glsl: Unify ir_constant::const_elements and ::components
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28
29
30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31 : ir_instruction(t)
32 {
33 this->type = glsl_type::error_type;
34 }
35
36 bool ir_rvalue::is_zero() const
37 {
38 return false;
39 }
40
41 bool ir_rvalue::is_one() const
42 {
43 return false;
44 }
45
46 bool ir_rvalue::is_negative_one() const
47 {
48 return false;
49 }
50
51 /**
52 * Modify the swizzle make to move one component to another
53 *
54 * \param m IR swizzle to be modified
55 * \param from Component in the RHS that is to be swizzled
56 * \param to Desired swizzle location of \c from
57 */
58 static void
59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61 switch (to) {
62 case 0: m.x = from; break;
63 case 1: m.y = from; break;
64 case 2: m.z = from; break;
65 case 3: m.w = from; break;
66 default: assert(!"Should not get here.");
67 }
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 rhs_swiz.num_components = swiz->val->type->vector_elements;
99 }
100
101 this->write_mask = write_mask;
102 lhs = swiz->val;
103
104 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105 swizzled = true;
106 }
107
108 if (swizzled) {
109 /* Now, RHS channels line up with the LHS writemask. Collapse it
110 * to just the channels that will be written.
111 */
112 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113 int rhs_chan = 0;
114 for (int i = 0; i < 4; i++) {
115 if (write_mask & (1 << i))
116 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117 }
118 rhs_swiz.num_components = rhs_chan;
119 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120 }
121
122 assert((lhs == NULL) || lhs->as_dereference());
123
124 this->lhs = (ir_dereference *) lhs;
125 }
126
127 ir_variable *
128 ir_assignment::whole_variable_written()
129 {
130 ir_variable *v = this->lhs->whole_variable_referenced();
131
132 if (v == NULL)
133 return NULL;
134
135 if (v->type->is_scalar())
136 return v;
137
138 if (v->type->is_vector()) {
139 const unsigned mask = (1U << v->type->vector_elements) - 1;
140
141 if (mask != this->write_mask)
142 return NULL;
143 }
144
145 /* Either all the vector components are assigned or the variable is some
146 * composite type (and the whole thing is assigned.
147 */
148 return v;
149 }
150
151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 ir_rvalue *condition, unsigned write_mask)
153 : ir_instruction(ir_type_assignment)
154 {
155 this->condition = condition;
156 this->rhs = rhs;
157 this->lhs = lhs;
158 this->write_mask = write_mask;
159
160 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161 int lhs_components = 0;
162 for (int i = 0; i < 4; i++) {
163 if (write_mask & (1 << i))
164 lhs_components++;
165 }
166
167 assert(lhs_components == this->rhs->type->vector_elements);
168 }
169 }
170
171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 ir_rvalue *condition)
173 : ir_instruction(ir_type_assignment)
174 {
175 this->condition = condition;
176 this->rhs = rhs;
177
178 /* If the RHS is a vector type, assume that all components of the vector
179 * type are being written to the LHS. The write mask comes from the RHS
180 * because we can have a case where the LHS is a vec4 and the RHS is a
181 * vec3. In that case, the assignment is:
182 *
183 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184 */
185 if (rhs->type->is_vector())
186 this->write_mask = (1U << rhs->type->vector_elements) - 1;
187 else if (rhs->type->is_scalar())
188 this->write_mask = 1;
189 else
190 this->write_mask = 0;
191
192 this->set_lhs(lhs);
193 }
194
195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 ir_rvalue *op0, ir_rvalue *op1,
197 ir_rvalue *op2, ir_rvalue *op3)
198 : ir_rvalue(ir_type_expression)
199 {
200 this->type = type;
201 this->operation = ir_expression_operation(op);
202 this->operands[0] = op0;
203 this->operands[1] = op1;
204 this->operands[2] = op2;
205 this->operands[3] = op3;
206 init_num_operands();
207
208 #ifndef NDEBUG
209 for (unsigned i = num_operands; i < 4; i++) {
210 assert(this->operands[i] == NULL);
211 }
212
213 for (unsigned i = 0; i < num_operands; i++) {
214 assert(this->operands[i] != NULL);
215 }
216 #endif
217 }
218
219 ir_expression::ir_expression(int op, ir_rvalue *op0)
220 : ir_rvalue(ir_type_expression)
221 {
222 this->operation = ir_expression_operation(op);
223 this->operands[0] = op0;
224 this->operands[1] = NULL;
225 this->operands[2] = NULL;
226 this->operands[3] = NULL;
227
228 assert(op <= ir_last_unop);
229 init_num_operands();
230 assert(num_operands == 1);
231 assert(this->operands[0]);
232
233 switch (this->operation) {
234 case ir_unop_bit_not:
235 case ir_unop_logic_not:
236 case ir_unop_neg:
237 case ir_unop_abs:
238 case ir_unop_sign:
239 case ir_unop_rcp:
240 case ir_unop_rsq:
241 case ir_unop_sqrt:
242 case ir_unop_exp:
243 case ir_unop_log:
244 case ir_unop_exp2:
245 case ir_unop_log2:
246 case ir_unop_trunc:
247 case ir_unop_ceil:
248 case ir_unop_floor:
249 case ir_unop_fract:
250 case ir_unop_round_even:
251 case ir_unop_sin:
252 case ir_unop_cos:
253 case ir_unop_dFdx:
254 case ir_unop_dFdx_coarse:
255 case ir_unop_dFdx_fine:
256 case ir_unop_dFdy:
257 case ir_unop_dFdy_coarse:
258 case ir_unop_dFdy_fine:
259 case ir_unop_bitfield_reverse:
260 case ir_unop_interpolate_at_centroid:
261 case ir_unop_saturate:
262 this->type = op0->type;
263 break;
264
265 case ir_unop_f2i:
266 case ir_unop_b2i:
267 case ir_unop_u2i:
268 case ir_unop_d2i:
269 case ir_unop_bitcast_f2i:
270 case ir_unop_bit_count:
271 case ir_unop_find_msb:
272 case ir_unop_find_lsb:
273 case ir_unop_subroutine_to_int:
274 case ir_unop_i642i:
275 case ir_unop_u642i:
276 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
277 op0->type->vector_elements, 1);
278 break;
279
280 case ir_unop_b2f:
281 case ir_unop_i2f:
282 case ir_unop_u2f:
283 case ir_unop_d2f:
284 case ir_unop_bitcast_i2f:
285 case ir_unop_bitcast_u2f:
286 case ir_unop_i642f:
287 case ir_unop_u642f:
288 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
289 op0->type->vector_elements, 1);
290 break;
291
292 case ir_unop_f2b:
293 case ir_unop_i2b:
294 case ir_unop_d2b:
295 case ir_unop_i642b:
296 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
297 op0->type->vector_elements, 1);
298 break;
299
300 case ir_unop_f2d:
301 case ir_unop_i2d:
302 case ir_unop_u2d:
303 case ir_unop_i642d:
304 case ir_unop_u642d:
305 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
306 op0->type->vector_elements, 1);
307 break;
308
309 case ir_unop_i2u:
310 case ir_unop_f2u:
311 case ir_unop_d2u:
312 case ir_unop_bitcast_f2u:
313 case ir_unop_i642u:
314 case ir_unop_u642u:
315 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
316 op0->type->vector_elements, 1);
317 break;
318
319 case ir_unop_i2i64:
320 case ir_unop_u2i64:
321 case ir_unop_b2i64:
322 case ir_unop_f2i64:
323 case ir_unop_d2i64:
324 case ir_unop_u642i64:
325 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
326 op0->type->vector_elements, 1);
327 break;
328
329 case ir_unop_i2u64:
330 case ir_unop_u2u64:
331 case ir_unop_f2u64:
332 case ir_unop_d2u64:
333 case ir_unop_i642u64:
334 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
335 op0->type->vector_elements, 1);
336 break;
337 case ir_unop_noise:
338 this->type = glsl_type::float_type;
339 break;
340
341 case ir_unop_unpack_double_2x32:
342 case ir_unop_unpack_uint_2x32:
343 this->type = glsl_type::uvec2_type;
344 break;
345
346 case ir_unop_unpack_int_2x32:
347 this->type = glsl_type::ivec2_type;
348 break;
349
350 case ir_unop_pack_snorm_2x16:
351 case ir_unop_pack_snorm_4x8:
352 case ir_unop_pack_unorm_2x16:
353 case ir_unop_pack_unorm_4x8:
354 case ir_unop_pack_half_2x16:
355 this->type = glsl_type::uint_type;
356 break;
357
358 case ir_unop_pack_double_2x32:
359 this->type = glsl_type::double_type;
360 break;
361
362 case ir_unop_pack_int_2x32:
363 this->type = glsl_type::int64_t_type;
364 break;
365
366 case ir_unop_pack_uint_2x32:
367 this->type = glsl_type::uint64_t_type;
368 break;
369
370 case ir_unop_unpack_snorm_2x16:
371 case ir_unop_unpack_unorm_2x16:
372 case ir_unop_unpack_half_2x16:
373 this->type = glsl_type::vec2_type;
374 break;
375
376 case ir_unop_unpack_snorm_4x8:
377 case ir_unop_unpack_unorm_4x8:
378 this->type = glsl_type::vec4_type;
379 break;
380
381 case ir_unop_unpack_sampler_2x32:
382 case ir_unop_unpack_image_2x32:
383 this->type = glsl_type::uvec2_type;
384 break;
385
386 case ir_unop_pack_sampler_2x32:
387 case ir_unop_pack_image_2x32:
388 this->type = op0->type;
389 break;
390
391 case ir_unop_frexp_sig:
392 this->type = op0->type;
393 break;
394 case ir_unop_frexp_exp:
395 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
396 op0->type->vector_elements, 1);
397 break;
398
399 case ir_unop_get_buffer_size:
400 case ir_unop_ssbo_unsized_array_length:
401 this->type = glsl_type::int_type;
402 break;
403
404 case ir_unop_bitcast_i642d:
405 case ir_unop_bitcast_u642d:
406 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
407 op0->type->vector_elements, 1);
408 break;
409
410 case ir_unop_bitcast_d2i64:
411 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
412 op0->type->vector_elements, 1);
413 break;
414 case ir_unop_bitcast_d2u64:
415 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
416 op0->type->vector_elements, 1);
417 break;
418
419 default:
420 assert(!"not reached: missing automatic type setup for ir_expression");
421 this->type = op0->type;
422 break;
423 }
424 }
425
426 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
427 : ir_rvalue(ir_type_expression)
428 {
429 this->operation = ir_expression_operation(op);
430 this->operands[0] = op0;
431 this->operands[1] = op1;
432 this->operands[2] = NULL;
433 this->operands[3] = NULL;
434
435 assert(op > ir_last_unop);
436 init_num_operands();
437 assert(num_operands == 2);
438 for (unsigned i = 0; i < num_operands; i++) {
439 assert(this->operands[i] != NULL);
440 }
441
442 switch (this->operation) {
443 case ir_binop_all_equal:
444 case ir_binop_any_nequal:
445 this->type = glsl_type::bool_type;
446 break;
447
448 case ir_binop_add:
449 case ir_binop_sub:
450 case ir_binop_min:
451 case ir_binop_max:
452 case ir_binop_pow:
453 case ir_binop_mul:
454 case ir_binop_div:
455 case ir_binop_mod:
456 if (op0->type->is_scalar()) {
457 this->type = op1->type;
458 } else if (op1->type->is_scalar()) {
459 this->type = op0->type;
460 } else {
461 if (this->operation == ir_binop_mul) {
462 this->type = glsl_type::get_mul_type(op0->type, op1->type);
463 } else {
464 assert(op0->type == op1->type);
465 this->type = op0->type;
466 }
467 }
468 break;
469
470 case ir_binop_logic_and:
471 case ir_binop_logic_xor:
472 case ir_binop_logic_or:
473 case ir_binop_bit_and:
474 case ir_binop_bit_xor:
475 case ir_binop_bit_or:
476 assert(!op0->type->is_matrix());
477 assert(!op1->type->is_matrix());
478 if (op0->type->is_scalar()) {
479 this->type = op1->type;
480 } else if (op1->type->is_scalar()) {
481 this->type = op0->type;
482 } else {
483 assert(op0->type->vector_elements == op1->type->vector_elements);
484 this->type = op0->type;
485 }
486 break;
487
488 case ir_binop_equal:
489 case ir_binop_nequal:
490 case ir_binop_lequal:
491 case ir_binop_gequal:
492 case ir_binop_less:
493 case ir_binop_greater:
494 assert(op0->type == op1->type);
495 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
496 op0->type->vector_elements, 1);
497 break;
498
499 case ir_binop_dot:
500 this->type = op0->type->get_base_type();
501 break;
502
503 case ir_binop_imul_high:
504 case ir_binop_carry:
505 case ir_binop_borrow:
506 case ir_binop_lshift:
507 case ir_binop_rshift:
508 case ir_binop_ldexp:
509 case ir_binop_interpolate_at_offset:
510 case ir_binop_interpolate_at_sample:
511 this->type = op0->type;
512 break;
513
514 case ir_binop_vector_extract:
515 this->type = op0->type->get_scalar_type();
516 break;
517
518 default:
519 assert(!"not reached: missing automatic type setup for ir_expression");
520 this->type = glsl_type::float_type;
521 }
522 }
523
524 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
525 ir_rvalue *op2)
526 : ir_rvalue(ir_type_expression)
527 {
528 this->operation = ir_expression_operation(op);
529 this->operands[0] = op0;
530 this->operands[1] = op1;
531 this->operands[2] = op2;
532 this->operands[3] = NULL;
533
534 assert(op > ir_last_binop && op <= ir_last_triop);
535 init_num_operands();
536 assert(num_operands == 3);
537 for (unsigned i = 0; i < num_operands; i++) {
538 assert(this->operands[i] != NULL);
539 }
540
541 switch (this->operation) {
542 case ir_triop_fma:
543 case ir_triop_lrp:
544 case ir_triop_bitfield_extract:
545 case ir_triop_vector_insert:
546 this->type = op0->type;
547 break;
548
549 case ir_triop_csel:
550 this->type = op1->type;
551 break;
552
553 default:
554 assert(!"not reached: missing automatic type setup for ir_expression");
555 this->type = glsl_type::float_type;
556 }
557 }
558
559 /**
560 * This is only here for ir_reader to used for testing purposes. Please use
561 * the precomputed num_operands field if you need the number of operands.
