glsl: remove the shader_group_vote and shader_ballot expression ops
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "compiler/glsl_types.h"
27
28 ir_rvalue::ir_rvalue(enum ir_node_type t)
29 : ir_instruction(t)
30 {
31 this->type = glsl_type::error_type;
32 }
33
34 bool ir_rvalue::is_zero() const
35 {
36 return false;
37 }
38
39 bool ir_rvalue::is_one() const
40 {
41 return false;
42 }
43
44 bool ir_rvalue::is_negative_one() const
45 {
46 return false;
47 }
48
49 /**
50 * Modify the swizzle make to move one component to another
51 *
52 * \param m IR swizzle to be modified
53 * \param from Component in the RHS that is to be swizzled
54 * \param to Desired swizzle location of \c from
55 */
56 static void
57 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
58 {
59 switch (to) {
60 case 0: m.x = from; break;
61 case 1: m.y = from; break;
62 case 2: m.z = from; break;
63 case 3: m.w = from; break;
64 default: assert(!"Should not get here.");
65 }
66 }
67
68 void
69 ir_assignment::set_lhs(ir_rvalue *lhs)
70 {
71 void *mem_ctx = this;
72 bool swizzled = false;
73
74 while (lhs != NULL) {
75 ir_swizzle *swiz = lhs->as_swizzle();
76
77 if (swiz == NULL)
78 break;
79
80 unsigned write_mask = 0;
81 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
82
83 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
84 unsigned c = 0;
85
86 switch (i) {
87 case 0: c = swiz->mask.x; break;
88 case 1: c = swiz->mask.y; break;
89 case 2: c = swiz->mask.z; break;
90 case 3: c = swiz->mask.w; break;
91 default: assert(!"Should not get here.");
92 }
93
94 write_mask |= (((this->write_mask >> i) & 1) << c);
95 update_rhs_swizzle(rhs_swiz, i, c);
96 rhs_swiz.num_components = swiz->val->type->vector_elements;
97 }
98
99 this->write_mask = write_mask;
100 lhs = swiz->val;
101
102 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
103 swizzled = true;
104 }
105
106 if (swizzled) {
107 /* Now, RHS channels line up with the LHS writemask. Collapse it
108 * to just the channels that will be written.
109 */
110 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
111 int rhs_chan = 0;
112 for (int i = 0; i < 4; i++) {
113 if (write_mask & (1 << i))
114 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
115 }
116 rhs_swiz.num_components = rhs_chan;
117 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
118 }
119
120 assert((lhs == NULL) || lhs->as_dereference());
121
122 this->lhs = (ir_dereference *) lhs;
123 }
124
125 ir_variable *
126 ir_assignment::whole_variable_written()
127 {
128 ir_variable *v = this->lhs->whole_variable_referenced();
129
130 if (v == NULL)
131 return NULL;
132
133 if (v->type->is_scalar())
134 return v;
135
136 if (v->type->is_vector()) {
137 const unsigned mask = (1U << v->type->vector_elements) - 1;
138
139 if (mask != this->write_mask)
140 return NULL;
141 }
142
143 /* Either all the vector components are assigned or the variable is some
144 * composite type (and the whole thing is assigned.
145 */
146 return v;
147 }
148
149 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
150 ir_rvalue *condition, unsigned write_mask)
151 : ir_instruction(ir_type_assignment)
152 {
153 this->condition = condition;
154 this->rhs = rhs;
155 this->lhs = lhs;
156 this->write_mask = write_mask;
157
158 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
159 int lhs_components = 0;
160 for (int i = 0; i < 4; i++) {
161 if (write_mask & (1 << i))
162 lhs_components++;
163 }
164
165 assert(lhs_components == this->rhs->type->vector_elements);
166 }
167 }
168
169 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
170 ir_rvalue *condition)
171 : ir_instruction(ir_type_assignment)
172 {
173 this->condition = condition;
174 this->rhs = rhs;
175
176 /* If the RHS is a vector type, assume that all components of the vector
177 * type are being written to the LHS. The write mask comes from the RHS
178 * because we can have a case where the LHS is a vec4 and the RHS is a
179 * vec3. In that case, the assignment is:
180 *
181 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
182 */
183 if (rhs->type->is_vector())
184 this->write_mask = (1U << rhs->type->vector_elements) - 1;
185 else if (rhs->type->is_scalar())
186 this->write_mask = 1;
187 else
188 this->write_mask = 0;
189
190 this->set_lhs(lhs);
191 }
192
193 ir_expression::ir_expression(int op, const struct glsl_type *type,
194 ir_rvalue *op0, ir_rvalue *op1,
195 ir_rvalue *op2, ir_rvalue *op3)
196 : ir_rvalue(ir_type_expression)
197 {
198 this->type = type;
199 this->operation = ir_expression_operation(op);
200 this->operands[0] = op0;
201 this->operands[1] = op1;
202 this->operands[2] = op2;
203 this->operands[3] = op3;
204 #ifndef NDEBUG
205 int num_operands = get_num_operands(this->operation);
206 for (int i = num_operands; i < 4; i++) {
207 assert(this->operands[i] == NULL);
208 }
209 #endif
210 }
211
212 ir_expression::ir_expression(int op, ir_rvalue *op0)
213 : ir_rvalue(ir_type_expression)
214 {
215 this->operation = ir_expression_operation(op);
216 this->operands[0] = op0;
217 this->operands[1] = NULL;
218 this->operands[2] = NULL;
219 this->operands[3] = NULL;
220
221 assert(op <= ir_last_unop);
222
223 switch (this->operation) {
224 case ir_unop_bit_not:
225 case ir_unop_logic_not:
226 case ir_unop_neg:
227 case ir_unop_abs:
228 case ir_unop_sign:
229 case ir_unop_rcp:
230 case ir_unop_rsq:
231 case ir_unop_sqrt:
232 case ir_unop_exp:
233 case ir_unop_log:
234 case ir_unop_exp2:
235 case ir_unop_log2:
236 case ir_unop_trunc:
237 case ir_unop_ceil:
238 case ir_unop_floor:
239 case ir_unop_fract:
240 case ir_unop_round_even:
241 case ir_unop_sin:
242 case ir_unop_cos:
243 case ir_unop_dFdx:
244 case ir_unop_dFdx_coarse:
245 case ir_unop_dFdx_fine:
246 case ir_unop_dFdy:
247 case ir_unop_dFdy_coarse:
248 case ir_unop_dFdy_fine:
249 case ir_unop_bitfield_reverse:
250 case ir_unop_interpolate_at_centroid:
251 case ir_unop_saturate:
252 this->type = op0->type;
253 break;
254
255 case ir_unop_f2i:
256 case ir_unop_b2i:
257 case ir_unop_u2i:
258 case ir_unop_d2i:
259 case ir_unop_bitcast_f2i:
260 case ir_unop_bit_count:
261 case ir_unop_find_msb:
262 case ir_unop_find_lsb:
263 case ir_unop_subroutine_to_int:
264 case ir_unop_i642i:
265 case ir_unop_u642i:
266 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
267 op0->type->vector_elements, 1);
268 break;
269
270 case ir_unop_b2f:
271 case ir_unop_i2f:
272 case ir_unop_u2f:
273 case ir_unop_d2f:
274 case ir_unop_bitcast_i2f:
275 case ir_unop_bitcast_u2f:
276 case ir_unop_i642f:
277 case ir_unop_u642f:
278 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
279 op0->type->vector_elements, 1);
280 break;
281
282 case ir_unop_f2b:
283 case ir_unop_i2b:
284 case ir_unop_d2b:
285 case ir_unop_i642b:
286 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
287 op0->type->vector_elements, 1);
288 break;
289
290 case ir_unop_f2d:
291 case ir_unop_i2d:
292 case ir_unop_u2d:
293 case ir_unop_i642d:
294 case ir_unop_u642d:
295 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
296 op0->type->vector_elements, 1);
297 break;
298
299 case ir_unop_i2u:
300 case ir_unop_f2u:
301 case ir_unop_d2u:
302 case ir_unop_bitcast_f2u:
303 case ir_unop_i642u:
304 case ir_unop_u642u:
305 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
306 op0->type->vector_elements, 1);
307 break;
308
309 case ir_unop_i2i64:
310 case ir_unop_u2i64:
311 case ir_unop_b2i64:
312 case ir_unop_f2i64:
313 case ir_unop_d2i64:
314 case ir_unop_u642i64:
315 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
316 op0->type->vector_elements, 1);
317 break;
318
319 case ir_unop_i2u64:
320 case ir_unop_u2u64:
321 case ir_unop_f2u64:
322 case ir_unop_d2u64:
323 case ir_unop_i642u64:
324 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
325 op0->type->vector_elements, 1);
326 break;
327 case ir_unop_noise:
328 this->type = glsl_type::float_type;
329 break;
330
331 case ir_unop_unpack_double_2x32:
332 case ir_unop_unpack_uint_2x32:
333 this->type = glsl_type::uvec2_type;
334 break;
335
336 case ir_unop_unpack_int_2x32:
337 this->type = glsl_type::ivec2_type;
338 break;
339
340 case ir_unop_pack_snorm_2x16:
341 case ir_unop_pack_snorm_4x8:
342 case ir_unop_pack_unorm_2x16:
343 case ir_unop_pack_unorm_4x8:
344 case ir_unop_pack_half_2x16:
345 this->type = glsl_type::uint_type;
346 break;
347
348 case ir_unop_pack_double_2x32:
349 this->type = glsl_type::double_type;
350 break;
351
352 case ir_unop_pack_int_2x32:
353 this->type = glsl_type::int64_t_type;
354 break;
355
356 case ir_unop_pack_uint_2x32:
357 this->type = glsl_type::uint64_t_type;
358 break;
359
360 case ir_unop_unpack_snorm_2x16:
361 case ir_unop_unpack_unorm_2x16:
362 case ir_unop_unpack_half_2x16:
363 this->type = glsl_type::vec2_type;
364 break;
365
366 case ir_unop_unpack_snorm_4x8:
367 case ir_unop_unpack_unorm_4x8:
368 this->type = glsl_type::vec4_type;
369 break;
370
371 case ir_unop_frexp_sig:
372 this->type = op0->type;
373 break;
374 case ir_unop_frexp_exp:
375 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
376 op0->type->vector_elements, 1);
377 break;
378
379 case ir_unop_get_buffer_size:
380 case ir_unop_ssbo_unsized_array_length:
381 this->type = glsl_type::int_type;
382 break;
383
384 case ir_unop_bitcast_i642d:
385 case ir_unop_bitcast_u642d:
386 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
387 op0->type->vector_elements, 1);
388 break;
389
390 case ir_unop_bitcast_d2i64:
391 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
392 op0->type->vector_elements, 1);
393 break;
394 case ir_unop_bitcast_d2u64:
395 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
396 op0->type->vector_elements, 1);
397 break;
398
399 default:
400 assert(!"not reached: missing automatic type setup for ir_expression");
401 this->type = op0->type;
402 break;
403 }
404 }
405
406 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
407 : ir_rvalue(ir_type_expression)
408 {
409 this->operation = ir_expression_operation(op);
410 this->operands[0] = op0;
411 this->operands[1] = op1;
412 this->operands[2] = NULL;
413 this->operands[3] = NULL;
414
415 assert(op > ir_last_unop);
416
417 switch (this->operation) {
418 case ir_binop_all_equal:
419 case ir_binop_any_nequal:
420 this->type = glsl_type::bool_type;
421 break;
422
423 case ir_binop_add:
424 case ir_binop_sub:
425 case ir_binop_min:
426 case ir_binop_max:
427 case ir_binop_pow:
428 case ir_binop_mul:
429 case ir_binop_div:
430 case ir_binop_mod:
431 if (op0->type->is_scalar()) {
432 this->type = op1->type;
433 } else if (op1->type->is_scalar()) {
434 this->type = op0->type;
435 } else {
436 if (this->operation == ir_binop_mul) {
437 this->type = glsl_type::get_mul_type(op0->type, op1->type);
438 } else {
439 assert(op0->type == op1->type);
440 this->type = op0->type;
441 }
442 }
443 break;
444
445 case ir_binop_logic_and:
446 case ir_binop_logic_xor:
447 case ir_binop_logic_or:
448 case ir_binop_bit_and:
449 case ir_binop_bit_xor:
450 case ir_binop_bit_or:
451 assert(!op0->type->is_matrix());
452 assert(!op1->type->is_matrix());
453 if (op0->type->is_scalar()) {
454 this->type = op1->type;
455 } else if (op1->type->is_scalar()) {
456 this->type = op0->type;
457 } else {
458 assert(op0->type->vector_elements == op1->type->vector_elements);
459 this->type = op0->type;
460 }
461 break;
462
463 case ir_binop_equal:
464 case ir_binop_nequal:
465 case ir_binop_lequal:
466 case ir_binop_gequal:
467 case ir_binop_less:
468 case ir_binop_greater:
469 assert(op0->type == op1->type);
470 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
471 op0->type->vector_elements, 1);
472 break;
473
474 case ir_binop_dot:
475 this->type = op0->type->get_base_type();
476 break;
477
478 case ir_binop_imul_high:
479 case ir_binop_carry:
480 case ir_binop_borrow:
481 case ir_binop_lshift:
482 case ir_binop_rshift:
483 case ir_binop_ldexp:
484 case ir_binop_interpolate_at_offset:
485 case ir_binop_interpolate_at_sample:
486 this->type = op0->type;
487 break;
488
489 case ir_binop_vector_extract:
490 this->type = op0->type->get_scalar_type();
491 break;
492
493 default:
494 assert(!"not reached: missing automatic type setup for ir_expression");
495 this->type = glsl_type::float_type;
496 }
497 }
498
499 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
500 ir_rvalue *op2)
501 : ir_rvalue(ir_type_expression)
502 {
503 this->operation = ir_expression_operation(op);
504 this->operands[0] = op0;
505 this->operands[1] = op1;
506 this->operands[2] = op2;
507 this->operands[3] = NULL;
508
509 assert(op > ir_last_binop && op <= ir_last_triop);
510
511 switch (this->operation) {
512 case ir_triop_fma:
513 case ir_triop_lrp:
514 case ir_triop_bitfield_extract:
515 case ir_triop_vector_insert:
516 this->type = op0->type;
517 break;
518
519 case ir_triop_csel:
520 this->type = op1->type;
521 break;
522
523 default:
524 assert(!"not reached: missing automatic type setup for ir_expression");
525 this->type = glsl_type::float_type;
526 }
527 }
528
529 unsigned int
530 ir_expression::get_num_operands(ir_expression_operation op)
531 {
532 assert(op <= ir_last_opcode);
533
534 if (op <= ir_last_unop)
535 return 1;
536
537 if (op <= ir_last_binop)
538 return 2;
539
540 if (op <= ir_last_triop)
541 return 3;
542
543 if (op <= ir_last_quadop)
544 return 4;
545
546 assert(false);
547 return 0;
548 }
549
550 #include "ir_expression_operation_strings.h"
551
552 const char*
553 depth_layout_string(ir_depth_layout layout)
554 {
555 switch(layout) {
556 case ir_depth_layout_none: return "";
557 case ir_depth_layout_any: return "depth_any";
558 case ir_depth_layout_greater: return "depth_greater";
559 case ir_depth_layout_less: return "depth_less";
560 case ir_depth_layout_unchanged: return "depth_unchanged";
561
562 default:
563 assert(0);
564 return "";
565 }
566 }
567
568 ir_expression_operation
569 ir_expression::get_operator(const char *str)
570 {
571 for (int op = 0; op <= int(ir_last_opcode); op++) {
572 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
573 return (ir_expression_operation) op;
574 }
575 return (ir_expression_operation) -1;
576 }
577
578 ir_variable *
579 ir_expression::variable_referenced() const
580 {
581 switch (operation) {
582 case ir_binop_vector_extract:
583 case ir_triop_vector_insert:
584 /* We get these for things like a[0] where a is a vector type. In these
585 * cases we want variable_referenced() to return the actual vector
586 * variable this is wrapping.
