Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28
29
30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31 : ir_instruction(t)
32 {
33 this->type = glsl_type::error_type;
34 }
35
36 bool ir_rvalue::is_zero() const
37 {
38 return false;
39 }
40
41 bool ir_rvalue::is_one() const
42 {
43 return false;
44 }
45
46 bool ir_rvalue::is_negative_one() const
47 {
48 return false;
49 }
50
51 /**
52 * Modify the swizzle make to move one component to another
53 *
54 * \param m IR swizzle to be modified
55 * \param from Component in the RHS that is to be swizzled
56 * \param to Desired swizzle location of \c from
57 */
58 static void
59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61 switch (to) {
62 case 0: m.x = from; break;
63 case 1: m.y = from; break;
64 case 2: m.z = from; break;
65 case 3: m.w = from; break;
66 default: assert(!"Should not get here.");
67 }
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 rhs_swiz.num_components = swiz->val->type->vector_elements;
99 }
100
101 this->write_mask = write_mask;
102 lhs = swiz->val;
103
104 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105 swizzled = true;
106 }
107
108 if (swizzled) {
109 /* Now, RHS channels line up with the LHS writemask. Collapse it
110 * to just the channels that will be written.
111 */
112 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113 int rhs_chan = 0;
114 for (int i = 0; i < 4; i++) {
115 if (write_mask & (1 << i))
116 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117 }
118 rhs_swiz.num_components = rhs_chan;
119 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120 }
121
122 assert((lhs == NULL) || lhs->as_dereference());
123
124 this->lhs = (ir_dereference *) lhs;
125 }
126
127 ir_variable *
128 ir_assignment::whole_variable_written()
129 {
130 ir_variable *v = this->lhs->whole_variable_referenced();
131
132 if (v == NULL)
133 return NULL;
134
135 if (v->type->is_scalar())
136 return v;
137
138 if (v->type->is_vector()) {
139 const unsigned mask = (1U << v->type->vector_elements) - 1;
140
141 if (mask != this->write_mask)
142 return NULL;
143 }
144
145 /* Either all the vector components are assigned or the variable is some
146 * composite type (and the whole thing is assigned.
147 */
148 return v;
149 }
150
151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 ir_rvalue *condition, unsigned write_mask)
153 : ir_instruction(ir_type_assignment)
154 {
155 this->condition = condition;
156 this->rhs = rhs;
157 this->lhs = lhs;
158 this->write_mask = write_mask;
159
160 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161 int lhs_components = 0;
162 for (int i = 0; i < 4; i++) {
163 if (write_mask & (1 << i))
164 lhs_components++;
165 }
166
167 assert(lhs_components == this->rhs->type->vector_elements);
168 }
169 }
170
171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 ir_rvalue *condition)
173 : ir_instruction(ir_type_assignment)
174 {
175 this->condition = condition;
176 this->rhs = rhs;
177
178 /* If the RHS is a vector type, assume that all components of the vector
179 * type are being written to the LHS. The write mask comes from the RHS
180 * because we can have a case where the LHS is a vec4 and the RHS is a
181 * vec3. In that case, the assignment is:
182 *
183 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184 */
185 if (rhs->type->is_vector())
186 this->write_mask = (1U << rhs->type->vector_elements) - 1;
187 else if (rhs->type->is_scalar())
188 this->write_mask = 1;
189 else
190 this->write_mask = 0;
191
192 this->set_lhs(lhs);
193 }
194
195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 ir_rvalue *op0, ir_rvalue *op1,
197 ir_rvalue *op2, ir_rvalue *op3)
198 : ir_rvalue(ir_type_expression)
199 {
200 this->type = type;
201 this->operation = ir_expression_operation(op);
202 this->operands[0] = op0;
203 this->operands[1] = op1;
204 this->operands[2] = op2;
205 this->operands[3] = op3;
206 init_num_operands();
207
208 #ifndef NDEBUG
209 for (unsigned i = num_operands; i < 4; i++) {
210 assert(this->operands[i] == NULL);
211 }
212
213 for (unsigned i = 0; i < num_operands; i++) {
214 assert(this->operands[i] != NULL);
215 }
216 #endif
217 }
218
219 ir_expression::ir_expression(int op, ir_rvalue *op0)
220 : ir_rvalue(ir_type_expression)
221 {
222 this->operation = ir_expression_operation(op);
223 this->operands[0] = op0;
224 this->operands[1] = NULL;
225 this->operands[2] = NULL;
226 this->operands[3] = NULL;
227
228 assert(op <= ir_last_unop);
229 init_num_operands();
230 assert(num_operands == 1);
231 assert(this->operands[0]);
232
233 switch (this->operation) {
234 case ir_unop_bit_not:
235 case ir_unop_logic_not:
236 case ir_unop_neg:
237 case ir_unop_abs:
238 case ir_unop_sign:
239 case ir_unop_rcp:
240 case ir_unop_rsq:
241 case ir_unop_sqrt:
242 case ir_unop_exp:
243 case ir_unop_log:
244 case ir_unop_exp2:
245 case ir_unop_log2:
246 case ir_unop_trunc:
247 case ir_unop_ceil:
248 case ir_unop_floor:
249 case ir_unop_fract:
250 case ir_unop_round_even:
251 case ir_unop_sin:
252 case ir_unop_cos:
253 case ir_unop_dFdx:
254 case ir_unop_dFdx_coarse:
255 case ir_unop_dFdx_fine:
256 case ir_unop_dFdy:
257 case ir_unop_dFdy_coarse:
258 case ir_unop_dFdy_fine:
259 case ir_unop_bitfield_reverse:
260 case ir_unop_interpolate_at_centroid:
261 case ir_unop_clz:
262 case ir_unop_saturate:
263 case ir_unop_atan:
264 this->type = op0->type;
265 break;
266
267 case ir_unop_f2i:
268 case ir_unop_b2i:
269 case ir_unop_u2i:
270 case ir_unop_d2i:
271 case ir_unop_bitcast_f2i:
272 case ir_unop_bit_count:
273 case ir_unop_find_msb:
274 case ir_unop_find_lsb:
275 case ir_unop_subroutine_to_int:
276 case ir_unop_i642i:
277 case ir_unop_u642i:
278 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
279 op0->type->vector_elements, 1);
280 break;
281
282 case ir_unop_b2f:
283 case ir_unop_i2f:
284 case ir_unop_u2f:
285 case ir_unop_d2f:
286 case ir_unop_f162f:
287 case ir_unop_bitcast_i2f:
288 case ir_unop_bitcast_u2f:
289 case ir_unop_i642f:
290 case ir_unop_u642f:
291 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
292 op0->type->vector_elements, 1);
293 break;
294
295 case ir_unop_f2f16:
296 case ir_unop_f2fmp:
297 case ir_unop_b2f16:
298 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
299 op0->type->vector_elements, 1);
300 break;
301
302 case ir_unop_i2imp:
303 this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
304 op0->type->vector_elements, 1);
305 break;
306
307 case ir_unop_i2i:
308 if (op0->type->base_type == GLSL_TYPE_INT) {
309 this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
310 op0->type->vector_elements, 1);
311 } else {
312 assert(op0->type->base_type == GLSL_TYPE_INT16);
313 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
314 op0->type->vector_elements, 1);
315 }
316 break;
317
318 case ir_unop_u2u:
319 if (op0->type->base_type == GLSL_TYPE_UINT) {
320 this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
321 op0->type->vector_elements, 1);
322 } else {
323 assert(op0->type->base_type == GLSL_TYPE_UINT16);
324 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
325 op0->type->vector_elements, 1);
326 }
327 break;
328
329 case ir_unop_u2ump:
330 this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
331 op0->type->vector_elements, 1);
332 break;
333
334 case ir_unop_f2b:
335 case ir_unop_i2b:
336 case ir_unop_d2b:
337 case ir_unop_f162b:
338 case ir_unop_i642b:
339 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
340 op0->type->vector_elements, 1);
341 break;
342
343 case ir_unop_f2d:
344 case ir_unop_i2d:
345 case ir_unop_u2d:
346 case ir_unop_i642d:
347 case ir_unop_u642d:
348 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
349 op0->type->vector_elements, 1);
350 break;
351
352 case ir_unop_i2u:
353 case ir_unop_f2u:
354 case ir_unop_d2u:
355 case ir_unop_bitcast_f2u:
356 case ir_unop_i642u:
357 case ir_unop_u642u:
358 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
359 op0->type->vector_elements, 1);
360 break;
361
362 case ir_unop_i2i64:
363 case ir_unop_u2i64:
364 case ir_unop_b2i64:
365 case ir_unop_f2i64:
366 case ir_unop_d2i64:
367 case ir_unop_u642i64:
368 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
369 op0->type->vector_elements, 1);
370 break;
371
372 case ir_unop_i2u64:
373 case ir_unop_u2u64:
374 case ir_unop_f2u64:
375 case ir_unop_d2u64:
376 case ir_unop_i642u64:
377 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
378 op0->type->vector_elements, 1);
379 break;
380
381 case ir_unop_unpack_double_2x32:
382 case ir_unop_unpack_uint_2x32:
383 this->type = glsl_type::uvec2_type;
384 break;
385
386 case ir_unop_unpack_int_2x32:
387 this->type = glsl_type::ivec2_type;
388 break;
389
390 case ir_unop_pack_snorm_2x16:
391 case ir_unop_pack_snorm_4x8:
392 case ir_unop_pack_unorm_2x16:
393 case ir_unop_pack_unorm_4x8:
394 case ir_unop_pack_half_2x16:
395 this->type = glsl_type::uint_type;
396 break;
397
398 case ir_unop_pack_double_2x32:
399 this->type = glsl_type::double_type;
400 break;
401
402 case ir_unop_pack_int_2x32:
403 this->type = glsl_type::int64_t_type;
404 break;
405
406 case ir_unop_pack_uint_2x32:
407 this->type = glsl_type::uint64_t_type;
408 break;
409
410 case ir_unop_unpack_snorm_2x16:
411 case ir_unop_unpack_unorm_2x16:
412 case ir_unop_unpack_half_2x16:
413 this->type = glsl_type::vec2_type;
414 break;
415
416 case ir_unop_unpack_snorm_4x8:
417 case ir_unop_unpack_unorm_4x8:
418 this->type = glsl_type::vec4_type;
419 break;
420
421 case ir_unop_unpack_sampler_2x32:
422 case ir_unop_unpack_image_2x32:
423 this->type = glsl_type::uvec2_type;
424 break;
425
426 case ir_unop_pack_sampler_2x32:
427 case ir_unop_pack_image_2x32:
428 this->type = op0->type;
429 break;
430
431 case ir_unop_frexp_sig:
432 this->type = op0->type;
433 break;
434 case ir_unop_frexp_exp:
435 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
436 op0->type->vector_elements, 1);
437 break;
438
439 case ir_unop_get_buffer_size:
440 case ir_unop_ssbo_unsized_array_length:
441 this->type = glsl_type::int_type;
442 break;
443
444 case ir_unop_bitcast_i642d:
445 case ir_unop_bitcast_u642d:
446 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
447 op0->type->vector_elements, 1);
448 break;
449
450 case ir_unop_bitcast_d2i64:
451 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
452 op0->type->vector_elements, 1);
453 break;
454 case ir_unop_bitcast_d2u64:
455 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
456 op0->type->vector_elements, 1);
457 break;
458
459 default:
460 assert(!"not reached: missing automatic type setup for ir_expression");
461 this->type = op0->type;
462 break;
463 }
464 }
465
466 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
467 : ir_rvalue(ir_type_expression)
468 {
469 this->operation = ir_expression_operation(op);
470 this->operands[0] = op0;
471 this->operands[1] = op1;
472 this->operands[2] = NULL;
473 this->operands[3] = NULL;
474
475 assert(op > ir_last_unop);
476 init_num_operands();
477 assert(num_operands == 2);
478 for (unsigned i = 0; i < num_operands; i++) {
479 assert(this->operands[i] != NULL);
480 }
481
482 switch (this->operation) {
483 case ir_binop_all_equal:
484 case ir_binop_any_nequal:
485 this->type = glsl_type::bool_type;
486 break;
487
488 case ir_binop_add:
489 case ir_binop_sub:
490 case ir_binop_min:
491 case ir_binop_max:
492 case ir_binop_pow:
493 case ir_binop_mul:
494 case ir_binop_div:
495 case ir_binop_mod:
496 case ir_binop_atan2:
497 if (op0->type->is_scalar()) {
498 this->type = op1->type;
499 } else if (op1->type->is_scalar()) {
500 this->type = op0->type;
501 } else {
502 if (this->operation == ir_binop_mul) {
503 this->type = glsl_type::get_mul_type(op0->type, op1->type);
504 } else {
505 assert(op0->type == op1->type);
506 this->type = op0->type;
507 }
508 }
509 break;
510
511 case ir_binop_logic_and:
512 case ir_binop_logic_xor:
513 case ir_binop_logic_or:
514 case ir_binop_bit_and:
515 case ir_binop_bit_xor:
516 case ir_binop_bit_or:
517 assert(!op0->type->is_matrix());
518 assert(!op1->type->is_matrix());
519 if (op0->type->is_scalar()) {
520 this->type = op1->type;
521 } else if (op1->type->is_scalar()) {
522 this->type = op0->type;
523 } else {
524 assert(op0->type->vector_elements == op1->type->vector_elements);
525 this->type = op0->type;
526 }
527 break;
528
529 case ir_binop_equal:
530 case ir_binop_nequal:
531 case ir_binop_gequal:
532 case ir_binop_less:
533 assert(op0->type == op1->type);
534 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
535 op0->type->vector_elements, 1);
536 break;
537
538 case ir_binop_dot:
539 this->type = op0->type->get_base_type();
540 break;
541
542 case ir_binop_imul_high:
543 case ir_binop_mul_32x16:
544 case ir_binop_carry:
545 case ir_binop_borrow:
546 case ir_binop_lshift:
547 case ir_binop_rshift:
548 case ir_binop_ldexp:
549 case ir_binop_interpolate_at_offset:
550 case ir_binop_interpolate_at_sample:
551 this->type = op0->type;
552 break;
553
554 case ir_binop_add_sat:
555 case ir_binop_sub_sat:
556 case ir_binop_avg:
557 case ir_binop_avg_round:
558 assert(op0->type == op1->type);
559 this->type = op0->type;
560 break;
561
562 case ir_binop_abs_sub: {
563 enum glsl_base_type base;
564
565 assert(op0->type == op1->type);
566
567 switch (op0->type->base_type) {
568 case GLSL_TYPE_UINT:
569 case GLSL_TYPE_INT:
570 base = GLSL_TYPE_UINT;
571 break;
572 case GLSL_TYPE_UINT8:
573 case GLSL_TYPE_INT8:
574 base = GLSL_TYPE_UINT8;
575 break;
576 case GLSL_TYPE_UINT16:
577 case GLSL_TYPE_INT16:
578 base = GLSL_TYPE_UINT16;
579 break;
580 case GLSL_TYPE_UINT64:
581 case GLSL_TYPE_INT64:
582 base = GLSL_TYPE_UINT64;
583 break;
584 default:
585 unreachable(!"Invalid base type.");
586 }
587
588 this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
589 break;
590 }
591
592 case ir_binop_vector_extract:
593 this->type = op0->type->get_scalar_type();
594 break;
595
596 default:
597 assert(!"not reached: missing automatic type setup for ir_expression");
598 this->type = glsl_type::float_type;
599 }
600 }
601
602 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
603 ir_rvalue *op2)
604 : ir_rvalue(ir_type_expression)
605 {
606 this->operation = ir_expression_operation(op);
607 this->operands[0] = op0;
608 this->operands[1] = op1;
609 this->operands[2] = op2;
610 this->operands[3] = NULL;
611
612 assert(op > ir_last_binop && op <= ir_last_triop);
613 init_num_operands();
614 assert(num_operands == 3);
615 for (unsigned i = 0; i < num_operands; i++) {
616 assert(this->operands[i] != NULL);
617 }
618
619 switch (this->operation) {
620 case ir_triop_fma:
621 case ir_triop_lrp:
622 case ir_triop_bitfield_extract:
623 case ir_triop_vector_insert:
624 this->type = op0->type;
625 break;
626
627 case ir_triop_csel:
628 this->type = op1->type;
629 break;
630
631 default:
632 assert(!"not reached: missing automatic type setup for ir_expression");
633 this->type = glsl_type::float_type;
634 }
635 }
636
637 /**
638 * This is only here for ir_reader to used for testing purposes. Please use
639 * the precomputed num_operands field if you need the number of operands.
640 */
641 unsigned
642 ir_expression::get_num_operands(ir_expression_operation op)
643 {
644 assert(op <= ir_last_opcode);
645
646 if (op <= ir_last_unop)
647 return 1;
648
649 if (op <= ir_last_binop)
650 return 2;
651
652 if (op <= ir_last_triop)
653 return 3;
654
655 if (op <= ir_last_quadop)
656 return 4;
657
658 unreachable("Could not calculate number of operands");
659 }
660
661 #include "ir_expression_operation_strings.h"
662
663 const char*
664 depth_layout_string(ir_depth_layout layout)
665 {
666 switch(layout) {
667 case ir_depth_layout_none: return "";
668 case ir_depth_layout_any: return "depth_any";
669 case ir_depth_layout_greater: return "depth_greater";
670 case ir_depth_layout_less: return "depth_less";
671 case ir_depth_layout_unchanged: return "depth_unchanged";
672
673 default:
674 assert(0);
675 return "";
676 }
677 }
678
679 ir_expression_operation
680 ir_expression::get_operator(const char *str)
681 {
682 for (int op = 0; op <= int(ir_last_opcode); op++) {
683 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
684 return (ir_expression_operation) op;
685 }
686 return (ir_expression_operation) -1;
687 }
688
689 ir_variable *
690 ir_expression::variable_referenced() const
691 {
692 switch (operation) {
693 case ir_binop_vector_extract:
694 case ir_triop_vector_insert:
695 /* We get these for things like a[0] where a is a vector type. In these
696 * cases we want variable_referenced() to return the actual vector
697 * variable this is wrapping.
