glsl: Add new expressions for INTEL_shader_integer_functions2
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "ir.h"
25 #include "compiler/glsl_types.h"
26 #include "glsl_parser_extras.h"
27
28
29 ir_rvalue::ir_rvalue(enum ir_node_type t)
30 : ir_instruction(t)
31 {
32 this->type = glsl_type::error_type;
33 }
34
35 bool ir_rvalue::is_zero() const
36 {
37 return false;
38 }
39
40 bool ir_rvalue::is_one() const
41 {
42 return false;
43 }
44
45 bool ir_rvalue::is_negative_one() const
46 {
47 return false;
48 }
49
50 /**
51 * Modify the swizzle make to move one component to another
52 *
53 * \param m IR swizzle to be modified
54 * \param from Component in the RHS that is to be swizzled
55 * \param to Desired swizzle location of \c from
56 */
57 static void
58 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
59 {
60 switch (to) {
61 case 0: m.x = from; break;
62 case 1: m.y = from; break;
63 case 2: m.z = from; break;
64 case 3: m.w = from; break;
65 default: assert(!"Should not get here.");
66 }
67 }
68
69 void
70 ir_assignment::set_lhs(ir_rvalue *lhs)
71 {
72 void *mem_ctx = this;
73 bool swizzled = false;
74
75 while (lhs != NULL) {
76 ir_swizzle *swiz = lhs->as_swizzle();
77
78 if (swiz == NULL)
79 break;
80
81 unsigned write_mask = 0;
82 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
83
84 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
85 unsigned c = 0;
86
87 switch (i) {
88 case 0: c = swiz->mask.x; break;
89 case 1: c = swiz->mask.y; break;
90 case 2: c = swiz->mask.z; break;
91 case 3: c = swiz->mask.w; break;
92 default: assert(!"Should not get here.");
93 }
94
95 write_mask |= (((this->write_mask >> i) & 1) << c);
96 update_rhs_swizzle(rhs_swiz, i, c);
97 rhs_swiz.num_components = swiz->val->type->vector_elements;
98 }
99
100 this->write_mask = write_mask;
101 lhs = swiz->val;
102
103 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
104 swizzled = true;
105 }
106
107 if (swizzled) {
108 /* Now, RHS channels line up with the LHS writemask. Collapse it
109 * to just the channels that will be written.
110 */
111 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
112 int rhs_chan = 0;
113 for (int i = 0; i < 4; i++) {
114 if (write_mask & (1 << i))
115 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
116 }
117 rhs_swiz.num_components = rhs_chan;
118 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
119 }
120
121 assert((lhs == NULL) || lhs->as_dereference());
122
123 this->lhs = (ir_dereference *) lhs;
124 }
125
126 ir_variable *
127 ir_assignment::whole_variable_written()
128 {
129 ir_variable *v = this->lhs->whole_variable_referenced();
130
131 if (v == NULL)
132 return NULL;
133
134 if (v->type->is_scalar())
135 return v;
136
137 if (v->type->is_vector()) {
138 const unsigned mask = (1U << v->type->vector_elements) - 1;
139
140 if (mask != this->write_mask)
141 return NULL;
142 }
143
144 /* Either all the vector components are assigned or the variable is some
145 * composite type (and the whole thing is assigned.
146 */
147 return v;
148 }
149
150 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
151 ir_rvalue *condition, unsigned write_mask)
152 : ir_instruction(ir_type_assignment)
153 {
154 this->condition = condition;
155 this->rhs = rhs;
156 this->lhs = lhs;
157 this->write_mask = write_mask;
158
159 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
160 int lhs_components = 0;
161 for (int i = 0; i < 4; i++) {
162 if (write_mask & (1 << i))
163 lhs_components++;
164 }
165
166 assert(lhs_components == this->rhs->type->vector_elements);
167 }
168 }
169
170 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
171 ir_rvalue *condition)
172 : ir_instruction(ir_type_assignment)
173 {
174 this->condition = condition;
175 this->rhs = rhs;
176
177 /* If the RHS is a vector type, assume that all components of the vector
178 * type are being written to the LHS. The write mask comes from the RHS
179 * because we can have a case where the LHS is a vec4 and the RHS is a
180 * vec3. In that case, the assignment is:
181 *
182 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
183 */
184 if (rhs->type->is_vector())
185 this->write_mask = (1U << rhs->type->vector_elements) - 1;
186 else if (rhs->type->is_scalar())
187 this->write_mask = 1;
188 else
189 this->write_mask = 0;
190
191 this->set_lhs(lhs);
192 }
193
194 ir_expression::ir_expression(int op, const struct glsl_type *type,
195 ir_rvalue *op0, ir_rvalue *op1,
196 ir_rvalue *op2, ir_rvalue *op3)
197 : ir_rvalue(ir_type_expression)
198 {
199 this->type = type;
200 this->operation = ir_expression_operation(op);
201 this->operands[0] = op0;
202 this->operands[1] = op1;
203 this->operands[2] = op2;
204 this->operands[3] = op3;
205 init_num_operands();
206
207 #ifndef NDEBUG
208 for (unsigned i = num_operands; i < 4; i++) {
209 assert(this->operands[i] == NULL);
210 }
211
212 for (unsigned i = 0; i < num_operands; i++) {
213 assert(this->operands[i] != NULL);
214 }
215 #endif
216 }
217
218 ir_expression::ir_expression(int op, ir_rvalue *op0)
219 : ir_rvalue(ir_type_expression)
220 {
221 this->operation = ir_expression_operation(op);
222 this->operands[0] = op0;
223 this->operands[1] = NULL;
224 this->operands[2] = NULL;
225 this->operands[3] = NULL;
226
227 assert(op <= ir_last_unop);
228 init_num_operands();
229 assert(num_operands == 1);
230 assert(this->operands[0]);
231
232 switch (this->operation) {
233 case ir_unop_bit_not:
234 case ir_unop_logic_not:
235 case ir_unop_neg:
236 case ir_unop_abs:
237 case ir_unop_sign:
238 case ir_unop_rcp:
239 case ir_unop_rsq:
240 case ir_unop_sqrt:
241 case ir_unop_exp:
242 case ir_unop_log:
243 case ir_unop_exp2:
244 case ir_unop_log2:
245 case ir_unop_trunc:
246 case ir_unop_ceil:
247 case ir_unop_floor:
248 case ir_unop_fract:
249 case ir_unop_round_even:
250 case ir_unop_sin:
251 case ir_unop_cos:
252 case ir_unop_dFdx:
253 case ir_unop_dFdx_coarse:
254 case ir_unop_dFdx_fine:
255 case ir_unop_dFdy:
256 case ir_unop_dFdy_coarse:
257 case ir_unop_dFdy_fine:
258 case ir_unop_bitfield_reverse:
259 case ir_unop_interpolate_at_centroid:
260 case ir_unop_clz:
261 case ir_unop_saturate:
262 case ir_unop_atan:
263 this->type = op0->type;
264 break;
265
266 case ir_unop_f2i:
267 case ir_unop_b2i:
268 case ir_unop_u2i:
269 case ir_unop_d2i:
270 case ir_unop_bitcast_f2i:
271 case ir_unop_bit_count:
272 case ir_unop_find_msb:
273 case ir_unop_find_lsb:
274 case ir_unop_subroutine_to_int:
275 case ir_unop_i642i:
276 case ir_unop_u642i:
277 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
278 op0->type->vector_elements, 1);
279 break;
280
281 case ir_unop_b2f:
282 case ir_unop_i2f:
283 case ir_unop_u2f:
284 case ir_unop_d2f:
285 case ir_unop_bitcast_i2f:
286 case ir_unop_bitcast_u2f:
287 case ir_unop_i642f:
288 case ir_unop_u642f:
289 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
290 op0->type->vector_elements, 1);
291 break;
292
293 case ir_unop_f2b:
294 case ir_unop_i2b:
295 case ir_unop_d2b:
296 case ir_unop_i642b:
297 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
298 op0->type->vector_elements, 1);
299 break;
300
301 case ir_unop_f2d:
302 case ir_unop_i2d:
303 case ir_unop_u2d:
304 case ir_unop_i642d:
305 case ir_unop_u642d:
306 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
307 op0->type->vector_elements, 1);
308 break;
309
310 case ir_unop_i2u:
311 case ir_unop_f2u:
312 case ir_unop_d2u:
313 case ir_unop_bitcast_f2u:
314 case ir_unop_i642u:
315 case ir_unop_u642u:
316 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
317 op0->type->vector_elements, 1);
318 break;
319
320 case ir_unop_i2i64:
321 case ir_unop_u2i64:
322 case ir_unop_b2i64:
323 case ir_unop_f2i64:
324 case ir_unop_d2i64:
325 case ir_unop_u642i64:
326 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
327 op0->type->vector_elements, 1);
328 break;
329
330 case ir_unop_i2u64:
331 case ir_unop_u2u64:
332 case ir_unop_f2u64:
333 case ir_unop_d2u64:
334 case ir_unop_i642u64:
335 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
336 op0->type->vector_elements, 1);
337 break;
338 case ir_unop_noise:
339 this->type = glsl_type::float_type;
340 break;
341
342 case ir_unop_unpack_double_2x32:
343 case ir_unop_unpack_uint_2x32:
344 this->type = glsl_type::uvec2_type;
345 break;
346
347 case ir_unop_unpack_int_2x32:
348 this->type = glsl_type::ivec2_type;
349 break;
350
351 case ir_unop_pack_snorm_2x16:
352 case ir_unop_pack_snorm_4x8:
353 case ir_unop_pack_unorm_2x16:
354 case ir_unop_pack_unorm_4x8:
355 case ir_unop_pack_half_2x16:
356 this->type = glsl_type::uint_type;
357 break;
358
359 case ir_unop_pack_double_2x32:
360 this->type = glsl_type::double_type;
361 break;
362
363 case ir_unop_pack_int_2x32:
364 this->type = glsl_type::int64_t_type;
365 break;
366
367 case ir_unop_pack_uint_2x32:
368 this->type = glsl_type::uint64_t_type;
369 break;
370
371 case ir_unop_unpack_snorm_2x16:
372 case ir_unop_unpack_unorm_2x16:
373 case ir_unop_unpack_half_2x16:
374 this->type = glsl_type::vec2_type;
375 break;
376
377 case ir_unop_unpack_snorm_4x8:
378 case ir_unop_unpack_unorm_4x8:
379 this->type = glsl_type::vec4_type;
380 break;
381
382 case ir_unop_unpack_sampler_2x32:
383 case ir_unop_unpack_image_2x32:
384 this->type = glsl_type::uvec2_type;
385 break;
386
387 case ir_unop_pack_sampler_2x32:
388 case ir_unop_pack_image_2x32:
389 this->type = op0->type;
390 break;
391
392 case ir_unop_frexp_sig:
393 this->type = op0->type;
394 break;
395 case ir_unop_frexp_exp:
396 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
397 op0->type->vector_elements, 1);
398 break;
399
400 case ir_unop_get_buffer_size:
401 case ir_unop_ssbo_unsized_array_length:
402 this->type = glsl_type::int_type;
403 break;
404
405 case ir_unop_bitcast_i642d:
406 case ir_unop_bitcast_u642d:
407 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
408 op0->type->vector_elements, 1);
409 break;
410
411 case ir_unop_bitcast_d2i64:
412 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
413 op0->type->vector_elements, 1);
414 break;
415 case ir_unop_bitcast_d2u64:
416 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
417 op0->type->vector_elements, 1);
418 break;
419
420 default:
421 assert(!"not reached: missing automatic type setup for ir_expression");
422 this->type = op0->type;
423 break;
424 }
425 }
426
427 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
428 : ir_rvalue(ir_type_expression)
429 {
430 this->operation = ir_expression_operation(op);
431 this->operands[0] = op0;
432 this->operands[1] = op1;
433 this->operands[2] = NULL;
434 this->operands[3] = NULL;
435
436 assert(op > ir_last_unop);
437 init_num_operands();
438 assert(num_operands == 2);
439 for (unsigned i = 0; i < num_operands; i++) {
440 assert(this->operands[i] != NULL);
441 }
442
443 switch (this->operation) {
444 case ir_binop_all_equal:
445 case ir_binop_any_nequal:
446 this->type = glsl_type::bool_type;
447 break;
448
449 case ir_binop_add:
450 case ir_binop_sub:
451 case ir_binop_min:
452 case ir_binop_max:
453 case ir_binop_pow:
454 case ir_binop_mul:
455 case ir_binop_div:
456 case ir_binop_mod:
457 case ir_binop_atan2:
458 if (op0->type->is_scalar()) {
459 this->type = op1->type;
460 } else if (op1->type->is_scalar()) {
461 this->type = op0->type;
462 } else {
463 if (this->operation == ir_binop_mul) {
464 this->type = glsl_type::get_mul_type(op0->type, op1->type);
465 } else {
466 assert(op0->type == op1->type);
467 this->type = op0->type;
468 }
469 }
470 break;
471
472 case ir_binop_logic_and:
473 case ir_binop_logic_xor:
474 case ir_binop_logic_or:
475 case ir_binop_bit_and:
476 case ir_binop_bit_xor:
477 case ir_binop_bit_or:
478 assert(!op0->type->is_matrix());
479 assert(!op1->type->is_matrix());
480 if (op0->type->is_scalar()) {
481 this->type = op1->type;
482 } else if (op1->type->is_scalar()) {
483 this->type = op0->type;
484 } else {
485 assert(op0->type->vector_elements == op1->type->vector_elements);
486 this->type = op0->type;
487 }
488 break;
489
490 case ir_binop_equal:
491 case ir_binop_nequal:
492 case ir_binop_gequal:
493 case ir_binop_less:
494 assert(op0->type == op1->type);
495 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
496 op0->type->vector_elements, 1);
497 break;
498
499 case ir_binop_dot:
500 this->type = op0->type->get_base_type();
501 break;
502
503 case ir_binop_imul_high:
504 case ir_binop_mul_32x16:
505 case ir_binop_carry:
506 case ir_binop_borrow:
507 case ir_binop_lshift:
508 case ir_binop_rshift:
509 case ir_binop_ldexp:
510 case ir_binop_interpolate_at_offset:
511 case ir_binop_interpolate_at_sample:
512 this->type = op0->type;
513 break;
514
515 case ir_binop_add_sat:
516 case ir_binop_sub_sat:
517 case ir_binop_avg:
518 case ir_binop_avg_round:
519 assert(op0->type == op1->type);
520 this->type = op0->type;
521 break;
522
523 case ir_binop_abs_sub: {
524 enum glsl_base_type base;
525
526 assert(op0->type == op1->type);
527
528 switch (op0->type->base_type) {
529 case GLSL_TYPE_UINT:
530 case GLSL_TYPE_INT:
531 base = GLSL_TYPE_UINT;
532 break;
533 case GLSL_TYPE_UINT8:
534 case GLSL_TYPE_INT8:
535 base = GLSL_TYPE_UINT8;
536 break;
537 case GLSL_TYPE_UINT16:
538 case GLSL_TYPE_INT16:
539 base = GLSL_TYPE_UINT16;
540 break;
541 case GLSL_TYPE_UINT64:
542 case GLSL_TYPE_INT64:
543 base = GLSL_TYPE_UINT64;
544 break;
545 default:
546 unreachable(!"Invalid base type.");
547 }
548
549 this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
550 break;
551 }
552
553 case ir_binop_vector_extract:
554 this->type = op0->type->get_scalar_type();
555 break;
556
557 default:
558 assert(!"not reached: missing automatic type setup for ir_expression");
559 this->type = glsl_type::float_type;
560 }
561 }
562
563 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
564 ir_rvalue *op2)
565 : ir_rvalue(ir_type_expression)
566 {
567 this->operation = ir_expression_operation(op);
568 this->operands[0] = op0;
569 this->operands[1] = op1;
570 this->operands[2] = op2;
571 this->operands[3] = NULL;
572
573 assert(op > ir_last_binop && op <= ir_last_triop);
574 init_num_operands();
575 assert(num_operands == 3);
576 for (unsigned i = 0; i < num_operands; i++) {
577 assert(this->operands[i] != NULL);
578 }
579
580 switch (this->operation) {
581 case ir_triop_fma:
582 case ir_triop_lrp:
583 case ir_triop_bitfield_extract:
584 case ir_triop_vector_insert:
585 this->type = op0->type;
586 break;
587
588 case ir_triop_csel:
589 this->type = op1->type;
590 break;
591
592 default:
593 assert(!"not reached: missing automatic type setup for ir_expression");
594 this->type = glsl_type::float_type;
595 }
596 }
597
598 /**
599 * This is only here for ir_reader to used for testing purposes. Please use
600 * the precomputed num_operands field if you need the number of operands.