587 */
588 return operands[0]->variable_referenced();
589 default:
590 return ir_rvalue::variable_referenced();
591 }
592 }
593
594 ir_constant::ir_constant()
595 : ir_rvalue(ir_type_constant)
596 {
597 this->array_elements = NULL;
598 }
599
600 ir_constant::ir_constant(const struct glsl_type *type,
601 const ir_constant_data *data)
602 : ir_rvalue(ir_type_constant)
603 {
604 this->array_elements = NULL;
605
606 assert((type->base_type >= GLSL_TYPE_UINT)
607 && (type->base_type <= GLSL_TYPE_BOOL));
608
609 this->type = type;
610 memcpy(& this->value, data, sizeof(this->value));
611 }
612
613 ir_constant::ir_constant(float f, unsigned vector_elements)
614 : ir_rvalue(ir_type_constant)
615 {
616 assert(vector_elements <= 4);
617 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
618 for (unsigned i = 0; i < vector_elements; i++) {
619 this->value.f[i] = f;
620 }
621 for (unsigned i = vector_elements; i < 16; i++) {
622 this->value.f[i] = 0;
623 }
624 }
625
626 ir_constant::ir_constant(double d, unsigned vector_elements)
627 : ir_rvalue(ir_type_constant)
628 {
629 assert(vector_elements <= 4);
630 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
631 for (unsigned i = 0; i < vector_elements; i++) {
632 this->value.d[i] = d;
633 }
634 for (unsigned i = vector_elements; i < 16; i++) {
635 this->value.d[i] = 0.0;
636 }
637 }
638
639 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
640 : ir_rvalue(ir_type_constant)
641 {
642 assert(vector_elements <= 4);
643 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
644 for (unsigned i = 0; i < vector_elements; i++) {
645 this->value.u[i] = u;
646 }
647 for (unsigned i = vector_elements; i < 16; i++) {
648 this->value.u[i] = 0;
649 }
650 }
651
652 ir_constant::ir_constant(int integer, unsigned vector_elements)
653 : ir_rvalue(ir_type_constant)
654 {
655 assert(vector_elements <= 4);
656 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
657 for (unsigned i = 0; i < vector_elements; i++) {
658 this->value.i[i] = integer;
659 }
660 for (unsigned i = vector_elements; i < 16; i++) {
661 this->value.i[i] = 0;
662 }
663 }
664
665 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
666 : ir_rvalue(ir_type_constant)
667 {
668 assert(vector_elements <= 4);
669 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
670 for (unsigned i = 0; i < vector_elements; i++) {
671 this->value.u64[i] = u64;
672 }
673 for (unsigned i = vector_elements; i < 16; i++) {
674 this->value.u64[i] = 0;
675 }
676 }
677
678 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
679 : ir_rvalue(ir_type_constant)
680 {
681 assert(vector_elements <= 4);
682 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
683 for (unsigned i = 0; i < vector_elements; i++) {
684 this->value.i64[i] = int64;
685 }
686 for (unsigned i = vector_elements; i < 16; i++) {
687 this->value.i64[i] = 0;
688 }
689 }
690
691 ir_constant::ir_constant(bool b, unsigned vector_elements)
692 : ir_rvalue(ir_type_constant)
693 {
694 assert(vector_elements <= 4);
695 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
696 for (unsigned i = 0; i < vector_elements; i++) {
697 this->value.b[i] = b;
698 }
699 for (unsigned i = vector_elements; i < 16; i++) {
700 this->value.b[i] = false;
701 }
702 }
703
704 ir_constant::ir_constant(const ir_constant *c, unsigned i)
705 : ir_rvalue(ir_type_constant)
706 {
707 this->array_elements = NULL;
708 this->type = c->type->get_base_type();
709
710 switch (this->type->base_type) {
711 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
712 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
713 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
714 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
715 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
716 default: assert(!"Should not get here."); break;
717 }
718 }
719
720 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
721 : ir_rvalue(ir_type_constant)
722 {
723 this->array_elements = NULL;
724 this->type = type;
725
726 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
727 || type->is_record() || type->is_array());
728
729 if (type->is_array()) {
730 this->array_elements = ralloc_array(this, ir_constant *, type->length);
731 unsigned i = 0;
732 foreach_in_list(ir_constant, value, value_list) {
733 assert(value->as_constant() != NULL);
734
735 this->array_elements[i++] = value;
736 }
737 return;
738 }
739
740 /* If the constant is a record, the types of each of the entries in
741 * value_list must be a 1-for-1 match with the structure components. Each
742 * entry must also be a constant. Just move the nodes from the value_list
743 * to the list in the ir_constant.
744 */
745 /* FINISHME: Should there be some type checking and / or assertions here? */
746 /* FINISHME: Should the new constant take ownership of the nodes from
747 * FINISHME: value_list, or should it make copies?
748 */
749 if (type->is_record()) {
750 value_list->move_nodes_to(& this->components);
751 return;
752 }
753
754 for (unsigned i = 0; i < 16; i++) {
755 this->value.u[i] = 0;
756 }
757
758 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
759
760 /* Constructors with exactly one scalar argument are special for vectors
761 * and matrices. For vectors, the scalar value is replicated to fill all
762 * the components. For matrices, the scalar fills the components of the
763 * diagonal while the rest is filled with 0.
764 */
765 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
766 if (type->is_matrix()) {
767 /* Matrix - fill diagonal (rest is already set to 0) */
768 assert(type->is_float() || type->is_double());
769 for (unsigned i = 0; i < type->matrix_columns; i++) {
770 if (type->is_float())
771 this->value.f[i * type->vector_elements + i] =
772 value->value.f[0];
773 else
774 this->value.d[i * type->vector_elements + i] =
775 value->value.d[0];
776 }
777 } else {
778 /* Vector or scalar - fill all components */
779 switch (type->base_type) {
780 case GLSL_TYPE_UINT:
781 case GLSL_TYPE_INT:
782 for (unsigned i = 0; i < type->components(); i++)
783 this->value.u[i] = value->value.u[0];
784 break;
785 case GLSL_TYPE_FLOAT:
786 for (unsigned i = 0; i < type->components(); i++)
787 this->value.f[i] = value->value.f[0];
788 break;
789 case GLSL_TYPE_DOUBLE:
790 for (unsigned i = 0; i < type->components(); i++)
791 this->value.d[i] = value->value.d[0];
792 break;
793 case GLSL_TYPE_UINT64:
794 case GLSL_TYPE_INT64:
795 for (unsigned i = 0; i < type->components(); i++)
796 this->value.u64[i] = value->value.u64[0];
797 break;
798 case GLSL_TYPE_BOOL:
799 for (unsigned i = 0; i < type->components(); i++)
800 this->value.b[i] = value->value.b[0];
801 break;
802 default:
803 assert(!"Should not get here.");
804 break;
805 }
806 }
807 return;
808 }
809
810 if (type->is_matrix() && value->type->is_matrix()) {
811 assert(value->next->is_tail_sentinel());
812
813 /* From section 5.4.2 of the GLSL 1.20 spec:
814 * "If a matrix is constructed from a matrix, then each component
815 * (column i, row j) in the result that has a corresponding component
816 * (column i, row j) in the argument will be initialized from there."
