glsl: reject format qualifiers with non-image types everywhere
[mesa.git] / src / compiler / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/macros.h"
58 #include "main/shaderobj.h"
59 #include "ir.h"
60 #include "ir_builder.h"
61 #include "builtin_functions.h"
62
63 using namespace ir_builder;
64
65 static void
66 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
67 exec_list *instructions);
68 static void
69 remove_per_vertex_blocks(exec_list *instructions,
70 _mesa_glsl_parse_state *state, ir_variable_mode mode);
71
72 /**
73 * Visitor class that finds the first instance of any write-only variable that
74 * is ever read, if any
75 */
76 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
77 {
78 public:
79 read_from_write_only_variable_visitor() : found(NULL)
80 {
81 }
82
83 virtual ir_visitor_status visit(ir_dereference_variable *ir)
84 {
85 if (this->in_assignee)
86 return visit_continue;
87
88 ir_variable *var = ir->variable_referenced();
89 /* We can have memory_write_only set on both images and buffer variables,
90 * but in the former there is a distinction between reads from
91 * the variable itself (write_only) and from the memory they point to
92 * (memory_write_only), while in the case of buffer variables there is
93 * no such distinction, that is why this check here is limited to
94 * buffer variables alone.
95 */
96 if (!var || var->data.mode != ir_var_shader_storage)
97 return visit_continue;
98
99 if (var->data.memory_write_only) {
100 found = var;
101 return visit_stop;
102 }
103
104 return visit_continue;
105 }
106
107 ir_variable *get_variable() {
108 return found;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_expression *ir)
112 {
113 /* .length() doesn't actually read anything */
114 if (ir->operation == ir_unop_ssbo_unsized_array_length)
115 return visit_continue_with_parent;
116
117 return visit_continue;
118 }
119
120 private:
121 ir_variable *found;
122 };
123
124 void
125 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
126 {
127 _mesa_glsl_initialize_variables(instructions, state);
128
129 state->symbols->separate_function_namespace = state->language_version == 110;
130
131 state->current_function = NULL;
132
133 state->toplevel_ir = instructions;
134
135 state->gs_input_prim_type_specified = false;
136 state->tcs_output_vertices_specified = false;
137 state->cs_input_local_size_specified = false;
138
139 /* Section 4.2 of the GLSL 1.20 specification states:
140 * "The built-in functions are scoped in a scope outside the global scope
141 * users declare global variables in. That is, a shader's global scope,
142 * available for user-defined functions and global variables, is nested
143 * inside the scope containing the built-in functions."
144 *
145 * Since built-in functions like ftransform() access built-in variables,
146 * it follows that those must be in the outer scope as well.
147 *
148 * We push scope here to create this nesting effect...but don't pop.
149 * This way, a shader's globals are still in the symbol table for use
150 * by the linker.
151 */
152 state->symbols->push_scope();
153
154 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
155 ast->hir(instructions, state);
156
157 detect_recursion_unlinked(state, instructions);
158 detect_conflicting_assignments(state, instructions);
159
160 state->toplevel_ir = NULL;
161
162 /* Move all of the variable declarations to the front of the IR list, and
163 * reverse the order. This has the (intended!) side effect that vertex
164 * shader inputs and fragment shader outputs will appear in the IR in the
165 * same order that they appeared in the shader code. This results in the
166 * locations being assigned in the declared order. Many (arguably buggy)
167 * applications depend on this behavior, and it matches what nearly all
168 * other drivers do.
169 */
170 foreach_in_list_safe(ir_instruction, node, instructions) {
171 ir_variable *const var = node->as_variable();
172
173 if (var == NULL)
174 continue;
175
176 var->remove();
177 instructions->push_head(var);
178 }
179
180 /* Figure out if gl_FragCoord is actually used in fragment shader */
181 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
182 if (var != NULL)
183 state->fs_uses_gl_fragcoord = var->data.used;
184
185 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
186 *
187 * If multiple shaders using members of a built-in block belonging to
188 * the same interface are linked together in the same program, they
189 * must all redeclare the built-in block in the same way, as described
190 * in section 4.3.7 "Interface Blocks" for interface block matching, or
191 * a link error will result.
192 *
193 * The phrase "using members of a built-in block" implies that if two
194 * shaders are linked together and one of them *does not use* any members
195 * of the built-in block, then that shader does not need to have a matching
196 * redeclaration of the built-in block.
197 *
198 * This appears to be a clarification to the behaviour established for
199 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
200 * version.
201 *
202 * The definition of "interface" in section 4.3.7 that applies here is as
203 * follows:
204 *
205 * The boundary between adjacent programmable pipeline stages: This
206 * spans all the outputs in all compilation units of the first stage
207 * and all the inputs in all compilation units of the second stage.
208 *
209 * Therefore this rule applies to both inter- and intra-stage linking.
210 *
211 * The easiest way to implement this is to check whether the shader uses
212 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
213 * remove all the relevant variable declaration from the IR, so that the
214 * linker won't see them and complain about mismatches.
215 */
216 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
217 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
218
219 /* Check that we don't have reads from write-only variables */
220 read_from_write_only_variable_visitor v;
221 v.run(instructions);
222 ir_variable *error_var = v.get_variable();
223 if (error_var) {
224 /* It would be nice to have proper location information, but for that
225 * we would need to check this as we process each kind of AST node
226 */
227 YYLTYPE loc;
228 memset(&loc, 0, sizeof(loc));
229 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
230 error_var->name);
231 }
232 }
233
234
235 static ir_expression_operation
236 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
237 struct _mesa_glsl_parse_state *state)
238 {
239 switch (to->base_type) {
240 case GLSL_TYPE_FLOAT:
241 switch (from->base_type) {
242 case GLSL_TYPE_INT: return ir_unop_i2f;
243 case GLSL_TYPE_UINT: return ir_unop_u2f;
244 default: return (ir_expression_operation)0;
245 }
246
247 case GLSL_TYPE_UINT:
248 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable
249 && !state->MESA_shader_integer_functions_enable)
250 return (ir_expression_operation)0;
251 switch (from->base_type) {
252 case GLSL_TYPE_INT: return ir_unop_i2u;
253 default: return (ir_expression_operation)0;
254 }
255
256 case GLSL_TYPE_DOUBLE:
257 if (!state->has_double())
258 return (ir_expression_operation)0;
259 switch (from->base_type) {
260 case GLSL_TYPE_INT: return ir_unop_i2d;
261 case GLSL_TYPE_UINT: return ir_unop_u2d;
262 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
263 case GLSL_TYPE_INT64: return ir_unop_i642d;
264 case GLSL_TYPE_UINT64: return ir_unop_u642d;
265 default: return (ir_expression_operation)0;
266 }
267
268 case GLSL_TYPE_UINT64:
269 if (!state->has_int64())
270 return (ir_expression_operation)0;
271 switch (from->base_type) {
272 case GLSL_TYPE_INT: return ir_unop_i2u64;
273 case GLSL_TYPE_UINT: return ir_unop_u2u64;
274 case GLSL_TYPE_INT64: return ir_unop_i642u64;
275 default: return (ir_expression_operation)0;
276 }
277
278 case GLSL_TYPE_INT64:
279 if (!state->has_int64())
280 return (ir_expression_operation)0;
281 switch (from->base_type) {
282 case GLSL_TYPE_INT: return ir_unop_i2i64;
283 default: return (ir_expression_operation)0;
284 }
285
286 default: return (ir_expression_operation)0;
287 }
288 }
289
290
291 /**
292 * If a conversion is available, convert one operand to a different type
293 *
294 * The \c from \c ir_rvalue is converted "in place".
295 *
296 * \param to Type that the operand it to be converted to
297 * \param from Operand that is being converted
298 * \param state GLSL compiler state
299 *
300 * \return
301 * If a conversion is possible (or unnecessary), \c true is returned.
302 * Otherwise \c false is returned.
303 */
304 static bool
305 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
306 struct _mesa_glsl_parse_state *state)
307 {
308 void *ctx = state;
309 if (to->base_type == from->type->base_type)
310 return true;
311
312 /* Prior to GLSL 1.20, there are no implicit conversions */
313 if (!state->is_version(120, 0))
314 return false;
315
316 /* ESSL does not allow implicit conversions */
317 if (state->es_shader)
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
613 return glsl_type::error_type;
614 }
615
616 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
617 *
618 * "The operator modulus (%) operates on signed or unsigned integers or
619 * integer vectors."
620 */
621 if (!type_a->is_integer_32_64()) {
622 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
623 return glsl_type::error_type;
624 }
625 if (!type_b->is_integer_32_64()) {
626 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
627 return glsl_type::error_type;
628 }
629
630 /* "If the fundamental types in the operands do not match, then the
631 * conversions from section 4.1.10 "Implicit Conversions" are applied
632 * to create matching types."
633 *
634 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
635 * int -> uint conversion rules. Prior to that, there were no implicit
636 * conversions. So it's harmless to apply them universally - no implicit
637 * conversions will exist. If the types don't match, we'll receive false,
638 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
639 *
640 * "The operand types must both be signed or unsigned."
641 */
642 if (!apply_implicit_conversion(type_a, value_b, state) &&
643 !apply_implicit_conversion(type_b, value_a, state)) {
644 _mesa_glsl_error(loc, state,
645 "could not implicitly convert operands to "
646 "modulus (%%) operator");
647 return glsl_type::error_type;
648 }
649 type_a = value_a->type;
650 type_b = value_b->type;
651
652 /* "The operands cannot be vectors of differing size. If one operand is
653 * a scalar and the other vector, then the scalar is applied component-
654 * wise to the vector, resulting in the same type as the vector. If both
655 * are vectors of the same size, the result is computed component-wise."
656 */
657 if (type_a->is_vector()) {
658 if (!type_b->is_vector()
659 || (type_a->vector_elements == type_b->vector_elements))
660 return type_a;
661 } else
662 return type_b;
663
664 /* "The operator modulus (%) is not defined for any other data types
665 * (non-integer types)."
666 */
667 _mesa_glsl_error(loc, state, "type mismatch");
668 return glsl_type::error_type;
669 }
670
671
672 static const struct glsl_type *
673 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
674 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
675 {
676 const glsl_type *type_a = value_a->type;
677 const glsl_type *type_b = value_b->type;
678
679 /* From GLSL 1.50 spec, page 56:
680 * "The relational operators greater than (>), less than (<), greater
681 * than or equal (>=), and less than or equal (<=) operate only on
682 * scalar integer and scalar floating-point expressions."
683 */
684 if (!type_a->is_numeric()
685 || !type_b->is_numeric()
686 || !type_a->is_scalar()
687 || !type_b->is_scalar()) {
688 _mesa_glsl_error(loc, state,
689 "operands to relational operators must be scalar and "
690 "numeric");
691 return glsl_type::error_type;
692 }
693
694 /* "Either the operands' types must match, or the conversions from
695 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
696 * operand, after which the types must match."
697 */
698 if (!apply_implicit_conversion(type_a, value_b, state)
699 && !apply_implicit_conversion(type_b, value_a, state)) {
700 _mesa_glsl_error(loc, state,
701 "could not implicitly convert operands to "
702 "relational operator");
703 return glsl_type::error_type;
704 }
705 type_a = value_a->type;
706 type_b = value_b->type;
707
708 if (type_a->base_type != type_b->base_type) {
709 _mesa_glsl_error(loc, state, "base type mismatch");
710 return glsl_type::error_type;
711 }
712
713 /* "The result is scalar Boolean."
714 */
715 return glsl_type::bool_type;
716 }
717
718 /**
719 * \brief Return the result type of a bit-shift operation.
720 *
721 * If the given types to the bit-shift operator are invalid, return
722 * glsl_type::error_type.
723 *
724 * \param type_a Type of LHS of bit-shift op
725 * \param type_b Type of RHS of bit-shift op
726 */
727 static const struct glsl_type *
728 shift_result_type(const struct glsl_type *type_a,
729 const struct glsl_type *type_b,
730 ast_operators op,
731 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
732 {
733 if (!state->check_bitwise_operations_allowed(loc)) {
734 return glsl_type::error_type;
735 }
736
737 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
738 *
739 * "The shift operators (<<) and (>>). For both operators, the operands
740 * must be signed or unsigned integers or integer vectors. One operand
741 * can be signed while the other is unsigned."
742 */
743 if (!type_a->is_integer_32_64()) {
744 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
745 "integer vector", ast_expression::operator_string(op));
746 return glsl_type::error_type;
747
748 }
749 if (!type_b->is_integer()) {
750 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
751 "integer vector", ast_expression::operator_string(op));
752 return glsl_type::error_type;
753 }
754
755 /* "If the first operand is a scalar, the second operand has to be
756 * a scalar as well."
757 */
758 if (type_a->is_scalar() && !type_b->is_scalar()) {
759 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
760 "second must be scalar as well",
761 ast_expression::operator_string(op));
762 return glsl_type::error_type;
763 }
764
765 /* If both operands are vectors, check that they have same number of
766 * elements.
767 */
768 if (type_a->is_vector() &&
769 type_b->is_vector() &&
770 type_a->vector_elements != type_b->vector_elements) {
771 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
772 "have same number of elements",
773 ast_expression::operator_string(op));
774 return glsl_type::error_type;
775 }
776
777 /* "In all cases, the resulting type will be the same type as the left
778 * operand."
779 */
780 return type_a;
781 }
782
783 /**
784 * Returns the innermost array index expression in an rvalue tree.
785 * This is the largest indexing level -- if an array of blocks, then
786 * it is the block index rather than an indexing expression for an
787 * array-typed member of an array of blocks.
788 */
789 static ir_rvalue *
790 find_innermost_array_index(ir_rvalue *rv)
791 {
792 ir_dereference_array *last = NULL;
793 while (rv) {
794 if (rv->as_dereference_array()) {
795 last = rv->as_dereference_array();
796 rv = last->array;
797 } else if (rv->as_dereference_record())
798 rv = rv->as_dereference_record()->record;
799 else if (rv->as_swizzle())
800 rv = rv->as_swizzle()->val;
801 else
802 rv = NULL;
803 }
804
805 if (last)
806 return last->array_index;
807
808 return NULL;
809 }
810
811 /**
812 * Validates that a value can be assigned to a location with a specified type
813 *
814 * Validates that \c rhs can be assigned to some location. If the types are
815 * not an exact match but an automatic conversion is possible, \c rhs will be
816 * converted.
817 *
818 * \return
819 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
820 * Otherwise the actual RHS to be assigned will be returned. This may be
821 * \c rhs, or it may be \c rhs after some type conversion.
822 *
823 * \note
824 * In addition to being used for assignments, this function is used to
825 * type-check return values.
826 */
827 static ir_rvalue *
828 validate_assignment(struct _mesa_glsl_parse_state *state,
829 YYLTYPE loc, ir_rvalue *lhs,
830 ir_rvalue *rhs, bool is_initializer)
831 {
832 /* If there is already some error in the RHS, just return it. Anything
833 * else will lead to an avalanche of error message back to the user.
834 */
835 if (rhs->type->is_error())
836 return rhs;
837
838 /* In the Tessellation Control Shader:
839 * If a per-vertex output variable is used as an l-value, it is an error
840 * if the expression indicating the vertex number is not the identifier
841 * `gl_InvocationID`.
842 */
843 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
844 ir_variable *var = lhs->variable_referenced();
845 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
846 ir_rvalue *index = find_innermost_array_index(lhs);
847 ir_variable *index_var = index ? index->variable_referenced() : NULL;
848 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
849 _mesa_glsl_error(&loc, state,
850 "Tessellation control shader outputs can only "
851 "be indexed by gl_InvocationID");
852 return NULL;
853 }
854 }
855 }
856
857 /* If the types are identical, the assignment can trivially proceed.
858 */
859 if (rhs->type == lhs->type)
860 return rhs;
861
862 /* If the array element types are the same and the LHS is unsized,
863 * the assignment is okay for initializers embedded in variable
864 * declarations.
865 *
866 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
867 * is handled by ir_dereference::is_lvalue.
868 */
869 const glsl_type *lhs_t = lhs->type;
870 const glsl_type *rhs_t = rhs->type;
871 bool unsized_array = false;
872 while(lhs_t->is_array()) {
873 if (rhs_t == lhs_t)
874 break; /* the rest of the inner arrays match so break out early */
875 if (!rhs_t->is_array()) {
876 unsized_array = false;
877 break; /* number of dimensions mismatch */
878 }
879 if (lhs_t->length == rhs_t->length) {
880 lhs_t = lhs_t->fields.array;
881 rhs_t = rhs_t->fields.array;
882 continue;
883 } else if (lhs_t->is_unsized_array()) {
884 unsized_array = true;
885 } else {
886 unsized_array = false;
887 break; /* sized array mismatch */
888 }
889 lhs_t = lhs_t->fields.array;
890 rhs_t = rhs_t->fields.array;
891 }
892 if (unsized_array) {
893 if (is_initializer) {
894 return rhs;
895 } else {
896 _mesa_glsl_error(&loc, state,
897 "implicitly sized arrays cannot be assigned");
898 return NULL;
899 }
900 }
901
902 /* Check for implicit conversion in GLSL 1.20 */
903 if (apply_implicit_conversion(lhs->type, rhs, state)) {
904 if (rhs->type == lhs->type)
905 return rhs;
906 }
907
908 _mesa_glsl_error(&loc, state,
909 "%s of type %s cannot be assigned to "
910 "variable of type %s",
911 is_initializer ? "initializer" : "value",
912 rhs->type->name, lhs->type->name);
913
914 return NULL;
915 }
916
917 static void
918 mark_whole_array_access(ir_rvalue *access)
919 {
920 ir_dereference_variable *deref = access->as_dereference_variable();
921
922 if (deref && deref->var) {
923 deref->var->data.max_array_access = deref->type->length - 1;
924 }
925 }
926
927 static bool
928 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
929 const char *non_lvalue_description,
930 ir_rvalue *lhs, ir_rvalue *rhs,
931 ir_rvalue **out_rvalue, bool needs_rvalue,
932 bool is_initializer,
933 YYLTYPE lhs_loc)
934 {
935 void *ctx = state;
936 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
937
938 ir_variable *lhs_var = lhs->variable_referenced();
939 if (lhs_var)
940 lhs_var->data.assigned = true;
941
942 if (!error_emitted) {
943 if (non_lvalue_description != NULL) {
944 _mesa_glsl_error(&lhs_loc, state,
945 "assignment to %s",
946 non_lvalue_description);
947 error_emitted = true;
948 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
949 (lhs_var->data.mode == ir_var_shader_storage &&
950 lhs_var->data.memory_read_only))) {
951 /* We can have memory_read_only set on both images and buffer variables,
952 * but in the former there is a distinction between assignments to
953 * the variable itself (read_only) and to the memory they point to
954 * (memory_read_only), while in the case of buffer variables there is
955 * no such distinction, that is why this check here is limited to
956 * buffer variables alone.
957 */
958 _mesa_glsl_error(&lhs_loc, state,
959 "assignment to read-only variable '%s'",
960 lhs_var->name);
961 error_emitted = true;
962 } else if (lhs->type->is_array() &&
963 !state->check_version(120, 300, &lhs_loc,
964 "whole array assignment forbidden")) {
965 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
966 *
967 * "Other binary or unary expressions, non-dereferenced
968 * arrays, function names, swizzles with repeated fields,
969 * and constants cannot be l-values."
970 *
971 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
972 */
973 error_emitted = true;
974 } else if (!lhs->is_lvalue()) {
975 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
976 error_emitted = true;
977 }
978 }
979
980 ir_rvalue *new_rhs =
981 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
982 if (new_rhs != NULL) {
983 rhs = new_rhs;
984
985 /* If the LHS array was not declared with a size, it takes it size from
986 * the RHS. If the LHS is an l-value and a whole array, it must be a
987 * dereference of a variable. Any other case would require that the LHS
988 * is either not an l-value or not a whole array.
989 */
990 if (lhs->type->is_unsized_array()) {
991 ir_dereference *const d = lhs->as_dereference();
992
993 assert(d != NULL);
994
995 ir_variable *const var = d->variable_referenced();
996
997 assert(var != NULL);
998
999 if (var->data.max_array_access >= rhs->type->array_size()) {
1000 /* FINISHME: This should actually log the location of the RHS. */
1001 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1002 "previous access",
1003 var->data.max_array_access);
1004 }
1005
1006 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1007 rhs->type->array_size());
1008 d->type = var->type;
1009 }
1010 if (lhs->type->is_array()) {
1011 mark_whole_array_access(rhs);
1012 mark_whole_array_access(lhs);
1013 }
1014 }
1015
1016 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1017 * but not post_inc) need the converted assigned value as an rvalue
1018 * to handle things like:
1019 *
1020 * i = j += 1;
1021 */
1022 if (needs_rvalue) {
1023 ir_rvalue *rvalue;
1024 if (!error_emitted) {
1025 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1026 ir_var_temporary);
1027 instructions->push_tail(var);
1028 instructions->push_tail(assign(var, rhs));
1029
1030 ir_dereference_variable *deref_var =
1031 new(ctx) ir_dereference_variable(var);
1032 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1033 rvalue = new(ctx) ir_dereference_variable(var);
1034 } else {
1035 rvalue = ir_rvalue::error_value(ctx);
1036 }
1037 *out_rvalue = rvalue;
1038 } else {
1039 if (!error_emitted)
1040 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1041 *out_rvalue = NULL;
1042 }
1043
1044 return error_emitted;
1045 }
1046
1047 static ir_rvalue *
1048 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1049 {
1050 void *ctx = ralloc_parent(lvalue);
1051 ir_variable *var;
1052
1053 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1054 ir_var_temporary);
1055 instructions->push_tail(var);
1056
1057 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1058 lvalue));
1059
1060 return new(ctx) ir_dereference_variable(var);
1061 }
1062
1063
1064 ir_rvalue *
1065 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1066 {
1067 (void) instructions;
1068 (void) state;
1069
1070 return NULL;
1071 }
1072
1073 bool
1074 ast_node::has_sequence_subexpression() const
1075 {
1076 return false;
1077 }
1078
1079 void
1080 ast_node::set_is_lhs(bool /* new_value */)
1081 {
1082 }
1083
1084 void
1085 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1086 struct _mesa_glsl_parse_state *state)
1087 {
1088 (void)hir(instructions, state);
1089 }
1090
1091 void
1092 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1093 struct _mesa_glsl_parse_state *state)
1094 {
1095 (void)hir(instructions, state);
1096 }
1097
1098 static ir_rvalue *
1099 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1100 {
1101 int join_op;
1102 ir_rvalue *cmp = NULL;
1103
1104 if (operation == ir_binop_all_equal)
1105 join_op = ir_binop_logic_and;
1106 else
1107 join_op = ir_binop_logic_or;
1108
1109 switch (op0->type->base_type) {
1110 case GLSL_TYPE_FLOAT:
1111 case GLSL_TYPE_UINT:
1112 case GLSL_TYPE_INT:
1113 case GLSL_TYPE_BOOL:
1114 case GLSL_TYPE_DOUBLE:
1115 case GLSL_TYPE_UINT64:
1116 case GLSL_TYPE_INT64:
1117 return new(mem_ctx) ir_expression(operation, op0, op1);
1118
1119 case GLSL_TYPE_ARRAY: {
1120 for (unsigned int i = 0; i < op0->type->length; i++) {
1121 ir_rvalue *e0, *e1, *result;
1122
1123 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1124 new(mem_ctx) ir_constant(i));
1125 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1126 new(mem_ctx) ir_constant(i));
1127 result = do_comparison(mem_ctx, operation, e0, e1);
1128
1129 if (cmp) {
1130 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1131 } else {
1132 cmp = result;
1133 }
1134 }
1135
1136 mark_whole_array_access(op0);
1137 mark_whole_array_access(op1);
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 for (unsigned int i = 0; i < op0->type->length; i++) {
1143 ir_rvalue *e0, *e1, *result;
1144 const char *field_name = op0->type->fields.structure[i].name;
1145
1146 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1147 field_name);
1148 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1149 field_name);
1150 result = do_comparison(mem_ctx, operation, e0, e1);
1151
1152 if (cmp) {
1153 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1154 } else {
1155 cmp = result;
1156 }
1157 }
1158 break;
1159 }
1160
1161 case GLSL_TYPE_ERROR:
1162 case GLSL_TYPE_VOID:
1163 case GLSL_TYPE_SAMPLER:
1164 case GLSL_TYPE_IMAGE:
1165 case GLSL_TYPE_INTERFACE:
1166 case GLSL_TYPE_ATOMIC_UINT:
1167 case GLSL_TYPE_SUBROUTINE:
1168 case GLSL_TYPE_FUNCTION:
1169 /* I assume a comparison of a struct containing a sampler just
1170 * ignores the sampler present in the type.
1171 */
1172 break;
1173 }
1174
1175 if (cmp == NULL)
1176 cmp = new(mem_ctx) ir_constant(true);
1177
1178 return cmp;
1179 }
1180
1181 /* For logical operations, we want to ensure that the operands are
1182 * scalar booleans. If it isn't, emit an error and return a constant
1183 * boolean to avoid triggering cascading error messages.
1184 */
1185 ir_rvalue *
1186 get_scalar_boolean_operand(exec_list *instructions,
1187 struct _mesa_glsl_parse_state *state,
1188 ast_expression *parent_expr,
1189 int operand,
1190 const char *operand_name,
1191 bool *error_emitted)
1192 {
1193 ast_expression *expr = parent_expr->subexpressions[operand];
1194 void *ctx = state;
1195 ir_rvalue *val = expr->hir(instructions, state);
1196
1197 if (val->type->is_boolean() && val->type->is_scalar())
1198 return val;
1199
1200 if (!*error_emitted) {
1201 YYLTYPE loc = expr->get_location();
1202 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1203 operand_name,
1204 parent_expr->operator_string(parent_expr->oper));
1205 *error_emitted = true;
1206 }
1207
1208 return new(ctx) ir_constant(true);
1209 }
1210
1211 /**
1212 * If name refers to a builtin array whose maximum allowed size is less than
1213 * size, report an error and return true. Otherwise return false.
1214 */
1215 void
1216 check_builtin_array_max_size(const char *name, unsigned size,
1217 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1218 {
1219 if ((strcmp("gl_TexCoord", name) == 0)
1220 && (size > state->Const.MaxTextureCoords)) {
1221 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1222 *
1223 * "The size [of gl_TexCoord] can be at most
1224 * gl_MaxTextureCoords."
1225 */
1226 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1227 "be larger than gl_MaxTextureCoords (%u)",
1228 state->Const.MaxTextureCoords);
1229 } else if (strcmp("gl_ClipDistance", name) == 0) {
1230 state->clip_dist_size = size;
1231 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1232 /* From section 7.1 (Vertex Shader Special Variables) of the
1233 * GLSL 1.30 spec:
1234 *
1235 * "The gl_ClipDistance array is predeclared as unsized and
1236 * must be sized by the shader either redeclaring it with a
1237 * size or indexing it only with integral constant
1238 * expressions. ... The size can be at most
1239 * gl_MaxClipDistances."
1240 */
1241 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1242 "be larger than gl_MaxClipDistances (%u)",
1243 state->Const.MaxClipPlanes);
1244 }
1245 } else if (strcmp("gl_CullDistance", name) == 0) {
1246 state->cull_dist_size = size;
1247 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1248 /* From the ARB_cull_distance spec:
1249 *
1250 * "The gl_CullDistance array is predeclared as unsized and
1251 * must be sized by the shader either redeclaring it with
1252 * a size or indexing it only with integral constant
1253 * expressions. The size determines the number and set of
1254 * enabled cull distances and can be at most
1255 * gl_MaxCullDistances."
1256 */
1257 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1258 "be larger than gl_MaxCullDistances (%u)",
1259 state->Const.MaxClipPlanes);
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Create the constant 1, of a which is appropriate for incrementing and
1266 * decrementing values of the given GLSL type. For example, if type is vec4,
1267 * this creates a constant value of 1.0 having type float.
1268 *
1269 * If the given type is invalid for increment and decrement operators, return
1270 * a floating point 1--the error will be detected later.
1271 */
1272 static ir_rvalue *
1273 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1274 {
1275 switch (type->base_type) {
1276 case GLSL_TYPE_UINT:
1277 return new(ctx) ir_constant((unsigned) 1);
1278 case GLSL_TYPE_INT:
1279 return new(ctx) ir_constant(1);
1280 case GLSL_TYPE_UINT64:
1281 return new(ctx) ir_constant((uint64_t) 1);
1282 case GLSL_TYPE_INT64:
1283 return new(ctx) ir_constant((int64_t) 1);
1284 default:
1285 case GLSL_TYPE_FLOAT:
1286 return new(ctx) ir_constant(1.0f);
1287 }
1288 }
1289
1290 ir_rvalue *
1291 ast_expression::hir(exec_list *instructions,
1292 struct _mesa_glsl_parse_state *state)
1293 {
1294 return do_hir(instructions, state, true);
1295 }
1296
1297 void
1298 ast_expression::hir_no_rvalue(exec_list *instructions,
1299 struct _mesa_glsl_parse_state *state)
1300 {
1301 do_hir(instructions, state, false);
1302 }
1303
1304 void
1305 ast_expression::set_is_lhs(bool new_value)
1306 {
1307 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1308 * if we lack an identifier we can just skip it.
1309 */
1310 if (this->primary_expression.identifier == NULL)
1311 return;
1312
1313 this->is_lhs = new_value;
1314
1315 /* We need to go through the subexpressions tree to cover cases like
1316 * ast_field_selection
1317 */
1318 if (this->subexpressions[0] != NULL)
1319 this->subexpressions[0]->set_is_lhs(new_value);
1320 }
1321
1322 ir_rvalue *
1323 ast_expression::do_hir(exec_list *instructions,
1324 struct _mesa_glsl_parse_state *state,
1325 bool needs_rvalue)
1326 {
1327 void *ctx = state;
1328 static const int operations[AST_NUM_OPERATORS] = {
1329 -1, /* ast_assign doesn't convert to ir_expression. */
1330 -1, /* ast_plus doesn't convert to ir_expression. */
1331 ir_unop_neg,
1332 ir_binop_add,
1333 ir_binop_sub,
1334 ir_binop_mul,
1335 ir_binop_div,
1336 ir_binop_mod,
1337 ir_binop_lshift,
1338 ir_binop_rshift,
1339 ir_binop_less,
1340 ir_binop_greater,
1341 ir_binop_lequal,
1342 ir_binop_gequal,
1343 ir_binop_all_equal,
1344 ir_binop_any_nequal,
1345 ir_binop_bit_and,
1346 ir_binop_bit_xor,
1347 ir_binop_bit_or,
1348 ir_unop_bit_not,
1349 ir_binop_logic_and,
1350 ir_binop_logic_xor,
1351 ir_binop_logic_or,
1352 ir_unop_logic_not,
1353
1354 /* Note: The following block of expression types actually convert
1355 * to multiple IR instructions.