601 */
602 unsigned
603 ir_expression::get_num_operands(ir_expression_operation op)
604 {
605 assert(op <= ir_last_opcode);
606
607 if (op <= ir_last_unop)
608 return 1;
609
610 if (op <= ir_last_binop)
611 return 2;
612
613 if (op <= ir_last_triop)
614 return 3;
615
616 if (op <= ir_last_quadop)
617 return 4;
618
619 unreachable("Could not calculate number of operands");
620 }
621
622 #include "ir_expression_operation_strings.h"
623
624 const char*
625 depth_layout_string(ir_depth_layout layout)
626 {
627 switch(layout) {
628 case ir_depth_layout_none: return "";
629 case ir_depth_layout_any: return "depth_any";
630 case ir_depth_layout_greater: return "depth_greater";
631 case ir_depth_layout_less: return "depth_less";
632 case ir_depth_layout_unchanged: return "depth_unchanged";
633
634 default:
635 assert(0);
636 return "";
637 }
638 }
639
640 ir_expression_operation
641 ir_expression::get_operator(const char *str)
642 {
643 for (int op = 0; op <= int(ir_last_opcode); op++) {
644 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
645 return (ir_expression_operation) op;
646 }
647 return (ir_expression_operation) -1;
648 }
649
650 ir_variable *
651 ir_expression::variable_referenced() const
652 {
653 switch (operation) {
654 case ir_binop_vector_extract:
655 case ir_triop_vector_insert:
656 /* We get these for things like a[0] where a is a vector type. In these
657 * cases we want variable_referenced() to return the actual vector
658 * variable this is wrapping.
659 */
660 return operands[0]->variable_referenced();
661 default:
662 return ir_rvalue::variable_referenced();
663 }
664 }
665
666 ir_constant::ir_constant()
667 : ir_rvalue(ir_type_constant)
668 {
669 this->const_elements = NULL;
670 }
671
672 ir_constant::ir_constant(const struct glsl_type *type,
673 const ir_constant_data *data)
674 : ir_rvalue(ir_type_constant)
675 {
676 this->const_elements = NULL;
677
678 assert((type->base_type >= GLSL_TYPE_UINT)
679 && (type->base_type <= GLSL_TYPE_IMAGE));
680
681 this->type = type;
682 memcpy(& this->value, data, sizeof(this->value));
683 }
684
685 ir_constant::ir_constant(float f, unsigned vector_elements)
686 : ir_rvalue(ir_type_constant)
687 {
688 assert(vector_elements <= 4);
689 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
690 for (unsigned i = 0; i < vector_elements; i++) {
691 this->value.f[i] = f;
692 }
693 for (unsigned i = vector_elements; i < 16; i++) {
694 this->value.f[i] = 0;
695 }
696 }
697
698 ir_constant::ir_constant(double d, unsigned vector_elements)
699 : ir_rvalue(ir_type_constant)
700 {
701 assert(vector_elements <= 4);
702 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
703 for (unsigned i = 0; i < vector_elements; i++) {
704 this->value.d[i] = d;
705 }
706 for (unsigned i = vector_elements; i < 16; i++) {
707 this->value.d[i] = 0.0;
708 }
709 }
710
711 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
712 : ir_rvalue(ir_type_constant)
713 {
714 assert(vector_elements <= 4);
715 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
716 for (unsigned i = 0; i < vector_elements; i++) {
717 this->value.u[i] = u;
718 }
719 for (unsigned i = vector_elements; i < 16; i++) {
720 this->value.u[i] = 0;
721 }
722 }
723
724 ir_constant::ir_constant(int integer, unsigned vector_elements)
725 : ir_rvalue(ir_type_constant)
726 {
727 assert(vector_elements <= 4);
728 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
729 for (unsigned i = 0; i < vector_elements; i++) {
730 this->value.i[i] = integer;
731 }
732 for (unsigned i = vector_elements; i < 16; i++) {
733 this->value.i[i] = 0;
734 }
735 }
736
737 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
738 : ir_rvalue(ir_type_constant)
739 {
740 assert(vector_elements <= 4);
741 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
742 for (unsigned i = 0; i < vector_elements; i++) {
743 this->value.u64[i] = u64;
744 }
745 for (unsigned i = vector_elements; i < 16; i++) {
746 this->value.u64[i] = 0;
747 }
748 }
749
750 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
751 : ir_rvalue(ir_type_constant)
752 {
753 assert(vector_elements <= 4);
754 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
755 for (unsigned i = 0; i < vector_elements; i++) {
756 this->value.i64[i] = int64;
757 }
758 for (unsigned i = vector_elements; i < 16; i++) {
759 this->value.i64[i] = 0;
760 }
761 }
762
763 ir_constant::ir_constant(bool b, unsigned vector_elements)
764 : ir_rvalue(ir_type_constant)
765 {
766 assert(vector_elements <= 4);
767 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
768 for (unsigned i = 0; i < vector_elements; i++) {
769 this->value.b[i] = b;
770 }
771 for (unsigned i = vector_elements; i < 16; i++) {
772 this->value.b[i] = false;
773 }
774 }
775
776 ir_constant::ir_constant(const ir_constant *c, unsigned i)
777 : ir_rvalue(ir_type_constant)
778 {
779 this->const_elements = NULL;
780 this->type = c->type->get_base_type();
781
782 switch (this->type->base_type) {
783 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
784 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
785 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
786 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
787 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
788 default: assert(!"Should not get here."); break;
789 }
790 }
791
792 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
793 : ir_rvalue(ir_type_constant)
794 {
795 this->const_elements = NULL;
796 this->type = type;
797
798 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
799 || type->is_struct() || type->is_array());
800
801 /* If the constant is a record, the types of each of the entries in
802 * value_list must be a 1-for-1 match with the structure components. Each
803 * entry must also be a constant. Just move the nodes from the value_list
804 * to the list in the ir_constant.
805 */
806 if (type->is_array() || type->is_struct()) {
807 this->const_elements = ralloc_array(this, ir_constant *, type->length);
808 unsigned i = 0;
809 foreach_in_list(ir_constant, value, value_list) {
810 assert(value->as_constant() != NULL);
811
812 this->const_elements[i++] = value;
813 }
814 return;
815 }
816
817 for (unsigned i = 0; i < 16; i++) {
818 this->value.u[i] = 0;
819 }
820
821 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
822
823 /* Constructors with exactly one scalar argument are special for vectors
824 * and matrices. For vectors, the scalar value is replicated to fill all
825 * the components. For matrices, the scalar fills the components of the
826 * diagonal while the rest is filled with 0.
