glsl: add _mesa_glsl_parse_state object to is_lvalue()
[mesa.git] / src / compiler / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "compiler/glsl_types.h"
27 #include "glsl_parser_extras.h"
28
29
30 ir_rvalue::ir_rvalue(enum ir_node_type t)
31 : ir_instruction(t)
32 {
33 this->type = glsl_type::error_type;
34 }
35
36 bool ir_rvalue::is_zero() const
37 {
38 return false;
39 }
40
41 bool ir_rvalue::is_one() const
42 {
43 return false;
44 }
45
46 bool ir_rvalue::is_negative_one() const
47 {
48 return false;
49 }
50
51 /**
52 * Modify the swizzle make to move one component to another
53 *
54 * \param m IR swizzle to be modified
55 * \param from Component in the RHS that is to be swizzled
56 * \param to Desired swizzle location of \c from
57 */
58 static void
59 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
60 {
61 switch (to) {
62 case 0: m.x = from; break;
63 case 1: m.y = from; break;
64 case 2: m.z = from; break;
65 case 3: m.w = from; break;
66 default: assert(!"Should not get here.");
67 }
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 rhs_swiz.num_components = swiz->val->type->vector_elements;
99 }
100
101 this->write_mask = write_mask;
102 lhs = swiz->val;
103
104 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
105 swizzled = true;
106 }
107
108 if (swizzled) {
109 /* Now, RHS channels line up with the LHS writemask. Collapse it
110 * to just the channels that will be written.
111 */
112 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
113 int rhs_chan = 0;
114 for (int i = 0; i < 4; i++) {
115 if (write_mask & (1 << i))
116 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
117 }
118 rhs_swiz.num_components = rhs_chan;
119 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
120 }
121
122 assert((lhs == NULL) || lhs->as_dereference());
123
124 this->lhs = (ir_dereference *) lhs;
125 }
126
127 ir_variable *
128 ir_assignment::whole_variable_written()
129 {
130 ir_variable *v = this->lhs->whole_variable_referenced();
131
132 if (v == NULL)
133 return NULL;
134
135 if (v->type->is_scalar())
136 return v;
137
138 if (v->type->is_vector()) {
139 const unsigned mask = (1U << v->type->vector_elements) - 1;
140
141 if (mask != this->write_mask)
142 return NULL;
143 }
144
145 /* Either all the vector components are assigned or the variable is some
146 * composite type (and the whole thing is assigned.
147 */
148 return v;
149 }
150
151 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
152 ir_rvalue *condition, unsigned write_mask)
153 : ir_instruction(ir_type_assignment)
154 {
155 this->condition = condition;
156 this->rhs = rhs;
157 this->lhs = lhs;
158 this->write_mask = write_mask;
159
160 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
161 int lhs_components = 0;
162 for (int i = 0; i < 4; i++) {
163 if (write_mask & (1 << i))
164 lhs_components++;
165 }
166
167 assert(lhs_components == this->rhs->type->vector_elements);
168 }
169 }
170
171 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
172 ir_rvalue *condition)
173 : ir_instruction(ir_type_assignment)
174 {
175 this->condition = condition;
176 this->rhs = rhs;
177
178 /* If the RHS is a vector type, assume that all components of the vector
179 * type are being written to the LHS. The write mask comes from the RHS
180 * because we can have a case where the LHS is a vec4 and the RHS is a
181 * vec3. In that case, the assignment is:
182 *
183 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
184 */
185 if (rhs->type->is_vector())
186 this->write_mask = (1U << rhs->type->vector_elements) - 1;
187 else if (rhs->type->is_scalar())
188 this->write_mask = 1;
189 else
190 this->write_mask = 0;
191
192 this->set_lhs(lhs);
193 }
194
195 ir_expression::ir_expression(int op, const struct glsl_type *type,
196 ir_rvalue *op0, ir_rvalue *op1,
197 ir_rvalue *op2, ir_rvalue *op3)
198 : ir_rvalue(ir_type_expression)
199 {
200 this->type = type;
201 this->operation = ir_expression_operation(op);
202 this->operands[0] = op0;
203 this->operands[1] = op1;
204 this->operands[2] = op2;
205 this->operands[3] = op3;
206 #ifndef NDEBUG
207 int num_operands = get_num_operands(this->operation);
208 for (int i = num_operands; i < 4; i++) {
209 assert(this->operands[i] == NULL);
210 }
211 #endif
212 }
213
214 ir_expression::ir_expression(int op, ir_rvalue *op0)
215 : ir_rvalue(ir_type_expression)
216 {
217 this->operation = ir_expression_operation(op);
218 this->operands[0] = op0;
219 this->operands[1] = NULL;
220 this->operands[2] = NULL;
221 this->operands[3] = NULL;
222
223 assert(op <= ir_last_unop);
224
225 switch (this->operation) {
226 case ir_unop_bit_not:
227 case ir_unop_logic_not:
228 case ir_unop_neg:
229 case ir_unop_abs:
230 case ir_unop_sign:
231 case ir_unop_rcp:
232 case ir_unop_rsq:
233 case ir_unop_sqrt:
234 case ir_unop_exp:
235 case ir_unop_log:
236 case ir_unop_exp2:
237 case ir_unop_log2:
238 case ir_unop_trunc:
239 case ir_unop_ceil:
240 case ir_unop_floor:
241 case ir_unop_fract:
242 case ir_unop_round_even:
243 case ir_unop_sin:
244 case ir_unop_cos:
245 case ir_unop_dFdx:
246 case ir_unop_dFdx_coarse:
247 case ir_unop_dFdx_fine:
248 case ir_unop_dFdy:
249 case ir_unop_dFdy_coarse:
250 case ir_unop_dFdy_fine:
251 case ir_unop_bitfield_reverse:
252 case ir_unop_interpolate_at_centroid:
253 case ir_unop_saturate:
254 this->type = op0->type;
255 break;
256
257 case ir_unop_f2i:
258 case ir_unop_b2i:
259 case ir_unop_u2i:
260 case ir_unop_d2i:
261 case ir_unop_bitcast_f2i:
262 case ir_unop_bit_count:
263 case ir_unop_find_msb:
264 case ir_unop_find_lsb:
265 case ir_unop_subroutine_to_int:
266 case ir_unop_i642i:
267 case ir_unop_u642i:
268 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
269 op0->type->vector_elements, 1);
270 break;
271
272 case ir_unop_b2f:
273 case ir_unop_i2f:
274 case ir_unop_u2f:
275 case ir_unop_d2f:
276 case ir_unop_bitcast_i2f:
277 case ir_unop_bitcast_u2f:
278 case ir_unop_i642f:
279 case ir_unop_u642f:
280 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
281 op0->type->vector_elements, 1);
282 break;
283
284 case ir_unop_f2b:
285 case ir_unop_i2b:
286 case ir_unop_d2b:
287 case ir_unop_i642b:
288 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
289 op0->type->vector_elements, 1);
290 break;
291
292 case ir_unop_f2d:
293 case ir_unop_i2d:
294 case ir_unop_u2d:
295 case ir_unop_i642d:
296 case ir_unop_u642d:
297 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
298 op0->type->vector_elements, 1);
299 break;
300
301 case ir_unop_i2u:
302 case ir_unop_f2u:
303 case ir_unop_d2u:
304 case ir_unop_bitcast_f2u:
305 case ir_unop_i642u:
306 case ir_unop_u642u:
307 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
308 op0->type->vector_elements, 1);
309 break;
310
311 case ir_unop_i2i64:
312 case ir_unop_u2i64:
313 case ir_unop_b2i64:
314 case ir_unop_f2i64:
315 case ir_unop_d2i64:
316 case ir_unop_u642i64:
317 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
318 op0->type->vector_elements, 1);
319 break;
320
321 case ir_unop_i2u64:
322 case ir_unop_u2u64:
323 case ir_unop_f2u64:
324 case ir_unop_d2u64:
325 case ir_unop_i642u64:
326 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
327 op0->type->vector_elements, 1);
328 break;
329 case ir_unop_noise:
330 this->type = glsl_type::float_type;
331 break;
332
333 case ir_unop_unpack_double_2x32:
334 case ir_unop_unpack_uint_2x32:
335 this->type = glsl_type::uvec2_type;
336 break;
337
338 case ir_unop_unpack_int_2x32:
339 this->type = glsl_type::ivec2_type;
340 break;
341
342 case ir_unop_pack_snorm_2x16:
343 case ir_unop_pack_snorm_4x8:
344 case ir_unop_pack_unorm_2x16:
345 case ir_unop_pack_unorm_4x8:
346 case ir_unop_pack_half_2x16:
347 this->type = glsl_type::uint_type;
348 break;
349
350 case ir_unop_pack_double_2x32:
351 this->type = glsl_type::double_type;
352 break;
353
354 case ir_unop_pack_int_2x32:
355 this->type = glsl_type::int64_t_type;
356 break;
357
358 case ir_unop_pack_uint_2x32:
359 this->type = glsl_type::uint64_t_type;
360 break;
361
362 case ir_unop_unpack_snorm_2x16:
363 case ir_unop_unpack_unorm_2x16:
364 case ir_unop_unpack_half_2x16:
365 this->type = glsl_type::vec2_type;
366 break;
367
368 case ir_unop_unpack_snorm_4x8:
369 case ir_unop_unpack_unorm_4x8:
370 this->type = glsl_type::vec4_type;
371 break;
372
373 case ir_unop_frexp_sig:
374 this->type = op0->type;
375 break;
376 case ir_unop_frexp_exp:
377 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
378 op0->type->vector_elements, 1);
379 break;
380
381 case ir_unop_get_buffer_size:
382 case ir_unop_ssbo_unsized_array_length:
383 this->type = glsl_type::int_type;
384 break;
385
386 case ir_unop_bitcast_i642d:
387 case ir_unop_bitcast_u642d:
388 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
389 op0->type->vector_elements, 1);
390 break;
391
392 case ir_unop_bitcast_d2i64:
393 this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
394 op0->type->vector_elements, 1);
395 break;
396 case ir_unop_bitcast_d2u64:
397 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
398 op0->type->vector_elements, 1);
399 break;
400
401 default:
402 assert(!"not reached: missing automatic type setup for ir_expression");
403 this->type = op0->type;
404 break;
405 }
406 }
407
408 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
409 : ir_rvalue(ir_type_expression)
410 {
411 this->operation = ir_expression_operation(op);
412 this->operands[0] = op0;
413 this->operands[1] = op1;
414 this->operands[2] = NULL;
415 this->operands[3] = NULL;
416
417 assert(op > ir_last_unop);
418
419 switch (this->operation) {
420 case ir_binop_all_equal:
421 case ir_binop_any_nequal:
422 this->type = glsl_type::bool_type;
423 break;
424
425 case ir_binop_add:
426 case ir_binop_sub:
427 case ir_binop_min:
428 case ir_binop_max:
429 case ir_binop_pow:
430 case ir_binop_mul:
431 case ir_binop_div:
432 case ir_binop_mod:
433 if (op0->type->is_scalar()) {
434 this->type = op1->type;
435 } else if (op1->type->is_scalar()) {
436 this->type = op0->type;
437 } else {
438 if (this->operation == ir_binop_mul) {
439 this->type = glsl_type::get_mul_type(op0->type, op1->type);
440 } else {
441 assert(op0->type == op1->type);
442 this->type = op0->type;
443 }
444 }
445 break;
446
447 case ir_binop_logic_and:
448 case ir_binop_logic_xor:
449 case ir_binop_logic_or:
450 case ir_binop_bit_and:
451 case ir_binop_bit_xor:
452 case ir_binop_bit_or:
453 assert(!op0->type->is_matrix());
454 assert(!op1->type->is_matrix());
455 if (op0->type->is_scalar()) {