562 */
563 unsigned
564 ir_expression::get_num_operands(ir_expression_operation op)
565 {
566 assert(op <= ir_last_opcode);
567
568 if (op <= ir_last_unop)
569 return 1;
570
571 if (op <= ir_last_binop)
572 return 2;
573
574 if (op <= ir_last_triop)
575 return 3;
576
577 if (op <= ir_last_quadop)
578 return 4;
579
580 unreachable("Could not calculate number of operands");
581 }
582
583 #include "ir_expression_operation_strings.h"
584
585 const char*
586 depth_layout_string(ir_depth_layout layout)
587 {
588 switch(layout) {
589 case ir_depth_layout_none: return "";
590 case ir_depth_layout_any: return "depth_any";
591 case ir_depth_layout_greater: return "depth_greater";
592 case ir_depth_layout_less: return "depth_less";
593 case ir_depth_layout_unchanged: return "depth_unchanged";
594
595 default:
596 assert(0);
597 return "";
598 }
599 }
600
601 ir_expression_operation
602 ir_expression::get_operator(const char *str)
603 {
604 for (int op = 0; op <= int(ir_last_opcode); op++) {
605 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
606 return (ir_expression_operation) op;
607 }
608 return (ir_expression_operation) -1;
609 }
610
611 ir_variable *
612 ir_expression::variable_referenced() const
613 {
614 switch (operation) {
615 case ir_binop_vector_extract:
616 case ir_triop_vector_insert:
617 /* We get these for things like a[0] where a is a vector type. In these
618 * cases we want variable_referenced() to return the actual vector
619 * variable this is wrapping.
620 */
621 return operands[0]->variable_referenced();
622 default:
623 return ir_rvalue::variable_referenced();
624 }
625 }
626
627 ir_constant::ir_constant()
628 : ir_rvalue(ir_type_constant)
629 {
630 this->const_elements = NULL;
631 }
632
633 ir_constant::ir_constant(const struct glsl_type *type,
634 const ir_constant_data *data)
635 : ir_rvalue(ir_type_constant)
636 {
637 this->const_elements = NULL;
638
639 assert((type->base_type >= GLSL_TYPE_UINT)
640 && (type->base_type <= GLSL_TYPE_IMAGE));
641
642 this->type = type;
643 memcpy(& this->value, data, sizeof(this->value));
644 }
645
646 ir_constant::ir_constant(float f, unsigned vector_elements)
647 : ir_rvalue(ir_type_constant)
648 {
649 assert(vector_elements <= 4);
650 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
651 for (unsigned i = 0; i < vector_elements; i++) {
652 this->value.f[i] = f;
653 }
654 for (unsigned i = vector_elements; i < 16; i++) {
655 this->value.f[i] = 0;
656 }
657 }
658
659 ir_constant::ir_constant(double d, unsigned vector_elements)
660 : ir_rvalue(ir_type_constant)
661 {
662 assert(vector_elements <= 4);
663 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
664 for (unsigned i = 0; i < vector_elements; i++) {
665 this->value.d[i] = d;
666 }
667 for (unsigned i = vector_elements; i < 16; i++) {
668 this->value.d[i] = 0.0;
669 }
670 }
671
672 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
673 : ir_rvalue(ir_type_constant)
674 {
675 assert(vector_elements <= 4);
676 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
677 for (unsigned i = 0; i < vector_elements; i++) {
678 this->value.u[i] = u;
679 }
680 for (unsigned i = vector_elements; i < 16; i++) {
681 this->value.u[i] = 0;
682 }
683 }
684
685 ir_constant::ir_constant(int integer, unsigned vector_elements)
686 : ir_rvalue(ir_type_constant)
687 {
688 assert(vector_elements <= 4);
689 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
690 for (unsigned i = 0; i < vector_elements; i++) {
691 this->value.i[i] = integer;
692 }
693 for (unsigned i = vector_elements; i < 16; i++) {
694 this->value.i[i] = 0;
695 }
696 }
697
698 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
699 : ir_rvalue(ir_type_constant)
700 {
701 assert(vector_elements <= 4);
702 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
703 for (unsigned i = 0; i < vector_elements; i++) {
704 this->value.u64[i] = u64;
705 }
706 for (unsigned i = vector_elements; i < 16; i++) {
707 this->value.u64[i] = 0;
708 }
709 }
710
711 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
712 : ir_rvalue(ir_type_constant)
713 {
714 assert(vector_elements <= 4);
715 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
716 for (unsigned i = 0; i < vector_elements; i++) {
717 this->value.i64[i] = int64;
718 }
719 for (unsigned i = vector_elements; i < 16; i++) {
720 this->value.i64[i] = 0;
721 }
722 }
723
724 ir_constant::ir_constant(bool b, unsigned vector_elements)
725 : ir_rvalue(ir_type_constant)
726 {
727 assert(vector_elements <= 4);
728 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
729 for (unsigned i = 0; i < vector_elements; i++) {
730 this->value.b[i] = b;
731 }
732 for (unsigned i = vector_elements; i < 16; i++) {
733 this->value.b[i] = false;
734 }
735 }
736
737 ir_constant::ir_constant(const ir_constant *c, unsigned i)
738 : ir_rvalue(ir_type_constant)
739 {
740 this->const_elements = NULL;
741 this->type = c->type->get_base_type();
742
743 switch (this->type->base_type) {
744 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
745 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
746 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
747 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
748 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
749 default: assert(!"Should not get here."); break;
750 }
751 }
752
753 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
754 : ir_rvalue(ir_type_constant)
755 {
756 this->const_elements = NULL;
757 this->type = type;
758
759 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
760 || type->is_record() || type->is_array());
761
762 /* If the constant is a record, the types of each of the entries in
763 * value_list must be a 1-for-1 match with the structure components. Each
764 * entry must also be a constant. Just move the nodes from the value_list
765 * to the list in the ir_constant.
766 */
767 if (type->is_array() || type->is_record()) {
768 this->const_elements = ralloc_array(this, ir_constant *, type->length);
769 unsigned i = 0;
770 foreach_in_list(ir_constant, value, value_list) {
771 assert(value->as_constant() != NULL);
772
773 this->const_elements[i++] = value;
774 }
775 return;
776 }
777
778 for (unsigned i = 0; i < 16; i++) {
779 this->value.u[i] = 0;
780 }
781
782 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
783
784 /* Constructors with exactly one scalar argument are special for vectors
785 * and matrices. For vectors, the scalar value is replicated to fill all
786 * the components. For matrices, the scalar fills the components of the
787 * diagonal while the rest is filled with 0.
788 */
789 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
790 if (type->is_matrix()) {
791 /* Matrix - fill diagonal (rest is already set to 0) */
792 assert(type->is_float() || type->is_double());
793 for (unsigned i = 0; i < type->matrix_columns; i++) {
794 if (type->is_float())
795 this->value.f[i * type->vector_elements + i] =
796 value->value.f[0];
797 else
798 this->value.d[i * type->vector_elements + i] =
799 value->value.d[0];
800 }
801 } else {
802 /* Vector or scalar - fill all components */
803 switch (type->base_type) {
804 case GLSL_TYPE_UINT:
805 case GLSL_TYPE_INT:
806 for (unsigned i = 0; i < type->components(); i++)
807 this->value.u[i] = value->value.u[0];
808 break;
809 case GLSL_TYPE_FLOAT:
810 for (unsigned i = 0; i < type->components(); i++)
811 this->value.f[i] = value->value.f[0];
812 break;
813 case GLSL_TYPE_DOUBLE:
814 for (unsigned i = 0; i < type->components(); i++)
815 this->value.d[i] = value->value.d[0];
816 break;
817 case GLSL_TYPE_UINT64:
818 case GLSL_TYPE_INT64:
819 for (unsigned i = 0; i < type->components(); i++)
820 this->value.u64[i] = value->value.u64[0];
821 break;
822 case GLSL_TYPE_BOOL:
823 for (unsigned i = 0; i < type->components(); i++)
824 this->value.b[i] = value->value.b[0];
825 break;
826 default:
827 assert(!"Should not get here.");
828 break;
829 }
830 }
831 return;
832 }
833
834 if (type->is_matrix() && value->type->is_matrix()) {
835 assert(value->next->is_tail_sentinel());
836
837 /* From section 5.4.2 of the GLSL 1.20 spec:
838 * "If a matrix is constructed from a matrix, then each component
839 * (column i, row j) in the result that has a corresponding component
840 * (column i, row j) in the argument will be initialized from there."