827 */
828 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
829 if (type->is_matrix()) {
830 /* Matrix - fill diagonal (rest is already set to 0) */
831 assert(type->is_float() || type->is_double());
832 for (unsigned i = 0; i < type->matrix_columns; i++) {
833 if (type->is_float())
834 this->value.f[i * type->vector_elements + i] =
835 value->value.f[0];
836 else
837 this->value.d[i * type->vector_elements + i] =
838 value->value.d[0];
839 }
840 } else {
841 /* Vector or scalar - fill all components */
842 switch (type->base_type) {
843 case GLSL_TYPE_UINT:
844 case GLSL_TYPE_INT:
845 for (unsigned i = 0; i < type->components(); i++)
846 this->value.u[i] = value->value.u[0];
847 break;
848 case GLSL_TYPE_FLOAT:
849 for (unsigned i = 0; i < type->components(); i++)
850 this->value.f[i] = value->value.f[0];
851 break;
852 case GLSL_TYPE_DOUBLE:
853 for (unsigned i = 0; i < type->components(); i++)
854 this->value.d[i] = value->value.d[0];
855 break;
856 case GLSL_TYPE_UINT64:
857 case GLSL_TYPE_INT64:
858 for (unsigned i = 0; i < type->components(); i++)
859 this->value.u64[i] = value->value.u64[0];
860 break;
861 case GLSL_TYPE_BOOL:
862 for (unsigned i = 0; i < type->components(); i++)
863 this->value.b[i] = value->value.b[0];
864 break;
865 case GLSL_TYPE_SAMPLER:
866 case GLSL_TYPE_IMAGE:
867 this->value.u64[0] = value->value.u64[0];
868 break;
869 default:
870 assert(!"Should not get here.");
871 break;
872 }
873 }
874 return;
875 }
876
877 if (type->is_matrix() && value->type->is_matrix()) {
878 assert(value->next->is_tail_sentinel());
879
880 /* From section 5.4.2 of the GLSL 1.20 spec:
881 * "If a matrix is constructed from a matrix, then each component
882 * (column i, row j) in the result that has a corresponding component
883 * (column i, row j) in the argument will be initialized from there."
884 */
885 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
886 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
887 for (unsigned i = 0; i < cols; i++) {
888 for (unsigned j = 0; j < rows; j++) {
889 const unsigned src = i * value->type->vector_elements + j;
890 const unsigned dst = i * type->vector_elements + j;
891 this->value.f[dst] = value->value.f[src];
892 }
893 }
894
895 /* "All other components will be initialized to the identity matrix." */
896 for (unsigned i = cols; i < type->matrix_columns; i++)
897 this->value.f[i * type->vector_elements + i] = 1.0;
898
899 return;
900 }
901
902 /* Use each component from each entry in the value_list to initialize one
903 * component of the constant being constructed.
904 */
905 unsigned i = 0;
906 for (;;) {
907 assert(value->as_constant() != NULL);
908 assert(!value->is_tail_sentinel());
909
910 for (unsigned j = 0; j < value->type->components(); j++) {
911 switch (type->base_type) {
912 case GLSL_TYPE_UINT:
913 this->value.u[i] = value->get_uint_component(j);
914 break;
915 case GLSL_TYPE_INT:
916 this->value.i[i] = value->get_int_component(j);
917 break;
918 case GLSL_TYPE_FLOAT:
919 this->value.f[i] = value->get_float_component(j);
920 break;
921 case GLSL_TYPE_BOOL:
922 this->value.b[i] = value->get_bool_component(j);
923 break;
924 case GLSL_TYPE_DOUBLE:
925 this->value.d[i] = value->get_double_component(j);
926 break;
927 case GLSL_TYPE_UINT64:
928 this->value.u64[i] = value->get_uint64_component(j);
929 break;
930 case GLSL_TYPE_INT64:
931 this->value.i64[i] = value->get_int64_component(j);
932 break;
933 default:
934 /* FINISHME: What to do? Exceptions are not the answer.
935 */
936 break;
937 }
938
939 i++;
940 if (i >= type->components())
941 break;
942 }
943
944 if (i >= type->components())
945 break; /* avoid downcasting a list sentinel */
946 value = (ir_constant *) value->next;
947 }
948 }
949
950 ir_constant *
951 ir_constant::zero(void *mem_ctx, const glsl_type *type)
952 {
953 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
954 || type->is_struct() || type->is_array());
955
956 ir_constant *c = new(mem_ctx) ir_constant;
957 c->type = type;
958 memset(&c->value, 0, sizeof(c->value));
959
960 if (type->is_array()) {
961 c->const_elements = ralloc_array(c, ir_constant *, type->length);
962
963 for (unsigned i = 0; i < type->length; i++)
964 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
965 }
966
967 if (type->is_struct()) {
968 c->const_elements = ralloc_array(c, ir_constant *, type->length);
969
970 for (unsigned i = 0; i < type->length; i++) {
971 c->const_elements[i] =
972 ir_constant::zero(mem_ctx, type->fields.structure[i].type);
973 }
974 }
975
976 return c;
977 }
978
979 bool
980 ir_constant::get_bool_component(unsigned i) const
981 {
982 switch (this->type->base_type) {
983 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
984 case GLSL_TYPE_INT: return this->value.i[i] != 0;
985 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
986 case GLSL_TYPE_BOOL: return this->value.b[i];
987 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
988 case GLSL_TYPE_SAMPLER:
989 case GLSL_TYPE_IMAGE:
990 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
991 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
992 default: assert(!"Should not get here."); break;
993 }
994
995 /* Must return something to make the compiler happy. This is clearly an
996 * error case.
997 */
998 return false;
999 }
1000
1001 float
1002 ir_constant::get_float_component(unsigned i) const
1003 {
1004 switch (this->type->base_type) {
1005 case GLSL_TYPE_UINT: return (float) this->value.u[i];
1006 case GLSL_TYPE_INT: return (float) this->value.i[i];
1007 case GLSL_TYPE_FLOAT: return this->value.f[i];
1008 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
1009 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1010 case GLSL_TYPE_SAMPLER:
1011 case GLSL_TYPE_IMAGE:
1012 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1013 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
1014 default: assert(!"Should not get here."); break;
1015 }
1016
1017 /* Must return something to make the compiler happy. This is clearly an
1018 * error case.
1019 */
1020 return 0.0;
1021 }
1022
1023 double
1024 ir_constant::get_double_component(unsigned i) const
1025 {
1026 switch (this->type->base_type) {
1027 case GLSL_TYPE_UINT: return (double) this->value.u[i];
1028 case GLSL_TYPE_INT: return (double) this->value.i[i];
1029 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1030 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
1031 case GLSL_TYPE_DOUBLE: return this->value.d[i];
1032 case GLSL_TYPE_SAMPLER:
1033 case GLSL_TYPE_IMAGE:
1034 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1035 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
1036 default: assert(!"Should not get here."); break;
1037 }
1038
1039 /* Must return something to make the compiler happy. This is clearly an
1040 * error case.
1041 */
1042 return 0.0;
1043 }
1044
1045 int
1046 ir_constant::get_int_component(unsigned i) const
1047 {
1048 switch (this->type->base_type) {
1049 case GLSL_TYPE_UINT: return this->value.u[i];
1050 case GLSL_TYPE_INT: return this->value.i[i];
1051 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1052 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1053 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1054 case GLSL_TYPE_SAMPLER:
1055 case GLSL_TYPE_IMAGE:
1056 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1057 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
1058 default: assert(!"Should not get here."); break;
1059 }
1060
1061 /* Must return something to make the compiler happy. This is clearly an
1062 * error case.
1063 */
1064 return 0;
1065 }
1066
1067 unsigned
1068 ir_constant::get_uint_component(unsigned i) const
1069 {
1070 switch (this->type->base_type) {
1071 case GLSL_TYPE_UINT: return this->value.u[i];
1072 case GLSL_TYPE_INT: return this->value.i[i];
1073 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1074 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1075 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1076 case GLSL_TYPE_SAMPLER:
1077 case GLSL_TYPE_IMAGE:
1078 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1079 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1080 default: assert(!"Should not get here."); break;
1081 }
1082
1083 /* Must return something to make the compiler happy. This is clearly an
1084 * error case.
1085 */
1086 return 0;
1087 }
1088
1089 int64_t
1090 ir_constant::get_int64_component(unsigned i) const
1091 {
1092 switch (this->type->base_type) {
1093 case GLSL_TYPE_UINT: return this->value.u[i];
1094 case GLSL_TYPE_INT: return this->value.i[i];
1095 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1096 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1097 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1098 case GLSL_TYPE_SAMPLER:
1099 case GLSL_TYPE_IMAGE:
1100 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1101 case GLSL_TYPE_INT64: return this->value.i64[i];
1102 default: assert(!"Should not get here."); break;
1103 }
1104
1105 /* Must return something to make the compiler happy. This is clearly an
1106 * error case.
