_error(&loc, state,
6639 "precision qualifiers do not apply to structures");
6640 return NULL;
6641 }
6642
6643 if (this->array_specifier != NULL) {
6644 _mesa_glsl_error(&loc, state,
6645 "default precision statements do not apply to "
6646 "arrays");
6647 return NULL;
6648 }
6649
6650 const struct glsl_type *const type =
6651 state->symbols->get_type(this->type_name);
6652 if (!is_valid_default_precision_type(type)) {
6653 _mesa_glsl_error(&loc, state,
6654 "default precision statements apply only to "
6655 "float, int, and opaque types");
6656 return NULL;
6657 }
6658
6659 if (state->es_shader) {
6660 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6661 * spec says:
6662 *
6663 * "Non-precision qualified declarations will use the precision
6664 * qualifier specified in the most recent precision statement
6665 * that is still in scope. The precision statement has the same
6666 * scoping rules as variable declarations. If it is declared
6667 * inside a compound statement, its effect stops at the end of
6668 * the innermost statement it was declared in. Precision
6669 * statements in nested scopes override precision statements in
6670 * outer scopes. Multiple precision statements for the same basic
6671 * type can appear inside the same scope, with later statements
6672 * overriding earlier statements within that scope."
6673 *
6674 * Default precision specifications follow the same scope rules as
6675 * variables. So, we can track the state of the default precision
6676 * qualifiers in the symbol table, and the rules will just work. This
6677 * is a slight abuse of the symbol table, but it has the semantics
6678 * that we want.
6679 */
6680 state->symbols->add_default_precision_qualifier(this->type_name,
6681 this->default_precision);
6682 }
6683
6684 /* FINISHME: Translate precision statements into IR. */
6685 return NULL;
6686 }
6687
6688 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6689 * process_record_constructor() can do type-checking on C-style initializer
6690 * expressions of structs, but ast_struct_specifier should only be translated
6691 * to HIR if it is declaring the type of a structure.
6692 *
6693 * The ->is_declaration field is false for initializers of variables
6694 * declared separately from the struct's type definition.
6695 *
6696 * struct S { ... }; (is_declaration = true)
6697 * struct T { ... } t = { ... }; (is_declaration = true)
6698 * S s = { ... }; (is_declaration = false)
6699 */
6700 if (this->structure != NULL && this->structure->is_declaration)
6701 return this->structure->hir(instructions, state);
6702
6703 return NULL;
6704 }
6705
6706
6707 /**
6708 * Process a structure or interface block tree into an array of structure fields
6709 *
6710 * After parsing, where there are some syntax differnces, structures and
6711 * interface blocks are almost identical. They are similar enough that the
6712 * AST for each can be processed the same way into a set of
6713 * \c glsl_struct_field to describe the members.
6714 *
6715 * If we're processing an interface block, var_mode should be the type of the
6716 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6717 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6718 * ir_var_auto.
6719 *
6720 * \return
6721 * The number of fields processed. A pointer to the array structure fields is
6722 * stored in \c *fields_ret.
6723 */
6724 static unsigned
6725 ast_process_struct_or_iface_block_members(exec_list *instructions,
6726 struct _mesa_glsl_parse_state *state,
6727 exec_list *declarations,
6728 glsl_struct_field **fields_ret,
6729 bool is_interface,
6730 enum glsl_matrix_layout matrix_layout,
6731 bool allow_reserved_names,
6732 ir_variable_mode var_mode,
6733 ast_type_qualifier *layout,
6734 unsigned block_stream,
6735 unsigned block_xfb_buffer,
6736 unsigned block_xfb_offset,
6737 unsigned expl_location,
6738 unsigned expl_align)
6739 {
6740 unsigned decl_count = 0;
6741 unsigned next_offset = 0;
6742
6743 /* Make an initial pass over the list of fields to determine how
6744 * many there are. Each element in this list is an ast_declarator_list.
6745 * This means that we actually need to count the number of elements in the
6746 * 'declarations' list in each of the elements.
6747 */
6748 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6749 decl_count += decl_list->declarations.length();
6750 }
6751
6752 /* Allocate storage for the fields and process the field
6753 * declarations. As the declarations are processed, try to also convert
6754 * the types to HIR. This ensures that structure definitions embedded in
6755 * other structure definitions or in interface blocks are processed.
6756 */
6757 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6758 decl_count);
6759
6760 bool first_member = true;
6761 bool first_member_has_explicit_location = false;
6762
6763 unsigned i = 0;
6764 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6765 const char *type_name;
6766 YYLTYPE loc = decl_list->get_location();
6767
6768 decl_list->type->specifier->hir(instructions, state);
6769
6770 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6771 *
6772 * "Anonymous structures are not supported; so embedded structures
6773 * must have a declarator. A name given to an embedded struct is
6774 * scoped at the same level as the struct it is embedded in."
6775 *
6776 * The same section of the GLSL 1.20 spec says:
6777 *
6778 * "Anonymous structures are not supported. Embedded structures are
6779 * not supported."
6780 *
6781 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6782 * embedded structures in 1.10 only.
6783 */
6784 if (state->language_version != 110 &&
6785 decl_list->type->specifier->structure != NULL)
6786 _mesa_glsl_error(&loc, state,
6787 "embedded structure declarations are not allowed");
6788
6789 const glsl_type *decl_type =
6790 decl_list->type->glsl_type(& type_name, state);
6791
6792 const struct ast_type_qualifier *const qual =
6793 &decl_list->type->qualifier;
6794
6795 /* From section 4.3.9 of the GLSL 4.40 spec:
6796 *
6797 * "[In interface blocks] opaque types are not allowed."
6798 *
6799 * It should be impossible for decl_type to be NULL here. Cases that
6800 * might naturally lead to decl_type being NULL, especially for the
6801 * is_interface case, will have resulted in compilation having
6802 * already halted due to a syntax error.
6803 */
6804 assert(decl_type);
6805
6806 if (is_interface) {
6807 if (decl_type->contains_opaque()) {
6808 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6809 "interface block contains opaque variable");
6810 }
6811 } else {
6812 if (decl_type->contains_atomic()) {
6813 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6814 *
6815 * "Members of structures cannot be declared as atomic counter
6816 * types."
6817 */
6818 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6819 }
6820
6821 if (decl_type->contains_image()) {
6822 /* FINISHME: Same problem as with atomic counters.
6823 * FINISHME: Request clarification from Khronos and add
6824 * FINISHME: spec quotation here.