456 this->type = op1->type;
457 } else if (op1->type->is_scalar()) {
458 this->type = op0->type;
459 } else {
460 assert(op0->type->vector_elements == op1->type->vector_elements);
461 this->type = op0->type;
462 }
463 break;
464
465 case ir_binop_equal:
466 case ir_binop_nequal:
467 case ir_binop_lequal:
468 case ir_binop_gequal:
469 case ir_binop_less:
470 case ir_binop_greater:
471 assert(op0->type == op1->type);
472 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
473 op0->type->vector_elements, 1);
474 break;
475
476 case ir_binop_dot:
477 this->type = op0->type->get_base_type();
478 break;
479
480 case ir_binop_imul_high:
481 case ir_binop_carry:
482 case ir_binop_borrow:
483 case ir_binop_lshift:
484 case ir_binop_rshift:
485 case ir_binop_ldexp:
486 case ir_binop_interpolate_at_offset:
487 case ir_binop_interpolate_at_sample:
488 this->type = op0->type;
489 break;
490
491 case ir_binop_vector_extract:
492 this->type = op0->type->get_scalar_type();
493 break;
494
495 default:
496 assert(!"not reached: missing automatic type setup for ir_expression");
497 this->type = glsl_type::float_type;
498 }
499 }
500
501 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
502 ir_rvalue *op2)
503 : ir_rvalue(ir_type_expression)
504 {
505 this->operation = ir_expression_operation(op);
506 this->operands[0] = op0;
507 this->operands[1] = op1;
508 this->operands[2] = op2;
509 this->operands[3] = NULL;
510
511 assert(op > ir_last_binop && op <= ir_last_triop);
512
513 switch (this->operation) {
514 case ir_triop_fma:
515 case ir_triop_lrp:
516 case ir_triop_bitfield_extract:
517 case ir_triop_vector_insert:
518 this->type = op0->type;
519 break;
520
521 case ir_triop_csel:
522 this->type = op1->type;
523 break;
524
525 default:
526 assert(!"not reached: missing automatic type setup for ir_expression");
527 this->type = glsl_type::float_type;
528 }
529 }
530
531 unsigned int
532 ir_expression::get_num_operands(ir_expression_operation op)
533 {
534 assert(op <= ir_last_opcode);
535
536 if (op <= ir_last_unop)
537 return 1;
538
539 if (op <= ir_last_binop)
540 return 2;
541
542 if (op <= ir_last_triop)
543 return 3;
544
545 if (op <= ir_last_quadop)
546 return 4;
547
548 assert(false);
549 return 0;
550 }
551
552 #include "ir_expression_operation_strings.h"
553
554 const char*
555 depth_layout_string(ir_depth_layout layout)
556 {
557 switch(layout) {
558 case ir_depth_layout_none: return "";
559 case ir_depth_layout_any: return "depth_any";
560 case ir_depth_layout_greater: return "depth_greater";
561 case ir_depth_layout_less: return "depth_less";
562 case ir_depth_layout_unchanged: return "depth_unchanged";
563
564 default:
565 assert(0);
566 return "";
567 }
568 }
569
570 ir_expression_operation
571 ir_expression::get_operator(const char *str)
572 {
573 for (int op = 0; op <= int(ir_last_opcode); op++) {
574 if (strcmp(str, ir_expression_operation_strings[op]) == 0)
575 return (ir_expression_operation) op;
576 }
577 return (ir_expression_operation) -1;
578 }
579
580 ir_variable *
581 ir_expression::variable_referenced() const
582 {
583 switch (operation) {
584 case ir_binop_vector_extract:
585 case ir_triop_vector_insert:
586 /* We get these for things like a[0] where a is a vector type. In these
587 * cases we want variable_referenced() to return the actual vector
588 * variable this is wrapping.
589 */
590 return operands[0]->variable_referenced();
591 default:
592 return ir_rvalue::variable_referenced();
593 }
594 }
595
596 ir_constant::ir_constant()
597 : ir_rvalue(ir_type_constant)
598 {
599 this->array_elements = NULL;
600 }
601
602 ir_constant::ir_constant(const struct glsl_type *type,
603 const ir_constant_data *data)
604 : ir_rvalue(ir_type_constant)
605 {
606 this->array_elements = NULL;
607
608 assert((type->base_type >= GLSL_TYPE_UINT)
609 && (type->base_type <= GLSL_TYPE_BOOL));
610
611 this->type = type;
612 memcpy(& this->value, data, sizeof(this->value));
613 }
614
615 ir_constant::ir_constant(float f, unsigned vector_elements)
616 : ir_rvalue(ir_type_constant)
617 {
618 assert(vector_elements <= 4);
619 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
620 for (unsigned i = 0; i < vector_elements; i++) {
621 this->value.f[i] = f;
622 }
623 for (unsigned i = vector_elements; i < 16; i++) {
624 this->value.f[i] = 0;
625 }
626 }
627
628 ir_constant::ir_constant(double d, unsigned vector_elements)
629 : ir_rvalue(ir_type_constant)
630 {
631 assert(vector_elements <= 4);
632 this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
633 for (unsigned i = 0; i < vector_elements; i++) {
634 this->value.d[i] = d;
635 }
636 for (unsigned i = vector_elements; i < 16; i++) {
637 this->value.d[i] = 0.0;
638 }
639 }
640
641 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
642 : ir_rvalue(ir_type_constant)
643 {
644 assert(vector_elements <= 4);
645 this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
646 for (unsigned i = 0; i < vector_elements; i++) {
647 this->value.u[i] = u;
648 }
649 for (unsigned i = vector_elements; i < 16; i++) {
650 this->value.u[i] = 0;
651 }
652 }
653
654 ir_constant::ir_constant(int integer, unsigned vector_elements)
655 : ir_rvalue(ir_type_constant)
656 {
657 assert(vector_elements <= 4);
658 this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