1107 */
1108 return 0;
1109 }
1110
1111 uint64_t
1112 ir_constant::get_uint64_component(unsigned i) const
1113 {
1114 switch (this->type->base_type) {
1115 case GLSL_TYPE_UINT: return this->value.u[i];
1116 case GLSL_TYPE_INT: return this->value.i[i];
1117 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1118 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1119 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1120 case GLSL_TYPE_SAMPLER:
1121 case GLSL_TYPE_IMAGE:
1122 case GLSL_TYPE_UINT64: return this->value.u64[i];
1123 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1124 default: assert(!"Should not get here."); break;
1125 }
1126
1127 /* Must return something to make the compiler happy. This is clearly an
1128 * error case.
1129 */
1130 return 0;
1131 }
1132
1133 ir_constant *
1134 ir_constant::get_array_element(unsigned i) const
1135 {
1136 assert(this->type->is_array());
1137
1138 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1139 *
1140 * "Behavior is undefined if a shader subscripts an array with an index
1141 * less than 0 or greater than or equal to the size the array was
1142 * declared with."
1143 *
1144 * Most out-of-bounds accesses are removed before things could get this far.
1145 * There are cases where non-constant array index values can get constant
1146 * folded.
1147 */
1148 if (int(i) < 0)
1149 i = 0;
1150 else if (i >= this->type->length)
1151 i = this->type->length - 1;
1152
1153 return const_elements[i];
1154 }
1155
1156 ir_constant *
1157 ir_constant::get_record_field(int idx)
1158 {
1159 assert(this->type->is_struct());
1160 assert(idx >= 0 && (unsigned) idx < this->type->length);
1161
1162 return const_elements[idx];
1163 }
1164
1165 void
1166 ir_constant::copy_offset(ir_constant *src, int offset)
1167 {
1168 switch (this->type->base_type) {
1169 case GLSL_TYPE_UINT:
1170 case GLSL_TYPE_INT:
1171 case GLSL_TYPE_FLOAT:
1172 case GLSL_TYPE_DOUBLE:
1173 case GLSL_TYPE_SAMPLER:
1174 case GLSL_TYPE_IMAGE:
1175 case GLSL_TYPE_UINT64:
1176 case GLSL_TYPE_INT64:
1177 case GLSL_TYPE_BOOL: {
1178 unsigned int size = src->type->components();
1179 assert (size <= this->type->components() - offset);
1180 for (unsigned int i=0; i<size; i++) {
1181 switch (this->type->base_type) {
1182 case GLSL_TYPE_UINT:
1183 value.u[i+offset] = src->get_uint_component(i);
1184 break;
1185 case GLSL_TYPE_INT:
1186 value.i[i+offset] = src->get_int_component(i);
1187 break;
1188 case GLSL_TYPE_FLOAT:
1189 value.f[i+offset] = src->get_float_component(i);
1190 break;
1191 case GLSL_TYPE_BOOL:
1192 value.b[i+offset] = src->get_bool_component(i);
1193 break;
1194 case GLSL_TYPE_DOUBLE:
1195 value.d[i+offset] = src->get_double_component(i);
1196 break;
1197 case GLSL_TYPE_SAMPLER:
1198 case GLSL_TYPE_IMAGE:
1199 case GLSL_TYPE_UINT64:
1200 value.u64[i+offset] = src->get_uint64_component(i);
1201 break;
1202 case GLSL_TYPE_INT64:
1203 value.i64[i+offset] = src->get_int64_component(i);
1204 break;
1205 default: // Shut up the compiler
1206 break;
1207 }
1208 }
1209 break;
1210 }
1211
1212 case GLSL_TYPE_STRUCT:
1213 case GLSL_TYPE_ARRAY: {
1214 assert (src->type == this->type);
1215 for (unsigned i = 0; i < this->type->length; i++) {
1216 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1217 }
1218 break;
1219 }
1220
1221 default:
1222 assert(!"Should not get here.");
1223 break;
1224 }
1225 }
1226
1227 void
1228 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1229 {
1230 assert (!type->is_array() && !type->is_struct());
1231
1232 if (!type->is_vector() && !type->is_matrix()) {
1233 offset = 0;
1234 mask = 1;
1235 }
1236
1237 int id = 0;
1238 for (int i=0; i<4; i++) {
1239 if (mask & (1 << i)) {
1240 switch (this->type->base_type) {
1241 case GLSL_TYPE_UINT:
1242 value.u[i+offset] = src->get_uint_component(id++);
1243 break;
1244 case GLSL_TYPE_INT:
1245 value.i[i+offset] = src->get_int_component(id++);
1246 break;
1247 case GLSL_TYPE_FLOAT:
1248 value.f[i+offset] = src->get_float_component(id++);
1249 break;
1250 case GLSL_TYPE_BOOL:
1251 value.b[i+offset] = src->get_bool_component(id++);
1252 break;
1253 case GLSL_TYPE_DOUBLE:
1254 value.d[i+offset] = src->get_double_component(id++);
1255 break;
1256 case GLSL_TYPE_SAMPLER:
1257 case GLSL_TYPE_IMAGE:
1258 case GLSL_TYPE_UINT64:
1259 value.u64[i+offset] = src->get_uint64_component(id++);
1260 break;
1261 case GLSL_TYPE_INT64:
1262 value.i64[i+offset] = src->get_int64_component(id++);
1263 break;
1264 default:
1265 assert(!"Should not get here.");
1266 return;
1267 }
1268 }
1269 }
1270 }
1271
1272 bool
1273 ir_constant::has_value(const ir_constant *c) const
1274 {
1275 if (this->type != c->type)
1276 return false;
1277
1278 if (this->type->is_array() || this->type->is_struct()) {
1279 for (unsigned i = 0; i < this->type->length; i++) {
1280 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1281 return false;
1282 }
1283 return true;
1284 }
1285
1286 for (unsigned i = 0; i < this->type->components(); i++) {
1287 switch (this->type->base_type) {
1288 case GLSL_TYPE_UINT:
1289 if (this->value.u[i] != c->value.u[i])
1290 return false;
1291 break;
1292 case GLSL_TYPE_INT:
1293 if (this->value.i[i] != c->value.i[i])
1294 return false;
1295 break;
1296 case GLSL_TYPE_FLOAT:
1297 if (this->value.f[i] != c->value.f[i])
1298 return false;
1299 break;
1300 case GLSL_TYPE_BOOL:
1301 if (this->value.b[i] != c->value.b[i])
1302 return false;
1303 break;
1304 case GLSL_TYPE_DOUBLE:
1305 if (this->value.d[i] != c->value.d[i])
1306 return false;
1307 break;
1308 case GLSL_TYPE_SAMPLER:
1309 case GLSL_TYPE_IMAGE:
1310 case GLSL_TYPE_UINT64:
1311 if (this->value.u64[i] != c->value.u64[i])
1312 return false;
1313 break;
1314 case GLSL_TYPE_INT64:
1315 if (this->value.i64[i] != c->value.i64[i])
1316 return false;
1317 break;
1318 default:
1319 assert(!"Should not get here.");
1320 return false;
1321 }
1322 }
1323
1324 return true;
1325 }
1326
1327 bool
1328 ir_constant::is_value(float f, int i) const
1329 {
1330 if (!this->type->is_scalar() && !this->type->is_vector())
1331 return false;
1332
1333 /* Only accept boolean values for 0/1. */
1334 if (int(bool(i)) != i && this->type->is_boolean())
1335 return false;
1336
1337 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1338 switch (this->type->base_type) {
1339 case GLSL_TYPE_FLOAT:
1340 if (this->value.f[c] != f)
1341 return false;
1342 break;
1343 case GLSL_TYPE_INT:
1344 if (this->value.i[c] != i)
1345 return false;
1346 break;
1347 case GLSL_TYPE_UINT:
1348 if (this->value.u[c] != unsigned(i))
1349 return false;
1350 break;
1351 case GLSL_TYPE_BOOL:
1352 if (this->value.b[c] != bool(i))
1353 return false;
1354 break;
1355 case GLSL_TYPE_DOUBLE:
1356 if (this->value.d[c] != double(f))
1357 return false;
1358 break;
1359 case GLSL_TYPE_SAMPLER:
1360 case GLSL_TYPE_IMAGE:
1361 case GLSL_TYPE_UINT64:
1362 if (this->value.u64[c] != uint64_t(i))
1363 return false;
1364 break;
1365 case GLSL_TYPE_INT64:
1366 if (this->value.i64[c] != i)
1367 return false;
1368 break;
1369 default:
1370 /* The only other base types are structures, arrays, and samplers.