1356 */
1357 ir_binop_mul, /* ast_mul_assign */
1358 ir_binop_div, /* ast_div_assign */
1359 ir_binop_mod, /* ast_mod_assign */
1360 ir_binop_add, /* ast_add_assign */
1361 ir_binop_sub, /* ast_sub_assign */
1362 ir_binop_lshift, /* ast_ls_assign */
1363 ir_binop_rshift, /* ast_rs_assign */
1364 ir_binop_bit_and, /* ast_and_assign */
1365 ir_binop_bit_xor, /* ast_xor_assign */
1366 ir_binop_bit_or, /* ast_or_assign */
1367
1368 -1, /* ast_conditional doesn't convert to ir_expression. */
1369 ir_binop_add, /* ast_pre_inc. */
1370 ir_binop_sub, /* ast_pre_dec. */
1371 ir_binop_add, /* ast_post_inc. */
1372 ir_binop_sub, /* ast_post_dec. */
1373 -1, /* ast_field_selection doesn't conv to ir_expression. */
1374 -1, /* ast_array_index doesn't convert to ir_expression. */
1375 -1, /* ast_function_call doesn't conv to ir_expression. */
1376 -1, /* ast_identifier doesn't convert to ir_expression. */
1377 -1, /* ast_int_constant doesn't convert to ir_expression. */
1378 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1379 -1, /* ast_float_constant doesn't conv to ir_expression. */
1380 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1381 -1, /* ast_sequence doesn't convert to ir_expression. */
1382 -1, /* ast_aggregate shouldn't ever even get here. */
1383 };
1384 ir_rvalue *result = NULL;
1385 ir_rvalue *op[3];
1386 const struct glsl_type *type, *orig_type;
1387 bool error_emitted = false;
1388 YYLTYPE loc;
1389
1390 loc = this->get_location();
1391
1392 switch (this->oper) {
1393 case ast_aggregate:
1394 assert(!"ast_aggregate: Should never get here.");
1395 break;
1396
1397 case ast_assign: {
1398 this->subexpressions[0]->set_is_lhs(true);
1399 op[0] = this->subexpressions[0]->hir(instructions, state);
1400 op[1] = this->subexpressions[1]->hir(instructions, state);
1401
1402 error_emitted =
1403 do_assignment(instructions, state,
1404 this->subexpressions[0]->non_lvalue_description,
1405 op[0], op[1], &result, needs_rvalue, false,
1406 this->subexpressions[0]->get_location());
1407 break;
1408 }
1409
1410 case ast_plus:
1411 op[0] = this->subexpressions[0]->hir(instructions, state);
1412
1413 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1414
1415 error_emitted = type->is_error();
1416
1417 result = op[0];
1418 break;
1419
1420 case ast_neg:
1421 op[0] = this->subexpressions[0]->hir(instructions, state);
1422
1423 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1424
1425 error_emitted = type->is_error();
1426
1427 result = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], NULL);
1429 break;
1430
1431 case ast_add:
1432 case ast_sub:
1433 case ast_mul:
1434 case ast_div:
1435 op[0] = this->subexpressions[0]->hir(instructions, state);
1436 op[1] = this->subexpressions[1]->hir(instructions, state);
1437
1438 type = arithmetic_result_type(op[0], op[1],
1439 (this->oper == ast_mul),
1440 state, & loc);
1441 error_emitted = type->is_error();
1442
1443 result = new(ctx) ir_expression(operations[this->oper], type,
1444 op[0], op[1]);
1445 break;
1446
1447 case ast_mod:
1448 op[0] = this->subexpressions[0]->hir(instructions, state);
1449 op[1] = this->subexpressions[1]->hir(instructions, state);
1450
1451 type = modulus_result_type(op[0], op[1], state, &loc);
1452
1453 assert(operations[this->oper] == ir_binop_mod);
1454
1455 result = new(ctx) ir_expression(operations[this->oper], type,
1456 op[0], op[1]);
1457 error_emitted = type->is_error();
1458 break;
1459
1460 case ast_lshift:
1461 case ast_rshift:
1462 if (!state->check_bitwise_operations_allowed(&loc)) {
1463 error_emitted = true;
1464 }
1465
1466 op[0] = this->subexpressions[0]->hir(instructions, state);
1467 op[1] = this->subexpressions[1]->hir(instructions, state);
1468 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1469 &loc);
1470 result = new(ctx) ir_expression(operations[this->oper], type,
1471 op[0], op[1]);
1472 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1473 break;
1474
1475 case ast_less:
1476 case ast_greater:
1477 case ast_lequal:
1478 case ast_gequal:
1479 op[0] = this->subexpressions[0]->hir(instructions, state);
1480 op[1] = this->subexpressions[1]->hir(instructions, state);
1481
1482 type = relational_result_type(op[0], op[1], state, & loc);
1483
1484 /* The relational operators must either generate an error or result
1485 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1486 */
1487 assert(type->is_error()
1488 || (type->is_boolean() && type->is_scalar()));
1489
1490 result = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492 error_emitted = type->is_error();
1493 break;
1494
1495 case ast_nequal:
1496 case ast_equal:
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = this->subexpressions[1]->hir(instructions, state);
1499
1500 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1501 *
1502 * "The equality operators equal (==), and not equal (!=)
1503 * operate on all types. They result in a scalar Boolean. If
1504 * the operand types do not match, then there must be a
1505 * conversion from Section 4.1.10 "Implicit Conversions"
1506 * applied to one operand that can make them match, in which
1507 * case this conversion is done."
1508 */
1509
1510 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1511 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1512 "no operation `%1$s' exists that takes a left-hand "
1513 "operand of type 'void' or a right operand of type "
1514 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1515 error_emitted = true;
1516 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1517 && !apply_implicit_conversion(op[1]->type, op[0], state))
1518 || (op[0]->type != op[1]->type)) {
1519 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1520 "type", (this->oper == ast_equal) ? "==" : "!=");
1521 error_emitted = true;
1522 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1523 !state->check_version(120, 300, &loc,
1524 "array comparisons forbidden")) {
1525 error_emitted = true;
1526 } else if ((op[0]->type->contains_subroutine() ||
1527 op[1]->type->contains_subroutine())) {
1528 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1529 error_emitted = true;
1530 } else if ((op[0]->type->contains_opaque() ||
1531 op[1]->type->contains_opaque())) {
1532 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1533 error_emitted = true;
1534 }
1535
1536 if (error_emitted) {
1537 result = new(ctx) ir_constant(false);
1538 } else {
1539 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1540 assert(result->type == glsl_type::bool_type);
1541 }
1542 break;
1543
1544 case ast_bit_and:
1545 case ast_bit_xor:
1546 case ast_bit_or:
1547 op[0] = this->subexpressions[0]->hir(instructions, state);
1548 op[1] = this->subexpressions[1]->hir(instructions, state);
1549 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1550 result = new(ctx) ir_expression(operations[this->oper], type,
1551 op[0], op[1]);
1552 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1553 break;
1554
1555 case ast_bit_not:
1556 op[0] = this->subexpressions[0]->hir(instructions, state);
1557
1558 if (!state->check_bitwise_operations_allowed(&loc)) {
1559 error_emitted = true;
1560 }
1561
1562 if (!op[0]->type->is_integer_32_64()) {
1563 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1564 error_emitted = true;
1565 }
1566
1567 type = error_emitted ? glsl_type::error_type : op[0]->type;
1568 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1569 break;
1570
1571 case ast_logic_and: {
1572 exec_list rhs_instructions;
1573 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1574 "LHS", &error_emitted);
1575 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1576 "RHS", &error_emitted);
1577
1578 if (rhs_instructions.is_empty()) {
1579 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1580 type = result->type;
1581 } else {
1582 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1583 "and_tmp",
1584 ir_var_temporary);
1585 instructions->push_tail(tmp);
1586
1587 ir_if *const stmt = new(ctx) ir_if(op[0]);
1588 instructions->push_tail(stmt);
1589
1590 stmt->then_instructions.append_list(&rhs_instructions);
1591 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1592 ir_assignment *const then_assign =
1593 new(ctx) ir_assignment(then_deref, op[1]);
1594 stmt->then_instructions.push_tail(then_assign);
1595
1596 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1597 ir_assignment *const else_assign =
1598 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1599 stmt->else_instructions.push_tail(else_assign);
1600
1601 result = new(ctx) ir_dereference_variable(tmp);
1602 type = tmp->type;
1603 }
1604 break;
1605 }
1606
1607 case ast_logic_or: {
1608 exec_list rhs_instructions;
1609 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1610 "LHS", &error_emitted);
1611 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1612 "RHS", &error_emitted);
1613
1614 if (rhs_instructions.is_empty()) {
1615 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1616 type = result->type;
1617 } else {
1618 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1619 "or_tmp",
1620 ir_var_temporary);
1621 instructions->push_tail(tmp);
1622
1623 ir_if *const stmt = new(ctx) ir_if(op[0]);
1624 instructions->push_tail(stmt);
1625
1626 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1627 ir_assignment *const then_assign =
1628 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1629 stmt->then_instructions.push_tail(then_assign);
1630
1631 stmt->else_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const else_assign =
1634 new(ctx) ir_assignment(else_deref, op[1]);
1635 stmt->else_instructions.push_tail(else_assign);
1636
1637 result = new(ctx) ir_dereference_variable(tmp);
1638 type = tmp->type;
1639 }
1640 break;
1641 }
1642
1643 case ast_logic_xor:
1644 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1645 *
1646 * "The logical binary operators and (&&), or ( | | ), and
1647 * exclusive or (^^). They operate only on two Boolean
1648 * expressions and result in a Boolean expression."
1649 */
1650 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1651 &error_emitted);
1652 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1653 &error_emitted);
1654
1655 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1656 op[0], op[1]);
1657 break;
1658
1659 case ast_logic_not:
1660 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1661 "operand", &error_emitted);
1662
1663 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1664 op[0], NULL);
1665 break;
1666
1667 case ast_mul_assign:
1668 case ast_div_assign:
1669 case ast_add_assign:
1670 case ast_sub_assign: {
1671 this->subexpressions[0]->set_is_lhs(true);
1672 op[0] = this->subexpressions[0]->hir(instructions, state);
1673 op[1] = this->subexpressions[1]->hir(instructions, state);
1674
1675 orig_type = op[0]->type;
1676 type = arithmetic_result_type(op[0], op[1],
1677 (this->oper == ast_mul_assign),
1678 state, & loc);
1679
1680 if (type != orig_type) {
1681 _mesa_glsl_error(& loc, state,
1682 "could not implicitly convert "
1683 "%s to %s", type->name, orig_type->name);
1684 type = glsl_type::error_type;
1685 }
1686
1687 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1688 op[0], op[1]);
1689
1690 error_emitted =
1691 do_assignment(instructions, state,
1692 this->subexpressions[0]->non_lvalue_description,
1693 op[0]->clone(ctx, NULL), temp_rhs,
1694 &result, needs_rvalue, false,
1695 this->subexpressions[0]->get_location());
1696
1697 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1698 * explicitly test for this because none of the binary expression
1699 * operators allow array operands either.
1700 */
1701
1702 break;
1703 }
1704
1705 case ast_mod_assign: {
1706 this->subexpressions[0]->set_is_lhs(true);
1707 op[0] = this->subexpressions[0]->hir(instructions, state);
1708 op[1] = this->subexpressions[1]->hir(instructions, state);
1709
1710 orig_type = op[0]->type;
1711 type = modulus_result_type(op[0], op[1], state, &loc);
1712
1713 if (type != orig_type) {
1714 _mesa_glsl_error(& loc, state,
1715 "could not implicitly convert "
1716 "%s to %s", type->name, orig_type->name);
1717 type = glsl_type::error_type;
1718 }
1719
1720 assert(operations[this->oper] == ir_binop_mod);
1721
1722 ir_rvalue *temp_rhs;
1723 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1724 op[0], op[1]);
1725
1726 error_emitted =
1727 do_assignment(instructions, state,
1728 this->subexpressions[0]->non_lvalue_description,
1729 op[0]->clone(ctx, NULL), temp_rhs,
1730 &result, needs_rvalue, false,
1731 this->subexpressions[0]->get_location());
1732 break;
1733 }
1734
1735 case ast_ls_assign:
1736 case ast_rs_assign: {
1737 this->subexpressions[0]->set_is_lhs(true);
1738 op[0] = this->subexpressions[0]->hir(instructions, state);
1739 op[1] = this->subexpressions[1]->hir(instructions, state);
1740 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1741 &loc);
1742 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1743 type, op[0], op[1]);
1744 error_emitted =
1745 do_assignment(instructions, state,
1746 this->subexpressions[0]->non_lvalue_description,
1747 op[0]->clone(ctx, NULL), temp_rhs,
1748 &result, needs_rvalue, false,
1749 this->subexpressions[0]->get_location());
1750 break;
1751 }
1752
1753 case ast_and_assign:
1754 case ast_xor_assign:
1755 case ast_or_assign: {
1756 this->subexpressions[0]->set_is_lhs(true);
1757 op[0] = this->subexpressions[0]->hir(instructions, state);
1758 op[1] = this->subexpressions[1]->hir(instructions, state);
1759
1760 orig_type = op[0]->type;
1761 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1762
1763 if (type != orig_type) {
1764 _mesa_glsl_error(& loc, state,
1765 "could not implicitly convert "
1766 "%s to %s", type->name, orig_type->name);
1767 type = glsl_type::error_type;
1768 }
1769
1770 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1771 type, op[0], op[1]);
1772 error_emitted =
1773 do_assignment(instructions, state,
1774 this->subexpressions[0]->non_lvalue_description,
1775 op[0]->clone(ctx, NULL), temp_rhs,
1776 &result, needs_rvalue, false,
1777 this->subexpressions[0]->get_location());
1778 break;
1779 }
1780
1781 case ast_conditional: {
1782 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1783 *
1784 * "The ternary selection operator (?:). It operates on three
1785 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1786 * first expression, which must result in a scalar Boolean."
1787 */
1788 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1789 "condition", &error_emitted);
1790
1791 /* The :? operator is implemented by generating an anonymous temporary
1792 * followed by an if-statement. The last instruction in each branch of
1793 * the if-statement assigns a value to the anonymous temporary. This
1794 * temporary is the r-value of the expression.
1795 */
1796 exec_list then_instructions;
1797 exec_list else_instructions;
1798
1799 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1800 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1801
1802 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1803 *
1804 * "The second and third expressions can be any type, as
1805 * long their types match, or there is a conversion in
1806 * Section 4.1.10 "Implicit Conversions" that can be applied
1807 * to one of the expressions to make their types match. This
1808 * resulting matching type is the type of the entire
1809 * expression."
1810 */
1811 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1812 && !apply_implicit_conversion(op[2]->type, op[1], state))
1813 || (op[1]->type != op[2]->type)) {
1814 YYLTYPE loc = this->subexpressions[1]->get_location();
1815
1816 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1817 "operator must have matching types");
1818 error_emitted = true;
1819 type = glsl_type::error_type;
1820 } else {
1821 type = op[1]->type;
1822 }
1823
1824 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1825 *
1826 * "The second and third expressions must be the same type, but can
1827 * be of any type other than an array."
1828 */
1829 if (type->is_array() &&
1830 !state->check_version(120, 300, &loc,
1831 "second and third operands of ?: operator "
1832 "cannot be arrays")) {
1833 error_emitted = true;
1834 }
1835
1836 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1837 *
1838 * "Except for array indexing, structure member selection, and
1839 * parentheses, opaque variables are not allowed to be operands in
1840 * expressions; such use results in a compile-time error."
1841 */
1842 if (type->contains_opaque()) {
1843 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1844 "of the ?: operator");
1845 error_emitted = true;
1846 }
1847
1848 ir_constant *cond_val = op[0]->constant_expression_value();
1849
1850 if (then_instructions.is_empty()
1851 && else_instructions.is_empty()
1852 && cond_val != NULL) {
1853 result = cond_val->value.b[0] ? op[1] : op[2];
1854 } else {
1855 /* The copy to conditional_tmp reads the whole array. */
1856 if (type->is_array()) {
1857 mark_whole_array_access(op[1]);
1858 mark_whole_array_access(op[2]);
1859 }
1860
1861 ir_variable *const tmp =
1862 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1863 instructions->push_tail(tmp);
1864
1865 ir_if *const stmt = new(ctx) ir_if(op[0]);
1866 instructions->push_tail(stmt);
1867
1868 then_instructions.move_nodes_to(& stmt->then_instructions);
1869 ir_dereference *const then_deref =
1870 new(ctx) ir_dereference_variable(tmp);
1871 ir_assignment *const then_assign =
1872 new(ctx) ir_assignment(then_deref, op[1]);
1873 stmt->then_instructions.push_tail(then_assign);
1874
1875 else_instructions.move_nodes_to(& stmt->else_instructions);
1876 ir_dereference *const else_deref =
1877 new(ctx) ir_dereference_variable(tmp);
1878 ir_assignment *const else_assign =
1879 new(ctx) ir_assignment(else_deref, op[2]);
1880 stmt->else_instructions.push_tail(else_assign);
1881
1882 result = new(ctx) ir_dereference_variable(tmp);
1883 }
1884 break;
1885 }
1886
1887 case ast_pre_inc:
1888 case ast_pre_dec: {
1889 this->non_lvalue_description = (this->oper == ast_pre_inc)
1890 ? "pre-increment operation" : "pre-decrement operation";
1891
1892 op[0] = this->subexpressions[0]->hir(instructions, state);
1893 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1894
1895 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1896
1897 ir_rvalue *temp_rhs;
1898 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1899 op[0], op[1]);
1900
1901 error_emitted =
1902 do_assignment(instructions, state,
1903 this->subexpressions[0]->non_lvalue_description,
1904 op[0]->clone(ctx, NULL), temp_rhs,
1905 &result, needs_rvalue, false,
1906 this->subexpressions[0]->get_location());
1907 break;
1908 }
1909
1910 case ast_post_inc:
1911 case ast_post_dec: {
1912 this->non_lvalue_description = (this->oper == ast_post_inc)
1913 ? "post-increment operation" : "post-decrement operation";
1914 op[0] = this->subexpressions[0]->hir(instructions, state);
1915 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1916
1917 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1918
1919 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1920
1921 ir_rvalue *temp_rhs;
1922 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1923 op[0], op[1]);
1924
1925 /* Get a temporary of a copy of the lvalue before it's modified.
1926 * This may get thrown away later.
1927 */
1928 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1929
1930 ir_rvalue *junk_rvalue;
1931 error_emitted =
1932 do_assignment(instructions, state,
1933 this->subexpressions[0]->non_lvalue_description,
1934 op[0]->clone(ctx, NULL), temp_rhs,
1935 &junk_rvalue, false, false,
1936 this->subexpressions[0]->get_location());
1937
1938 break;
1939 }
1940
1941 case ast_field_selection:
1942 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1943 break;
1944
1945 case ast_array_index: {
1946 YYLTYPE index_loc = subexpressions[1]->get_location();
1947
1948 /* Getting if an array is being used uninitialized is beyond what we get
1949 * from ir_value.data.assigned. Setting is_lhs as true would force to
1950 * not raise a uninitialized warning when using an array
1951 */
1952 subexpressions[0]->set_is_lhs(true);
1953 op[0] = subexpressions[0]->hir(instructions, state);
1954 op[1] = subexpressions[1]->hir(instructions, state);
1955
1956 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1957 loc, index_loc);
1958
1959 if (result->type->is_error())
1960 error_emitted = true;
1961
1962 break;
1963 }
1964
1965 case ast_unsized_array_dim:
1966 assert(!"ast_unsized_array_dim: Should never get here.");
1967 break;
1968
1969 case ast_function_call:
1970 /* Should *NEVER* get here. ast_function_call should always be handled
1971 * by ast_function_expression::hir.
1972 */
1973 assert(0);
1974 break;
1975
1976 case ast_identifier: {
1977 /* ast_identifier can appear several places in a full abstract syntax
1978 * tree. This particular use must be at location specified in the grammar
1979 * as 'variable_identifier'.
1980 */
1981 ir_variable *var =
1982 state->symbols->get_variable(this->primary_expression.identifier);
1983
1984 if (var == NULL) {
1985 /* the identifier might be a subroutine name */
1986 char *sub_name;
1987 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
1988 var = state->symbols->get_variable(sub_name);
1989 ralloc_free(sub_name);
1990 }
1991
1992 if (var != NULL) {
1993 var->data.used = true;
1994 result = new(ctx) ir_dereference_variable(var);
1995
1996 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
1997 && !this->is_lhs
1998 && result->variable_referenced()->data.assigned != true
1999 && !is_gl_identifier(var->name)) {
2000 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2001 this->primary_expression.identifier);
2002 }
2003 } else {
2004 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2005 this->primary_expression.identifier);
2006
2007 result = ir_rvalue::error_value(ctx);
2008 error_emitted = true;
2009 }
2010 break;
2011 }
2012
2013 case ast_int_constant:
2014 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2015 break;
2016
2017 case ast_uint_constant:
2018 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2019 break;
2020
2021 case ast_float_constant:
2022 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2023 break;
2024
2025 case ast_bool_constant:
2026 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2027 break;
2028
2029 case ast_double_constant:
2030 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2031 break;
2032
2033 case ast_uint64_constant:
2034 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2035 break;
2036
2037 case ast_int64_constant:
2038 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2039 break;
2040
2041 case ast_sequence: {
2042 /* It should not be possible to generate a sequence in the AST without
2043 * any expressions in it.
2044 */
2045 assert(!this->expressions.is_empty());
2046
2047 /* The r-value of a sequence is the last expression in the sequence. If
2048 * the other expressions in the sequence do not have side-effects (and
2049 * therefore add instructions to the instruction list), they get dropped
2050 * on the floor.
2051 */
2052 exec_node *previous_tail = NULL;
2053 YYLTYPE previous_operand_loc = loc;
2054
2055 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2056 /* If one of the operands of comma operator does not generate any
2057 * code, we want to emit a warning. At each pass through the loop
2058 * previous_tail will point to the last instruction in the stream
2059 * *before* processing the previous operand. Naturally,
2060 * instructions->get_tail_raw() will point to the last instruction in
2061 * the stream *after* processing the previous operand. If the two
2062 * pointers match, then the previous operand had no effect.
2063 *
2064 * The warning behavior here differs slightly from GCC. GCC will
2065 * only emit a warning if none of the left-hand operands have an
2066 * effect. However, it will emit a warning for each. I believe that
2067 * there are some cases in C (especially with GCC extensions) where
2068 * it is useful to have an intermediate step in a sequence have no
2069 * effect, but I don't think these cases exist in GLSL. Either way,
2070 * it would be a giant hassle to replicate that behavior.
2071 */
2072 if (previous_tail == instructions->get_tail_raw()) {
2073 _mesa_glsl_warning(&previous_operand_loc, state,
2074 "left-hand operand of comma expression has "
2075 "no effect");
2076 }
2077
2078 /* The tail is directly accessed instead of using the get_tail()
2079 * method for performance reasons. get_tail() has extra code to
2080 * return NULL when the list is empty. We don't care about that
2081 * here, so using get_tail_raw() is fine.
2082 */
2083 previous_tail = instructions->get_tail_raw();
2084 previous_operand_loc = ast->get_location();
2085
2086 result = ast->hir(instructions, state);
2087 }
2088
2089 /* Any errors should have already been emitted in the loop above.
2090 */
2091 error_emitted = true;
2092 break;
2093 }
2094 }
2095 type = NULL; /* use result->type, not type. */
2096 assert(result != NULL || !needs_rvalue);
2097
2098 if (result && result->type->is_error() && !error_emitted)
2099 _mesa_glsl_error(& loc, state, "type mismatch");
2100
2101 return result;
2102 }
2103
2104 bool
2105 ast_expression::has_sequence_subexpression() const
2106 {
2107 switch (this->oper) {
2108 case ast_plus:
2109 case ast_neg:
2110 case ast_bit_not:
2111 case ast_logic_not:
2112 case ast_pre_inc:
2113 case ast_pre_dec:
2114 case ast_post_inc:
2115 case ast_post_dec:
2116 return this->subexpressions[0]->has_sequence_subexpression();
2117
2118 case ast_assign:
2119 case ast_add:
2120 case ast_sub:
2121 case ast_mul:
2122 case ast_div:
2123 case ast_mod:
2124 case ast_lshift:
2125 case ast_rshift:
2126 case ast_less:
2127 case ast_greater:
2128 case ast_lequal:
2129 case ast_gequal:
2130 case ast_nequal:
2131 case ast_equal:
2132 case ast_bit_and:
2133 case ast_bit_xor:
2134 case ast_bit_or:
2135 case ast_logic_and:
2136 case ast_logic_or:
2137 case ast_logic_xor:
2138 case ast_array_index:
2139 case ast_mul_assign:
2140 case ast_div_assign:
2141 case ast_add_assign:
2142 case ast_sub_assign:
2143 case ast_mod_assign:
2144 case ast_ls_assign:
2145 case ast_rs_assign:
2146 case ast_and_assign:
2147 case ast_xor_assign:
2148 case ast_or_assign:
2149 return this->subexpressions[0]->has_sequence_subexpression() ||
2150 this->subexpressions[1]->has_sequence_subexpression();
2151
2152 case ast_conditional:
2153 return this->subexpressions[0]->has_sequence_subexpression() ||
2154 this->subexpressions[1]->has_sequence_subexpression() ||
2155 this->subexpressions[2]->has_sequence_subexpression();
2156
2157 case ast_sequence:
2158 return true;
2159
2160 case ast_field_selection:
2161 case ast_identifier:
2162 case ast_int_constant:
2163 case ast_uint_constant:
2164 case ast_float_constant:
2165 case ast_bool_constant:
2166 case ast_double_constant:
2167 case ast_int64_constant:
2168 case ast_uint64_constant:
2169 return false;
2170
2171 case ast_aggregate:
2172 return false;
2173
2174 case ast_function_call:
2175 unreachable("should be handled by ast_function_expression::hir");
2176
2177 case ast_unsized_array_dim:
2178 unreachable("ast_unsized_array_dim: Should never get here.");
2179 }
2180
2181 return false;
2182 }
2183
2184 ir_rvalue *
2185 ast_expression_statement::hir(exec_list *instructions,
2186 struct _mesa_glsl_parse_state *state)
2187 {
2188 /* It is possible to have expression statements that don't have an
2189 * expression. This is the solitary semicolon:
2190 *
2191 * for (i = 0; i < 5; i++)
2192 * ;
2193 *
2194 * In this case the expression will be NULL. Test for NULL and don't do
2195 * anything in that case.
2196 */
2197 if (expression != NULL)
2198 expression->hir_no_rvalue(instructions, state);
2199
2200 /* Statements do not have r-values.
2201 */
2202 return NULL;
2203 }
2204
2205
2206 ir_rvalue *
2207 ast_compound_statement::hir(exec_list *instructions,
2208 struct _mesa_glsl_parse_state *state)
2209 {
2210 if (new_scope)
2211 state->symbols->push_scope();
2212
2213 foreach_list_typed (ast_node, ast, link, &this->statements)
2214 ast->hir(instructions, state);
2215
2216 if (new_scope)
2217 state->symbols->pop_scope();
2218
2219 /* Compound statements do not have r-values.
2220 */
2221 return NULL;
2222 }
2223
2224 /**
2225 * Evaluate the given exec_node (which should be an ast_node representing
2226 * a single array dimension) and return its integer value.
2227 */
2228 static unsigned
2229 process_array_size(exec_node *node,
2230 struct _mesa_glsl_parse_state *state)
2231 {
2232 exec_list dummy_instructions;
2233
2234 ast_node *array_size = exec_node_data(ast_node, node, link);
2235
2236 /**
2237 * Dimensions other than the outermost dimension can by unsized if they
2238 * are immediately sized by a constructor or initializer.
2239 */
2240 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2241 return 0;
2242
2243 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2244 YYLTYPE loc = array_size->get_location();
2245
2246 if (ir == NULL) {
2247 _mesa_glsl_error(& loc, state,
2248 "array size could not be resolved");
2249 return 0;
2250 }
2251
2252 if (!ir->type->is_integer()) {
2253 _mesa_glsl_error(& loc, state,
2254 "array size must be integer type");
2255 return 0;
2256 }
2257
2258 if (!ir->type->is_scalar()) {
2259 _mesa_glsl_error(& loc, state,
2260 "array size must be scalar type");
2261 return 0;
2262 }
2263
2264 ir_constant *const size = ir->constant_expression_value();
2265 if (size == NULL ||
2266 (state->is_version(120, 300) &&
2267 array_size->has_sequence_subexpression())) {
2268 _mesa_glsl_error(& loc, state, "array size must be a "
2269 "constant valued expression");
2270 return 0;
2271 }
2272
2273 if (size->value.i[0] <= 0) {
2274 _mesa_glsl_error(& loc, state, "array size must be > 0");
2275 return 0;
2276 }
2277
2278 assert(size->type == ir->type);
2279
2280 /* If the array size is const (and we've verified that
2281 * it is) then no instructions should have been emitted
2282 * when we converted it to HIR. If they were emitted,
2283 * then either the array size isn't const after all, or
2284 * we are emitting unnecessary instructions.
2285 */
2286 assert(dummy_instructions.is_empty());
2287
2288 return size->value.u[0];
2289 }
2290
2291 static const glsl_type *
2292 process_array_type(YYLTYPE *loc, const glsl_type *base,
2293 ast_array_specifier *array_specifier,
2294 struct _mesa_glsl_parse_state *state)
2295 {
2296 const glsl_type *array_type = base;
2297
2298 if (array_specifier != NULL) {
2299 if (base->is_array()) {
2300
2301 /* From page 19 (page 25) of the GLSL 1.20 spec:
2302 *
2303 * "Only one-dimensional arrays may be declared."
2304 */
2305 if (!state->check_arrays_of_arrays_allowed(loc)) {
2306 return glsl_type::error_type;
2307 }
2308 }
2309
2310 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2311 !node->is_head_sentinel(); node = node->prev) {
2312 unsigned array_size = process_array_size(node, state);
2313 array_type = glsl_type::get_array_instance(array_type, array_size);
2314 }
2315 }
2316
2317 return array_type;
2318 }
2319
2320 static bool
2321 precision_qualifier_allowed(const glsl_type *type)
2322 {
2323 /* Precision qualifiers apply to floating point, integer and opaque
2324 * types.
2325 *
2326 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2327 * "Any floating point or any integer declaration can have the type
2328 * preceded by one of these precision qualifiers [...] Literal
2329 * constants do not have precision qualifiers. Neither do Boolean
2330 * variables.
2331 *
2332 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2333 * spec also says:
2334 *
2335 * "Precision qualifiers are added for code portability with OpenGL
2336 * ES, not for functionality. They have the same syntax as in OpenGL
2337 * ES."
2338 *
2339 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2340 *
2341 * "uniform lowp sampler2D sampler;
2342 * highp vec2 coord;
2343 * ...
2344 * lowp vec4 col = texture2D (sampler, coord);
2345 * // texture2D returns lowp"
2346 *
2347 * From this, we infer that GLSL 1.30 (and later) should allow precision
2348 * qualifiers on sampler types just like float and integer types.
2349 */
2350 const glsl_type *const t = type->without_array();
2351
2352 return (t->is_float() || t->is_integer() || t->contains_opaque()) &&
2353 !t->is_record();
2354 }
2355
2356 const glsl_type *
2357 ast_type_specifier::glsl_type(const char **name,
2358 struct _mesa_glsl_parse_state *state) const
2359 {
2360 const struct glsl_type *type;
2361
2362 type = state->symbols->get_type(this->type_name);
2363 *name = this->type_name;
2364
2365 YYLTYPE loc = this->get_location();
2366 type = process_array_type(&loc, type, this->array_specifier, state);
2367
2368 return type;
2369 }
2370
2371 /**
2372 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2373 *
2374 * "The precision statement
2375 *
2376 * precision precision-qualifier type;
2377 *
2378 * can be used to establish a default precision qualifier. The type field can
2379 * be either int or float or any of the sampler types, (...) If type is float,
2380 * the directive applies to non-precision-qualified floating point type
2381 * (scalar, vector, and matrix) declarations. If type is int, the directive
2382 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2383 * and unsigned) declarations."
2384 *
2385 * We use the symbol table to keep the values of the default precisions for
2386 * each 'type' in each scope and we use the 'type' string from the precision
2387 * statement as key in the symbol table. When we want to retrieve the default
2388 * precision associated with a given glsl_type we need to know the type string
2389 * associated with it. This is what this function returns.