6825 */
6826 _mesa_glsl_error(&loc, state, "image in structure");
6827 }
6828 }
6829
6830 if (qual->flags.q.explicit_binding) {
6831 _mesa_glsl_error(&loc, state,
6832 "binding layout qualifier cannot be applied "
6833 "to struct or interface block members");
6834 }
6835
6836 if (is_interface) {
6837 if (!first_member) {
6838 if (!layout->flags.q.explicit_location &&
6839 ((first_member_has_explicit_location &&
6840 !qual->flags.q.explicit_location) ||
6841 (!first_member_has_explicit_location &&
6842 qual->flags.q.explicit_location))) {
6843 _mesa_glsl_error(&loc, state,
6844 "when block-level location layout qualifier "
6845 "is not supplied either all members must "
6846 "have a location layout qualifier or all "
6847 "members must not have a location layout "
6848 "qualifier");
6849 }
6850 } else {
6851 first_member = false;
6852 first_member_has_explicit_location =
6853 qual->flags.q.explicit_location;
6854 }
6855 }
6856
6857 if (qual->flags.q.std140 ||
6858 qual->flags.q.std430 ||
6859 qual->flags.q.packed ||
6860 qual->flags.q.shared) {
6861 _mesa_glsl_error(&loc, state,
6862 "uniform/shader storage block layout qualifiers "
6863 "std140, std430, packed, and shared can only be "
6864 "applied to uniform/shader storage blocks, not "
6865 "members");
6866 }
6867
6868 if (qual->flags.q.constant) {
6869 _mesa_glsl_error(&loc, state,
6870 "const storage qualifier cannot be applied "
6871 "to struct or interface block members");
6872 }
6873
6874 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6875 *
6876 * "A block member may be declared with a stream identifier, but
6877 * the specified stream must match the stream associated with the
6878 * containing block."
6879 */
6880 if (qual->flags.q.explicit_stream) {
6881 unsigned qual_stream;
6882 if (process_qualifier_constant(state, &loc, "stream",
6883 qual->stream, &qual_stream) &&
6884 qual_stream != block_stream) {
6885 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6886 "interface block member does not match "
6887 "the interface block (%u vs %u)", qual_stream,
6888 block_stream);
6889 }
6890 }
6891
6892 int xfb_buffer;
6893 unsigned explicit_xfb_buffer = 0;
6894 if (qual->flags.q.explicit_xfb_buffer) {
6895 unsigned qual_xfb_buffer;
6896 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6897 qual->xfb_buffer, &qual_xfb_buffer)) {
6898 explicit_xfb_buffer = 1;
6899 if (qual_xfb_buffer != block_xfb_buffer)
6900 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6901 "interface block member does not match "
6902 "the interface block (%u vs %u)",
6903 qual_xfb_buffer, block_xfb_buffer);
6904 }
6905 xfb_buffer = (int) qual_xfb_buffer;
6906 } else {
6907 if (layout)
6908 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6909 xfb_buffer = (int) block_xfb_buffer;
6910 }
6911
6912 int xfb_stride = -1;
6913 if (qual->flags.q.explicit_xfb_stride) {
6914 unsigned qual_xfb_stride;
6915 if (process_qualifier_constant(state, &loc, "xfb_stride",
6916 qual->xfb_stride, &qual_xfb_stride)) {
6917 xfb_stride = (int) qual_xfb_stride;
6918 }
6919 }
6920
6921 if (qual->flags.q.uniform && qual->has_interpolation()) {
6922 _mesa_glsl_error(&loc, state,
6923 "interpolation qualifiers cannot be used "
6924 "with uniform interface blocks");
6925 }
6926
6927 if ((qual->flags.q.uniform || !is_interface) &&
6928 qual->has_auxiliary_storage()) {
6929 _mesa_glsl_error(&loc, state,
6930 "auxiliary storage qualifiers cannot be used "
6931 "in uniform blocks or structures.");
6932 }
6933
6934 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6935 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6936 _mesa_glsl_error(&loc, state,
6937 "row_major and column_major can only be "
6938 "applied to interface blocks");
6939 } else
6940 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6941 }
6942
6943 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6944 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6945 "readonly and writeonly.");
6946 }
6947
6948 foreach_list_typed (ast_declaration, decl, link,
6949 &decl_list->declarations) {
6950 YYLTYPE loc = decl->get_location();
6951
6952 if (!allow_reserved_names)
6953 validate_identifier(decl->identifier, loc, state);
6954
6955 const struct glsl_type *field_type =
6956 process_array_type(&loc, decl_type, decl->array_specifier, state);
6957 validate_array_dimensions(field_type, state, &loc);
6958 fields[i].type = field_type;
6959 fields[i].name = decl->identifier;
6960 fields[i].interpolation =
6961 interpret_interpolation_qualifier(qual, field_type,
6962 var_mode, state, &loc);
6963 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6964 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6965 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6966 fields[i].precision = qual->precision;
6967 fields[i].offset = -1;
6968 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6969 fields[i].xfb_buffer = xfb_buffer;
6970 fields[i].xfb_stride = xfb_stride;
6971
6972 if (qual->flags.q.explicit_location) {
6973 unsigned qual_location;
6974 if (process_qualifier_constant(state, &loc, "location",
6975 qual->location, &qual_location)) {
6976 fields[i].location = qual_location +
6977 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
6978 expl_location = fields[i].location +
6979 fields[i].type->count_attribute_slots(false);
6980 }
6981 } else {
6982 if (layout && layout->flags.q.explicit_location) {
6983 fields[i].location = expl_location;
6984 expl_location += fields[i].type->count_attribute_slots(false);
6985 } else {
6986 fields[i].location = -1;
6987 }
6988 }
6989
6990 /* Offset can only be used with std430 and std140 layouts an initial
6991 * value of 0 is used for error detection.
6992 */
6993 unsigned align = 0;
6994 unsigned size = 0;
6995 if (layout) {
6996 bool row_major;
6997 if (qual->flags.q.row_major ||
6998 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
6999 row_major = true;
7000 } else {
7001 row_major = false;
7002 }
7003
7004 if(layout->flags.q.std140) {
7005 align = field_type->std140_base_alignment(row_major);
7006 size = field_type->std140_size(row_major);
7007 } else if (layout->flags.q.std430) {
7008 align = field_type->std430_base_alignment(row_major);
7009 size = field_type->std430_size(row_major);
7010 }
7011 }
7012
7013 if (qual->flags.q.explicit_offset) {
7014 unsigned qual_offset;
7015 if (process_qualifier_constant(state, &loc, "offset",
7016 qual->offset, &qual_offset)) {
7017 if (align != 0 && size != 0) {
7018 if (next_offset > qual_offset)
7019 _mesa_glsl_error(&loc, state, "layout qualifier "
7020 "offset overlaps previous member");
7021
7022 if (qual_offset % align) {
7023 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7024 "must be a multiple of the base "
7025 "alignment of %s", field_type->name);
7026 }
7027 fields[i].offset = qual_offset;
7028 next_offset = glsl_align(qual_offset + size, align);
7029 } else {
7030 _mesa_glsl_error(&loc, state, "offset can only be used "
7031 "with std430 and std140 layouts");
7032 }
7033 }
7034 }
7035
7036 if (qual->flags.q.explicit_align || expl_align != 0) {
7037 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7038 next_offset;
7039 if (align == 0 || size == 0) {
7040 _mesa_glsl_error(&loc, state, "align can only be used with "
7041 "std430 and std140 layouts");
7042 } else if (qual->flags.q.explicit_align) {
7043 unsigned member_align;
7044 if (process_qualifier_constant(state, &loc, "align",
7045 qual->align, &member_align)) {
7046 if (member_align == 0 ||
7047 member_align & (member_align - 1)) {
7048 _mesa_glsl_error(&loc, state, "align layout qualifier "
7049 "in not a power of 2");
7050 } else {
7051 fields[i].offset = glsl_align(offset, member_align);
7052 next_offset = glsl_align(fields[i].offset + size, align);
7053 }
7054 }
7055 } else {
7056 fields[i].offset = glsl_align(offset, expl_align);
7057 next_offset = glsl_align(fields[i].offset + size, align);
7058 }
7059 } else if (!qual->flags.q.explicit_offset) {
7060 if (align != 0 && size != 0)
7061 next_offset = glsl_align(next_offset + size, align);
7062 }
7063
7064 /* From the ARB_enhanced_layouts spec:
7065 *
7066 * "The given offset applies to the first component of the first
7067 * member of the qualified entity. Then, within the qualified
7068 * entity, subsequent components are each assigned, in order, to
7069 * the next available offset aligned to a multiple of that
7070 * component's size. Aggregate types are flattened down to the
7071 * component level to get this sequence of components."