698 */
699 return operands[0]->variable_referenced();
700 default:
701 return ir_rvalue::variable_referenced();
702 }
703 }
704
705 ir_constant::ir_constant()
706 : ir_rvalue(ir_type_constant)
707 {
708 this->const_elements = NULL;
709 }
710
711 ir_constant::ir_constant(const struct glsl_type *type,
712 const ir_constant_data *data)
713 : ir_rvalue(ir_type_constant)
714 {
715 this->const_elements = NULL;
716
717 assert((type->base_type >= GLSL_TYPE_UINT)
718 && (type->base_type <= GLSL_TYPE_IMAGE));
719
720 this->type = type;
721 memcpy(& this->value, data, sizeof(this->value));
722 }
723
724 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
725 : ir_rvalue(ir_type_constant)
726 {
727 assert(vector_elements <= 4);
728 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
729 for (unsigned i = 0; i < vector_elements; i++) {
730 this->value.f16[i] = f16.bits;
731 }
732 for (unsigned i = vector_elements; i < 16; i++) {
733 this->value.f[i] = 0;
734 }
735 }
736
737 ir_constant::ir_constant(float f, unsigned vector_elements)
738 : ir_rvalue(ir_type_constant)
739 {
740 assert(vector_elements <= 4);
741 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
742 for (unsigned i = 0; i < vector_elements; i++) {
743 this->value.f[i] = f;
744 }
745 for (unsigned i = vector_elements; i < 16; i++) {
746 this->value.f[i] = 0;
747 }
748 }
749
750 ir_constant::ir_constant(double d, unsigned vector_elements)
751 : ir_rvalue(ir_type_constant)
752 {
753 assert(vector_elements <= 4);
754 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
755 for (unsigned i = 0; i < vector_elements; i++) {
756 this->value.d[i] = d;
757 }
758 for (unsigned i = vector_elements; i < 16; i++) {
759 this->value.d[i] = 0.0;
760 }
761 }
762
763 ir_constant::ir_constant(int16_t i16, unsigned vector_elements)
764 : ir_rvalue(ir_type_constant)
765 {
766 assert(vector_elements <= 4);
767 this->type = glsl_type::get_instance(GLSL_TYPE_INT16, vector_elements, 1);
768 for (unsigned i = 0; i < vector_elements; i++) {
769 this->value.i16[i] = i16;
770 }
771 for (unsigned i = vector_elements; i < 16; i++) {
772 this->value.i16[i] = 0;
773 }
774 }
775
776 ir_constant::ir_constant(uint16_t u16, unsigned vector_elements)
777 : ir_rvalue(ir_type_constant)
778 {
779 assert(vector_elements <= 4);
780 this->type = glsl_type::get_instance(GLSL_TYPE_UINT16, vector_elements, 1);
781 for (unsigned i = 0; i < vector_elements; i++) {
782 this->value.u16[i] = u16;
783 }
784 for (unsigned i = vector_elements; i < 16; i++) {
785 this->value.u16[i] = 0;
786 }
787 }
788
789 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
790 : ir_rvalue(ir_type_constant)
791 {
792 assert(vector_elements <= 4);
793 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
794 for (unsigned i = 0; i < vector_elements; i++) {
795 this->value.u[i] = u;
796 }
797 for (unsigned i = vector_elements; i < 16; i++) {
798 this->value.u[i] = 0;
799 }
800 }
801
802 ir_constant::ir_constant(int integer, unsigned vector_elements)
803 : ir_rvalue(ir_type_constant)
804 {
805 assert(vector_elements <= 4);
806 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
807 for (unsigned i = 0; i < vector_elements; i++) {
808 this->value.i[i] = integer;
809 }
810 for (unsigned i = vector_elements; i < 16; i++) {
811 this->value.i[i] = 0;
812 }
813 }
814
815 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
816 : ir_rvalue(ir_type_constant)
817 {
818 assert(vector_elements <= 4);
819 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
820 for (unsigned i = 0; i < vector_elements; i++) {
821 this->value.u64[i] = u64;
822 }
823 for (unsigned i = vector_elements; i < 16; i++) {
824 this->value.u64[i] = 0;
825 }
826 }
827
828 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
829 : ir_rvalue(ir_type_constant)
830 {
831 assert(vector_elements <= 4);
832 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
833 for (unsigned i = 0; i < vector_elements; i++) {
834 this->value.i64[i] = int64;
835 }
836 for (unsigned i = vector_elements; i < 16; i++) {
837 this->value.i64[i] = 0;
838 }
839 }
840
841 ir_constant::ir_constant(bool b, unsigned vector_elements)
842 : ir_rvalue(ir_type_constant)
843 {
844 assert(vector_elements <= 4);
845 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
846 for (unsigned i = 0; i < vector_elements; i++) {
847 this->value.b[i] = b;
848 }
849 for (unsigned i = vector_elements; i < 16; i++) {
850 this->value.b[i] = false;
851 }
852 }
853
854 ir_constant::ir_constant(const ir_constant *c, unsigned i)
855 : ir_rvalue(ir_type_constant)
856 {
857 this->const_elements = NULL;
858 this->type = c->type->get_base_type();
859
860 /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says:
861 *
862 * In the subsections described above for array, vector, matrix and
863 * structure accesses, any out-of-bounds access produced undefined
864 * behavior....Out-of-bounds reads return undefined values, which
865 * include values from other variables of the active program or zero.
866 *
867 * GL_KHR_robustness and GL_ARB_robustness encourage us to return zero.
868 */
869 if (i >= c->type->vector_elements) {
870 this->value = { { 0 } };
871 return;
872 }
873
874 switch (this->type->base_type) {
875 case GLSL_TYPE_UINT16: this->value.u16[0] = c->value.u16[i]; break;
876 case GLSL_TYPE_INT16: this->value.i16[0] = c->value.i16[i]; break;
877 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
878 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
879 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
880 case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
881 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
882 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
883 default: assert(!"Should not get here."); break;
884 }
885 }
886
887 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
888 : ir_rvalue(ir_type_constant)
889 {
890 this->const_elements = NULL;
891 this->type = type;
892
893 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
894 || type->is_struct() || type->is_array());
895
896 /* If the constant is a record, the types of each of the entries in
897 * value_list must be a 1-for-1 match with the structure components. Each
898 * entry must also be a constant. Just move the nodes from the value_list
899 * to the list in the ir_constant.
900 */
901 if (type->is_array() || type->is_struct()) {
902 this->const_elements = ralloc_array(this, ir_constant *, type->length);
903 unsigned i = 0;
904 foreach_in_list(ir_constant, value, value_list) {
905 assert(value->as_constant() != NULL);
906
907 this->const_elements[i++] = value;
908 }
909 return;
910 }
911
912 for (unsigned i = 0; i < 16; i++) {
913 this->value.u[i] = 0;
914 }
915
916 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
917
918 /* Constructors with exactly one scalar argument are special for vectors
919 * and matrices. For vectors, the scalar value is replicated to fill all
920 * the components. For matrices, the scalar fills the components of the
921 * diagonal while the rest is filled with 0.
922 */
923 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
924 if (type->is_matrix()) {
925 /* Matrix - fill diagonal (rest is already set to 0) */
926 for (unsigned i = 0; i < type->matrix_columns; i++) {
927 switch (type->base_type) {
928 case GLSL_TYPE_FLOAT:
929 this->value.f[i * type->vector_elements + i] =
930 value->value.f[0];
931 break;
932 case GLSL_TYPE_DOUBLE:
933 this->value.d[i * type->vector_elements + i] =
934 value->value.d[0];
935 break;
936 case GLSL_TYPE_FLOAT16:
937 this->value.f16[i * type->vector_elements + i] =
938 value->value.f16[0];
939 break;
940 default:
941 assert(!"unexpected matrix base type");
942 }
943 }
944 } else {
945 /* Vector or scalar - fill all components */
946 switch (type->base_type) {
947 case GLSL_TYPE_UINT16:
948 case GLSL_TYPE_INT16:
949 for (unsigned i = 0; i < type->components(); i++)
950 this->value.u16[i] = value->value.u16[0];
951 break;
952 case GLSL_TYPE_UINT:
953 case GLSL_TYPE_INT:
954 for (unsigned i = 0; i < type->components(); i++)
955 this->value.u[i] = value->value.u[0];
956 break;
957 case GLSL_TYPE_FLOAT:
958 for (unsigned i = 0; i < type->components(); i++)
959 this->value.f[i] = value->value.f[0];
960 break;
961 case GLSL_TYPE_FLOAT16:
962 for (unsigned i = 0; i < type->components(); i++)
963 this->value.f16[i] = value->value.f16[0];
964 break;
965 case GLSL_TYPE_DOUBLE:
966 for (unsigned i = 0; i < type->components(); i++)
967 this->value.d[i] = value->value.d[0];
968 break;
969 case GLSL_TYPE_UINT64:
970 case GLSL_TYPE_INT64:
971 for (unsigned i = 0; i < type->components(); i++)
972 this->value.u64[i] = value->value.u64[0];
973 break;
974 case GLSL_TYPE_BOOL:
975 for (unsigned i = 0; i < type->components(); i++)
976 this->value.b[i] = value->value.b[0];
977 break;
978 case GLSL_TYPE_SAMPLER:
979 case GLSL_TYPE_IMAGE:
980 this->value.u64[0] = value->value.u64[0];
981 break;
982 default:
983 assert(!"Should not get here.");
984 break;
985 }
986 }
987 return;
988 }
989
990 if (type->is_matrix() && value->type->is_matrix()) {
991 assert(value->next->is_tail_sentinel());
992
993 /* From section 5.4.2 of the GLSL 1.20 spec:
994 * "If a matrix is constructed from a matrix, then each component
995 * (column i, row j) in the result that has a corresponding component
996 * (column i, row j) in the argument will be initialized from there."