2390 */
2391 static const char *
2392 get_type_name_for_precision_qualifier(const glsl_type *type)
2393 {
2394 switch (type->base_type) {
2395 case GLSL_TYPE_FLOAT:
2396 return "float";
2397 case GLSL_TYPE_UINT:
2398 case GLSL_TYPE_INT:
2399 return "int";
2400 case GLSL_TYPE_ATOMIC_UINT:
2401 return "atomic_uint";
2402 case GLSL_TYPE_IMAGE:
2403 /* fallthrough */
2404 case GLSL_TYPE_SAMPLER: {
2405 const unsigned type_idx =
2406 type->sampler_array + 2 * type->sampler_shadow;
2407 const unsigned offset = type->is_sampler() ? 0 : 4;
2408 assert(type_idx < 4);
2409 switch (type->sampled_type) {
2410 case GLSL_TYPE_FLOAT:
2411 switch (type->sampler_dimensionality) {
2412 case GLSL_SAMPLER_DIM_1D: {
2413 assert(type->is_sampler());
2414 static const char *const names[4] = {
2415 "sampler1D", "sampler1DArray",
2416 "sampler1DShadow", "sampler1DArrayShadow"
2417 };
2418 return names[type_idx];
2419 }
2420 case GLSL_SAMPLER_DIM_2D: {
2421 static const char *const names[8] = {
2422 "sampler2D", "sampler2DArray",
2423 "sampler2DShadow", "sampler2DArrayShadow",
2424 "image2D", "image2DArray", NULL, NULL
2425 };
2426 return names[offset + type_idx];
2427 }
2428 case GLSL_SAMPLER_DIM_3D: {
2429 static const char *const names[8] = {
2430 "sampler3D", NULL, NULL, NULL,
2431 "image3D", NULL, NULL, NULL
2432 };
2433 return names[offset + type_idx];
2434 }
2435 case GLSL_SAMPLER_DIM_CUBE: {
2436 static const char *const names[8] = {
2437 "samplerCube", "samplerCubeArray",
2438 "samplerCubeShadow", "samplerCubeArrayShadow",
2439 "imageCube", NULL, NULL, NULL
2440 };
2441 return names[offset + type_idx];
2442 }
2443 case GLSL_SAMPLER_DIM_MS: {
2444 assert(type->is_sampler());
2445 static const char *const names[4] = {
2446 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2447 };
2448 return names[type_idx];
2449 }
2450 case GLSL_SAMPLER_DIM_RECT: {
2451 assert(type->is_sampler());
2452 static const char *const names[4] = {
2453 "samplerRect", NULL, "samplerRectShadow", NULL
2454 };
2455 return names[type_idx];
2456 }
2457 case GLSL_SAMPLER_DIM_BUF: {
2458 static const char *const names[8] = {
2459 "samplerBuffer", NULL, NULL, NULL,
2460 "imageBuffer", NULL, NULL, NULL
2461 };
2462 return names[offset + type_idx];
2463 }
2464 case GLSL_SAMPLER_DIM_EXTERNAL: {
2465 assert(type->is_sampler());
2466 static const char *const names[4] = {
2467 "samplerExternalOES", NULL, NULL, NULL
2468 };
2469 return names[type_idx];
2470 }
2471 default:
2472 unreachable("Unsupported sampler/image dimensionality");
2473 } /* sampler/image float dimensionality */
2474 break;
2475 case GLSL_TYPE_INT:
2476 switch (type->sampler_dimensionality) {
2477 case GLSL_SAMPLER_DIM_1D: {
2478 assert(type->is_sampler());
2479 static const char *const names[4] = {
2480 "isampler1D", "isampler1DArray", NULL, NULL
2481 };
2482 return names[type_idx];
2483 }
2484 case GLSL_SAMPLER_DIM_2D: {
2485 static const char *const names[8] = {
2486 "isampler2D", "isampler2DArray", NULL, NULL,
2487 "iimage2D", "iimage2DArray", NULL, NULL
2488 };
2489 return names[offset + type_idx];
2490 }
2491 case GLSL_SAMPLER_DIM_3D: {
2492 static const char *const names[8] = {
2493 "isampler3D", NULL, NULL, NULL,
2494 "iimage3D", NULL, NULL, NULL
2495 };
2496 return names[offset + type_idx];
2497 }
2498 case GLSL_SAMPLER_DIM_CUBE: {
2499 static const char *const names[8] = {
2500 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2501 "iimageCube", NULL, NULL, NULL
2502 };
2503 return names[offset + type_idx];
2504 }
2505 case GLSL_SAMPLER_DIM_MS: {
2506 assert(type->is_sampler());
2507 static const char *const names[4] = {
2508 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2509 };
2510 return names[type_idx];
2511 }
2512 case GLSL_SAMPLER_DIM_RECT: {
2513 assert(type->is_sampler());
2514 static const char *const names[4] = {
2515 "isamplerRect", NULL, "isamplerRectShadow", NULL
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_BUF: {
2520 static const char *const names[8] = {
2521 "isamplerBuffer", NULL, NULL, NULL,
2522 "iimageBuffer", NULL, NULL, NULL
2523 };
2524 return names[offset + type_idx];
2525 }
2526 default:
2527 unreachable("Unsupported isampler/iimage dimensionality");
2528 } /* sampler/image int dimensionality */
2529 break;
2530 case GLSL_TYPE_UINT:
2531 switch (type->sampler_dimensionality) {
2532 case GLSL_SAMPLER_DIM_1D: {
2533 assert(type->is_sampler());
2534 static const char *const names[4] = {
2535 "usampler1D", "usampler1DArray", NULL, NULL
2536 };
2537 return names[type_idx];
2538 }
2539 case GLSL_SAMPLER_DIM_2D: {
2540 static const char *const names[8] = {
2541 "usampler2D", "usampler2DArray", NULL, NULL,
2542 "uimage2D", "uimage2DArray", NULL, NULL
2543 };
2544 return names[offset + type_idx];
2545 }
2546 case GLSL_SAMPLER_DIM_3D: {
2547 static const char *const names[8] = {
2548 "usampler3D", NULL, NULL, NULL,
2549 "uimage3D", NULL, NULL, NULL
2550 };
2551 return names[offset + type_idx];
2552 }
2553 case GLSL_SAMPLER_DIM_CUBE: {
2554 static const char *const names[8] = {
2555 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2556 "uimageCube", NULL, NULL, NULL
2557 };
2558 return names[offset + type_idx];
2559 }
2560 case GLSL_SAMPLER_DIM_MS: {
2561 assert(type->is_sampler());
2562 static const char *const names[4] = {
2563 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2564 };
2565 return names[type_idx];
2566 }
2567 case GLSL_SAMPLER_DIM_RECT: {
2568 assert(type->is_sampler());
2569 static const char *const names[4] = {
2570 "usamplerRect", NULL, "usamplerRectShadow", NULL
2571 };
2572 return names[type_idx];
2573 }
2574 case GLSL_SAMPLER_DIM_BUF: {
2575 static const char *const names[8] = {
2576 "usamplerBuffer", NULL, NULL, NULL,
2577 "uimageBuffer", NULL, NULL, NULL
2578 };
2579 return names[offset + type_idx];
2580 }
2581 default:
2582 unreachable("Unsupported usampler/uimage dimensionality");
2583 } /* sampler/image uint dimensionality */
2584 break;
2585 default:
2586 unreachable("Unsupported sampler/image type");
2587 } /* sampler/image type */
2588 break;
2589 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2590 break;
2591 default:
2592 unreachable("Unsupported type");
2593 } /* base type */
2594 }
2595
2596 static unsigned
2597 select_gles_precision(unsigned qual_precision,
2598 const glsl_type *type,
2599 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2600 {
2601 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2602 * In GLES we take the precision from the type qualifier if present,
2603 * otherwise, if the type of the variable allows precision qualifiers at
2604 * all, we look for the default precision qualifier for that type in the
2605 * current scope.
2606 */
2607 assert(state->es_shader);
2608
2609 unsigned precision = GLSL_PRECISION_NONE;
2610 if (qual_precision) {
2611 precision = qual_precision;
2612 } else if (precision_qualifier_allowed(type)) {
2613 const char *type_name =
2614 get_type_name_for_precision_qualifier(type->without_array());
2615 assert(type_name != NULL);
2616
2617 precision =
2618 state->symbols->get_default_precision_qualifier(type_name);
2619 if (precision == ast_precision_none) {
2620 _mesa_glsl_error(loc, state,
2621 "No precision specified in this scope for type `%s'",
2622 type->name);
2623 }
2624 }
2625
2626
2627 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2628 *
2629 * "The default precision of all atomic types is highp. It is an error to
2630 * declare an atomic type with a different precision or to specify the
2631 * default precision for an atomic type to be lowp or mediump."
2632 */
2633 if (type->is_atomic_uint() && precision != ast_precision_high) {
2634 _mesa_glsl_error(loc, state,
2635 "atomic_uint can only have highp precision qualifier");
2636 }
2637
2638 return precision;
2639 }
2640
2641 const glsl_type *
2642 ast_fully_specified_type::glsl_type(const char **name,
2643 struct _mesa_glsl_parse_state *state) const
2644 {
2645 return this->specifier->glsl_type(name, state);
2646 }
2647
2648 /**
2649 * Determine whether a toplevel variable declaration declares a varying. This
2650 * function operates by examining the variable's mode and the shader target,
2651 * so it correctly identifies linkage variables regardless of whether they are
2652 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2653 *
2654 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2655 * this function will produce undefined results.
2656 */
2657 static bool
2658 is_varying_var(ir_variable *var, gl_shader_stage target)
2659 {
2660 switch (target) {
2661 case MESA_SHADER_VERTEX:
2662 return var->data.mode == ir_var_shader_out;
2663 case MESA_SHADER_FRAGMENT:
2664 return var->data.mode == ir_var_shader_in;
2665 default:
2666 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2667 }
2668 }
2669
2670 static bool
2671 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2672 {
2673 if (is_varying_var(var, state->stage))
2674 return true;
2675
2676 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2677 * "Only variables output from a vertex shader can be candidates
2678 * for invariance".
2679 */
2680 if (!state->is_version(130, 0))
2681 return false;
2682
2683 /*
2684 * Later specs remove this language - so allowed invariant
2685 * on fragment shader outputs as well.
2686 */
2687 if (state->stage == MESA_SHADER_FRAGMENT &&
2688 var->data.mode == ir_var_shader_out)
2689 return true;
2690 return false;
2691 }
2692
2693 /**
2694 * Matrix layout qualifiers are only allowed on certain types
2695 */
2696 static void
2697 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2698 YYLTYPE *loc,
2699 const glsl_type *type,
2700 ir_variable *var)
2701 {
2702 if (var && !var->is_in_buffer_block()) {
2703 /* Layout qualifiers may only apply to interface blocks and fields in
2704 * them.
2705 */
2706 _mesa_glsl_error(loc, state,
2707 "uniform block layout qualifiers row_major and "
2708 "column_major may not be applied to variables "
2709 "outside of uniform blocks");
2710 } else if (!type->without_array()->is_matrix()) {
2711 /* The OpenGL ES 3.0 conformance tests did not originally allow
2712 * matrix layout qualifiers on non-matrices. However, the OpenGL
2713 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2714 * amended to specifically allow these layouts on all types. Emit
2715 * a warning so that people know their code may not be portable.
2716 */
2717 _mesa_glsl_warning(loc, state,
2718 "uniform block layout qualifiers row_major and "
2719 "column_major applied to non-matrix types may "
2720 "be rejected by older compilers");
2721 }
2722 }
2723
2724 static bool
2725 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2726 struct _mesa_glsl_parse_state *state,
2727 unsigned xfb_buffer) {
2728 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2729 _mesa_glsl_error(loc, state,
2730 "invalid xfb_buffer specified %d is larger than "
2731 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2732 xfb_buffer,
2733 state->Const.MaxTransformFeedbackBuffers - 1);
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 /* From the ARB_enhanced_layouts spec:
2741 *
2742 * "Variables and block members qualified with *xfb_offset* can be
2743 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2744 * The offset must be a multiple of the size of the first component of
2745 * the first qualified variable or block member, or a compile-time error
2746 * results. Further, if applied to an aggregate containing a double,
2747 * the offset must also be a multiple of 8, and the space taken in the
2748 * buffer will be a multiple of 8.
2749 */
2750 static bool
2751 validate_xfb_offset_qualifier(YYLTYPE *loc,
2752 struct _mesa_glsl_parse_state *state,
2753 int xfb_offset, const glsl_type *type,
2754 unsigned component_size) {
2755 const glsl_type *t_without_array = type->without_array();
2756
2757 if (xfb_offset != -1 && type->is_unsized_array()) {
2758 _mesa_glsl_error(loc, state,
2759 "xfb_offset can't be used with unsized arrays.");
2760 return false;
2761 }
2762
2763 /* Make sure nested structs don't contain unsized arrays, and validate
2764 * any xfb_offsets on interface members.
2765 */
2766 if (t_without_array->is_record() || t_without_array->is_interface())
2767 for (unsigned int i = 0; i < t_without_array->length; i++) {
2768 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2769
2770 /* When the interface block doesn't have an xfb_offset qualifier then
2771 * we apply the component size rules at the member level.
2772 */
2773 if (xfb_offset == -1)
2774 component_size = member_t->contains_double() ? 8 : 4;
2775
2776 int xfb_offset = t_without_array->fields.structure[i].offset;
2777 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2778 component_size);
2779 }
2780
2781 /* Nested structs or interface block without offset may not have had an
2782 * offset applied yet so return.
2783 */
2784 if (xfb_offset == -1) {
2785 return true;
2786 }
2787
2788 if (xfb_offset % component_size) {
2789 _mesa_glsl_error(loc, state,
2790 "invalid qualifier xfb_offset=%d must be a multiple "
2791 "of the first component size of the first qualified "
2792 "variable or block member. Or double if an aggregate "
2793 "that contains a double (%d).",
2794 xfb_offset, component_size);
2795 return false;
2796 }
2797
2798 return true;
2799 }
2800
2801 static bool
2802 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2803 unsigned stream)
2804 {
2805 if (stream >= state->ctx->Const.MaxVertexStreams) {
2806 _mesa_glsl_error(loc, state,
2807 "invalid stream specified %d is larger than "
2808 "MAX_VERTEX_STREAMS - 1 (%d).",
2809 stream, state->ctx->Const.MaxVertexStreams - 1);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 static void
2817 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2818 YYLTYPE *loc,
2819 ir_variable *var,
2820 const glsl_type *type,
2821 const ast_type_qualifier *qual)
2822 {
2823 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2824 _mesa_glsl_error(loc, state,
2825 "the \"binding\" qualifier only applies to uniforms and "
2826 "shader storage buffer objects");
2827 return;
2828 }
2829
2830 unsigned qual_binding;
2831 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2832 &qual_binding)) {
2833 return;
2834 }
2835
2836 const struct gl_context *const ctx = state->ctx;
2837 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2838 unsigned max_index = qual_binding + elements - 1;
2839 const glsl_type *base_type = type->without_array();
2840
2841 if (base_type->is_interface()) {
2842 /* UBOs. From page 60 of the GLSL 4.20 specification:
2843 * "If the binding point for any uniform block instance is less than zero,
2844 * or greater than or equal to the implementation-dependent maximum
2845 * number of uniform buffer bindings, a compilation error will occur.
2846 * When the binding identifier is used with a uniform block instanced as
2847 * an array of size N, all elements of the array from binding through
2848 * binding + N – 1 must be within this range."
2849 *
2850 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2851 */
2852 if (qual->flags.q.uniform &&
2853 max_index >= ctx->Const.MaxUniformBufferBindings) {
2854 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2855 "the maximum number of UBO binding points (%d)",
2856 qual_binding, elements,
2857 ctx->Const.MaxUniformBufferBindings);
2858 return;
2859 }
2860
2861 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2862 * "If the binding point for any uniform or shader storage block instance
2863 * is less than zero, or greater than or equal to the
2864 * implementation-dependent maximum number of uniform buffer bindings, a
2865 * compile-time error will occur. When the binding identifier is used
2866 * with a uniform or shader storage block instanced as an array of size
2867 * N, all elements of the array from binding through binding + N – 1 must
2868 * be within this range."
2869 */
2870 if (qual->flags.q.buffer &&
2871 max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2872 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2873 "the maximum number of SSBO binding points (%d)",
2874 qual_binding, elements,
2875 ctx->Const.MaxShaderStorageBufferBindings);
2876 return;
2877 }
2878 } else if (base_type->is_sampler()) {
2879 /* Samplers. From page 63 of the GLSL 4.20 specification:
2880 * "If the binding is less than zero, or greater than or equal to the
2881 * implementation-dependent maximum supported number of units, a
2882 * compilation error will occur. When the binding identifier is used
2883 * with an array of size N, all elements of the array from binding
2884 * through binding + N - 1 must be within this range."
2885 */
2886 unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
2887
2888 if (max_index >= limit) {
2889 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2890 "exceeds the maximum number of texture image units "
2891 "(%u)", qual_binding, elements, limit);
2892
2893 return;
2894 }
2895 } else if (base_type->contains_atomic()) {
2896 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2897 if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
2898 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2899 "maximum number of atomic counter buffer bindings "
2900 "(%u)", qual_binding,
2901 ctx->Const.MaxAtomicBufferBindings);
2902
2903 return;
2904 }
2905 } else if ((state->is_version(420, 310) ||
2906 state->ARB_shading_language_420pack_enable) &&
2907 base_type->is_image()) {
2908 assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
2909 if (max_index >= ctx->Const.MaxImageUnits) {
2910 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
2911 "maximum number of image units (%d)", max_index,
2912 ctx->Const.MaxImageUnits);
2913 return;
2914 }
2915
2916 } else {
2917 _mesa_glsl_error(loc, state,
2918 "the \"binding\" qualifier only applies to uniform "
2919 "blocks, storage blocks, opaque variables, or arrays "
2920 "thereof");
2921 return;
2922 }
2923
2924 var->data.explicit_binding = true;
2925 var->data.binding = qual_binding;
2926
2927 return;
2928 }
2929
2930 static void
2931 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
2932 YYLTYPE *loc,
2933 const glsl_interp_mode interpolation,
2934 const struct glsl_type *var_type,
2935 ir_variable_mode mode)
2936 {
2937 if (state->stage != MESA_SHADER_FRAGMENT ||
2938 interpolation == INTERP_MODE_FLAT ||
2939 mode != ir_var_shader_in)
2940 return;
2941
2942 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2943 * so must integer vertex outputs.
2944 *
2945 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2946 * "Fragment shader inputs that are signed or unsigned integers or
2947 * integer vectors must be qualified with the interpolation qualifier
2948 * flat."
2949 *
2950 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2951 * "Fragment shader inputs that are, or contain, signed or unsigned
2952 * integers or integer vectors must be qualified with the
2953 * interpolation qualifier flat."
2954 *
2955 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2956 * "Vertex shader outputs that are, or contain, signed or unsigned
2957 * integers or integer vectors must be qualified with the
2958 * interpolation qualifier flat."
2959 *
2960 * Note that prior to GLSL 1.50, this requirement applied to vertex
2961 * outputs rather than fragment inputs. That creates problems in the
2962 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2963 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2964 * apply the restriction to both vertex outputs and fragment inputs.
2965 *
2966 * Note also that the desktop GLSL specs are missing the text "or
2967 * contain"; this is presumably an oversight, since there is no
2968 * reasonable way to interpolate a fragment shader input that contains
2969 * an integer. See Khronos bug #15671.
2970 */
2971 if (state->is_version(130, 300)
2972 && var_type->contains_integer()) {
2973 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2974 "an integer, then it must be qualified with 'flat'");
2975 }
2976
2977 /* Double fragment inputs must be qualified with 'flat'.
2978 *
2979 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
2980 * "This extension does not support interpolation of double-precision
2981 * values; doubles used as fragment shader inputs must be qualified as
2982 * "flat"."
2983 *
2984 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
2985 * "Fragment shader inputs that are signed or unsigned integers, integer
2986 * vectors, or any double-precision floating-point type must be
2987 * qualified with the interpolation qualifier flat."
2988 *
2989 * Note that the GLSL specs are missing the text "or contain"; this is
2990 * presumably an oversight. See Khronos bug #15671.
2991 *
2992 * The 'double' type does not exist in GLSL ES so far.
2993 */
2994 if (state->has_double()
2995 && var_type->contains_double()) {
2996 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
2997 "a double, then it must be qualified with 'flat'");
2998 }
2999 }
3000
3001 static void
3002 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3003 YYLTYPE *loc,
3004 const glsl_interp_mode interpolation,
3005 const struct ast_type_qualifier *qual,
3006 const struct glsl_type *var_type,
3007 ir_variable_mode mode)
3008 {
3009 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3010 * not to vertex shader inputs nor fragment shader outputs.
3011 *
3012 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3013 * "Outputs from a vertex shader (out) and inputs to a fragment
3014 * shader (in) can be further qualified with one or more of these
3015 * interpolation qualifiers"
3016 * ...
3017 * "These interpolation qualifiers may only precede the qualifiers in,
3018 * centroid in, out, or centroid out in a declaration. They do not apply
3019 * to the deprecated storage qualifiers varying or centroid
3020 * varying. They also do not apply to inputs into a vertex shader or
3021 * outputs from a fragment shader."
3022 *
3023 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3024 * "Outputs from a shader (out) and inputs to a shader (in) can be
3025 * further qualified with one of these interpolation qualifiers."
3026 * ...
3027 * "These interpolation qualifiers may only precede the qualifiers
3028 * in, centroid in, out, or centroid out in a declaration. They do
3029 * not apply to inputs into a vertex shader or outputs from a
3030 * fragment shader."
3031 */
3032 if (state->is_version(130, 300)
3033 && interpolation != INTERP_MODE_NONE) {
3034 const char *i = interpolation_string(interpolation);
3035 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3036 _mesa_glsl_error(loc, state,
3037 "interpolation qualifier `%s' can only be applied to "
3038 "shader inputs or outputs.", i);
3039
3040 switch (state->stage) {
3041 case MESA_SHADER_VERTEX:
3042 if (mode == ir_var_shader_in) {
3043 _mesa_glsl_error(loc, state,
3044 "interpolation qualifier '%s' cannot be applied to "
3045 "vertex shader inputs", i);
3046 }
3047 break;
3048 case MESA_SHADER_FRAGMENT:
3049 if (mode == ir_var_shader_out) {
3050 _mesa_glsl_error(loc, state,
3051 "interpolation qualifier '%s' cannot be applied to "
3052 "fragment shader outputs", i);
3053 }
3054 break;
3055 default:
3056 break;
3057 }
3058 }
3059
3060 /* Interpolation qualifiers cannot be applied to 'centroid' and
3061 * 'centroid varying'.
3062 *
3063 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3064 * "interpolation qualifiers may only precede the qualifiers in,
3065 * centroid in, out, or centroid out in a declaration. They do not apply
3066 * to the deprecated storage qualifiers varying or centroid varying."
3067 *
3068 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3069 */
3070 if (state->is_version(130, 0)
3071 && interpolation != INTERP_MODE_NONE
3072 && qual->flags.q.varying) {
3073
3074 const char *i = interpolation_string(interpolation);
3075 const char *s;
3076 if (qual->flags.q.centroid)
3077 s = "centroid varying";
3078 else
3079 s = "varying";
3080
3081 _mesa_glsl_error(loc, state,
3082 "qualifier '%s' cannot be applied to the "
3083 "deprecated storage qualifier '%s'", i, s);
3084 }
3085
3086 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3087 var_type, mode);
3088 }
3089
3090 static glsl_interp_mode
3091 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3092 const struct glsl_type *var_type,
3093 ir_variable_mode mode,
3094 struct _mesa_glsl_parse_state *state,
3095 YYLTYPE *loc)
3096 {
3097 glsl_interp_mode interpolation;
3098 if (qual->flags.q.flat)
3099 interpolation = INTERP_MODE_FLAT;
3100 else if (qual->flags.q.noperspective)
3101 interpolation = INTERP_MODE_NOPERSPECTIVE;
3102 else if (qual->flags.q.smooth)
3103 interpolation = INTERP_MODE_SMOOTH;
3104 else if (state->es_shader &&
3105 ((mode == ir_var_shader_in &&
3106 state->stage != MESA_SHADER_VERTEX) ||
3107 (mode == ir_var_shader_out &&
3108 state->stage != MESA_SHADER_FRAGMENT)))
3109 /* Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
3110 *
3111 * "When no interpolation qualifier is present, smooth interpolation
3112 * is used."
3113 */
3114 interpolation = INTERP_MODE_SMOOTH;
3115 else
3116 interpolation = INTERP_MODE_NONE;
3117
3118 validate_interpolation_qualifier(state, loc,
3119 interpolation,
3120 qual, var_type, mode);
3121
3122 return interpolation;
3123 }
3124
3125
3126 static void
3127 apply_explicit_location(const struct ast_type_qualifier *qual,
3128 ir_variable *var,
3129 struct _mesa_glsl_parse_state *state,
3130 YYLTYPE *loc)
3131 {
3132 bool fail = false;
3133
3134 unsigned qual_location;
3135 if (!process_qualifier_constant(state, loc, "location", qual->location,
3136 &qual_location)) {
3137 return;
3138 }
3139
3140 /* Checks for GL_ARB_explicit_uniform_location. */
3141 if (qual->flags.q.uniform) {
3142 if (!state->check_explicit_uniform_location_allowed(loc, var))
3143 return;
3144
3145 const struct gl_context *const ctx = state->ctx;
3146 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3147
3148 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3149 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3150 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3151 ctx->Const.MaxUserAssignableUniformLocations);
3152 return;
3153 }
3154
3155 var->data.explicit_location = true;
3156 var->data.location = qual_location;
3157 return;
3158 }
3159
3160 /* Between GL_ARB_explicit_attrib_location an
3161 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3162 * stage can be assigned explicit locations. The checking here associates
3163 * the correct extension with the correct stage's input / output:
3164 *
3165 * input output
3166 * ----- ------
3167 * vertex explicit_loc sso
3168 * tess control sso sso
3169 * tess eval sso sso
3170 * geometry sso sso
3171 * fragment sso explicit_loc
3172 */
3173 switch (state->stage) {
3174 case MESA_SHADER_VERTEX:
3175 if (var->data.mode == ir_var_shader_in) {
3176 if (!state->check_explicit_attrib_location_allowed(loc, var))
3177 return;
3178
3179 break;
3180 }
3181
3182 if (var->data.mode == ir_var_shader_out) {
3183 if (!state->check_separate_shader_objects_allowed(loc, var))
3184 return;
3185
3186 break;
3187 }
3188
3189 fail = true;
3190 break;
3191
3192 case MESA_SHADER_TESS_CTRL:
3193 case MESA_SHADER_TESS_EVAL:
3194 case MESA_SHADER_GEOMETRY:
3195 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3196 if (!state->check_separate_shader_objects_allowed(loc, var))
3197 return;
3198
3199 break;
3200 }
3201
3202 fail = true;
3203 break;
3204
3205 case MESA_SHADER_FRAGMENT:
3206 if (var->data.mode == ir_var_shader_in) {
3207 if (!state->check_separate_shader_objects_allowed(loc, var))
3208 return;
3209
3210 break;
3211 }
3212
3213 if (var->data.mode == ir_var_shader_out) {
3214 if (!state->check_explicit_attrib_location_allowed(loc, var))
3215 return;
3216
3217 break;
3218 }
3219
3220 fail = true;
3221 break;
3222
3223 case MESA_SHADER_COMPUTE:
3224 _mesa_glsl_error(loc, state,
3225 "compute shader variables cannot be given "
3226 "explicit locations");
3227 return;
3228 };
3229
3230 if (fail) {
3231 _mesa_glsl_error(loc, state,
3232 "%s cannot be given an explicit location in %s shader",
3233 mode_string(var),
3234 _mesa_shader_stage_to_string(state->stage));
3235 } else {
3236 var->data.explicit_location = true;
3237
3238 switch (state->stage) {
3239 case MESA_SHADER_VERTEX:
3240 var->data.location = (var->data.mode == ir_var_shader_in)
3241 ? (qual_location + VERT_ATTRIB_GENERIC0)
3242 : (qual_location + VARYING_SLOT_VAR0);
3243 break;
3244
3245 case MESA_SHADER_TESS_CTRL:
3246 case MESA_SHADER_TESS_EVAL:
3247 case MESA_SHADER_GEOMETRY:
3248 if (var->data.patch)
3249 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3250 else
3251 var->data.location = qual_location + VARYING_SLOT_VAR0;
3252 break;
3253
3254 case MESA_SHADER_FRAGMENT:
3255 var->data.location = (var->data.mode == ir_var_shader_out)
3256 ? (qual_location + FRAG_RESULT_DATA0)
3257 : (qual_location + VARYING_SLOT_VAR0);
3258 break;
3259 case MESA_SHADER_COMPUTE:
3260 assert(!"Unexpected shader type");
3261 break;
3262 }
3263
3264 /* Check if index was set for the uniform instead of the function */
3265 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3266 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3267 "used with subroutine functions");
3268 return;
3269 }
3270
3271 unsigned qual_index;
3272 if (qual->flags.q.explicit_index &&
3273 process_qualifier_constant(state, loc, "index", qual->index,
3274 &qual_index)) {
3275 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3276 * Layout Qualifiers):
3277 *
3278 * "It is also a compile-time error if a fragment shader
3279 * sets a layout index to less than 0 or greater than 1."
3280 *
3281 * Older specifications don't mandate a behavior; we take
3282 * this as a clarification and always generate the error.
3283 */
3284 if (qual_index > 1) {
3285 _mesa_glsl_error(loc, state,
3286 "explicit index may only be 0 or 1");
3287 } else {
3288 var->data.explicit_index = true;
3289 var->data.index = qual_index;
3290 }
3291 }
3292 }
3293 }
3294
3295 static bool
3296 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3297 YYLTYPE *loc,
3298 const struct ast_type_qualifier *qual,
3299 const glsl_type *type)
3300 {
3301 if (!type->is_image()) {
3302 if (qual->flags.q.read_only ||
3303 qual->flags.q.write_only ||
3304 qual->flags.q.coherent ||
3305 qual->flags.q._volatile ||
3306 qual->flags.q.restrict_flag) {
3307 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3308 "to images");
3309 return false;
3310 }
3311 }
3312 return true;
3313 }
3314
3315 static bool
3316 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3317 YYLTYPE *loc,
3318 const struct ast_type_qualifier *qual,
3319 const glsl_type *type)
3320 {
3321 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3322 *
3323 * "Format layout qualifiers can be used on image variable declarations
3324 * (those declared with a basic type having “image ” in its keyword)."
3325 */
3326 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3327 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3328 "applied to images");
3329 return false;
3330 }
3331 return true;
3332 }
3333
3334 static void
3335 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3336 ir_variable *var,
3337 struct _mesa_glsl_parse_state *state,
3338 YYLTYPE *loc)
3339 {
3340 const glsl_type *base_type = var->type->without_array();
3341
3342 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3343 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3344 return;
3345
3346 if (!base_type->is_image())
3347 return;
3348
3349 if (var->data.mode != ir_var_uniform &&
3350 var->data.mode != ir_var_function_in) {
3351 _mesa_glsl_error(loc, state, "image variables may only be declared as "
3352 "function parameters or uniform-qualified "
3353 "global variables");
3354 }
3355
3356 var->data.memory_read_only |= qual->flags.q.read_only;
3357 var->data.memory_write_only |= qual->flags.q.write_only;
3358 var->data.memory_coherent |= qual->flags.q.coherent;
3359 var->data.memory_volatile |= qual->flags.q._volatile;
3360 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3361 var->data.read_only = true;
3362
3363 if (qual->flags.q.explicit_image_format) {
3364 if (var->data.mode == ir_var_function_in) {
3365 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3366 "image function parameters");
3367 }
3368
3369 if (qual->image_base_type != base_type->sampled_type) {
3370 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3371 "data type of the image");
3372 }
3373
3374 var->data.image_format = qual->image_format;
3375 } else {
3376 if (var->data.mode == ir_var_uniform) {
3377 if (state->es_shader) {
3378 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3379 "format layout qualifier");
3380 } else if (!qual->flags.q.write_only) {
3381 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3382 "`writeonly' must have a format layout qualifier");
3383 }
3384 }
3385 var->data.image_format = GL_NONE;
3386 }
3387
3388 /* From page 70 of the GLSL ES 3.1 specification:
3389 *
3390 * "Except for image variables qualified with the format qualifiers r32f,
3391 * r32i, and r32ui, image variables must specify either memory qualifier
3392 * readonly or the memory qualifier writeonly."
3393 */
3394 if (state->es_shader &&
3395 var->data.image_format != GL_R32F &&
3396 var->data.image_format != GL_R32I &&
3397 var->data.image_format != GL_R32UI &&
3398 !var->data.memory_read_only &&
3399 !var->data.memory_write_only) {
3400 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3401 "r32i or r32ui must be qualified `readonly' or "
3402 "`writeonly'");
3403 }
3404 }
3405
3406 static inline const char*
3407 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3408 {
3409 if (origin_upper_left && pixel_center_integer)
3410 return "origin_upper_left, pixel_center_integer";
3411 else if (origin_upper_left)
3412 return "origin_upper_left";
3413 else if (pixel_center_integer)
3414 return "pixel_center_integer";
3415 else
3416 return " ";
3417 }
3418
3419 static inline bool
3420 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3421 const struct ast_type_qualifier *qual)
3422 {
3423 /* If gl_FragCoord was previously declared, and the qualifiers were
3424 * different in any way, return true.
3425 */
3426 if (state->fs_redeclares_gl_fragcoord) {
3427 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3428 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3429 }
3430
3431 return false;
3432 }
3433
3434 static inline void
3435 validate_array_dimensions(const glsl_type *t,
3436 struct _mesa_glsl_parse_state *state,
3437 YYLTYPE *loc) {
3438 if (t->is_array()) {
3439 t = t->fields.array;
3440 while (t->is_array()) {
3441 if (t->is_unsized_array()) {
3442 _mesa_glsl_error(loc, state,
3443 "only the outermost array dimension can "
3444 "be unsized",
3445 t->name);
3446 break;
3447 }
3448 t = t->fields.array;
3449 }
3450 }
3451 }
3452
3453 static void
3454 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3455 ir_variable *var,
3456 struct _mesa_glsl_parse_state *state,
3457 YYLTYPE *loc)
3458 {
3459 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3460
3461 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3462 *
3463 * "Within any shader, the first redeclarations of gl_FragCoord
3464 * must appear before any use of gl_FragCoord."
3465 *
3466 * Generate a compiler error if above condition is not met by the
3467 * fragment shader.
