soft-fp64/fsat: Correctly handle NaN
[mesa.git] / src / compiler / glsl / float64.glsl
1 /*
2 * The implementations contained in this file are heavily based on the
3 * implementations found in the Berkeley SoftFloat library. As such, they are
4 * licensed under the same 3-clause BSD license:
5 *
6 * License for Berkeley SoftFloat Release 3e
7 *
8 * John R. Hauser
9 * 2018 January 20
10 *
11 * The following applies to the whole of SoftFloat Release 3e as well as to
12 * each source file individually.
13 *
14 * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
15 * University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright notice,
21 * this list of conditions, and the following disclaimer.
22 *
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions, and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 *
27 * 3. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
34 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 #version 430
44 #extension GL_ARB_gpu_shader_int64 : enable
45 #extension GL_ARB_shader_bit_encoding : enable
46 #extension GL_EXT_shader_integer_mix : enable
47 #extension GL_MESA_shader_integer_functions : enable
48
49 #pragma warning(off)
50
51 /* Software IEEE floating-point rounding mode.
52 * GLSL spec section "4.7.1 Range and Precision":
53 * The rounding mode cannot be set and is undefined.
54 * But here, we are able to define the rounding mode at the compilation time.
55 */
56 #define FLOAT_ROUND_NEAREST_EVEN 0
57 #define FLOAT_ROUND_TO_ZERO 1
58 #define FLOAT_ROUND_DOWN 2
59 #define FLOAT_ROUND_UP 3
60 #define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN
61
62 /* Absolute value of a Float64 :
63 * Clear the sign bit
64 */
65 uint64_t
66 __fabs64(uint64_t __a)
67 {
68 uvec2 a = unpackUint2x32(__a);
69 a.y &= 0x7FFFFFFFu;
70 return packUint2x32(a);
71 }
72
73 /* Returns 1 if the double-precision floating-point value `a' is a NaN;
74 * otherwise returns 0.
75 */
76 bool
77 __is_nan(uint64_t __a)
78 {
79 uvec2 a = unpackUint2x32(__a);
80 return (0xFFE00000u <= (a.y<<1)) &&
81 ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
82 }
83
84 /* Negate value of a Float64 :
85 * Toggle the sign bit
86 */
87 uint64_t
88 __fneg64(uint64_t __a)
89 {
90 uvec2 a = unpackUint2x32(__a);
91 a.y ^= (1u << 31);
92 return packUint2x32(a);
93 }
94
95 uint64_t
96 __fsign64(uint64_t __a)
97 {
98 uvec2 a = unpackUint2x32(__a);
99 uvec2 retval;
100 retval.x = 0u;
101 retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
102 return packUint2x32(retval);
103 }
104
105 /* Returns the fraction bits of the double-precision floating-point value `a'.*/
106 uint
107 __extractFloat64FracLo(uint64_t a)
108 {
109 return unpackUint2x32(a).x;
110 }
111
112 uint
113 __extractFloat64FracHi(uint64_t a)
114 {
115 return unpackUint2x32(a).y & 0x000FFFFFu;
116 }
117
118 /* Returns the exponent bits of the double-precision floating-point value `a'.*/
119 int
120 __extractFloat64Exp(uint64_t __a)
121 {
122 uvec2 a = unpackUint2x32(__a);
123 return int((a.y>>20) & 0x7FFu);
124 }
125
126 bool
127 __feq64_nonnan(uint64_t __a, uint64_t __b)
128 {
129 uvec2 a = unpackUint2x32(__a);
130 uvec2 b = unpackUint2x32(__b);
131 return (a.x == b.x) &&
132 ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
133 }
134
135 /* Returns true if the double-precision floating-point value `a' is equal to the
136 * corresponding value `b', and false otherwise. The comparison is performed
137 * according to the IEEE Standard for Floating-Point Arithmetic.
138 */
139 bool
140 __feq64(uint64_t a, uint64_t b)
141 {
142 if (__is_nan(a) || __is_nan(b))
143 return false;
144
145 return __feq64_nonnan(a, b);
146 }
147
148 /* Returns true if the double-precision floating-point value `a' is not equal
149 * to the corresponding value `b', and false otherwise. The comparison is
150 * performed according to the IEEE Standard for Floating-Point Arithmetic.
151 */
152 bool
153 __fne64(uint64_t a, uint64_t b)
154 {
155 if (__is_nan(a) || __is_nan(b))
156 return true;
157
158 return !__feq64_nonnan(a, b);
159 }
160
161 /* Returns the sign bit of the double-precision floating-point value `a'.*/
162 uint
163 __extractFloat64Sign(uint64_t a)
164 {
165 return unpackUint2x32(a).y & 0x80000000u;
166 }
167
168 /* Returns true if the signed 64-bit value formed by concatenating `a0' and
169 * `a1' is less than the signed 64-bit value formed by concatenating `b0' and
170 * `b1'. Otherwise, returns false.
171 */
172 bool
173 ilt64(uint a0, uint a1, uint b0, uint b1)
174 {
175 return (int(a0) < int(b0)) || ((a0 == b0) && (a1 < b1));
176 }
177
178 bool
179 __flt64_nonnan(uint64_t __a, uint64_t __b)
180 {
181 uvec2 a = unpackUint2x32(__a);
182 uvec2 b = unpackUint2x32(__b);
183
184 /* IEEE 754 floating point numbers are specifically designed so that, with
185 * two exceptions, values can be compared by bit-casting to signed integers
186 * with the same number of bits.
187 *
188 * From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
189 *
190 * When comparing as 2's-complement integers: If the sign bits differ,
191 * the negative number precedes the positive number, so 2's complement
192 * gives the correct result (except that negative zero and positive zero
193 * should be considered equal). If both values are positive, the 2's
194 * complement comparison again gives the correct result. Otherwise (two
195 * negative numbers), the correct FP ordering is the opposite of the 2's
196 * complement ordering.
197 *
198 * The logic implied by the above quotation is:
199 *
200 * !both_are_zero(a, b) && (both_negative(a, b) ? a > b : a < b)
201 *
202 * This is equivalent to
203 *
204 * fne(a, b) && (both_negative(a, b) ? a >= b : a < b)
205 *
206 * fne(a, b) && (both_negative(a, b) ? !(a < b) : a < b)
207 *
208 * fne(a, b) && ((both_negative(a, b) && !(a < b)) ||
209 * (!both_negative(a, b) && (a < b)))
210 *
211 * (A!|B)&(A|!B) is (A xor B) which is implemented here using !=.
212 *
213 * fne(a, b) && (both_negative(a, b) != (a < b))
214 */
215 bool lt = ilt64(a.y, a.x, b.y, b.x);
216 bool both_negative = (a.y & b.y & 0x80000000u) != 0;
217
218 return !__feq64_nonnan(__a, __b) && (lt != both_negative);
219 }
220
221 /* Returns true if the double-precision floating-point value `a' is less than
222 * the corresponding value `b', and false otherwise. The comparison is performed
223 * according to the IEEE Standard for Floating-Point Arithmetic.
224 */
225 bool
226 __flt64(uint64_t a, uint64_t b)
227 {
228 /* This weird layout matters. Doing the "obvious" thing results in extra
229 * flow control being inserted to implement the short-circuit evaluation
230 * rules. Flow control is bad!