997 */
998 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
999 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
1000 for (unsigned i = 0; i < cols; i++) {
1001 for (unsigned j = 0; j < rows; j++) {
1002 const unsigned src = i * value->type->vector_elements + j;
1003 const unsigned dst = i * type->vector_elements + j;
1004 this->value.f[dst] = value->value.f[src];
1005 }
1006 }
1007
1008 /* "All other components will be initialized to the identity matrix." */
1009 for (unsigned i = cols; i < type->matrix_columns; i++)
1010 this->value.f[i * type->vector_elements + i] = 1.0;
1011
1012 return;
1013 }
1014
1015 /* Use each component from each entry in the value_list to initialize one
1016 * component of the constant being constructed.
1017 */
1018 unsigned i = 0;
1019 for (;;) {
1020 assert(value->as_constant() != NULL);
1021 assert(!value->is_tail_sentinel());
1022
1023 for (unsigned j = 0; j < value->type->components(); j++) {
1024 switch (type->base_type) {
1025 case GLSL_TYPE_UINT16:
1026 this->value.u16[i] = value->get_uint16_component(j);
1027 break;
1028 case GLSL_TYPE_INT16:
1029 this->value.i16[i] = value->get_int16_component(j);
1030 break;
1031 case GLSL_TYPE_UINT:
1032 this->value.u[i] = value->get_uint_component(j);
1033 break;
1034 case GLSL_TYPE_INT:
1035 this->value.i[i] = value->get_int_component(j);
1036 break;
1037 case GLSL_TYPE_FLOAT:
1038 this->value.f[i] = value->get_float_component(j);
1039 break;
1040 case GLSL_TYPE_FLOAT16:
1041 this->value.f16[i] = value->get_float16_component(j);
1042 break;
1043 case GLSL_TYPE_BOOL:
1044 this->value.b[i] = value->get_bool_component(j);
1045 break;
1046 case GLSL_TYPE_DOUBLE:
1047 this->value.d[i] = value->get_double_component(j);
1048 break;
1049 case GLSL_TYPE_UINT64:
1050 this->value.u64[i] = value->get_uint64_component(j);
1051 break;
1052 case GLSL_TYPE_INT64:
1053 this->value.i64[i] = value->get_int64_component(j);
1054 break;
1055 default:
1056 /* FINISHME: What to do? Exceptions are not the answer.
1057 */
1058 break;
1059 }
1060
1061 i++;
1062 if (i >= type->components())
1063 break;
1064 }
1065
1066 if (i >= type->components())
1067 break; /* avoid downcasting a list sentinel */
1068 value = (ir_constant *) value->next;
1069 }
1070 }
1071
1072 ir_constant *
1073 ir_constant::zero(void *mem_ctx, const glsl_type *type)
1074 {
1075 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
1076 || type->is_struct() || type->is_array());
1077
1078 ir_constant *c = new(mem_ctx) ir_constant;
1079 c->type = type;
1080 memset(&c->value, 0, sizeof(c->value));
1081
1082 if (type->is_array()) {
1083 c->const_elements = ralloc_array(c, ir_constant *, type->length);
1084
1085 for (unsigned i = 0; i < type->length; i++)
1086 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1087 }
1088
1089 if (type->is_struct()) {
1090 c->const_elements = ralloc_array(c, ir_constant *, type->length);
1091
1092 for (unsigned i = 0; i < type->length; i++) {
1093 c->const_elements[i] =
1094 ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1095 }
1096 }
1097
1098 return c;
1099 }
1100
1101 bool
1102 ir_constant::get_bool_component(unsigned i) const
1103 {
1104 switch (this->type->base_type) {
1105 case GLSL_TYPE_UINT16:return this->value.u16[i] != 0;
1106 case GLSL_TYPE_INT16: return this->value.i16[i] != 0;
1107 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
1108 case GLSL_TYPE_INT: return this->value.i[i] != 0;
1109 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1110 case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1111 case GLSL_TYPE_BOOL: return this->value.b[i];
1112 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1113 case GLSL_TYPE_SAMPLER:
1114 case GLSL_TYPE_IMAGE:
1115 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1116 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
1117 default: assert(!"Should not get here."); break;
1118 }
1119
1120 /* Must return something to make the compiler happy. This is clearly an
1121 * error case.
1122 */
1123 return false;
1124 }
1125
1126 float
1127 ir_constant::get_float_component(unsigned i) const
1128 {
1129 switch (this->type->base_type) {
1130 case GLSL_TYPE_UINT16:return (float) this->value.u16[i];
1131 case GLSL_TYPE_INT16: return (float) this->value.i16[i];
1132 case GLSL_TYPE_UINT: return (float) this->value.u[i];
1133 case GLSL_TYPE_INT: return (float) this->value.i[i];
1134 case GLSL_TYPE_FLOAT: return this->value.f[i];
1135 case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1136 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
1137 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1138 case GLSL_TYPE_SAMPLER:
1139 case GLSL_TYPE_IMAGE:
1140 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1141 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
1142 default: assert(!"Should not get here."); break;
1143 }
1144
1145 /* Must return something to make the compiler happy. This is clearly an
1146 * error case.
1147 */
1148 return 0.0;
1149 }
1150
1151 uint16_t
1152 ir_constant::get_float16_component(unsigned i) const
1153 {
1154 if (this->type->base_type == GLSL_TYPE_FLOAT16)
1155 return this->value.f16[i];
1156 else
1157 return _mesa_float_to_half(get_float_component(i));
1158 }
1159
1160 double
1161 ir_constant::get_double_component(unsigned i) const
1162 {
1163 switch (this->type->base_type) {
1164 case GLSL_TYPE_UINT16:return (double) this->value.u16[i];
1165 case GLSL_TYPE_INT16: return (double) this->value.i16[i];
1166 case GLSL_TYPE_UINT: return (double) this->value.u[i];
1167 case GLSL_TYPE_INT: return (double) this->value.i[i];
1168 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1169 case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1170 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
1171 case GLSL_TYPE_DOUBLE: return this->value.d[i];
1172 case GLSL_TYPE_SAMPLER:
1173 case GLSL_TYPE_IMAGE:
1174 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1175 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
1176 default: assert(!"Should not get here."); break;
1177 }
1178
1179 /* Must return something to make the compiler happy. This is clearly an
1180 * error case.
1181 */
1182 return 0.0;
1183 }
1184
1185 int16_t
1186 ir_constant::get_int16_component(unsigned i) const
1187 {
1188 switch (this->type->base_type) {
1189 case GLSL_TYPE_UINT16:return this->value.u16[i];
1190 case GLSL_TYPE_INT16: return this->value.i16[i];
1191 case GLSL_TYPE_UINT: return this->value.u[i];
1192 case GLSL_TYPE_INT: return this->value.i[i];
1193 case GLSL_TYPE_FLOAT: return (int16_t) this->value.f[i];
1194 case GLSL_TYPE_FLOAT16: return (int16_t) _mesa_half_to_float(this->value.f16[i]);
1195 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1196 case GLSL_TYPE_DOUBLE: return (int16_t) this->value.d[i];
1197 case GLSL_TYPE_SAMPLER:
1198 case GLSL_TYPE_IMAGE:
1199 case GLSL_TYPE_UINT64: return (int16_t) this->value.u64[i];
1200 case GLSL_TYPE_INT64: return (int16_t) this->value.i64[i];
1201 default: assert(!"Should not get here."); break;
1202 }
1203
1204 /* Must return something to make the compiler happy. This is clearly an
1205 * error case.
1206 */
1207 return 0;
1208 }
1209
1210 uint16_t
1211 ir_constant::get_uint16_component(unsigned i) const
1212 {
1213 switch (this->type->base_type) {
1214 case GLSL_TYPE_UINT16:return this->value.u16[i];
1215 case GLSL_TYPE_INT16: return this->value.i16[i];
1216 case GLSL_TYPE_UINT: return this->value.u[i];
1217 case GLSL_TYPE_INT: return this->value.i[i];
1218 case GLSL_TYPE_FLOAT: return (uint16_t) this->value.f[i];
1219 case GLSL_TYPE_FLOAT16: return (uint16_t) _mesa_half_to_float(this->value.f16[i]);
1220 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1221 case GLSL_TYPE_DOUBLE: return (uint16_t) this->value.d[i];
1222 case GLSL_TYPE_SAMPLER:
1223 case GLSL_TYPE_IMAGE:
1224 case GLSL_TYPE_UINT64: return (uint16_t) this->value.u64[i];
1225 case GLSL_TYPE_INT64: return (uint16_t) this->value.i64[i];
1226 default: assert(!"Should not get here."); break;
1227 }
1228
1229 /* Must return something to make the compiler happy. This is clearly an
1230 * error case.