841 */
842 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
843 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
844 for (unsigned i = 0; i < cols; i++) {
845 for (unsigned j = 0; j < rows; j++) {
846 const unsigned src = i * value->type->vector_elements + j;
847 const unsigned dst = i * type->vector_elements + j;
848 this->value.f[dst] = value->value.f[src];
849 }
850 }
851
852 /* "All other components will be initialized to the identity matrix." */
853 for (unsigned i = cols; i < type->matrix_columns; i++)
854 this->value.f[i * type->vector_elements + i] = 1.0;
855
856 return;
857 }
858
859 /* Use each component from each entry in the value_list to initialize one
860 * component of the constant being constructed.
861 */
862 unsigned i = 0;
863 for (;;) {
864 assert(value->as_constant() != NULL);
865 assert(!value->is_tail_sentinel());
866
867 for (unsigned j = 0; j < value->type->components(); j++) {
868 switch (type->base_type) {
869 case GLSL_TYPE_UINT:
870 this->value.u[i] = value->get_uint_component(j);
871 break;
872 case GLSL_TYPE_INT:
873 this->value.i[i] = value->get_int_component(j);
874 break;
875 case GLSL_TYPE_FLOAT:
876 this->value.f[i] = value->get_float_component(j);
877 break;
878 case GLSL_TYPE_BOOL:
879 this->value.b[i] = value->get_bool_component(j);
880 break;
881 case GLSL_TYPE_DOUBLE:
882 this->value.d[i] = value->get_double_component(j);
883 break;
884 case GLSL_TYPE_UINT64:
885 this->value.u64[i] = value->get_uint64_component(j);
886 break;
887 case GLSL_TYPE_INT64:
888 this->value.i64[i] = value->get_int64_component(j);
889 break;
890 default:
891 /* FINISHME: What to do? Exceptions are not the answer.
892 */
893 break;
894 }
895
896 i++;
897 if (i >= type->components())
898 break;
899 }
900
901 if (i >= type->components())
902 break; /* avoid downcasting a list sentinel */
903 value = (ir_constant *) value->next;
904 }
905 }
906
907 ir_constant *
908 ir_constant::zero(void *mem_ctx, const glsl_type *type)
909 {
910 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
911 || type->is_record() || type->is_array());
912
913 ir_constant *c = new(mem_ctx) ir_constant;
914 c->type = type;
915 memset(&c->value, 0, sizeof(c->value));
916
917 if (type->is_array()) {
918 c->const_elements = ralloc_array(c, ir_constant *, type->length);
919
920 for (unsigned i = 0; i < type->length; i++)
921 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
922 }
923
924 if (type->is_record()) {
925 c->const_elements = ralloc_array(c, ir_constant *, type->length);
926
927 for (unsigned i = 0; i < type->length; i++) {
928 c->const_elements[i] =
929 ir_constant::zero(mem_ctx, type->fields.structure[i].type);
930 }
931 }
932
933 return c;
934 }
935
936 bool
937 ir_constant::get_bool_component(unsigned i) const
938 {
939 switch (this->type->base_type) {
940 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
941 case GLSL_TYPE_INT: return this->value.i[i] != 0;
942 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
943 case GLSL_TYPE_BOOL: return this->value.b[i];
944 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
945 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
946 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
947 default: assert(!"Should not get here."); break;
948 }
949
950 /* Must return something to make the compiler happy. This is clearly an
951 * error case.
952 */
953 return false;
954 }
955
956 float
957 ir_constant::get_float_component(unsigned i) const
958 {
959 switch (this->type->base_type) {
960 case GLSL_TYPE_UINT: return (float) this->value.u[i];
961 case GLSL_TYPE_INT: return (float) this->value.i[i];
962 case GLSL_TYPE_FLOAT: return this->value.f[i];
963 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
964 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
965 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
966 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
967 default: assert(!"Should not get here."); break;
968 }
969
970 /* Must return something to make the compiler happy. This is clearly an
971 * error case.
972 */
973 return 0.0;
974 }
975
976 double
977 ir_constant::get_double_component(unsigned i) const
978 {
979 switch (this->type->base_type) {
980 case GLSL_TYPE_UINT: return (double) this->value.u[i];
981 case GLSL_TYPE_INT: return (double) this->value.i[i];
982 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
983 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
984 case GLSL_TYPE_DOUBLE: return this->value.d[i];
985 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
986 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
987 default: assert(!"Should not get here."); break;
988 }
989
990 /* Must return something to make the compiler happy. This is clearly an
991 * error case.
992 */
993 return 0.0;
994 }
995
996 int
997 ir_constant::get_int_component(unsigned i) const
998 {
999 switch (this->type->base_type) {
1000 case GLSL_TYPE_UINT: return this->value.u[i];
1001 case GLSL_TYPE_INT: return this->value.i[i];
1002 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1003 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1004 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1005 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1006 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
1007 default: assert(!"Should not get here."); break;
1008 }
1009
1010 /* Must return something to make the compiler happy. This is clearly an
1011 * error case.
1012 */
1013 return 0;
1014 }
1015
1016 unsigned
1017 ir_constant::get_uint_component(unsigned i) const
1018 {
1019 switch (this->type->base_type) {
1020 case GLSL_TYPE_UINT: return this->value.u[i];
1021 case GLSL_TYPE_INT: return this->value.i[i];
1022 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1023 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1024 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1025 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1026 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1027 default: assert(!"Should not get here."); break;
1028 }
1029
1030 /* Must return something to make the compiler happy. This is clearly an
1031 * error case.
1032 */
1033 return 0;
1034 }
1035
1036 int64_t
1037 ir_constant::get_int64_component(unsigned i) const
1038 {
1039 switch (this->type->base_type) {
1040 case GLSL_TYPE_UINT: return this->value.u[i];
1041 case GLSL_TYPE_INT: return this->value.i[i];
1042 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1043 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1044 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1045 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1046 case GLSL_TYPE_INT64: return this->value.i64[i];
1047 default: assert(!"Should not get here."); break;
1048 }
1049
1050 /* Must return something to make the compiler happy. This is clearly an
1051 * error case.
1052 */
1053 return 0;
1054 }
1055
1056 uint64_t
1057 ir_constant::get_uint64_component(unsigned i) const
1058 {
1059 switch (this->type->base_type) {
1060 case GLSL_TYPE_UINT: return this->value.u[i];
1061 case GLSL_TYPE_INT: return this->value.i[i];
1062 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1063 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1064 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1065 case GLSL_TYPE_UINT64: return this->value.u64[i];
1066 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1067 default: assert(!"Should not get here."); break;
1068 }
1069
1070 /* Must return something to make the compiler happy. This is clearly an
1071 * error case.