231 */
232 bool x = !__is_nan(a);
233 bool y = !__is_nan(b);
234 bool z = __flt64_nonnan(a, b);
235
236 return (x && y && z);
237 }
238
239 /* Returns true if the double-precision floating-point value `a' is greater
240 * than or equal to * the corresponding value `b', and false otherwise. The
241 * comparison is performed * according to the IEEE Standard for Floating-Point
242 * Arithmetic.
243 */
244 bool
245 __fge64(uint64_t a, uint64_t b)
246 {
247 /* This weird layout matters. Doing the "obvious" thing results in extra
248 * flow control being inserted to implement the short-circuit evaluation
249 * rules. Flow control is bad!
250 */
251 bool x = !__is_nan(a);
252 bool y = !__is_nan(b);
253 bool z = !__flt64_nonnan(a, b);
254
255 return (x && y && z);
256 }
257
258 uint64_t
259 __fsat64(uint64_t __a)
260 {
261 /* fsat(NaN) should be zero. */
262 if (__is_nan(__a) || __flt64_nonnan(__a, 0ul))
263 return 0ul;
264
265 if (!__flt64_nonnan(__a, 0x3FF0000000000000ul /* 1.0 */))
266 return 0x3FF0000000000000ul;
267
268 return __a;
269 }
270
271 /* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
272 * value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
273 * any carry out is lost. The result is broken into two 32-bit pieces which
274 * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
275 */
276 void
277 __add64(uint a0, uint a1, uint b0, uint b1,
278 out uint z0Ptr,
279 out uint z1Ptr)
280 {
281 uint z1 = a1 + b1;
282 z1Ptr = z1;
283 z0Ptr = a0 + b0 + uint(z1 < a1);
284 }
285
286
287 /* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
288 * 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
289 * 2^64, so any borrow out (carry out) is lost. The result is broken into two
290 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
291 * `z1Ptr'.
292 */
293 void
294 __sub64(uint a0, uint a1, uint b0, uint b1,
295 out uint z0Ptr,
296 out uint z1Ptr)
297 {
298 z1Ptr = a1 - b1;
299 z0Ptr = a0 - b0 - uint(a1 < b1);
300 }
301
302 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
303 * number of bits given in `count'. If any nonzero bits are shifted off, they
304 * are "jammed" into the least significant bit of the result by setting the
305 * least significant bit to 1. The value of `count' can be arbitrarily large;
306 * in particular, if `count' is greater than 64, the result will be either 0
307 * or 1, depending on whether the concatenation of `a0' and `a1' is zero or
308 * nonzero. The result is broken into two 32-bit pieces which are stored at
309 * the locations pointed to by `z0Ptr' and `z1Ptr'.
310 */
311 void
312 __shift64RightJamming(uint a0,
313 uint a1,
314 int count,
315 out uint z0Ptr,
316 out uint z1Ptr)
317 {
318 uint z0;
319 uint z1;
320 int negCount = (-count) & 31;
321
322 z0 = mix(0u, a0, count == 0);
323 z0 = mix(z0, (a0 >> count), count < 32);
324
325 z1 = uint((a0 | a1) != 0u); /* count >= 64 */
326 uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
327 z1 = mix(z1, z1_lt64, count < 64);
328 z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
329 uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
330 z1 = mix(z1, z1_lt32, count < 32);
331 z1 = mix(z1, a1, count == 0);
332 z1Ptr = z1;
333 z0Ptr = z0;
334 }
335
336 /* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
337 * by 32 _plus_ the number of bits given in `count'. The shifted result is
338 * at most 64 nonzero bits; these are broken into two 32-bit pieces which are
339 * stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
340 * off form a third 32-bit result as follows: The _last_ bit shifted off is
341 * the most-significant bit of the extra result, and the other 31 bits of the
342 * extra result are all zero if and only if _all_but_the_last_ bits shifted off
343 * were all zero. This extra result is stored in the location pointed to by
344 * `z2Ptr'. The value of `count' can be arbitrarily large.
345 * (This routine makes more sense if `a0', `a1', and `a2' are considered
346 * to form a fixed-point value with binary point between `a1' and `a2'. This
347 * fixed-point value is shifted right by the number of bits given in `count',
348 * and the integer part of the result is returned at the locations pointed to
349 * by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
350 * corrupted as described above, and is returned at the location pointed to by
351 * `z2Ptr'.)
352 */
353 void
354 __shift64ExtraRightJamming(uint a0, uint a1, uint a2,
355 int count,
356 out uint z0Ptr,
357 out uint z1Ptr,
358 out uint z2Ptr)
359 {
360 uint z0 = 0u;
361 uint z1;
362 uint z2;
363 int negCount = (-count) & 31;
364
365 z2 = mix(uint(a0 != 0u), a0, count == 64);
366 z2 = mix(z2, a0 << negCount, count < 64);
367 z2 = mix(z2, a1 << negCount, count < 32);
368
369 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
370 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
371
372 a2 = mix(a2 | a1, a2, count < 32);
373 z0 = mix(z0, a0 >> count, count < 32);
374 z2 |= uint(a2 != 0u);
375
376 z0 = mix(z0, 0u, (count == 32));
377 z1 = mix(z1, a0, (count == 32));
378 z2 = mix(z2, a1, (count == 32));
379 z0 = mix(z0, a0, (count == 0));
380 z1 = mix(z1, a1, (count == 0));
381 z2 = mix(z2, a2, (count == 0));
382 z2Ptr = z2;
383 z1Ptr = z1;
384 z0Ptr = z0;
385 }
386
387 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
388 * number of bits given in `count'. Any bits shifted off are lost. The value
389 * of `count' must be less than 32. The result is broken into two 32-bit
390 * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
391 */
392 void
393 __shortShift64Left(uint a0, uint a1,
394 int count,
395 out uint z0Ptr,
396 out uint z1Ptr)
397 {
398 z1Ptr = a1<<count;
399 z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
400 }
401
402 /* Packs the sign `zSign', the exponent `zExp', and the significand formed by
403 * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
404 * point value, returning the result. After being shifted into the proper
405 * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
406 * together to form the most significant 32 bits of the result. This means
407 * that any integer portion of `zFrac0' will be added into the exponent. Since
408 * a properly normalized significand will have an integer portion equal to 1,
409 * the `zExp' input should be 1 less than the desired result exponent whenever
410 * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
411 */
412 uint64_t
413 __packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
414 {
415 uvec2 z;
416
417 z.y = zSign + (uint(zExp) << 20) + zFrac0;
418 z.x = zFrac1;
419 return packUint2x32(z);
420 }
421
422 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
423 * and extended significand formed by the concatenation of `zFrac0', `zFrac1',
424 * and `zFrac2', and returns the proper double-precision floating-point value
425 * corresponding to the abstract input. Ordinarily, the abstract value is
426 * simply rounded and packed into the double-precision format, with the inexact
427 * exception raised if the abstract input cannot be represented exactly.
428 * However, if the abstract value is too large, the overflow and inexact
429 * exceptions are raised and an infinity or maximal finite value is returned.
430 * If the abstract value is too small, the input value is rounded to a
431 * subnormal number, and the underflow and inexact exceptions are raised if the
432 * abstract input cannot be represented exactly as a subnormal double-precision
433 * floating-point number.