659 for (unsigned i = 0; i < vector_elements; i++) {
660 this->value.i[i] = integer;
661 }
662 for (unsigned i = vector_elements; i < 16; i++) {
663 this->value.i[i] = 0;
664 }
665 }
666
667 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
668 : ir_rvalue(ir_type_constant)
669 {
670 assert(vector_elements <= 4);
671 this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
672 for (unsigned i = 0; i < vector_elements; i++) {
673 this->value.u64[i] = u64;
674 }
675 for (unsigned i = vector_elements; i < 16; i++) {
676 this->value.u64[i] = 0;
677 }
678 }
679
680 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
681 : ir_rvalue(ir_type_constant)
682 {
683 assert(vector_elements <= 4);
684 this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
685 for (unsigned i = 0; i < vector_elements; i++) {
686 this->value.i64[i] = int64;
687 }
688 for (unsigned i = vector_elements; i < 16; i++) {
689 this->value.i64[i] = 0;
690 }
691 }
692
693 ir_constant::ir_constant(bool b, unsigned vector_elements)
694 : ir_rvalue(ir_type_constant)
695 {
696 assert(vector_elements <= 4);
697 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
698 for (unsigned i = 0; i < vector_elements; i++) {
699 this->value.b[i] = b;
700 }
701 for (unsigned i = vector_elements; i < 16; i++) {
702 this->value.b[i] = false;
703 }
704 }
705
706 ir_constant::ir_constant(const ir_constant *c, unsigned i)
707 : ir_rvalue(ir_type_constant)
708 {
709 this->array_elements = NULL;
710 this->type = c->type->get_base_type();
711
712 switch (this->type->base_type) {
713 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
714 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
715 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
716 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
717 case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
718 default: assert(!"Should not get here."); break;
719 }
720 }
721
722 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
723 : ir_rvalue(ir_type_constant)
724 {
725 this->array_elements = NULL;
726 this->type = type;
727
728 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
729 || type->is_record() || type->is_array());
730
731 if (type->is_array()) {
732 this->array_elements = ralloc_array(this, ir_constant *, type->length);
733 unsigned i = 0;
734 foreach_in_list(ir_constant, value, value_list) {
735 assert(value->as_constant() != NULL);
736
737 this->array_elements[i++] = value;
738 }
739 return;
740 }
741
742 /* If the constant is a record, the types of each of the entries in
743 * value_list must be a 1-for-1 match with the structure components. Each
744 * entry must also be a constant. Just move the nodes from the value_list
745 * to the list in the ir_constant.
746 */
747 /* FINISHME: Should there be some type checking and / or assertions here? */
748 /* FINISHME: Should the new constant take ownership of the nodes from
749 * FINISHME: value_list, or should it make copies?
750 */
751 if (type->is_record()) {
752 value_list->move_nodes_to(& this->components);
753 return;
754 }
755
756 for (unsigned i = 0; i < 16; i++) {
757 this->value.u[i] = 0;
758 }
759
760 ir_constant *value = (ir_constant *) (value_list->get_head_raw());
761
762 /* Constructors with exactly one scalar argument are special for vectors
763 * and matrices. For vectors, the scalar value is replicated to fill all
764 * the components. For matrices, the scalar fills the components of the
765 * diagonal while the rest is filled with 0.
766 */
767 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
768 if (type->is_matrix()) {
769 /* Matrix - fill diagonal (rest is already set to 0) */
770 assert(type->is_float() || type->is_double());
771 for (unsigned i = 0; i < type->matrix_columns; i++) {
772 if (type->is_float())
773 this->value.f[i * type->vector_elements + i] =
774 value->value.f[0];
775 else
776 this->value.d[i * type->vector_elements + i] =
777 value->value.d[0];
778 }
779 } else {
780 /* Vector or scalar - fill all components */
781 switch (type->base_type) {
782 case GLSL_TYPE_UINT:
783 case GLSL_TYPE_INT:
784 for (unsigned i = 0; i < type->components(); i++)
785 this->value.u[i] = value->value.u[0];
786 break;
787 case GLSL_TYPE_FLOAT:
788 for (unsigned i = 0; i < type->components(); i++)
789 this->value.f[i] = value->value.f[0];
790 break;
791 case GLSL_TYPE_DOUBLE:
792 for (unsigned i = 0; i < type->components(); i++)
793 this->value.d[i] = value->value.d[0];
794 break;
795 case GLSL_TYPE_UINT64:
796 case GLSL_TYPE_INT64:
797 for (unsigned i = 0; i < type->components(); i++)
798 this->value.u64[i] = value->value.u64[0];
799 break;
800 case GLSL_TYPE_BOOL:
801 for (unsigned i = 0; i < type->components(); i++)
802 this->value.b[i] = value->value.b[0];
803 break;
804 default:
805 assert(!"Should not get here.");
806 break;
807 }
808 }
809 return;
810 }
811
812 if (type->is_matrix() && value->type->is_matrix()) {
813 assert(value->next->is_tail_sentinel());
814
815 /* From section 5.4.2 of the GLSL 1.20 spec:
816 * "If a matrix is constructed from a matrix, then each component
817 * (column i, row j) in the result that has a corresponding component
818 * (column i, row j) in the argument will be initialized from there."