1072 */
1073 return 0;
1074 }
1075
1076 ir_constant *
1077 ir_constant::get_array_element(unsigned i) const
1078 {
1079 assert(this->type->is_array());
1080
1081 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1082 *
1083 * "Behavior is undefined if a shader subscripts an array with an index
1084 * less than 0 or greater than or equal to the size the array was
1085 * declared with."
1086 *
1087 * Most out-of-bounds accesses are removed before things could get this far.
1088 * There are cases where non-constant array index values can get constant
1089 * folded.
1090 */
1091 if (int(i) < 0)
1092 i = 0;
1093 else if (i >= this->type->length)
1094 i = this->type->length - 1;
1095
1096 return const_elements[i];
1097 }
1098
1099 ir_constant *
1100 ir_constant::get_record_field(int idx)
1101 {
1102 assert(this->type->is_record());
1103 assert(idx >= 0 && idx < this->type->length);
1104
1105 return const_elements[idx];
1106 }
1107
1108 void
1109 ir_constant::copy_offset(ir_constant *src, int offset)
1110 {
1111 switch (this->type->base_type) {
1112 case GLSL_TYPE_UINT:
1113 case GLSL_TYPE_INT:
1114 case GLSL_TYPE_FLOAT:
1115 case GLSL_TYPE_DOUBLE:
1116 case GLSL_TYPE_UINT64:
1117 case GLSL_TYPE_INT64:
1118 case GLSL_TYPE_BOOL: {
1119 unsigned int size = src->type->components();
1120 assert (size <= this->type->components() - offset);
1121 for (unsigned int i=0; i<size; i++) {
1122 switch (this->type->base_type) {
1123 case GLSL_TYPE_UINT:
1124 value.u[i+offset] = src->get_uint_component(i);
1125 break;
1126 case GLSL_TYPE_INT:
1127 value.i[i+offset] = src->get_int_component(i);
1128 break;
1129 case GLSL_TYPE_FLOAT:
1130 value.f[i+offset] = src->get_float_component(i);
1131 break;
1132 case GLSL_TYPE_BOOL:
1133 value.b[i+offset] = src->get_bool_component(i);
1134 break;
1135 case GLSL_TYPE_DOUBLE:
1136 value.d[i+offset] = src->get_double_component(i);
1137 break;
1138 case GLSL_TYPE_UINT64:
1139 value.u64[i+offset] = src->get_uint64_component(i);
1140 break;
1141 case GLSL_TYPE_INT64:
1142 value.i64[i+offset] = src->get_int64_component(i);
1143 break;
1144 default: // Shut up the compiler
1145 break;
1146 }
1147 }
1148 break;
1149 }
1150
1151 case GLSL_TYPE_STRUCT:
1152 case GLSL_TYPE_ARRAY: {
1153 assert (src->type == this->type);
1154 for (unsigned i = 0; i < this->type->length; i++) {
1155 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1156 }
1157 break;
1158 }
1159
1160 default:
1161 assert(!"Should not get here.");
1162 break;
1163 }
1164 }
1165
1166 void
1167 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1168 {
1169 assert (!type->is_array() && !type->is_record());
1170
1171 if (!type->is_vector() && !type->is_matrix()) {
1172 offset = 0;
1173 mask = 1;
1174 }
1175
1176 int id = 0;
1177 for (int i=0; i<4; i++) {
1178 if (mask & (1 << i)) {
1179 switch (this->type->base_type) {
1180 case GLSL_TYPE_UINT:
1181 value.u[i+offset] = src->get_uint_component(id++);
1182 break;
1183 case GLSL_TYPE_INT:
1184 value.i[i+offset] = src->get_int_component(id++);
1185 break;
1186 case GLSL_TYPE_FLOAT:
1187 value.f[i+offset] = src->get_float_component(id++);
1188 break;
1189 case GLSL_TYPE_BOOL:
1190 value.b[i+offset] = src->get_bool_component(id++);
1191 break;
1192 case GLSL_TYPE_DOUBLE:
1193 value.d[i+offset] = src->get_double_component(id++);
1194 break;
1195 case GLSL_TYPE_UINT64:
1196 value.u64[i+offset] = src->get_uint64_component(id++);
1197 break;
1198 case GLSL_TYPE_INT64:
1199 value.i64[i+offset] = src->get_int64_component(id++);
1200 break;
1201 default:
1202 assert(!"Should not get here.");
1203 return;
1204 }
1205 }
1206 }
1207 }
1208
1209 bool
1210 ir_constant::has_value(const ir_constant *c) const
1211 {
1212 if (this->type != c->type)
1213 return false;
1214
1215 if (this->type->is_array() || this->type->is_record()) {
1216 for (unsigned i = 0; i < this->type->length; i++) {
1217 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1218 return false;
1219 }
1220 return true;
1221 }
1222
1223 for (unsigned i = 0; i < this->type->components(); i++) {
1224 switch (this->type->base_type) {
1225 case GLSL_TYPE_UINT:
1226 if (this->value.u[i] != c->value.u[i])
1227 return false;
1228 break;
1229 case GLSL_TYPE_INT:
1230 if (this->value.i[i] != c->value.i[i])
1231 return false;
1232 break;
1233 case GLSL_TYPE_FLOAT:
1234 if (this->value.f[i] != c->value.f[i])
1235 return false;
1236 break;
1237 case GLSL_TYPE_BOOL:
1238 if (this->value.b[i] != c->value.b[i])
1239 return false;
1240 break;
1241 case GLSL_TYPE_DOUBLE:
1242 if (this->value.d[i] != c->value.d[i])
1243 return false;
1244 break;
1245 case GLSL_TYPE_UINT64:
1246 if (this->value.u64[i] != c->value.u64[i])
1247 return false;
1248 break;
1249 case GLSL_TYPE_INT64:
1250 if (this->value.i64[i] != c->value.i64[i])
1251 return false;
1252 break;
1253 default:
1254 assert(!"Should not get here.");
1255 return false;
1256 }
1257 }
1258
1259 return true;
1260 }
1261
1262 bool
1263 ir_constant::is_value(float f, int i) const
1264 {
1265 if (!this->type->is_scalar() && !this->type->is_vector())
1266 return false;
1267
1268 /* Only accept boolean values for 0/1. */
1269 if (int(bool(i)) != i && this->type->is_boolean())
1270 return false;
1271
1272 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1273 switch (this->type->base_type) {
1274 case GLSL_TYPE_FLOAT:
1275 if (this->value.f[c] != f)
1276 return false;
1277 break;
1278 case GLSL_TYPE_INT:
1279 if (this->value.i[c] != i)
1280 return false;
1281 break;
1282 case GLSL_TYPE_UINT:
1283 if (this->value.u[c] != unsigned(i))
1284 return false;
1285 break;
1286 case GLSL_TYPE_BOOL:
1287 if (this->value.b[c] != bool(i))
1288 return false;
1289 break;
1290 case GLSL_TYPE_DOUBLE:
1291 if (this->value.d[c] != double(f))
1292 return false;
1293 break;
1294 case GLSL_TYPE_UINT64:
1295 if (this->value.u64[c] != uint64_t(i))
1296 return false;
1297 break;
1298 case GLSL_TYPE_INT64:
1299 if (this->value.i64[c] != i)
1300 return false;
1301 break;
1302 default:
1303 /* The only other base types are structures, arrays, and samplers.
