glsl: Add utility function to round and pack int64_t value
[mesa.git] / src / compiler / glsl / float64.glsl
1 /*
2 * The implementations contained in this file are heavily based on the
3 * implementations found in the Berkeley SoftFloat library. As such, they are
4 * licensed under the same 3-clause BSD license:
5 *
6 * License for Berkeley SoftFloat Release 3e
7 *
8 * John R. Hauser
9 * 2018 January 20
10 *
11 * The following applies to the whole of SoftFloat Release 3e as well as to
12 * each source file individually.
13 *
14 * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
15 * University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright notice,
21 * this list of conditions, and the following disclaimer.
22 *
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions, and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 *
27 * 3. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
34 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 #version 430
44 #extension GL_ARB_gpu_shader_int64 : enable
45 #extension GL_ARB_shader_bit_encoding : enable
46 #extension GL_EXT_shader_integer_mix : enable
47 #extension GL_MESA_shader_integer_functions : enable
48
49 #pragma warning(off)
50
51 /* Software IEEE floating-point rounding mode.
52 * GLSL spec section "4.7.1 Range and Precision":
53 * The rounding mode cannot be set and is undefined.
54 * But here, we are able to define the rounding mode at the compilation time.
55 */
56 #define FLOAT_ROUND_NEAREST_EVEN 0
57 #define FLOAT_ROUND_TO_ZERO 1
58 #define FLOAT_ROUND_DOWN 2
59 #define FLOAT_ROUND_UP 3
60 #define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN
61
62 /* Absolute value of a Float64 :
63 * Clear the sign bit
64 */
65 uint64_t
66 __fabs64(uint64_t __a)
67 {
68 uvec2 a = unpackUint2x32(__a);
69 a.y &= 0x7FFFFFFFu;
70 return packUint2x32(a);
71 }
72
73 /* Returns 1 if the double-precision floating-point value `a' is a NaN;
74 * otherwise returns 0.
75 */
76 bool
77 __is_nan(uint64_t __a)
78 {
79 uvec2 a = unpackUint2x32(__a);
80 return (0xFFE00000u <= (a.y<<1)) &&
81 ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
82 }
83
84 /* Negate value of a Float64 :
85 * Toggle the sign bit
86 */
87 uint64_t
88 __fneg64(uint64_t __a)
89 {
90 uvec2 a = unpackUint2x32(__a);
91 uint t = a.y;
92
93 t ^= (1u << 31);
94 a.y = mix(t, a.y, __is_nan(__a));
95 return packUint2x32(a);
96 }
97
98 uint64_t
99 __fsign64(uint64_t __a)
100 {
101 uvec2 a = unpackUint2x32(__a);
102 uvec2 retval;
103 retval.x = 0u;
104 retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
105 return packUint2x32(retval);
106 }
107
108 /* Returns the fraction bits of the double-precision floating-point value `a'.*/
109 uint
110 __extractFloat64FracLo(uint64_t a)
111 {
112 return unpackUint2x32(a).x;
113 }
114
115 uint
116 __extractFloat64FracHi(uint64_t a)
117 {
118 return unpackUint2x32(a).y & 0x000FFFFFu;
119 }
120
121 /* Returns the exponent bits of the double-precision floating-point value `a'.*/
122 int
123 __extractFloat64Exp(uint64_t __a)
124 {
125 uvec2 a = unpackUint2x32(__a);
126 return int((a.y>>20) & 0x7FFu);
127 }
128
129 bool
130 __feq64_nonnan(uint64_t __a, uint64_t __b)
131 {
132 uvec2 a = unpackUint2x32(__a);
133 uvec2 b = unpackUint2x32(__b);
134 return (a.x == b.x) &&
135 ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
136 }
137
138 /* Returns true if the double-precision floating-point value `a' is equal to the
139 * corresponding value `b', and false otherwise. The comparison is performed
140 * according to the IEEE Standard for Floating-Point Arithmetic.
141 */
142 bool
143 __feq64(uint64_t a, uint64_t b)
144 {
145 if (__is_nan(a) || __is_nan(b))
146 return false;
147
148 return __feq64_nonnan(a, b);
149 }
150
151 /* Returns true if the double-precision floating-point value `a' is not equal
152 * to the corresponding value `b', and false otherwise. The comparison is
153 * performed according to the IEEE Standard for Floating-Point Arithmetic.
154 */
155 bool
156 __fne64(uint64_t a, uint64_t b)
157 {
158 if (__is_nan(a) || __is_nan(b))
159 return true;
160
161 return !__feq64_nonnan(a, b);
162 }
163
164 /* Returns the sign bit of the double-precision floating-point value `a'.*/
165 uint
166 __extractFloat64Sign(uint64_t a)
167 {
168 return unpackUint2x32(a).y >> 31;
169 }
170
171 /* Returns true if the 64-bit value formed by concatenating `a0' and `a1' is less
172 * than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
173 * returns false.
174 */
175 bool
176 lt64(uint a0, uint a1, uint b0, uint b1)
177 {
178 return (a0 < b0) || ((a0 == b0) && (a1 < b1));
179 }
180
181 bool
182 __flt64_nonnan(uint64_t __a, uint64_t __b)
183 {
184 uvec2 a = unpackUint2x32(__a);
185 uvec2 b = unpackUint2x32(__b);
186 uint aSign = __extractFloat64Sign(__a);
187 uint bSign = __extractFloat64Sign(__b);
188 if (aSign != bSign)
189 return (aSign != 0u) && ((((a.y | b.y)<<1) | a.x | b.x) != 0u);
190
191 return mix(lt64(a.y, a.x, b.y, b.x), lt64(b.y, b.x, a.y, a.x), aSign != 0u);
192 }
193
194 /* Returns true if the double-precision floating-point value `a' is less than
195 * the corresponding value `b', and false otherwise. The comparison is performed
196 * according to the IEEE Standard for Floating-Point Arithmetic.
197 */
198 bool
199 __flt64(uint64_t a, uint64_t b)
200 {
201 if (__is_nan(a) || __is_nan(b))
202 return false;
203
204 return __flt64_nonnan(a, b);
205 }
206
207 /* Returns true if the double-precision floating-point value `a' is greater
208 * than or equal to * the corresponding value `b', and false otherwise. The
209 * comparison is performed * according to the IEEE Standard for Floating-Point
210 * Arithmetic.
211 */
212 bool
213 __fge64(uint64_t a, uint64_t b)
214 {
215 if (__is_nan(a) || __is_nan(b))
216 return false;
217
218 return !__flt64_nonnan(a, b);
219 }
220
221 /* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
222 * value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
223 * any carry out is lost. The result is broken into two 32-bit pieces which
224 * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
225 */
226 void
227 __add64(uint a0, uint a1, uint b0, uint b1,
228 out uint z0Ptr,
229 out uint z1Ptr)
230 {
231 uint z1 = a1 + b1;
232 z1Ptr = z1;
233 z0Ptr = a0 + b0 + uint(z1 < a1);
234 }
235
236
237 /* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
238 * 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
239 * 2^64, so any borrow out (carry out) is lost. The result is broken into two
240 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
241 * `z1Ptr'.