819 */
820 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
821 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
822 for (unsigned i = 0; i < cols; i++) {
823 for (unsigned j = 0; j < rows; j++) {
824 const unsigned src = i * value->type->vector_elements + j;
825 const unsigned dst = i * type->vector_elements + j;
826 this->value.f[dst] = value->value.f[src];
827 }
828 }
829
830 /* "All other components will be initialized to the identity matrix." */
831 for (unsigned i = cols; i < type->matrix_columns; i++)
832 this->value.f[i * type->vector_elements + i] = 1.0;
833
834 return;
835 }
836
837 /* Use each component from each entry in the value_list to initialize one
838 * component of the constant being constructed.
839 */
840 unsigned i = 0;
841 for (;;) {
842 assert(value->as_constant() != NULL);
843 assert(!value->is_tail_sentinel());
844
845 for (unsigned j = 0; j < value->type->components(); j++) {
846 switch (type->base_type) {
847 case GLSL_TYPE_UINT:
848 this->value.u[i] = value->get_uint_component(j);
849 break;
850 case GLSL_TYPE_INT:
851 this->value.i[i] = value->get_int_component(j);
852 break;
853 case GLSL_TYPE_FLOAT:
854 this->value.f[i] = value->get_float_component(j);
855 break;
856 case GLSL_TYPE_BOOL:
857 this->value.b[i] = value->get_bool_component(j);
858 break;
859 case GLSL_TYPE_DOUBLE:
860 this->value.d[i] = value->get_double_component(j);
861 break;
862 case GLSL_TYPE_UINT64:
863 this->value.u64[i] = value->get_uint64_component(j);
864 break;
865 case GLSL_TYPE_INT64:
866 this->value.i64[i] = value->get_int64_component(j);
867 break;
868 default:
869 /* FINISHME: What to do? Exceptions are not the answer.
870 */
871 break;
872 }
873
874 i++;
875 if (i >= type->components())
876 break;
877 }
878
879 if (i >= type->components())
880 break; /* avoid downcasting a list sentinel */
881 value = (ir_constant *) value->next;
882 }
883 }
884
885 ir_constant *
886 ir_constant::zero(void *mem_ctx, const glsl_type *type)
887 {
888 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
889 || type->is_record() || type->is_array());
890
891 ir_constant *c = new(mem_ctx) ir_constant;
892 c->type = type;
893 memset(&c->value, 0, sizeof(c->value));
894
895 if (type->is_array()) {
896 c->array_elements = ralloc_array(c, ir_constant *, type->length);
897
898 for (unsigned i = 0; i < type->length; i++)
899 c->array_elements[i] = ir_constant::zero(c, type->fields.array);
900 }
901
902 if (type->is_record()) {
903 for (unsigned i = 0; i < type->length; i++) {
904 ir_constant *comp = ir_constant::zero(mem_ctx, type->fields.structure[i].type);
905 c->components.push_tail(comp);
906 }
907 }
908
909 return c;
910 }
911
912 bool
913 ir_constant::get_bool_component(unsigned i) const
914 {
915 switch (this->type->base_type) {
916 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
917 case GLSL_TYPE_INT: return this->value.i[i] != 0;
918 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
919 case GLSL_TYPE_BOOL: return this->value.b[i];
920 case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
921 case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
922 case GLSL_TYPE_INT64: return this->value.i64[i] != 0;
923 default: assert(!"Should not get here."); break;
924 }
925
926 /* Must return something to make the compiler happy. This is clearly an
927 * error case.
928 */
929 return false;
930 }
931
932 float
933 ir_constant::get_float_component(unsigned i) const
934 {
935 switch (this->type->base_type) {
936 case GLSL_TYPE_UINT: return (float) this->value.u[i];
937 case GLSL_TYPE_INT: return (float) this->value.i[i];
938 case GLSL_TYPE_FLOAT: return this->value.f[i];
939 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f;
940 case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
941 case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
942 case GLSL_TYPE_INT64: return (float) this->value.i64[i];
943 default: assert(!"Should not get here."); break;
944 }
945
946 /* Must return something to make the compiler happy. This is clearly an
947 * error case.
948 */
949 return 0.0;
950 }
951
952 double
953 ir_constant::get_double_component(unsigned i) const
954 {
955 switch (this->type->base_type) {
956 case GLSL_TYPE_UINT: return (double) this->value.u[i];
957 case GLSL_TYPE_INT: return (double) this->value.i[i];
958 case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
959 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
960 case GLSL_TYPE_DOUBLE: return this->value.d[i];
961 case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
962 case GLSL_TYPE_INT64: return (double) this->value.i64[i];
963 default: assert(!"Should not get here."); break;
964 }
965
966 /* Must return something to make the compiler happy. This is clearly an
967 * error case.
968 */
969 return 0.0;
970 }
971
972 int
973 ir_constant::get_int_component(unsigned i) const
974 {
975 switch (this->type->base_type) {
976 case GLSL_TYPE_UINT: return this->value.u[i];
977 case GLSL_TYPE_INT: return this->value.i[i];
978 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
979 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
980 case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
981 case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
982 case GLSL_TYPE_INT64: return (int) this->value.i64[i];
983 default: assert(!"Should not get here."); break;
984 }
985
986 /* Must return something to make the compiler happy. This is clearly an
987 * error case.
988 */
989 return 0;
990 }
991
992 unsigned
993 ir_constant::get_uint_component(unsigned i) const
994 {
995 switch (this->type->base_type) {
996 case GLSL_TYPE_UINT: return this->value.u[i];
997 case GLSL_TYPE_INT: return this->value.i[i];
998 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
999 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1000 case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1001 case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1002 case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i];
1003 default: assert(!"Should not get here."); break;
1004 }
1005
1006 /* Must return something to make the compiler happy. This is clearly an
1007 * error case.
1008 */
1009 return 0;
1010 }
1011
1012 int64_t
1013 ir_constant::get_int64_component(unsigned i) const
1014 {
1015 switch (this->type->base_type) {
1016 case GLSL_TYPE_UINT: return this->value.u[i];
1017 case GLSL_TYPE_INT: return this->value.i[i];
1018 case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1019 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1020 case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1021 case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1022 case GLSL_TYPE_INT64: return this->value.i64[i];
1023 default: assert(!"Should not get here."); break;
1024 }
1025
1026 /* Must return something to make the compiler happy. This is clearly an
1027 * error case.