1304 * Samplers cannot be constants, and the others should have been
1305 * filtered out above.
1306 */
1307 assert(!"Should not get here.");
1308 return false;
1309 }
1310 }
1311
1312 return true;
1313 }
1314
1315 bool
1316 ir_constant::is_zero() const
1317 {
1318 return is_value(0.0, 0);
1319 }
1320
1321 bool
1322 ir_constant::is_one() const
1323 {
1324 return is_value(1.0, 1);
1325 }
1326
1327 bool
1328 ir_constant::is_negative_one() const
1329 {
1330 return is_value(-1.0, -1);
1331 }
1332
1333 bool
1334 ir_constant::is_uint16_constant() const
1335 {
1336 if (!type->is_integer())
1337 return false;
1338
1339 return value.u[0] < (1 << 16);
1340 }
1341
1342 ir_loop::ir_loop()
1343 : ir_instruction(ir_type_loop)
1344 {
1345 }
1346
1347
1348 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1349 : ir_dereference(ir_type_dereference_variable)
1350 {
1351 assert(var != NULL);
1352
1353 this->var = var;
1354 this->type = var->type;
1355 }
1356
1357
1358 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1359 ir_rvalue *array_index)
1360 : ir_dereference(ir_type_dereference_array)
1361 {
1362 this->array_index = array_index;
1363 this->set_array(value);
1364 }
1365
1366
1367 ir_dereference_array::ir_dereference_array(ir_variable *var,
1368 ir_rvalue *array_index)
1369 : ir_dereference(ir_type_dereference_array)
1370 {
1371 void *ctx = ralloc_parent(var);
1372
1373 this->array_index = array_index;
1374 this->set_array(new(ctx) ir_dereference_variable(var));
1375 }
1376
1377
1378 void
1379 ir_dereference_array::set_array(ir_rvalue *value)
1380 {
1381 assert(value != NULL);
1382
1383 this->array = value;
1384
1385 const glsl_type *const vt = this->array->type;
1386
1387 if (vt->is_array()) {
1388 type = vt->fields.array;
1389 } else if (vt->is_matrix()) {
1390 type = vt->column_type();
1391 } else if (vt->is_vector()) {
1392 type = vt->get_base_type();
1393 }
1394 }
1395
1396
1397 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1398 const char *field)
1399 : ir_dereference(ir_type_dereference_record)
1400 {
1401 assert(value != NULL);
1402
1403 this->record = value;
1404 this->type = this->record->type->field_type(field);
1405 this->field_idx = this->record->type->field_index(field);
1406 }
1407
1408
1409 ir_dereference_record::ir_dereference_record(ir_variable *var,
1410 const char *field)
1411 : ir_dereference(ir_type_dereference_record)
1412 {
1413 void *ctx = ralloc_parent(var);
1414
1415 this->record = new(ctx) ir_dereference_variable(var);
1416 this->type = this->record->type->field_type(field);
1417 this->field_idx = this->record->type->field_index(field);
1418 }
1419
1420 bool
1421 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1422 {
1423 ir_variable *var = this->variable_referenced();
1424
1425 /* Every l-value derference chain eventually ends in a variable.
1426 */
1427 if ((var == NULL) || var->data.read_only)
1428 return false;
1429
1430 /* From section 4.1.7 of the ARB_bindless_texture spec:
1431 *
1432 * "Samplers can be used as l-values, so can be assigned into and used as
1433 * "out" and "inout" function parameters."
1434 *
1435 * From section 4.1.X of the ARB_bindless_texture spec:
1436 *
1437 * "Images can be used as l-values, so can be assigned into and used as
1438 * "out" and "inout" function parameters."
1439 */
1440 if ((!state || state->has_bindless()) &&
1441 (this->type->contains_sampler() || this->type->contains_image()))
1442 return true;
1443
1444 /* From section 4.1.7 of the GLSL 4.40 spec:
1445 *
1446 * "Opaque variables cannot be treated as l-values; hence cannot
1447 * be used as out or inout function parameters, nor can they be
1448 * assigned into."
1449 */
1450 if (this->type->contains_opaque())
1451 return false;
1452
1453 return true;
1454 }
1455
1456
1457 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1458
1459 const char *ir_texture::opcode_string()
1460 {
1461 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1462 return tex_opcode_strs[op];
1463 }
1464
1465 ir_texture_opcode
1466 ir_texture::get_opcode(const char *str)
1467 {
1468 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1469 for (int op = 0; op < count; op++) {
1470 if (strcmp(str, tex_opcode_strs[op]) == 0)
1471 return (ir_texture_opcode) op;
1472 }
1473 return (ir_texture_opcode) -1;
1474 }
1475
1476
1477 void
1478 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1479 {
1480 assert(sampler != NULL);
1481 assert(type != NULL);
1482 this->sampler = sampler;
1483 this->type = type;
1484
1485 if (this->op == ir_txs || this->op == ir_query_levels ||
1486 this->op == ir_texture_samples) {
1487 assert(type->base_type == GLSL_TYPE_INT);
1488 } else if (this->op == ir_lod) {
1489 assert(type->vector_elements == 2);
1490 assert(type->is_float());
1491 } else if (this->op == ir_samples_identical) {
1492 assert(type == glsl_type::bool_type);
1493 assert(sampler->type->is_sampler());
1494 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1495 } else {
1496 assert(sampler->type->sampled_type == (int) type->base_type);
1497 if (sampler->type->sampler_shadow)
1498 assert(type->vector_elements == 4 || type->vector_elements == 1);
1499 else
1500 assert(type->vector_elements == 4);
1501 }
1502 }
1503
1504
1505 void
1506 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1507 {
1508 assert((count >= 1) && (count <= 4));
1509
1510 memset(&this->mask, 0, sizeof(this->mask));
1511 this->mask.num_components = count;
1512
1513 unsigned dup_mask = 0;
1514 switch (count) {
1515 case 4:
1516 assert(comp[3] <= 3);
1517 dup_mask |= (1U << comp[3])
1518 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1519 this->mask.w = comp[3];
1520
1521 case 3:
1522 assert(comp[2] <= 3);
1523 dup_mask |= (1U << comp[2])
1524 & ((1U << comp[0]) | (1U << comp[1]));
1525 this->mask.z = comp[2];
1526
1527 case 2:
1528 assert(comp[1] <= 3);
1529 dup_mask |= (1U << comp[1])
1530 & ((1U << comp[0]));
1531 this->mask.y = comp[1];
1532
1533 case 1:
1534 assert(comp[0] <= 3);
1535 this->mask.x = comp[0];
1536 }
1537
1538 this->mask.has_duplicates = dup_mask != 0;
1539
1540 /* Based on the number of elements in the swizzle and the base type
1541 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1542 * generate the type of the resulting value.
1543 */
1544 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1545 }
1546
1547 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1548 unsigned w, unsigned count)
1549 : ir_rvalue(ir_type_swizzle), val(val)
1550 {
1551 const unsigned components[4] = { x, y, z, w };
1552 this->init_mask(components, count);
1553 }
1554
1555 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1556 unsigned count)
1557 : ir_rvalue(ir_type_swizzle), val(val)
1558 {
1559 this->init_mask(comp, count);
1560 }
1561
1562 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1563 : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1564 {
1565 this->type = glsl_type::get_instance(val->type->base_type,
1566 mask.num_components, 1);
1567 }
1568
1569 #define X 1
1570 #define R 5
1571 #define S 9
1572 #define I 13
1573
1574 ir_swizzle *
1575 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1576 {
1577 void *ctx = ralloc_parent(val);
1578
1579 /* For each possible swizzle character, this table encodes the value in
1580 * \c idx_map that represents the 0th element of the vector. For invalid
1581 * swizzle characters (e.g., 'k'), a special value is used that will allow
1582 * detection of errors.