3468 */
3469 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3470 if (earlier != NULL &&
3471 earlier->data.used &&
3472 !state->fs_redeclares_gl_fragcoord) {
3473 _mesa_glsl_error(loc, state,
3474 "gl_FragCoord used before its first redeclaration "
3475 "in fragment shader");
3476 }
3477
3478 /* Make sure all gl_FragCoord redeclarations specify the same layout
3479 * qualifiers.
3480 */
3481 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3482 const char *const qual_string =
3483 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3484 qual->flags.q.pixel_center_integer);
3485
3486 const char *const state_string =
3487 get_layout_qualifier_string(state->fs_origin_upper_left,
3488 state->fs_pixel_center_integer);
3489
3490 _mesa_glsl_error(loc, state,
3491 "gl_FragCoord redeclared with different layout "
3492 "qualifiers (%s) and (%s) ",
3493 state_string,
3494 qual_string);
3495 }
3496 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3497 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3498 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3499 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3500 state->fs_redeclares_gl_fragcoord =
3501 state->fs_origin_upper_left ||
3502 state->fs_pixel_center_integer ||
3503 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3504 }
3505
3506 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
3507 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
3508 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3509 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3510 const char *const qual_string = (qual->flags.q.origin_upper_left)
3511 ? "origin_upper_left" : "pixel_center_integer";
3512
3513 _mesa_glsl_error(loc, state,
3514 "layout qualifier `%s' can only be applied to "
3515 "fragment shader input `gl_FragCoord'",
3516 qual_string);
3517 }
3518
3519 if (qual->flags.q.explicit_location) {
3520 apply_explicit_location(qual, var, state, loc);
3521
3522 if (qual->flags.q.explicit_component) {
3523 unsigned qual_component;
3524 if (process_qualifier_constant(state, loc, "component",
3525 qual->component, &qual_component)) {
3526 const glsl_type *type = var->type->without_array();
3527 unsigned components = type->component_slots();
3528
3529 if (type->is_matrix() || type->is_record()) {
3530 _mesa_glsl_error(loc, state, "component layout qualifier "
3531 "cannot be applied to a matrix, a structure, "
3532 "a block, or an array containing any of "
3533 "these.");
3534 } else if (qual_component != 0 &&
3535 (qual_component + components - 1) > 3) {
3536 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
3537 (qual_component + components - 1));
3538 } else if (qual_component == 1 && type->is_64bit()) {
3539 /* We don't bother checking for 3 as it should be caught by the
3540 * overflow check above.
3541 */
3542 _mesa_glsl_error(loc, state, "doubles cannot begin at "
3543 "component 1 or 3");
3544 } else {
3545 var->data.explicit_component = true;
3546 var->data.location_frac = qual_component;
3547 }
3548 }
3549 }
3550 } else if (qual->flags.q.explicit_index) {
3551 if (!qual->subroutine_list)
3552 _mesa_glsl_error(loc, state,
3553 "explicit index requires explicit location");
3554 } else if (qual->flags.q.explicit_component) {
3555 _mesa_glsl_error(loc, state,
3556 "explicit component requires explicit location");
3557 }
3558
3559 if (qual->flags.q.explicit_binding) {
3560 apply_explicit_binding(state, loc, var, var->type, qual);
3561 }
3562
3563 if (state->stage == MESA_SHADER_GEOMETRY &&
3564 qual->flags.q.out && qual->flags.q.stream) {
3565 unsigned qual_stream;
3566 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3567 &qual_stream) &&
3568 validate_stream_qualifier(loc, state, qual_stream)) {
3569 var->data.stream = qual_stream;
3570 }
3571 }
3572
3573 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3574 unsigned qual_xfb_buffer;
3575 if (process_qualifier_constant(state, loc, "xfb_buffer",
3576 qual->xfb_buffer, &qual_xfb_buffer) &&
3577 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3578 var->data.xfb_buffer = qual_xfb_buffer;
3579 if (qual->flags.q.explicit_xfb_buffer)
3580 var->data.explicit_xfb_buffer = true;
3581 }
3582 }
3583
3584 if (qual->flags.q.explicit_xfb_offset) {
3585 unsigned qual_xfb_offset;
3586 unsigned component_size = var->type->contains_double() ? 8 : 4;
3587
3588 if (process_qualifier_constant(state, loc, "xfb_offset",
3589 qual->offset, &qual_xfb_offset) &&
3590 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3591 var->type, component_size)) {
3592 var->data.offset = qual_xfb_offset;
3593 var->data.explicit_xfb_offset = true;
3594 }
3595 }
3596
3597 if (qual->flags.q.explicit_xfb_stride) {
3598 unsigned qual_xfb_stride;
3599 if (process_qualifier_constant(state, loc, "xfb_stride",
3600 qual->xfb_stride, &qual_xfb_stride)) {
3601 var->data.xfb_stride = qual_xfb_stride;
3602 var->data.explicit_xfb_stride = true;
3603 }
3604 }
3605
3606 if (var->type->contains_atomic()) {
3607 if (var->data.mode == ir_var_uniform) {
3608 if (var->data.explicit_binding) {
3609 unsigned *offset =
3610 &state->atomic_counter_offsets[var->data.binding];
3611
3612 if (*offset % ATOMIC_COUNTER_SIZE)
3613 _mesa_glsl_error(loc, state,
3614 "misaligned atomic counter offset");
3615
3616 var->data.offset = *offset;
3617 *offset += var->type->atomic_size();
3618
3619 } else {
3620 _mesa_glsl_error(loc, state,
3621 "atomic counters require explicit binding point");
3622 }
3623 } else if (var->data.mode != ir_var_function_in) {
3624 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3625 "function parameters or uniform-qualified "
3626 "global variables");
3627 }
3628 }
3629
3630 if (var->type->contains_sampler()) {
3631 if (var->data.mode != ir_var_uniform &&
3632 var->data.mode != ir_var_function_in) {
3633 _mesa_glsl_error(loc, state, "sampler variables may only be declared "
3634 "as function parameters or uniform-qualified "
3635 "global variables");
3636 }
3637 }
3638
3639 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3640 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3641 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3642 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3643 * These extensions and all following extensions that add the 'layout'
3644 * keyword have been modified to require the use of 'in' or 'out'.
3645 *
3646 * The following extension do not allow the deprecated keywords:
3647 *
3648 * GL_AMD_conservative_depth
3649 * GL_ARB_conservative_depth
3650 * GL_ARB_gpu_shader5
3651 * GL_ARB_separate_shader_objects
3652 * GL_ARB_tessellation_shader
3653 * GL_ARB_transform_feedback3
3654 * GL_ARB_uniform_buffer_object
3655 *
3656 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3657 * allow layout with the deprecated keywords.
3658 */
3659 const bool relaxed_layout_qualifier_checking =
3660 state->ARB_fragment_coord_conventions_enable;
3661
3662 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3663 || qual->flags.q.varying;
3664 if (qual->has_layout() && uses_deprecated_qualifier) {
3665 if (relaxed_layout_qualifier_checking) {
3666 _mesa_glsl_warning(loc, state,
3667 "`layout' qualifier may not be used with "
3668 "`attribute' or `varying'");
3669 } else {
3670 _mesa_glsl_error(loc, state,
3671 "`layout' qualifier may not be used with "
3672 "`attribute' or `varying'");
3673 }
3674 }
3675
3676 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3677 * AMD_conservative_depth.
3678 */
3679 if (qual->flags.q.depth_type
3680 && !state->is_version(420, 0)
3681 && !state->AMD_conservative_depth_enable
3682 && !state->ARB_conservative_depth_enable) {
3683 _mesa_glsl_error(loc, state,
3684 "extension GL_AMD_conservative_depth or "
3685 "GL_ARB_conservative_depth must be enabled "
3686 "to use depth layout qualifiers");
3687 } else if (qual->flags.q.depth_type
3688 && strcmp(var->name, "gl_FragDepth") != 0) {
3689 _mesa_glsl_error(loc, state,
3690 "depth layout qualifiers can be applied only to "
3691 "gl_FragDepth");
3692 }
3693
3694 switch (qual->depth_type) {
3695 case ast_depth_any:
3696 var->data.depth_layout = ir_depth_layout_any;
3697 break;
3698 case ast_depth_greater:
3699 var->data.depth_layout = ir_depth_layout_greater;
3700 break;
3701 case ast_depth_less:
3702 var->data.depth_layout = ir_depth_layout_less;
3703 break;
3704 case ast_depth_unchanged:
3705 var->data.depth_layout = ir_depth_layout_unchanged;
3706 break;
3707 default:
3708 var->data.depth_layout = ir_depth_layout_none;
3709 break;
3710 }
3711
3712 if (qual->flags.q.std140 ||
3713 qual->flags.q.std430 ||
3714 qual->flags.q.packed ||
3715 qual->flags.q.shared) {
3716 _mesa_glsl_error(loc, state,
3717 "uniform and shader storage block layout qualifiers "
3718 "std140, std430, packed, and shared can only be "
3719 "applied to uniform or shader storage blocks, not "
3720 "members");
3721 }
3722
3723 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3724 validate_matrix_layout_for_type(state, loc, var->type, var);
3725 }
3726
3727 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3728 * Inputs):
3729 *
3730 * "Fragment shaders also allow the following layout qualifier on in only
3731 * (not with variable declarations)
3732 * layout-qualifier-id
3733 * early_fragment_tests
3734 * [...]"
3735 */
3736 if (qual->flags.q.early_fragment_tests) {
3737 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3738 "valid in fragment shader input layout declaration.");
3739 }
3740
3741 if (qual->flags.q.inner_coverage) {
3742 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3743 "valid in fragment shader input layout declaration.");
3744 }
3745
3746 if (qual->flags.q.post_depth_coverage) {
3747 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3748 "valid in fragment shader input layout declaration.");
3749 }
3750 }
3751
3752 static void
3753 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
3754 ir_variable *var,
3755 struct _mesa_glsl_parse_state *state,
3756 YYLTYPE *loc,
3757 bool is_parameter)
3758 {
3759 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
3760
3761 if (qual->flags.q.invariant) {
3762 if (var->data.used) {
3763 _mesa_glsl_error(loc, state,
3764 "variable `%s' may not be redeclared "
3765 "`invariant' after being used",
3766 var->name);
3767 } else {
3768 var->data.invariant = 1;
3769 }
3770 }
3771
3772 if (qual->flags.q.precise) {
3773 if (var->data.used) {
3774 _mesa_glsl_error(loc, state,
3775 "variable `%s' may not be redeclared "
3776 "`precise' after being used",
3777 var->name);
3778 } else {
3779 var->data.precise = 1;
3780 }
3781 }
3782
3783 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
3784 _mesa_glsl_error(loc, state,
3785 "`subroutine' may only be applied to uniforms, "
3786 "subroutine type declarations, or function definitions");
3787 }
3788
3789 if (qual->flags.q.constant || qual->flags.q.attribute
3790 || qual->flags.q.uniform
3791 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3792 var->data.read_only = 1;
3793
3794 if (qual->flags.q.centroid)
3795 var->data.centroid = 1;
3796
3797 if (qual->flags.q.sample)
3798 var->data.sample = 1;
3799
3800 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
3801 if (state->es_shader) {
3802 var->data.precision =
3803 select_gles_precision(qual->precision, var->type, state, loc);
3804 }
3805
3806 if (qual->flags.q.patch)
3807 var->data.patch = 1;
3808
3809 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
3810 var->type = glsl_type::error_type;
3811 _mesa_glsl_error(loc, state,
3812 "`attribute' variables may not be declared in the "
3813 "%s shader",
3814 _mesa_shader_stage_to_string(state->stage));
3815 }
3816
3817 /* Disallow layout qualifiers which may only appear on layout declarations. */
3818 if (qual->flags.q.prim_type) {
3819 _mesa_glsl_error(loc, state,
3820 "Primitive type may only be specified on GS input or output "
3821 "layout declaration, not on variables.");
3822 }
3823
3824 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
3825 *
3826 * "However, the const qualifier cannot be used with out or inout."
3827 *
3828 * The same section of the GLSL 4.40 spec further clarifies this saying:
3829 *
3830 * "The const qualifier cannot be used with out or inout, or a
3831 * compile-time error results."
3832 */
3833 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
3834 _mesa_glsl_error(loc, state,
3835 "`const' may not be applied to `out' or `inout' "
3836 "function parameters");
3837 }
3838
3839 /* If there is no qualifier that changes the mode of the variable, leave
3840 * the setting alone.
3841 */
3842 assert(var->data.mode != ir_var_temporary);
3843 if (qual->flags.q.in && qual->flags.q.out)
3844 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
3845 else if (qual->flags.q.in)
3846 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
3847 else if (qual->flags.q.attribute
3848 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
3849 var->data.mode = ir_var_shader_in;
3850 else if (qual->flags.q.out)
3851 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
3852 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
3853 var->data.mode = ir_var_shader_out;
3854 else if (qual->flags.q.uniform)
3855 var->data.mode = ir_var_uniform;
3856 else if (qual->flags.q.buffer)
3857 var->data.mode = ir_var_shader_storage;
3858 else if (qual->flags.q.shared_storage)
3859 var->data.mode = ir_var_shader_shared;
3860
3861 var->data.fb_fetch_output = state->stage == MESA_SHADER_FRAGMENT &&
3862 qual->flags.q.in && qual->flags.q.out;
3863
3864 if (!is_parameter && is_varying_var(var, state->stage)) {
3865 /* User-defined ins/outs are not permitted in compute shaders. */
3866 if (state->stage == MESA_SHADER_COMPUTE) {
3867 _mesa_glsl_error(loc, state,
3868 "user-defined input and output variables are not "
3869 "permitted in compute shaders");
3870 }
3871
3872 /* This variable is being used to link data between shader stages (in
3873 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
3874 * that is allowed for such purposes.
3875 *
3876 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
3877 *
3878 * "The varying qualifier can be used only with the data types
3879 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
3880 * these."
3881 *
3882 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
3883 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
3884 *
3885 * "Fragment inputs can only be signed and unsigned integers and
3886 * integer vectors, float, floating-point vectors, matrices, or
3887 * arrays of these. Structures cannot be input.
3888 *
3889 * Similar text exists in the section on vertex shader outputs.
3890 *
3891 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
3892 * 3.00 spec allows structs as well. Varying structs are also allowed
3893 * in GLSL 1.50.
3894 */
3895 switch (var->type->without_array()->base_type) {
3896 case GLSL_TYPE_FLOAT:
3897 /* Ok in all GLSL versions */
3898 break;
3899 case GLSL_TYPE_UINT:
3900 case GLSL_TYPE_INT:
3901 if (state->is_version(130, 300))
3902 break;
3903 _mesa_glsl_error(loc, state,
3904 "varying variables must be of base type float in %s",
3905 state->get_version_string());
3906 break;
3907 case GLSL_TYPE_STRUCT:
3908 if (state->is_version(150, 300))
3909 break;
3910 _mesa_glsl_error(loc, state,
3911 "varying variables may not be of type struct");
3912 break;
3913 case GLSL_TYPE_DOUBLE:
3914 case GLSL_TYPE_UINT64:
3915 case GLSL_TYPE_INT64:
3916 break;
3917 default:
3918 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
3919 break;
3920 }
3921 }
3922
3923 if (state->all_invariant && (state->current_function == NULL)) {
3924 switch (state->stage) {
3925 case MESA_SHADER_VERTEX:
3926 if (var->data.mode == ir_var_shader_out)
3927 var->data.invariant = true;
3928 break;
3929 case MESA_SHADER_TESS_CTRL:
3930 case MESA_SHADER_TESS_EVAL:
3931 case MESA_SHADER_GEOMETRY:
3932 if ((var->data.mode == ir_var_shader_in)
3933 || (var->data.mode == ir_var_shader_out))
3934 var->data.invariant = true;
3935 break;
3936 case MESA_SHADER_FRAGMENT:
3937 if (var->data.mode == ir_var_shader_in)
3938 var->data.invariant = true;
3939 break;
3940 case MESA_SHADER_COMPUTE:
3941 /* Invariance isn't meaningful in compute shaders. */
3942 break;
3943 }
3944 }
3945
3946 var->data.interpolation =
3947 interpret_interpolation_qualifier(qual, var->type,
3948 (ir_variable_mode) var->data.mode,
3949 state, loc);
3950
3951 /* Does the declaration use the deprecated 'attribute' or 'varying'
3952 * keywords?
3953 */
3954 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3955 || qual->flags.q.varying;
3956
3957
3958 /* Validate auxiliary storage qualifiers */
3959
3960 /* From section 4.3.4 of the GLSL 1.30 spec:
3961 * "It is an error to use centroid in in a vertex shader."
3962 *
3963 * From section 4.3.4 of the GLSL ES 3.00 spec:
3964 * "It is an error to use centroid in or interpolation qualifiers in
3965 * a vertex shader input."
3966 */
3967
3968 /* Section 4.3.6 of the GLSL 1.30 specification states:
3969 * "It is an error to use centroid out in a fragment shader."
3970 *
3971 * The GL_ARB_shading_language_420pack extension specification states:
3972 * "It is an error to use auxiliary storage qualifiers or interpolation
3973 * qualifiers on an output in a fragment shader."
3974 */
3975 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
3976 _mesa_glsl_error(loc, state,
3977 "sample qualifier may only be used on `in` or `out` "
3978 "variables between shader stages");
3979 }
3980 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
3981 _mesa_glsl_error(loc, state,
3982 "centroid qualifier may only be used with `in', "
3983 "`out' or `varying' variables between shader stages");
3984 }
3985
3986 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
3987 _mesa_glsl_error(loc, state,
3988 "the shared storage qualifiers can only be used with "
3989 "compute shaders");
3990 }
3991
3992 apply_image_qualifier_to_variable(qual, var, state, loc);
3993 }
3994
3995 /**
3996 * Get the variable that is being redeclared by this declaration or if it
3997 * does not exist, the current declared variable.
3998 *
3999 * Semantic checks to verify the validity of the redeclaration are also
4000 * performed. If semantic checks fail, compilation error will be emitted via
4001 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4002 *
4003 * \returns
4004 * A pointer to an existing variable in the current scope if the declaration
4005 * is a redeclaration, current variable otherwise. \c is_declared boolean
4006 * will return \c true if the declaration is a redeclaration, \c false
4007 * otherwise.
4008 */
4009 static ir_variable *
4010 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
4011 struct _mesa_glsl_parse_state *state,
4012 bool allow_all_redeclarations,
4013 bool *is_redeclaration)
4014 {
4015 /* Check if this declaration is actually a re-declaration, either to
4016 * resize an array or add qualifiers to an existing variable.
4017 *
4018 * This is allowed for variables in the current scope, or when at
4019 * global scope (for built-ins in the implicit outer scope).
4020 */
4021 ir_variable *earlier = state->symbols->get_variable(var->name);
4022 if (earlier == NULL ||
4023 (state->current_function != NULL &&
4024 !state->symbols->name_declared_this_scope(var->name))) {
4025 *is_redeclaration = false;
4026 return var;
4027 }
4028
4029 *is_redeclaration = true;
4030
4031 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4032 *
4033 * "It is legal to declare an array without a size and then
4034 * later re-declare the same name as an array of the same
4035 * type and specify a size."
4036 */
4037 if (earlier->type->is_unsized_array() && var->type->is_array()
4038 && (var->type->fields.array == earlier->type->fields.array)) {
4039 /* FINISHME: This doesn't match the qualifiers on the two
4040 * FINISHME: declarations. It's not 100% clear whether this is
4041 * FINISHME: required or not.
4042 */
4043
4044 const int size = var->type->array_size();
4045 check_builtin_array_max_size(var->name, size, loc, state);
4046 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4047 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4048 "previous access",
4049 earlier->data.max_array_access);
4050 }
4051
4052 earlier->type = var->type;
4053 delete var;
4054 var = NULL;
4055 } else if ((state->ARB_fragment_coord_conventions_enable ||
4056 state->is_version(150, 0))
4057 && strcmp(var->name, "gl_FragCoord") == 0
4058 && earlier->type == var->type
4059 && var->data.mode == ir_var_shader_in) {
4060 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4061 * qualifiers.
4062 */
4063 earlier->data.origin_upper_left = var->data.origin_upper_left;
4064 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
4065
4066 /* According to section 4.3.7 of the GLSL 1.30 spec,
4067 * the following built-in varaibles can be redeclared with an
4068 * interpolation qualifier:
4069 * * gl_FrontColor
4070 * * gl_BackColor
4071 * * gl_FrontSecondaryColor
4072 * * gl_BackSecondaryColor
4073 * * gl_Color
4074 * * gl_SecondaryColor
4075 */
4076 } else if (state->is_version(130, 0)
4077 && (strcmp(var->name, "gl_FrontColor") == 0
4078 || strcmp(var->name, "gl_BackColor") == 0
4079 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4080 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4081 || strcmp(var->name, "gl_Color") == 0
4082 || strcmp(var->name, "gl_SecondaryColor") == 0)
4083 && earlier->type == var->type
4084 && earlier->data.mode == var->data.mode) {
4085 earlier->data.interpolation = var->data.interpolation;
4086
4087 /* Layout qualifiers for gl_FragDepth. */
4088 } else if ((state->is_version(420, 0) ||
4089 state->AMD_conservative_depth_enable ||
4090 state->ARB_conservative_depth_enable)
4091 && strcmp(var->name, "gl_FragDepth") == 0
4092 && earlier->type == var->type
4093 && earlier->data.mode == var->data.mode) {
4094
4095 /** From the AMD_conservative_depth spec:
4096 * Within any shader, the first redeclarations of gl_FragDepth
4097 * must appear before any use of gl_FragDepth.
4098 */
4099 if (earlier->data.used) {
4100 _mesa_glsl_error(&loc, state,
4101 "the first redeclaration of gl_FragDepth "
4102 "must appear before any use of gl_FragDepth");
4103 }
4104
4105 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4106 if (earlier->data.depth_layout != ir_depth_layout_none
4107 && earlier->data.depth_layout != var->data.depth_layout) {
4108 _mesa_glsl_error(&loc, state,
4109 "gl_FragDepth: depth layout is declared here "
4110 "as '%s, but it was previously declared as "
4111 "'%s'",
4112 depth_layout_string(var->data.depth_layout),
4113 depth_layout_string(earlier->data.depth_layout));
4114 }
4115
4116 earlier->data.depth_layout = var->data.depth_layout;
4117
4118 } else if (state->has_framebuffer_fetch() &&
4119 strcmp(var->name, "gl_LastFragData") == 0 &&
4120 var->type == earlier->type &&
4121 var->data.mode == ir_var_auto) {
4122 /* According to the EXT_shader_framebuffer_fetch spec:
4123 *
4124 * "By default, gl_LastFragData is declared with the mediump precision
4125 * qualifier. This can be changed by redeclaring the corresponding
4126 * variables with the desired precision qualifier."
4127 */
4128 earlier->data.precision = var->data.precision;
4129
4130 } else if (allow_all_redeclarations) {
4131 if (earlier->data.mode != var->data.mode) {
4132 _mesa_glsl_error(&loc, state,
4133 "redeclaration of `%s' with incorrect qualifiers",
4134 var->name);
4135 } else if (earlier->type != var->type) {
4136 _mesa_glsl_error(&loc, state,
4137 "redeclaration of `%s' has incorrect type",
4138 var->name);
4139 }
4140 } else {
4141 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4142 }
4143
4144 return earlier;
4145 }
4146
4147 /**
4148 * Generate the IR for an initializer in a variable declaration
4149 */
4150 ir_rvalue *
4151 process_initializer(ir_variable *var, ast_declaration *decl,
4152 ast_fully_specified_type *type,
4153 exec_list *initializer_instructions,
4154 struct _mesa_glsl_parse_state *state)
4155 {
4156 ir_rvalue *result = NULL;
4157
4158 YYLTYPE initializer_loc = decl->initializer->get_location();
4159
4160 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4161 *
4162 * "All uniform variables are read-only and are initialized either
4163 * directly by an application via API commands, or indirectly by
4164 * OpenGL."
4165 */
4166 if (var->data.mode == ir_var_uniform) {
4167 state->check_version(120, 0, &initializer_loc,
4168 "cannot initialize uniform %s",
4169 var->name);
4170 }
4171
4172 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4173 *
4174 * "Buffer variables cannot have initializers."
4175 */
4176 if (var->data.mode == ir_var_shader_storage) {
4177 _mesa_glsl_error(&initializer_loc, state,
4178 "cannot initialize buffer variable %s",
4179 var->name);
4180 }
4181
4182 /* From section 4.1.7 of the GLSL 4.40 spec:
4183 *
4184 * "Opaque variables [...] are initialized only through the
4185 * OpenGL API; they cannot be declared with an initializer in a
4186 * shader."
4187 */
4188 if (var->type->contains_opaque()) {
4189 _mesa_glsl_error(&initializer_loc, state,
4190 "cannot initialize opaque variable %s",
4191 var->name);
4192 }
4193
4194 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4195 _mesa_glsl_error(&initializer_loc, state,
4196 "cannot initialize %s shader input / %s %s",
4197 _mesa_shader_stage_to_string(state->stage),
4198 (state->stage == MESA_SHADER_VERTEX)
4199 ? "attribute" : "varying",
4200 var->name);
4201 }
4202
4203 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4204 _mesa_glsl_error(&initializer_loc, state,
4205 "cannot initialize %s shader output %s",
4206 _mesa_shader_stage_to_string(state->stage),
4207 var->name);
4208 }
4209
4210 /* If the initializer is an ast_aggregate_initializer, recursively store
4211 * type information from the LHS into it, so that its hir() function can do
4212 * type checking.
4213 */
4214 if (decl->initializer->oper == ast_aggregate)
4215 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4216
4217 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4218 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4219
4220 /* Calculate the constant value if this is a const or uniform
4221 * declaration.
4222 *
4223 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4224 *
4225 * "Declarations of globals without a storage qualifier, or with
4226 * just the const qualifier, may include initializers, in which case
4227 * they will be initialized before the first line of main() is
4228 * executed. Such initializers must be a constant expression."
4229 *
4230 * The same section of the GLSL ES 3.00.4 spec has similar language.
4231 */
4232 if (type->qualifier.flags.q.constant
4233 || type->qualifier.flags.q.uniform
4234 || (state->es_shader && state->current_function == NULL)) {
4235 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4236 lhs, rhs, true);
4237 if (new_rhs != NULL) {
4238 rhs = new_rhs;
4239
4240 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4241 * says:
4242 *
4243 * "A constant expression is one of
4244 *
4245 * ...
4246 *
4247 * - an expression formed by an operator on operands that are
4248 * all constant expressions, including getting an element of
4249 * a constant array, or a field of a constant structure, or
4250 * components of a constant vector. However, the sequence
4251 * operator ( , ) and the assignment operators ( =, +=, ...)
4252 * are not included in the operators that can create a
4253 * constant expression."
4254 *
4255 * Section 12.43 (Sequence operator and constant expressions) says:
4256 *
4257 * "Should the following construct be allowed?
4258 *
4259 * float a[2,3];
4260 *
4261 * The expression within the brackets uses the sequence operator
4262 * (',') and returns the integer 3 so the construct is declaring
4263 * a single-dimensional array of size 3. In some languages, the
4264 * construct declares a two-dimensional array. It would be
4265 * preferable to make this construct illegal to avoid confusion.
4266 *
4267 * One possibility is to change the definition of the sequence
4268 * operator so that it does not return a constant-expression and
4269 * hence cannot be used to declare an array size.
4270 *
4271 * RESOLUTION: The result of a sequence operator is not a
4272 * constant-expression."
4273 *
4274 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4275 * contains language almost identical to the section 4.3.3 in the
4276 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4277 * versions.
4278 */
4279 ir_constant *constant_value = rhs->constant_expression_value();
4280 if (!constant_value ||
4281 (state->is_version(430, 300) &&
4282 decl->initializer->has_sequence_subexpression())) {
4283 const char *const variable_mode =
4284 (type->qualifier.flags.q.constant)
4285 ? "const"
4286 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4287
4288 /* If ARB_shading_language_420pack is enabled, initializers of
4289 * const-qualified local variables do not have to be constant
4290 * expressions. Const-qualified global variables must still be
4291 * initialized with constant expressions.
4292 */
4293 if (!state->has_420pack()
4294 || state->current_function == NULL) {
4295 _mesa_glsl_error(& initializer_loc, state,
4296 "initializer of %s variable `%s' must be a "
4297 "constant expression",
4298 variable_mode,
4299 decl->identifier);
4300 if (var->type->is_numeric()) {
4301 /* Reduce cascading errors. */
4302 var->constant_value = type->qualifier.flags.q.constant
4303 ? ir_constant::zero(state, var->type) : NULL;
4304 }
4305 }
4306 } else {
4307 rhs = constant_value;
4308 var->constant_value = type->qualifier.flags.q.constant
4309 ? constant_value : NULL;
4310 }
4311 } else {
4312 if (var->type->is_numeric()) {
4313 /* Reduce cascading errors. */
4314 var->constant_value = type->qualifier.flags.q.constant
4315 ? ir_constant::zero(state, var->type) : NULL;
4316 }
4317 }
4318 }
4319
4320 if (rhs && !rhs->type->is_error()) {
4321 bool temp = var->data.read_only;
4322 if (type->qualifier.flags.q.constant)
4323 var->data.read_only = false;
4324
4325 /* Never emit code to initialize a uniform.
4326 */
4327 const glsl_type *initializer_type;
4328 if (!type->qualifier.flags.q.uniform) {
4329 do_assignment(initializer_instructions, state,
4330 NULL,
4331 lhs, rhs,
4332 &result, true,
4333 true,
4334 type->get_location());
4335 initializer_type = result->type;
4336 } else
4337 initializer_type = rhs->type;
4338
4339 var->constant_initializer = rhs->constant_expression_value();
4340 var->data.has_initializer = true;
4341
4342 /* If the declared variable is an unsized array, it must inherrit
4343 * its full type from the initializer. A declaration such as
4344 *
4345 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4346 *
4347 * becomes
4348 *
4349 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4350 *
4351 * The assignment generated in the if-statement (below) will also
4352 * automatically handle this case for non-uniforms.
4353 *
4354 * If the declared variable is not an array, the types must
4355 * already match exactly. As a result, the type assignment
4356 * here can be done unconditionally. For non-uniforms the call
4357 * to do_assignment can change the type of the initializer (via
4358 * the implicit conversion rules). For uniforms the initializer
4359 * must be a constant expression, and the type of that expression
4360 * was validated above.
4361 */
4362 var->type = initializer_type;
4363
4364 var->data.read_only = temp;
4365 }
4366
4367 return result;
4368 }
4369
4370 static void
4371 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4372 YYLTYPE loc, ir_variable *var,
4373 unsigned num_vertices,
4374 unsigned *size,
4375 const char *var_category)
4376 {
4377 if (var->type->is_unsized_array()) {
4378 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4379 *
4380 * All geometry shader input unsized array declarations will be
4381 * sized by an earlier input layout qualifier, when present, as per
4382 * the following table.
4383 *
4384 * Followed by a table mapping each allowed input layout qualifier to
4385 * the corresponding input length.
4386 *
4387 * Similarly for tessellation control shader outputs.
4388 */
4389 if (num_vertices != 0)
4390 var->type = glsl_type::get_array_instance(var->type->fields.array,
4391 num_vertices);
4392 } else {
4393 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4394 * includes the following examples of compile-time errors:
4395 *
4396 * // code sequence within one shader...
4397 * in vec4 Color1[]; // size unknown
4398 * ...Color1.length()...// illegal, length() unknown
4399 * in vec4 Color2[2]; // size is 2
4400 * ...Color1.length()...// illegal, Color1 still has no size
4401 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4402 * layout(lines) in; // legal, input size is 2, matching
4403 * in vec4 Color4[3]; // illegal, contradicts layout
4404 * ...
4405 *
4406 * To detect the case illustrated by Color3, we verify that the size of
4407 * an explicitly-sized array matches the size of any previously declared
4408 * explicitly-sized array. To detect the case illustrated by Color4, we
4409 * verify that the size of an explicitly-sized array is consistent with
4410 * any previously declared input layout.