1231 */
1232 return 0;
1233 }
1234
1235 int
1236 ir_constant::get_int_component(unsigned i) const
1237 {
1238 switch (this->type->base_type) {
1239 case GLSL_TYPE_UINT16:return this->value.u16[i];
1240 case GLSL_TYPE_INT16: return this->value.i16[i];
1241 case GLSL_TYPE_UINT: return this->value.u[i];
1242 case GLSL_TYPE_INT: return this->value.i[i];
1243 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1244 case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1245 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1246 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1247 case GLSL_TYPE_SAMPLER:
1248 case GLSL_TYPE_IMAGE:
1249 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1250 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
1251 default: assert(!"Should not get here."); break;
1252 }
1253
1254 /* Must return something to make the compiler happy. This is clearly an
1255 * error case.
1256 */
1257 return 0;
1258 }
1259
1260 unsigned
1261 ir_constant::get_uint_component(unsigned i) const
1262 {
1263 switch (this->type->base_type) {
1264 case GLSL_TYPE_UINT16:return this->value.u16[i];
1265 case GLSL_TYPE_INT16: return this->value.i16[i];
1266 case GLSL_TYPE_UINT: return this->value.u[i];
1267 case GLSL_TYPE_INT: return this->value.i[i];
1268 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1269 case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1270 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1271 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1272 case GLSL_TYPE_SAMPLER:
1273 case GLSL_TYPE_IMAGE:
1274 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1275 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1276 default: assert(!"Should not get here."); break;
1277 }
1278
1279 /* Must return something to make the compiler happy. This is clearly an
1280 * error case.
1281 */
1282 return 0;
1283 }
1284
1285 int64_t
1286 ir_constant::get_int64_component(unsigned i) const
1287 {
1288 switch (this->type->base_type) {
1289 case GLSL_TYPE_UINT16:return this->value.u16[i];
1290 case GLSL_TYPE_INT16: return this->value.i16[i];
1291 case GLSL_TYPE_UINT: return this->value.u[i];
1292 case GLSL_TYPE_INT: return this->value.i[i];
1293 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1294 case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1295 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1296 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1297 case GLSL_TYPE_SAMPLER:
1298 case GLSL_TYPE_IMAGE:
1299 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1300 case GLSL_TYPE_INT64: return this->value.i64[i];
1301 default: assert(!"Should not get here."); break;
1302 }
1303
1304 /* Must return something to make the compiler happy. This is clearly an
1305 * error case.
1306 */
1307 return 0;
1308 }
1309
1310 uint64_t
1311 ir_constant::get_uint64_component(unsigned i) const
1312 {
1313 switch (this->type->base_type) {
1314 case GLSL_TYPE_UINT16:return this->value.u16[i];
1315 case GLSL_TYPE_INT16: return this->value.i16[i];
1316 case GLSL_TYPE_UINT: return this->value.u[i];
1317 case GLSL_TYPE_INT: return this->value.i[i];
1318 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1319 case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1320 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1321 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1322 case GLSL_TYPE_SAMPLER:
1323 case GLSL_TYPE_IMAGE:
1324 case GLSL_TYPE_UINT64: return this->value.u64[i];
1325 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1326 default: assert(!"Should not get here."); break;
1327 }
1328
1329 /* Must return something to make the compiler happy. This is clearly an
1330 * error case.
1331 */
1332 return 0;
1333 }
1334
1335 ir_constant *
1336 ir_constant::get_array_element(unsigned i) const
1337 {
1338 assert(this->type->is_array());
1339
1340 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1341 *
1342 * "Behavior is undefined if a shader subscripts an array with an index
1343 * less than 0 or greater than or equal to the size the array was
1344 * declared with."
1345 *
1346 * Most out-of-bounds accesses are removed before things could get this far.
1347 * There are cases where non-constant array index values can get constant
1348 * folded.
1349 */
1350 if (int(i) < 0)
1351 i = 0;
1352 else if (i >= this->type->length)
1353 i = this->type->length - 1;
1354
1355 return const_elements[i];
1356 }
1357
1358 ir_constant *
1359 ir_constant::get_record_field(int idx)
1360 {
1361 assert(this->type->is_struct());
1362 assert(idx >= 0 && (unsigned) idx < this->type->length);
1363
1364 return const_elements[idx];
1365 }
1366
1367 void
1368 ir_constant::copy_offset(ir_constant *src, int offset)
1369 {
1370 switch (this->type->base_type) {
1371 case GLSL_TYPE_UINT16:
1372 case GLSL_TYPE_INT16:
1373 case GLSL_TYPE_UINT:
1374 case GLSL_TYPE_INT:
1375 case GLSL_TYPE_FLOAT:
1376 case GLSL_TYPE_FLOAT16:
1377 case GLSL_TYPE_DOUBLE:
1378 case GLSL_TYPE_SAMPLER:
1379 case GLSL_TYPE_IMAGE:
1380 case GLSL_TYPE_UINT64:
1381 case GLSL_TYPE_INT64:
1382 case GLSL_TYPE_BOOL: {
1383 unsigned int size = src->type->components();
1384 assert (size <= this->type->components() - offset);
1385 for (unsigned int i=0; i<size; i++) {
1386 switch (this->type->base_type) {
1387 case GLSL_TYPE_UINT16:
1388 value.u16[i+offset] = src->get_uint16_component(i);
1389 break;
1390 case GLSL_TYPE_INT16:
1391 value.i16[i+offset] = src->get_int16_component(i);
1392 break;
1393 case GLSL_TYPE_UINT:
1394 value.u[i+offset] = src->get_uint_component(i);
1395 break;
1396 case GLSL_TYPE_INT:
1397 value.i[i+offset] = src->get_int_component(i);
1398 break;
1399 case GLSL_TYPE_FLOAT:
1400 value.f[i+offset] = src->get_float_component(i);
1401 break;
1402 case GLSL_TYPE_FLOAT16:
1403 value.f16[i+offset] = src->get_float16_component(i);
1404 break;
1405 case GLSL_TYPE_BOOL:
1406 value.b[i+offset] = src->get_bool_component(i);
1407 break;
1408 case GLSL_TYPE_DOUBLE:
1409 value.d[i+offset] = src->get_double_component(i);
1410 break;
1411 case GLSL_TYPE_SAMPLER:
1412 case GLSL_TYPE_IMAGE:
1413 case GLSL_TYPE_UINT64:
1414 value.u64[i+offset] = src->get_uint64_component(i);
1415 break;
1416 case GLSL_TYPE_INT64:
1417 value.i64[i+offset] = src->get_int64_component(i);
1418 break;
1419 default: // Shut up the compiler
1420 break;
1421 }
1422 }
1423 break;
1424 }
1425
1426 case GLSL_TYPE_STRUCT:
1427 case GLSL_TYPE_ARRAY: {
1428 assert (src->type == this->type);
1429 for (unsigned i = 0; i < this->type->length; i++) {
1430 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1431 }
1432 break;
1433 }
1434
1435 default:
1436 assert(!"Should not get here.");
1437 break;
1438 }
1439 }
1440
1441 void
1442 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1443 {
1444 assert (!type->is_array() && !type->is_struct());
1445
1446 if (!type->is_vector() && !type->is_matrix()) {
1447 offset = 0;
1448 mask = 1;
1449 }
1450
1451 int id = 0;
1452 for (int i=0; i<4; i++) {
1453 if (mask & (1 << i)) {
1454 switch (this->type->base_type) {
1455 case GLSL_TYPE_UINT16:
1456 value.u16[i+offset] = src->get_uint16_component(id++);
1457 break;
1458 case GLSL_TYPE_INT16:
1459 value.i16[i+offset] = src->get_int16_component(id++);
1460 break;
1461 case GLSL_TYPE_UINT:
1462 value.u[i+offset] = src->get_uint_component(id++);
1463 break;
1464 case GLSL_TYPE_INT:
1465 value.i[i+offset] = src->get_int_component(id++);
1466 break;
1467 case GLSL_TYPE_FLOAT:
1468 value.f[i+offset] = src->get_float_component(id++);
1469 break;
1470 case GLSL_TYPE_FLOAT16:
1471 value.f16[i+offset] = src->get_float16_component(id++);
1472 break;
1473 case GLSL_TYPE_BOOL:
1474 value.b[i+offset] = src->get_bool_component(id++);
1475 break;
1476 case GLSL_TYPE_DOUBLE:
1477 value.d[i+offset] = src->get_double_component(id++);
1478 break;
1479 case GLSL_TYPE_SAMPLER:
1480 case GLSL_TYPE_IMAGE:
1481 case GLSL_TYPE_UINT64:
1482 value.u64[i+offset] = src->get_uint64_component(id++);
1483 break;
1484 case GLSL_TYPE_INT64:
1485 value.i64[i+offset] = src->get_int64_component(id++);
1486 break;
1487 default:
1488 assert(!"Should not get here.");
1489 return;
1490 }
1491 }
1492 }
1493 }
1494
1495 bool
1496 ir_constant::has_value(const ir_constant *c) const
1497 {
1498 if (this->type != c->type)
1499 return false;
1500
1501 if (this->type->is_array() || this->type->is_struct()) {
1502 for (unsigned i = 0; i < this->type->length; i++) {
1503 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1504 return false;
1505 }
1506 return true;
1507 }
1508
1509 for (unsigned i = 0; i < this->type->components(); i++) {
1510 switch (this->type->base_type) {
1511 case GLSL_TYPE_UINT16:
1512 if (this->value.u16[i] != c->value.u16[i])
1513 return false;
1514 break;
1515 case GLSL_TYPE_INT16:
1516 if (this->value.i16[i] != c->value.i16[i])
1517 return false;
1518 break;
1519 case GLSL_TYPE_UINT:
1520 if (this->value.u[i] != c->value.u[i])
1521 return false;
1522 break;
1523 case GLSL_TYPE_INT:
1524 if (this->value.i[i] != c->value.i[i])
1525 return false;
1526 break;
1527 case GLSL_TYPE_FLOAT:
1528 if (this->value.f[i] != c->value.f[i])
1529 return false;
1530 break;
1531 case GLSL_TYPE_FLOAT16:
1532 /* Convert to float to make sure NaN and ±0.0 compares correctly */
1533 if (_mesa_half_to_float(this->value.f16[i]) !=
1534 _mesa_half_to_float(c->value.f16[i]))
1535 return false;
1536 break;
1537 case GLSL_TYPE_BOOL:
1538 if (this->value.b[i] != c->value.b[i])
1539 return false;
1540 break;
1541 case GLSL_TYPE_DOUBLE:
1542 if (this->value.d[i] != c->value.d[i])
1543 return false;
1544 break;
1545 case GLSL_TYPE_SAMPLER:
1546 case GLSL_TYPE_IMAGE:
1547 case GLSL_TYPE_UINT64:
1548 if (this->value.u64[i] != c->value.u64[i])
1549 return false;
1550 break;
1551 case GLSL_TYPE_INT64:
1552 if (this->value.i64[i] != c->value.i64[i])
1553 return false;
1554 break;
1555 default:
1556 assert(!"Should not get here.");
1557 return false;
1558 }
1559 }
1560
1561 return true;
1562 }
1563
1564 bool
1565 ir_constant::is_value(float f, int i) const
1566 {
1567 if (!this->type->is_scalar() && !this->type->is_vector())
1568 return false;
1569
1570 /* Only accept boolean values for 0/1. */
1571 if (int(bool(i)) != i && this->type->is_boolean())
1572 return false;
1573
1574 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1575 switch (this->type->base_type) {
1576 case GLSL_TYPE_FLOAT:
1577 if (this->value.f[c] != f)
1578 return false;
1579 break;
1580 case GLSL_TYPE_FLOAT16:
1581 if (_mesa_half_to_float(this->value.f16[c]) != f)
1582 return false;
1583 break;
1584 case GLSL_TYPE_INT16:
1585 if (this->value.i16[c] != int16_t(i))
1586 return false;
1587 break;
1588 case GLSL_TYPE_UINT16:
1589 if (this->value.u16[c] != uint16_t(i))
1590 return false;
1591 break;
1592 case GLSL_TYPE_INT:
1593 if (this->value.i[c] != i)
1594 return false;
1595 break;
1596 case GLSL_TYPE_UINT:
1597 if (this->value.u[c] != unsigned(i))
1598 return false;
1599 break;
1600 case GLSL_TYPE_BOOL:
1601 if (this->value.b[c] != bool(i))
1602 return false;
1603 break;
1604 case GLSL_TYPE_DOUBLE:
1605 if (this->value.d[c] != double(f))
1606 return false;
1607 break;
1608 case GLSL_TYPE_SAMPLER:
1609 case GLSL_TYPE_IMAGE:
1610 case GLSL_TYPE_UINT64:
1611 if (this->value.u64[c] != uint64_t(i))
1612 return false;
1613 break;
1614 case GLSL_TYPE_INT64:
1615 if (this->value.i64[c] != i)
1616 return false;
1617 break;
1618 default:
1619 /* The only other base types are structures, arrays, and samplers.
1620 * Samplers cannot be constants, and the others should have been
1621 * filtered out above.
1622 */
1623 assert(!"Should not get here.");
1624 return false;
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 bool
1632 ir_constant::is_zero() const
1633 {
1634 return is_value(0.0, 0);
1635 }
1636
1637 bool
1638 ir_constant::is_one() const
1639 {
1640 return is_value(1.0, 1);
1641 }
1642
1643 bool
1644 ir_constant::is_negative_one() const
1645 {
1646 return is_value(-1.0, -1);
1647 }
1648
1649 bool
1650 ir_constant::is_uint16_constant() const
1651 {
1652 if (!type->is_integer_32())
1653 return false;
1654
1655 return value.u[0] < (1 << 16);
1656 }
1657
1658 ir_loop::ir_loop()
1659 : ir_instruction(ir_type_loop)
1660 {
1661 }
1662
1663
1664 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1665 : ir_dereference(ir_type_dereference_variable)
1666 {
1667 assert(var != NULL);
1668
1669 this->var = var;
1670 this->type = var->type;
1671 }
1672
1673
1674 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1675 ir_rvalue *array_index)
1676 : ir_dereference(ir_type_dereference_array)
1677 {
1678 this->array_index = array_index;
1679 this->set_array(value);
1680 }
1681
1682
1683 ir_dereference_array::ir_dereference_array(ir_variable *var,
1684 ir_rvalue *array_index)
1685 : ir_dereference(ir_type_dereference_array)
1686 {
1687 void *ctx = ralloc_parent(var);
1688
1689 this->array_index = array_index;
1690 this->set_array(new(ctx) ir_dereference_variable(var));
1691 }
1692
1693
1694 void
1695 ir_dereference_array::set_array(ir_rvalue *value)
1696 {
1697 assert(value != NULL);
1698
1699 this->array = value;
1700
1701 const glsl_type *const vt = this->array->type;
1702
1703 if (vt->is_array()) {
1704 type = vt->fields.array;
1705 } else if (vt->is_matrix()) {
1706 type = vt->column_type();
1707 } else if (vt->is_vector()) {
1708 type = vt->get_base_type();
1709 }
1710 }
1711
1712
1713 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1714 const char *field)
1715 : ir_dereference(ir_type_dereference_record)
1716 {
1717 assert(value != NULL);
1718
1719 this->record = value;
1720 this->type = this->record->type->field_type(field);
1721 this->field_idx = this->record->type->field_index(field);
1722 }
1723
1724
1725 ir_dereference_record::ir_dereference_record(ir_variable *var,
1726 const char *field)
1727 : ir_dereference(ir_type_dereference_record)
1728 {
1729 void *ctx = ralloc_parent(var);
1730
1731 this->record = new(ctx) ir_dereference_variable(var);
1732 this->type = this->record->type->field_type(field);
1733 this->field_idx = this->record->type->field_index(field);
1734 }
1735
1736 bool
1737 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1738 {
1739 ir_variable *var = this->variable_referenced();
1740
1741 /* Every l-value derference chain eventually ends in a variable.
1742 */
1743 if ((var == NULL) || var->data.read_only)
1744 return false;
1745
1746 /* From section 4.1.7 of the ARB_bindless_texture spec:
1747 *
1748 * "Samplers can be used as l-values, so can be assigned into and used as
1749 * "out" and "inout" function parameters."
1750 *
1751 * From section 4.1.X of the ARB_bindless_texture spec:
1752 *
1753 * "Images can be used as l-values, so can be assigned into and used as
1754 * "out" and "inout" function parameters."
1755 */
1756 if ((!state || state->has_bindless()) &&
1757 (this->type->contains_sampler() || this->type->contains_image()))
1758 return true;
1759
1760 /* From section 4.1.7 of the GLSL 4.40 spec:
1761 *
1762 * "Opaque variables cannot be treated as l-values; hence cannot
1763 * be used as out or inout function parameters, nor can they be
1764 * assigned into."