817 */
818 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
819 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
820 for (unsigned i = 0; i < cols; i++) {
821 for (unsigned j = 0; j < rows; j++) {
822 const unsigned src = i * value->type->vector_elements + j;
823 const unsigned dst = i * type->vector_elements + j;
824 this->value.f[dst] = value->value.f[src];
825 }
826 }
827
828 /* "All other components will be initialized to the identity matrix." */
829 for (unsigned i = cols; i < type->matrix_columns; i++)
830 this->value.f[i * type->vector_elements + i] = 1.0;
831
832 return;
833 }
834
835 /* Use each component from each entry in the value_list to initialize one
836 * component of the constant being constructed.
837 */
838 unsigned i = 0;
839 for (;;) {
840 assert(value->as_constant() != NULL);
841 assert(!value->is_tail_sentinel());
842
843 for (unsigned j = 0; j < value->type->components(); j++) {
844 switch (type->base_type) {
845 case GLSL_TYPE_UINT:
846 this->value.u[i] = value->get_uint_component(j);
847 break;
848 case GLSL_TYPE_INT:
849 this->value.i[i] = value->get_int_component(j);
850 break;
851 case GLSL_TYPE_FLOAT:
852 this->value.f[i] = value->get_float_component(j);
853 break;
854 case GLSL_TYPE_BOOL:
855 this->value.b[i] = value->get_bool_component(j);
856 break;
857 case GLSL_TYPE_DOUBLE:
858 this->value.d[i] = value->get_double_component(j);
859 break;
860 case GLSL_TYPE_UINT64:
861 this->value.u64[i] = value->get_uint64_component(j);
862 break;
863 case GLSL_TYPE_INT64:
864 this->value.i64[i] = value->get_int64_component(j);
865 break;
866 default:
867 /* FINISHME: What to do? Exceptions are not the answer.
868 */
869 break;
870 }
871
872 i++;
873 if (i >= type->components())
874 break;
875 }
876
877 if (i >= type->components())
878 break; /* avoid downcasting a list sentinel */
879 value = (ir_constant *) value->next;
880 }
881 }
882
883 ir_constant *
884 ir_constant::zero(void *mem_ctx, const glsl_type *type)
885 {
886 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
887 || type->is_record() || type->is_array());
888
889 ir_constant *c = new(mem_ctx) ir_constant;
890 c->type = type;
891 memset(&c->value, 0, sizeof(c->value));
892
893 if (type->is_array()) {
894 c->array_elements = ralloc_array(c, ir_constant *, type->length);
895
896 for (unsigned i = 0; i < type->length; i++)
897 c->array_elements[i] = ir_constant::zero(c, type->fields.array);
898 }
899
900 if (type->is_record()) {
901 for (unsigned i = 0; i < type->length; i++) {
902 ir_constant *comp = ir_constant::zero(mem_ctx, type->fields.structure[i].type);
903 c->components.push_tail(comp);
904 }
905 }
906
907 return c;
908 }
909
910 bool
911 ir_constant::get_bool_component(unsigned i) const
912 {
913 switch (this->type->base_type) {
914 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
915 case GLSL_TYPE_INT: return this->value.i[i] != 0;
916 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
917 case GLSL_TYPE_BOOL: return this->value.b[i];
918 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
919 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
920 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
921 default: assert(!"Should not get here."); break;
922 }
923
924 /* Must return something to make the compiler happy. This is clearly an
925 * error case.
926 */
927 return false;
928 }
929
930 float
931 ir_constant::get_float_component(unsigned i) const
932 {
933 switch (this->type->base_type) {
934 case GLSL_TYPE_UINT: return (float) this->value.u[i];
935 case GLSL_TYPE_INT: return (float) this->value.i[i];
936 case GLSL_TYPE_FLOAT: return this->value.f[i];
937 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
938 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
939 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
940 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
941 default: assert(!"Should not get here."); break;
942 }
943
944 /* Must return something to make the compiler happy. This is clearly an
945 * error case.
946 */
947 return 0.0;
948 }
949
950 double
951 ir_constant::get_double_component(unsigned i) const
952 {
953 switch (this->type->base_type) {
954 case GLSL_TYPE_UINT: return (double) this->value.u[i];
955 case GLSL_TYPE_INT: return (double) this->value.i[i];
956 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
957 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
958 case GLSL_TYPE_DOUBLE: return this->value.d[i];
959 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
960 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
961 default: assert(!"Should not get here."); break;
962 }
963
964 /* Must return something to make the compiler happy. This is clearly an
965 * error case.
966 */
967 return 0.0;
968 }
969
970 int
971 ir_constant::get_int_component(unsigned i) const
972 {
973 switch (this->type->base_type) {
974 case GLSL_TYPE_UINT: return this->value.u[i];
975 case GLSL_TYPE_INT: return this->value.i[i];
976 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
977 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
978 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
979 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
980 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
981 default: assert(!"Should not get here."); break;
982 }
983
984 /* Must return something to make the compiler happy. This is clearly an
985 * error case.
986 */
987 return 0;
988 }
989
990 unsigned
991 ir_constant::get_uint_component(unsigned i) const
992 {
993 switch (this->type->base_type) {
994 case GLSL_TYPE_UINT: return this->value.u[i];
995 case GLSL_TYPE_INT: return this->value.i[i];
996 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
997 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
998 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
999 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1000 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1001 default: assert(!"Should not get here."); break;
1002 }
1003
1004 /* Must return something to make the compiler happy. This is clearly an
1005 * error case.
1006 */
1007 return 0;
1008 }
1009
1010 int64_t
1011 ir_constant::get_int64_component(unsigned i) const
1012 {
1013 switch (this->type->base_type) {
1014 case GLSL_TYPE_UINT: return this->value.u[i];
1015 case GLSL_TYPE_INT: return this->value.i[i];
1016 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1017 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1018 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1019 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1020 case GLSL_TYPE_INT64: return this->value.i64[i];
1021 default: assert(!"Should not get here."); break;
1022 }
1023
1024 /* Must return something to make the compiler happy. This is clearly an
1025 * error case.
1026 */
1027 return 0;
1028 }
1029
1030 uint64_t
1031 ir_constant::get_uint64_component(unsigned i) const
1032 {
1033 switch (this->type->base_type) {
1034 case GLSL_TYPE_UINT: return this->value.u[i];
1035 case GLSL_TYPE_INT: return this->value.i[i];
1036 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1037 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1038 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1039 case GLSL_TYPE_UINT64: return this->value.u64[i];
1040 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1041 default: assert(!"Should not get here."); break;
1042 }
1043
1044 /* Must return something to make the compiler happy. This is clearly an
1045 * error case.
1046 */
1047 return 0;
1048 }
1049
1050 ir_constant *
1051 ir_constant::get_array_element(unsigned i) const
1052 {
1053 assert(this->type->is_array());
1054
1055 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1056 *
1057 * "Behavior is undefined if a shader subscripts an array with an index
1058 * less than 0 or greater than or equal to the size the array was
1059 * declared with."