1583 */
1584 static const unsigned char base_idx[26] = {
1585 /* a b c d e f g h i j k l m */
1586 R, R, I, I, I, I, R, I, I, I, I, I, I,
1587 /* n o p q r s t u v w x y z */
1588 I, I, S, S, R, S, S, I, I, X, X, X, X
1589 };
1590
1591 /* Each valid swizzle character has an entry in the previous table. This
1592 * table encodes the base index encoded in the previous table plus the actual
1593 * index of the swizzle character. When processing swizzles, the first
1594 * character in the string is indexed in the previous table. Each character
1595 * in the string is indexed in this table, and the value found there has the
1596 * value form the first table subtracted. The result must be on the range
1597 * [0,3].
1598 *
1599 * For example, the string "wzyx" will get X from the first table. Each of
1600 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1601 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1602 *
1603 * The string "wzrg" will get X from the first table. Each of the characters
1604 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1605 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1606 * [0,3], the error is detected.
1607 */
1608 static const unsigned char idx_map[26] = {
1609 /* a b c d e f g h i j k l m */
1610 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1611 /* n o p q r s t u v w x y z */
1612 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1613 };
1614
1615 int swiz_idx[4] = { 0, 0, 0, 0 };
1616 unsigned i;
1617
1618
1619 /* Validate the first character in the swizzle string and look up the base
1620 * index value as described above.
1621 */
1622 if ((str[0] < 'a') || (str[0] > 'z'))
1623 return NULL;
1624
1625 const unsigned base = base_idx[str[0] - 'a'];
1626
1627
1628 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1629 /* Validate the next character, and, as described above, convert it to a
1630 * swizzle index.
1631 */
1632 if ((str[i] < 'a') || (str[i] > 'z'))
1633 return NULL;
1634
1635 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1636 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1637 return NULL;
1638 }
1639
1640 if (str[i] != '\0')
1641 return NULL;
1642
1643 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1644 swiz_idx[3], i);
1645 }
1646
1647 #undef X
1648 #undef R
1649 #undef S
1650 #undef I
1651
1652 ir_variable *
1653 ir_swizzle::variable_referenced() const
1654 {
1655 return this->val->variable_referenced();
1656 }
1657
1658
1659 bool ir_variable::temporaries_allocate_names = false;
1660
1661 const char ir_variable::tmp_name[] = "compiler_temp";
1662
1663 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1664 ir_variable_mode mode)
1665 : ir_instruction(ir_type_variable)
1666 {
1667 this->type = type;
1668
1669 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1670 name = NULL;
1671
1672 /* The ir_variable clone method may call this constructor with name set to
1673 * tmp_name.
1674 */
1675 assert(name != NULL
1676 || mode == ir_var_temporary
1677 || mode == ir_var_function_in
1678 || mode == ir_var_function_out
1679 || mode == ir_var_function_inout);
1680 assert(name != ir_variable::tmp_name
1681 || mode == ir_var_temporary);
1682 if (mode == ir_var_temporary
1683 && (name == NULL || name == ir_variable::tmp_name)) {
1684 this->name = ir_variable::tmp_name;
1685 } else if (name == NULL ||
1686 strlen(name) < ARRAY_SIZE(this->name_storage)) {
1687 strcpy(this->name_storage, name ? name : "");
1688 this->name = this->name_storage;
1689 } else {
1690 this->name = ralloc_strdup(this, name);
1691 }
1692
1693 this->u.max_ifc_array_access = NULL;
1694
1695 this->data.explicit_location = false;
1696 this->data.has_initializer = false;
1697 this->data.location = -1;
1698 this->data.location_frac = 0;
1699 this->data.binding = 0;
1700 this->data.warn_extension_index = 0;
1701 this->constant_value = NULL;
1702 this->constant_initializer = NULL;
1703 this->data.origin_upper_left = false;
1704 this->data.pixel_center_integer = false;
1705 this->data.depth_layout = ir_depth_layout_none;
1706 this->data.used = false;
1707 this->data.always_active_io = false;
1708 this->data.read_only = false;
1709 this->data.centroid = false;
1710 this->data.sample = false;
1711 this->data.patch = false;
1712 this->data.invariant = false;
1713 this->data.how_declared = ir_var_declared_normally;
1714 this->data.mode = mode;
1715 this->data.interpolation = INTERP_MODE_NONE;
1716 this->data.max_array_access = -1;
1717 this->data.offset = 0;
1718 this->data.precision = GLSL_PRECISION_NONE;
1719 this->data.memory_read_only = false;
1720 this->data.memory_write_only = false;
1721 this->data.memory_coherent = false;
1722 this->data.memory_volatile = false;
1723 this->data.memory_restrict = false;
1724 this->data.from_ssbo_unsized_array = false;
1725 this->data.fb_fetch_output = false;
1726 this->data.bindless = false;
1727 this->data.bound = false;
1728
1729 if (type != NULL) {
1730 if (type->is_interface())
1731 this->init_interface_type(type);
1732 else if (type->without_array()->is_interface())
1733 this->init_interface_type(type->without_array());
1734 }
1735 }
1736
1737
1738 const char *
1739 interpolation_string(unsigned interpolation)
1740 {
1741 switch (interpolation) {
1742 case INTERP_MODE_NONE: return "no";
1743 case INTERP_MODE_SMOOTH: return "smooth";
1744 case INTERP_MODE_FLAT: return "flat";
1745 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1746 }
1747
1748 assert(!"Should not get here.");
1749 return "";
1750 }
1751
1752 const char *const ir_variable::warn_extension_table[] = {
1753 "",
1754 "GL_ARB_shader_stencil_export",
1755 "GL_AMD_shader_stencil_export",
1756 };
1757
1758 void
1759 ir_variable::enable_extension_warning(const char *extension)
1760 {
1761 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1762 if (strcmp(warn_extension_table[i], extension) == 0) {
1763 this->data.warn_extension_index = i;
1764 return;
1765 }
1766 }
1767
1768 assert(!"Should not get here.");
1769 this->data.warn_extension_index = 0;
1770 }
1771
1772 const char *
1773 ir_variable::get_extension_warning() const
1774 {
1775 return this->data.warn_extension_index == 0
1776 ? NULL : warn_extension_table[this->data.warn_extension_index];
1777 }
1778
1779 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1780 builtin_available_predicate b)
1781 : ir_instruction(ir_type_function_signature),
1782 return_type(return_type), is_defined(false),
1783 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1784 {
1785 this->origin = NULL;
1786 }
1787
1788
1789 bool
1790 ir_function_signature::is_builtin() const
1791 {
1792 return builtin_avail != NULL;
1793 }
1794
1795
1796 bool
1797 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1798 {
1799 /* We can't call the predicate without a state pointer, so just say that
1800 * the signature is available. At compile time, we need the filtering,
1801 * but also receive a valid state pointer. At link time, we're resolving
1802 * imported built-in prototypes to their definitions, which will always
1803 * be an exact match. So we can skip the filtering.