1765 */
1766 if (this->type->contains_opaque())
1767 return false;
1768
1769 return true;
1770 }
1771
1772
1773 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1774
1775 const char *ir_texture::opcode_string()
1776 {
1777 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1778 return tex_opcode_strs[op];
1779 }
1780
1781 ir_texture_opcode
1782 ir_texture::get_opcode(const char *str)
1783 {
1784 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1785 for (int op = 0; op < count; op++) {
1786 if (strcmp(str, tex_opcode_strs[op]) == 0)
1787 return (ir_texture_opcode) op;
1788 }
1789 return (ir_texture_opcode) -1;
1790 }
1791
1792
1793 void
1794 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1795 {
1796 assert(sampler != NULL);
1797 assert(type != NULL);
1798 this->sampler = sampler;
1799 this->type = type;
1800
1801 if (this->op == ir_txs || this->op == ir_query_levels ||
1802 this->op == ir_texture_samples) {
1803 assert(type->base_type == GLSL_TYPE_INT);
1804 } else if (this->op == ir_lod) {
1805 assert(type->vector_elements == 2);
1806 assert(type->is_float());
1807 } else if (this->op == ir_samples_identical) {
1808 assert(type == glsl_type::bool_type);
1809 assert(sampler->type->is_sampler());
1810 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1811 } else {
1812 assert(sampler->type->sampled_type == (int) type->base_type);
1813 if (sampler->type->sampler_shadow)
1814 assert(type->vector_elements == 4 || type->vector_elements == 1);
1815 else
1816 assert(type->vector_elements == 4);
1817 }
1818 }
1819
1820
1821 void
1822 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1823 {
1824 assert((count >= 1) && (count <= 4));
1825
1826 memset(&this->mask, 0, sizeof(this->mask));
1827 this->mask.num_components = count;
1828
1829 unsigned dup_mask = 0;
1830 switch (count) {
1831 case 4:
1832 assert(comp[3] <= 3);
1833 dup_mask |= (1U << comp[3])
1834 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1835 this->mask.w = comp[3];
1836
1837 case 3:
1838 assert(comp[2] <= 3);
1839 dup_mask |= (1U << comp[2])
1840 & ((1U << comp[0]) | (1U << comp[1]));
1841 this->mask.z = comp[2];
1842
1843 case 2:
1844 assert(comp[1] <= 3);
1845 dup_mask |= (1U << comp[1])
1846 & ((1U << comp[0]));
1847 this->mask.y = comp[1];
1848
1849 case 1:
1850 assert(comp[0] <= 3);
1851 this->mask.x = comp[0];
1852 }
1853
1854 this->mask.has_duplicates = dup_mask != 0;
1855
1856 /* Based on the number of elements in the swizzle and the base type
1857 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1858 * generate the type of the resulting value.
1859 */
1860 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1861 }
1862
1863 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1864 unsigned w, unsigned count)
1865 : ir_rvalue(ir_type_swizzle), val(val)
1866 {
1867 const unsigned components[4] = { x, y, z, w };
1868 this->init_mask(components, count);
1869 }
1870
1871 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1872 unsigned count)
1873 : ir_rvalue(ir_type_swizzle), val(val)
1874 {
1875 this->init_mask(comp, count);
1876 }
1877
1878 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1879 : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1880 {
1881 this->type = glsl_type::get_instance(val->type->base_type,
1882 mask.num_components, 1);
1883 }
1884
1885 #define X 1
1886 #define R 5
1887 #define S 9
1888 #define I 13
1889
1890 ir_swizzle *
1891 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1892 {
1893 void *ctx = ralloc_parent(val);
1894
1895 /* For each possible swizzle character, this table encodes the value in
1896 * \c idx_map that represents the 0th element of the vector. For invalid
1897 * swizzle characters (e.g., 'k'), a special value is used that will allow
1898 * detection of errors.
1899 */
1900 static const unsigned char base_idx[26] = {
1901 /* a b c d e f g h i j k l m */
1902 R, R, I, I, I, I, R, I, I, I, I, I, I,
1903 /* n o p q r s t u v w x y z */
1904 I, I, S, S, R, S, S, I, I, X, X, X, X
1905 };
1906
1907 /* Each valid swizzle character has an entry in the previous table. This
1908 * table encodes the base index encoded in the previous table plus the actual
1909 * index of the swizzle character. When processing swizzles, the first
1910 * character in the string is indexed in the previous table. Each character
1911 * in the string is indexed in this table, and the value found there has the
1912 * value form the first table subtracted. The result must be on the range
1913 * [0,3].
1914 *
1915 * For example, the string "wzyx" will get X from the first table. Each of
1916 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1917 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1918 *
1919 * The string "wzrg" will get X from the first table. Each of the characters
1920 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1921 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1922 * [0,3], the error is detected.
1923 */
1924 static const unsigned char idx_map[26] = {
1925 /* a b c d e f g h i j k l m */
1926 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1927 /* n o p q r s t u v w x y z */
1928 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1929 };
1930
1931 int swiz_idx[4] = { 0, 0, 0, 0 };
1932 unsigned i;
1933
1934
1935 /* Validate the first character in the swizzle string and look up the base
1936 * index value as described above.
1937 */
1938 if ((str[0] < 'a') || (str[0] > 'z'))
1939 return NULL;
1940
1941 const unsigned base = base_idx[str[0] - 'a'];
1942
1943
1944 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1945 /* Validate the next character, and, as described above, convert it to a
1946 * swizzle index.
1947 */
1948 if ((str[i] < 'a') || (str[i] > 'z'))
1949 return NULL;
1950
1951 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1952 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1953 return NULL;
1954 }
1955
1956 if (str[i] != '\0')
1957 return NULL;
1958
1959 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1960 swiz_idx[3], i);
1961 }
1962
1963 #undef X
1964 #undef R
1965 #undef S
1966 #undef I
1967
1968 ir_variable *
1969 ir_swizzle::variable_referenced() const
1970 {
1971 return this->val->variable_referenced();
1972 }
1973
1974
1975 bool ir_variable::temporaries_allocate_names = false;
1976
1977 const char ir_variable::tmp_name[] = "compiler_temp";
1978
1979 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1980 ir_variable_mode mode)
1981 : ir_instruction(ir_type_variable)
1982 {
1983 this->type = type;
1984
1985 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1986 name = NULL;
1987
1988 /* The ir_variable clone method may call this constructor with name set to
1989 * tmp_name.
1990 */
1991 assert(name != NULL
1992 || mode == ir_var_temporary
1993 || mode == ir_var_function_in
1994 || mode == ir_var_function_out
1995 || mode == ir_var_function_inout);
1996 assert(name != ir_variable::tmp_name
1997 || mode == ir_var_temporary);
1998 if (mode == ir_var_temporary
1999 && (name == NULL || name == ir_variable::tmp_name)) {
2000 this->name = ir_variable::tmp_name;
2001 } else if (name == NULL ||
2002 strlen(name) < ARRAY_SIZE(this->name_storage)) {
2003 strcpy(this->name_storage, name ? name : "");
2004 this->name = this->name_storage;
2005 } else {
2006 this->name = ralloc_strdup(this, name);
2007 }
2008
2009 this->u.max_ifc_array_access = NULL;
2010
2011 this->data.explicit_location = false;
2012 this->data.explicit_index = false;
2013 this->data.explicit_binding = false;
2014 this->data.explicit_component = false;
2015 this->data.has_initializer = false;
2016 this->data.is_implicit_initializer = false;
2017 this->data.is_unmatched_generic_inout = false;
2018 this->data.is_xfb_only = false;
2019 this->data.explicit_xfb_buffer = false;
2020 this->data.explicit_xfb_offset = false;
2021 this->data.explicit_xfb_stride = false;
2022 this->data.location = -1;
2023 this->data.location_frac = 0;
2024 this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
2025 this->data.from_named_ifc_block = false;
2026 this->data.must_be_shader_input = false;
2027 this->data.index = 0;
2028 this->data.binding = 0;
2029 this->data.warn_extension_index = 0;
2030 this->constant_value = NULL;
2031 this->constant_initializer = NULL;
2032 this->data.depth_layout = ir_depth_layout_none;
2033 this->data.used = false;
2034 this->data.assigned = false;
2035 this->data.always_active_io = false;
2036 this->data.read_only = false;
2037 this->data.centroid = false;
2038 this->data.sample = false;
2039 this->data.patch = false;
2040 this->data.explicit_invariant = false;
2041 this->data.invariant = false;
2042 this->data.precise = false;
2043 this->data.how_declared = ir_var_declared_normally;
2044 this->data.mode = mode;
2045 this->data.interpolation = INTERP_MODE_NONE;
2046 this->data.max_array_access = -1;
2047 this->data.offset = 0;
2048 this->data.precision = GLSL_PRECISION_NONE;
2049 this->data.memory_read_only = false;
2050 this->data.memory_write_only = false;
2051 this->data.memory_coherent = false;
2052 this->data.memory_volatile = false;
2053 this->data.memory_restrict = false;
2054 this->data.from_ssbo_unsized_array = false;
2055 this->data.implicit_sized_array = false;
2056 this->data.fb_fetch_output = false;
2057 this->data.bindless = false;
2058 this->data.bound = false;
2059 this->data.image_format = PIPE_FORMAT_NONE;
2060 this->data._num_state_slots = 0;
2061 this->data.param_index = 0;
2062 this->data.stream = 0;
2063 this->data.xfb_buffer = -1;
2064 this->data.xfb_stride = -1;
2065
2066 this->interface_type = NULL;
2067
2068 if (type != NULL) {
2069 if (type->is_interface())
2070 this->init_interface_type(type);
2071 else if (type->without_array()->is_interface())
2072 this->init_interface_type(type->without_array());
2073 }
2074 }
2075
2076
2077 const char *
2078 interpolation_string(unsigned interpolation)
2079 {
2080 switch (interpolation) {
2081 case INTERP_MODE_NONE: return "no";
2082 case INTERP_MODE_SMOOTH: return "smooth";
2083 case INTERP_MODE_FLAT: return "flat";
2084 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
2085 }
2086
2087 assert(!"Should not get here.");
2088 return "";
2089 }
2090
2091 const char *const ir_variable::warn_extension_table[] = {
2092 "",
2093 "GL_ARB_shader_stencil_export",
2094 "GL_AMD_shader_stencil_export",
2095 };
2096
2097 void
2098 ir_variable::enable_extension_warning(const char *extension)
2099 {
2100 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
2101 if (strcmp(warn_extension_table[i], extension) == 0) {
2102 this->data.warn_extension_index = i;
2103 return;
2104 }
2105 }
2106
2107 assert(!"Should not get here.");
2108 this->data.warn_extension_index = 0;
2109 }
2110
2111 const char *
2112 ir_variable::get_extension_warning() const
2113 {
2114 return this->data.warn_extension_index == 0
2115 ? NULL : warn_extension_table[this->data.warn_extension_index];
2116 }
2117
2118 ir_function_signature::ir_function_signature(const glsl_type *return_type,
2119 builtin_available_predicate b)
2120 : ir_instruction(ir_type_function_signature),
2121 return_type(return_type), is_defined(false),
2122 return_precision(GLSL_PRECISION_NONE),
2123 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
2124 {
2125 this->origin = NULL;
2126 }
2127
2128
2129 bool
2130 ir_function_signature::is_builtin() const
2131 {
2132 return builtin_avail != NULL;
2133 }
2134
2135
2136 bool
2137 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
2138 {
2139 /* We can't call the predicate without a state pointer, so just say that
2140 * the signature is available. At compile time, we need the filtering,
2141 * but also receive a valid state pointer. At link time, we're resolving
2142 * imported built-in prototypes to their definitions, which will always
2143 * be an exact match. So we can skip the filtering.