1371 * Samplers cannot be constants, and the others should have been
1372 * filtered out above.
1373 */
1374 assert(!"Should not get here.");
1375 return false;
1376 }
1377 }
1378
1379 return true;
1380 }
1381
1382 bool
1383 ir_constant::is_zero() const
1384 {
1385 return is_value(0.0, 0);
1386 }
1387
1388 bool
1389 ir_constant::is_one() const
1390 {
1391 return is_value(1.0, 1);
1392 }
1393
1394 bool
1395 ir_constant::is_negative_one() const
1396 {
1397 return is_value(-1.0, -1);
1398 }
1399
1400 bool
1401 ir_constant::is_uint16_constant() const
1402 {
1403 if (!type->is_integer_32())
1404 return false;
1405
1406 return value.u[0] < (1 << 16);
1407 }
1408
1409 ir_loop::ir_loop()
1410 : ir_instruction(ir_type_loop)
1411 {
1412 }
1413
1414
1415 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1416 : ir_dereference(ir_type_dereference_variable)
1417 {
1418 assert(var != NULL);
1419
1420 this->var = var;
1421 this->type = var->type;
1422 }
1423
1424
1425 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1426 ir_rvalue *array_index)
1427 : ir_dereference(ir_type_dereference_array)
1428 {
1429 this->array_index = array_index;
1430 this->set_array(value);
1431 }
1432
1433
1434 ir_dereference_array::ir_dereference_array(ir_variable *var,
1435 ir_rvalue *array_index)
1436 : ir_dereference(ir_type_dereference_array)
1437 {
1438 void *ctx = ralloc_parent(var);
1439
1440 this->array_index = array_index;
1441 this->set_array(new(ctx) ir_dereference_variable(var));
1442 }
1443
1444
1445 void
1446 ir_dereference_array::set_array(ir_rvalue *value)
1447 {
1448 assert(value != NULL);
1449
1450 this->array = value;
1451
1452 const glsl_type *const vt = this->array->type;
1453
1454 if (vt->is_array()) {
1455 type = vt->fields.array;
1456 } else if (vt->is_matrix()) {
1457 type = vt->column_type();
1458 } else if (vt->is_vector()) {
1459 type = vt->get_base_type();
1460 }
1461 }
1462
1463
1464 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1465 const char *field)
1466 : ir_dereference(ir_type_dereference_record)
1467 {
1468 assert(value != NULL);
1469
1470 this->record = value;
1471 this->type = this->record->type->field_type(field);
1472 this->field_idx = this->record->type->field_index(field);
1473 }
1474
1475
1476 ir_dereference_record::ir_dereference_record(ir_variable *var,
1477 const char *field)
1478 : ir_dereference(ir_type_dereference_record)
1479 {
1480 void *ctx = ralloc_parent(var);
1481
1482 this->record = new(ctx) ir_dereference_variable(var);
1483 this->type = this->record->type->field_type(field);
1484 this->field_idx = this->record->type->field_index(field);
1485 }
1486
1487 bool
1488 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1489 {
1490 ir_variable *var = this->variable_referenced();
1491
1492 /* Every l-value derference chain eventually ends in a variable.
1493 */
1494 if ((var == NULL) || var->data.read_only)
1495 return false;
1496
1497 /* From section 4.1.7 of the ARB_bindless_texture spec:
1498 *
1499 * "Samplers can be used as l-values, so can be assigned into and used as
1500 * "out" and "inout" function parameters."
1501 *
1502 * From section 4.1.X of the ARB_bindless_texture spec:
1503 *
1504 * "Images can be used as l-values, so can be assigned into and used as
1505 * "out" and "inout" function parameters."
1506 */
1507 if ((!state || state->has_bindless()) &&
1508 (this->type->contains_sampler() || this->type->contains_image()))
1509 return true;
1510
1511 /* From section 4.1.7 of the GLSL 4.40 spec:
1512 *
1513 * "Opaque variables cannot be treated as l-values; hence cannot
1514 * be used as out or inout function parameters, nor can they be
1515 * assigned into."
1516 */
1517 if (this->type->contains_opaque())
1518 return false;
1519
1520 return true;
1521 }
1522
1523
1524 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1525
1526 const char *ir_texture::opcode_string()
1527 {
1528 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1529 return tex_opcode_strs[op];
1530 }
1531
1532 ir_texture_opcode
1533 ir_texture::get_opcode(const char *str)
1534 {
1535 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1536 for (int op = 0; op < count; op++) {
1537 if (strcmp(str, tex_opcode_strs[op]) == 0)
1538 return (ir_texture_opcode) op;
1539 }
1540 return (ir_texture_opcode) -1;
1541 }
1542
1543
1544 void
1545 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1546 {
1547 assert(sampler != NULL);
1548 assert(type != NULL);
1549 this->sampler = sampler;
1550 this->type = type;
1551
1552 if (this->op == ir_txs || this->op == ir_query_levels ||
1553 this->op == ir_texture_samples) {
1554 assert(type->base_type == GLSL_TYPE_INT);
1555 } else if (this->op == ir_lod) {
1556 assert(type->vector_elements == 2);
1557 assert(type->is_float());
1558 } else if (this->op == ir_samples_identical) {
1559 assert(type == glsl_type::bool_type);
1560 assert(sampler->type->is_sampler());
1561 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1562 } else {
1563 assert(sampler->type->sampled_type == (int) type->base_type);
1564 if (sampler->type->sampler_shadow)
1565 assert(type->vector_elements == 4 || type->vector_elements == 1);
1566 else
1567 assert(type->vector_elements == 4);
1568 }
1569 }
1570
1571
1572 void
1573 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1574 {
1575 assert((count >= 1) && (count <= 4));
1576
1577 memset(&this->mask, 0, sizeof(this->mask));
1578 this->mask.num_components = count;
1579
1580 unsigned dup_mask = 0;
1581 switch (count) {
1582 case 4:
1583 assert(comp[3] <= 3);
1584 dup_mask |= (1U << comp[3])
1585 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1586 this->mask.w = comp[3];
1587
1588 case 3:
1589 assert(comp[2] <= 3);
1590 dup_mask |= (1U << comp[2])
1591 & ((1U << comp[0]) | (1U << comp[1]));
1592 this->mask.z = comp[2];
1593
1594 case 2:
1595 assert(comp[1] <= 3);
1596 dup_mask |= (1U << comp[1])
1597 & ((1U << comp[0]));
1598 this->mask.y = comp[1];
1599
1600 case 1:
1601 assert(comp[0] <= 3);
1602 this->mask.x = comp[0];
1603 }
1604
1605 this->mask.has_duplicates = dup_mask != 0;
1606
1607 /* Based on the number of elements in the swizzle and the base type
1608 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1609 * generate the type of the resulting value.