242 */
243 void
244 __sub64(uint a0, uint a1, uint b0, uint b1,
245 out uint z0Ptr,
246 out uint z1Ptr)
247 {
248 z1Ptr = a1 - b1;
249 z0Ptr = a0 - b0 - uint(a1 < b1);
250 }
251
252 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
253 * number of bits given in `count'. If any nonzero bits are shifted off, they
254 * are "jammed" into the least significant bit of the result by setting the
255 * least significant bit to 1. The value of `count' can be arbitrarily large;
256 * in particular, if `count' is greater than 64, the result will be either 0
257 * or 1, depending on whether the concatenation of `a0' and `a1' is zero or
258 * nonzero. The result is broken into two 32-bit pieces which are stored at
259 * the locations pointed to by `z0Ptr' and `z1Ptr'.
260 */
261 void
262 __shift64RightJamming(uint a0,
263 uint a1,
264 int count,
265 out uint z0Ptr,
266 out uint z1Ptr)
267 {
268 uint z0;
269 uint z1;
270 int negCount = (-count) & 31;
271
272 z0 = mix(0u, a0, count == 0);
273 z0 = mix(z0, (a0 >> count), count < 32);
274
275 z1 = uint((a0 | a1) != 0u); /* count >= 64 */
276 uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
277 z1 = mix(z1, z1_lt64, count < 64);
278 z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
279 uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
280 z1 = mix(z1, z1_lt32, count < 32);
281 z1 = mix(z1, a1, count == 0);
282 z1Ptr = z1;
283 z0Ptr = z0;
284 }
285
286 /* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
287 * by 32 _plus_ the number of bits given in `count'. The shifted result is
288 * at most 64 nonzero bits; these are broken into two 32-bit pieces which are
289 * stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
290 * off form a third 32-bit result as follows: The _last_ bit shifted off is
291 * the most-significant bit of the extra result, and the other 31 bits of the
292 * extra result are all zero if and only if _all_but_the_last_ bits shifted off
293 * were all zero. This extra result is stored in the location pointed to by
294 * `z2Ptr'. The value of `count' can be arbitrarily large.
295 * (This routine makes more sense if `a0', `a1', and `a2' are considered
296 * to form a fixed-point value with binary point between `a1' and `a2'. This
297 * fixed-point value is shifted right by the number of bits given in `count',
298 * and the integer part of the result is returned at the locations pointed to
299 * by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
300 * corrupted as described above, and is returned at the location pointed to by
301 * `z2Ptr'.)
302 */
303 void
304 __shift64ExtraRightJamming(uint a0, uint a1, uint a2,
305 int count,
306 out uint z0Ptr,
307 out uint z1Ptr,
308 out uint z2Ptr)
309 {
310 uint z0 = 0u;
311 uint z1;
312 uint z2;
313 int negCount = (-count) & 31;
314
315 z2 = mix(uint(a0 != 0u), a0, count == 64);
316 z2 = mix(z2, a0 << negCount, count < 64);
317 z2 = mix(z2, a1 << negCount, count < 32);
318
319 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
320 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
321
322 a2 = mix(a2 | a1, a2, count < 32);
323 z0 = mix(z0, a0 >> count, count < 32);
324 z2 |= uint(a2 != 0u);
325
326 z0 = mix(z0, 0u, (count == 32));
327 z1 = mix(z1, a0, (count == 32));
328 z2 = mix(z2, a1, (count == 32));
329 z0 = mix(z0, a0, (count == 0));
330 z1 = mix(z1, a1, (count == 0));
331 z2 = mix(z2, a2, (count == 0));
332 z2Ptr = z2;
333 z1Ptr = z1;
334 z0Ptr = z0;
335 }
336
337 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
338 * number of bits given in `count'. Any bits shifted off are lost. The value
339 * of `count' must be less than 32. The result is broken into two 32-bit
340 * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
341 */
342 void
343 __shortShift64Left(uint a0, uint a1,
344 int count,
345 out uint z0Ptr,
346 out uint z1Ptr)
347 {
348 z1Ptr = a1<<count;
349 z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
350 }
351
352 /* Packs the sign `zSign', the exponent `zExp', and the significand formed by
353 * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
354 * point value, returning the result. After being shifted into the proper
355 * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
356 * together to form the most significant 32 bits of the result. This means
357 * that any integer portion of `zFrac0' will be added into the exponent. Since
358 * a properly normalized significand will have an integer portion equal to 1,
359 * the `zExp' input should be 1 less than the desired result exponent whenever
360 * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
361 */
362 uint64_t
363 __packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
364 {
365 uvec2 z;
366
367 z.y = (zSign << 31) + (uint(zExp) << 20) + zFrac0;
368 z.x = zFrac1;
369 return packUint2x32(z);
370 }
371
372 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
373 * and extended significand formed by the concatenation of `zFrac0', `zFrac1',
374 * and `zFrac2', and returns the proper double-precision floating-point value
375 * corresponding to the abstract input. Ordinarily, the abstract value is
376 * simply rounded and packed into the double-precision format, with the inexact
377 * exception raised if the abstract input cannot be represented exactly.
378 * However, if the abstract value is too large, the overflow and inexact
379 * exceptions are raised and an infinity or maximal finite value is returned.
380 * If the abstract value is too small, the input value is rounded to a
381 * subnormal number, and the underflow and inexact exceptions are raised if the
382 * abstract input cannot be represented exactly as a subnormal double-precision
383 * floating-point number.
384 * The input significand must be normalized or smaller. If the input
385 * significand is not normalized, `zExp' must be 0; in that case, the result
386 * returned is a subnormal number, and it must not require rounding. In the
387 * usual case that the input significand is normalized, `zExp' must be 1 less
388 * than the "true" floating-point exponent. The handling of underflow and
389 * overflow follows the IEEE Standard for Floating-Point Arithmetic.