2144 */
2145 if (state == NULL)
2146 return true;
2147
2148 assert(builtin_avail != NULL);
2149 return builtin_avail(state);
2150 }
2151
2152
2153 static bool
2154 modes_match(unsigned a, unsigned b)
2155 {
2156 if (a == b)
2157 return true;
2158
2159 /* Accept "in" vs. "const in" */
2160 if ((a == ir_var_const_in && b == ir_var_function_in) ||
2161 (b == ir_var_const_in && a == ir_var_function_in))
2162 return true;
2163
2164 return false;
2165 }
2166
2167
2168 const char *
2169 ir_function_signature::qualifiers_match(exec_list *params)
2170 {
2171 /* check that the qualifiers match. */
2172 foreach_two_lists(a_node, &this->parameters, b_node, params) {
2173 ir_variable *a = (ir_variable *) a_node;
2174 ir_variable *b = (ir_variable *) b_node;
2175
2176 if (a->data.read_only != b->data.read_only ||
2177 !modes_match(a->data.mode, b->data.mode) ||
2178 a->data.interpolation != b->data.interpolation ||
2179 a->data.centroid != b->data.centroid ||
2180 a->data.sample != b->data.sample ||
2181 a->data.patch != b->data.patch ||
2182 a->data.memory_read_only != b->data.memory_read_only ||
2183 a->data.memory_write_only != b->data.memory_write_only ||
2184 a->data.memory_coherent != b->data.memory_coherent ||
2185 a->data.memory_volatile != b->data.memory_volatile ||
2186 a->data.memory_restrict != b->data.memory_restrict) {
2187
2188 /* parameter a's qualifiers don't match */
2189 return a->name;
2190 }
2191 }
2192 return NULL;
2193 }
2194
2195
2196 void
2197 ir_function_signature::replace_parameters(exec_list *new_params)
2198 {
2199 /* Destroy all of the previous parameter information. If the previous
2200 * parameter information comes from the function prototype, it may either
2201 * specify incorrect parameter names or not have names at all.
2202 */
2203 new_params->move_nodes_to(&parameters);
2204 }
2205
2206
2207 ir_function::ir_function(const char *name)
2208 : ir_instruction(ir_type_function)
2209 {
2210 this->subroutine_index = -1;
2211 this->name = ralloc_strdup(this, name);
2212 }
2213
2214
2215 bool
2216 ir_function::has_user_signature()
2217 {
2218 foreach_in_list(ir_function_signature, sig, &this->signatures) {
2219 if (!sig->is_builtin())
2220 return true;
2221 }
2222 return false;
2223 }
2224
2225
2226 ir_rvalue *
2227 ir_rvalue::error_value(void *mem_ctx)
2228 {
2229 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2230
2231 v->type = glsl_type::error_type;
2232 return v;
2233 }
2234
2235
2236 void
2237 visit_exec_list(exec_list *list, ir_visitor *visitor)
2238 {
2239 foreach_in_list_safe(ir_instruction, node, list) {
2240 node->accept(visitor);
2241 }
2242 }
2243
2244
2245 static void
2246 steal_memory(ir_instruction *ir, void *new_ctx)
2247 {
2248 ir_variable *var = ir->as_variable();
2249 ir_function *fn = ir->as_function();
2250 ir_constant *constant = ir->as_constant();
2251 if (var != NULL && var->constant_value != NULL)
2252 steal_memory(var->constant_value, ir);
2253
2254 if (var != NULL && var->constant_initializer != NULL)
2255 steal_memory(var->constant_initializer, ir);
2256
2257 if (fn != NULL && fn->subroutine_types)
2258 ralloc_steal(new_ctx, fn->subroutine_types);
2259
2260 /* The components of aggregate constants are not visited by the normal
2261 * visitor, so steal their values by hand.
2262 */
2263 if (constant != NULL &&
2264 (constant->type->is_array() || constant->type->is_struct())) {
2265 for (unsigned int i = 0; i < constant->type->length; i++) {
2266 steal_memory(constant->const_elements[i], ir);
2267 }
2268 }
2269
2270 ralloc_steal(new_ctx, ir);
2271 }
2272
2273
2274 void
2275 reparent_ir(exec_list *list, void *mem_ctx)
2276 {
2277 foreach_in_list(ir_instruction, node, list) {
2278 visit_tree(node, steal_memory, mem_ctx);
2279 }
2280 }
2281
2282
2283 static ir_rvalue *
2284 try_min_one(ir_rvalue *ir)
2285 {
2286 ir_expression *expr = ir->as_expression();
2287
2288 if (!expr || expr->operation != ir_binop_min)
2289 return NULL;
2290
2291 if (expr->operands[0]->is_one())
2292 return expr->operands[1];
2293
2294 if (expr->operands[1]->is_one())
2295 return expr->operands[0];
2296
2297 return NULL;
2298 }
2299
2300 static ir_rvalue *
2301 try_max_zero(ir_rvalue *ir)
2302 {
2303 ir_expression *expr = ir->as_expression();
2304
2305 if (!expr || expr->operation != ir_binop_max)
2306 return NULL;
2307
2308 if (expr->operands[0]->is_zero())
2309 return expr->operands[1];
2310
2311 if (expr->operands[1]->is_zero())
2312 return expr->operands[0];
2313
2314 return NULL;
2315 }
2316
2317 ir_rvalue *
2318 ir_rvalue::as_rvalue_to_saturate()
2319 {
2320 ir_expression *expr = this->as_expression();
2321
2322 if (!expr)
2323 return NULL;
2324
2325 ir_rvalue *max_zero = try_max_zero(expr);
2326 if (max_zero) {
2327 return try_min_one(max_zero);
2328 } else {
2329 ir_rvalue *min_one = try_min_one(expr);
2330 if (min_one) {
2331 return try_max_zero(min_one);
2332 }
2333 }
2334
2335 return NULL;
2336 }
2337
2338
2339 unsigned
2340 vertices_per_prim(GLenum prim)
2341 {
2342 switch (prim) {
2343 case GL_POINTS:
2344 return 1;
2345 case GL_LINES:
2346 return 2;
2347 case GL_TRIANGLES:
2348 return 3;
2349 case GL_LINES_ADJACENCY:
2350 return 4;
2351 case GL_TRIANGLES_ADJACENCY:
2352 return 6;
2353 default:
2354 assert(!"Bad primitive");
2355 return 3;
2356 }
2357 }
2358
2359 /**
2360 * Generate a string describing the mode of a variable
2361 */
2362 const char *
2363 mode_string(const ir_variable *var)
2364 {
2365 switch (var->data.mode) {
2366 case ir_var_auto:
2367 return (var->data.read_only) ? "global constant" : "global variable";
2368
2369 case ir_var_uniform:
2370 return "uniform";
2371
2372 case ir_var_shader_storage:
2373 return "buffer";
2374
2375 case ir_var_shader_in:
2376 return "shader input";
2377
2378 case ir_var_shader_out:
2379 return "shader output";
2380
2381 case ir_var_function_in:
2382 case ir_var_const_in:
2383 return "function input";
2384
2385 case ir_var_function_out:
2386 return "function output";
2387
2388 case ir_var_function_inout:
2389 return "function inout";
2390
2391 case ir_var_system_value:
2392 return "shader input";
2393
2394 case ir_var_temporary:
2395 return "compiler temporary";
2396
2397 case ir_var_mode_count:
2398 break;
2399 }
2400
2401 assert(!"Should not get here.");
2402 return "invalid variable";
2403 }