4411 */
4412 if (num_vertices != 0 && var->type->length != num_vertices) {
4413 _mesa_glsl_error(&loc, state,
4414 "%s size contradicts previously declared layout "
4415 "(size is %u, but layout requires a size of %u)",
4416 var_category, var->type->length, num_vertices);
4417 } else if (*size != 0 && var->type->length != *size) {
4418 _mesa_glsl_error(&loc, state,
4419 "%s sizes are inconsistent (size is %u, but a "
4420 "previous declaration has size %u)",
4421 var_category, var->type->length, *size);
4422 } else {
4423 *size = var->type->length;
4424 }
4425 }
4426 }
4427
4428 static void
4429 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4430 YYLTYPE loc, ir_variable *var)
4431 {
4432 unsigned num_vertices = 0;
4433
4434 if (state->tcs_output_vertices_specified) {
4435 if (!state->out_qualifier->vertices->
4436 process_qualifier_constant(state, "vertices",
4437 &num_vertices, false)) {
4438 return;
4439 }
4440
4441 if (num_vertices > state->Const.MaxPatchVertices) {
4442 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4443 "GL_MAX_PATCH_VERTICES", num_vertices);
4444 return;
4445 }
4446 }
4447
4448 if (!var->type->is_array() && !var->data.patch) {
4449 _mesa_glsl_error(&loc, state,
4450 "tessellation control shader outputs must be arrays");
4451
4452 /* To avoid cascading failures, short circuit the checks below. */
4453 return;
4454 }
4455
4456 if (var->data.patch)
4457 return;
4458
4459 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4460 &state->tcs_output_size,
4461 "tessellation control shader output");
4462 }
4463
4464 /**
4465 * Do additional processing necessary for tessellation control/evaluation shader
4466 * input declarations. This covers both interface block arrays and bare input
4467 * variables.
4468 */
4469 static void
4470 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4471 YYLTYPE loc, ir_variable *var)
4472 {
4473 if (!var->type->is_array() && !var->data.patch) {
4474 _mesa_glsl_error(&loc, state,
4475 "per-vertex tessellation shader inputs must be arrays");
4476 /* Avoid cascading failures. */
4477 return;
4478 }
4479
4480 if (var->data.patch)
4481 return;
4482
4483 /* The ARB_tessellation_shader spec says:
4484 *
4485 * "Declaring an array size is optional. If no size is specified, it
4486 * will be taken from the implementation-dependent maximum patch size
4487 * (gl_MaxPatchVertices). If a size is specified, it must match the
4488 * maximum patch size; otherwise, a compile or link error will occur."
4489 *
4490 * This text appears twice, once for TCS inputs, and again for TES inputs.
4491 */
4492 if (var->type->is_unsized_array()) {
4493 var->type = glsl_type::get_array_instance(var->type->fields.array,
4494 state->Const.MaxPatchVertices);
4495 } else if (var->type->length != state->Const.MaxPatchVertices) {
4496 _mesa_glsl_error(&loc, state,
4497 "per-vertex tessellation shader input arrays must be "
4498 "sized to gl_MaxPatchVertices (%d).",
4499 state->Const.MaxPatchVertices);
4500 }
4501 }
4502
4503
4504 /**
4505 * Do additional processing necessary for geometry shader input declarations
4506 * (this covers both interface blocks arrays and bare input variables).
4507 */
4508 static void
4509 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4510 YYLTYPE loc, ir_variable *var)
4511 {
4512 unsigned num_vertices = 0;
4513
4514 if (state->gs_input_prim_type_specified) {
4515 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4516 }
4517
4518 /* Geometry shader input variables must be arrays. Caller should have
4519 * reported an error for this.
4520 */
4521 if (!var->type->is_array()) {
4522 assert(state->error);
4523
4524 /* To avoid cascading failures, short circuit the checks below. */
4525 return;
4526 }
4527
4528 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4529 &state->gs_input_size,
4530 "geometry shader input");
4531 }
4532
4533 void
4534 validate_identifier(const char *identifier, YYLTYPE loc,
4535 struct _mesa_glsl_parse_state *state)
4536 {
4537 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4538 *
4539 * "Identifiers starting with "gl_" are reserved for use by
4540 * OpenGL, and may not be declared in a shader as either a
4541 * variable or a function."
4542 */
4543 if (is_gl_identifier(identifier)) {
4544 _mesa_glsl_error(&loc, state,
4545 "identifier `%s' uses reserved `gl_' prefix",
4546 identifier);
4547 } else if (strstr(identifier, "__")) {
4548 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4549 * spec:
4550 *
4551 * "In addition, all identifiers containing two
4552 * consecutive underscores (__) are reserved as
4553 * possible future keywords."
4554 *
4555 * The intention is that names containing __ are reserved for internal
4556 * use by the implementation, and names prefixed with GL_ are reserved
4557 * for use by Khronos. Names simply containing __ are dangerous to use,
4558 * but should be allowed.
4559 *
4560 * A future version of the GLSL specification will clarify this.
4561 */
4562 _mesa_glsl_warning(&loc, state,
4563 "identifier `%s' uses reserved `__' string",
4564 identifier);
4565 }
4566 }
4567
4568 ir_rvalue *
4569 ast_declarator_list::hir(exec_list *instructions,
4570 struct _mesa_glsl_parse_state *state)
4571 {
4572 void *ctx = state;
4573 const struct glsl_type *decl_type;
4574 const char *type_name = NULL;
4575 ir_rvalue *result = NULL;
4576 YYLTYPE loc = this->get_location();
4577
4578 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4579 *
4580 * "To ensure that a particular output variable is invariant, it is
4581 * necessary to use the invariant qualifier. It can either be used to
4582 * qualify a previously declared variable as being invariant
4583 *
4584 * invariant gl_Position; // make existing gl_Position be invariant"
4585 *
4586 * In these cases the parser will set the 'invariant' flag in the declarator
4587 * list, and the type will be NULL.
4588 */
4589 if (this->invariant) {
4590 assert(this->type == NULL);
4591
4592 if (state->current_function != NULL) {
4593 _mesa_glsl_error(& loc, state,
4594 "all uses of `invariant' keyword must be at global "
4595 "scope");
4596 }
4597
4598 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4599 assert(decl->array_specifier == NULL);
4600 assert(decl->initializer == NULL);
4601
4602 ir_variable *const earlier =
4603 state->symbols->get_variable(decl->identifier);
4604 if (earlier == NULL) {
4605 _mesa_glsl_error(& loc, state,
4606 "undeclared variable `%s' cannot be marked "
4607 "invariant", decl->identifier);
4608 } else if (!is_allowed_invariant(earlier, state)) {
4609 _mesa_glsl_error(&loc, state,
4610 "`%s' cannot be marked invariant; interfaces between "
4611 "shader stages only.", decl->identifier);
4612 } else if (earlier->data.used) {
4613 _mesa_glsl_error(& loc, state,
4614 "variable `%s' may not be redeclared "
4615 "`invariant' after being used",
4616 earlier->name);
4617 } else {
4618 earlier->data.invariant = true;
4619 }
4620 }
4621
4622 /* Invariant redeclarations do not have r-values.
4623 */
4624 return NULL;
4625 }
4626
4627 if (this->precise) {
4628 assert(this->type == NULL);
4629
4630 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4631 assert(decl->array_specifier == NULL);
4632 assert(decl->initializer == NULL);
4633
4634 ir_variable *const earlier =
4635 state->symbols->get_variable(decl->identifier);
4636 if (earlier == NULL) {
4637 _mesa_glsl_error(& loc, state,
4638 "undeclared variable `%s' cannot be marked "
4639 "precise", decl->identifier);
4640 } else if (state->current_function != NULL &&
4641 !state->symbols->name_declared_this_scope(decl->identifier)) {
4642 /* Note: we have to check if we're in a function, since
4643 * builtins are treated as having come from another scope.
4644 */
4645 _mesa_glsl_error(& loc, state,
4646 "variable `%s' from an outer scope may not be "
4647 "redeclared `precise' in this scope",
4648 earlier->name);
4649 } else if (earlier->data.used) {
4650 _mesa_glsl_error(& loc, state,
4651 "variable `%s' may not be redeclared "
4652 "`precise' after being used",
4653 earlier->name);
4654 } else {
4655 earlier->data.precise = true;
4656 }
4657 }
4658
4659 /* Precise redeclarations do not have r-values either. */
4660 return NULL;
4661 }
4662
4663 assert(this->type != NULL);
4664 assert(!this->invariant);
4665 assert(!this->precise);
4666
4667 /* The type specifier may contain a structure definition. Process that
4668 * before any of the variable declarations.
4669 */
4670 (void) this->type->specifier->hir(instructions, state);
4671
4672 decl_type = this->type->glsl_type(& type_name, state);
4673
4674 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4675 * "Buffer variables may only be declared inside interface blocks
4676 * (section 4.3.9 “Interface Blocks”), which are then referred to as
4677 * shader storage blocks. It is a compile-time error to declare buffer
4678 * variables at global scope (outside a block)."
4679 */
4680 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
4681 _mesa_glsl_error(&loc, state,
4682 "buffer variables cannot be declared outside "
4683 "interface blocks");
4684 }
4685
4686 /* An offset-qualified atomic counter declaration sets the default
4687 * offset for the next declaration within the same atomic counter
4688 * buffer.
4689 */
4690 if (decl_type && decl_type->contains_atomic()) {
4691 if (type->qualifier.flags.q.explicit_binding &&
4692 type->qualifier.flags.q.explicit_offset) {
4693 unsigned qual_binding;
4694 unsigned qual_offset;
4695 if (process_qualifier_constant(state, &loc, "binding",
4696 type->qualifier.binding,
4697 &qual_binding)
4698 && process_qualifier_constant(state, &loc, "offset",
4699 type->qualifier.offset,
4700 &qual_offset)) {
4701 state->atomic_counter_offsets[qual_binding] = qual_offset;
4702 }
4703 }
4704
4705 ast_type_qualifier allowed_atomic_qual_mask;
4706 allowed_atomic_qual_mask.flags.i = 0;
4707 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
4708 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
4709 allowed_atomic_qual_mask.flags.q.uniform = 1;
4710
4711 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
4712 "invalid layout qualifier for",
4713 "atomic_uint");
4714 }
4715
4716 if (this->declarations.is_empty()) {
4717 /* If there is no structure involved in the program text, there are two
4718 * possible scenarios:
4719 *
4720 * - The program text contained something like 'vec4;'. This is an
4721 * empty declaration. It is valid but weird. Emit a warning.
4722 *
4723 * - The program text contained something like 'S;' and 'S' is not the
4724 * name of a known structure type. This is both invalid and weird.
4725 * Emit an error.
4726 *
4727 * - The program text contained something like 'mediump float;'
4728 * when the programmer probably meant 'precision mediump
4729 * float;' Emit a warning with a description of what they
4730 * probably meant to do.
4731 *
4732 * Note that if decl_type is NULL and there is a structure involved,
4733 * there must have been some sort of error with the structure. In this
4734 * case we assume that an error was already generated on this line of
4735 * code for the structure. There is no need to generate an additional,
4736 * confusing error.
4737 */
4738 assert(this->type->specifier->structure == NULL || decl_type != NULL
4739 || state->error);
4740
4741 if (decl_type == NULL) {
4742 _mesa_glsl_error(&loc, state,
4743 "invalid type `%s' in empty declaration",
4744 type_name);
4745 } else {
4746 if (decl_type->is_array()) {
4747 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
4748 * spec:
4749 *
4750 * "... any declaration that leaves the size undefined is
4751 * disallowed as this would add complexity and there are no
4752 * use-cases."
4753 */
4754 if (state->es_shader && decl_type->is_unsized_array()) {
4755 _mesa_glsl_error(&loc, state, "array size must be explicitly "
4756 "or implicitly defined");
4757 }
4758
4759 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
4760 *
4761 * "The combinations of types and qualifiers that cause
4762 * compile-time or link-time errors are the same whether or not
4763 * the declaration is empty."
4764 */
4765 validate_array_dimensions(decl_type, state, &loc);
4766 }
4767
4768 if (decl_type->is_atomic_uint()) {
4769 /* Empty atomic counter declarations are allowed and useful
4770 * to set the default offset qualifier.
4771 */
4772 return NULL;
4773 } else if (this->type->qualifier.precision != ast_precision_none) {
4774 if (this->type->specifier->structure != NULL) {
4775 _mesa_glsl_error(&loc, state,
4776 "precision qualifiers can't be applied "
4777 "to structures");
4778 } else {
4779 static const char *const precision_names[] = {
4780 "highp",
4781 "highp",
4782 "mediump",
4783 "lowp"
4784 };
4785
4786 _mesa_glsl_warning(&loc, state,
4787 "empty declaration with precision "
4788 "qualifier, to set the default precision, "
4789 "use `precision %s %s;'",
4790 precision_names[this->type->
4791 qualifier.precision],
4792 type_name);
4793 }
4794 } else if (this->type->specifier->structure == NULL) {
4795 _mesa_glsl_warning(&loc, state, "empty declaration");
4796 }
4797 }
4798 }
4799
4800 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4801 const struct glsl_type *var_type;
4802 ir_variable *var;
4803 const char *identifier = decl->identifier;
4804 /* FINISHME: Emit a warning if a variable declaration shadows a
4805 * FINISHME: declaration at a higher scope.
4806 */
4807
4808 if ((decl_type == NULL) || decl_type->is_void()) {
4809 if (type_name != NULL) {
4810 _mesa_glsl_error(& loc, state,
4811 "invalid type `%s' in declaration of `%s'",
4812 type_name, decl->identifier);
4813 } else {
4814 _mesa_glsl_error(& loc, state,
4815 "invalid type in declaration of `%s'",
4816 decl->identifier);
4817 }
4818 continue;
4819 }
4820
4821 if (this->type->qualifier.is_subroutine_decl()) {
4822 const glsl_type *t;
4823 const char *name;
4824
4825 t = state->symbols->get_type(this->type->specifier->type_name);
4826 if (!t)
4827 _mesa_glsl_error(& loc, state,
4828 "invalid type in declaration of `%s'",
4829 decl->identifier);
4830 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
4831
4832 identifier = name;
4833
4834 }
4835 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
4836 state);
4837
4838 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
4839
4840 /* The 'varying in' and 'varying out' qualifiers can only be used with
4841 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
4842 * yet.
4843 */
4844 if (this->type->qualifier.flags.q.varying) {
4845 if (this->type->qualifier.flags.q.in) {
4846 _mesa_glsl_error(& loc, state,
4847 "`varying in' qualifier in declaration of "
4848 "`%s' only valid for geometry shaders using "
4849 "ARB_geometry_shader4 or EXT_geometry_shader4",
4850 decl->identifier);
4851 } else if (this->type->qualifier.flags.q.out) {
4852 _mesa_glsl_error(& loc, state,
4853 "`varying out' qualifier in declaration of "
4854 "`%s' only valid for geometry shaders using "
4855 "ARB_geometry_shader4 or EXT_geometry_shader4",
4856 decl->identifier);
4857 }
4858 }
4859
4860 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
4861 *
4862 * "Global variables can only use the qualifiers const,
4863 * attribute, uniform, or varying. Only one may be
4864 * specified.
4865 *
4866 * Local variables can only use the qualifier const."
4867 *
4868 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
4869 * any extension that adds the 'layout' keyword.
4870 */
4871 if (!state->is_version(130, 300)
4872 && !state->has_explicit_attrib_location()
4873 && !state->has_separate_shader_objects()
4874 && !state->ARB_fragment_coord_conventions_enable) {
4875 if (this->type->qualifier.flags.q.out) {
4876 _mesa_glsl_error(& loc, state,
4877 "`out' qualifier in declaration of `%s' "
4878 "only valid for function parameters in %s",
4879 decl->identifier, state->get_version_string());
4880 }
4881 if (this->type->qualifier.flags.q.in) {
4882 _mesa_glsl_error(& loc, state,
4883 "`in' qualifier in declaration of `%s' "
4884 "only valid for function parameters in %s",
4885 decl->identifier, state->get_version_string());
4886 }
4887 /* FINISHME: Test for other invalid qualifiers. */
4888 }
4889
4890 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
4891 & loc, false);
4892 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
4893 &loc);
4894
4895 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_temporary)
4896 && (var->type->is_numeric() || var->type->is_boolean())
4897 && state->zero_init) {
4898 const ir_constant_data data = { { 0 } };
4899 var->data.has_initializer = true;
4900 var->constant_initializer = new(var) ir_constant(var->type, &data);
4901 }
4902
4903 if (this->type->qualifier.flags.q.invariant) {
4904 if (!is_allowed_invariant(var, state)) {
4905 _mesa_glsl_error(&loc, state,
4906 "`%s' cannot be marked invariant; interfaces between "
4907 "shader stages only", var->name);
4908 }
4909 }
4910
4911 if (state->current_function != NULL) {
4912 const char *mode = NULL;
4913 const char *extra = "";
4914
4915 /* There is no need to check for 'inout' here because the parser will
4916 * only allow that in function parameter lists.
4917 */
4918 if (this->type->qualifier.flags.q.attribute) {
4919 mode = "attribute";
4920 } else if (this->type->qualifier.is_subroutine_decl()) {
4921 mode = "subroutine uniform";
4922 } else if (this->type->qualifier.flags.q.uniform) {
4923 mode = "uniform";
4924 } else if (this->type->qualifier.flags.q.varying) {
4925 mode = "varying";
4926 } else if (this->type->qualifier.flags.q.in) {
4927 mode = "in";
4928 extra = " or in function parameter list";
4929 } else if (this->type->qualifier.flags.q.out) {
4930 mode = "out";
4931 extra = " or in function parameter list";
4932 }
4933
4934 if (mode) {
4935 _mesa_glsl_error(& loc, state,
4936 "%s variable `%s' must be declared at "
4937 "global scope%s",
4938 mode, var->name, extra);
4939 }
4940 } else if (var->data.mode == ir_var_shader_in) {
4941 var->data.read_only = true;
4942
4943 if (state->stage == MESA_SHADER_VERTEX) {
4944 bool error_emitted = false;
4945
4946 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
4947 *
4948 * "Vertex shader inputs can only be float, floating-point
4949 * vectors, matrices, signed and unsigned integers and integer
4950 * vectors. Vertex shader inputs can also form arrays of these
4951 * types, but not structures."
4952 *
4953 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
4954 *
4955 * "Vertex shader inputs can only be float, floating-point
4956 * vectors, matrices, signed and unsigned integers and integer
4957 * vectors. They cannot be arrays or structures."
4958 *
4959 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
4960 *
4961 * "The attribute qualifier can be used only with float,
4962 * floating-point vectors, and matrices. Attribute variables
4963 * cannot be declared as arrays or structures."
4964 *
4965 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
4966 *
4967 * "Vertex shader inputs can only be float, floating-point
4968 * vectors, matrices, signed and unsigned integers and integer
4969 * vectors. Vertex shader inputs cannot be arrays or
4970 * structures."
4971 */
4972 const glsl_type *check_type = var->type->without_array();
4973
4974 switch (check_type->base_type) {
4975 case GLSL_TYPE_FLOAT:
4976 break;
4977 case GLSL_TYPE_UINT64:
4978 case GLSL_TYPE_INT64:
4979 break;
4980 case GLSL_TYPE_UINT:
4981 case GLSL_TYPE_INT:
4982 if (state->is_version(120, 300))
4983 break;
4984 case GLSL_TYPE_DOUBLE:
4985 if (check_type->is_double() && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
4986 break;
4987 /* FALLTHROUGH */
4988 default:
4989 _mesa_glsl_error(& loc, state,
4990 "vertex shader input / attribute cannot have "
4991 "type %s`%s'",
4992 var->type->is_array() ? "array of " : "",
4993 check_type->name);
4994 error_emitted = true;
4995 }
4996
4997 if (!error_emitted && var->type->is_array() &&
4998 !state->check_version(150, 0, &loc,
4999 "vertex shader input / attribute "
5000 "cannot have array type")) {
5001 error_emitted = true;
5002 }
5003 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5004 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5005 *
5006 * Geometry shader input variables get the per-vertex values
5007 * written out by vertex shader output variables of the same
5008 * names. Since a geometry shader operates on a set of
5009 * vertices, each input varying variable (or input block, see
5010 * interface blocks below) needs to be declared as an array.
5011 */
5012 if (!var->type->is_array()) {
5013 _mesa_glsl_error(&loc, state,
5014 "geometry shader inputs must be arrays");
5015 }
5016
5017 handle_geometry_shader_input_decl(state, loc, var);
5018 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5019 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5020 *
5021 * It is a compile-time error to declare a fragment shader
5022 * input with, or that contains, any of the following types:
5023 *
5024 * * A boolean type
5025 * * An opaque type
5026 * * An array of arrays
5027 * * An array of structures
5028 * * A structure containing an array
5029 * * A structure containing a structure
5030 */
5031 if (state->es_shader) {
5032 const glsl_type *check_type = var->type->without_array();
5033 if (check_type->is_boolean() ||
5034 check_type->contains_opaque()) {
5035 _mesa_glsl_error(&loc, state,
5036 "fragment shader input cannot have type %s",
5037 check_type->name);
5038 }
5039 if (var->type->is_array() &&
5040 var->type->fields.array->is_array()) {
5041 _mesa_glsl_error(&loc, state,
5042 "%s shader output "
5043 "cannot have an array of arrays",
5044 _mesa_shader_stage_to_string(state->stage));
5045 }
5046 if (var->type->is_array() &&
5047 var->type->fields.array->is_record()) {
5048 _mesa_glsl_error(&loc, state,
5049 "fragment shader input "
5050 "cannot have an array of structs");
5051 }
5052 if (var->type->is_record()) {
5053 for (unsigned i = 0; i < var->type->length; i++) {
5054 if (var->type->fields.structure[i].type->is_array() ||
5055 var->type->fields.structure[i].type->is_record())
5056 _mesa_glsl_error(&loc, state,
5057 "fragement shader input cannot have "
5058 "a struct that contains an "
5059 "array or struct");
5060 }
5061 }
5062 }
5063 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5064 state->stage == MESA_SHADER_TESS_EVAL) {
5065 handle_tess_shader_input_decl(state, loc, var);
5066 }
5067 } else if (var->data.mode == ir_var_shader_out) {
5068 const glsl_type *check_type = var->type->without_array();
5069
5070 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5071 *
5072 * It is a compile-time error to declare a fragment shader output
5073 * that contains any of the following:
5074 *
5075 * * A Boolean type (bool, bvec2 ...)
5076 * * A double-precision scalar or vector (double, dvec2 ...)
5077 * * An opaque type
5078 * * Any matrix type
5079 * * A structure
5080 */
5081 if (state->stage == MESA_SHADER_FRAGMENT) {
5082 if (check_type->is_record() || check_type->is_matrix())
5083 _mesa_glsl_error(&loc, state,
5084 "fragment shader output "
5085 "cannot have struct or matrix type");
5086 switch (check_type->base_type) {
5087 case GLSL_TYPE_UINT:
5088 case GLSL_TYPE_INT:
5089 case GLSL_TYPE_FLOAT:
5090 break;
5091 default:
5092 _mesa_glsl_error(&loc, state,
5093 "fragment shader output cannot have "
5094 "type %s", check_type->name);
5095 }
5096 }
5097
5098 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5099 *
5100 * It is a compile-time error to declare a vertex shader output
5101 * with, or that contains, any of the following types:
5102 *
5103 * * A boolean type
5104 * * An opaque type
5105 * * An array of arrays
5106 * * An array of structures
5107 * * A structure containing an array
5108 * * A structure containing a structure
5109 *
5110 * It is a compile-time error to declare a fragment shader output
5111 * with, or that contains, any of the following types:
5112 *
5113 * * A boolean type
5114 * * An opaque type
5115 * * A matrix
5116 * * A structure
5117 * * An array of array
5118 *
5119 * ES 3.20 updates this to apply to tessellation and geometry shaders
5120 * as well. Because there are per-vertex arrays in the new stages,
5121 * it strikes the "array of..." rules and replaces them with these:
5122 *
5123 * * For per-vertex-arrayed variables (applies to tessellation
5124 * control, tessellation evaluation and geometry shaders):
5125 *
5126 * * Per-vertex-arrayed arrays of arrays
5127 * * Per-vertex-arrayed arrays of structures
5128 *
5129 * * For non-per-vertex-arrayed variables:
5130 *
5131 * * An array of arrays
5132 * * An array of structures
5133 *
5134 * which basically says to unwrap the per-vertex aspect and apply
5135 * the old rules.
5136 */
5137 if (state->es_shader) {
5138 if (var->type->is_array() &&
5139 var->type->fields.array->is_array()) {
5140 _mesa_glsl_error(&loc, state,
5141 "%s shader output "
5142 "cannot have an array of arrays",
5143 _mesa_shader_stage_to_string(state->stage));
5144 }
5145 if (state->stage <= MESA_SHADER_GEOMETRY) {
5146 const glsl_type *type = var->type;
5147
5148 if (state->stage == MESA_SHADER_TESS_CTRL &&
5149 !var->data.patch && var->type->is_array()) {
5150 type = var->type->fields.array;
5151 }
5152
5153 if (type->is_array() && type->fields.array->is_record()) {
5154 _mesa_glsl_error(&loc, state,
5155 "%s shader output cannot have "
5156 "an array of structs",
5157 _mesa_shader_stage_to_string(state->stage));
5158 }
5159 if (type->is_record()) {
5160 for (unsigned i = 0; i < type->length; i++) {
5161 if (type->fields.structure[i].type->is_array() ||
5162 type->fields.structure[i].type->is_record())
5163 _mesa_glsl_error(&loc, state,
5164 "%s shader output cannot have a "
5165 "struct that contains an "
5166 "array or struct",
5167 _mesa_shader_stage_to_string(state->stage));
5168 }
5169 }
5170 }
5171 }
5172
5173 if (state->stage == MESA_SHADER_TESS_CTRL) {
5174 handle_tess_ctrl_shader_output_decl(state, loc, var);
5175 }
5176 } else if (var->type->contains_subroutine()) {
5177 /* declare subroutine uniforms as hidden */
5178 var->data.how_declared = ir_var_hidden;
5179 }
5180
5181 /* From section 4.3.4 of the GLSL 4.00 spec:
5182 * "Input variables may not be declared using the patch in qualifier
5183 * in tessellation control or geometry shaders."
5184 *
5185 * From section 4.3.6 of the GLSL 4.00 spec:
5186 * "It is an error to use patch out in a vertex, tessellation
5187 * evaluation, or geometry shader."
5188 *
5189 * This doesn't explicitly forbid using them in a fragment shader, but
5190 * that's probably just an oversight.
5191 */
5192 if (state->stage != MESA_SHADER_TESS_EVAL
5193 && this->type->qualifier.flags.q.patch
5194 && this->type->qualifier.flags.q.in) {
5195
5196 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5197 "tessellation evaluation shader");
5198 }
5199
5200 if (state->stage != MESA_SHADER_TESS_CTRL
5201 && this->type->qualifier.flags.q.patch
5202 && this->type->qualifier.flags.q.out) {
5203
5204 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5205 "tessellation control shader");
5206 }
5207
5208 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5209 */
5210 if (this->type->qualifier.precision != ast_precision_none) {
5211 state->check_precision_qualifiers_allowed(&loc);
5212 }
5213
5214 if (this->type->qualifier.precision != ast_precision_none &&
5215 !precision_qualifier_allowed(var->type)) {
5216 _mesa_glsl_error(&loc, state,
5217 "precision qualifiers apply only to floating point"
5218 ", integer and opaque types");
5219 }
5220
5221 /* From section 4.1.7 of the GLSL 4.40 spec:
5222 *
5223 * "[Opaque types] can only be declared as function
5224 * parameters or uniform-qualified variables."
5225 */
5226 if (var_type->contains_opaque() &&
5227 !this->type->qualifier.flags.q.uniform) {
5228 _mesa_glsl_error(&loc, state,
5229 "opaque variables must be declared uniform");
5230 }
5231
5232 /* Process the initializer and add its instructions to a temporary
5233 * list. This list will be added to the instruction stream (below) after
5234 * the declaration is added. This is done because in some cases (such as
5235 * redeclarations) the declaration may not actually be added to the
5236 * instruction stream.
5237 */
5238 exec_list initializer_instructions;
5239
5240 /* Examine var name here since var may get deleted in the next call */
5241 bool var_is_gl_id = is_gl_identifier(var->name);
5242
5243 bool is_redeclaration;
5244 ir_variable *declared_var =
5245 get_variable_being_redeclared(var, decl->get_location(), state,
5246 false /* allow_all_redeclarations */,
5247 &is_redeclaration);
5248 if (is_redeclaration) {
5249 if (var_is_gl_id &&
5250 declared_var->data.how_declared == ir_var_declared_in_block) {
5251 _mesa_glsl_error(&loc, state,
5252 "`%s' has already been redeclared using "
5253 "gl_PerVertex", declared_var->name);
5254 }
5255 declared_var->data.how_declared = ir_var_declared_normally;
5256 }
5257
5258 if (decl->initializer != NULL) {
5259 result = process_initializer(declared_var,
5260 decl, this->type,
5261 &initializer_instructions, state);
5262 } else {
5263 validate_array_dimensions(var_type, state, &loc);
5264 }
5265
5266 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5267 *
5268 * "It is an error to write to a const variable outside of
5269 * its declaration, so they must be initialized when
5270 * declared."
5271 */
5272 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5273 _mesa_glsl_error(& loc, state,
5274 "const declaration of `%s' must be initialized",
5275 decl->identifier);
5276 }
5277
5278 if (state->es_shader) {
5279 const glsl_type *const t = declared_var->type;
5280
5281 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5282 *
5283 * The GL_OES_tessellation_shader spec says about inputs:
5284 *
5285 * "Declaring an array size is optional. If no size is specified,
5286 * it will be taken from the implementation-dependent maximum
5287 * patch size (gl_MaxPatchVertices)."
5288 *
5289 * and about TCS outputs:
5290 *
5291 * "If no size is specified, it will be taken from output patch
5292 * size declared in the shader."
5293 *
5294 * The GL_OES_geometry_shader spec says:
5295 *
5296 * "All geometry shader input unsized array declarations will be
5297 * sized by an earlier input primitive layout qualifier, when
5298 * present, as per the following table."
5299 */
5300 const bool implicitly_sized =
5301 (declared_var->data.mode == ir_var_shader_in &&
5302 state->stage >= MESA_SHADER_TESS_CTRL &&
5303 state->stage <= MESA_SHADER_GEOMETRY) ||
5304 (declared_var->data.mode == ir_var_shader_out &&
5305 state->stage == MESA_SHADER_TESS_CTRL);
5306
5307 if (t->is_unsized_array() && !implicitly_sized)
5308 /* Section 10.17 of the GLSL ES 1.00 specification states that
5309 * unsized array declarations have been removed from the language.
5310 * Arrays that are sized using an initializer are still explicitly
5311 * sized. However, GLSL ES 1.00 does not allow array
5312 * initializers. That is only allowed in GLSL ES 3.00.
5313 *
5314 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5315 *
5316 * "An array type can also be formed without specifying a size
5317 * if the definition includes an initializer:
5318 *
5319 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5320 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5321 *
5322 * float a[5];
5323 * float b[] = a;"
5324 */
5325 _mesa_glsl_error(& loc, state,
5326 "unsized array declarations are not allowed in "
5327 "GLSL ES");
5328 }
5329
5330 /* If the declaration is not a redeclaration, there are a few additional
5331 * semantic checks that must be applied. In addition, variable that was
5332 * created for the declaration should be added to the IR stream.
5333 */
5334 if (!is_redeclaration) {
5335 validate_identifier(decl->identifier, loc, state);
5336
5337 /* Add the variable to the symbol table. Note that the initializer's
5338 * IR was already processed earlier (though it hasn't been emitted
5339 * yet), without the variable in scope.
5340 *
5341 * This differs from most C-like languages, but it follows the GLSL
5342 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5343 * spec:
5344 *
5345 * "Within a declaration, the scope of a name starts immediately
5346 * after the initializer if present or immediately after the name
5347 * being declared if not."
5348 */
5349 if (!state->symbols->add_variable(declared_var)) {
5350 YYLTYPE loc = this->get_location();
5351 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5352 "current scope", decl->identifier);
5353 continue;
5354 }
5355
5356 /* Push the variable declaration to the top. It means that all the
5357 * variable declarations will appear in a funny last-to-first order,
5358 * but otherwise we run into trouble if a function is prototyped, a
5359 * global var is decled, then the function is defined with usage of
5360 * the global var. See glslparsertest's CorrectModule.frag.
5361 */
5362 instructions->push_head(declared_var);
5363 }
5364
5365 instructions->append_list(&initializer_instructions);
5366 }
5367
5368
5369 /* Generally, variable declarations do not have r-values. However,
5370 * one is used for the declaration in
5371 *
5372 * while (bool b = some_condition()) {
5373 * ...
5374 * }
5375 *
5376 * so we return the rvalue from the last seen declaration here.