1610 */
1611 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1612 }
1613
1614 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1615 unsigned w, unsigned count)
1616 : ir_rvalue(ir_type_swizzle), val(val)
1617 {
1618 const unsigned components[4] = { x, y, z, w };
1619 this->init_mask(components, count);
1620 }
1621
1622 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1623 unsigned count)
1624 : ir_rvalue(ir_type_swizzle), val(val)
1625 {
1626 this->init_mask(comp, count);
1627 }
1628
1629 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1630 : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1631 {
1632 this->type = glsl_type::get_instance(val->type->base_type,
1633 mask.num_components, 1);
1634 }
1635
1636 #define X 1
1637 #define R 5
1638 #define S 9
1639 #define I 13
1640
1641 ir_swizzle *
1642 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1643 {
1644 void *ctx = ralloc_parent(val);
1645
1646 /* For each possible swizzle character, this table encodes the value in
1647 * \c idx_map that represents the 0th element of the vector. For invalid
1648 * swizzle characters (e.g., 'k'), a special value is used that will allow
1649 * detection of errors.
1650 */
1651 static const unsigned char base_idx[26] = {
1652 /* a b c d e f g h i j k l m */
1653 R, R, I, I, I, I, R, I, I, I, I, I, I,
1654 /* n o p q r s t u v w x y z */
1655 I, I, S, S, R, S, S, I, I, X, X, X, X
1656 };
1657
1658 /* Each valid swizzle character has an entry in the previous table. This
1659 * table encodes the base index encoded in the previous table plus the actual
1660 * index of the swizzle character. When processing swizzles, the first
1661 * character in the string is indexed in the previous table. Each character
1662 * in the string is indexed in this table, and the value found there has the
1663 * value form the first table subtracted. The result must be on the range
1664 * [0,3].
1665 *
1666 * For example, the string "wzyx" will get X from the first table. Each of
1667 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1668 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1669 *
1670 * The string "wzrg" will get X from the first table. Each of the characters
1671 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1672 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1673 * [0,3], the error is detected.
1674 */
1675 static const unsigned char idx_map[26] = {
1676 /* a b c d e f g h i j k l m */
1677 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1678 /* n o p q r s t u v w x y z */
1679 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1680 };
1681
1682 int swiz_idx[4] = { 0, 0, 0, 0 };
1683 unsigned i;
1684
1685
1686 /* Validate the first character in the swizzle string and look up the base
1687 * index value as described above.
1688 */
1689 if ((str[0] < 'a') || (str[0] > 'z'))
1690 return NULL;
1691
1692 const unsigned base = base_idx[str[0] - 'a'];
1693
1694
1695 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1696 /* Validate the next character, and, as described above, convert it to a
1697 * swizzle index.
1698 */
1699 if ((str[i] < 'a') || (str[i] > 'z'))
1700 return NULL;
1701
1702 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1703 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1704 return NULL;
1705 }
1706
1707 if (str[i] != '\0')
1708 return NULL;
1709
1710 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1711 swiz_idx[3], i);
1712 }
1713
1714 #undef X
1715 #undef R
1716 #undef S
1717 #undef I
1718
1719 ir_variable *
1720 ir_swizzle::variable_referenced() const
1721 {
1722 return this->val->variable_referenced();
1723 }
1724
1725
1726 bool ir_variable::temporaries_allocate_names = false;
1727
1728 const char ir_variable::tmp_name[] = "compiler_temp";
1729
1730 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1731 ir_variable_mode mode)
1732 : ir_instruction(ir_type_variable)
1733 {
1734 this->type = type;
1735
1736 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1737 name = NULL;
1738
1739 /* The ir_variable clone method may call this constructor with name set to
1740 * tmp_name.
1741 */
1742 assert(name != NULL
1743 || mode == ir_var_temporary
1744 || mode == ir_var_function_in
1745 || mode == ir_var_function_out
1746 || mode == ir_var_function_inout);
1747 assert(name != ir_variable::tmp_name
1748 || mode == ir_var_temporary);
1749 if (mode == ir_var_temporary
1750 && (name == NULL || name == ir_variable::tmp_name)) {
1751 this->name = ir_variable::tmp_name;
1752 } else if (name == NULL ||
1753 strlen(name) < ARRAY_SIZE(this->name_storage)) {
1754 strcpy(this->name_storage, name ? name : "");
1755 this->name = this->name_storage;
1756 } else {
1757 this->name = ralloc_strdup(this, name);
1758 }
1759
1760 this->u.max_ifc_array_access = NULL;
1761
1762 this->data.explicit_location = false;
1763 this->data.explicit_index = false;
1764 this->data.explicit_binding = false;
1765 this->data.explicit_component = false;
1766 this->data.has_initializer = false;
1767 this->data.is_unmatched_generic_inout = false;
1768 this->data.is_xfb_only = false;
1769 this->data.explicit_xfb_buffer = false;
1770 this->data.explicit_xfb_offset = false;
1771 this->data.explicit_xfb_stride = false;
1772 this->data.location = -1;
1773 this->data.location_frac = 0;
1774 this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
1775 this->data.from_named_ifc_block = false;
1776 this->data.must_be_shader_input = false;
1777 this->data.index = 0;
1778 this->data.binding = 0;
1779 this->data.warn_extension_index = 0;
1780 this->constant_value = NULL;
1781 this->constant_initializer = NULL;
1782 this->data.depth_layout = ir_depth_layout_none;
1783 this->data.used = false;
1784 this->data.assigned = false;
1785 this->data.always_active_io = false;
1786 this->data.read_only = false;
1787 this->data.centroid = false;
1788 this->data.sample = false;
1789 this->data.patch = false;
1790 this->data.explicit_invariant = false;
1791 this->data.invariant = false;
1792 this->data.precise = false;
1793 this->data.how_declared = ir_var_declared_normally;
1794 this->data.mode = mode;
1795 this->data.interpolation = INTERP_MODE_NONE;
1796 this->data.max_array_access = -1;
1797 this->data.offset = 0;
1798 this->data.precision = GLSL_PRECISION_NONE;
1799 this->data.memory_read_only = false;
1800 this->data.memory_write_only = false;
1801 this->data.memory_coherent = false;
1802 this->data.memory_volatile = false;
1803 this->data.memory_restrict = false;
1804 this->data.from_ssbo_unsized_array = false;
1805 this->data.implicit_sized_array = false;
1806 this->data.fb_fetch_output = false;
1807 this->data.bindless = false;
1808 this->data.bound = false;
1809 this->data.image_format = GL_NONE;
1810 this->data._num_state_slots = 0;
1811 this->data.param_index = 0;
1812 this->data.stream = 0;
1813 this->data.xfb_buffer = -1;
1814 this->data.xfb_stride = -1;
1815
1816 this->interface_type = NULL;
1817
1818 if (type != NULL) {
1819 if (type->is_interface())
1820 this->init_interface_type(type);
1821 else if (type->without_array()->is_interface())
1822 this->init_interface_type(type->without_array());
1823 }
1824 }
1825
1826
1827 const char *
1828 interpolation_string(unsigned interpolation)
1829 {
1830 switch (interpolation) {
1831 case INTERP_MODE_NONE: return "no";
1832 case INTERP_MODE_SMOOTH: return "smooth";
1833 case INTERP_MODE_FLAT: return "flat";
1834 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1835 }
1836
1837 assert(!"Should not get here.");
1838 return "";
1839 }
1840
1841 const char *const ir_variable::warn_extension_table[] = {
1842 "",
1843 "GL_ARB_shader_stencil_export",
1844 "GL_AMD_shader_stencil_export",
1845 };
1846
1847 void
1848 ir_variable::enable_extension_warning(const char *extension)
1849 {
1850 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1851 if (strcmp(warn_extension_table[i], extension) == 0) {
1852 this->data.warn_extension_index = i;
1853 return;
1854 }
1855 }
1856
1857 assert(!"Should not get here.");
1858 this->data.warn_extension_index = 0;
1859 }
1860
1861 const char *
1862 ir_variable::get_extension_warning() const
1863 {
1864 return this->data.warn_extension_index == 0
1865 ? NULL : warn_extension_table[this->data.warn_extension_index];
1866 }
1867
1868 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1869 builtin_available_predicate b)
1870 : ir_instruction(ir_type_function_signature),
1871 return_type(return_type), is_defined(false),
1872 return_precision(GLSL_PRECISION_NONE),
1873 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1874 {
1875 this->origin = NULL;
1876 }
1877
1878
1879 bool
1880 ir_function_signature::is_builtin() const
1881 {
1882 return builtin_avail != NULL;
1883 }
1884
1885
1886 bool
1887 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1888 {
1889 /* We can't call the predicate without a state pointer, so just say that
1890 * the signature is available. At compile time, we need the filtering,
1891 * but also receive a valid state pointer. At link time, we're resolving
1892 * imported built-in prototypes to their definitions, which will always
1893 * be an exact match. So we can skip the filtering.