1060 *
1061 * Most out-of-bounds accesses are removed before things could get this far.
1062 * There are cases where non-constant array index values can get constant
1063 * folded.
1064 */
1065 if (int(i) < 0)
1066 i = 0;
1067 else if (i >= this->type->length)
1068 i = this->type->length - 1;
1069
1070 return array_elements[i];
1071 }
1072
1073 ir_constant *
1074 ir_constant::get_record_field(const char *name)
1075 {
1076 int idx = this->type->field_index(name);
1077
1078 if (idx < 0)
1079 return NULL;
1080
1081 if (this->components.is_empty())
1082 return NULL;
1083
1084 exec_node *node = this->components.get_head_raw();
1085 for (int i = 0; i < idx; i++) {
1086 node = node->next;
1087
1088 /* If the end of the list is encountered before the element matching the
1089 * requested field is found, return NULL.
1090 */
1091 if (node->is_tail_sentinel())
1092 return NULL;
1093 }
1094
1095 return (ir_constant *) node;
1096 }
1097
1098 void
1099 ir_constant::copy_offset(ir_constant *src, int offset)
1100 {
1101 switch (this->type->base_type) {
1102 case GLSL_TYPE_UINT:
1103 case GLSL_TYPE_INT:
1104 case GLSL_TYPE_FLOAT:
1105 case GLSL_TYPE_DOUBLE:
1106 case GLSL_TYPE_UINT64:
1107 case GLSL_TYPE_INT64:
1108 case GLSL_TYPE_BOOL: {
1109 unsigned int size = src->type->components();
1110 assert (size <= this->type->components() - offset);
1111 for (unsigned int i=0; i<size; i++) {
1112 switch (this->type->base_type) {
1113 case GLSL_TYPE_UINT:
1114 value.u[i+offset] = src->get_uint_component(i);
1115 break;
1116 case GLSL_TYPE_INT:
1117 value.i[i+offset] = src->get_int_component(i);
1118 break;
1119 case GLSL_TYPE_FLOAT:
1120 value.f[i+offset] = src->get_float_component(i);
1121 break;
1122 case GLSL_TYPE_BOOL:
1123 value.b[i+offset] = src->get_bool_component(i);
1124 break;
1125 case GLSL_TYPE_DOUBLE:
1126 value.d[i+offset] = src->get_double_component(i);
1127 break;
1128 case GLSL_TYPE_UINT64:
1129 value.u64[i+offset] = src->get_uint64_component(i);
1130 break;
1131 case GLSL_TYPE_INT64:
1132 value.i64[i+offset] = src->get_int64_component(i);
1133 break;
1134 default: // Shut up the compiler
1135 break;
1136 }
1137 }
1138 break;
1139 }
1140
1141 case GLSL_TYPE_STRUCT: {
1142 assert (src->type == this->type);
1143 this->components.make_empty();
1144 foreach_in_list(ir_constant, orig, &src->components) {
1145 this->components.push_tail(orig->clone(this, NULL));
1146 }
1147 break;
1148 }
1149
1150 case GLSL_TYPE_ARRAY: {
1151 assert (src->type == this->type);
1152 for (unsigned i = 0; i < this->type->length; i++) {
1153 this->array_elements[i] = src->array_elements[i]->clone(this, NULL);
1154 }
1155 break;
1156 }
1157
1158 default:
1159 assert(!"Should not get here.");
1160 break;
1161 }
1162 }
1163
1164 void
1165 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1166 {
1167 assert (!type->is_array() && !type->is_record());
1168
1169 if (!type->is_vector() && !type->is_matrix()) {
1170 offset = 0;
1171 mask = 1;
1172 }
1173
1174 int id = 0;
1175 for (int i=0; i<4; i++) {
1176 if (mask & (1 << i)) {
1177 switch (this->type->base_type) {
1178 case GLSL_TYPE_UINT:
1179 value.u[i+offset] = src->get_uint_component(id++);
1180 break;
1181 case GLSL_TYPE_INT:
1182 value.i[i+offset] = src->get_int_component(id++);
1183 break;
1184 case GLSL_TYPE_FLOAT:
1185 value.f[i+offset] = src->get_float_component(id++);
1186 break;
1187 case GLSL_TYPE_BOOL:
1188 value.b[i+offset] = src->get_bool_component(id++);
1189 break;
1190 case GLSL_TYPE_DOUBLE:
1191 value.d[i+offset] = src->get_double_component(id++);
1192 break;
1193 case GLSL_TYPE_UINT64:
1194 value.u64[i+offset] = src->get_uint64_component(id++);
1195 break;
1196 case GLSL_TYPE_INT64:
1197 value.i64[i+offset] = src->get_int64_component(id++);
1198 break;
1199 default:
1200 assert(!"Should not get here.");
1201 return;
1202 }
1203 }
1204 }
1205 }
1206
1207 bool
1208 ir_constant::has_value(const ir_constant *c) const
1209 {
1210 if (this->type != c->type)
1211 return false;
1212
1213 if (this->type->is_array()) {
1214 for (unsigned i = 0; i < this->type->length; i++) {
1215 if (!this->array_elements[i]->has_value(c->array_elements[i]))
1216 return false;
1217 }
1218 return true;
1219 }
1220
1221 if (this->type->is_record()) {
1222 const exec_node *a_node = this->components.get_head_raw();
1223 const exec_node *b_node = c->components.get_head_raw();
1224
1225 while (!a_node->is_tail_sentinel()) {
1226 assert(!b_node->is_tail_sentinel());
1227
1228 const ir_constant *const a_field = (ir_constant *) a_node;
1229 const ir_constant *const b_field = (ir_constant *) b_node;
1230
1231 if (!a_field->has_value(b_field))
1232 return false;
1233
1234 a_node = a_node->next;
1235 b_node = b_node->next;
1236 }
1237
1238 return true;
1239 }
1240
1241 for (unsigned i = 0; i < this->type->components(); i++) {
1242 switch (this->type->base_type) {
1243 case GLSL_TYPE_UINT:
1244 if (this->value.u[i] != c->value.u[i])
1245 return false;
1246 break;
1247 case GLSL_TYPE_INT:
1248 if (this->value.i[i] != c->value.i[i])
1249 return false;
1250 break;
1251 case GLSL_TYPE_FLOAT:
1252 if (this->value.f[i] != c->value.f[i])
1253 return false;
1254 break;
1255 case GLSL_TYPE_BOOL:
1256 if (this->value.b[i] != c->value.b[i])
1257 return false;
1258 break;
1259 case GLSL_TYPE_DOUBLE:
1260 if (this->value.d[i] != c->value.d[i])
1261 return false;
1262 break;
1263 case GLSL_TYPE_UINT64:
1264 if (this->value.u64[i] != c->value.u64[i])
1265 return false;
1266 break;
1267 case GLSL_TYPE_INT64:
1268 if (this->value.i64[i] != c->value.i64[i])
1269 return false;
1270 break;
1271 default:
1272 assert(!"Should not get here.");
1273 return false;
1274 }
1275 }
1276
1277 return true;
1278 }
1279
1280 bool
1281 ir_constant::is_value(float f, int i) const
1282 {
1283 if (!this->type->is_scalar() && !this->type->is_vector())
1284 return false;
1285
1286 /* Only accept boolean values for 0/1. */
1287 if (int(bool(i)) != i && this->type->is_boolean())
1288 return false;
1289
1290 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1291 switch (this->type->base_type) {
1292 case GLSL_TYPE_FLOAT:
1293 if (this->value.f[c] != f)
1294 return false;
1295 break;
1296 case GLSL_TYPE_INT:
1297 if (this->value.i[c] != i)
1298 return false;
1299 break;
1300 case GLSL_TYPE_UINT:
1301 if (this->value.u[c] != unsigned(i))
1302 return false;
1303 break;
1304 case GLSL_TYPE_BOOL:
1305 if (this->value.b[c] != bool(i))
1306 return false;
1307 break;
1308 case GLSL_TYPE_DOUBLE:
1309 if (this->value.d[c] != double(f))
1310 return false;
1311 break;
1312 case GLSL_TYPE_UINT64:
1313 if (this->value.u64[c] != uint64_t(i))
1314 return false;
1315 break;
1316 case GLSL_TYPE_INT64:
1317 if (this->value.i64[c] != i)
1318 return false;
1319 break;
1320 default:
1321 /* The only other base types are structures, arrays, and samplers.