7072 */
7073 if (qual->flags.q.explicit_xfb_offset) {
7074 unsigned xfb_offset;
7075 if (process_qualifier_constant(state, &loc, "xfb_offset",
7076 qual->offset, &xfb_offset)) {
7077 fields[i].offset = xfb_offset;
7078 block_xfb_offset = fields[i].offset +
7079 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7080 }
7081 } else {
7082 if (layout && layout->flags.q.explicit_xfb_offset) {
7083 unsigned align = field_type->is_64bit() ? 8 : 4;
7084 fields[i].offset = glsl_align(block_xfb_offset, align);
7085 block_xfb_offset +=
7086 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7087 }
7088 }
7089
7090 /* Propogate row- / column-major information down the fields of the
7091 * structure or interface block. Structures need this data because
7092 * the structure may contain a structure that contains ... a matrix
7093 * that need the proper layout.
7094 */
7095 if (is_interface && layout &&
7096 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7097 (field_type->without_array()->is_matrix()
7098 || field_type->without_array()->is_record())) {
7099 /* If no layout is specified for the field, inherit the layout
7100 * from the block.
7101 */
7102 fields[i].matrix_layout = matrix_layout;
7103
7104 if (qual->flags.q.row_major)
7105 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7106 else if (qual->flags.q.column_major)
7107 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7108
7109 /* If we're processing an uniform or buffer block, the matrix
7110 * layout must be decided by this point.
7111 */
7112 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7113 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7114 }
7115
7116 /* Image qualifiers are allowed on buffer variables, which can only
7117 * be defined inside shader storage buffer objects
7118 */
7119 if (layout && var_mode == ir_var_shader_storage) {
7120 /* For readonly and writeonly qualifiers the field definition,
7121 * if set, overwrites the layout qualifier.
7122 */
7123 if (qual->flags.q.read_only) {
7124 fields[i].image_read_only = true;
7125 fields[i].image_write_only = false;
7126 } else if (qual->flags.q.write_only) {
7127 fields[i].image_read_only = false;
7128 fields[i].image_write_only = true;
7129 } else {
7130 fields[i].image_read_only = layout->flags.q.read_only;
7131 fields[i].image_write_only = layout->flags.q.write_only;
7132 }
7133
7134 /* For other qualifiers, we set the flag if either the layout
7135 * qualifier or the field qualifier are set
7136 */
7137 fields[i].image_coherent = qual->flags.q.coherent ||
7138 layout->flags.q.coherent;
7139 fields[i].image_volatile = qual->flags.q._volatile ||
7140 layout->flags.q._volatile;
7141 fields[i].image_restrict = qual->flags.q.restrict_flag ||
7142 layout->flags.q.restrict_flag;
7143 }
7144
7145 i++;
7146 }
7147 }
7148
7149 assert(i == decl_count);
7150
7151 *fields_ret = fields;
7152 return decl_count;
7153 }
7154
7155
7156 ir_rvalue *
7157 ast_struct_specifier::hir(exec_list *instructions,
7158 struct _mesa_glsl_parse_state *state)
7159 {
7160 YYLTYPE loc = this->get_location();
7161
7162 unsigned expl_location = 0;
7163 if (layout && layout->flags.q.explicit_location) {
7164 if (!process_qualifier_constant(state, &loc, "location",
7165 layout->location, &expl_location)) {
7166 return NULL;
7167 } else {
7168 expl_location = VARYING_SLOT_VAR0 + expl_location;
7169 }
7170 }
7171
7172 glsl_struct_field *fields;
7173 unsigned decl_count =
7174 ast_process_struct_or_iface_block_members(instructions,
7175 state,
7176 &this->declarations,
7177 &fields,
7178 false,
7179 GLSL_MATRIX_LAYOUT_INHERITED,
7180 false /* allow_reserved_names */,
7181 ir_var_auto,
7182 layout,
7183 0, /* for interface only */
7184 0, /* for interface only */
7185 0, /* for interface only */
7186 expl_location,
7187 0 /* for interface only */);
7188
7189 validate_identifier(this->name, loc, state);
7190
7191 const glsl_type *t =
7192 glsl_type::get_record_instance(fields, decl_count, this->name);
7193
7194 if (!state->symbols->add_type(name, t)) {
7195 const glsl_type *match = state->symbols->get_type(name);
7196 /* allow struct matching for desktop GL - older UE4 does this */
7197 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7198 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7199 else
7200 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7201 } else {
7202 const glsl_type **s = reralloc(state, state->user_structures,
7203 const glsl_type *,
7204 state->num_user_structures + 1);
7205 if (s != NULL) {
7206 s[state->num_user_structures] = t;
7207 state->user_structures = s;
7208 state->num_user_structures++;
7209 }
7210 }
7211
7212 /* Structure type definitions do not have r-values.
7213 */
7214 return NULL;
7215 }
7216
7217
7218 /**
7219 * Visitor class which detects whether a given interface block has been used.
7220 */
7221 class interface_block_usage_visitor : public ir_hierarchical_visitor
7222 {
7223 public:
7224 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7225 : mode(mode), block(block), found(false)
7226 {
7227 }
7228
7229 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7230 {
7231 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7232 found = true;
7233 return visit_stop;
7234 }
7235 return visit_continue;
7236 }
7237
7238 bool usage_found() const
7239 {
7240 return this->found;
7241 }
7242
7243 private:
7244 ir_variable_mode mode;
7245 const glsl_type *block;
7246 bool found;
7247 };
7248
7249 static bool
7250 is_unsized_array_last_element(ir_variable *v)
7251 {
7252 const glsl_type *interface_type = v->get_interface_type();
7253 int length = interface_type->length;
7254
7255 assert(v->type->is_unsized_array());
7256
7257 /* Check if it is the last element of the interface */
7258 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7259 return true;
7260 return false;
7261 }
7262
7263 static void
7264 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7265 {
7266 var->data.image_read_only = field.image_read_only;
7267 var->data.image_write_only = field.image_write_only;
7268 var->data.image_coherent = field.image_coherent;
7269 var->data.image_volatile = field.image_volatile;
7270 var->data.image_restrict = field.image_restrict;
7271 }
7272
7273 ir_rvalue *
7274 ast_interface_block::hir(exec_list *instructions,
7275 struct _mesa_glsl_parse_state *state)
7276 {
7277 YYLTYPE loc = this->get_location();
7278
7279 /* Interface blocks must be declared at global scope */
7280 if (state->current_function != NULL) {
7281 _mesa_glsl_error(&loc, state,
7282 "Interface block `%s' must be declared "
7283 "at global scope",
7284 this->block_name);
7285 }
7286
7287 /* Validate qualifiers:
7288 *
7289 * - Layout Qualifiers as per the table in Section 4.4
7290 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7291 *
7292 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7293 * GLSL 4.50 spec:
7294 *
7295 * "Additionally, memory qualifiers may also be used in the declaration
7296 * of shader storage blocks"
7297 *
7298 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7299 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7300 * Layout Qualifiers) of the GLSL 4.50 spec says:
7301 *
7302 * "The std430 qualifier is supported only for shader storage blocks;
7303 * using std430 on a uniform block will result in a compile-time error."