434 * The input significand must be normalized or smaller. If the input
435 * significand is not normalized, `zExp' must be 0; in that case, the result
436 * returned is a subnormal number, and it must not require rounding. In the
437 * usual case that the input significand is normalized, `zExp' must be 1 less
438 * than the "true" floating-point exponent. The handling of underflow and
439 * overflow follows the IEEE Standard for Floating-Point Arithmetic.
440 */
441 uint64_t
442 __roundAndPackFloat64(uint zSign,
443 int zExp,
444 uint zFrac0,
445 uint zFrac1,
446 uint zFrac2)
447 {
448 bool roundNearestEven;
449 bool increment;
450
451 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
452 increment = int(zFrac2) < 0;
453 if (!roundNearestEven) {
454 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
455 increment = false;
456 } else {
457 if (zSign != 0u) {
458 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
459 (zFrac2 != 0u);
460 } else {
461 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
462 (zFrac2 != 0u);
463 }
464 }
465 }
466 if (0x7FD <= zExp) {
467 if ((0x7FD < zExp) ||
468 ((zExp == 0x7FD) &&
469 (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
470 increment)) {
471 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
472 ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
473 ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
474 return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
475 }
476 return __packFloat64(zSign, 0x7FF, 0u, 0u);
477 }
478 if (zExp < 0) {
479 __shift64ExtraRightJamming(
480 zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
481 zExp = 0;
482 if (roundNearestEven) {
483 increment = zFrac2 < 0u;
484 } else {
485 if (zSign != 0u) {
486 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
487 (zFrac2 != 0u);
488 } else {
489 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
490 (zFrac2 != 0u);
491 }
492 }
493 }
494 }
495 if (increment) {
496 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
497 zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
498 } else {
499 zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
500 }
501 return __packFloat64(zSign, zExp, zFrac0, zFrac1);
502 }
503
504 uint64_t
505 __roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
506 {
507 bool roundNearestEven;
508 bool increment;
509 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
510
511 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
512
513 if (zFrac2 >= 0x80000000u)
514 increment = false;
515
516 if (!roundNearestEven) {
517 if (zSign != 0u) {
518 if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
519 increment = false;
520 }
521 } else {
522 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
523 (zFrac2 != 0u);
524 }
525 }
526
527 if (increment) {
528 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
529 if ((zFrac0 | zFrac1) != 0u)
530 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
531 }
532 return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
533 (zSign != 0u && (zFrac0 | zFrac1) != 0u));
534 }
535
536 int64_t
537 __roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
538 {
539 bool roundNearestEven;
540 bool increment;
541 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
542 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
543
544 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
545
546 if (zFrac2 >= 0x80000000u)
547 increment = false;
548
549 if (!roundNearestEven) {
550 if (zSign != 0u) {
551 increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
552 (zFrac2 != 0u));
553 } else {
554 increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
555 (zFrac2 != 0u);
556 }
557 }
558
559 if (increment) {
560 __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
561 if ((zFrac0 | zFrac1) != 0u)
562 zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
563 }
564
565 int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
566 -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
567 zSign != 0u);
568 int64_t nan = mix(default_PosNaN, default_NegNaN, zSign != 0u);
569 return mix(absZ, nan, ((zSign != 0u) != (absZ < 0)) && bool(absZ));
570 }
571
572 /* Returns the number of leading 0 bits before the most-significant 1 bit of
573 * `a'. If `a' is zero, 32 is returned.
574 */
575 int
576 __countLeadingZeros32(uint a)
577 {
578 return 31 - findMSB(a);
579 }
580
581 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
582 * and significand formed by the concatenation of `zSig0' and `zSig1', and
583 * returns the proper double-precision floating-point value corresponding
584 * to the abstract input. This routine is just like `__roundAndPackFloat64'
585 * except that the input significand has fewer bits and does not have to be
586 * normalized. In all cases, `zExp' must be 1 less than the "true" floating-
587 * point exponent.
588 */
589 uint64_t
590 __normalizeRoundAndPackFloat64(uint zSign,
591 int zExp,
592 uint zFrac0,
593 uint zFrac1)
594 {
595 int shiftCount;
596 uint zFrac2;
597
598 if (zFrac0 == 0u) {
599 zExp -= 32;
600 zFrac0 = zFrac1;
601 zFrac1 = 0u;
602 }
603
604 shiftCount = __countLeadingZeros32(zFrac0) - 11;
605 if (0 <= shiftCount) {
606 zFrac2 = 0u;
607 __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
608 } else {
609 __shift64ExtraRightJamming(
610 zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
611 }
612 zExp -= shiftCount;
613 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
614 }
615
616 /* Takes two double-precision floating-point values `a' and `b', one of which
617 * is a NaN, and returns the appropriate NaN result.
618 */
619 uint64_t
620 __propagateFloat64NaN(uint64_t __a, uint64_t __b)
621 {
622 bool aIsNaN = __is_nan(__a);
623 bool bIsNaN = __is_nan(__b);
624 uvec2 a = unpackUint2x32(__a);
625 uvec2 b = unpackUint2x32(__b);
626 a.y |= 0x00080000u;
627 b.y |= 0x00080000u;
628
629 return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
630 }
631
632 /* Returns the result of adding the double-precision floating-point values
633 * `a' and `b'. The operation is performed according to the IEEE Standard for
634 * Floating-Point Arithmetic.