1028 */
1029 return 0;
1030 }
1031
1032 uint64_t
1033 ir_constant::get_uint64_component(unsigned i) const
1034 {
1035 switch (this->type->base_type) {
1036 case GLSL_TYPE_UINT: return this->value.u[i];
1037 case GLSL_TYPE_INT: return this->value.i[i];
1038 case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1039 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
1040 case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1041 case GLSL_TYPE_UINT64: return this->value.u64[i];
1042 case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i];
1043 default: assert(!"Should not get here."); break;
1044 }
1045
1046 /* Must return something to make the compiler happy. This is clearly an
1047 * error case.
1048 */
1049 return 0;
1050 }
1051
1052 ir_constant *
1053 ir_constant::get_array_element(unsigned i) const
1054 {
1055 assert(this->type->is_array());
1056
1057 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1058 *
1059 * "Behavior is undefined if a shader subscripts an array with an index
1060 * less than 0 or greater than or equal to the size the array was
1061 * declared with."
1062 *
1063 * Most out-of-bounds accesses are removed before things could get this far.
1064 * There are cases where non-constant array index values can get constant
1065 * folded.
1066 */
1067 if (int(i) < 0)
1068 i = 0;
1069 else if (i >= this->type->length)
1070 i = this->type->length - 1;
1071
1072 return array_elements[i];
1073 }
1074
1075 ir_constant *
1076 ir_constant::get_record_field(const char *name)
1077 {
1078 int idx = this->type->field_index(name);
1079
1080 if (idx < 0)
1081 return NULL;
1082
1083 if (this->components.is_empty())
1084 return NULL;
1085
1086 exec_node *node = this->components.get_head_raw();
1087 for (int i = 0; i < idx; i++) {
1088 node = node->next;
1089
1090 /* If the end of the list is encountered before the element matching the
1091 * requested field is found, return NULL.
1092 */
1093 if (node->is_tail_sentinel())
1094 return NULL;
1095 }
1096
1097 return (ir_constant *) node;
1098 }
1099
1100 void
1101 ir_constant::copy_offset(ir_constant *src, int offset)
1102 {
1103 switch (this->type->base_type) {
1104 case GLSL_TYPE_UINT:
1105 case GLSL_TYPE_INT:
1106 case GLSL_TYPE_FLOAT:
1107 case GLSL_TYPE_DOUBLE:
1108 case GLSL_TYPE_UINT64:
1109 case GLSL_TYPE_INT64:
1110 case GLSL_TYPE_BOOL: {
1111 unsigned int size = src->type->components();
1112 assert (size <= this->type->components() - offset);
1113 for (unsigned int i=0; i<size; i++) {
1114 switch (this->type->base_type) {
1115 case GLSL_TYPE_UINT:
1116 value.u[i+offset] = src->get_uint_component(i);
1117 break;
1118 case GLSL_TYPE_INT:
1119 value.i[i+offset] = src->get_int_component(i);
1120 break;
1121 case GLSL_TYPE_FLOAT:
1122 value.f[i+offset] = src->get_float_component(i);
1123 break;
1124 case GLSL_TYPE_BOOL:
1125 value.b[i+offset] = src->get_bool_component(i);
1126 break;
1127 case GLSL_TYPE_DOUBLE:
1128 value.d[i+offset] = src->get_double_component(i);
1129 break;
1130 case GLSL_TYPE_UINT64:
1131 value.u64[i+offset] = src->get_uint64_component(i);
1132 break;
1133 case GLSL_TYPE_INT64:
1134 value.i64[i+offset] = src->get_int64_component(i);
1135 break;
1136 default: // Shut up the compiler
1137 break;
1138 }
1139 }
1140 break;
1141 }
1142
1143 case GLSL_TYPE_STRUCT: {
1144 assert (src->type == this->type);
1145 this->components.make_empty();
1146 foreach_in_list(ir_constant, orig, &src->components) {
1147 this->components.push_tail(orig->clone(this, NULL));
1148 }
1149 break;
1150 }
1151
1152 case GLSL_TYPE_ARRAY: {
1153 assert (src->type == this->type);
1154 for (unsigned i = 0; i < this->type->length; i++) {
1155 this->array_elements[i] = src->array_elements[i]->clone(this, NULL);
1156 }
1157 break;
1158 }
1159
1160 default:
1161 assert(!"Should not get here.");
1162 break;
1163 }
1164 }
1165
1166 void
1167 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1168 {
1169 assert (!type->is_array() && !type->is_record());
1170
1171 if (!type->is_vector() && !type->is_matrix()) {
1172 offset = 0;
1173 mask = 1;
1174 }
1175
1176 int id = 0;
1177 for (int i=0; i<4; i++) {
1178 if (mask & (1 << i)) {
1179 switch (this->type->base_type) {
1180 case GLSL_TYPE_UINT:
1181 value.u[i+offset] = src->get_uint_component(id++);
1182 break;
1183 case GLSL_TYPE_INT:
1184 value.i[i+offset] = src->get_int_component(id++);
1185 break;
1186 case GLSL_TYPE_FLOAT:
1187 value.f[i+offset] = src->get_float_component(id++);
1188 break;
1189 case GLSL_TYPE_BOOL:
1190 value.b[i+offset] = src->get_bool_component(id++);
1191 break;
1192 case GLSL_TYPE_DOUBLE:
1193 value.d[i+offset] = src->get_double_component(id++);
1194 break;
1195 case GLSL_TYPE_UINT64:
1196 value.u64[i+offset] = src->get_uint64_component(id++);
1197 break;
1198 case GLSL_TYPE_INT64:
1199 value.i64[i+offset] = src->get_int64_component(id++);
1200 break;
1201 default:
1202 assert(!"Should not get here.");
1203 return;
1204 }
1205 }
1206 }
1207 }
1208
1209 bool
1210 ir_constant::has_value(const ir_constant *c) const
1211 {
1212 if (this->type != c->type)
1213 return false;
1214
1215 if (this->type->is_array()) {
1216 for (unsigned i = 0; i < this->type->length; i++) {
1217 if (!this->array_elements[i]->has_value(c->array_elements[i]))
1218 return false;
1219 }
1220 return true;
1221 }
1222
1223 if (this->type->is_record()) {