390 */
391 uint64_t
392 __roundAndPackFloat64(uint zSign,
393 int zExp,
394 uint zFrac0,
395 uint zFrac1,
396 uint zFrac2)
397 {
398 bool roundNearestEven;
399 bool increment;
400
401 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
402 increment = int(zFrac2) < 0;
403 if (!roundNearestEven) {
404 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
405 increment = false;
406 } else {
407 if (zSign != 0u) {
408 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
409 (zFrac2 != 0u);
410 } else {
411 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
412 (zFrac2 != 0u);
413 }
414 }
415 }
416 if (0x7FD <= zExp) {
417 if ((0x7FD < zExp) ||
418 ((zExp == 0x7FD) &&
419 (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
420 increment)) {
421 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
422 ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
423 ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
424 return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
425 }
426 return __packFloat64(zSign, 0x7FF, 0u, 0u);
427 }
428 if (zExp < 0) {
429 __shift64ExtraRightJamming(
430 zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
431 zExp = 0;
432 if (roundNearestEven) {
433 increment = zFrac2 < 0u;
434 } else {
435 if (zSign != 0u) {
436 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
437 (zFrac2 != 0u);
438 } else {
439 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
440 (zFrac2 != 0u);
441 }
442 }
443 }
444 }
445 if (increment) {
446 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
447 zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
448 } else {
449 zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
450 }
451 return __packFloat64(zSign, zExp, zFrac0, zFrac1);
452 }
453
454 uint64_t
455 __roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
456 {
457 bool roundNearestEven;
458 bool increment;
459 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
460
461 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
462
463 if (zFrac2 >= 0x80000000u)
464 increment = false;
465
466 if (!roundNearestEven) {
467 if (zSign != 0u) {
468 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
469 increment = false;
470 }
471 } else {
472 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
473 (zFrac2 != 0u);
474 }
475 }
476
477 if (increment) {
478 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
479 if ((zFrac0 | zFrac1) != 0u)
480 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
481 }
482 return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
483 (zSign !=0u && (zFrac0 | zFrac1) != 0u));
484 }
485
486 int64_t
487 __roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
488 {
489 bool roundNearestEven;
490 bool increment;
491 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
492 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
493
494 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
495
496 if (zFrac2 >= 0x80000000u)
497 increment = false;
498
499 if (!roundNearestEven) {
500 if (zSign != 0u) {
501 increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
502 (zFrac2 != 0u));
503 } else {
504 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
505 (zFrac2 != 0u);
506 }
507 }
508
509 if (increment) {
510 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
511 if ((zFrac0 | zFrac1) != 0u)
512 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
513 }
514
515 int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
516 -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
517 (zSign != 0u));
518 int64_t nan = mix(default_PosNaN, default_NegNaN, bool(zSign));
519 return mix(absZ, nan, bool(zSign ^ uint(absZ < 0)) && bool(absZ));
520 }
521
522 /* Returns the number of leading 0 bits before the most-significant 1 bit of
523 * `a'. If `a' is zero, 32 is returned.
524 */
525 int
526 __countLeadingZeros32(uint a)
527 {
528 int shiftCount;
529 shiftCount = mix(31 - findMSB(a), 32, a == 0u);
530 return shiftCount;
531 }
532
533 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
534 * and significand formed by the concatenation of `zSig0' and `zSig1', and
535 * returns the proper double-precision floating-point value corresponding
536 * to the abstract input. This routine is just like `__roundAndPackFloat64'
537 * except that the input significand has fewer bits and does not have to be
538 * normalized. In all cases, `zExp' must be 1 less than the "true" floating-
539 * point exponent.
540 */
541 uint64_t
542 __normalizeRoundAndPackFloat64(uint zSign,
543 int zExp,
544 uint zFrac0,
545 uint zFrac1)
546 {
547 int shiftCount;
548 uint zFrac2;
549
550 if (zFrac0 == 0u) {
551 zExp -= 32;
552 zFrac0 = zFrac1;
553 zFrac1 = 0u;
554 }
555
556 shiftCount = __countLeadingZeros32(zFrac0) - 11;
557 if (0 <= shiftCount) {
558 zFrac2 = 0u;
559 __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
560 } else {
561 __shift64ExtraRightJamming(
562 zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
563 }
564 zExp -= shiftCount;
565 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
566 }
567
568 /* Takes two double-precision floating-point values `a' and `b', one of which
569 * is a NaN, and returns the appropriate NaN result.
570 */
571 uint64_t
572 __propagateFloat64NaN(uint64_t __a, uint64_t __b)
573 {
574 bool aIsNaN = __is_nan(__a);
575 bool bIsNaN = __is_nan(__b);
576 uvec2 a = unpackUint2x32(__a);
577 uvec2 b = unpackUint2x32(__b);
578 a.y |= 0x00080000u;
579 b.y |= 0x00080000u;
580
581 return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
582 }
583
584 /* Returns the result of adding the double-precision floating-point values
585 * `a' and `b'. The operation is performed according to the IEEE Standard for
586 * Floating-Point Arithmetic.
587 */
588 uint64_t
589 __fadd64(uint64_t a, uint64_t b)
590 {
591 uint aSign = __extractFloat64Sign(a);
592 uint bSign = __extractFloat64Sign(b);
593 uint aFracLo = __extractFloat64FracLo(a);
594 uint aFracHi = __extractFloat64FracHi(a);
595 uint bFracLo = __extractFloat64FracLo(b);
596 uint bFracHi = __extractFloat64FracHi(b);
597 int aExp = __extractFloat64Exp(a);
598 int bExp = __extractFloat64Exp(b);
599 uint zFrac0 = 0u;
600 uint zFrac1 = 0u;
601 int expDiff = aExp - bExp;
602 if (aSign == bSign) {
603 uint zFrac2 = 0u;
604 int zExp;
605 bool orig_exp_diff_is_zero = (expDiff == 0);
606
607 if (orig_exp_diff_is_zero) {
608 if (aExp == 0x7FF) {
609 bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
610 return mix(a, __propagateFloat64NaN(a, b), propagate);
611 }
612 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
613 if (aExp == 0)
614 return __packFloat64(aSign, 0, zFrac0, zFrac1);
615 zFrac2 = 0u;
616 zFrac0 |= 0x00200000u;
617 zExp = aExp;
618 __shift64ExtraRightJamming(
619 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
620 } else if (0 < expDiff) {
621 if (aExp == 0x7FF) {
622 bool propagate = (aFracHi | aFracLo) != 0u;
623 return mix(a, __propagateFloat64NaN(a, b), propagate);
624 }
625
626 expDiff = mix(expDiff, expDiff - 1, bExp == 0);
627 bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
628 __shift64ExtraRightJamming(
629 bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
630 zExp = aExp;
631 } else if (expDiff < 0) {
632 if (bExp == 0x7FF) {
633 bool propagate = (bFracHi | bFracLo) != 0u;
634 return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
635 }
636 expDiff = mix(expDiff, expDiff + 1, aExp == 0);
637 aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0);
638 __shift64ExtraRightJamming(
639 aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2);
640 zExp = bExp;
641 }
642 if (!orig_exp_diff_is_zero) {
643 aFracHi |= 0x00100000u;
644 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
645 --zExp;
646 if (!(zFrac0 < 0x00200000u)) {
647 __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
648 ++zExp;
649 }
650 }
651 return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
652
653 } else {
654 int zExp;
655
656 __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
657 __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
658 if (0 < expDiff) {
659 if (aExp == 0x7FF) {
660 bool propagate = (aFracHi | aFracLo) != 0u;
661 return mix(a, __propagateFloat64NaN(a, b), propagate);
662 }
663 expDiff = mix(expDiff, expDiff - 1, bExp == 0);
664 bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
665 __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
666 aFracHi |= 0x40000000u;
667 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
668 zExp = aExp;
669 --zExp;
670 return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
671 }
672 if (expDiff < 0) {
673 if (bExp == 0x7FF) {
674 bool propagate = (bFracHi | bFracLo) != 0u;
675 return mix(__packFloat64(aSign ^ 1u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
676 }
677 expDiff = mix(expDiff, expDiff + 1, aExp == 0);
678 aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0);
679 __shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo);
680 bFracHi |= 0x40000000u;
681 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
682 zExp = bExp;
683 aSign ^= 1u;
684 --zExp;
685 return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
686 }
687 if (aExp == 0x7FF) {
688 bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
689 return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
690 }
691 bExp = mix(bExp, 1, aExp == 0);
692 aExp = mix(aExp, 1, aExp == 0);
693 bool zexp_normal = false;
694 bool blta = true;
695 if (bFracHi < aFracHi) {
696 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
697 zexp_normal = true;
698 }
699 else if (aFracHi < bFracHi) {
700 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
701 blta = false;
702 zexp_normal = true;
703 }
704 else if (bFracLo < aFracLo) {
705 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
706 zexp_normal = true;
707 }
708 else if (aFracLo < bFracLo) {
709 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
710 blta = false;
711 zexp_normal = true;
712 }
713 zExp = mix(bExp, aExp, blta);
714 aSign = mix(aSign ^ 1u, aSign, blta);
715 uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN), 0, 0u, 0u);
716 uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
717 return mix(retval_0, retval_1, zexp_normal);
718 }
719 }
720
721 /* Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
722 * into two 32-bit pieces which are stored at the locations pointed to by
723 * `z0Ptr' and `z1Ptr'.