635 */
636 uint64_t
637 __fadd64(uint64_t a, uint64_t b)
638 {
639 uint aSign = __extractFloat64Sign(a);
640 uint bSign = __extractFloat64Sign(b);
641 uint aFracLo = __extractFloat64FracLo(a);
642 uint aFracHi = __extractFloat64FracHi(a);
643 uint bFracLo = __extractFloat64FracLo(b);
644 uint bFracHi = __extractFloat64FracHi(b);
645 int aExp = __extractFloat64Exp(a);
646 int bExp = __extractFloat64Exp(b);
647 uint zFrac0 = 0u;
648 uint zFrac1 = 0u;
649 int expDiff = aExp - bExp;
650 if (aSign == bSign) {
651 uint zFrac2 = 0u;
652 int zExp;
653 bool orig_exp_diff_is_zero = (expDiff == 0);
654
655 if (orig_exp_diff_is_zero) {
656 if (aExp == 0x7FF) {
657 bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
658 return mix(a, __propagateFloat64NaN(a, b), propagate);
659 }
660 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
661 if (aExp == 0)
662 return __packFloat64(aSign, 0, zFrac0, zFrac1);
663 zFrac2 = 0u;
664 zFrac0 |= 0x00200000u;
665 zExp = aExp;
666 __shift64ExtraRightJamming(
667 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
668 } else if (0 < expDiff) {
669 if (aExp == 0x7FF) {
670 bool propagate = (aFracHi | aFracLo) != 0u;
671 return mix(a, __propagateFloat64NaN(a, b), propagate);
672 }
673
674 expDiff = mix(expDiff, expDiff - 1, bExp == 0);
675 bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
676 __shift64ExtraRightJamming(
677 bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
678 zExp = aExp;
679 } else if (expDiff < 0) {
680 if (bExp == 0x7FF) {
681 bool propagate = (bFracHi | bFracLo) != 0u;
682 return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
683 }
684 expDiff = mix(expDiff, expDiff + 1, aExp == 0);
685 aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0);
686 __shift64ExtraRightJamming(
687 aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2);
688 zExp = bExp;
689 }
690 if (!orig_exp_diff_is_zero) {
691 aFracHi |= 0x00100000u;
692 __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
693 --zExp;
694 if (!(zFrac0 < 0x00200000u)) {
695 __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
696 ++zExp;
697 }
698 }
699 return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
700
701 } else {
702 int zExp;
703
704 __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
705 __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
706 if (0 < expDiff) {
707 if (aExp == 0x7FF) {
708 bool propagate = (aFracHi | aFracLo) != 0u;
709 return mix(a, __propagateFloat64NaN(a, b), propagate);
710 }
711 expDiff = mix(expDiff, expDiff - 1, bExp == 0);
712 bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
713 __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
714 aFracHi |= 0x40000000u;
715 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
716 zExp = aExp;
717 --zExp;
718 return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
719 }
720 if (expDiff < 0) {
721 if (bExp == 0x7FF) {
722 bool propagate = (bFracHi | bFracLo) != 0u;
723 return mix(__packFloat64(aSign ^ 0x80000000u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
724 }
725 expDiff = mix(expDiff, expDiff + 1, aExp == 0);
726 aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0);
727 __shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo);
728 bFracHi |= 0x40000000u;
729 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
730 zExp = bExp;
731 aSign ^= 0x80000000u;
732 --zExp;
733 return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
734 }
735 if (aExp == 0x7FF) {
736 bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
737 return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
738 }
739 bExp = mix(bExp, 1, aExp == 0);
740 aExp = mix(aExp, 1, aExp == 0);
741 bool zexp_normal = false;
742 bool blta = true;
743 if (bFracHi < aFracHi) {
744 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
745 zexp_normal = true;
746 }
747 else if (aFracHi < bFracHi) {
748 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
749 blta = false;
750 zexp_normal = true;
751 }
752 else if (bFracLo < aFracLo) {
753 __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
754 zexp_normal = true;
755 }
756 else if (aFracLo < bFracLo) {
757 __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
758 blta = false;
759 zexp_normal = true;
760 }
761 zExp = mix(bExp, aExp, blta);
762 aSign = mix(aSign ^ 0x80000000u, aSign, blta);
763 uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) << 31, 0, 0u, 0u);
764 uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
765 return mix(retval_0, retval_1, zexp_normal);
766 }
767 }
768
769 /* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
770 * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
771 * product. The product is broken into four 32-bit pieces which are stored at
772 * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
773 */
774 void
775 __mul64To128(uint a0, uint a1, uint b0, uint b1,
776 out uint z0Ptr,
777 out uint z1Ptr,
778 out uint z2Ptr,
779 out uint z3Ptr)
780 {
781 uint z0 = 0u;
782 uint z1 = 0u;
783 uint z2 = 0u;
784 uint z3 = 0u;
785 uint more1 = 0u;
786 uint more2 = 0u;
787
788 umulExtended(a1, b1, z2, z3);
789 umulExtended(a1, b0, z1, more2);
790 __add64(z1, more2, 0u, z2, z1, z2);
791 umulExtended(a0, b0, z0, more1);
792 __add64(z0, more1, 0u, z1, z0, z1);
793 umulExtended(a0, b1, more1, more2);
794 __add64(more1, more2, 0u, z2, more1, z2);
795 __add64(z0, z1, 0u, more1, z0, z1);
796 z3Ptr = z3;
797 z2Ptr = z2;
798 z1Ptr = z1;
799 z0Ptr = z0;
800 }
801
802 /* Normalizes the subnormal double-precision floating-point value represented
803 * by the denormalized significand formed by the concatenation of `aFrac0' and
804 * `aFrac1'. The normalized exponent is stored at the location pointed to by
805 * `zExpPtr'. The most significant 21 bits of the normalized significand are
806 * stored at the location pointed to by `zFrac0Ptr', and the least significant
807 * 32 bits of the normalized significand are stored at the location pointed to
808 * by `zFrac1Ptr'.
809 */
810 void
811 __normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
812 out int zExpPtr,
813 out uint zFrac0Ptr,
814 out uint zFrac1Ptr)
815 {
816 int shiftCount;
817 uint temp_zfrac0, temp_zfrac1;
818 shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
819 zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
820
821 temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
822 temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
823
824 __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
825
826 zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
827 zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
828 }
829
830 /* Returns the result of multiplying the double-precision floating-point values
831 * `a' and `b'. The operation is performed according to the IEEE Standard for
832 * Floating-Point Arithmetic.
833 */
834 uint64_t
835 __fmul64(uint64_t a, uint64_t b)
836 {
837 uint zFrac0 = 0u;
838 uint zFrac1 = 0u;
839 uint zFrac2 = 0u;
840 uint zFrac3 = 0u;
841 int zExp;
842
843 uint aFracLo = __extractFloat64FracLo(a);
844 uint aFracHi = __extractFloat64FracHi(a);
845 uint bFracLo = __extractFloat64FracLo(b);
846 uint bFracHi = __extractFloat64FracHi(b);
847 int aExp = __extractFloat64Exp(a);
848 uint aSign = __extractFloat64Sign(a);
849 int bExp = __extractFloat64Exp(b);
850 uint bSign = __extractFloat64Sign(b);
851 uint zSign = aSign ^ bSign;
852 if (aExp == 0x7FF) {
853 if (((aFracHi | aFracLo) != 0u) ||
854 ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
855 return __propagateFloat64NaN(a, b);
856 }
857 if ((uint(bExp) | bFracHi | bFracLo) == 0u)
858 return 0xFFFFFFFFFFFFFFFFUL;
859 return __packFloat64(zSign, 0x7FF, 0u, 0u);
860 }
861 if (bExp == 0x7FF) {
862 if ((bFracHi | bFracLo) != 0u)
863 return __propagateFloat64NaN(a, b);
864 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
865 return 0xFFFFFFFFFFFFFFFFUL;
866 return __packFloat64(zSign, 0x7FF, 0u, 0u);
867 }
868 if (aExp == 0) {
869 if ((aFracHi | aFracLo) == 0u)
870 return __packFloat64(zSign, 0, 0u, 0u);
871 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
872 }
873 if (bExp == 0) {
874 if ((bFracHi | bFracLo) == 0u)
875 return __packFloat64(zSign, 0, 0u, 0u);
876 __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
877 }
878 zExp = aExp + bExp - 0x400;
879 aFracHi |= 0x00100000u;
880 __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
881 __mul64To128(
882 aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
883 __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
884 zFrac2 |= uint(zFrac3 != 0u);
885 if (0x00200000u <= zFrac0) {
886 __shift64ExtraRightJamming(
887 zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
888 ++zExp;
889 }
890 return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
891 }
892
893 uint64_t
894 __ffma64(uint64_t a, uint64_t b, uint64_t c)
895 {
896 return __fadd64(__fmul64(a, b), c);
897 }
898
899 /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
900 * number of bits given in `count'. Any bits shifted off are lost. The value
901 * of `count' can be arbitrarily large; in particular, if `count' is greater
902 * than 64, the result will be 0. The result is broken into two 32-bit pieces
903 * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
904 */
905 void
906 __shift64Right(uint a0, uint a1,
907 int count,
908 out uint z0Ptr,
909 out uint z1Ptr)
910 {
911 uint z0;
912 uint z1;
913 int negCount = (-count) & 31;
914
915 z0 = 0u;
916 z0 = mix(z0, (a0 >> count), count < 32);
917 z0 = mix(z0, a0, count == 0);
918
919 z1 = mix(0u, (a0 >> (count & 31)), count < 64);
920 z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
921 z1 = mix(z1, a0, count == 0);
922
923 z1Ptr = z1;
924 z0Ptr = z0;
925 }
926
927 /* Returns the result of converting the double-precision floating-point value
928 * `a' to the unsigned integer format. The conversion is performed according
929 * to the IEEE Standard for Floating-Point Arithmetic.