5377 */
5378 return result;
5379 }
5380
5381
5382 ir_rvalue *
5383 ast_parameter_declarator::hir(exec_list *instructions,
5384 struct _mesa_glsl_parse_state *state)
5385 {
5386 void *ctx = state;
5387 const struct glsl_type *type;
5388 const char *name = NULL;
5389 YYLTYPE loc = this->get_location();
5390
5391 type = this->type->glsl_type(& name, state);
5392
5393 if (type == NULL) {
5394 if (name != NULL) {
5395 _mesa_glsl_error(& loc, state,
5396 "invalid type `%s' in declaration of `%s'",
5397 name, this->identifier);
5398 } else {
5399 _mesa_glsl_error(& loc, state,
5400 "invalid type in declaration of `%s'",
5401 this->identifier);
5402 }
5403
5404 type = glsl_type::error_type;
5405 }
5406
5407 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5408 *
5409 * "Functions that accept no input arguments need not use void in the
5410 * argument list because prototypes (or definitions) are required and
5411 * therefore there is no ambiguity when an empty argument list "( )" is
5412 * declared. The idiom "(void)" as a parameter list is provided for
5413 * convenience."
5414 *
5415 * Placing this check here prevents a void parameter being set up
5416 * for a function, which avoids tripping up checks for main taking
5417 * parameters and lookups of an unnamed symbol.
5418 */
5419 if (type->is_void()) {
5420 if (this->identifier != NULL)
5421 _mesa_glsl_error(& loc, state,
5422 "named parameter cannot have type `void'");
5423
5424 is_void = true;
5425 return NULL;
5426 }
5427
5428 if (formal_parameter && (this->identifier == NULL)) {
5429 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5430 return NULL;
5431 }
5432
5433 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5434 * call already handled the "vec4[..] foo" case.
5435 */
5436 type = process_array_type(&loc, type, this->array_specifier, state);
5437
5438 if (!type->is_error() && type->is_unsized_array()) {
5439 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5440 "a declared size");
5441 type = glsl_type::error_type;
5442 }
5443
5444 is_void = false;
5445 ir_variable *var = new(ctx)
5446 ir_variable(type, this->identifier, ir_var_function_in);
5447
5448 /* Apply any specified qualifiers to the parameter declaration. Note that
5449 * for function parameters the default mode is 'in'.
5450 */
5451 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5452 true);
5453
5454 /* From section 4.1.7 of the GLSL 4.40 spec:
5455 *
5456 * "Opaque variables cannot be treated as l-values; hence cannot
5457 * be used as out or inout function parameters, nor can they be
5458 * assigned into."
5459 */
5460 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5461 && type->contains_opaque()) {
5462 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5463 "contain opaque variables");
5464 type = glsl_type::error_type;
5465 }
5466
5467 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5468 *
5469 * "When calling a function, expressions that do not evaluate to
5470 * l-values cannot be passed to parameters declared as out or inout."
5471 *
5472 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5473 *
5474 * "Other binary or unary expressions, non-dereferenced arrays,
5475 * function names, swizzles with repeated fields, and constants
5476 * cannot be l-values."
5477 *
5478 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5479 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5480 */
5481 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5482 && type->is_array()
5483 && !state->check_version(120, 100, &loc,
5484 "arrays cannot be out or inout parameters")) {
5485 type = glsl_type::error_type;
5486 }
5487
5488 instructions->push_tail(var);
5489
5490 /* Parameter declarations do not have r-values.
5491 */
5492 return NULL;
5493 }
5494
5495
5496 void
5497 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5498 bool formal,
5499 exec_list *ir_parameters,
5500 _mesa_glsl_parse_state *state)
5501 {
5502 ast_parameter_declarator *void_param = NULL;
5503 unsigned count = 0;
5504
5505 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5506 param->formal_parameter = formal;
5507 param->hir(ir_parameters, state);
5508
5509 if (param->is_void)
5510 void_param = param;
5511
5512 count++;
5513 }
5514
5515 if ((void_param != NULL) && (count > 1)) {
5516 YYLTYPE loc = void_param->get_location();
5517
5518 _mesa_glsl_error(& loc, state,
5519 "`void' parameter must be only parameter");
5520 }
5521 }
5522
5523
5524 void
5525 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
5526 {
5527 /* IR invariants disallow function declarations or definitions
5528 * nested within other function definitions. But there is no
5529 * requirement about the relative order of function declarations
5530 * and definitions with respect to one another. So simply insert
5531 * the new ir_function block at the end of the toplevel instruction
5532 * list.
5533 */
5534 state->toplevel_ir->push_tail(f);
5535 }
5536
5537
5538 ir_rvalue *
5539 ast_function::hir(exec_list *instructions,
5540 struct _mesa_glsl_parse_state *state)
5541 {
5542 void *ctx = state;
5543 ir_function *f = NULL;
5544 ir_function_signature *sig = NULL;
5545 exec_list hir_parameters;
5546 YYLTYPE loc = this->get_location();
5547
5548 const char *const name = identifier;
5549
5550 /* New functions are always added to the top-level IR instruction stream,
5551 * so this instruction list pointer is ignored. See also emit_function
5552 * (called below).
5553 */
5554 (void) instructions;
5555
5556 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
5557 *
5558 * "Function declarations (prototypes) cannot occur inside of functions;
5559 * they must be at global scope, or for the built-in functions, outside
5560 * the global scope."
5561 *
5562 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
5563 *
5564 * "User defined functions may only be defined within the global scope."
5565 *
5566 * Note that this language does not appear in GLSL 1.10.
5567 */
5568 if ((state->current_function != NULL) &&
5569 state->is_version(120, 100)) {
5570 YYLTYPE loc = this->get_location();
5571 _mesa_glsl_error(&loc, state,
5572 "declaration of function `%s' not allowed within "
5573 "function body", name);
5574 }
5575
5576 validate_identifier(name, this->get_location(), state);
5577
5578 /* Convert the list of function parameters to HIR now so that they can be
5579 * used below to compare this function's signature with previously seen
5580 * signatures for functions with the same name.
5581 */
5582 ast_parameter_declarator::parameters_to_hir(& this->parameters,
5583 is_definition,
5584 & hir_parameters, state);
5585
5586 const char *return_type_name;
5587 const glsl_type *return_type =
5588 this->return_type->glsl_type(& return_type_name, state);
5589
5590 if (!return_type) {
5591 YYLTYPE loc = this->get_location();
5592 _mesa_glsl_error(&loc, state,
5593 "function `%s' has undeclared return type `%s'",
5594 name, return_type_name);
5595 return_type = glsl_type::error_type;
5596 }
5597
5598 /* ARB_shader_subroutine states:
5599 * "Subroutine declarations cannot be prototyped. It is an error to prepend
5600 * subroutine(...) to a function declaration."
5601 */
5602 if (this->return_type->qualifier.subroutine_list && !is_definition) {
5603 YYLTYPE loc = this->get_location();
5604 _mesa_glsl_error(&loc, state,
5605 "function declaration `%s' cannot have subroutine prepended",
5606 name);
5607 }
5608
5609 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
5610 * "No qualifier is allowed on the return type of a function."
5611 */
5612 if (this->return_type->has_qualifiers(state)) {
5613 YYLTYPE loc = this->get_location();
5614 _mesa_glsl_error(& loc, state,
5615 "function `%s' return type has qualifiers", name);
5616 }
5617
5618 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
5619 *
5620 * "Arrays are allowed as arguments and as the return type. In both
5621 * cases, the array must be explicitly sized."
5622 */
5623 if (return_type->is_unsized_array()) {
5624 YYLTYPE loc = this->get_location();
5625 _mesa_glsl_error(& loc, state,
5626 "function `%s' return type array must be explicitly "
5627 "sized", name);
5628 }
5629
5630 /* From section 4.1.7 of the GLSL 4.40 spec:
5631 *
5632 * "[Opaque types] can only be declared as function parameters
5633 * or uniform-qualified variables."
5634 */
5635 if (return_type->contains_opaque()) {
5636 YYLTYPE loc = this->get_location();
5637 _mesa_glsl_error(&loc, state,
5638 "function `%s' return type can't contain an opaque type",
5639 name);
5640 }
5641
5642 /**/
5643 if (return_type->is_subroutine()) {
5644 YYLTYPE loc = this->get_location();
5645 _mesa_glsl_error(&loc, state,
5646 "function `%s' return type can't be a subroutine type",
5647 name);
5648 }
5649
5650
5651 /* Create an ir_function if one doesn't already exist. */
5652 f = state->symbols->get_function(name);
5653 if (f == NULL) {
5654 f = new(ctx) ir_function(name);
5655 if (!this->return_type->qualifier.is_subroutine_decl()) {
5656 if (!state->symbols->add_function(f)) {
5657 /* This function name shadows a non-function use of the same name. */
5658 YYLTYPE loc = this->get_location();
5659 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
5660 "non-function", name);
5661 return NULL;
5662 }
5663 }
5664 emit_function(state, f);
5665 }
5666
5667 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
5668 *
5669 * "A shader cannot redefine or overload built-in functions."
5670 *
5671 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
5672 *
5673 * "User code can overload the built-in functions but cannot redefine
5674 * them."
5675 */
5676 if (state->es_shader && state->language_version >= 300) {
5677 /* Local shader has no exact candidates; check the built-ins. */
5678 _mesa_glsl_initialize_builtin_functions();
5679 if (_mesa_glsl_has_builtin_function(name)) {
5680 YYLTYPE loc = this->get_location();
5681 _mesa_glsl_error(& loc, state,
5682 "A shader cannot redefine or overload built-in "
5683 "function `%s' in GLSL ES 3.00", name);
5684 return NULL;
5685 }
5686 }
5687
5688 /* Verify that this function's signature either doesn't match a previously
5689 * seen signature for a function with the same name, or, if a match is found,
5690 * that the previously seen signature does not have an associated definition.
5691 */
5692 if (state->es_shader || f->has_user_signature()) {
5693 sig = f->exact_matching_signature(state, &hir_parameters);
5694 if (sig != NULL) {
5695 const char *badvar = sig->qualifiers_match(&hir_parameters);
5696 if (badvar != NULL) {
5697 YYLTYPE loc = this->get_location();
5698
5699 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
5700 "qualifiers don't match prototype", name, badvar);
5701 }
5702
5703 if (sig->return_type != return_type) {
5704 YYLTYPE loc = this->get_location();
5705
5706 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
5707 "match prototype", name);
5708 }
5709
5710 if (sig->is_defined) {
5711 if (is_definition) {
5712 YYLTYPE loc = this->get_location();
5713 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
5714 } else {
5715 /* We just encountered a prototype that exactly matches a
5716 * function that's already been defined. This is redundant,
5717 * and we should ignore it.
5718 */
5719 return NULL;
5720 }
5721 }
5722 }
5723 }
5724
5725 /* Verify the return type of main() */
5726 if (strcmp(name, "main") == 0) {
5727 if (! return_type->is_void()) {
5728 YYLTYPE loc = this->get_location();
5729
5730 _mesa_glsl_error(& loc, state, "main() must return void");
5731 }
5732
5733 if (!hir_parameters.is_empty()) {
5734 YYLTYPE loc = this->get_location();
5735
5736 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
5737 }
5738 }
5739
5740 /* Finish storing the information about this new function in its signature.
5741 */
5742 if (sig == NULL) {
5743 sig = new(ctx) ir_function_signature(return_type);
5744 f->add_signature(sig);
5745 }
5746
5747 sig->replace_parameters(&hir_parameters);
5748 signature = sig;
5749
5750 if (this->return_type->qualifier.subroutine_list) {
5751 int idx;
5752
5753 if (this->return_type->qualifier.flags.q.explicit_index) {
5754 unsigned qual_index;
5755 if (process_qualifier_constant(state, &loc, "index",
5756 this->return_type->qualifier.index,
5757 &qual_index)) {
5758 if (!state->has_explicit_uniform_location()) {
5759 _mesa_glsl_error(&loc, state, "subroutine index requires "
5760 "GL_ARB_explicit_uniform_location or "
5761 "GLSL 4.30");
5762 } else if (qual_index >= MAX_SUBROUTINES) {
5763 _mesa_glsl_error(&loc, state,
5764 "invalid subroutine index (%d) index must "
5765 "be a number between 0 and "
5766 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
5767 MAX_SUBROUTINES - 1);
5768 } else {
5769 f->subroutine_index = qual_index;
5770 }
5771 }
5772 }
5773
5774 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
5775 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
5776 f->num_subroutine_types);
5777 idx = 0;
5778 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
5779 const struct glsl_type *type;
5780 /* the subroutine type must be already declared */
5781 type = state->symbols->get_type(decl->identifier);
5782 if (!type) {
5783 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
5784 }
5785
5786 for (int i = 0; i < state->num_subroutine_types; i++) {
5787 ir_function *fn = state->subroutine_types[i];
5788 ir_function_signature *tsig = NULL;
5789
5790 if (strcmp(fn->name, decl->identifier))
5791 continue;
5792
5793 tsig = fn->matching_signature(state, &sig->parameters,
5794 false);
5795 if (!tsig) {
5796 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
5797 } else {
5798 if (tsig->return_type != sig->return_type) {
5799 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
5800 }
5801 }
5802 }
5803 f->subroutine_types[idx++] = type;
5804 }
5805 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
5806 ir_function *,
5807 state->num_subroutines + 1);
5808 state->subroutines[state->num_subroutines] = f;
5809 state->num_subroutines++;
5810
5811 }
5812
5813 if (this->return_type->qualifier.is_subroutine_decl()) {
5814 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
5815 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
5816 return NULL;
5817 }
5818 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
5819 ir_function *,
5820 state->num_subroutine_types + 1);
5821 state->subroutine_types[state->num_subroutine_types] = f;
5822 state->num_subroutine_types++;
5823
5824 f->is_subroutine = true;
5825 }
5826
5827 /* Function declarations (prototypes) do not have r-values.
5828 */
5829 return NULL;
5830 }
5831
5832
5833 ir_rvalue *
5834 ast_function_definition::hir(exec_list *instructions,
5835 struct _mesa_glsl_parse_state *state)
5836 {
5837 prototype->is_definition = true;
5838 prototype->hir(instructions, state);
5839
5840 ir_function_signature *signature = prototype->signature;
5841 if (signature == NULL)
5842 return NULL;
5843
5844 assert(state->current_function == NULL);
5845 state->current_function = signature;
5846 state->found_return = false;
5847
5848 /* Duplicate parameters declared in the prototype as concrete variables.
5849 * Add these to the symbol table.
5850 */
5851 state->symbols->push_scope();
5852 foreach_in_list(ir_variable, var, &signature->parameters) {
5853 assert(var->as_variable() != NULL);
5854
5855 /* The only way a parameter would "exist" is if two parameters have
5856 * the same name.
5857 */
5858 if (state->symbols->name_declared_this_scope(var->name)) {
5859 YYLTYPE loc = this->get_location();
5860
5861 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
5862 } else {
5863 state->symbols->add_variable(var);
5864 }
5865 }
5866
5867 /* Convert the body of the function to HIR. */
5868 this->body->hir(&signature->body, state);
5869 signature->is_defined = true;
5870
5871 state->symbols->pop_scope();
5872
5873 assert(state->current_function == signature);
5874 state->current_function = NULL;
5875
5876 if (!signature->return_type->is_void() && !state->found_return) {
5877 YYLTYPE loc = this->get_location();
5878 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
5879 "%s, but no return statement",
5880 signature->function_name(),
5881 signature->return_type->name);
5882 }
5883
5884 /* Function definitions do not have r-values.
5885 */
5886 return NULL;
5887 }
5888
5889
5890 ir_rvalue *
5891 ast_jump_statement::hir(exec_list *instructions,
5892 struct _mesa_glsl_parse_state *state)
5893 {
5894 void *ctx = state;
5895
5896 switch (mode) {
5897 case ast_return: {
5898 ir_return *inst;
5899 assert(state->current_function);
5900
5901 if (opt_return_value) {
5902 ir_rvalue *ret = opt_return_value->hir(instructions, state);
5903
5904 /* The value of the return type can be NULL if the shader says
5905 * 'return foo();' and foo() is a function that returns void.
5906 *
5907 * NOTE: The GLSL spec doesn't say that this is an error. The type
5908 * of the return value is void. If the return type of the function is
5909 * also void, then this should compile without error. Seriously.
5910 */
5911 const glsl_type *const ret_type =
5912 (ret == NULL) ? glsl_type::void_type : ret->type;
5913
5914 /* Implicit conversions are not allowed for return values prior to
5915 * ARB_shading_language_420pack.
5916 */
5917 if (state->current_function->return_type != ret_type) {
5918 YYLTYPE loc = this->get_location();
5919
5920 if (state->has_420pack()) {
5921 if (!apply_implicit_conversion(state->current_function->return_type,
5922 ret, state)) {
5923 _mesa_glsl_error(& loc, state,
5924 "could not implicitly convert return value "
5925 "to %s, in function `%s'",
5926 state->current_function->return_type->name,
5927 state->current_function->function_name());
5928 }
5929 } else {
5930 _mesa_glsl_error(& loc, state,
5931 "`return' with wrong type %s, in function `%s' "
5932 "returning %s",
5933 ret_type->name,
5934 state->current_function->function_name(),
5935 state->current_function->return_type->name);
5936 }
5937 } else if (state->current_function->return_type->base_type ==
5938 GLSL_TYPE_VOID) {
5939 YYLTYPE loc = this->get_location();
5940
5941 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
5942 * specs add a clarification:
5943 *
5944 * "A void function can only use return without a return argument, even if
5945 * the return argument has void type. Return statements only accept values:
5946 *
5947 * void func1() { }
5948 * void func2() { return func1(); } // illegal return statement"
5949 */
5950 _mesa_glsl_error(& loc, state,
5951 "void functions can only use `return' without a "
5952 "return argument");
5953 }
5954
5955 inst = new(ctx) ir_return(ret);
5956 } else {
5957 if (state->current_function->return_type->base_type !=
5958 GLSL_TYPE_VOID) {
5959 YYLTYPE loc = this->get_location();
5960
5961 _mesa_glsl_error(& loc, state,
5962 "`return' with no value, in function %s returning "
5963 "non-void",
5964 state->current_function->function_name());
5965 }
5966 inst = new(ctx) ir_return;
5967 }
5968
5969 state->found_return = true;
5970 instructions->push_tail(inst);
5971 break;
5972 }
5973
5974 case ast_discard:
5975 if (state->stage != MESA_SHADER_FRAGMENT) {
5976 YYLTYPE loc = this->get_location();
5977
5978 _mesa_glsl_error(& loc, state,
5979 "`discard' may only appear in a fragment shader");
5980 }
5981 instructions->push_tail(new(ctx) ir_discard);
5982 break;
5983
5984 case ast_break:
5985 case ast_continue:
5986 if (mode == ast_continue &&
5987 state->loop_nesting_ast == NULL) {
5988 YYLTYPE loc = this->get_location();
5989
5990 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
5991 } else if (mode == ast_break &&
5992 state->loop_nesting_ast == NULL &&
5993 state->switch_state.switch_nesting_ast == NULL) {
5994 YYLTYPE loc = this->get_location();
5995
5996 _mesa_glsl_error(& loc, state,
5997 "break may only appear in a loop or a switch");
5998 } else {
5999 /* For a loop, inline the for loop expression again, since we don't
6000 * know where near the end of the loop body the normal copy of it is
6001 * going to be placed. Same goes for the condition for a do-while
6002 * loop.
6003 */
6004 if (state->loop_nesting_ast != NULL &&
6005 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6006 if (state->loop_nesting_ast->rest_expression) {
6007 state->loop_nesting_ast->rest_expression->hir(instructions,
6008 state);
6009 }
6010 if (state->loop_nesting_ast->mode ==
6011 ast_iteration_statement::ast_do_while) {
6012 state->loop_nesting_ast->condition_to_hir(instructions, state);
6013 }
6014 }
6015
6016 if (state->switch_state.is_switch_innermost &&
6017 mode == ast_continue) {
6018 /* Set 'continue_inside' to true. */
6019 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6020 ir_dereference_variable *deref_continue_inside_var =
6021 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6022 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6023 true_val));
6024
6025 /* Break out from the switch, continue for the loop will
6026 * be called right after switch. */
6027 ir_loop_jump *const jump =
6028 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6029 instructions->push_tail(jump);
6030
6031 } else if (state->switch_state.is_switch_innermost &&
6032 mode == ast_break) {
6033 /* Force break out of switch by inserting a break. */
6034 ir_loop_jump *const jump =
6035 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6036 instructions->push_tail(jump);
6037 } else {
6038 ir_loop_jump *const jump =
6039 new(ctx) ir_loop_jump((mode == ast_break)
6040 ? ir_loop_jump::jump_break
6041 : ir_loop_jump::jump_continue);
6042 instructions->push_tail(jump);
6043 }
6044 }
6045
6046 break;
6047 }
6048
6049 /* Jump instructions do not have r-values.
6050 */
6051 return NULL;
6052 }
6053
6054
6055 ir_rvalue *
6056 ast_selection_statement::hir(exec_list *instructions,
6057 struct _mesa_glsl_parse_state *state)
6058 {
6059 void *ctx = state;
6060
6061 ir_rvalue *const condition = this->condition->hir(instructions, state);
6062
6063 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6064 *
6065 * "Any expression whose type evaluates to a Boolean can be used as the
6066 * conditional expression bool-expression. Vector types are not accepted
6067 * as the expression to if."
6068 *
6069 * The checks are separated so that higher quality diagnostics can be
6070 * generated for cases where both rules are violated.
6071 */
6072 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6073 YYLTYPE loc = this->condition->get_location();
6074
6075 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6076 "boolean");
6077 }
6078
6079 ir_if *const stmt = new(ctx) ir_if(condition);
6080
6081 if (then_statement != NULL) {
6082 state->symbols->push_scope();
6083 then_statement->hir(& stmt->then_instructions, state);
6084 state->symbols->pop_scope();
6085 }
6086
6087 if (else_statement != NULL) {
6088 state->symbols->push_scope();
6089 else_statement->hir(& stmt->else_instructions, state);
6090 state->symbols->pop_scope();
6091 }
6092
6093 instructions->push_tail(stmt);
6094
6095 /* if-statements do not have r-values.
6096 */
6097 return NULL;
6098 }
6099
6100
6101 /* Used for detection of duplicate case values, compare
6102 * given contents directly.
6103 */
6104 static bool
6105 compare_case_value(const void *a, const void *b)
6106 {
6107 return *(unsigned *) a == *(unsigned *) b;
6108 }
6109
6110
6111 /* Used for detection of duplicate case values, just
6112 * returns key contents as is.
6113 */
6114 static unsigned
6115 key_contents(const void *key)
6116 {
6117 return *(unsigned *) key;
6118 }
6119
6120
6121 ir_rvalue *
6122 ast_switch_statement::hir(exec_list *instructions,
6123 struct _mesa_glsl_parse_state *state)
6124 {
6125 void *ctx = state;
6126
6127 ir_rvalue *const test_expression =
6128 this->test_expression->hir(instructions, state);
6129
6130 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6131 *
6132 * "The type of init-expression in a switch statement must be a
6133 * scalar integer."
6134 */
6135 if (!test_expression->type->is_scalar() ||
6136 !test_expression->type->is_integer()) {
6137 YYLTYPE loc = this->test_expression->get_location();
6138
6139 _mesa_glsl_error(& loc,
6140 state,
6141 "switch-statement expression must be scalar "
6142 "integer");
6143 }
6144
6145 /* Track the switch-statement nesting in a stack-like manner.
6146 */
6147 struct glsl_switch_state saved = state->switch_state;
6148
6149 state->switch_state.is_switch_innermost = true;
6150 state->switch_state.switch_nesting_ast = this;
6151 state->switch_state.labels_ht =
6152 _mesa_hash_table_create(NULL, key_contents,
6153 compare_case_value);
6154 state->switch_state.previous_default = NULL;
6155
6156 /* Initalize is_fallthru state to false.
6157 */
6158 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6159 state->switch_state.is_fallthru_var =
6160 new(ctx) ir_variable(glsl_type::bool_type,
6161 "switch_is_fallthru_tmp",
6162 ir_var_temporary);
6163 instructions->push_tail(state->switch_state.is_fallthru_var);
6164
6165 ir_dereference_variable *deref_is_fallthru_var =
6166 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6167 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6168 is_fallthru_val));
6169
6170 /* Initialize continue_inside state to false.
6171 */
6172 state->switch_state.continue_inside =
6173 new(ctx) ir_variable(glsl_type::bool_type,
6174 "continue_inside_tmp",
6175 ir_var_temporary);
6176 instructions->push_tail(state->switch_state.continue_inside);
6177
6178 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6179 ir_dereference_variable *deref_continue_inside_var =
6180 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6181 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6182 false_val));
6183
6184 state->switch_state.run_default =
6185 new(ctx) ir_variable(glsl_type::bool_type,
6186 "run_default_tmp",
6187 ir_var_temporary);
6188 instructions->push_tail(state->switch_state.run_default);
6189
6190 /* Loop around the switch is used for flow control. */
6191 ir_loop * loop = new(ctx) ir_loop();
6192 instructions->push_tail(loop);
6193
6194 /* Cache test expression.
6195 */
6196 test_to_hir(&loop->body_instructions, state);
6197
6198 /* Emit code for body of switch stmt.
6199 */
6200 body->hir(&loop->body_instructions, state);
6201
6202 /* Insert a break at the end to exit loop. */
6203 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6204 loop->body_instructions.push_tail(jump);
6205
6206 /* If we are inside loop, check if continue got called inside switch. */
6207 if (state->loop_nesting_ast != NULL) {
6208 ir_dereference_variable *deref_continue_inside =
6209 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6210 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6211 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6212
6213 if (state->loop_nesting_ast != NULL) {
6214 if (state->loop_nesting_ast->rest_expression) {
6215 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
6216 state);
6217 }
6218 if (state->loop_nesting_ast->mode ==
6219 ast_iteration_statement::ast_do_while) {
6220 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6221 }
6222 }
6223 irif->then_instructions.push_tail(jump);
6224 instructions->push_tail(irif);
6225 }
6226
6227 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6228
6229 state->switch_state = saved;
6230
6231 /* Switch statements do not have r-values. */
6232 return NULL;
6233 }
6234
6235
6236 void
6237 ast_switch_statement::test_to_hir(exec_list *instructions,
6238 struct _mesa_glsl_parse_state *state)
6239 {
6240 void *ctx = state;
6241
6242 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6243 * on the switch test case. The first one would be already raised when
6244 * getting the test_expression at ast_switch_statement::hir
6245 */
6246 test_expression->set_is_lhs(true);
6247 /* Cache value of test expression. */
6248 ir_rvalue *const test_val = test_expression->hir(instructions, state);
6249
6250 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6251 "switch_test_tmp",
6252 ir_var_temporary);
6253 ir_dereference_variable *deref_test_var =
6254 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6255
6256 instructions->push_tail(state->switch_state.test_var);
6257 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6258 }
6259
6260
6261 ir_rvalue *
6262 ast_switch_body::hir(exec_list *instructions,
6263 struct _mesa_glsl_parse_state *state)
6264 {
6265 if (stmts != NULL)
6266 stmts->hir(instructions, state);
6267
6268 /* Switch bodies do not have r-values. */
6269 return NULL;
6270 }
6271
6272 ir_rvalue *
6273 ast_case_statement_list::hir(exec_list *instructions,
6274 struct _mesa_glsl_parse_state *state)
6275 {
6276 exec_list default_case, after_default, tmp;
6277
6278 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6279 case_stmt->hir(&tmp, state);
6280
6281 /* Default case. */
6282 if (state->switch_state.previous_default && default_case.is_empty()) {
6283 default_case.append_list(&tmp);
6284 continue;
6285 }
6286
6287 /* If default case found, append 'after_default' list. */
6288 if (!default_case.is_empty())
6289 after_default.append_list(&tmp);
6290 else
6291 instructions->append_list(&tmp);
6292 }
6293
6294 /* Handle the default case. This is done here because default might not be
6295 * the last case. We need to add checks against following cases first to see
6296 * if default should be chosen or not.
6297 */
6298 if (!default_case.is_empty()) {
6299
6300 ir_rvalue *const true_val = new (state) ir_constant(true);
6301 ir_dereference_variable *deref_run_default_var =
6302 new(state) ir_dereference_variable(state->switch_state.run_default);
6303
6304 /* Choose to run default case initially, following conditional
6305 * assignments might change this.
6306 */
6307 ir_assignment *const init_var =
6308 new(state) ir_assignment(deref_run_default_var, true_val);
6309 instructions->push_tail(init_var);
6310
6311 /* Default case was the last one, no checks required. */
6312 if (after_default.is_empty()) {
6313 instructions->append_list(&default_case);
6314 return NULL;
6315 }
6316
6317 foreach_in_list(ir_instruction, ir, &after_default) {
6318 ir_assignment *assign = ir->as_assignment();
6319
6320 if (!assign)
6321 continue;
6322
6323 /* Clone the check between case label and init expression. */
6324 ir_expression *exp = (ir_expression*) assign->condition;
6325 ir_expression *clone = exp->clone(state, NULL);
6326
6327 ir_dereference_variable *deref_var =
6328 new(state) ir_dereference_variable(state->switch_state.run_default);
6329 ir_rvalue *const false_val = new (state) ir_constant(false);
6330
6331 ir_assignment *const set_false =
6332 new(state) ir_assignment(deref_var, false_val, clone);
6333
6334 instructions->push_tail(set_false);
6335 }
6336
6337 /* Append default case and all cases after it. */
6338 instructions->append_list(&default_case);
6339 instructions->append_list(&after_default);
6340 }
6341
6342 /* Case statements do not have r-values. */
6343 return NULL;
6344 }
6345
6346 ir_rvalue *
6347 ast_case_statement::hir(exec_list *instructions,
6348 struct _mesa_glsl_parse_state *state)
6349 {
6350 labels->hir(instructions, state);
6351
6352 /* Guard case statements depending on fallthru state. */
6353 ir_dereference_variable *const deref_fallthru_guard =
6354 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6355 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6356
6357 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6358 stmt->hir(& test_fallthru->then_instructions, state);
6359
6360 instructions->push_tail(test_fallthru);
6361
6362 /* Case statements do not have r-values. */
6363 return NULL;
6364 }
6365
6366
6367 ir_rvalue *
6368 ast_case_label_list::hir(exec_list *instructions,
6369 struct _mesa_glsl_parse_state *state)
6370 {
6371 foreach_list_typed (ast_case_label, label, link, & this->labels)
6372 label->hir(instructions, state);
6373
6374 /* Case labels do not have r-values. */
6375 return NULL;
6376 }
6377
6378 ir_rvalue *
6379 ast_case_label::hir(exec_list *instructions,
6380 struct _mesa_glsl_parse_state *state)
6381 {
6382 void *ctx = state;
6383
6384 ir_dereference_variable *deref_fallthru_var =
6385 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6386
6387 ir_rvalue *const true_val = new(ctx) ir_constant(true);
6388
6389 /* If not default case, ... */
6390 if (this->test_value != NULL) {
6391 /* Conditionally set fallthru state based on
6392 * comparison of cached test expression value to case label.
6393 */
6394 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6395 ir_constant *label_const = label_rval->constant_expression_value();
6396
6397 if (!label_const) {
6398 YYLTYPE loc = this->test_value->get_location();
6399
6400 _mesa_glsl_error(& loc, state,
6401 "switch statement case label must be a "
6402 "constant expression");
6403
6404 /* Stuff a dummy value in to allow processing to continue. */
6405 label_const = new(ctx) ir_constant(0);
6406 } else {
6407 hash_entry *entry =
6408 _mesa_hash_table_search(state->switch_state.labels_ht,
6409 (void *)(uintptr_t)&label_const->value.u[0]);
6410
6411 if (entry) {
6412 ast_expression *previous_label = (ast_expression *) entry->data;
6413 YYLTYPE loc = this->test_value->get_location();
6414 _mesa_glsl_error(& loc, state, "duplicate case value");
6415
6416 loc = previous_label->get_location();
6417 _mesa_glsl_error(& loc, state, "this is the previous case label");
6418 } else {
6419 _mesa_hash_table_insert(state->switch_state.labels_ht,
6420 (void *)(uintptr_t)&label_const->value.u[0],
6421 this->test_value);
6422 }
6423 }
6424
6425 ir_dereference_variable *deref_test_var =
6426 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6427
6428 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6429 label_const,
6430 deref_test_var);
6431
6432 /*
6433 * From GLSL 4.40 specification section 6.2 ("Selection"):
6434 *
6435 * "The type of the init-expression value in a switch statement must
6436 * be a scalar int or uint. The type of the constant-expression value
6437 * in a case label also must be a scalar int or uint. When any pair
6438 * of these values is tested for "equal value" and the types do not
6439 * match, an implicit conversion will be done to convert the int to a
6440 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
6441 * is done."