724 */
725 void
726 __mul32To64(uint a, uint b, out uint z0Ptr, out uint z1Ptr)
727 {
728 uint aLow = a & 0x0000FFFFu;
729 uint aHigh = a>>16;
730 uint bLow = b & 0x0000FFFFu;
731 uint bHigh = b>>16;
732 uint z1 = aLow * bLow;
733 uint zMiddleA = aLow * bHigh;
734 uint zMiddleB = aHigh * bLow;
735 uint z0 = aHigh * bHigh;
736 zMiddleA += zMiddleB;
737 z0 += ((uint(zMiddleA < zMiddleB)) << 16) + (zMiddleA >> 16);
738 zMiddleA <<= 16;
739 z1 += zMiddleA;
740 z0 += uint(z1 < zMiddleA);
741 z1Ptr = z1;
742 z0Ptr = z0;
743 }
744
745 /* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
746 * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
747 * product. The product is broken into four 32-bit pieces which are stored at
748 * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
749 */
750 void
751 __mul64To128(uint a0, uint a1, uint b0, uint b1,
752 out uint z0Ptr,
753 out uint z1Ptr,
754 out uint z2Ptr,
755 out uint z3Ptr)
756 {
757 uint z0 = 0u;
758 uint z1 = 0u;
759 uint z2 = 0u;
760 uint z3 = 0u;
761 uint more1 = 0u;
762 uint more2 = 0u;
763
764 __mul32To64(a1, b1, z2, z3);
765 __mul32To64(a1, b0, z1, more2);
766 __add64(z1, more2, 0u, z2, z1, z2);
767 __mul32To64(a0, b0, z0, more1);
768 __add64(z0, more1, 0u, z1, z0, z1);
769 __mul32To64(a0, b1, more1, more2);
770 __add64(more1, more2, 0u, z2, more1, z2);
771 __add64(z0, z1, 0u, more1, z0, z1);
772 z3Ptr = z3;
773 z2Ptr = z2;
774 z1Ptr = z1;
775 z0Ptr = z0;
776 }
777
778 /* Normalizes the subnormal double-precision floating-point value represented
779 * by the denormalized significand formed by the concatenation of `aFrac0' and
780 * `aFrac1'. The normalized exponent is stored at the location pointed to by
781 * `zExpPtr'. The most significant 21 bits of the normalized significand are
782 * stored at the location pointed to by `zFrac0Ptr', and the least significant
783 * 32 bits of the normalized significand are stored at the location pointed to
784 * by `zFrac1Ptr'.
785 */
786 void
787 __normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
788 out int zExpPtr,
789 out uint zFrac0Ptr,
790 out uint zFrac1Ptr)
791 {
792 int shiftCount;
793 uint temp_zfrac0, temp_zfrac1;
794 shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
795 zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
796
797 temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
798 temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
799
800 __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
801
802 zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
803 zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
804 }
805
806 /* Returns the result of multiplying the double-precision floating-point values
807 * `a' and `b'. The operation is performed according to the IEEE Standard for
808 * Floating-Point Arithmetic.
809 */
810 uint64_t
811 __fmul64(uint64_t a, uint64_t b)
812 {
813 uint zFrac0 = 0u;
814 uint zFrac1 = 0u;
815 uint zFrac2 = 0u;
816 uint zFrac3 = 0u;
817 int zExp;
818
819 uint aFracLo = __extractFloat64FracLo(a);
820 uint aFracHi = __extractFloat64FracHi(a);
821 uint bFracLo = __extractFloat64FracLo(b);
822 uint bFracHi = __extractFloat64FracHi(b);
823 int aExp = __extractFloat64Exp(a);
824 uint aSign = __extractFloat64Sign(a);
825 int bExp = __extractFloat64Exp(b);
826 uint bSign = __extractFloat64Sign(b);
827 uint zSign = aSign ^ bSign;
828 if (aExp == 0x7FF) {
829 if (((aFracHi | aFracLo) != 0u) ||
830 ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
831 return __propagateFloat64NaN(a, b);
832 }
833 if ((uint(bExp) | bFracHi | bFracLo) == 0u)
834 return 0xFFFFFFFFFFFFFFFFUL;
835 return __packFloat64(zSign, 0x7FF, 0u, 0u);
836 }
837 if (bExp == 0x7FF) {
838 if ((bFracHi | bFracLo) != 0u)
839 return __propagateFloat64NaN(a, b);
840 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
841 return 0xFFFFFFFFFFFFFFFFUL;
842 return __packFloat64(zSign, 0x7FF, 0u, 0u);
843 }
844 if (aExp == 0) {
845 if ((aFracHi | aFracLo) == 0u)
846 return __packFloat64(zSign, 0, 0u, 0u);
847 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
848 }
849 if (bExp == 0) {
850 if ((bFracHi | bFracLo) == 0u)
851 return __packFloat64(zSign, 0, 0u, 0u);
852 __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
853 }
854 zExp = aExp + bExp - 0x400;
855 aFracHi |= 0x00100000u;
856 __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
857 __mul64To128(
858 aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
859 __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
860 zFrac2 |= uint(zFrac3 != 0u);
861 if (0x00200000u <= zFrac0) {
862 __shift64ExtraRightJamming(
863 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
864 ++zExp;
865 }
866 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
867 }
868
869 uint64_t
870 __ffma64(uint64_t a, uint64_t b, uint64_t c)
871 {
872 return __fadd64(__fmul64(a, b), c);
873 }
874
875 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
876 * number of bits given in `count'. Any bits shifted off are lost. The value
877 * of `count' can be arbitrarily large; in particular, if `count' is greater
878 * than 64, the result will be 0. The result is broken into two 32-bit pieces
879 * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
880 */
881 void
882 __shift64Right(uint a0, uint a1,
883 int count,
884 out uint z0Ptr,
885 out uint z1Ptr)
886 {
887 uint z0;
888 uint z1;
889 int negCount = (-count) & 31;
890
891 z0 = 0u;
892 z0 = mix(z0, (a0 >> count), count < 32);
893 z0 = mix(z0, a0, count == 0);
894
895 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
896 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
897 z1 = mix(z1, a0, count == 0);
898
899 z1Ptr = z1;
900 z0Ptr = z0;
901 }
902
903 /* Returns the result of converting the double-precision floating-point value
904 * `a' to the unsigned integer format. The conversion is performed according
905 * to the IEEE Standard for Floating-Point Arithmetic.