930 */
931 uint
932 __fp64_to_uint(uint64_t a)
933 {
934 uint aFracLo = __extractFloat64FracLo(a);
935 uint aFracHi = __extractFloat64FracHi(a);
936 int aExp = __extractFloat64Exp(a);
937 uint aSign = __extractFloat64Sign(a);
938
939 if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
940 return 0xFFFFFFFFu;
941
942 aFracHi |= mix(0u, 0x00100000u, aExp != 0);
943
944 int shiftDist = 0x427 - aExp;
945 if (0 < shiftDist)
946 __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
947
948 if ((aFracHi & 0xFFFFF000u) != 0u)
949 return mix(~0u, 0u, aSign != 0u);
950
951 uint z = 0u;
952 uint zero = 0u;
953 __shift64Right(aFracHi, aFracLo, 12, zero, z);
954
955 uint expt = mix(~0u, 0u, aSign != 0u);
956
957 return mix(z, expt, (aSign != 0u) && (z != 0u));
958 }
959
960 uint64_t
961 __uint_to_fp64(uint a)
962 {
963 if (a == 0u)
964 return 0ul;
965
966 int shiftDist = __countLeadingZeros32(a) + 21;
967
968 uint aHigh = 0u;
969 uint aLow = 0u;
970 int negCount = (- shiftDist) & 31;
971
972 aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
973 aLow = 0u;
974 aHigh = mix(aHigh, 0u, shiftDist == 0);
975 aLow = mix(aLow, a, shiftDist ==0);
976 aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
977 aLow = mix(aLow, a << shiftDist, shiftDist < 32);
978
979 return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
980 }
981
982 uint64_t
983 __uint64_to_fp64(uint64_t a)
984 {
985 if (a == 0u)
986 return 0ul;
987
988 uvec2 aFrac = unpackUint2x32(a);
989 uint aFracLo = __extractFloat64FracLo(a);
990 uint aFracHi = __extractFloat64FracHi(a);
991
992 if ((aFracHi & 0x80000000u) != 0u) {
993 __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
994 return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
995 } else {
996 return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
997 }
998 }
999
1000 uint64_t
1001 __fp64_to_uint64(uint64_t a)
1002 {
1003 uint aFracLo = __extractFloat64FracLo(a);
1004 uint aFracHi = __extractFloat64FracHi(a);
1005 int aExp = __extractFloat64Exp(a);
1006 uint aSign = __extractFloat64Sign(a);
1007 uint zFrac2 = 0u;
1008 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1009
1010 aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1011 int shiftCount = 0x433 - aExp;
1012
1013 if ( shiftCount <= 0 ) {
1014 if (shiftCount < -11 && aExp == 0x7FF) {
1015 if ((aFracHi | aFracLo) != 0u)
1016 return __propagateFloat64NaN(a, a);
1017 return mix(default_nan, a, aSign == 0u);
1018 }
1019 __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1020 } else {
1021 __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1022 aFracHi, aFracLo, zFrac2);
1023 }
1024 return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
1025 }
1026
1027 int64_t
1028 __fp64_to_int64(uint64_t a)
1029 {
1030 uint zFrac2 = 0u;
1031 uint aFracLo = __extractFloat64FracLo(a);
1032 uint aFracHi = __extractFloat64FracHi(a);
1033 int aExp = __extractFloat64Exp(a);
1034 uint aSign = __extractFloat64Sign(a);
1035 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
1036 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
1037
1038 aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1039 int shiftCount = 0x433 - aExp;
1040
1041 if (shiftCount <= 0) {
1042 if (shiftCount < -11 && aExp == 0x7FF) {
1043 if ((aFracHi | aFracLo) != 0u)
1044 return default_NegNaN;
1045 return mix(default_NegNaN, default_PosNaN, aSign == 0u);
1046 }
1047 __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1048 } else {
1049 __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1050 aFracHi, aFracLo, zFrac2);
1051 }
1052
1053 return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2);
1054 }
1055
1056 uint64_t
1057 __fp32_to_uint64(float f)
1058 {
1059 uint a = floatBitsToUint(f);
1060 uint aFrac = a & 0x007FFFFFu;
1061 int aExp = int((a>>23) & 0xFFu);
1062 uint aSign = a & 0x80000000u;
1063 uint zFrac0 = 0u;
1064 uint zFrac1 = 0u;
1065 uint zFrac2 = 0u;
1066 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1067 int shiftCount = 0xBE - aExp;
1068
1069 if (shiftCount <0) {
1070 if (aExp == 0xFF)
1071 return default_nan;
1072 }
1073
1074 aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
1075 __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
1076
1077 if (shiftCount != 0) {
1078 __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
1079 zFrac0, zFrac1, zFrac2);
1080 }
1081
1082 return __roundAndPackUInt64(aSign, zFrac0, zFrac1, zFrac2);
1083 }
1084
1085 int64_t
1086 __fp32_to_int64(float f)
1087 {
1088 uint a = floatBitsToUint(f);
1089 uint aFrac = a & 0x007FFFFFu;
1090 int aExp = int((a>>23) & 0xFFu);
1091 uint aSign = a & 0x80000000u;
1092 uint zFrac0 = 0u;
1093 uint zFrac1 = 0u;
1094 uint zFrac2 = 0u;
1095 int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
1096 int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
1097 int shiftCount = 0xBE - aExp;
1098
1099 if (shiftCount <0) {
1100 if (aExp == 0xFF && aFrac != 0u)
1101 return default_NegNaN;
1102 return mix(default_NegNaN, default_PosNaN, aSign == 0u);
1103 }
1104
1105 aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0);
1106 __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1);
1107
1108 if (shiftCount != 0) {
1109 __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount,
1110 zFrac0, zFrac1, zFrac2);
1111 }
1112
1113 return __roundAndPackInt64(aSign, zFrac0, zFrac1, zFrac2);
1114 }
1115
1116 uint64_t
1117 __int64_to_fp64(int64_t a)
1118 {
1119 if (a==0)
1120 return 0ul;
1121
1122 uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
1123 uint aFracHi = __extractFloat64FracHi(absA);
1124 uvec2 aFrac = unpackUint2x32(absA);
1125 uint zSign = uint(unpackInt2x32(a).y) & 0x80000000u;
1126
1127 if ((aFracHi & 0x80000000u) != 0u) {
1128 return mix(0ul, __packFloat64(0x80000000u, 0x434, 0u, 0u), a < 0);
1129 }
1130
1131 return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
1132 }
1133
1134 /* Returns the result of converting the double-precision floating-point value
1135 * `a' to the 32-bit two's complement integer format. The conversion is
1136 * performed according to the IEEE Standard for Floating-Point Arithmetic---
1137 * which means in particular that the conversion is rounded according to the
1138 * current rounding mode. If `a' is a NaN, the largest positive integer is
1139 * returned. Otherwise, if the conversion overflows, the largest integer with
1140 * the same sign as `a' is returned.