7304 */
7305 ast_type_qualifier allowed_blk_qualifiers;
7306 allowed_blk_qualifiers.flags.i = 0;
7307 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7308 allowed_blk_qualifiers.flags.q.shared = 1;
7309 allowed_blk_qualifiers.flags.q.packed = 1;
7310 allowed_blk_qualifiers.flags.q.std140 = 1;
7311 allowed_blk_qualifiers.flags.q.row_major = 1;
7312 allowed_blk_qualifiers.flags.q.column_major = 1;
7313 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7314 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7315 if (this->layout.flags.q.buffer) {
7316 allowed_blk_qualifiers.flags.q.buffer = 1;
7317 allowed_blk_qualifiers.flags.q.std430 = 1;
7318 allowed_blk_qualifiers.flags.q.coherent = 1;
7319 allowed_blk_qualifiers.flags.q._volatile = 1;
7320 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7321 allowed_blk_qualifiers.flags.q.read_only = 1;
7322 allowed_blk_qualifiers.flags.q.write_only = 1;
7323 } else {
7324 allowed_blk_qualifiers.flags.q.uniform = 1;
7325 }
7326 } else {
7327 /* Interface block */
7328 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7329
7330 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7331 if (this->layout.flags.q.out) {
7332 allowed_blk_qualifiers.flags.q.out = 1;
7333 if (state->stage == MESA_SHADER_GEOMETRY ||
7334 state->stage == MESA_SHADER_TESS_CTRL ||
7335 state->stage == MESA_SHADER_TESS_EVAL ||
7336 state->stage == MESA_SHADER_VERTEX ) {
7337 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7338 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7339 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7340 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7341 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7342 if (state->stage == MESA_SHADER_GEOMETRY) {
7343 allowed_blk_qualifiers.flags.q.stream = 1;
7344 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7345 }
7346 if (state->stage == MESA_SHADER_TESS_CTRL) {
7347 allowed_blk_qualifiers.flags.q.patch = 1;
7348 }
7349 }
7350 } else {
7351 allowed_blk_qualifiers.flags.q.in = 1;
7352 if (state->stage == MESA_SHADER_TESS_EVAL) {
7353 allowed_blk_qualifiers.flags.q.patch = 1;
7354 }
7355 }
7356 }
7357
7358 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7359 "invalid qualifier for block",
7360 this->block_name);
7361
7362 /* The ast_interface_block has a list of ast_declarator_lists. We
7363 * need to turn those into ir_variables with an association
7364 * with this uniform block.
7365 */
7366 enum glsl_interface_packing packing;
7367 if (this->layout.flags.q.shared) {
7368 packing = GLSL_INTERFACE_PACKING_SHARED;
7369 } else if (this->layout.flags.q.packed) {
7370 packing = GLSL_INTERFACE_PACKING_PACKED;
7371 } else if (this->layout.flags.q.std430) {
7372 packing = GLSL_INTERFACE_PACKING_STD430;
7373 } else {
7374 /* The default layout is std140.
7375 */
7376 packing = GLSL_INTERFACE_PACKING_STD140;
7377 }
7378
7379 ir_variable_mode var_mode;
7380 const char *iface_type_name;
7381 if (this->layout.flags.q.in) {
7382 var_mode = ir_var_shader_in;
7383 iface_type_name = "in";
7384 } else if (this->layout.flags.q.out) {
7385 var_mode = ir_var_shader_out;
7386 iface_type_name = "out";
7387 } else if (this->layout.flags.q.uniform) {
7388 var_mode = ir_var_uniform;
7389 iface_type_name = "uniform";
7390 } else if (this->layout.flags.q.buffer) {
7391 var_mode = ir_var_shader_storage;
7392 iface_type_name = "buffer";
7393 } else {
7394 var_mode = ir_var_auto;
7395 iface_type_name = "UNKNOWN";
7396 assert(!"interface block layout qualifier not found!");
7397 }
7398
7399 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7400 if (this->layout.flags.q.row_major)
7401 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7402 else if (this->layout.flags.q.column_major)
7403 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7404
7405 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7406 exec_list declared_variables;
7407 glsl_struct_field *fields;
7408
7409 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7410 * that we don't have incompatible qualifiers
7411 */
7412 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7413 _mesa_glsl_error(&loc, state,
7414 "Interface block sets both readonly and writeonly");
7415 }
7416
7417 unsigned qual_stream;
7418 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7419 &qual_stream) ||
7420 !validate_stream_qualifier(&loc, state, qual_stream)) {
7421 /* If the stream qualifier is invalid it doesn't make sense to continue
7422 * on and try to compare stream layouts on member variables against it
7423 * so just return early.
7424 */
7425 return NULL;
7426 }
7427
7428 unsigned qual_xfb_buffer;
7429 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7430 layout.xfb_buffer, &qual_xfb_buffer) ||
7431 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7432 return NULL;
7433 }
7434
7435 unsigned qual_xfb_offset;
7436 if (layout.flags.q.explicit_xfb_offset) {
7437 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7438 layout.offset, &qual_xfb_offset)) {
7439 return NULL;
7440 }
7441 }
7442
7443 unsigned qual_xfb_stride;
7444 if (layout.flags.q.explicit_xfb_stride) {
7445 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7446 layout.xfb_stride, &qual_xfb_stride)) {
7447 return NULL;
7448 }
7449 }
7450
7451 unsigned expl_location = 0;
7452 if (layout.flags.q.explicit_location) {
7453 if (!process_qualifier_constant(state, &loc, "location",
7454 layout.location, &expl_location)) {
7455 return NULL;
7456 } else {
7457 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7458 : VARYING_SLOT_VAR0;
7459 }
7460 }
7461
7462 unsigned expl_align = 0;
7463 if (layout.flags.q.explicit_align) {
7464 if (!process_qualifier_constant(state, &loc, "align",
7465 layout.align, &expl_align)) {
7466 return NULL;
7467 } else {
7468 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7469 _mesa_glsl_error(&loc, state, "align layout qualifier in not a "
7470 "power of 2.");
7471 return NULL;
7472 }
7473 }
7474 }
7475
7476 unsigned int num_variables =
7477 ast_process_struct_or_iface_block_members(&declared_variables,
7478 state,
7479 &this->declarations,
7480 &fields,
7481 true,
7482 matrix_layout,
7483 redeclaring_per_vertex,
7484 var_mode,
7485 &this->layout,
7486 qual_stream,
7487 qual_xfb_buffer,
7488 qual_xfb_offset,
7489 expl_location,
7490 expl_align);
7491
7492 if (!redeclaring_per_vertex) {
7493 validate_identifier(this->block_name, loc, state);
7494
7495 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7496 *
7497 * "Block names have no other use within a shader beyond interface
7498 * matching; it is a compile-time error to use a block name at global
7499 * scope for anything other than as a block name."