6442 */
6443 if (label_const->type != state->switch_state.test_var->type) {
6444 YYLTYPE loc = this->test_value->get_location();
6445
6446 const glsl_type *type_a = label_const->type;
6447 const glsl_type *type_b = state->switch_state.test_var->type;
6448
6449 /* Check if int->uint implicit conversion is supported. */
6450 bool integer_conversion_supported =
6451 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
6452 state);
6453
6454 if ((!type_a->is_integer() || !type_b->is_integer()) ||
6455 !integer_conversion_supported) {
6456 _mesa_glsl_error(&loc, state, "type mismatch with switch "
6457 "init-expression and case label (%s != %s)",
6458 type_a->name, type_b->name);
6459 } else {
6460 /* Conversion of the case label. */
6461 if (type_a->base_type == GLSL_TYPE_INT) {
6462 if (!apply_implicit_conversion(glsl_type::uint_type,
6463 test_cond->operands[0], state))
6464 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6465 } else {
6466 /* Conversion of the init-expression value. */
6467 if (!apply_implicit_conversion(glsl_type::uint_type,
6468 test_cond->operands[1], state))
6469 _mesa_glsl_error(&loc, state, "implicit type conversion error");
6470 }
6471 }
6472 }
6473
6474 ir_assignment *set_fallthru_on_test =
6475 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6476
6477 instructions->push_tail(set_fallthru_on_test);
6478 } else { /* default case */
6479 if (state->switch_state.previous_default) {
6480 YYLTYPE loc = this->get_location();
6481 _mesa_glsl_error(& loc, state,
6482 "multiple default labels in one switch");
6483
6484 loc = state->switch_state.previous_default->get_location();
6485 _mesa_glsl_error(& loc, state, "this is the first default label");
6486 }
6487 state->switch_state.previous_default = this;
6488
6489 /* Set fallthru condition on 'run_default' bool. */
6490 ir_dereference_variable *deref_run_default =
6491 new(ctx) ir_dereference_variable(state->switch_state.run_default);
6492 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
6493 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
6494 cond_true,
6495 deref_run_default);
6496
6497 /* Set falltrhu state. */
6498 ir_assignment *set_fallthru =
6499 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
6500
6501 instructions->push_tail(set_fallthru);
6502 }
6503
6504 /* Case statements do not have r-values. */
6505 return NULL;
6506 }
6507
6508 void
6509 ast_iteration_statement::condition_to_hir(exec_list *instructions,
6510 struct _mesa_glsl_parse_state *state)
6511 {
6512 void *ctx = state;
6513
6514 if (condition != NULL) {
6515 ir_rvalue *const cond =
6516 condition->hir(instructions, state);
6517
6518 if ((cond == NULL)
6519 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
6520 YYLTYPE loc = condition->get_location();
6521
6522 _mesa_glsl_error(& loc, state,
6523 "loop condition must be scalar boolean");
6524 } else {
6525 /* As the first code in the loop body, generate a block that looks
6526 * like 'if (!condition) break;' as the loop termination condition.
6527 */
6528 ir_rvalue *const not_cond =
6529 new(ctx) ir_expression(ir_unop_logic_not, cond);
6530
6531 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
6532
6533 ir_jump *const break_stmt =
6534 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6535
6536 if_stmt->then_instructions.push_tail(break_stmt);
6537 instructions->push_tail(if_stmt);
6538 }
6539 }
6540 }
6541
6542
6543 ir_rvalue *
6544 ast_iteration_statement::hir(exec_list *instructions,
6545 struct _mesa_glsl_parse_state *state)
6546 {
6547 void *ctx = state;
6548
6549 /* For-loops and while-loops start a new scope, but do-while loops do not.
6550 */
6551 if (mode != ast_do_while)
6552 state->symbols->push_scope();
6553
6554 if (init_statement != NULL)
6555 init_statement->hir(instructions, state);
6556
6557 ir_loop *const stmt = new(ctx) ir_loop();
6558 instructions->push_tail(stmt);
6559
6560 /* Track the current loop nesting. */
6561 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
6562
6563 state->loop_nesting_ast = this;
6564
6565 /* Likewise, indicate that following code is closest to a loop,
6566 * NOT closest to a switch.
6567 */
6568 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
6569 state->switch_state.is_switch_innermost = false;
6570
6571 if (mode != ast_do_while)
6572 condition_to_hir(&stmt->body_instructions, state);
6573
6574 if (body != NULL)
6575 body->hir(& stmt->body_instructions, state);
6576
6577 if (rest_expression != NULL)
6578 rest_expression->hir(& stmt->body_instructions, state);
6579
6580 if (mode == ast_do_while)
6581 condition_to_hir(&stmt->body_instructions, state);
6582
6583 if (mode != ast_do_while)
6584 state->symbols->pop_scope();
6585
6586 /* Restore previous nesting before returning. */
6587 state->loop_nesting_ast = nesting_ast;
6588 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
6589
6590 /* Loops do not have r-values.
6591 */
6592 return NULL;
6593 }
6594
6595
6596 /**
6597 * Determine if the given type is valid for establishing a default precision
6598 * qualifier.
6599 *
6600 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
6601 *
6602 * "The precision statement
6603 *
6604 * precision precision-qualifier type;
6605 *
6606 * can be used to establish a default precision qualifier. The type field
6607 * can be either int or float or any of the sampler types, and the
6608 * precision-qualifier can be lowp, mediump, or highp."
6609 *
6610 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
6611 * qualifiers on sampler types, but this seems like an oversight (since the
6612 * intention of including these in GLSL 1.30 is to allow compatibility with ES
6613 * shaders). So we allow int, float, and all sampler types regardless of GLSL
6614 * version.
6615 */
6616 static bool
6617 is_valid_default_precision_type(const struct glsl_type *const type)
6618 {
6619 if (type == NULL)
6620 return false;
6621
6622 switch (type->base_type) {
6623 case GLSL_TYPE_INT:
6624 case GLSL_TYPE_FLOAT:
6625 /* "int" and "float" are valid, but vectors and matrices are not. */
6626 return type->vector_elements == 1 && type->matrix_columns == 1;
6627 case GLSL_TYPE_SAMPLER:
6628 case GLSL_TYPE_IMAGE:
6629 case GLSL_TYPE_ATOMIC_UINT:
6630 return true;
6631 default:
6632 return false;
6633 }
6634 }
6635
6636
6637 ir_rvalue *
6638 ast_type_specifier::hir(exec_list *instructions,
6639 struct _mesa_glsl_parse_state *state)
6640 {
6641 if (this->default_precision == ast_precision_none && this->structure == NULL)
6642 return NULL;
6643
6644 YYLTYPE loc = this->get_location();
6645
6646 /* If this is a precision statement, check that the type to which it is
6647 * applied is either float or int.
6648 *
6649 * From section 4.5.3 of the GLSL 1.30 spec:
6650 * "The precision statement
6651 * precision precision-qualifier type;
6652 * can be used to establish a default precision qualifier. The type
6653 * field can be either int or float [...]. Any other types or
6654 * qualifiers will result in an error.
6655 */
6656 if (this->default_precision != ast_precision_none) {
6657 if (!state->check_precision_qualifiers_allowed(&loc))
6658 return NULL;
6659
6660 if (this->structure != NULL) {
6661 _mesa_glsl_error(&loc, state,
6662 "precision qualifiers do not apply to structures");
6663 return NULL;
6664 }
6665
6666 if (this->array_specifier != NULL) {
6667 _mesa_glsl_error(&loc, state,
6668 "default precision statements do not apply to "
6669 "arrays");
6670 return NULL;
6671 }
6672
6673 const struct glsl_type *const type =
6674 state->symbols->get_type(this->type_name);
6675 if (!is_valid_default_precision_type(type)) {
6676 _mesa_glsl_error(&loc, state,
6677 "default precision statements apply only to "
6678 "float, int, and opaque types");
6679 return NULL;
6680 }
6681
6682 if (state->es_shader) {
6683 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
6684 * spec says:
6685 *
6686 * "Non-precision qualified declarations will use the precision
6687 * qualifier specified in the most recent precision statement
6688 * that is still in scope. The precision statement has the same
6689 * scoping rules as variable declarations. If it is declared
6690 * inside a compound statement, its effect stops at the end of
6691 * the innermost statement it was declared in. Precision
6692 * statements in nested scopes override precision statements in
6693 * outer scopes. Multiple precision statements for the same basic
6694 * type can appear inside the same scope, with later statements
6695 * overriding earlier statements within that scope."
6696 *
6697 * Default precision specifications follow the same scope rules as
6698 * variables. So, we can track the state of the default precision
6699 * qualifiers in the symbol table, and the rules will just work. This
6700 * is a slight abuse of the symbol table, but it has the semantics
6701 * that we want.
6702 */
6703 state->symbols->add_default_precision_qualifier(this->type_name,
6704 this->default_precision);
6705 }
6706
6707 /* FINISHME: Translate precision statements into IR. */
6708 return NULL;
6709 }
6710
6711 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
6712 * process_record_constructor() can do type-checking on C-style initializer
6713 * expressions of structs, but ast_struct_specifier should only be translated
6714 * to HIR if it is declaring the type of a structure.
6715 *
6716 * The ->is_declaration field is false for initializers of variables
6717 * declared separately from the struct's type definition.
6718 *
6719 * struct S { ... }; (is_declaration = true)
6720 * struct T { ... } t = { ... }; (is_declaration = true)
6721 * S s = { ... }; (is_declaration = false)
6722 */
6723 if (this->structure != NULL && this->structure->is_declaration)
6724 return this->structure->hir(instructions, state);
6725
6726 return NULL;
6727 }
6728
6729
6730 /**
6731 * Process a structure or interface block tree into an array of structure fields
6732 *
6733 * After parsing, where there are some syntax differnces, structures and
6734 * interface blocks are almost identical. They are similar enough that the
6735 * AST for each can be processed the same way into a set of
6736 * \c glsl_struct_field to describe the members.
6737 *
6738 * If we're processing an interface block, var_mode should be the type of the
6739 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
6740 * ir_var_shader_storage). If we're processing a structure, var_mode should be
6741 * ir_var_auto.
6742 *
6743 * \return
6744 * The number of fields processed. A pointer to the array structure fields is
6745 * stored in \c *fields_ret.
6746 */
6747 static unsigned
6748 ast_process_struct_or_iface_block_members(exec_list *instructions,
6749 struct _mesa_glsl_parse_state *state,
6750 exec_list *declarations,
6751 glsl_struct_field **fields_ret,
6752 bool is_interface,
6753 enum glsl_matrix_layout matrix_layout,
6754 bool allow_reserved_names,
6755 ir_variable_mode var_mode,
6756 ast_type_qualifier *layout,
6757 unsigned block_stream,
6758 unsigned block_xfb_buffer,
6759 unsigned block_xfb_offset,
6760 unsigned expl_location,
6761 unsigned expl_align)
6762 {
6763 unsigned decl_count = 0;
6764 unsigned next_offset = 0;
6765
6766 /* Make an initial pass over the list of fields to determine how
6767 * many there are. Each element in this list is an ast_declarator_list.
6768 * This means that we actually need to count the number of elements in the
6769 * 'declarations' list in each of the elements.
6770 */
6771 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6772 decl_count += decl_list->declarations.length();
6773 }
6774
6775 /* Allocate storage for the fields and process the field
6776 * declarations. As the declarations are processed, try to also convert
6777 * the types to HIR. This ensures that structure definitions embedded in
6778 * other structure definitions or in interface blocks are processed.
6779 */
6780 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
6781 decl_count);
6782
6783 bool first_member = true;
6784 bool first_member_has_explicit_location = false;
6785
6786 unsigned i = 0;
6787 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
6788 const char *type_name;
6789 YYLTYPE loc = decl_list->get_location();
6790
6791 decl_list->type->specifier->hir(instructions, state);
6792
6793 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
6794 *
6795 * "Anonymous structures are not supported; so embedded structures
6796 * must have a declarator. A name given to an embedded struct is
6797 * scoped at the same level as the struct it is embedded in."
6798 *
6799 * The same section of the GLSL 1.20 spec says:
6800 *
6801 * "Anonymous structures are not supported. Embedded structures are
6802 * not supported."
6803 *
6804 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
6805 * embedded structures in 1.10 only.
6806 */
6807 if (state->language_version != 110 &&
6808 decl_list->type->specifier->structure != NULL)
6809 _mesa_glsl_error(&loc, state,
6810 "embedded structure declarations are not allowed");
6811
6812 const glsl_type *decl_type =
6813 decl_list->type->glsl_type(& type_name, state);
6814
6815 const struct ast_type_qualifier *const qual =
6816 &decl_list->type->qualifier;
6817
6818 /* From section 4.3.9 of the GLSL 4.40 spec:
6819 *
6820 * "[In interface blocks] opaque types are not allowed."
6821 *
6822 * It should be impossible for decl_type to be NULL here. Cases that
6823 * might naturally lead to decl_type being NULL, especially for the
6824 * is_interface case, will have resulted in compilation having
6825 * already halted due to a syntax error.
6826 */
6827 assert(decl_type);
6828
6829 if (is_interface) {
6830 if (decl_type->contains_opaque()) {
6831 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
6832 "interface block contains opaque variable");
6833 }
6834 } else {
6835 if (decl_type->contains_atomic()) {
6836 /* From section 4.1.7.3 of the GLSL 4.40 spec:
6837 *
6838 * "Members of structures cannot be declared as atomic counter
6839 * types."
6840 */
6841 _mesa_glsl_error(&loc, state, "atomic counter in structure");
6842 }
6843
6844 if (decl_type->contains_image()) {
6845 /* FINISHME: Same problem as with atomic counters.
6846 * FINISHME: Request clarification from Khronos and add
6847 * FINISHME: spec quotation here.
6848 */
6849 _mesa_glsl_error(&loc, state, "image in structure");
6850 }
6851 }
6852
6853 if (qual->flags.q.explicit_binding) {
6854 _mesa_glsl_error(&loc, state,
6855 "binding layout qualifier cannot be applied "
6856 "to struct or interface block members");
6857 }
6858
6859 if (is_interface) {
6860 if (!first_member) {
6861 if (!layout->flags.q.explicit_location &&
6862 ((first_member_has_explicit_location &&
6863 !qual->flags.q.explicit_location) ||
6864 (!first_member_has_explicit_location &&
6865 qual->flags.q.explicit_location))) {
6866 _mesa_glsl_error(&loc, state,
6867 "when block-level location layout qualifier "
6868 "is not supplied either all members must "
6869 "have a location layout qualifier or all "
6870 "members must not have a location layout "
6871 "qualifier");
6872 }
6873 } else {
6874 first_member = false;
6875 first_member_has_explicit_location =
6876 qual->flags.q.explicit_location;
6877 }
6878 }
6879
6880 if (qual->flags.q.std140 ||
6881 qual->flags.q.std430 ||
6882 qual->flags.q.packed ||
6883 qual->flags.q.shared) {
6884 _mesa_glsl_error(&loc, state,
6885 "uniform/shader storage block layout qualifiers "
6886 "std140, std430, packed, and shared can only be "
6887 "applied to uniform/shader storage blocks, not "
6888 "members");
6889 }
6890
6891 if (qual->flags.q.constant) {
6892 _mesa_glsl_error(&loc, state,
6893 "const storage qualifier cannot be applied "
6894 "to struct or interface block members");
6895 }
6896
6897 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
6898
6899 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
6900 *
6901 * "A block member may be declared with a stream identifier, but
6902 * the specified stream must match the stream associated with the
6903 * containing block."
6904 */
6905 if (qual->flags.q.explicit_stream) {
6906 unsigned qual_stream;
6907 if (process_qualifier_constant(state, &loc, "stream",
6908 qual->stream, &qual_stream) &&
6909 qual_stream != block_stream) {
6910 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
6911 "interface block member does not match "
6912 "the interface block (%u vs %u)", qual_stream,
6913 block_stream);
6914 }
6915 }
6916
6917 int xfb_buffer;
6918 unsigned explicit_xfb_buffer = 0;
6919 if (qual->flags.q.explicit_xfb_buffer) {
6920 unsigned qual_xfb_buffer;
6921 if (process_qualifier_constant(state, &loc, "xfb_buffer",
6922 qual->xfb_buffer, &qual_xfb_buffer)) {
6923 explicit_xfb_buffer = 1;
6924 if (qual_xfb_buffer != block_xfb_buffer)
6925 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
6926 "interface block member does not match "
6927 "the interface block (%u vs %u)",
6928 qual_xfb_buffer, block_xfb_buffer);
6929 }
6930 xfb_buffer = (int) qual_xfb_buffer;
6931 } else {
6932 if (layout)
6933 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
6934 xfb_buffer = (int) block_xfb_buffer;
6935 }
6936
6937 int xfb_stride = -1;
6938 if (qual->flags.q.explicit_xfb_stride) {
6939 unsigned qual_xfb_stride;
6940 if (process_qualifier_constant(state, &loc, "xfb_stride",
6941 qual->xfb_stride, &qual_xfb_stride)) {
6942 xfb_stride = (int) qual_xfb_stride;
6943 }
6944 }
6945
6946 if (qual->flags.q.uniform && qual->has_interpolation()) {
6947 _mesa_glsl_error(&loc, state,
6948 "interpolation qualifiers cannot be used "
6949 "with uniform interface blocks");
6950 }
6951
6952 if ((qual->flags.q.uniform || !is_interface) &&
6953 qual->has_auxiliary_storage()) {
6954 _mesa_glsl_error(&loc, state,
6955 "auxiliary storage qualifiers cannot be used "
6956 "in uniform blocks or structures.");
6957 }
6958
6959 if (qual->flags.q.row_major || qual->flags.q.column_major) {
6960 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
6961 _mesa_glsl_error(&loc, state,
6962 "row_major and column_major can only be "
6963 "applied to interface blocks");
6964 } else
6965 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
6966 }
6967
6968 if (qual->flags.q.read_only && qual->flags.q.write_only) {
6969 _mesa_glsl_error(&loc, state, "buffer variable can't be both "
6970 "readonly and writeonly.");
6971 }
6972
6973 foreach_list_typed (ast_declaration, decl, link,
6974 &decl_list->declarations) {
6975 YYLTYPE loc = decl->get_location();
6976
6977 if (!allow_reserved_names)
6978 validate_identifier(decl->identifier, loc, state);
6979
6980 const struct glsl_type *field_type =
6981 process_array_type(&loc, decl_type, decl->array_specifier, state);
6982 validate_array_dimensions(field_type, state, &loc);
6983 fields[i].type = field_type;
6984 fields[i].name = decl->identifier;
6985 fields[i].interpolation =
6986 interpret_interpolation_qualifier(qual, field_type,
6987 var_mode, state, &loc);
6988 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
6989 fields[i].sample = qual->flags.q.sample ? 1 : 0;
6990 fields[i].patch = qual->flags.q.patch ? 1 : 0;
6991 fields[i].precision = qual->precision;
6992 fields[i].offset = -1;
6993 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
6994 fields[i].xfb_buffer = xfb_buffer;
6995 fields[i].xfb_stride = xfb_stride;
6996
6997 if (qual->flags.q.explicit_location) {
6998 unsigned qual_location;
6999 if (process_qualifier_constant(state, &loc, "location",
7000 qual->location, &qual_location)) {
7001 fields[i].location = qual_location +
7002 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7003 expl_location = fields[i].location +
7004 fields[i].type->count_attribute_slots(false);
7005 }
7006 } else {
7007 if (layout && layout->flags.q.explicit_location) {
7008 fields[i].location = expl_location;
7009 expl_location += fields[i].type->count_attribute_slots(false);
7010 } else {
7011 fields[i].location = -1;
7012 }
7013 }
7014
7015 /* Offset can only be used with std430 and std140 layouts an initial
7016 * value of 0 is used for error detection.
7017 */
7018 unsigned align = 0;
7019 unsigned size = 0;
7020 if (layout) {
7021 bool row_major;
7022 if (qual->flags.q.row_major ||
7023 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7024 row_major = true;
7025 } else {
7026 row_major = false;
7027 }
7028
7029 if(layout->flags.q.std140) {
7030 align = field_type->std140_base_alignment(row_major);
7031 size = field_type->std140_size(row_major);
7032 } else if (layout->flags.q.std430) {
7033 align = field_type->std430_base_alignment(row_major);
7034 size = field_type->std430_size(row_major);
7035 }
7036 }
7037
7038 if (qual->flags.q.explicit_offset) {
7039 unsigned qual_offset;
7040 if (process_qualifier_constant(state, &loc, "offset",
7041 qual->offset, &qual_offset)) {
7042 if (align != 0 && size != 0) {
7043 if (next_offset > qual_offset)
7044 _mesa_glsl_error(&loc, state, "layout qualifier "
7045 "offset overlaps previous member");
7046
7047 if (qual_offset % align) {
7048 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7049 "must be a multiple of the base "
7050 "alignment of %s", field_type->name);
7051 }
7052 fields[i].offset = qual_offset;
7053 next_offset = glsl_align(qual_offset + size, align);
7054 } else {
7055 _mesa_glsl_error(&loc, state, "offset can only be used "
7056 "with std430 and std140 layouts");
7057 }
7058 }
7059 }
7060
7061 if (qual->flags.q.explicit_align || expl_align != 0) {
7062 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7063 next_offset;
7064 if (align == 0 || size == 0) {
7065 _mesa_glsl_error(&loc, state, "align can only be used with "
7066 "std430 and std140 layouts");
7067 } else if (qual->flags.q.explicit_align) {
7068 unsigned member_align;
7069 if (process_qualifier_constant(state, &loc, "align",
7070 qual->align, &member_align)) {
7071 if (member_align == 0 ||
7072 member_align & (member_align - 1)) {
7073 _mesa_glsl_error(&loc, state, "align layout qualifier "
7074 "in not a power of 2");
7075 } else {
7076 fields[i].offset = glsl_align(offset, member_align);
7077 next_offset = glsl_align(fields[i].offset + size, align);
7078 }
7079 }
7080 } else {
7081 fields[i].offset = glsl_align(offset, expl_align);
7082 next_offset = glsl_align(fields[i].offset + size, align);
7083 }
7084 } else if (!qual->flags.q.explicit_offset) {
7085 if (align != 0 && size != 0)
7086 next_offset = glsl_align(next_offset + size, align);
7087 }
7088
7089 /* From the ARB_enhanced_layouts spec:
7090 *
7091 * "The given offset applies to the first component of the first
7092 * member of the qualified entity. Then, within the qualified
7093 * entity, subsequent components are each assigned, in order, to
7094 * the next available offset aligned to a multiple of that
7095 * component's size. Aggregate types are flattened down to the
7096 * component level to get this sequence of components."
7097 */
7098 if (qual->flags.q.explicit_xfb_offset) {
7099 unsigned xfb_offset;
7100 if (process_qualifier_constant(state, &loc, "xfb_offset",
7101 qual->offset, &xfb_offset)) {
7102 fields[i].offset = xfb_offset;
7103 block_xfb_offset = fields[i].offset +
7104 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7105 }
7106 } else {
7107 if (layout && layout->flags.q.explicit_xfb_offset) {
7108 unsigned align = field_type->is_64bit() ? 8 : 4;
7109 fields[i].offset = glsl_align(block_xfb_offset, align);
7110 block_xfb_offset +=
7111 MAX2(xfb_stride, (int) (4 * field_type->component_slots()));
7112 }
7113 }
7114
7115 /* Propogate row- / column-major information down the fields of the
7116 * structure or interface block. Structures need this data because
7117 * the structure may contain a structure that contains ... a matrix
7118 * that need the proper layout.
7119 */
7120 if (is_interface && layout &&
7121 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7122 (field_type->without_array()->is_matrix()
7123 || field_type->without_array()->is_record())) {
7124 /* If no layout is specified for the field, inherit the layout
7125 * from the block.
7126 */
7127 fields[i].matrix_layout = matrix_layout;
7128
7129 if (qual->flags.q.row_major)
7130 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7131 else if (qual->flags.q.column_major)
7132 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7133
7134 /* If we're processing an uniform or buffer block, the matrix
7135 * layout must be decided by this point.
7136 */
7137 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7138 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7139 }
7140
7141 /* Image qualifiers are allowed on buffer variables, which can only
7142 * be defined inside shader storage buffer objects
7143 */
7144 if (layout && var_mode == ir_var_shader_storage) {
7145 /* For readonly and writeonly qualifiers the field definition,
7146 * if set, overwrites the layout qualifier.
7147 */
7148 if (qual->flags.q.read_only) {
7149 fields[i].memory_read_only = true;
7150 fields[i].memory_write_only = false;
7151 } else if (qual->flags.q.write_only) {
7152 fields[i].memory_read_only = false;
7153 fields[i].memory_write_only = true;
7154 } else {
7155 fields[i].memory_read_only = layout->flags.q.read_only;
7156 fields[i].memory_write_only = layout->flags.q.write_only;
7157 }
7158
7159 /* For other qualifiers, we set the flag if either the layout
7160 * qualifier or the field qualifier are set
7161 */
7162 fields[i].memory_coherent = qual->flags.q.coherent ||
7163 layout->flags.q.coherent;
7164 fields[i].memory_volatile = qual->flags.q._volatile ||
7165 layout->flags.q._volatile;
7166 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7167 layout->flags.q.restrict_flag;
7168 }
7169
7170 i++;
7171 }
7172 }
7173
7174 assert(i == decl_count);
7175
7176 *fields_ret = fields;
7177 return decl_count;
7178 }
7179
7180
7181 ir_rvalue *
7182 ast_struct_specifier::hir(exec_list *instructions,
7183 struct _mesa_glsl_parse_state *state)
7184 {
7185 YYLTYPE loc = this->get_location();
7186
7187 unsigned expl_location = 0;
7188 if (layout && layout->flags.q.explicit_location) {
7189 if (!process_qualifier_constant(state, &loc, "location",
7190 layout->location, &expl_location)) {
7191 return NULL;
7192 } else {
7193 expl_location = VARYING_SLOT_VAR0 + expl_location;
7194 }
7195 }
7196
7197 glsl_struct_field *fields;
7198 unsigned decl_count =
7199 ast_process_struct_or_iface_block_members(instructions,
7200 state,
7201 &this->declarations,
7202 &fields,
7203 false,
7204 GLSL_MATRIX_LAYOUT_INHERITED,
7205 false /* allow_reserved_names */,
7206 ir_var_auto,
7207 layout,
7208 0, /* for interface only */
7209 0, /* for interface only */
7210 0, /* for interface only */
7211 expl_location,
7212 0 /* for interface only */);
7213
7214 validate_identifier(this->name, loc, state);
7215
7216 const glsl_type *t =
7217 glsl_type::get_record_instance(fields, decl_count, this->name);
7218
7219 if (!state->symbols->add_type(name, t)) {
7220 const glsl_type *match = state->symbols->get_type(name);
7221 /* allow struct matching for desktop GL - older UE4 does this */
7222 if (match != NULL && state->is_version(130, 0) && match->record_compare(t, false))
7223 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7224 else
7225 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7226 } else {
7227 const glsl_type **s = reralloc(state, state->user_structures,
7228 const glsl_type *,
7229 state->num_user_structures + 1);
7230 if (s != NULL) {
7231 s[state->num_user_structures] = t;
7232 state->user_structures = s;
7233 state->num_user_structures++;
7234 }
7235 }
7236
7237 /* Structure type definitions do not have r-values.
7238 */
7239 return NULL;
7240 }
7241
7242
7243 /**
7244 * Visitor class which detects whether a given interface block has been used.
7245 */
7246 class interface_block_usage_visitor : public ir_hierarchical_visitor
7247 {
7248 public:
7249 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7250 : mode(mode), block(block), found(false)
7251 {
7252 }
7253
7254 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7255 {
7256 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7257 found = true;
7258 return visit_stop;
7259 }
7260 return visit_continue;
7261 }
7262
7263 bool usage_found() const
7264 {
7265 return this->found;
7266 }
7267
7268 private:
7269 ir_variable_mode mode;
7270 const glsl_type *block;
7271 bool found;
7272 };
7273
7274 static bool
7275 is_unsized_array_last_element(ir_variable *v)
7276 {
7277 const glsl_type *interface_type = v->get_interface_type();
7278 int length = interface_type->length;
7279
7280 assert(v->type->is_unsized_array());
7281
7282 /* Check if it is the last element of the interface */
7283 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7284 return true;
7285 return false;
7286 }
7287
7288 static void
7289 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7290 {
7291 var->data.memory_read_only = field.memory_read_only;
7292 var->data.memory_write_only = field.memory_write_only;
7293 var->data.memory_coherent = field.memory_coherent;
7294 var->data.memory_volatile = field.memory_volatile;
7295 var->data.memory_restrict = field.memory_restrict;
7296 }
7297
7298 ir_rvalue *
7299 ast_interface_block::hir(exec_list *instructions,
7300 struct _mesa_glsl_parse_state *state)
7301 {
7302 YYLTYPE loc = this->get_location();
7303
7304 /* Interface blocks must be declared at global scope */
7305 if (state->current_function != NULL) {
7306 _mesa_glsl_error(&loc, state,
7307 "Interface block `%s' must be declared "
7308 "at global scope",
7309 this->block_name);
7310 }
7311
7312 /* Validate qualifiers:
7313 *
7314 * - Layout Qualifiers as per the table in Section 4.4
7315 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7316 *
7317 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7318 * GLSL 4.50 spec:
7319 *
7320 * "Additionally, memory qualifiers may also be used in the declaration
7321 * of shader storage blocks"
7322 *
7323 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7324 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7325 * Layout Qualifiers) of the GLSL 4.50 spec says:
7326 *
7327 * "The std430 qualifier is supported only for shader storage blocks;
7328 * using std430 on a uniform block will result in a compile-time error."
7329 */
7330 ast_type_qualifier allowed_blk_qualifiers;
7331 allowed_blk_qualifiers.flags.i = 0;
7332 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7333 allowed_blk_qualifiers.flags.q.shared = 1;
7334 allowed_blk_qualifiers.flags.q.packed = 1;
7335 allowed_blk_qualifiers.flags.q.std140 = 1;
7336 allowed_blk_qualifiers.flags.q.row_major = 1;
7337 allowed_blk_qualifiers.flags.q.column_major = 1;
7338 allowed_blk_qualifiers.flags.q.explicit_align = 1;
7339 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7340 if (this->layout.flags.q.buffer) {
7341 allowed_blk_qualifiers.flags.q.buffer = 1;
7342 allowed_blk_qualifiers.flags.q.std430 = 1;
7343 allowed_blk_qualifiers.flags.q.coherent = 1;
7344 allowed_blk_qualifiers.flags.q._volatile = 1;
7345 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7346 allowed_blk_qualifiers.flags.q.read_only = 1;
7347 allowed_blk_qualifiers.flags.q.write_only = 1;
7348 } else {
7349 allowed_blk_qualifiers.flags.q.uniform = 1;
7350 }
7351 } else {
7352 /* Interface block */
7353 assert(this->layout.flags.q.in || this->layout.flags.q.out);
7354
7355 allowed_blk_qualifiers.flags.q.explicit_location = 1;
7356 if (this->layout.flags.q.out) {
7357 allowed_blk_qualifiers.flags.q.out = 1;
7358 if (state->stage == MESA_SHADER_GEOMETRY ||
7359 state->stage == MESA_SHADER_TESS_CTRL ||
7360 state->stage == MESA_SHADER_TESS_EVAL ||
7361 state->stage == MESA_SHADER_VERTEX ) {
7362 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
7363 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
7364 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
7365 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
7366 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
7367 if (state->stage == MESA_SHADER_GEOMETRY) {
7368 allowed_blk_qualifiers.flags.q.stream = 1;
7369 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
7370 }
7371 if (state->stage == MESA_SHADER_TESS_CTRL) {
7372 allowed_blk_qualifiers.flags.q.patch = 1;
7373 }
7374 }
7375 } else {
7376 allowed_blk_qualifiers.flags.q.in = 1;
7377 if (state->stage == MESA_SHADER_TESS_EVAL) {
7378 allowed_blk_qualifiers.flags.q.patch = 1;
7379 }
7380 }
7381 }
7382
7383 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
7384 "invalid qualifier for block",
7385 this->block_name);
7386
7387 /* The ast_interface_block has a list of ast_declarator_lists. We
7388 * need to turn those into ir_variables with an association
7389 * with this uniform block.
7390 */
7391 enum glsl_interface_packing packing;
7392 if (this->layout.flags.q.shared) {
7393 packing = GLSL_INTERFACE_PACKING_SHARED;
7394 } else if (this->layout.flags.q.packed) {
7395 packing = GLSL_INTERFACE_PACKING_PACKED;
7396 } else if (this->layout.flags.q.std430) {
7397 packing = GLSL_INTERFACE_PACKING_STD430;
7398 } else {
7399 /* The default layout is std140.