1141 */
1142 int
1143 __fp64_to_int(uint64_t a)
1144 {
1145 uint aFracLo = __extractFloat64FracLo(a);
1146 uint aFracHi = __extractFloat64FracHi(a);
1147 int aExp = __extractFloat64Exp(a);
1148 uint aSign = __extractFloat64Sign(a);
1149
1150 uint absZ = 0u;
1151 uint aFracExtra = 0u;
1152 int shiftCount = aExp - 0x413;
1153
1154 if (0 <= shiftCount) {
1155 if (0x41E < aExp) {
1156 if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
1157 aSign = 0u;
1158 return mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1159 }
1160 __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
1161 } else {
1162 if (aExp < 0x3FF)
1163 return 0;
1164
1165 aFracHi |= 0x00100000u;
1166 aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
1167 absZ = aFracHi >> (- shiftCount);
1168 }
1169
1170 int z = mix(int(absZ), -int(absZ), aSign != 0u);
1171 int nan = mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1172 return mix(z, nan, ((aSign != 0u) != (z < 0)) && bool(z));
1173 }
1174
1175 /* Returns the result of converting the 32-bit two's complement integer `a'
1176 * to the double-precision floating-point format. The conversion is performed
1177 * according to the IEEE Standard for Floating-Point Arithmetic.
1178 */
1179 uint64_t
1180 __int_to_fp64(int a)
1181 {
1182 uint zFrac0 = 0u;
1183 uint zFrac1 = 0u;
1184 if (a==0)
1185 return __packFloat64(0u, 0, 0u, 0u);
1186 uint zSign = uint(a) & 0x80000000u;
1187 uint absA = mix(uint(a), uint(-a), a < 0);
1188 int shiftCount = __countLeadingZeros32(absA) - 11;
1189 if (0 <= shiftCount) {
1190 zFrac0 = absA << shiftCount;
1191 zFrac1 = 0u;
1192 } else {
1193 __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
1194 }
1195 return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
1196 }
1197
1198 bool
1199 __fp64_to_bool(uint64_t a)
1200 {
1201 return !__feq64_nonnan(__fabs64(a), 0ul);
1202 }
1203
1204 uint64_t
1205 __bool_to_fp64(bool a)
1206 {
1207 return packUint2x32(uvec2(0x00000000u, uint(-int(a) & 0x3ff00000)));
1208 }
1209
1210 /* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
1211 * single-precision floating-point value, returning the result. After being
1212 * shifted into the proper positions, the three fields are simply added
1213 * together to form the result. This means that any integer portion of `zSig'
1214 * will be added into the exponent. Since a properly normalized significand
1215 * will have an integer portion equal to 1, the `zExp' input should be 1 less
1216 * than the desired result exponent whenever `zFrac' is a complete, normalized
1217 * significand.
1218 */
1219 float
1220 __packFloat32(uint zSign, int zExp, uint zFrac)
1221 {
1222 return uintBitsToFloat(zSign + (uint(zExp)<<23) + zFrac);
1223 }
1224
1225 /* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1226 * and significand `zFrac', and returns the proper single-precision floating-
1227 * point value corresponding to the abstract input. Ordinarily, the abstract
1228 * value is simply rounded and packed into the single-precision format, with
1229 * the inexact exception raised if the abstract input cannot be represented
1230 * exactly. However, if the abstract value is too large, the overflow and
1231 * inexact exceptions are raised and an infinity or maximal finite value is
1232 * returned. If the abstract value is too small, the input value is rounded to
1233 * a subnormal number, and the underflow and inexact exceptions are raised if
1234 * the abstract input cannot be represented exactly as a subnormal single-
1235 * precision floating-point number.
1236 * The input significand `zFrac' has its binary point between bits 30
1237 * and 29, which is 7 bits to the left of the usual location. This shifted
1238 * significand must be normalized or smaller. If `zFrac' is not normalized,
1239 * `zExp' must be 0; in that case, the result returned is a subnormal number,
1240 * and it must not require rounding. In the usual case that `zFrac' is
1241 * normalized, `zExp' must be 1 less than the "true" floating-point exponent.
1242 * The handling of underflow and overflow follows the IEEE Standard for
1243 * Floating-Point Arithmetic.
1244 */
1245 float
1246 __roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
1247 {
1248 bool roundNearestEven;
1249 int roundIncrement;
1250 int roundBits;
1251
1252 roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
1253 roundIncrement = 0x40;
1254 if (!roundNearestEven) {
1255 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
1256 roundIncrement = 0;
1257 } else {
1258 roundIncrement = 0x7F;
1259 if (zSign != 0u) {
1260 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
1261 roundIncrement = 0;
1262 } else {
1263 if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
1264 roundIncrement = 0;
1265 }
1266 }
1267 }
1268 roundBits = int(zFrac & 0x7Fu);
1269 if (0xFDu <= uint(zExp)) {
1270 if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
1271 return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
1272 int count = -zExp;
1273 bool zexp_lt0 = zExp < 0;
1274 uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
1275 zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
1276 roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
1277 zExp = mix(zExp, 0, zexp_lt0);
1278 }
1279 zFrac = (zFrac + uint(roundIncrement))>>7;
1280 zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
1281
1282 return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
1283 }
1284
1285 /* Returns the result of converting the double-precision floating-point value
1286 * `a' to the single-precision floating-point format. The conversion is
1287 * performed according to the IEEE Standard for Floating-Point Arithmetic.
1288 */
1289 float
1290 __fp64_to_fp32(uint64_t __a)
1291 {
1292 uvec2 a = unpackUint2x32(__a);
1293 uint zFrac = 0u;
1294 uint allZero = 0u;
1295
1296 uint aFracLo = __extractFloat64FracLo(__a);
1297 uint aFracHi = __extractFloat64FracHi(__a);
1298 int aExp = __extractFloat64Exp(__a);
1299 uint aSign = __extractFloat64Sign(__a);
1300 if (aExp == 0x7FF) {
1301 __shortShift64Left(a.y, a.x, 12, a.y, a.x);
1302 float rval = uintBitsToFloat(aSign | 0x7FC00000u | (a.y>>9));
1303 rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
1304 return rval;
1305 }
1306 __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
1307 zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
1308 return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
1309 }
1310
1311 float
1312 __uint64_to_fp32(uint64_t __a)
1313 {
1314 uvec2 aFrac = unpackUint2x32(__a);
1315 int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
1316 __countLeadingZeros32(aFrac.x) - 1,
1317 aFrac.y == 0u);
1318
1319 if (0 <= shiftCount)
1320 __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
1321 else
1322 __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
1323
1324 return __roundAndPackFloat32(0u, 0x9C - shiftCount, aFrac.x);
1325 }
1326
1327 float
1328 __int64_to_fp32(int64_t __a)
1329 {
1330 uint aSign = uint(unpackInt2x32(__a).y) & 0x80000000u;
1331 uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0);
1332 uvec2 aFrac = unpackUint2x32(absA);
1333 int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33,
1334 __countLeadingZeros32(aFrac.x) - 1,
1335 aFrac.y == 0u);
1336
1337 if (0 <= shiftCount)
1338 __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x);
1339 else
1340 __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x);
1341
1342 return __roundAndPackFloat32(aSign, 0x9C - shiftCount, aFrac.x);
1343 }
1344
1345 /* Returns the result of converting the single-precision floating-point value
1346 * `a' to the double-precision floating-point format.