7500 */
7501 ir_variable *var = state->symbols->get_variable(this->block_name);
7502 if (var && !var->type->is_interface()) {
7503 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7504 "already used in the scope.",
7505 this->block_name);
7506 }
7507 }
7508
7509 const glsl_type *earlier_per_vertex = NULL;
7510 if (redeclaring_per_vertex) {
7511 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7512 * the named interface block gl_in, we can find it by looking at the
7513 * previous declaration of gl_in. Otherwise we can find it by looking
7514 * at the previous decalartion of any of the built-in outputs,
7515 * e.g. gl_Position.
7516 *
7517 * Also check that the instance name and array-ness of the redeclaration
7518 * are correct.
7519 */
7520 switch (var_mode) {
7521 case ir_var_shader_in:
7522 if (ir_variable *earlier_gl_in =
7523 state->symbols->get_variable("gl_in")) {
7524 earlier_per_vertex = earlier_gl_in->get_interface_type();
7525 } else {
7526 _mesa_glsl_error(&loc, state,
7527 "redeclaration of gl_PerVertex input not allowed "
7528 "in the %s shader",
7529 _mesa_shader_stage_to_string(state->stage));
7530 }
7531 if (this->instance_name == NULL ||
7532 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7533 !this->array_specifier->is_single_dimension()) {
7534 _mesa_glsl_error(&loc, state,
7535 "gl_PerVertex input must be redeclared as "
7536 "gl_in[]");
7537 }
7538 break;
7539 case ir_var_shader_out:
7540 if (ir_variable *earlier_gl_Position =
7541 state->symbols->get_variable("gl_Position")) {
7542 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7543 } else if (ir_variable *earlier_gl_out =
7544 state->symbols->get_variable("gl_out")) {
7545 earlier_per_vertex = earlier_gl_out->get_interface_type();
7546 } else {
7547 _mesa_glsl_error(&loc, state,
7548 "redeclaration of gl_PerVertex output not "
7549 "allowed in the %s shader",
7550 _mesa_shader_stage_to_string(state->stage));
7551 }
7552 if (state->stage == MESA_SHADER_TESS_CTRL) {
7553 if (this->instance_name == NULL ||
7554 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7555 _mesa_glsl_error(&loc, state,
7556 "gl_PerVertex output must be redeclared as "
7557 "gl_out[]");
7558 }
7559 } else {
7560 if (this->instance_name != NULL) {
7561 _mesa_glsl_error(&loc, state,
7562 "gl_PerVertex output may not be redeclared with "
7563 "an instance name");
7564 }
7565 }
7566 break;
7567 default:
7568 _mesa_glsl_error(&loc, state,
7569 "gl_PerVertex must be declared as an input or an "
7570 "output");
7571 break;
7572 }
7573
7574 if (earlier_per_vertex == NULL) {
7575 /* An error has already been reported. Bail out to avoid null
7576 * dereferences later in this function.
7577 */
7578 return NULL;
7579 }
7580
7581 /* Copy locations from the old gl_PerVertex interface block. */
7582 for (unsigned i = 0; i < num_variables; i++) {
7583 int j = earlier_per_vertex->field_index(fields[i].name);
7584 if (j == -1) {
7585 _mesa_glsl_error(&loc, state,
7586 "redeclaration of gl_PerVertex must be a subset "
7587 "of the built-in members of gl_PerVertex");
7588 } else {
7589 fields[i].location =
7590 earlier_per_vertex->fields.structure[j].location;
7591 fields[i].offset =
7592 earlier_per_vertex->fields.structure[j].offset;
7593 fields[i].interpolation =
7594 earlier_per_vertex->fields.structure[j].interpolation;
7595 fields[i].centroid =
7596 earlier_per_vertex->fields.structure[j].centroid;
7597 fields[i].sample =
7598 earlier_per_vertex->fields.structure[j].sample;
7599 fields[i].patch =
7600 earlier_per_vertex->fields.structure[j].patch;
7601 fields[i].precision =
7602 earlier_per_vertex->fields.structure[j].precision;
7603 fields[i].explicit_xfb_buffer =
7604 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7605 fields[i].xfb_buffer =
7606 earlier_per_vertex->fields.structure[j].xfb_buffer;
7607 fields[i].xfb_stride =
7608 earlier_per_vertex->fields.structure[j].xfb_stride;
7609 }
7610 }
7611
7612 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7613 * spec:
7614 *
7615 * If a built-in interface block is redeclared, it must appear in
7616 * the shader before any use of any member included in the built-in
7617 * declaration, or a compilation error will result.
7618 *
7619 * This appears to be a clarification to the behaviour established for
7620 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7621 * regardless of GLSL version.
7622 */
7623 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7624 v.run(instructions);
7625 if (v.usage_found()) {
7626 _mesa_glsl_error(&loc, state,
7627 "redeclaration of a built-in interface block must "
7628 "appear before any use of any member of the "
7629 "interface block");
7630 }
7631 }
7632
7633 const glsl_type *block_type =
7634 glsl_type::get_interface_instance(fields,
7635 num_variables,
7636 packing,
7637 matrix_layout ==
7638 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7639 this->block_name);
7640
7641 unsigned component_size = block_type->contains_double() ? 8 : 4;
7642 int xfb_offset =
7643 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7644 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7645 component_size);
7646
7647 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7648 YYLTYPE loc = this->get_location();
7649 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7650 "already taken in the current scope",
7651 this->block_name, iface_type_name);
7652 }
7653
7654 /* Since interface blocks cannot contain statements, it should be
7655 * impossible for the block to generate any instructions.
7656 */
7657 assert(declared_variables.is_empty());
7658
7659 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7660 *
7661 * Geometry shader input variables get the per-vertex values written
7662 * out by vertex shader output variables of the same names. Since a
7663 * geometry shader operates on a set of vertices, each input varying
7664 * variable (or input block, see interface blocks below) needs to be
7665 * declared as an array.
7666 */
7667 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7668 var_mode == ir_var_shader_in) {
7669 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7670 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7671 state->stage == MESA_SHADER_TESS_EVAL) &&
7672 !this->layout.flags.q.patch &&
7673 this->array_specifier == NULL &&
7674 var_mode == ir_var_shader_in) {
7675 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7676 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7677 !this->layout.flags.q.patch &&
7678 this->array_specifier == NULL &&
7679 var_mode == ir_var_shader_out) {
7680 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7681 }
7682
7683
7684 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7685 * says:
7686 *
7687 * "If an instance name (instance-name) is used, then it puts all the
7688 * members inside a scope within its own name space, accessed with the
7689 * field selector ( . ) operator (analogously to structures)."
7690 */
7691 if (this->instance_name) {
7692 if (redeclaring_per_vertex) {
7693 /* When a built-in in an unnamed interface block is redeclared,
7694 * get_variable_being_redeclared() calls
7695 * check_builtin_array_max_size() to make sure that built-in array
7696 * variables aren't redeclared to illegal sizes. But we're looking
7697 * at a redeclaration of a named built-in interface block. So we
7698 * have to manually call check_builtin_array_max_size() for all parts
7699 * of the interface that are arrays.