1224 const exec_node *a_node = this->components.get_head_raw();
1225 const exec_node *b_node = c->components.get_head_raw();
1226
1227 while (!a_node->is_tail_sentinel()) {
1228 assert(!b_node->is_tail_sentinel());
1229
1230 const ir_constant *const a_field = (ir_constant *) a_node;
1231 const ir_constant *const b_field = (ir_constant *) b_node;
1232
1233 if (!a_field->has_value(b_field))
1234 return false;
1235
1236 a_node = a_node->next;
1237 b_node = b_node->next;
1238 }
1239
1240 return true;
1241 }
1242
1243 for (unsigned i = 0; i < this->type->components(); i++) {
1244 switch (this->type->base_type) {
1245 case GLSL_TYPE_UINT:
1246 if (this->value.u[i] != c->value.u[i])
1247 return false;
1248 break;
1249 case GLSL_TYPE_INT:
1250 if (this->value.i[i] != c->value.i[i])
1251 return false;
1252 break;
1253 case GLSL_TYPE_FLOAT:
1254 if (this->value.f[i] != c->value.f[i])
1255 return false;
1256 break;
1257 case GLSL_TYPE_BOOL:
1258 if (this->value.b[i] != c->value.b[i])
1259 return false;
1260 break;
1261 case GLSL_TYPE_DOUBLE:
1262 if (this->value.d[i] != c->value.d[i])
1263 return false;
1264 break;
1265 case GLSL_TYPE_UINT64:
1266 if (this->value.u64[i] != c->value.u64[i])
1267 return false;
1268 break;
1269 case GLSL_TYPE_INT64:
1270 if (this->value.i64[i] != c->value.i64[i])
1271 return false;
1272 break;
1273 default:
1274 assert(!"Should not get here.");
1275 return false;
1276 }
1277 }
1278
1279 return true;
1280 }
1281
1282 bool
1283 ir_constant::is_value(float f, int i) const
1284 {
1285 if (!this->type->is_scalar() && !this->type->is_vector())
1286 return false;
1287
1288 /* Only accept boolean values for 0/1. */
1289 if (int(bool(i)) != i && this->type->is_boolean())
1290 return false;
1291
1292 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1293 switch (this->type->base_type) {
1294 case GLSL_TYPE_FLOAT:
1295 if (this->value.f[c] != f)
1296 return false;
1297 break;
1298 case GLSL_TYPE_INT:
1299 if (this->value.i[c] != i)
1300 return false;
1301 break;
1302 case GLSL_TYPE_UINT:
1303 if (this->value.u[c] != unsigned(i))
1304 return false;
1305 break;
1306 case GLSL_TYPE_BOOL:
1307 if (this->value.b[c] != bool(i))
1308 return false;
1309 break;
1310 case GLSL_TYPE_DOUBLE:
1311 if (this->value.d[c] != double(f))
1312 return false;
1313 break;
1314 case GLSL_TYPE_UINT64:
1315 if (this->value.u64[c] != uint64_t(i))
1316 return false;
1317 break;
1318 case GLSL_TYPE_INT64:
1319 if (this->value.i64[c] != i)
1320 return false;
1321 break;
1322 default:
1323 /* The only other base types are structures, arrays, and samplers.
1324 * Samplers cannot be constants, and the others should have been
1325 * filtered out above.
1326 */
1327 assert(!"Should not get here.");
1328 return false;
1329 }
1330 }
1331
1332 return true;
1333 }
1334
1335 bool
1336 ir_constant::is_zero() const
1337 {
1338 return is_value(0.0, 0);
1339 }
1340
1341 bool
1342 ir_constant::is_one() const
1343 {
1344 return is_value(1.0, 1);
1345 }
1346
1347 bool
1348 ir_constant::is_negative_one() const
1349 {
1350 return is_value(-1.0, -1);
1351 }
1352
1353 bool
1354 ir_constant::is_uint16_constant() const
1355 {
1356 if (!type->is_integer())
1357 return false;
1358
1359 return value.u[0] < (1 << 16);
1360 }
1361
1362 ir_loop::ir_loop()
1363 : ir_instruction(ir_type_loop)
1364 {
1365 }
1366
1367
1368 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1369 : ir_dereference(ir_type_dereference_variable)
1370 {
1371 assert(var != NULL);
1372
1373 this->var = var;
1374 this->type = var->type;
1375 }
1376
1377
1378 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1379 ir_rvalue *array_index)
1380 : ir_dereference(ir_type_dereference_array)
1381 {
1382 this->array_index = array_index;
1383 this->set_array(value);
1384 }
1385
1386
1387 ir_dereference_array::ir_dereference_array(ir_variable *var,
1388 ir_rvalue *array_index)
1389 : ir_dereference(ir_type_dereference_array)
1390 {
1391 void *ctx = ralloc_parent(var);
1392
1393 this->array_index = array_index;
1394 this->set_array(new(ctx) ir_dereference_variable(var));
1395 }
1396
1397
1398 void
1399 ir_dereference_array::set_array(ir_rvalue *value)
1400 {
1401 assert(value != NULL);
1402
1403 this->array = value;
1404
1405 const glsl_type *const vt = this->array->type;
1406
1407 if (vt->is_array()) {
1408 type = vt->fields.array;
1409 } else if (vt->is_matrix()) {
1410 type = vt->column_type();
1411 } else if (vt->is_vector()) {
1412 type = vt->get_base_type();
1413 }
1414 }
1415
1416
1417 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1418 const char *field)
1419 : ir_dereference(ir_type_dereference_record)
1420 {
1421 assert(value != NULL);
1422
1423 this->record = value;
1424 this->field = ralloc_strdup(this, field);
1425 this->type = this->record->type->field_type(field);
1426 }
1427
1428
1429 ir_dereference_record::ir_dereference_record(ir_variable *var,
1430 const char *field)
1431 : ir_dereference(ir_type_dereference_record)
1432 {
1433 void *ctx = ralloc_parent(var);
1434
1435 this->record = new(ctx) ir_dereference_variable(var);
1436 this->field = ralloc_strdup(this, field);
1437 this->type = this->record->type->field_type(field);
1438 }
1439
1440 bool
1441 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1442 {
1443 ir_variable *var = this->variable_referenced();
1444
1445 /* Every l-value derference chain eventually ends in a variable.