906 */
907 uint
908 __fp64_to_uint(uint64_t a)
909 {
910 uint aFracLo = __extractFloat64FracLo(a);
911 uint aFracHi = __extractFloat64FracHi(a);
912 int aExp = __extractFloat64Exp(a);
913 uint aSign = __extractFloat64Sign(a);
914
915 if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
916 return 0xFFFFFFFFu;
917
918 aFracHi |= mix(0u, 0x00100000u, aExp != 0);
919
920 int shiftDist = 0x427 - aExp;
921 if (0 < shiftDist)
922 __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
923
924 if ((aFracHi & 0xFFFFF000u) != 0u)
925 return mix(~0u, 0u, (aSign != 0u));
926
927 uint z = 0u;
928 uint zero = 0u;
929 __shift64Right(aFracHi, aFracLo, 12, zero, z);
930
931 uint expt = mix(~0u, 0u, (aSign != 0u));
932
933 return mix(z, expt, (aSign != 0u) && (z != 0u));
934 }
935
936 uint64_t
937 __uint_to_fp64(uint a)
938 {
939 if (a == 0u)
940 return 0ul;
941
942 int shiftDist = __countLeadingZeros32(a) + 21;
943
944 uint aHigh = 0u;
945 uint aLow = 0u;
946 int negCount = (- shiftDist) & 31;
947
948 aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
949 aLow = 0u;
950 aHigh = mix(aHigh, 0u, shiftDist == 0);
951 aLow = mix(aLow, a, shiftDist ==0);
952 aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
953 aLow = mix(aLow, a << shiftDist, shiftDist < 32);
954
955 return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
956 }
957
958 uint64_t
959 __uint64_to_fp64(uint64_t a)
960 {
961 if (a == 0u)
962 return 0ul;
963
964 uvec2 aFrac = unpackUint2x32(a);
965 uint aFracLo = __extractFloat64FracLo(a);
966 uint aFracHi = __extractFloat64FracHi(a);
967
968 if ((aFracHi & 0x80000000u) != 0u) {
969 __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
970 return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
971 } else {
972 return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
973 }
974 }
975
976 uint64_t
977 __fp64_to_uint64(uint64_t a)
978 {
979 uint aFracLo = __extractFloat64FracLo(a);
980 uint aFracHi = __extractFloat64FracHi(a);
981 int aExp = __extractFloat64Exp(a);
982 uint aSign = __extractFloat64Sign(a);
983 uint zFrac2 = 0u;
984 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
985
986 aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
987 int shiftCount = 0x433 - aExp;
988
989 if ( shiftCount <= 0 ) {
990 if (shiftCount < -11 && aExp == 0x7FF) {
991 if ((aFracHi | aFracLo) != 0u)
992 return __propagateFloat64NaN(a, a);
993 return mix(default_nan, a, aSign == 0u);
994 }
995 __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
996 } else {
997 __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
998 aFracHi, aFracLo, zFrac2);
999 }
1000 return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
1001 }
1002
1003 uint64_t
1004 __int64_to_fp64(int64_t a)
1005 {
1006 if (a==0)
1007 return 0ul;
1008
1009 uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
1010 uint aFracHi = __extractFloat64FracHi(absA);
1011 uvec2 aFrac = unpackUint2x32(absA);
1012 uint zSign = uint(a < 0);
1013
1014 if ((aFracHi & 0x80000000u) != 0u) {
1015 return mix(0ul, __packFloat64(1, 0x434, 0u, 0u), a < 0);
1016 }
1017
1018 return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
1019 }
1020
1021 /* Returns the result of converting the double-precision floating-point value
1022 * `a' to the 32-bit two's complement integer format. The conversion is
1023 * performed according to the IEEE Standard for Floating-Point Arithmetic---
1024 * which means in particular that the conversion is rounded according to the
1025 * current rounding mode. If `a' is a NaN, the largest positive integer is
1026 * returned. Otherwise, if the conversion overflows, the largest integer with
1027 * the same sign as `a' is returned.
1028 */
1029 int
1030 __fp64_to_int(uint64_t a)
1031 {
1032 uint aFracLo = __extractFloat64FracLo(a);
1033 uint aFracHi = __extractFloat64FracHi(a);
1034 int aExp = __extractFloat64Exp(a);
1035 uint aSign = __extractFloat64Sign(a);
1036
1037 uint absZ = 0u;
1038 uint aFracExtra = 0u;
1039 int shiftCount = aExp - 0x413;
1040
1041 if (0 <= shiftCount) {
1042 if (0x41E < aExp) {
1043 if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
1044 aSign = 0u;
1045 return mix(0x7FFFFFFF, 0x80000000, bool(aSign));
1046 }
1047 __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
1048 } else {
1049 if (aExp < 0x3FF)
1050 return 0;
1051
1052 aFracHi |= 0x00100000u;
1053 aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
1054 absZ = aFracHi >> (- shiftCount);
1055 }
1056
1057 int z = mix(int(absZ), -int(absZ), (aSign != 0u));
1058 int nan = mix(0x7FFFFFFF, 0x80000000, bool(aSign));
1059 return mix(z, nan, bool(aSign ^ uint(z < 0)) && bool(z));
1060 }
1061
1062 /* Returns the result of converting the 32-bit two's complement integer `a'
1063 * to the double-precision floating-point format. The conversion is performed
1064 * according to the IEEE Standard for Floating-Point Arithmetic.