1894 */
1895 if (state == NULL)
1896 return true;
1897
1898 assert(builtin_avail != NULL);
1899 return builtin_avail(state);
1900 }
1901
1902
1903 static bool
1904 modes_match(unsigned a, unsigned b)
1905 {
1906 if (a == b)
1907 return true;
1908
1909 /* Accept "in" vs. "const in" */
1910 if ((a == ir_var_const_in && b == ir_var_function_in) ||
1911 (b == ir_var_const_in && a == ir_var_function_in))
1912 return true;
1913
1914 return false;
1915 }
1916
1917
1918 const char *
1919 ir_function_signature::qualifiers_match(exec_list *params)
1920 {
1921 /* check that the qualifiers match. */
1922 foreach_two_lists(a_node, &this->parameters, b_node, params) {
1923 ir_variable *a = (ir_variable *) a_node;
1924 ir_variable *b = (ir_variable *) b_node;
1925
1926 if (a->data.read_only != b->data.read_only ||
1927 !modes_match(a->data.mode, b->data.mode) ||
1928 a->data.interpolation != b->data.interpolation ||
1929 a->data.centroid != b->data.centroid ||
1930 a->data.sample != b->data.sample ||
1931 a->data.patch != b->data.patch ||
1932 a->data.memory_read_only != b->data.memory_read_only ||
1933 a->data.memory_write_only != b->data.memory_write_only ||
1934 a->data.memory_coherent != b->data.memory_coherent ||
1935 a->data.memory_volatile != b->data.memory_volatile ||
1936 a->data.memory_restrict != b->data.memory_restrict) {
1937
1938 /* parameter a's qualifiers don't match */
1939 return a->name;
1940 }
1941 }
1942 return NULL;
1943 }
1944
1945
1946 void
1947 ir_function_signature::replace_parameters(exec_list *new_params)
1948 {
1949 /* Destroy all of the previous parameter information. If the previous
1950 * parameter information comes from the function prototype, it may either
1951 * specify incorrect parameter names or not have names at all.
1952 */
1953 new_params->move_nodes_to(&parameters);
1954 }
1955
1956
1957 ir_function::ir_function(const char *name)
1958 : ir_instruction(ir_type_function)
1959 {
1960 this->subroutine_index = -1;
1961 this->name = ralloc_strdup(this, name);
1962 }
1963
1964
1965 bool
1966 ir_function::has_user_signature()
1967 {
1968 foreach_in_list(ir_function_signature, sig, &this->signatures) {
1969 if (!sig->is_builtin())
1970 return true;
1971 }
1972 return false;
1973 }
1974
1975
1976 ir_rvalue *
1977 ir_rvalue::error_value(void *mem_ctx)
1978 {
1979 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
1980
1981 v->type = glsl_type::error_type;
1982 return v;
1983 }
1984
1985
1986 void
1987 visit_exec_list(exec_list *list, ir_visitor *visitor)
1988 {
1989 foreach_in_list_safe(ir_instruction, node, list) {
1990 node->accept(visitor);
1991 }
1992 }
1993
1994
1995 static void
1996 steal_memory(ir_instruction *ir, void *new_ctx)
1997 {
1998 ir_variable *var = ir->as_variable();
1999 ir_function *fn = ir->as_function();
2000 ir_constant *constant = ir->as_constant();
2001 if (var != NULL && var->constant_value != NULL)
2002 steal_memory(var->constant_value, ir);
2003
2004 if (var != NULL && var->constant_initializer != NULL)
2005 steal_memory(var->constant_initializer, ir);
2006
2007 if (fn != NULL && fn->subroutine_types)
2008 ralloc_steal(new_ctx, fn->subroutine_types);
2009
2010 /* The components of aggregate constants are not visited by the normal
2011 * visitor, so steal their values by hand.
2012 */
2013 if (constant != NULL &&
2014 (constant->type->is_array() || constant->type->is_struct())) {
2015 for (unsigned int i = 0; i < constant->type->length; i++) {
2016 steal_memory(constant->const_elements[i], ir);
2017 }
2018 }
2019
2020 ralloc_steal(new_ctx, ir);
2021 }
2022
2023
2024 void
2025 reparent_ir(exec_list *list, void *mem_ctx)
2026 {
2027 foreach_in_list(ir_instruction, node, list) {
2028 visit_tree(node, steal_memory, mem_ctx);
2029 }
2030 }
2031
2032
2033 static ir_rvalue *
2034 try_min_one(ir_rvalue *ir)
2035 {
2036 ir_expression *expr = ir->as_expression();
2037
2038 if (!expr || expr->operation != ir_binop_min)
2039 return NULL;
2040
2041 if (expr->operands[0]->is_one())
2042 return expr->operands[1];
2043
2044 if (expr->operands[1]->is_one())
2045 return expr->operands[0];
2046
2047 return NULL;
2048 }
2049
2050 static ir_rvalue *
2051 try_max_zero(ir_rvalue *ir)
2052 {
2053 ir_expression *expr = ir->as_expression();
2054
2055 if (!expr || expr->operation != ir_binop_max)
2056 return NULL;
2057
2058 if (expr->operands[0]->is_zero())
2059 return expr->operands[1];
2060
2061 if (expr->operands[1]->is_zero())
2062 return expr->operands[0];
2063
2064 return NULL;
2065 }
2066
2067 ir_rvalue *
2068 ir_rvalue::as_rvalue_to_saturate()
2069 {
2070 ir_expression *expr = this->as_expression();
2071
2072 if (!expr)
2073 return NULL;
2074
2075 ir_rvalue *max_zero = try_max_zero(expr);
2076 if (max_zero) {
2077 return try_min_one(max_zero);
2078 } else {
2079 ir_rvalue *min_one = try_min_one(expr);
2080 if (min_one) {
2081 return try_max_zero(min_one);
2082 }
2083 }
2084
2085 return NULL;
2086 }
2087
2088
2089 unsigned
2090 vertices_per_prim(GLenum prim)
2091 {
2092 switch (prim) {
2093 case GL_POINTS:
2094 return 1;
2095 case GL_LINES:
2096 return 2;
2097 case GL_TRIANGLES:
2098 return 3;
2099 case GL_LINES_ADJACENCY:
2100 return 4;
2101 case GL_TRIANGLES_ADJACENCY:
2102 return 6;
2103 default:
2104 assert(!"Bad primitive");
2105 return 3;
2106 }
2107 }
2108
2109 /**
2110 * Generate a string describing the mode of a variable
2111 */
2112 const char *
2113 mode_string(const ir_variable *var)
2114 {
2115 switch (var->data.mode) {
2116 case ir_var_auto:
2117 return (var->data.read_only) ? "global constant" : "global variable";
2118
2119 case ir_var_uniform:
2120 return "uniform";
2121
2122 case ir_var_shader_storage:
2123 return "buffer";
2124
2125 case ir_var_shader_in:
2126 return "shader input";
2127
2128 case ir_var_shader_out:
2129 return "shader output";
2130
2131 case ir_var_function_in:
2132 case ir_var_const_in:
2133 return "function input";
2134
2135 case ir_var_function_out:
2136 return "function output";
2137
2138 case ir_var_function_inout:
2139 return "function inout";
2140
2141 case ir_var_system_value:
2142 return "shader input";
2143
2144 case ir_var_temporary:
2145 return "compiler temporary";
2146
2147 case ir_var_mode_count:
2148 break;
2149 }
2150
2151 assert(!"Should not get here.");
2152 return "invalid variable";
2153 }