1322 * Samplers cannot be constants, and the others should have been
1323 * filtered out above.
1324 */
1325 assert(!"Should not get here.");
1326 return false;
1327 }
1328 }
1329
1330 return true;
1331 }
1332
1333 bool
1334 ir_constant::is_zero() const
1335 {
1336 return is_value(0.0, 0);
1337 }
1338
1339 bool
1340 ir_constant::is_one() const
1341 {
1342 return is_value(1.0, 1);
1343 }
1344
1345 bool
1346 ir_constant::is_negative_one() const
1347 {
1348 return is_value(-1.0, -1);
1349 }
1350
1351 bool
1352 ir_constant::is_uint16_constant() const
1353 {
1354 if (!type->is_integer())
1355 return false;
1356
1357 return value.u[0] < (1 << 16);
1358 }
1359
1360 ir_loop::ir_loop()
1361 : ir_instruction(ir_type_loop)
1362 {
1363 }
1364
1365
1366 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1367 : ir_dereference(ir_type_dereference_variable)
1368 {
1369 assert(var != NULL);
1370
1371 this->var = var;
1372 this->type = var->type;
1373 }
1374
1375
1376 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1377 ir_rvalue *array_index)
1378 : ir_dereference(ir_type_dereference_array)
1379 {
1380 this->array_index = array_index;
1381 this->set_array(value);
1382 }
1383
1384
1385 ir_dereference_array::ir_dereference_array(ir_variable *var,
1386 ir_rvalue *array_index)
1387 : ir_dereference(ir_type_dereference_array)
1388 {
1389 void *ctx = ralloc_parent(var);
1390
1391 this->array_index = array_index;
1392 this->set_array(new(ctx) ir_dereference_variable(var));
1393 }
1394
1395
1396 void
1397 ir_dereference_array::set_array(ir_rvalue *value)
1398 {
1399 assert(value != NULL);
1400
1401 this->array = value;
1402
1403 const glsl_type *const vt = this->array->type;
1404
1405 if (vt->is_array()) {
1406 type = vt->fields.array;
1407 } else if (vt->is_matrix()) {
1408 type = vt->column_type();
1409 } else if (vt->is_vector()) {
1410 type = vt->get_base_type();
1411 }
1412 }
1413
1414
1415 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1416 const char *field)
1417 : ir_dereference(ir_type_dereference_record)
1418 {
1419 assert(value != NULL);
1420
1421 this->record = value;
1422 this->field = ralloc_strdup(this, field);
1423 this->type = this->record->type->field_type(field);
1424 }
1425
1426
1427 ir_dereference_record::ir_dereference_record(ir_variable *var,
1428 const char *field)
1429 : ir_dereference(ir_type_dereference_record)
1430 {
1431 void *ctx = ralloc_parent(var);
1432
1433 this->record = new(ctx) ir_dereference_variable(var);
1434 this->field = ralloc_strdup(this, field);
1435 this->type = this->record->type->field_type(field);
1436 }
1437
1438 bool
1439 ir_dereference::is_lvalue() const
1440 {
1441 ir_variable *var = this->variable_referenced();
1442
1443 /* Every l-value derference chain eventually ends in a variable.
1444 */
1445 if ((var == NULL) || var->data.read_only)
1446 return false;
1447
1448 /* From section 4.1.7 of the GLSL 4.40 spec:
1449 *
1450 * "Opaque variables cannot be treated as l-values; hence cannot
1451 * be used as out or inout function parameters, nor can they be
1452 * assigned into."
1453 */
1454 if (this->type->contains_opaque())
1455 return false;
1456
1457 return true;
1458 }
1459
1460
1461 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1462
1463 const char *ir_texture::opcode_string()
1464 {
1465 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1466 return tex_opcode_strs[op];
1467 }
1468
1469 ir_texture_opcode
1470 ir_texture::get_opcode(const char *str)
1471 {
1472 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1473 for (int op = 0; op < count; op++) {
1474 if (strcmp(str, tex_opcode_strs[op]) == 0)
1475 return (ir_texture_opcode) op;
1476 }
1477 return (ir_texture_opcode) -1;
1478 }
1479
1480
1481 void
1482 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1483 {
1484 assert(sampler != NULL);
1485 assert(type != NULL);
1486 this->sampler = sampler;
1487 this->type = type;
1488
1489 if (this->op == ir_txs || this->op == ir_query_levels ||
1490 this->op == ir_texture_samples) {
1491 assert(type->base_type == GLSL_TYPE_INT);
1492 } else if (this->op == ir_lod) {
1493 assert(type->vector_elements == 2);
1494 assert(type->is_float());
1495 } else if (this->op == ir_samples_identical) {
1496 assert(type == glsl_type::bool_type);
1497 assert(sampler->type->is_sampler());
1498 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1499 } else {
1500 assert(sampler->type->sampled_type == (int) type->base_type);
1501 if (sampler->type->sampler_shadow)
1502 assert(type->vector_elements == 4 || type->vector_elements == 1);
1503 else
1504 assert(type->vector_elements == 4);
1505 }
1506 }
1507
1508
1509 void
1510 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1511 {
1512 assert((count >= 1) && (count <= 4));
1513
1514 memset(&this->mask, 0, sizeof(this->mask));
1515 this->mask.num_components = count;
1516
1517 unsigned dup_mask = 0;
1518 switch (count) {
1519 case 4:
1520 assert(comp[3] <= 3);
1521 dup_mask |= (1U << comp[3])
1522 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1523 this->mask.w = comp[3];
1524
1525 case 3:
1526 assert(comp[2] <= 3);
1527 dup_mask |= (1U << comp[2])
1528 & ((1U << comp[0]) | (1U << comp[1]));
1529 this->mask.z = comp[2];
1530
1531 case 2:
1532 assert(comp[1] <= 3);
1533 dup_mask |= (1U << comp[1])
1534 & ((1U << comp[0]));
1535 this->mask.y = comp[1];
1536
1537 case 1:
1538 assert(comp[0] <= 3);
1539 this->mask.x = comp[0];
1540 }
1541
1542 this->mask.has_duplicates = dup_mask != 0;
1543
1544 /* Based on the number of elements in the swizzle and the base type
1545 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1546 * generate the type of the resulting value.