7700 */
7701 for (unsigned i = 0; i < num_variables; i++) {
7702 if (fields[i].type->is_array()) {
7703 const unsigned size = fields[i].type->array_size();
7704 check_builtin_array_max_size(fields[i].name, size, loc, state);
7705 }
7706 }
7707 } else {
7708 validate_identifier(this->instance_name, loc, state);
7709 }
7710
7711 ir_variable *var;
7712
7713 if (this->array_specifier != NULL) {
7714 const glsl_type *block_array_type =
7715 process_array_type(&loc, block_type, this->array_specifier, state);
7716
7717 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7718 *
7719 * For uniform blocks declared an array, each individual array
7720 * element corresponds to a separate buffer object backing one
7721 * instance of the block. As the array size indicates the number
7722 * of buffer objects needed, uniform block array declarations
7723 * must specify an array size.
7724 *
7725 * And a few paragraphs later:
7726 *
7727 * Geometry shader input blocks must be declared as arrays and
7728 * follow the array declaration and linking rules for all
7729 * geometry shader inputs. All other input and output block
7730 * arrays must specify an array size.
7731 *
7732 * The same applies to tessellation shaders.
7733 *
7734 * The upshot of this is that the only circumstance where an
7735 * interface array size *doesn't* need to be specified is on a
7736 * geometry shader input, tessellation control shader input,
7737 * tessellation control shader output, and tessellation evaluation
7738 * shader input.
7739 */
7740 if (block_array_type->is_unsized_array()) {
7741 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7742 state->stage == MESA_SHADER_TESS_CTRL ||
7743 state->stage == MESA_SHADER_TESS_EVAL;
7744 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7745
7746 if (this->layout.flags.q.in) {
7747 if (!allow_inputs)
7748 _mesa_glsl_error(&loc, state,
7749 "unsized input block arrays not allowed in "
7750 "%s shader",
7751 _mesa_shader_stage_to_string(state->stage));
7752 } else if (this->layout.flags.q.out) {
7753 if (!allow_outputs)
7754 _mesa_glsl_error(&loc, state,
7755 "unsized output block arrays not allowed in "
7756 "%s shader",
7757 _mesa_shader_stage_to_string(state->stage));
7758 } else {
7759 /* by elimination, this is a uniform block array */
7760 _mesa_glsl_error(&loc, state,
7761 "unsized uniform block arrays not allowed in "
7762 "%s shader",
7763 _mesa_shader_stage_to_string(state->stage));
7764 }
7765 }
7766
7767 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7768 *
7769 * * Arrays of arrays of blocks are not allowed
7770 */
7771 if (state->es_shader && block_array_type->is_array() &&
7772 block_array_type->fields.array->is_array()) {
7773 _mesa_glsl_error(&loc, state,
7774 "arrays of arrays interface blocks are "
7775 "not allowed");
7776 }
7777
7778 var = new(state) ir_variable(block_array_type,
7779 this->instance_name,
7780 var_mode);
7781 } else {
7782 var = new(state) ir_variable(block_type,
7783 this->instance_name,
7784 var_mode);
7785 }
7786
7787 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7788 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7789
7790 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7791 var->data.read_only = true;
7792
7793 var->data.patch = this->layout.flags.q.patch;
7794
7795 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7796 handle_geometry_shader_input_decl(state, loc, var);
7797 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7798 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7799 handle_tess_shader_input_decl(state, loc, var);
7800 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7801 handle_tess_ctrl_shader_output_decl(state, loc, var);
7802
7803 for (unsigned i = 0; i < num_variables; i++) {
7804 if (var->data.mode == ir_var_shader_storage)
7805 apply_memory_qualifiers(var, fields[i]);
7806 }
7807
7808 if (ir_variable *earlier =
7809 state->symbols->get_variable(this->instance_name)) {
7810 if (!redeclaring_per_vertex) {
7811 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7812 this->instance_name);
7813 }
7814 earlier->data.how_declared = ir_var_declared_normally;
7815 earlier->type = var->type;
7816 earlier->reinit_interface_type(block_type);
7817 delete var;
7818 } else {
7819 if (this->layout.flags.q.explicit_binding) {
7820 apply_explicit_binding(state, &loc, var, var->type,
7821 &this->layout);
7822 }
7823
7824 var->data.stream = qual_stream;
7825 if (layout.flags.q.explicit_location) {
7826 var->data.location = expl_location;
7827 var->data.explicit_location = true;
7828 }
7829
7830 state->symbols->add_variable(var);
7831 instructions->push_tail(var);
7832 }
7833 } else {
7834 /* In order to have an array size, the block must also be declared with
7835 * an instance name.
7836 */
7837 assert(this->array_specifier == NULL);
7838
7839 for (unsigned i = 0; i < num_variables; i++) {
7840 ir_variable *var =
7841 new(state) ir_variable(fields[i].type,
7842 ralloc_strdup(state, fields[i].name),
7843 var_mode);
7844 var->data.interpolation = fields[i].interpolation;
7845 var->data.centroid = fields[i].centroid;
7846 var->data.sample = fields[i].sample;
7847 var->data.patch = fields[i].patch;
7848 var->data.stream = qual_stream;
7849 var->data.location = fields[i].location;
7850
7851 if (fields[i].location != -1)
7852 var->data.explicit_location = true;
7853
7854 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7855 var->data.xfb_buffer = fields[i].xfb_buffer;
7856
7857 if (fields[i].offset != -1)
7858 var->data.explicit_xfb_offset = true;
7859 var->data.offset = fields[i].offset;
7860
7861 var->init_interface_type(block_type);
7862
7863 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7864 var->data.read_only = true;
7865
7866 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7867 if (state->es_shader) {
7868 var->data.precision =
7869 select_gles_precision(fields[i].precision, fields[i].type,
7870 state, &loc);
7871 }
7872
7873 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7874 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7875 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7876 } else {
7877 var->data.matrix_layout = fields[i].matrix_layout;
7878 }
7879
7880 if (var->data.mode == ir_var_shader_storage)
7881 apply_memory_qualifiers(var, fields[i]);
7882
7883 /* Examine var name here since var may get deleted in the next call */
7884 bool var_is_gl_id = is_gl_identifier(var->name);
7885
7886 if (redeclaring_per_vertex) {
7887 bool is_redeclaration;
7888 ir_variable *declared_var =
7889 get_variable_being_redeclared(var, loc, state,
7890 true /* allow_all_redeclarations */,
7891 &is_redeclaration);
7892 if (!var_is_gl_id || !is_redeclaration) {
7893 _mesa_glsl_error(&loc, state,
7894 "redeclaration of gl_PerVertex can only "
7895 "include built-in variables");
7896 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
7897 _mesa_glsl_error(&loc, state,
7898 "`%s' has already been redeclared",
7899 declared_var->name);
7900 } else {
7901 declared_var->data.how_declared = ir_var_declared_in_block;
7902 declared_var->reinit_interface_type(block_type);
7903 }
7904 continue;
7905 }
7906
7907 if (state->symbols->get_variable(var->name) != NULL)
7908 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7909
7910 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7911 * The UBO declaration itself doesn't get an ir_variable unless it
7912 * has an instance name. This is ugly.