1347 */
1348 uint64_t
1349 __fp32_to_fp64(float f)
1350 {
1351 uint a = floatBitsToUint(f);
1352 uint aFrac = a & 0x007FFFFFu;
1353 int aExp = int((a>>23) & 0xFFu);
1354 uint aSign = a & 0x80000000u;
1355 uint zFrac0 = 0u;
1356 uint zFrac1 = 0u;
1357
1358 if (aExp == 0xFF) {
1359 if (aFrac != 0u) {
1360 uint nanLo = 0u;
1361 uint nanHi = a<<9;
1362 __shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
1363 nanHi |= aSign | 0x7FF80000u;
1364 return packUint2x32(uvec2(nanLo, nanHi));
1365 }
1366 return __packFloat64(aSign, 0x7FF, 0u, 0u);
1367 }
1368
1369 if (aExp == 0) {
1370 if (aFrac == 0u)
1371 return __packFloat64(aSign, 0, 0u, 0u);
1372 /* Normalize subnormal */
1373 int shiftCount = __countLeadingZeros32(aFrac) - 8;
1374 aFrac <<= shiftCount;
1375 aExp = 1 - shiftCount;
1376 --aExp;
1377 }
1378
1379 __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
1380 return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
1381 }
1382
1383 /* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
1384 * 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
1385 * modulo 2^96, so any carry out is lost. The result is broken into three
1386 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
1387 * `z1Ptr', and `z2Ptr'.
1388 */
1389 void
1390 __add96(uint a0, uint a1, uint a2,
1391 uint b0, uint b1, uint b2,
1392 out uint z0Ptr,
1393 out uint z1Ptr,
1394 out uint z2Ptr)
1395 {
1396 uint z2 = a2 + b2;
1397 uint carry1 = uint(z2 < a2);
1398 uint z1 = a1 + b1;
1399 uint carry0 = uint(z1 < a1);
1400 uint z0 = a0 + b0;
1401 z1 += carry1;
1402 z0 += uint(z1 < carry1);
1403 z0 += carry0;
1404 z2Ptr = z2;
1405 z1Ptr = z1;
1406 z0Ptr = z0;
1407 }
1408
1409 /* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
1410 * the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
1411 * is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
1412 * into three 32-bit pieces which are stored at the locations pointed to by
1413 * `z0Ptr', `z1Ptr', and `z2Ptr'.
1414 */
1415 void
1416 __sub96(uint a0, uint a1, uint a2,
1417 uint b0, uint b1, uint b2,
1418 out uint z0Ptr,
1419 out uint z1Ptr,
1420 out uint z2Ptr)
1421 {
1422 uint z2 = a2 - b2;
1423 uint borrow1 = uint(a2 < b2);
1424 uint z1 = a1 - b1;
1425 uint borrow0 = uint(a1 < b1);
1426 uint z0 = a0 - b0;
1427 z0 -= uint(z1 < borrow1);
1428 z1 -= borrow1;
1429 z0 -= borrow0;
1430 z2Ptr = z2;
1431 z1Ptr = z1;
1432 z0Ptr = z0;
1433 }
1434
1435 /* Returns an approximation to the 32-bit integer quotient obtained by dividing
1436 * `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
1437 * divisor `b' must be at least 2^31. If q is the exact quotient truncated
1438 * toward zero, the approximation returned lies between q and q + 2 inclusive.
1439 * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
1440 * unsigned integer is returned.
1441 */
1442 uint
1443 __estimateDiv64To32(uint a0, uint a1, uint b)
1444 {
1445 uint b0;
1446 uint b1;
1447 uint rem0 = 0u;
1448 uint rem1 = 0u;
1449 uint term0 = 0u;
1450 uint term1 = 0u;
1451 uint z;
1452
1453 if (b <= a0)
1454 return 0xFFFFFFFFu;
1455 b0 = b>>16;
1456 z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
1457 umulExtended(b, z, term0, term1);
1458 __sub64(a0, a1, term0, term1, rem0, rem1);
1459 while (int(rem0) < 0) {
1460 z -= 0x10000u;
1461 b1 = b<<16;
1462 __add64(rem0, rem1, b0, b1, rem0, rem1);
1463 }
1464 rem0 = (rem0<<16) | (rem1>>16);
1465 z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
1466 return z;
1467 }
1468
1469 uint
1470 __sqrtOddAdjustments(int index)
1471 {
1472 uint res = 0u;
1473 if (index == 0)
1474 res = 0x0004u;
1475 if (index == 1)
1476 res = 0x0022u;
1477 if (index == 2)
1478 res = 0x005Du;
1479 if (index == 3)
1480 res = 0x00B1u;
1481 if (index == 4)
1482 res = 0x011Du;
1483 if (index == 5)
1484 res = 0x019Fu;
1485 if (index == 6)
1486 res = 0x0236u;
1487 if (index == 7)
1488 res = 0x02E0u;
1489 if (index == 8)
1490 res = 0x039Cu;
1491 if (index == 9)
1492 res = 0x0468u;
1493 if (index == 10)
1494 res = 0x0545u;
1495 if (index == 11)
1496 res = 0x631u;
1497 if (index == 12)
1498 res = 0x072Bu;
1499 if (index == 13)
1500 res = 0x0832u;
1501 if (index == 14)
1502 res = 0x0946u;
1503 if (index == 15)
1504 res = 0x0A67u;
1505
1506 return res;
1507 }
1508
1509 uint
1510 __sqrtEvenAdjustments(int index)
1511 {
1512 uint res = 0u;
1513 if (index == 0)
1514 res = 0x0A2Du;
1515 if (index == 1)
1516 res = 0x08AFu;
1517 if (index == 2)
1518 res = 0x075Au;
1519 if (index == 3)
1520 res = 0x0629u;
1521 if (index == 4)
1522 res = 0x051Au;
1523 if (index == 5)
1524 res = 0x0429u;
1525 if (index == 6)
1526 res = 0x0356u;
1527 if (index == 7)
1528 res = 0x029Eu;
1529 if (index == 8)
1530 res = 0x0200u;
1531 if (index == 9)
1532 res = 0x0179u;
1533 if (index == 10)
1534 res = 0x0109u;
1535 if (index == 11)
1536 res = 0x00AFu;
1537 if (index == 12)
1538 res = 0x0068u;
1539 if (index == 13)
1540 res = 0x0034u;
1541 if (index == 14)
1542 res = 0x0012u;
1543 if (index == 15)
1544 res = 0x0002u;
1545
1546 return res;
1547 }
1548
1549 /* Returns an approximation to the square root of the 32-bit significand given
1550 * by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
1551 * `aExp' (the least significant bit) is 1, the integer returned approximates
1552 * 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
1553 * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
1554 * case, the approximation returned lies strictly within +/-2 of the exact
1555 * value.