1065 */
1066 uint64_t
1067 __int_to_fp64(int a)
1068 {
1069 uint zFrac0 = 0u;
1070 uint zFrac1 = 0u;
1071 if (a==0)
1072 return __packFloat64(0u, 0, 0u, 0u);
1073 uint zSign = uint(a < 0);
1074 uint absA = mix(uint(a), uint(-a), a < 0);
1075 int shiftCount = __countLeadingZeros32(absA) - 11;
1076 if (0 <= shiftCount) {
1077 zFrac0 = absA << shiftCount;
1078 zFrac1 = 0u;
1079 } else {
1080 __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
1081 }
1082 return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
1083 }
1084
1085 bool
1086 __fp64_to_bool(uint64_t a)
1087 {
1088 return !__feq64_nonnan(__fabs64(a), 0ul);
1089 }
1090
1091 uint64_t
1092 __bool_to_fp64(bool a)
1093 {
1094 return __int_to_fp64(int(a));
1095 }
1096
1097 /* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
1098 * single-precision floating-point value, returning the result. After being
1099 * shifted into the proper positions, the three fields are simply added
1100 * together to form the result. This means that any integer portion of `zSig'
1101 * will be added into the exponent. Since a properly normalized significand
1102 * will have an integer portion equal to 1, the `zExp' input should be 1 less
1103 * than the desired result exponent whenever `zFrac' is a complete, normalized
1104 * significand.
1105 */
1106 float
1107 __packFloat32(uint zSign, int zExp, uint zFrac)
1108 {
1109 return uintBitsToFloat((zSign<<31) + (uint(zExp)<<23) + zFrac);
1110 }
1111
1112 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1113 * and significand `zFrac', and returns the proper single-precision floating-
1114 * point value corresponding to the abstract input. Ordinarily, the abstract
1115 * value is simply rounded and packed into the single-precision format, with
1116 * the inexact exception raised if the abstract input cannot be represented
1117 * exactly. However, if the abstract value is too large, the overflow and
1118 * inexact exceptions are raised and an infinity or maximal finite value is
1119 * returned. If the abstract value is too small, the input value is rounded to
1120 * a subnormal number, and the underflow and inexact exceptions are raised if
1121 * the abstract input cannot be represented exactly as a subnormal single-
1122 * precision floating-point number.
1123 * The input significand `zFrac' has its binary point between bits 30
1124 * and 29, which is 7 bits to the left of the usual location. This shifted
1125 * significand must be normalized or smaller. If `zFrac' is not normalized,
1126 * `zExp' must be 0; in that case, the result returned is a subnormal number,
1127 * and it must not require rounding. In the usual case that `zFrac' is
1128 * normalized, `zExp' must be 1 less than the "true" floating-point exponent.
1129 * The handling of underflow and overflow follows the IEEE Standard for
1130 * Floating-Point Arithmetic.
1131 */
1132 float
1133 __roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
1134 {
1135 bool roundNearestEven;
1136 int roundIncrement;
1137 int roundBits;
1138
1139 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
1140 roundIncrement = 0x40;
1141 if (!roundNearestEven) {
1142 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
1143 roundIncrement = 0;
1144 } else {
1145 roundIncrement = 0x7F;
1146 if (zSign != 0u) {
1147 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
1148 roundIncrement = 0;
1149 } else {
1150 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
1151 roundIncrement = 0;
1152 }
1153 }
1154 }
1155 roundBits = int(zFrac & 0x7Fu);
1156 if (0xFDu <= uint(zExp)) {
1157 if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
1158 return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
1159 int count = -zExp;
1160 bool zexp_lt0 = zExp < 0;
1161 uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
1162 zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
1163 roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
1164 zExp = mix(zExp, 0, zexp_lt0);
1165 }
1166 zFrac = (zFrac + uint(roundIncrement))>>7;
1167 zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
1168
1169 return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
1170 }
1171
1172 /* Returns the result of converting the double-precision floating-point value
1173 * `a' to the single-precision floating-point format. The conversion is
1174 * performed according to the IEEE Standard for Floating-Point Arithmetic.
1175 */
1176 float
1177 __fp64_to_fp32(uint64_t __a)
1178 {
1179 uvec2 a = unpackUint2x32(__a);
1180 uint zFrac = 0u;
1181 uint allZero = 0u;
1182
1183 uint aFracLo = __extractFloat64FracLo(__a);
1184 uint aFracHi = __extractFloat64FracHi(__a);
1185 int aExp = __extractFloat64Exp(__a);
1186 uint aSign = __extractFloat64Sign(__a);
1187 if (aExp == 0x7FF) {
1188 __shortShift64Left(a.y, a.x, 12, a.y, a.x);
1189 float rval = uintBitsToFloat((aSign<<31) | 0x7FC00000u | (a.y>>9));
1190 rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
1191 return rval;
1192 }
1193 __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
1194 zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
1195 return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
1196 }
1197
1198 float
1199 __uint64_to_fp32(uint64_t __a)
1200 {
1201 uint zFrac = 0u;
1202 uvec2 aFrac = unpackUint2x32(__a);
1203 int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
1204 shiftCount -= mix(40, 8, aFrac.y == 0u);
1205
1206 if (0 <= shiftCount) {
1207 __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
1208 bool is_zero = (aFrac.y | aFrac.x) == 0u;
1209 return mix(__packFloat32(0u, 0x95 - shiftCount, aFrac.x), 0, is_zero);
1210 }
1211
1212 shiftCount += 7;
1213 __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
1214 zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
1215 return __roundAndPackFloat32(0u, 0x9C - shiftCount, zFrac);
1216 }
1217
1218 float
1219 __int64_to_fp32(int64_t __a)
1220 {
1221 uint zFrac = 0u;
1222 uint aSign = uint(__a < 0);
1223 uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0);
1224 uvec2 aFrac = unpackUint2x32(absA);
1225 int shiftCount = __countLeadingZeros32(mix(aFrac.y, aFrac.x, aFrac.y == 0u));
1226 shiftCount -= mix(40, 8, aFrac.y == 0u);
1227
1228 if (0 <= shiftCount) {
1229 __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
1230 bool is_zero = (aFrac.y | aFrac.x) == 0u;
1231 return mix(__packFloat32(aSign, 0x95 - shiftCount, aFrac.x), 0, absA == 0u);
1232 }
1233
1234 shiftCount += 7;
1235 __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
1236 zFrac = mix(aFrac.x<<shiftCount, aFrac.x, shiftCount < 0);
1237 return __roundAndPackFloat32(aSign, 0x9C - shiftCount, zFrac);
1238 }
1239
1240 /* Returns the result of converting the single-precision floating-point value
1241 * `a' to the double-precision floating-point format.