1547 */
1548 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1549 }
1550
1551 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1552 unsigned w, unsigned count)
1553 : ir_rvalue(ir_type_swizzle), val(val)
1554 {
1555 const unsigned components[4] = { x, y, z, w };
1556 this->init_mask(components, count);
1557 }
1558
1559 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1560 unsigned count)
1561 : ir_rvalue(ir_type_swizzle), val(val)
1562 {
1563 this->init_mask(comp, count);
1564 }
1565
1566 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1567 : ir_rvalue(ir_type_swizzle)
1568 {
1569 this->val = val;
1570 this->mask = mask;
1571 this->type = glsl_type::get_instance(val->type->base_type,
1572 mask.num_components, 1);
1573 }
1574
1575 #define X 1
1576 #define R 5
1577 #define S 9
1578 #define I 13
1579
1580 ir_swizzle *
1581 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1582 {
1583 void *ctx = ralloc_parent(val);
1584
1585 /* For each possible swizzle character, this table encodes the value in
1586 * \c idx_map that represents the 0th element of the vector. For invalid
1587 * swizzle characters (e.g., 'k'), a special value is used that will allow
1588 * detection of errors.
1589 */
1590 static const unsigned char base_idx[26] = {
1591 /* a b c d e f g h i j k l m */
1592 R, R, I, I, I, I, R, I, I, I, I, I, I,
1593 /* n o p q r s t u v w x y z */
1594 I, I, S, S, R, S, S, I, I, X, X, X, X
1595 };
1596
1597 /* Each valid swizzle character has an entry in the previous table. This
1598 * table encodes the base index encoded in the previous table plus the actual
1599 * index of the swizzle character. When processing swizzles, the first
1600 * character in the string is indexed in the previous table. Each character
1601 * in the string is indexed in this table, and the value found there has the
1602 * value form the first table subtracted. The result must be on the range
1603 * [0,3].
1604 *
1605 * For example, the string "wzyx" will get X from the first table. Each of
1606 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1607 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1608 *
1609 * The string "wzrg" will get X from the first table. Each of the characters
1610 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1611 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1612 * [0,3], the error is detected.
1613 */
1614 static const unsigned char idx_map[26] = {
1615 /* a b c d e f g h i j k l m */
1616 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1617 /* n o p q r s t u v w x y z */
1618 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1619 };
1620
1621 int swiz_idx[4] = { 0, 0, 0, 0 };
1622 unsigned i;
1623
1624
1625 /* Validate the first character in the swizzle string and look up the base
1626 * index value as described above.
1627 */
1628 if ((str[0] < 'a') || (str[0] > 'z'))
1629 return NULL;
1630
1631 const unsigned base = base_idx[str[0] - 'a'];
1632
1633
1634 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1635 /* Validate the next character, and, as described above, convert it to a
1636 * swizzle index.
1637 */
1638 if ((str[i] < 'a') || (str[i] > 'z'))
1639 return NULL;
1640
1641 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1642 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1643 return NULL;
1644 }
1645
1646 if (str[i] != '\0')
1647 return NULL;
1648
1649 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1650 swiz_idx[3], i);
1651 }
1652
1653 #undef X
1654 #undef R
1655 #undef S
1656 #undef I
1657
1658 ir_variable *
1659 ir_swizzle::variable_referenced() const
1660 {
1661 return this->val->variable_referenced();
1662 }
1663
1664
1665 bool ir_variable::temporaries_allocate_names = false;
1666
1667 const char ir_variable::tmp_name[] = "compiler_temp";
1668
1669 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1670 ir_variable_mode mode)
1671 : ir_instruction(ir_type_variable)
1672 {
1673 this->type = type;
1674
1675 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1676 name = NULL;
1677
1678 /* The ir_variable clone method may call this constructor with name set to
1679 * tmp_name.
1680 */
1681 assert(name != NULL
1682 || mode == ir_var_temporary
1683 || mode == ir_var_function_in
1684 || mode == ir_var_function_out
1685 || mode == ir_var_function_inout);
1686 assert(name != ir_variable::tmp_name
1687 || mode == ir_var_temporary);
1688 if (mode == ir_var_temporary
1689 && (name == NULL || name == ir_variable::tmp_name)) {
1690 this->name = ir_variable::tmp_name;
1691 } else if (name == NULL ||
1692 strlen(name) < ARRAY_SIZE(this->name_storage)) {
1693 strcpy(this->name_storage, name ? name : "");
1694 this->name = this->name_storage;
1695 } else {
1696 this->name = ralloc_strdup(this, name);
1697 }
1698
1699 this->u.max_ifc_array_access = NULL;
1700
1701 this->data.explicit_location = false;
1702 this->data.has_initializer = false;
1703 this->data.location = -1;
1704 this->data.location_frac = 0;
1705 this->data.binding = 0;
1706 this->data.warn_extension_index = 0;
1707 this->constant_value = NULL;
1708 this->constant_initializer = NULL;
1709 this->data.origin_upper_left = false;
1710 this->data.pixel_center_integer = false;
1711 this->data.depth_layout = ir_depth_layout_none;
1712 this->data.used = false;
1713 this->data.always_active_io = false;
1714 this->data.read_only = false;
1715 this->data.centroid = false;
1716 this->data.sample = false;
1717 this->data.patch = false;
1718 this->data.invariant = false;
1719 this->data.how_declared = ir_var_declared_normally;
1720 this->data.mode = mode;
1721 this->data.interpolation = INTERP_MODE_NONE;
1722 this->data.max_array_access = -1;
1723 this->data.offset = 0;
1724 this->data.precision = GLSL_PRECISION_NONE;
1725 this->data.image_read_only = false;
1726 this->data.image_write_only = false;
1727 this->data.image_coherent = false;
1728 this->data.image_volatile = false;
1729 this->data.image_restrict = false;
1730 this->data.from_ssbo_unsized_array = false;
1731 this->data.fb_fetch_output = false;
1732
1733 if (type != NULL) {
1734 if (type->is_sampler())
1735 this->data.read_only = true;
1736
1737 if (type->is_interface())
1738 this->init_interface_type(type);
1739 else if (type->without_array()->is_interface())
1740 this->init_interface_type(type->without_array());
1741 }
1742 }
1743
1744
1745 const char *
1746 interpolation_string(unsigned interpolation)
1747 {
1748 switch (interpolation) {
1749 case INTERP_MODE_NONE: return "no";
1750 case INTERP_MODE_SMOOTH: return "smooth";
1751 case INTERP_MODE_FLAT: return "flat";
1752 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1753 }
1754
1755 assert(!"Should not get here.");
1756 return "";
1757 }
1758
1759 const char *const ir_variable::warn_extension_table[] = {
1760 "",
1761 "GL_ARB_shader_stencil_export",
1762 "GL_AMD_shader_stencil_export",
1763 };
1764
1765 void
1766 ir_variable::enable_extension_warning(const char *extension)
1767 {
1768 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1769 if (strcmp(warn_extension_table[i], extension) == 0) {
1770 this->data.warn_extension_index = i;
1771 return;
1772 }
1773 }
1774
1775 assert(!"Should not get here.");
1776 this->data.warn_extension_index = 0;
1777 }
1778
1779 const char *
1780 ir_variable::get_extension_warning() const
1781 {
1782 return this->data.warn_extension_index == 0
1783 ? NULL : warn_extension_table[this->data.warn_extension_index];
1784 }
1785
1786 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1787 builtin_available_predicate b)
1788 : ir_instruction(ir_type_function_signature),
1789 return_type(return_type), is_defined(false),
1790 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1791 {
1792 this->origin = NULL;
1793 }
1794
1795
1796 bool
1797 ir_function_signature::is_builtin() const
1798 {
1799 return builtin_avail != NULL;
1800 }
1801
1802
1803 bool
1804 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1805 {
1806 /* We can't call the predicate without a state pointer, so just say that
1807 * the signature is available. At compile time, we need the filtering,
1808 * but also receive a valid state pointer. At link time, we're resolving
1809 * imported built-in prototypes to their definitions, which will always
1810 * be an exact match. So we can skip the filtering.