1556 */
1557 uint
1558 __estimateSqrt32(int aExp, uint a)
1559 {
1560 uint z;
1561
1562 int index = int(a>>27 & 15u);
1563 if ((aExp & 1) != 0) {
1564 z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
1565 z = ((a / z)<<14) + (z<<15);
1566 a >>= 1;
1567 } else {
1568 z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
1569 z = a / z + z;
1570 z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
1571 if (z <= a)
1572 return uint(int(a)>>1);
1573 }
1574 return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
1575 }
1576
1577 /* Returns the square root of the double-precision floating-point value `a'.
1578 * The operation is performed according to the IEEE Standard for Floating-Point
1579 * Arithmetic.
1580 */
1581 uint64_t
1582 __fsqrt64(uint64_t a)
1583 {
1584 uint zFrac0 = 0u;
1585 uint zFrac1 = 0u;
1586 uint zFrac2 = 0u;
1587 uint doubleZFrac0 = 0u;
1588 uint rem0 = 0u;
1589 uint rem1 = 0u;
1590 uint rem2 = 0u;
1591 uint rem3 = 0u;
1592 uint term0 = 0u;
1593 uint term1 = 0u;
1594 uint term2 = 0u;
1595 uint term3 = 0u;
1596 uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1597
1598 uint aFracLo = __extractFloat64FracLo(a);
1599 uint aFracHi = __extractFloat64FracHi(a);
1600 int aExp = __extractFloat64Exp(a);
1601 uint aSign = __extractFloat64Sign(a);
1602 if (aExp == 0x7FF) {
1603 if ((aFracHi | aFracLo) != 0u)
1604 return __propagateFloat64NaN(a, a);
1605 if (aSign == 0u)
1606 return a;
1607 return default_nan;
1608 }
1609 if (aSign != 0u) {
1610 if ((uint(aExp) | aFracHi | aFracLo) == 0u)
1611 return a;
1612 return default_nan;
1613 }
1614 if (aExp == 0) {
1615 if ((aFracHi | aFracLo) == 0u)
1616 return __packFloat64(0u, 0, 0u, 0u);
1617 __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
1618 }
1619 int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
1620 aFracHi |= 0x00100000u;
1621 __shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
1622 zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
1623 if (zFrac0 == 0u)
1624 zFrac0 = 0x7FFFFFFFu;
1625 doubleZFrac0 = zFrac0 + zFrac0;
1626 __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
1627 umulExtended(zFrac0, zFrac0, term0, term1);
1628 __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
1629 while (int(rem0) < 0) {
1630 --zFrac0;
1631 doubleZFrac0 -= 2u;
1632 __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
1633 }
1634 zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
1635 if ((zFrac1 & 0x1FFu) <= 5u) {
1636 if (zFrac1 == 0u)
1637 zFrac1 = 1u;
1638 umulExtended(doubleZFrac0, zFrac1, term1, term2);
1639 __sub64(rem1, 0u, term1, term2, rem1, rem2);
1640 umulExtended(zFrac1, zFrac1, term2, term3);
1641 __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
1642 while (int(rem1) < 0) {
1643 --zFrac1;
1644 __shortShift64Left(0u, zFrac1, 1, term2, term3);
1645 term3 |= 1u;
1646 term2 |= doubleZFrac0;
1647 __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
1648 }
1649 zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
1650 }
1651 __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
1652 return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
1653 }
1654
1655 uint64_t
1656 __ftrunc64(uint64_t __a)
1657 {
1658 uvec2 a = unpackUint2x32(__a);
1659 int aExp = __extractFloat64Exp(__a);
1660 uint zLo;
1661 uint zHi;
1662
1663 int unbiasedExp = aExp - 1023;
1664 int fracBits = 52 - unbiasedExp;
1665 uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
1666 uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
1667 zLo = maskLo & a.x;
1668 zHi = maskHi & a.y;
1669
1670 zLo = mix(zLo, 0u, unbiasedExp < 0);
1671 zHi = mix(zHi, 0u, unbiasedExp < 0);
1672 zLo = mix(zLo, a.x, unbiasedExp > 52);
1673 zHi = mix(zHi, a.y, unbiasedExp > 52);
1674 return packUint2x32(uvec2(zLo, zHi));
1675 }
1676
1677 uint64_t
1678 __ffloor64(uint64_t a)
1679 {
1680 bool is_positive = __fge64(a, 0ul);
1681 uint64_t tr = __ftrunc64(a);
1682
1683 if (is_positive || __feq64(tr, a)) {
1684 return tr;
1685 } else {
1686 return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
1687 }
1688 }
1689
1690 uint64_t
1691 __fround64(uint64_t __a)
1692 {
1693 uvec2 a = unpackUint2x32(__a);
1694 int unbiasedExp = __extractFloat64Exp(__a) - 1023;
1695 uint aHi = a.y;
1696 uint aLo = a.x;
1697
1698 if (unbiasedExp < 20) {
1699 if (unbiasedExp < 0) {
1700 if ((aHi & 0x80000000u) != 0u && aLo == 0u) {
1701 return 0;
1702 }
1703 aHi &= 0x80000000u;
1704 if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) {
1705 aLo = 0u;
1706 return packUint2x32(uvec2(aLo, aHi));
1707 }
1708 aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1);
1709 aLo = 0u;
1710 } else {
1711 uint maskExp = 0x000FFFFFu >> unbiasedExp;
1712 uint lastBit = maskExp + 1;
1713 aHi += 0x00080000u >> unbiasedExp;
1714 if ((aHi & maskExp) == 0u)
1715 aHi &= ~lastBit;
1716 aHi &= ~maskExp;
1717 aLo = 0u;
1718 }
1719 } else if (unbiasedExp > 51 || unbiasedExp == 1024) {
1720 return __a;
1721 } else {
1722 uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
1723 if ((aLo & maskExp) == 0u)
1724 return __a;
1725 uint tmp = aLo + (1u << (51 - unbiasedExp));
1726 if(tmp < aLo)
1727 aHi += 1u;
1728 aLo = tmp;
1729 aLo &= ~maskExp;
1730 }
1731
1732 return packUint2x32(uvec2(aLo, aHi));
1733 }
1734
1735 uint64_t
1736 __fmin64(uint64_t a, uint64_t b)
1737 {
1738 if (__is_nan(a)) return b;
1739 if (__is_nan(b)) return a;
1740
1741 if (__flt64_nonnan(a, b)) return a;
1742 return b;
1743 }
1744
1745 uint64_t
1746 __fmax64(uint64_t a, uint64_t b)
1747 {
1748 if (__is_nan(a)) return b;
1749 if (__is_nan(b)) return a;
1750
1751 if (__flt64_nonnan(a, b)) return b;
1752 return a;
1753 }
1754
1755 uint64_t
1756 __ffract64(uint64_t a)
1757 {
1758 return __fadd64(a, __fneg64(__ffloor64(a)));
1759 }