7913 */
7914 if (this->layout.flags.q.explicit_binding) {
7915 apply_explicit_binding(state, &loc, var,
7916 var->get_interface_type(), &this->layout);
7917 }
7918
7919 if (var->type->is_unsized_array()) {
7920 if (var->is_in_shader_storage_block() &&
7921 is_unsized_array_last_element(var)) {
7922 var->data.from_ssbo_unsized_array = true;
7923 } else {
7924 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7925 *
7926 * "If an array is declared as the last member of a shader storage
7927 * block and the size is not specified at compile-time, it is
7928 * sized at run-time. In all other cases, arrays are sized only
7929 * at compile-time."
7930 *
7931 * In desktop GLSL it is allowed to have unsized-arrays that are
7932 * not last, as long as we can determine that they are implicitly
7933 * sized.
7934 */
7935 if (state->es_shader) {
7936 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7937 "definition: only last member of a shader "
7938 "storage block can be defined as unsized "
7939 "array", fields[i].name);
7940 }
7941 }
7942 }
7943
7944 state->symbols->add_variable(var);
7945 instructions->push_tail(var);
7946 }
7947
7948 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7949 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7950 *
7951 * It is also a compilation error ... to redeclare a built-in
7952 * block and then use a member from that built-in block that was
7953 * not included in the redeclaration.
7954 *
7955 * This appears to be a clarification to the behaviour established
7956 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7957 * behaviour regardless of GLSL version.
7958 *
7959 * To prevent the shader from using a member that was not included in
7960 * the redeclaration, we disable any ir_variables that are still
7961 * associated with the old declaration of gl_PerVertex (since we've
7962 * already updated all of the variables contained in the new
7963 * gl_PerVertex to point to it).
7964 *
7965 * As a side effect this will prevent
7966 * validate_intrastage_interface_blocks() from getting confused and
7967 * thinking there are conflicting definitions of gl_PerVertex in the
7968 * shader.
7969 */
7970 foreach_in_list_safe(ir_instruction, node, instructions) {
7971 ir_variable *const var = node->as_variable();
7972 if (var != NULL &&
7973 var->get_interface_type() == earlier_per_vertex &&
7974 var->data.mode == var_mode) {
7975 if (var->data.how_declared == ir_var_declared_normally) {
7976 _mesa_glsl_error(&loc, state,
7977 "redeclaration of gl_PerVertex cannot "
7978 "follow a redeclaration of `%s'",
7979 var->name);
7980 }
7981 state->symbols->disable_variable(var->name);
7982 var->remove();
7983 }
7984 }
7985 }
7986 }
7987
7988 return NULL;
7989 }
7990
7991
7992 ir_rvalue *
7993 ast_tcs_output_layout::hir(exec_list *instructions,
7994 struct _mesa_glsl_parse_state *state)
7995 {
7996 YYLTYPE loc = this->get_location();
7997
7998 unsigned num_vertices;
7999 if (!state->out_qualifier->vertices->
8000 process_qualifier_constant(state, "vertices", &num_vertices,
8001 false)) {
8002 /* return here to stop cascading incorrect error messages */
8003 return NULL;
8004 }
8005
8006 /* If any shader outputs occurred before this declaration and specified an
8007 * array size, make sure the size they specified is consistent with the
8008 * primitive type.
8009 */
8010 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8011 _mesa_glsl_error(&loc, state,
8012 "this tessellation control shader output layout "
8013 "specifies %u vertices, but a previous output "
8014 "is declared with size %u",
8015 num_vertices, state->tcs_output_size);
8016 return NULL;
8017 }
8018
8019 state->tcs_output_vertices_specified = true;
8020
8021 /* If any shader outputs occurred before this declaration and did not
8022 * specify an array size, their size is determined now.
8023 */
8024 foreach_in_list (ir_instruction, node, instructions) {
8025 ir_variable *var = node->as_variable();
8026 if (var == NULL || var->data.mode != ir_var_shader_out)
8027 continue;
8028
8029 /* Note: Not all tessellation control shader output are arrays. */
8030 if (!var->type->is_unsized_array() || var->data.patch)
8031 continue;
8032
8033 if (var->data.max_array_access >= (int)num_vertices) {
8034 _mesa_glsl_error(&loc, state,
8035 "this tessellation control shader output layout "
8036 "specifies %u vertices, but an access to element "
8037 "%u of output `%s' already exists", num_vertices,
8038 var->data.max_array_access, var->name);
8039 } else {
8040 var->type = glsl_type::get_array_instance(var->type->fields.array,
8041 num_vertices);
8042 }
8043 }
8044
8045 return NULL;
8046 }
8047
8048
8049 ir_rvalue *
8050 ast_gs_input_layout::hir(exec_list *instructions,
8051 struct _mesa_glsl_parse_state *state)
8052 {
8053 YYLTYPE loc = this->get_location();
8054
8055 /* Should have been prevented by the parser. */
8056 assert(!state->gs_input_prim_type_specified
8057 || state->in_qualifier->prim_type == this->prim_type);
8058
8059 /* If any shader inputs occurred before this declaration and specified an
8060 * array size, make sure the size they specified is consistent with the
8061 * primitive type.
8062 */
8063 unsigned num_vertices = vertices_per_prim(this->prim_type);
8064 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8065 _mesa_glsl_error(&loc, state,
8066 "this geometry shader input layout implies %u vertices"
8067 " per primitive, but a previous input is declared"
8068 " with size %u", num_vertices, state->gs_input_size);
8069 return NULL;
8070 }
8071
8072 state->gs_input_prim_type_specified = true;
8073
8074 /* If any shader inputs occurred before this declaration and did not
8075 * specify an array size, their size is determined now.
8076 */
8077 foreach_in_list(ir_instruction, node, instructions) {
8078 ir_variable *var = node->as_variable();
8079 if (var == NULL || var->data.mode != ir_var_shader_in)
8080 continue;
8081
8082 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8083 * array; skip it.
8084 */
8085
8086 if (var->type->is_unsized_array()) {
8087 if (var->data.max_array_access >= (int)num_vertices) {
8088 _mesa_glsl_error(&loc, state,
8089 "this geometry shader input layout implies %u"
8090 " vertices, but an access to element %u of input"
8091 " `%s' already exists", num_vertices,
8092 var->data.max_array_access, var->name);
8093 } else {
8094 var->type = glsl_type::get_array_instance(var->type->fields.array,
8095 num_vertices);
8096 }
8097 }
8098 }
8099
8100 return NULL;
8101 }
8102
8103
8104 ir_rvalue *
8105 ast_cs_input_layout::hir(exec_list *instructions,
8106 struct _mesa_glsl_parse_state *state)
8107 {
8108 YYLTYPE loc = this->get_location();
8109
8110 /* From the ARB_compute_shader specification:
8111 *
8112 * If the local size of the shader in any dimension is greater
8113 * than the maximum size supported by the implementation for that
8114 * dimension, a compile-time error results.
8115 *
8116 * It is not clear from the spec how the error should be reported if
8117 * the total size of the work group exceeds
8118 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8119 * report it at compile time as well.