1811 */
1812 if (state == NULL)
1813 return true;
1814
1815 assert(builtin_avail != NULL);
1816 return builtin_avail(state);
1817 }
1818
1819
1820 static bool
1821 modes_match(unsigned a, unsigned b)
1822 {
1823 if (a == b)
1824 return true;
1825
1826 /* Accept "in" vs. "const in" */
1827 if ((a == ir_var_const_in && b == ir_var_function_in) ||
1828 (b == ir_var_const_in && a == ir_var_function_in))
1829 return true;
1830
1831 return false;
1832 }
1833
1834
1835 const char *
1836 ir_function_signature::qualifiers_match(exec_list *params)
1837 {
1838 /* check that the qualifiers match. */
1839 foreach_two_lists(a_node, &this->parameters, b_node, params) {
1840 ir_variable *a = (ir_variable *) a_node;
1841 ir_variable *b = (ir_variable *) b_node;
1842
1843 if (a->data.read_only != b->data.read_only ||
1844 !modes_match(a->data.mode, b->data.mode) ||
1845 a->data.interpolation != b->data.interpolation ||
1846 a->data.centroid != b->data.centroid ||
1847 a->data.sample != b->data.sample ||
1848 a->data.patch != b->data.patch ||
1849 a->data.image_read_only != b->data.image_read_only ||
1850 a->data.image_write_only != b->data.image_write_only ||
1851 a->data.image_coherent != b->data.image_coherent ||
1852 a->data.image_volatile != b->data.image_volatile ||
1853 a->data.image_restrict != b->data.image_restrict) {
1854
1855 /* parameter a's qualifiers don't match */
1856 return a->name;
1857 }
1858 }
1859 return NULL;
1860 }
1861
1862
1863 void
1864 ir_function_signature::replace_parameters(exec_list *new_params)
1865 {
1866 /* Destroy all of the previous parameter information. If the previous
1867 * parameter information comes from the function prototype, it may either
1868 * specify incorrect parameter names or not have names at all.
1869 */
1870 new_params->move_nodes_to(&parameters);
1871 }
1872
1873
1874 ir_function::ir_function(const char *name)
1875 : ir_instruction(ir_type_function)
1876 {
1877 this->subroutine_index = -1;
1878 this->name = ralloc_strdup(this, name);
1879 }
1880
1881
1882 bool
1883 ir_function::has_user_signature()
1884 {
1885 foreach_in_list(ir_function_signature, sig, &this->signatures) {
1886 if (!sig->is_builtin())
1887 return true;
1888 }
1889 return false;
1890 }
1891
1892
1893 ir_rvalue *
1894 ir_rvalue::error_value(void *mem_ctx)
1895 {
1896 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
1897
1898 v->type = glsl_type::error_type;
1899 return v;
1900 }
1901
1902
1903 void
1904 visit_exec_list(exec_list *list, ir_visitor *visitor)
1905 {
1906 foreach_in_list_safe(ir_instruction, node, list) {
1907 node->accept(visitor);
1908 }
1909 }
1910
1911
1912 static void
1913 steal_memory(ir_instruction *ir, void *new_ctx)
1914 {
1915 ir_variable *var = ir->as_variable();
1916 ir_function *fn = ir->as_function();
1917 ir_constant *constant = ir->as_constant();
1918 if (var != NULL && var->constant_value != NULL)
1919 steal_memory(var->constant_value, ir);
1920
1921 if (var != NULL && var->constant_initializer != NULL)
1922 steal_memory(var->constant_initializer, ir);
1923
1924 if (fn != NULL && fn->subroutine_types)
1925 ralloc_steal(new_ctx, fn->subroutine_types);
1926
1927 /* The components of aggregate constants are not visited by the normal
1928 * visitor, so steal their values by hand.
1929 */
1930 if (constant != NULL) {
1931 if (constant->type->is_record()) {
1932 foreach_in_list(ir_constant, field, &constant->components) {
1933 steal_memory(field, ir);
1934 }
1935 } else if (constant->type->is_array()) {
1936 for (unsigned int i = 0; i < constant->type->length; i++) {
1937 steal_memory(constant->array_elements[i], ir);
1938 }
1939 }
1940 }
1941
1942 ralloc_steal(new_ctx, ir);
1943 }
1944
1945
1946 void
1947 reparent_ir(exec_list *list, void *mem_ctx)
1948 {
1949 foreach_in_list(ir_instruction, node, list) {
1950 visit_tree(node, steal_memory, mem_ctx);
1951 }
1952 }
1953
1954
1955 static ir_rvalue *
1956 try_min_one(ir_rvalue *ir)
1957 {
1958 ir_expression *expr = ir->as_expression();
1959
1960 if (!expr || expr->operation != ir_binop_min)
1961 return NULL;
1962
1963 if (expr->operands[0]->is_one())
1964 return expr->operands[1];
1965
1966 if (expr->operands[1]->is_one())
1967 return expr->operands[0];
1968
1969 return NULL;
1970 }
1971
1972 static ir_rvalue *
1973 try_max_zero(ir_rvalue *ir)
1974 {
1975 ir_expression *expr = ir->as_expression();
1976
1977 if (!expr || expr->operation != ir_binop_max)
1978 return NULL;
1979
1980 if (expr->operands[0]->is_zero())
1981 return expr->operands[1];
1982
1983 if (expr->operands[1]->is_zero())
1984 return expr->operands[0];
1985
1986 return NULL;
1987 }
1988
1989 ir_rvalue *
1990 ir_rvalue::as_rvalue_to_saturate()
1991 {
1992 ir_expression *expr = this->as_expression();
1993
1994 if (!expr)
1995 return NULL;
1996
1997 ir_rvalue *max_zero = try_max_zero(expr);
1998 if (max_zero) {
1999 return try_min_one(max_zero);
2000 } else {
2001 ir_rvalue *min_one = try_min_one(expr);
2002 if (min_one) {
2003 return try_max_zero(min_one);
2004 }
2005 }
2006
2007 return NULL;
2008 }
2009
2010
2011 unsigned
2012 vertices_per_prim(GLenum prim)
2013 {
2014 switch (prim) {
2015 case GL_POINTS:
2016 return 1;
2017 case GL_LINES:
2018 return 2;
2019 case GL_TRIANGLES:
2020 return 3;
2021 case GL_LINES_ADJACENCY:
2022 return 4;
2023 case GL_TRIANGLES_ADJACENCY:
2024 return 6;
2025 default:
2026 assert(!"Bad primitive");
2027 return 3;
2028 }
2029 }
2030
2031 /**
2032 * Generate a string describing the mode of a variable
2033 */
2034 const char *
2035 mode_string(const ir_variable *var)
2036 {
2037 switch (var->data.mode) {
2038 case ir_var_auto:
2039 return (var->data.read_only) ? "global constant" : "global variable";
2040
2041 case ir_var_uniform:
2042 return "uniform";
2043
2044 case ir_var_shader_storage:
2045 return "buffer";
2046
2047 case ir_var_shader_in:
2048 return "shader input";
2049
2050 case ir_var_shader_out:
2051 return "shader output";
2052
2053 case ir_var_function_in:
2054 case ir_var_const_in:
2055 return "function input";
2056
2057 case ir_var_function_out:
2058 return "function output";
2059
2060 case ir_var_function_inout:
2061 return "function inout";
2062
2063 case ir_var_system_value:
2064 return "shader input";
2065
2066 case ir_var_temporary:
2067 return "compiler temporary";
2068
2069 case ir_var_mode_count:
2070 break;
2071 }
2072
2073 assert(!"Should not get here.");
2074 return "invalid variable";
2075 }