1242 */
1243 uint64_t
1244 __fp32_to_fp64(float f)
1245 {
1246 uint a = floatBitsToUint(f);
1247 uint aFrac = a & 0x007FFFFFu;
1248 int aExp = int((a>>23) & 0xFFu);
1249 uint aSign = a>>31;
1250 uint zFrac0 = 0u;
1251 uint zFrac1 = 0u;
1252
1253 if (aExp == 0xFF) {
1254 if (aFrac != 0u) {
1255 uint nanLo = 0u;
1256 uint nanHi = a<<9;
1257 __shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
1258 nanHi |= ((aSign<<31) | 0x7FF80000u);
1259 return packUint2x32(uvec2(nanLo, nanHi));
1260 }
1261 return __packFloat64(aSign, 0x7FF, 0u, 0u);
1262 }
1263
1264 if (aExp == 0) {
1265 if (aFrac == 0u)
1266 return __packFloat64(aSign, 0, 0u, 0u);
1267 /* Normalize subnormal */
1268 int shiftCount = __countLeadingZeros32(aFrac) - 8;
1269 aFrac <<= shiftCount;
1270 aExp = 1 - shiftCount;
1271 --aExp;
1272 }
1273
1274 __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
1275 return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
1276 }
1277
1278 /* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
1279 * 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
1280 * modulo 2^96, so any carry out is lost. The result is broken into three
1281 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
1282 * `z1Ptr', and `z2Ptr'.
1283 */
1284 void
1285 __add96(uint a0, uint a1, uint a2,
1286 uint b0, uint b1, uint b2,
1287 out uint z0Ptr,
1288 out uint z1Ptr,
1289 out uint z2Ptr)
1290 {
1291 uint z2 = a2 + b2;
1292 uint carry1 = uint(z2 < a2);
1293 uint z1 = a1 + b1;
1294 uint carry0 = uint(z1 < a1);
1295 uint z0 = a0 + b0;
1296 z1 += carry1;
1297 z0 += uint(z1 < carry1);
1298 z0 += carry0;
1299 z2Ptr = z2;
1300 z1Ptr = z1;
1301 z0Ptr = z0;
1302 }
1303
1304 /* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
1305 * the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
1306 * is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
1307 * into three 32-bit pieces which are stored at the locations pointed to by
1308 * `z0Ptr', `z1Ptr', and `z2Ptr'.
1309 */
1310 void
1311 __sub96(uint a0, uint a1, uint a2,
1312 uint b0, uint b1, uint b2,
1313 out uint z0Ptr,
1314 out uint z1Ptr,
1315 out uint z2Ptr)
1316 {
1317 uint z2 = a2 - b2;
1318 uint borrow1 = uint(a2 < b2);
1319 uint z1 = a1 - b1;
1320 uint borrow0 = uint(a1 < b1);
1321 uint z0 = a0 - b0;
1322 z0 -= uint(z1 < borrow1);
1323 z1 -= borrow1;
1324 z0 -= borrow0;
1325 z2Ptr = z2;
1326 z1Ptr = z1;
1327 z0Ptr = z0;
1328 }
1329
1330 /* Returns an approximation to the 32-bit integer quotient obtained by dividing
1331 * `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
1332 * divisor `b' must be at least 2^31. If q is the exact quotient truncated
1333 * toward zero, the approximation returned lies between q and q + 2 inclusive.
1334 * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
1335 * unsigned integer is returned.
1336 */
1337 uint
1338 __estimateDiv64To32(uint a0, uint a1, uint b)
1339 {
1340 uint b0;
1341 uint b1;
1342 uint rem0 = 0u;
1343 uint rem1 = 0u;
1344 uint term0 = 0u;
1345 uint term1 = 0u;
1346 uint z;
1347
1348 if (b <= a0)
1349 return 0xFFFFFFFFu;
1350 b0 = b>>16;
1351 z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
1352 __mul32To64(b, z, term0, term1);
1353 __sub64(a0, a1, term0, term1, rem0, rem1);
1354 while (int(rem0) < 0) {
1355 z -= 0x10000u;
1356 b1 = b<<16;
1357 __add64(rem0, rem1, b0, b1, rem0, rem1);
1358 }
1359 rem0 = (rem0<<16) | (rem1>>16);
1360 z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
1361 return z;
1362 }
1363
1364 uint
1365 __sqrtOddAdjustments(int index)
1366 {
1367 uint res = 0u;
1368 if (index == 0)
1369 res = 0x0004u;
1370 if (index == 1)
1371 res = 0x0022u;
1372 if (index == 2)
1373 res = 0x005Du;
1374 if (index == 3)
1375 res = 0x00B1u;
1376 if (index == 4)
1377 res = 0x011Du;
1378 if (index == 5)
1379 res = 0x019Fu;
1380 if (index == 6)
1381 res = 0x0236u;
1382 if (index == 7)
1383 res = 0x02E0u;
1384 if (index == 8)
1385 res = 0x039Cu;
1386 if (index == 9)
1387 res = 0x0468u;
1388 if (index == 10)
1389 res = 0x0545u;
1390 if (index == 11)
1391 res = 0x631u;
1392 if (index == 12)
1393 res = 0x072Bu;
1394 if (index == 13)
1395 res = 0x0832u;
1396 if (index == 14)
1397 res = 0x0946u;
1398 if (index == 15)
1399 res = 0x0A67u;
1400
1401 return res;
1402 }
1403
1404 uint
1405 __sqrtEvenAdjustments(int index)
1406 {
1407 uint res = 0u;
1408 if (index == 0)
1409 res = 0x0A2Du;
1410 if (index == 1)
1411 res = 0x08AFu;
1412 if (index == 2)
1413 res = 0x075Au;
1414 if (index == 3)
1415 res = 0x0629u;
1416 if (index == 4)
1417 res = 0x051Au;
1418 if (index == 5)
1419 res = 0x0429u;
1420 if (index == 6)
1421 res = 0x0356u;
1422 if (index == 7)
1423 res = 0x029Eu;
1424 if (index == 8)
1425 res = 0x0200u;
1426 if (index == 9)
1427 res = 0x0179u;
1428 if (index == 10)
1429 res = 0x0109u;
1430 if (index == 11)
1431 res = 0x00AFu;
1432 if (index == 12)
1433 res = 0x0068u;
1434 if (index == 13)
1435 res = 0x0034u;
1436 if (index == 14)
1437 res = 0x0012u;
1438 if (index == 15)
1439 res = 0x0002u;
1440
1441 return res;
1442 }
1443
1444 /* Returns an approximation to the square root of the 32-bit significand given
1445 * by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
1446 * `aExp' (the least significant bit) is 1, the integer returned approximates
1447 * 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
1448 * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
1449 * case, the approximation returned lies strictly within +/-2 of the exact
1450 * value.