1804 */
1805 if (state == NULL)
1806 return true;
1807
1808 assert(builtin_avail != NULL);
1809 return builtin_avail(state);
1810 }
1811
1812
1813 static bool
1814 modes_match(unsigned a, unsigned b)
1815 {
1816 if (a == b)
1817 return true;
1818
1819 /* Accept "in" vs. "const in" */
1820 if ((a == ir_var_const_in && b == ir_var_function_in) ||
1821 (b == ir_var_const_in && a == ir_var_function_in))
1822 return true;
1823
1824 return false;
1825 }
1826
1827
1828 const char *
1829 ir_function_signature::qualifiers_match(exec_list *params)
1830 {
1831 /* check that the qualifiers match. */
1832 foreach_two_lists(a_node, &this->parameters, b_node, params) {
1833 ir_variable *a = (ir_variable *) a_node;
1834 ir_variable *b = (ir_variable *) b_node;
1835
1836 if (a->data.read_only != b->data.read_only ||
1837 !modes_match(a->data.mode, b->data.mode) ||
1838 a->data.interpolation != b->data.interpolation ||
1839 a->data.centroid != b->data.centroid ||
1840 a->data.sample != b->data.sample ||
1841 a->data.patch != b->data.patch ||
1842 a->data.memory_read_only != b->data.memory_read_only ||
1843 a->data.memory_write_only != b->data.memory_write_only ||
1844 a->data.memory_coherent != b->data.memory_coherent ||
1845 a->data.memory_volatile != b->data.memory_volatile ||
1846 a->data.memory_restrict != b->data.memory_restrict) {
1847
1848 /* parameter a's qualifiers don't match */
1849 return a->name;
1850 }
1851 }
1852 return NULL;
1853 }
1854
1855
1856 void
1857 ir_function_signature::replace_parameters(exec_list *new_params)
1858 {
1859 /* Destroy all of the previous parameter information. If the previous
1860 * parameter information comes from the function prototype, it may either
1861 * specify incorrect parameter names or not have names at all.
1862 */
1863 new_params->move_nodes_to(&parameters);
1864 }
1865
1866
1867 ir_function::ir_function(const char *name)
1868 : ir_instruction(ir_type_function)
1869 {
1870 this->subroutine_index = -1;
1871 this->name = ralloc_strdup(this, name);
1872 }
1873
1874
1875 bool
1876 ir_function::has_user_signature()
1877 {
1878 foreach_in_list(ir_function_signature, sig, &this->signatures) {
1879 if (!sig->is_builtin())
1880 return true;
1881 }
1882 return false;
1883 }
1884
1885
1886 ir_rvalue *
1887 ir_rvalue::error_value(void *mem_ctx)
1888 {
1889 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
1890
1891 v->type = glsl_type::error_type;
1892 return v;
1893 }
1894
1895
1896 void
1897 visit_exec_list(exec_list *list, ir_visitor *visitor)
1898 {
1899 foreach_in_list_safe(ir_instruction, node, list) {
1900 node->accept(visitor);
1901 }
1902 }
1903
1904
1905 static void
1906 steal_memory(ir_instruction *ir, void *new_ctx)
1907 {
1908 ir_variable *var = ir->as_variable();
1909 ir_function *fn = ir->as_function();
1910 ir_constant *constant = ir->as_constant();
1911 if (var != NULL && var->constant_value != NULL)
1912 steal_memory(var->constant_value, ir);
1913
1914 if (var != NULL && var->constant_initializer != NULL)
1915 steal_memory(var->constant_initializer, ir);
1916
1917 if (fn != NULL && fn->subroutine_types)
1918 ralloc_steal(new_ctx, fn->subroutine_types);
1919
1920 /* The components of aggregate constants are not visited by the normal
1921 * visitor, so steal their values by hand.
1922 */
1923 if (constant != NULL &&
1924 (constant->type->is_array() || constant->type->is_record())) {
1925 for (unsigned int i = 0; i < constant->type->length; i++) {
1926 steal_memory(constant->const_elements[i], ir);
1927 }
1928 }
1929
1930 ralloc_steal(new_ctx, ir);
1931 }
1932
1933
1934 void
1935 reparent_ir(exec_list *list, void *mem_ctx)
1936 {
1937 foreach_in_list(ir_instruction, node, list) {
1938 visit_tree(node, steal_memory, mem_ctx);
1939 }
1940 }
1941
1942
1943 static ir_rvalue *
1944 try_min_one(ir_rvalue *ir)
1945 {
1946 ir_expression *expr = ir->as_expression();
1947
1948 if (!expr || expr->operation != ir_binop_min)
1949 return NULL;
1950
1951 if (expr->operands[0]->is_one())
1952 return expr->operands[1];
1953
1954 if (expr->operands[1]->is_one())
1955 return expr->operands[0];
1956
1957 return NULL;
1958 }
1959
1960 static ir_rvalue *
1961 try_max_zero(ir_rvalue *ir)
1962 {
1963 ir_expression *expr = ir->as_expression();
1964
1965 if (!expr || expr->operation != ir_binop_max)
1966 return NULL;
1967
1968 if (expr->operands[0]->is_zero())
1969 return expr->operands[1];
1970
1971 if (expr->operands[1]->is_zero())
1972 return expr->operands[0];
1973
1974 return NULL;
1975 }
1976
1977 ir_rvalue *
1978 ir_rvalue::as_rvalue_to_saturate()
1979 {
1980 ir_expression *expr = this->as_expression();
1981
1982 if (!expr)
1983 return NULL;
1984
1985 ir_rvalue *max_zero = try_max_zero(expr);
1986 if (max_zero) {
1987 return try_min_one(max_zero);
1988 } else {
1989 ir_rvalue *min_one = try_min_one(expr);
1990 if (min_one) {
1991 return try_max_zero(min_one);
1992 }
1993 }
1994
1995 return NULL;
1996 }
1997
1998
1999 unsigned
2000 vertices_per_prim(GLenum prim)
2001 {
2002 switch (prim) {
2003 case GL_POINTS:
2004 return 1;
2005 case GL_LINES:
2006 return 2;
2007 case GL_TRIANGLES:
2008 return 3;
2009 case GL_LINES_ADJACENCY:
2010 return 4;
2011 case GL_TRIANGLES_ADJACENCY:
2012 return 6;
2013 default:
2014 assert(!"Bad primitive");
2015 return 3;
2016 }
2017 }
2018
2019 /**
2020 * Generate a string describing the mode of a variable
2021 */
2022 const char *
2023 mode_string(const ir_variable *var)
2024 {
2025 switch (var->data.mode) {
2026 case ir_var_auto:
2027 return (var->data.read_only) ? "global constant" : "global variable";
2028
2029 case ir_var_uniform:
2030 return "uniform";
2031
2032 case ir_var_shader_storage:
2033 return "buffer";
2034
2035 case ir_var_shader_in:
2036 return "shader input";
2037
2038 case ir_var_shader_out:
2039 return "shader output";
2040
2041 case ir_var_function_in:
2042 case ir_var_const_in:
2043 return "function input";
2044
2045 case ir_var_function_out:
2046 return "function output";
2047
2048 case ir_var_function_inout:
2049 return "function inout";
2050
2051 case ir_var_system_value:
2052 return "shader input";
2053
2054 case ir_var_temporary:
2055 return "compiler temporary";
2056
2057 case ir_var_mode_count:
2058 break;
2059 }
2060
2061 assert(!"Should not get here.");
2062 return "invalid variable";
2063 }