8120 */
8121 GLuint64 total_invocations = 1;
8122 unsigned qual_local_size[3];
8123 for (int i = 0; i < 3; i++) {
8124
8125 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8126 'x' + i);
8127 /* Infer a local_size of 1 for unspecified dimensions */
8128 if (this->local_size[i] == NULL) {
8129 qual_local_size[i] = 1;
8130 } else if (!this->local_size[i]->
8131 process_qualifier_constant(state, local_size_str,
8132 &qual_local_size[i], false)) {
8133 ralloc_free(local_size_str);
8134 return NULL;
8135 }
8136 ralloc_free(local_size_str);
8137
8138 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8139 _mesa_glsl_error(&loc, state,
8140 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8141 " (%d)", 'x' + i,
8142 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8143 break;
8144 }
8145 total_invocations *= qual_local_size[i];
8146 if (total_invocations >
8147 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8148 _mesa_glsl_error(&loc, state,
8149 "product of local_sizes exceeds "
8150 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8151 state->ctx->Const.MaxComputeWorkGroupInvocations);
8152 break;
8153 }
8154 }
8155
8156 /* If any compute input layout declaration preceded this one, make sure it
8157 * was consistent with this one.
8158 */
8159 if (state->cs_input_local_size_specified) {
8160 for (int i = 0; i < 3; i++) {
8161 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8162 _mesa_glsl_error(&loc, state,
8163 "compute shader input layout does not match"
8164 " previous declaration");
8165 return NULL;
8166 }
8167 }
8168 }
8169
8170 /* The ARB_compute_variable_group_size spec says:
8171 *
8172 * If a compute shader including a *local_size_variable* qualifier also
8173 * declares a fixed local group size using the *local_size_x*,
8174 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8175 * results
8176 */
8177 if (state->cs_input_local_size_variable_specified) {
8178 _mesa_glsl_error(&loc, state,
8179 "compute shader can't include both a variable and a "
8180 "fixed local group size");
8181 return NULL;
8182 }
8183
8184 state->cs_input_local_size_specified = true;
8185 for (int i = 0; i < 3; i++)
8186 state->cs_input_local_size[i] = qual_local_size[i];
8187
8188 /* We may now declare the built-in constant gl_WorkGroupSize (see
8189 * builtin_variable_generator::generate_constants() for why we didn't
8190 * declare it earlier).
8191 */
8192 ir_variable *var = new(state->symbols)
8193 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8194 var->data.how_declared = ir_var_declared_implicitly;
8195 var->data.read_only = true;
8196 instructions->push_tail(var);
8197 state->symbols->add_variable(var);
8198 ir_constant_data data;
8199 memset(&data, 0, sizeof(data));
8200 for (int i = 0; i < 3; i++)
8201 data.u[i] = qual_local_size[i];
8202 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8203 var->constant_initializer =
8204 new(var) ir_constant(glsl_type::uvec3_type, &data);
8205 var->data.has_initializer = true;
8206
8207 return NULL;
8208 }
8209
8210
8211 static void
8212 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8213 exec_list *instructions)
8214 {
8215 bool gl_FragColor_assigned = false;
8216 bool gl_FragData_assigned = false;
8217 bool gl_FragSecondaryColor_assigned = false;
8218 bool gl_FragSecondaryData_assigned = false;
8219 bool user_defined_fs_output_assigned = false;
8220 ir_variable *user_defined_fs_output = NULL;
8221
8222 /* It would be nice to have proper location information. */
8223 YYLTYPE loc;
8224 memset(&loc, 0, sizeof(loc));
8225
8226 foreach_in_list(ir_instruction, node, instructions) {
8227 ir_variable *var = node->as_variable();
8228
8229 if (!var || !var->data.assigned)
8230 continue;
8231
8232 if (strcmp(var->name, "gl_FragColor") == 0)
8233 gl_FragColor_assigned = true;
8234 else if (strcmp(var->name, "gl_FragData") == 0)
8235 gl_FragData_assigned = true;
8236 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8237 gl_FragSecondaryColor_assigned = true;
8238 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8239 gl_FragSecondaryData_assigned = true;
8240 else if (!is_gl_identifier(var->name)) {
8241 if (state->stage == MESA_SHADER_FRAGMENT &&
8242 var->data.mode == ir_var_shader_out) {
8243 user_defined_fs_output_assigned = true;
8244 user_defined_fs_output = var;
8245 }
8246 }
8247 }
8248
8249 /* From the GLSL 1.30 spec:
8250 *
8251 * "If a shader statically assigns a value to gl_FragColor, it
8252 * may not assign a value to any element of gl_FragData. If a
8253 * shader statically writes a value to any element of
8254 * gl_FragData, it may not assign a value to
8255 * gl_FragColor. That is, a shader may assign values to either
8256 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8257 * linked together must also consistently write just one of
8258 * these variables. Similarly, if user declared output
8259 * variables are in use (statically assigned to), then the
8260 * built-in variables gl_FragColor and gl_FragData may not be
8261 * assigned to. These incorrect usages all generate compile
8262 * time errors."
8263 */
8264 if (gl_FragColor_assigned && gl_FragData_assigned) {
8265 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8266 "`gl_FragColor' and `gl_FragData'");
8267 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8268 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8269 "`gl_FragColor' and `%s'",
8270 user_defined_fs_output->name);
8271 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8272 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8273 "`gl_FragSecondaryColorEXT' and"
8274 " `gl_FragSecondaryDataEXT'");
8275 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8276 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8277 "`gl_FragColor' and"
8278 " `gl_FragSecondaryDataEXT'");
8279 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8280 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8281 "`gl_FragData' and"
8282 " `gl_FragSecondaryColorEXT'");
8283 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8284 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8285 "`gl_FragData' and `%s'",
8286 user_defined_fs_output->name);
8287 }
8288
8289 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8290 !state->EXT_blend_func_extended_enable) {
8291 _mesa_glsl_error(&loc, state,
8292 "Dual source blending requires EXT_blend_func_extended");
8293 }
8294 }
8295
8296
8297 static void
8298 remove_per_vertex_blocks(exec_list *instructions,
8299 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8300 {
8301 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8302 * if it exists in this shader type.
8303 */
8304 const glsl_type *per_vertex = NULL;
8305 switch (mode) {
8306 case ir_var_shader_in:
8307 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8308 per_vertex = gl_in->get_interface_type();
8309 break;
8310 case ir_var_shader_out:
8311 if (ir_variable *gl_Position =
8312 state->symbols->get_variable("gl_Position")) {
8313 per_vertex = gl_Position->get_interface_type();
8314 }
8315 break;
8316 default:
8317 assert(!"Unexpected mode");
8318 break;
8319 }
8320
8321 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8322 * need to do anything.
8323 */
8324 if (per_vertex == NULL)
8325 return;
8326
8327 /* If the interface block is used by the shader, then we don't need to do
8328 * anything.
8329 */
8330 interface_block_usage_visitor v(mode, per_vertex);
8331 v.run(instructions);
8332 if (v.usage_found())
8333 return;
8334
8335 /* Remove any ir_variable declarations that refer to the interface block
8336 * we're removing.
8337 */
8338 foreach_in_list_safe(ir_instruction, node, instructions) {
8339 ir_variable *const var = node->as_variable();
8340 if (var != NULL && var->get_interface_type() == per_vertex &&
8341 var->data.mode == mode) {
8342 state->symbols->disable_variable(var->name);
8343 var->remove();
8344 }
8345 }
8346 }