1451 */
1452 uint
1453 __estimateSqrt32(int aExp, uint a)
1454 {
1455 uint z;
1456
1457 int index = int(a>>27 & 15u);
1458 if ((aExp & 1) != 0) {
1459 z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
1460 z = ((a / z)<<14) + (z<<15);
1461 a >>= 1;
1462 } else {
1463 z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
1464 z = a / z + z;
1465 z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
1466 if (z <= a)
1467 return uint(int(a)>>1);
1468 }
1469 return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
1470 }
1471
1472 /* Returns the square root of the double-precision floating-point value `a'.
1473 * The operation is performed according to the IEEE Standard for Floating-Point
1474 * Arithmetic.
1475 */
1476 uint64_t
1477 __fsqrt64(uint64_t a)
1478 {
1479 uint zFrac0 = 0u;
1480 uint zFrac1 = 0u;
1481 uint zFrac2 = 0u;
1482 uint doubleZFrac0 = 0u;
1483 uint rem0 = 0u;
1484 uint rem1 = 0u;
1485 uint rem2 = 0u;
1486 uint rem3 = 0u;
1487 uint term0 = 0u;
1488 uint term1 = 0u;
1489 uint term2 = 0u;
1490 uint term3 = 0u;
1491 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1492
1493 uint aFracLo = __extractFloat64FracLo(a);
1494 uint aFracHi = __extractFloat64FracHi(a);
1495 int aExp = __extractFloat64Exp(a);
1496 uint aSign = __extractFloat64Sign(a);
1497 if (aExp == 0x7FF) {
1498 if ((aFracHi | aFracLo) != 0u)
1499 return __propagateFloat64NaN(a, a);
1500 if (aSign == 0u)
1501 return a;
1502 return default_nan;
1503 }
1504 if (aSign != 0u) {
1505 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
1506 return a;
1507 return default_nan;
1508 }
1509 if (aExp == 0) {
1510 if ((aFracHi | aFracLo) == 0u)
1511 return __packFloat64(0u, 0, 0u, 0u);
1512 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
1513 }
1514 int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
1515 aFracHi |= 0x00100000u;
1516 __shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
1517 zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
1518 if (zFrac0 == 0u)
1519 zFrac0 = 0x7FFFFFFFu;
1520 doubleZFrac0 = zFrac0 + zFrac0;
1521 __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
1522 __mul32To64(zFrac0, zFrac0, term0, term1);
1523 __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
1524 while (int(rem0) < 0) {
1525 --zFrac0;
1526 doubleZFrac0 -= 2u;
1527 __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
1528 }
1529 zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
1530 if ((zFrac1 & 0x1FFu) <= 5u) {
1531 if (zFrac1 == 0u)
1532 zFrac1 = 1u;
1533 __mul32To64(doubleZFrac0, zFrac1, term1, term2);
1534 __sub64(rem1, 0u, term1, term2, rem1, rem2);
1535 __mul32To64(zFrac1, zFrac1, term2, term3);
1536 __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
1537 while (int(rem1) < 0) {
1538 --zFrac1;
1539 __shortShift64Left(0u, zFrac1, 1, term2, term3);
1540 term3 |= 1u;
1541 term2 |= doubleZFrac0;
1542 __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
1543 }
1544 zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
1545 }
1546 __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
1547 return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
1548 }
1549
1550 uint64_t
1551 __ftrunc64(uint64_t __a)
1552 {
1553 uvec2 a = unpackUint2x32(__a);
1554 int aExp = __extractFloat64Exp(__a);
1555 uint zLo;
1556 uint zHi;
1557
1558 int unbiasedExp = aExp - 1023;
1559 int fracBits = 52 - unbiasedExp;
1560 uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
1561 uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
1562 zLo = maskLo & a.x;
1563 zHi = maskHi & a.y;
1564
1565 zLo = mix(zLo, 0u, unbiasedExp < 0);
1566 zHi = mix(zHi, 0u, unbiasedExp < 0);
1567 zLo = mix(zLo, a.x, unbiasedExp > 52);
1568 zHi = mix(zHi, a.y, unbiasedExp > 52);
1569 return packUint2x32(uvec2(zLo, zHi));
1570 }
1571
1572 uint64_t
1573 __ffloor64(uint64_t a)
1574 {
1575 bool is_positive = __fge64(a, 0ul);
1576 uint64_t tr = __ftrunc64(a);
1577
1578 if (is_positive || __feq64(tr, a)) {
1579 return tr;
1580 } else {
1581 return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
1582 }
1583 }
1584
1585 uint64_t
1586 __fround64(uint64_t __a)
1587 {
1588 uvec2 a = unpackUint2x32(__a);
1589 int unbiasedExp = __extractFloat64Exp(__a) - 1023;
1590 uint aHi = a.y;
1591 uint aLo = a.x;
1592
1593 if (unbiasedExp < 20) {
1594 if (unbiasedExp < 0) {
1595 aHi &= 0x80000000u;
1596 if (unbiasedExp == -1 && aLo != 0u)
1597 aHi |= (1023u << 20);
1598 aLo = 0u;
1599 } else {
1600 uint maskExp = 0x000FFFFFu >> unbiasedExp;
1601 /* a is an integral value */
1602 if (((aHi & maskExp) == 0u) && (aLo == 0u))
1603 return __a;
1604
1605 aHi += 0x00080000u >> unbiasedExp;
1606 aHi &= ~maskExp;
1607 aLo = 0u;
1608 }
1609 } else if (unbiasedExp > 51 || unbiasedExp == 1024) {
1610 return __a;
1611 } else {
1612 uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
1613 if ((aLo & maskExp) == 0u)
1614 return __a;
1615 uint tmp = aLo + (1u << (51 - unbiasedExp));
1616 if(tmp < aLo)
1617 aHi += 1u;
1618 aLo = tmp;
1619 aLo &= ~maskExp;
1620 }
1621
1622 a.x = aLo;
1623 a.y = aHi;
1624 return packUint2x32(a);
1625 }
1626
1627 uint64_t
1628 __fmin64(uint64_t a, uint64_t b)
1629 {
1630 if (__is_nan(a)) return b;
1631 if (__is_nan(b)) return a;
1632
1633 if (__flt64_nonnan(a, b)) return a;
1634 return b;
1635 }
1636
1637 uint64_t
1638 __fmax64(uint64_t a, uint64_t b)
1639 {
1640 if (__is_nan(a)) return b;
1641 if (__is_nan(b)) return a;
1642
1643 if (__flt64_nonnan(a, b)) return b;
1644 return a;
1645 }
1646
1647 uint64_t
1648 __ffract64(uint64_t a)
1649 {
1650 return __fadd64(a, __fneg64(__ffloor64(a)));
1651 }