7400 */
7401 packing = GLSL_INTERFACE_PACKING_STD140;
7402 }
7403
7404 ir_variable_mode var_mode;
7405 const char *iface_type_name;
7406 if (this->layout.flags.q.in) {
7407 var_mode = ir_var_shader_in;
7408 iface_type_name = "in";
7409 } else if (this->layout.flags.q.out) {
7410 var_mode = ir_var_shader_out;
7411 iface_type_name = "out";
7412 } else if (this->layout.flags.q.uniform) {
7413 var_mode = ir_var_uniform;
7414 iface_type_name = "uniform";
7415 } else if (this->layout.flags.q.buffer) {
7416 var_mode = ir_var_shader_storage;
7417 iface_type_name = "buffer";
7418 } else {
7419 var_mode = ir_var_auto;
7420 iface_type_name = "UNKNOWN";
7421 assert(!"interface block layout qualifier not found!");
7422 }
7423
7424 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
7425 if (this->layout.flags.q.row_major)
7426 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7427 else if (this->layout.flags.q.column_major)
7428 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7429
7430 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
7431 exec_list declared_variables;
7432 glsl_struct_field *fields;
7433
7434 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
7435 * that we don't have incompatible qualifiers
7436 */
7437 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
7438 _mesa_glsl_error(&loc, state,
7439 "Interface block sets both readonly and writeonly");
7440 }
7441
7442 unsigned qual_stream;
7443 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
7444 &qual_stream) ||
7445 !validate_stream_qualifier(&loc, state, qual_stream)) {
7446 /* If the stream qualifier is invalid it doesn't make sense to continue
7447 * on and try to compare stream layouts on member variables against it
7448 * so just return early.
7449 */
7450 return NULL;
7451 }
7452
7453 unsigned qual_xfb_buffer;
7454 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
7455 layout.xfb_buffer, &qual_xfb_buffer) ||
7456 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
7457 return NULL;
7458 }
7459
7460 unsigned qual_xfb_offset;
7461 if (layout.flags.q.explicit_xfb_offset) {
7462 if (!process_qualifier_constant(state, &loc, "xfb_offset",
7463 layout.offset, &qual_xfb_offset)) {
7464 return NULL;
7465 }
7466 }
7467
7468 unsigned qual_xfb_stride;
7469 if (layout.flags.q.explicit_xfb_stride) {
7470 if (!process_qualifier_constant(state, &loc, "xfb_stride",
7471 layout.xfb_stride, &qual_xfb_stride)) {
7472 return NULL;
7473 }
7474 }
7475
7476 unsigned expl_location = 0;
7477 if (layout.flags.q.explicit_location) {
7478 if (!process_qualifier_constant(state, &loc, "location",
7479 layout.location, &expl_location)) {
7480 return NULL;
7481 } else {
7482 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
7483 : VARYING_SLOT_VAR0;
7484 }
7485 }
7486
7487 unsigned expl_align = 0;
7488 if (layout.flags.q.explicit_align) {
7489 if (!process_qualifier_constant(state, &loc, "align",
7490 layout.align, &expl_align)) {
7491 return NULL;
7492 } else {
7493 if (expl_align == 0 || expl_align & (expl_align - 1)) {
7494 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
7495 "power of 2.");
7496 return NULL;
7497 }
7498 }
7499 }
7500
7501 unsigned int num_variables =
7502 ast_process_struct_or_iface_block_members(&declared_variables,
7503 state,
7504 &this->declarations,
7505 &fields,
7506 true,
7507 matrix_layout,
7508 redeclaring_per_vertex,
7509 var_mode,
7510 &this->layout,
7511 qual_stream,
7512 qual_xfb_buffer,
7513 qual_xfb_offset,
7514 expl_location,
7515 expl_align);
7516
7517 if (!redeclaring_per_vertex) {
7518 validate_identifier(this->block_name, loc, state);
7519
7520 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
7521 *
7522 * "Block names have no other use within a shader beyond interface
7523 * matching; it is a compile-time error to use a block name at global
7524 * scope for anything other than as a block name."
7525 */
7526 ir_variable *var = state->symbols->get_variable(this->block_name);
7527 if (var && !var->type->is_interface()) {
7528 _mesa_glsl_error(&loc, state, "Block name `%s' is "
7529 "already used in the scope.",
7530 this->block_name);
7531 }
7532 }
7533
7534 const glsl_type *earlier_per_vertex = NULL;
7535 if (redeclaring_per_vertex) {
7536 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
7537 * the named interface block gl_in, we can find it by looking at the
7538 * previous declaration of gl_in. Otherwise we can find it by looking
7539 * at the previous decalartion of any of the built-in outputs,
7540 * e.g. gl_Position.
7541 *
7542 * Also check that the instance name and array-ness of the redeclaration
7543 * are correct.
7544 */
7545 switch (var_mode) {
7546 case ir_var_shader_in:
7547 if (ir_variable *earlier_gl_in =
7548 state->symbols->get_variable("gl_in")) {
7549 earlier_per_vertex = earlier_gl_in->get_interface_type();
7550 } else {
7551 _mesa_glsl_error(&loc, state,
7552 "redeclaration of gl_PerVertex input not allowed "
7553 "in the %s shader",
7554 _mesa_shader_stage_to_string(state->stage));
7555 }
7556 if (this->instance_name == NULL ||
7557 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
7558 !this->array_specifier->is_single_dimension()) {
7559 _mesa_glsl_error(&loc, state,
7560 "gl_PerVertex input must be redeclared as "
7561 "gl_in[]");
7562 }
7563 break;
7564 case ir_var_shader_out:
7565 if (ir_variable *earlier_gl_Position =
7566 state->symbols->get_variable("gl_Position")) {
7567 earlier_per_vertex = earlier_gl_Position->get_interface_type();
7568 } else if (ir_variable *earlier_gl_out =
7569 state->symbols->get_variable("gl_out")) {
7570 earlier_per_vertex = earlier_gl_out->get_interface_type();
7571 } else {
7572 _mesa_glsl_error(&loc, state,
7573 "redeclaration of gl_PerVertex output not "
7574 "allowed in the %s shader",
7575 _mesa_shader_stage_to_string(state->stage));
7576 }
7577 if (state->stage == MESA_SHADER_TESS_CTRL) {
7578 if (this->instance_name == NULL ||
7579 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
7580 _mesa_glsl_error(&loc, state,
7581 "gl_PerVertex output must be redeclared as "
7582 "gl_out[]");
7583 }
7584 } else {
7585 if (this->instance_name != NULL) {
7586 _mesa_glsl_error(&loc, state,
7587 "gl_PerVertex output may not be redeclared with "
7588 "an instance name");
7589 }
7590 }
7591 break;
7592 default:
7593 _mesa_glsl_error(&loc, state,
7594 "gl_PerVertex must be declared as an input or an "
7595 "output");
7596 break;
7597 }
7598
7599 if (earlier_per_vertex == NULL) {
7600 /* An error has already been reported. Bail out to avoid null
7601 * dereferences later in this function.
7602 */
7603 return NULL;
7604 }
7605
7606 /* Copy locations from the old gl_PerVertex interface block. */
7607 for (unsigned i = 0; i < num_variables; i++) {
7608 int j = earlier_per_vertex->field_index(fields[i].name);
7609 if (j == -1) {
7610 _mesa_glsl_error(&loc, state,
7611 "redeclaration of gl_PerVertex must be a subset "
7612 "of the built-in members of gl_PerVertex");
7613 } else {
7614 fields[i].location =
7615 earlier_per_vertex->fields.structure[j].location;
7616 fields[i].offset =
7617 earlier_per_vertex->fields.structure[j].offset;
7618 fields[i].interpolation =
7619 earlier_per_vertex->fields.structure[j].interpolation;
7620 fields[i].centroid =
7621 earlier_per_vertex->fields.structure[j].centroid;
7622 fields[i].sample =
7623 earlier_per_vertex->fields.structure[j].sample;
7624 fields[i].patch =
7625 earlier_per_vertex->fields.structure[j].patch;
7626 fields[i].precision =
7627 earlier_per_vertex->fields.structure[j].precision;
7628 fields[i].explicit_xfb_buffer =
7629 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
7630 fields[i].xfb_buffer =
7631 earlier_per_vertex->fields.structure[j].xfb_buffer;
7632 fields[i].xfb_stride =
7633 earlier_per_vertex->fields.structure[j].xfb_stride;
7634 }
7635 }
7636
7637 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
7638 * spec:
7639 *
7640 * If a built-in interface block is redeclared, it must appear in
7641 * the shader before any use of any member included in the built-in
7642 * declaration, or a compilation error will result.
7643 *
7644 * This appears to be a clarification to the behaviour established for
7645 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
7646 * regardless of GLSL version.
7647 */
7648 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
7649 v.run(instructions);
7650 if (v.usage_found()) {
7651 _mesa_glsl_error(&loc, state,
7652 "redeclaration of a built-in interface block must "
7653 "appear before any use of any member of the "
7654 "interface block");
7655 }
7656 }
7657
7658 const glsl_type *block_type =
7659 glsl_type::get_interface_instance(fields,
7660 num_variables,
7661 packing,
7662 matrix_layout ==
7663 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
7664 this->block_name);
7665
7666 unsigned component_size = block_type->contains_double() ? 8 : 4;
7667 int xfb_offset =
7668 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
7669 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
7670 component_size);
7671
7672 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
7673 YYLTYPE loc = this->get_location();
7674 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
7675 "already taken in the current scope",
7676 this->block_name, iface_type_name);
7677 }
7678
7679 /* Since interface blocks cannot contain statements, it should be
7680 * impossible for the block to generate any instructions.
7681 */
7682 assert(declared_variables.is_empty());
7683
7684 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
7685 *
7686 * Geometry shader input variables get the per-vertex values written
7687 * out by vertex shader output variables of the same names. Since a
7688 * geometry shader operates on a set of vertices, each input varying
7689 * variable (or input block, see interface blocks below) needs to be
7690 * declared as an array.
7691 */
7692 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
7693 var_mode == ir_var_shader_in) {
7694 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
7695 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7696 state->stage == MESA_SHADER_TESS_EVAL) &&
7697 !this->layout.flags.q.patch &&
7698 this->array_specifier == NULL &&
7699 var_mode == ir_var_shader_in) {
7700 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
7701 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
7702 !this->layout.flags.q.patch &&
7703 this->array_specifier == NULL &&
7704 var_mode == ir_var_shader_out) {
7705 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
7706 }
7707
7708
7709 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
7710 * says:
7711 *
7712 * "If an instance name (instance-name) is used, then it puts all the
7713 * members inside a scope within its own name space, accessed with the
7714 * field selector ( . ) operator (analogously to structures)."
7715 */
7716 if (this->instance_name) {
7717 if (redeclaring_per_vertex) {
7718 /* When a built-in in an unnamed interface block is redeclared,
7719 * get_variable_being_redeclared() calls
7720 * check_builtin_array_max_size() to make sure that built-in array
7721 * variables aren't redeclared to illegal sizes. But we're looking
7722 * at a redeclaration of a named built-in interface block. So we
7723 * have to manually call check_builtin_array_max_size() for all parts
7724 * of the interface that are arrays.
7725 */
7726 for (unsigned i = 0; i < num_variables; i++) {
7727 if (fields[i].type->is_array()) {
7728 const unsigned size = fields[i].type->array_size();
7729 check_builtin_array_max_size(fields[i].name, size, loc, state);
7730 }
7731 }
7732 } else {
7733 validate_identifier(this->instance_name, loc, state);
7734 }
7735
7736 ir_variable *var;
7737
7738 if (this->array_specifier != NULL) {
7739 const glsl_type *block_array_type =
7740 process_array_type(&loc, block_type, this->array_specifier, state);
7741
7742 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
7743 *
7744 * For uniform blocks declared an array, each individual array
7745 * element corresponds to a separate buffer object backing one
7746 * instance of the block. As the array size indicates the number
7747 * of buffer objects needed, uniform block array declarations
7748 * must specify an array size.
7749 *
7750 * And a few paragraphs later:
7751 *
7752 * Geometry shader input blocks must be declared as arrays and
7753 * follow the array declaration and linking rules for all
7754 * geometry shader inputs. All other input and output block
7755 * arrays must specify an array size.
7756 *
7757 * The same applies to tessellation shaders.
7758 *
7759 * The upshot of this is that the only circumstance where an
7760 * interface array size *doesn't* need to be specified is on a
7761 * geometry shader input, tessellation control shader input,
7762 * tessellation control shader output, and tessellation evaluation
7763 * shader input.
7764 */
7765 if (block_array_type->is_unsized_array()) {
7766 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
7767 state->stage == MESA_SHADER_TESS_CTRL ||
7768 state->stage == MESA_SHADER_TESS_EVAL;
7769 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
7770
7771 if (this->layout.flags.q.in) {
7772 if (!allow_inputs)
7773 _mesa_glsl_error(&loc, state,
7774 "unsized input block arrays not allowed in "
7775 "%s shader",
7776 _mesa_shader_stage_to_string(state->stage));
7777 } else if (this->layout.flags.q.out) {
7778 if (!allow_outputs)
7779 _mesa_glsl_error(&loc, state,
7780 "unsized output block arrays not allowed in "
7781 "%s shader",
7782 _mesa_shader_stage_to_string(state->stage));
7783 } else {
7784 /* by elimination, this is a uniform block array */
7785 _mesa_glsl_error(&loc, state,
7786 "unsized uniform block arrays not allowed in "
7787 "%s shader",
7788 _mesa_shader_stage_to_string(state->stage));
7789 }
7790 }
7791
7792 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
7793 *
7794 * * Arrays of arrays of blocks are not allowed
7795 */
7796 if (state->es_shader && block_array_type->is_array() &&
7797 block_array_type->fields.array->is_array()) {
7798 _mesa_glsl_error(&loc, state,
7799 "arrays of arrays interface blocks are "
7800 "not allowed");
7801 }
7802
7803 var = new(state) ir_variable(block_array_type,
7804 this->instance_name,
7805 var_mode);
7806 } else {
7807 var = new(state) ir_variable(block_type,
7808 this->instance_name,
7809 var_mode);
7810 }
7811
7812 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7813 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7814
7815 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7816 var->data.read_only = true;
7817
7818 var->data.patch = this->layout.flags.q.patch;
7819
7820 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
7821 handle_geometry_shader_input_decl(state, loc, var);
7822 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
7823 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
7824 handle_tess_shader_input_decl(state, loc, var);
7825 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
7826 handle_tess_ctrl_shader_output_decl(state, loc, var);
7827
7828 for (unsigned i = 0; i < num_variables; i++) {
7829 if (var->data.mode == ir_var_shader_storage)
7830 apply_memory_qualifiers(var, fields[i]);
7831 }
7832
7833 if (ir_variable *earlier =
7834 state->symbols->get_variable(this->instance_name)) {
7835 if (!redeclaring_per_vertex) {
7836 _mesa_glsl_error(&loc, state, "`%s' redeclared",
7837 this->instance_name);
7838 }
7839 earlier->data.how_declared = ir_var_declared_normally;
7840 earlier->type = var->type;
7841 earlier->reinit_interface_type(block_type);
7842 delete var;
7843 } else {
7844 if (this->layout.flags.q.explicit_binding) {
7845 apply_explicit_binding(state, &loc, var, var->type,
7846 &this->layout);
7847 }
7848
7849 var->data.stream = qual_stream;
7850 if (layout.flags.q.explicit_location) {
7851 var->data.location = expl_location;
7852 var->data.explicit_location = true;
7853 }
7854
7855 state->symbols->add_variable(var);
7856 instructions->push_tail(var);
7857 }
7858 } else {
7859 /* In order to have an array size, the block must also be declared with
7860 * an instance name.
7861 */
7862 assert(this->array_specifier == NULL);
7863
7864 for (unsigned i = 0; i < num_variables; i++) {
7865 ir_variable *var =
7866 new(state) ir_variable(fields[i].type,
7867 ralloc_strdup(state, fields[i].name),
7868 var_mode);
7869 var->data.interpolation = fields[i].interpolation;
7870 var->data.centroid = fields[i].centroid;
7871 var->data.sample = fields[i].sample;
7872 var->data.patch = fields[i].patch;
7873 var->data.stream = qual_stream;
7874 var->data.location = fields[i].location;
7875
7876 if (fields[i].location != -1)
7877 var->data.explicit_location = true;
7878
7879 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
7880 var->data.xfb_buffer = fields[i].xfb_buffer;
7881
7882 if (fields[i].offset != -1)
7883 var->data.explicit_xfb_offset = true;
7884 var->data.offset = fields[i].offset;
7885
7886 var->init_interface_type(block_type);
7887
7888 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
7889 var->data.read_only = true;
7890
7891 /* Precision qualifiers do not have any meaning in Desktop GLSL */
7892 if (state->es_shader) {
7893 var->data.precision =
7894 select_gles_precision(fields[i].precision, fields[i].type,
7895 state, &loc);
7896 }
7897
7898 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
7899 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
7900 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
7901 } else {
7902 var->data.matrix_layout = fields[i].matrix_layout;
7903 }
7904
7905 if (var->data.mode == ir_var_shader_storage)
7906 apply_memory_qualifiers(var, fields[i]);
7907
7908 /* Examine var name here since var may get deleted in the next call */
7909 bool var_is_gl_id = is_gl_identifier(var->name);
7910
7911 if (redeclaring_per_vertex) {
7912 bool is_redeclaration;
7913 ir_variable *declared_var =
7914 get_variable_being_redeclared(var, loc, state,
7915 true /* allow_all_redeclarations */,
7916 &is_redeclaration);
7917 if (!var_is_gl_id || !is_redeclaration) {
7918 _mesa_glsl_error(&loc, state,
7919 "redeclaration of gl_PerVertex can only "
7920 "include built-in variables");
7921 } else if (declared_var->data.how_declared == ir_var_declared_normally) {
7922 _mesa_glsl_error(&loc, state,
7923 "`%s' has already been redeclared",
7924 declared_var->name);
7925 } else {
7926 declared_var->data.how_declared = ir_var_declared_in_block;
7927 declared_var->reinit_interface_type(block_type);
7928 }
7929 continue;
7930 }
7931
7932 if (state->symbols->get_variable(var->name) != NULL)
7933 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
7934
7935 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
7936 * The UBO declaration itself doesn't get an ir_variable unless it
7937 * has an instance name. This is ugly.
7938 */
7939 if (this->layout.flags.q.explicit_binding) {
7940 apply_explicit_binding(state, &loc, var,
7941 var->get_interface_type(), &this->layout);
7942 }
7943
7944 if (var->type->is_unsized_array()) {
7945 if (var->is_in_shader_storage_block() &&
7946 is_unsized_array_last_element(var)) {
7947 var->data.from_ssbo_unsized_array = true;
7948 } else {
7949 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
7950 *
7951 * "If an array is declared as the last member of a shader storage
7952 * block and the size is not specified at compile-time, it is
7953 * sized at run-time. In all other cases, arrays are sized only
7954 * at compile-time."
7955 *
7956 * In desktop GLSL it is allowed to have unsized-arrays that are
7957 * not last, as long as we can determine that they are implicitly
7958 * sized.
7959 */
7960 if (state->es_shader) {
7961 _mesa_glsl_error(&loc, state, "unsized array `%s' "
7962 "definition: only last member of a shader "
7963 "storage block can be defined as unsized "
7964 "array", fields[i].name);
7965 }
7966 }
7967 }
7968
7969 state->symbols->add_variable(var);
7970 instructions->push_tail(var);
7971 }
7972
7973 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
7974 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
7975 *
7976 * It is also a compilation error ... to redeclare a built-in
7977 * block and then use a member from that built-in block that was
7978 * not included in the redeclaration.
7979 *
7980 * This appears to be a clarification to the behaviour established
7981 * for gl_PerVertex by GLSL 1.50, therefore we implement this
7982 * behaviour regardless of GLSL version.
7983 *
7984 * To prevent the shader from using a member that was not included in
7985 * the redeclaration, we disable any ir_variables that are still
7986 * associated with the old declaration of gl_PerVertex (since we've
7987 * already updated all of the variables contained in the new
7988 * gl_PerVertex to point to it).
7989 *
7990 * As a side effect this will prevent
7991 * validate_intrastage_interface_blocks() from getting confused and
7992 * thinking there are conflicting definitions of gl_PerVertex in the
7993 * shader.
7994 */
7995 foreach_in_list_safe(ir_instruction, node, instructions) {
7996 ir_variable *const var = node->as_variable();
7997 if (var != NULL &&
7998 var->get_interface_type() == earlier_per_vertex &&
7999 var->data.mode == var_mode) {
8000 if (var->data.how_declared == ir_var_declared_normally) {
8001 _mesa_glsl_error(&loc, state,
8002 "redeclaration of gl_PerVertex cannot "
8003 "follow a redeclaration of `%s'",
8004 var->name);
8005 }
8006 state->symbols->disable_variable(var->name);
8007 var->remove();
8008 }
8009 }
8010 }
8011 }
8012
8013 return NULL;
8014 }
8015
8016
8017 ir_rvalue *
8018 ast_tcs_output_layout::hir(exec_list *instructions,
8019 struct _mesa_glsl_parse_state *state)
8020 {
8021 YYLTYPE loc = this->get_location();
8022
8023 unsigned num_vertices;
8024 if (!state->out_qualifier->vertices->
8025 process_qualifier_constant(state, "vertices", &num_vertices,
8026 false)) {
8027 /* return here to stop cascading incorrect error messages */
8028 return NULL;
8029 }
8030
8031 /* If any shader outputs occurred before this declaration and specified an
8032 * array size, make sure the size they specified is consistent with the
8033 * primitive type.
8034 */
8035 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8036 _mesa_glsl_error(&loc, state,
8037 "this tessellation control shader output layout "
8038 "specifies %u vertices, but a previous output "
8039 "is declared with size %u",
8040 num_vertices, state->tcs_output_size);
8041 return NULL;
8042 }
8043
8044 state->tcs_output_vertices_specified = true;
8045
8046 /* If any shader outputs occurred before this declaration and did not
8047 * specify an array size, their size is determined now.
8048 */
8049 foreach_in_list (ir_instruction, node, instructions) {
8050 ir_variable *var = node->as_variable();
8051 if (var == NULL || var->data.mode != ir_var_shader_out)
8052 continue;
8053
8054 /* Note: Not all tessellation control shader output are arrays. */
8055 if (!var->type->is_unsized_array() || var->data.patch)
8056 continue;
8057
8058 if (var->data.max_array_access >= (int)num_vertices) {
8059 _mesa_glsl_error(&loc, state,
8060 "this tessellation control shader output layout "
8061 "specifies %u vertices, but an access to element "
8062 "%u of output `%s' already exists", num_vertices,
8063 var->data.max_array_access, var->name);
8064 } else {
8065 var->type = glsl_type::get_array_instance(var->type->fields.array,
8066 num_vertices);
8067 }
8068 }
8069
8070 return NULL;
8071 }
8072
8073
8074 ir_rvalue *
8075 ast_gs_input_layout::hir(exec_list *instructions,
8076 struct _mesa_glsl_parse_state *state)
8077 {
8078 YYLTYPE loc = this->get_location();
8079
8080 /* Should have been prevented by the parser. */
8081 assert(!state->gs_input_prim_type_specified
8082 || state->in_qualifier->prim_type == this->prim_type);
8083
8084 /* If any shader inputs occurred before this declaration and specified an
8085 * array size, make sure the size they specified is consistent with the
8086 * primitive type.
8087 */
8088 unsigned num_vertices = vertices_per_prim(this->prim_type);
8089 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8090 _mesa_glsl_error(&loc, state,
8091 "this geometry shader input layout implies %u vertices"
8092 " per primitive, but a previous input is declared"
8093 " with size %u", num_vertices, state->gs_input_size);
8094 return NULL;
8095 }
8096
8097 state->gs_input_prim_type_specified = true;
8098
8099 /* If any shader inputs occurred before this declaration and did not
8100 * specify an array size, their size is determined now.
8101 */
8102 foreach_in_list(ir_instruction, node, instructions) {
8103 ir_variable *var = node->as_variable();
8104 if (var == NULL || var->data.mode != ir_var_shader_in)
8105 continue;
8106
8107 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8108 * array; skip it.
8109 */
8110
8111 if (var->type->is_unsized_array()) {
8112 if (var->data.max_array_access >= (int)num_vertices) {
8113 _mesa_glsl_error(&loc, state,
8114 "this geometry shader input layout implies %u"
8115 " vertices, but an access to element %u of input"
8116 " `%s' already exists", num_vertices,
8117 var->data.max_array_access, var->name);
8118 } else {
8119 var->type = glsl_type::get_array_instance(var->type->fields.array,
8120 num_vertices);
8121 }
8122 }
8123 }
8124
8125 return NULL;
8126 }
8127
8128
8129 ir_rvalue *
8130 ast_cs_input_layout::hir(exec_list *instructions,
8131 struct _mesa_glsl_parse_state *state)
8132 {
8133 YYLTYPE loc = this->get_location();
8134
8135 /* From the ARB_compute_shader specification:
8136 *
8137 * If the local size of the shader in any dimension is greater
8138 * than the maximum size supported by the implementation for that
8139 * dimension, a compile-time error results.
8140 *
8141 * It is not clear from the spec how the error should be reported if
8142 * the total size of the work group exceeds
8143 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8144 * report it at compile time as well.
8145 */
8146 GLuint64 total_invocations = 1;
8147 unsigned qual_local_size[3];
8148 for (int i = 0; i < 3; i++) {
8149
8150 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8151 'x' + i);
8152 /* Infer a local_size of 1 for unspecified dimensions */
8153 if (this->local_size[i] == NULL) {
8154 qual_local_size[i] = 1;
8155 } else if (!this->local_size[i]->
8156 process_qualifier_constant(state, local_size_str,
8157 &qual_local_size[i], false)) {
8158 ralloc_free(local_size_str);
8159 return NULL;
8160 }
8161 ralloc_free(local_size_str);
8162
8163 if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8164 _mesa_glsl_error(&loc, state,
8165 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8166 " (%d)", 'x' + i,
8167 state->ctx->Const.MaxComputeWorkGroupSize[i]);
8168 break;
8169 }
8170 total_invocations *= qual_local_size[i];
8171 if (total_invocations >
8172 state->ctx->Const.MaxComputeWorkGroupInvocations) {
8173 _mesa_glsl_error(&loc, state,
8174 "product of local_sizes exceeds "
8175 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8176 state->ctx->Const.MaxComputeWorkGroupInvocations);
8177 break;
8178 }
8179 }
8180
8181 /* If any compute input layout declaration preceded this one, make sure it
8182 * was consistent with this one.
8183 */
8184 if (state->cs_input_local_size_specified) {
8185 for (int i = 0; i < 3; i++) {
8186 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8187 _mesa_glsl_error(&loc, state,
8188 "compute shader input layout does not match"
8189 " previous declaration");
8190 return NULL;
8191 }
8192 }
8193 }
8194
8195 /* The ARB_compute_variable_group_size spec says:
8196 *
8197 * If a compute shader including a *local_size_variable* qualifier also
8198 * declares a fixed local group size using the *local_size_x*,
8199 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8200 * results
8201 */
8202 if (state->cs_input_local_size_variable_specified) {
8203 _mesa_glsl_error(&loc, state,
8204 "compute shader can't include both a variable and a "
8205 "fixed local group size");
8206 return NULL;
8207 }
8208
8209 state->cs_input_local_size_specified = true;
8210 for (int i = 0; i < 3; i++)
8211 state->cs_input_local_size[i] = qual_local_size[i];
8212
8213 /* We may now declare the built-in constant gl_WorkGroupSize (see
8214 * builtin_variable_generator::generate_constants() for why we didn't
8215 * declare it earlier).
8216 */
8217 ir_variable *var = new(state->symbols)
8218 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8219 var->data.how_declared = ir_var_declared_implicitly;
8220 var->data.read_only = true;
8221 instructions->push_tail(var);
8222 state->symbols->add_variable(var);
8223 ir_constant_data data;
8224 memset(&data, 0, sizeof(data));
8225 for (int i = 0; i < 3; i++)
8226 data.u[i] = qual_local_size[i];
8227 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8228 var->constant_initializer =
8229 new(var) ir_constant(glsl_type::uvec3_type, &data);
8230 var->data.has_initializer = true;
8231
8232 return NULL;
8233 }
8234
8235
8236 static void
8237 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8238 exec_list *instructions)
8239 {
8240 bool gl_FragColor_assigned = false;
8241 bool gl_FragData_assigned = false;
8242 bool gl_FragSecondaryColor_assigned = false;
8243 bool gl_FragSecondaryData_assigned = false;
8244 bool user_defined_fs_output_assigned = false;
8245 ir_variable *user_defined_fs_output = NULL;
8246
8247 /* It would be nice to have proper location information. */
8248 YYLTYPE loc;
8249 memset(&loc, 0, sizeof(loc));
8250
8251 foreach_in_list(ir_instruction, node, instructions) {
8252 ir_variable *var = node->as_variable();
8253
8254 if (!var || !var->data.assigned)
8255 continue;
8256
8257 if (strcmp(var->name, "gl_FragColor") == 0)
8258 gl_FragColor_assigned = true;
8259 else if (strcmp(var->name, "gl_FragData") == 0)
8260 gl_FragData_assigned = true;
8261 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8262 gl_FragSecondaryColor_assigned = true;
8263 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8264 gl_FragSecondaryData_assigned = true;
8265 else if (!is_gl_identifier(var->name)) {
8266 if (state->stage == MESA_SHADER_FRAGMENT &&
8267 var->data.mode == ir_var_shader_out) {
8268 user_defined_fs_output_assigned = true;
8269 user_defined_fs_output = var;
8270 }
8271 }
8272 }
8273
8274 /* From the GLSL 1.30 spec:
8275 *
8276 * "If a shader statically assigns a value to gl_FragColor, it
8277 * may not assign a value to any element of gl_FragData. If a
8278 * shader statically writes a value to any element of
8279 * gl_FragData, it may not assign a value to
8280 * gl_FragColor. That is, a shader may assign values to either
8281 * gl_FragColor or gl_FragData, but not both. Multiple shaders
8282 * linked together must also consistently write just one of
8283 * these variables. Similarly, if user declared output
8284 * variables are in use (statically assigned to), then the
8285 * built-in variables gl_FragColor and gl_FragData may not be
8286 * assigned to. These incorrect usages all generate compile
8287 * time errors."
8288 */
8289 if (gl_FragColor_assigned && gl_FragData_assigned) {
8290 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8291 "`gl_FragColor' and `gl_FragData'");
8292 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8293 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8294 "`gl_FragColor' and `%s'",
8295 user_defined_fs_output->name);
8296 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8297 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8298 "`gl_FragSecondaryColorEXT' and"
8299 " `gl_FragSecondaryDataEXT'");
8300 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8301 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8302 "`gl_FragColor' and"
8303 " `gl_FragSecondaryDataEXT'");
8304 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8305 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8306 "`gl_FragData' and"
8307 " `gl_FragSecondaryColorEXT'");
8308 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8309 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8310 "`gl_FragData' and `%s'",
8311 user_defined_fs_output->name);
8312 }
8313
8314 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8315 !state->EXT_blend_func_extended_enable) {
8316 _mesa_glsl_error(&loc, state,
8317 "Dual source blending requires EXT_blend_func_extended");
8318 }
8319 }
8320
8321
8322 static void
8323 remove_per_vertex_blocks(exec_list *instructions,
8324 _mesa_glsl_parse_state *state, ir_variable_mode mode)
8325 {
8326 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
8327 * if it exists in this shader type.
8328 */
8329 const glsl_type *per_vertex = NULL;
8330 switch (mode) {
8331 case ir_var_shader_in:
8332 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
8333 per_vertex = gl_in->get_interface_type();
8334 break;
8335 case ir_var_shader_out:
8336 if (ir_variable *gl_Position =
8337 state->symbols->get_variable("gl_Position")) {
8338 per_vertex = gl_Position->get_interface_type();
8339 }
8340 break;
8341 default:
8342 assert(!"Unexpected mode");
8343 break;
8344 }
8345
8346 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
8347 * need to do anything.
8348 */
8349 if (per_vertex == NULL)
8350 return;
8351
8352 /* If the interface block is used by the shader, then we don't need to do
8353 * anything.
8354 */
8355 interface_block_usage_visitor v(mode, per_vertex);
8356 v.run(instructions);
8357 if (v.usage_found())
8358 return;
8359
8360 /* Remove any ir_variable declarations that refer to the interface block
8361 * we're removing.
8362 */
8363 foreach_in_list_safe(ir_instruction, node, instructions) {
8364 ir_variable *const var = node->as_variable();
8365 if (var != NULL && var->get_interface_type() == per_vertex &&
8366 var->data.mode == mode) {
8367 state->symbols->disable_variable(var->name);
8368 var->remove();
8369 }
8370 }
8371 }