1446 */
1447 if ((var == NULL) || var->data.read_only)
1448 return false;
1449
1450 /* From section 4.1.7 of the GLSL 4.40 spec:
1451 *
1452 * "Opaque variables cannot be treated as l-values; hence cannot
1453 * be used as out or inout function parameters, nor can they be
1454 * assigned into."
1455 */
1456 if (this->type->contains_opaque())
1457 return false;
1458
1459 return true;
1460 }
1461
1462
1463 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1464
1465 const char *ir_texture::opcode_string()
1466 {
1467 assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1468 return tex_opcode_strs[op];
1469 }
1470
1471 ir_texture_opcode
1472 ir_texture::get_opcode(const char *str)
1473 {
1474 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1475 for (int op = 0; op < count; op++) {
1476 if (strcmp(str, tex_opcode_strs[op]) == 0)
1477 return (ir_texture_opcode) op;
1478 }
1479 return (ir_texture_opcode) -1;
1480 }
1481
1482
1483 void
1484 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1485 {
1486 assert(sampler != NULL);
1487 assert(type != NULL);
1488 this->sampler = sampler;
1489 this->type = type;
1490
1491 if (this->op == ir_txs || this->op == ir_query_levels ||
1492 this->op == ir_texture_samples) {
1493 assert(type->base_type == GLSL_TYPE_INT);
1494 } else if (this->op == ir_lod) {
1495 assert(type->vector_elements == 2);
1496 assert(type->is_float());
1497 } else if (this->op == ir_samples_identical) {
1498 assert(type == glsl_type::bool_type);
1499 assert(sampler->type->is_sampler());
1500 assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1501 } else {
1502 assert(sampler->type->sampled_type == (int) type->base_type);
1503 if (sampler->type->sampler_shadow)
1504 assert(type->vector_elements == 4 || type->vector_elements == 1);
1505 else
1506 assert(type->vector_elements == 4);
1507 }
1508 }
1509
1510
1511 void
1512 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1513 {
1514 assert((count >= 1) && (count <= 4));
1515
1516 memset(&this->mask, 0, sizeof(this->mask));
1517 this->mask.num_components = count;
1518
1519 unsigned dup_mask = 0;
1520 switch (count) {
1521 case 4:
1522 assert(comp[3] <= 3);
1523 dup_mask |= (1U << comp[3])
1524 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1525 this->mask.w = comp[3];
1526
1527 case 3:
1528 assert(comp[2] <= 3);
1529 dup_mask |= (1U << comp[2])
1530 & ((1U << comp[0]) | (1U << comp[1]));
1531 this->mask.z = comp[2];
1532
1533 case 2:
1534 assert(comp[1] <= 3);
1535 dup_mask |= (1U << comp[1])
1536 & ((1U << comp[0]));
1537 this->mask.y = comp[1];
1538
1539 case 1:
1540 assert(comp[0] <= 3);
1541 this->mask.x = comp[0];
1542 }
1543
1544 this->mask.has_duplicates = dup_mask != 0;
1545
1546 /* Based on the number of elements in the swizzle and the base type
1547 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1548 * generate the type of the resulting value.
1549 */
1550 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1551 }
1552
1553 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1554 unsigned w, unsigned count)
1555 : ir_rvalue(ir_type_swizzle), val(val)
1556 {
1557 const unsigned components[4] = { x, y, z, w };
1558 this->init_mask(components, count);
1559 }
1560
1561 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1562 unsigned count)
1563 : ir_rvalue(ir_type_swizzle), val(val)
1564 {
1565 this->init_mask(comp, count);
1566 }
1567
1568 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1569 : ir_rvalue(ir_type_swizzle)
1570 {
1571 this->val = val;
1572 this->mask = mask;
1573 this->type = glsl_type::get_instance(val->type->base_type,
1574 mask.num_components, 1);
1575 }
1576
1577 #define X 1
1578 #define R 5
1579 #define S 9
1580 #define I 13
1581
1582 ir_swizzle *
1583 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1584 {
1585 void *ctx = ralloc_parent(val);
1586
1587 /* For each possible swizzle character, this table encodes the value in
1588 * \c idx_map that represents the 0th element of the vector. For invalid
1589 * swizzle characters (e.g., 'k'), a special value is used that will allow
1590 * detection of errors.
1591 */
1592 static const unsigned char base_idx[26] = {
1593 /* a b c d e f g h i j k l m */
1594 R, R, I, I, I, I, R, I, I, I, I, I, I,
1595 /* n o p q r s t u v w x y z */
1596 I, I, S, S, R, S, S, I, I, X, X, X, X
1597 };
1598
1599 /* Each valid swizzle character has an entry in the previous table. This
1600 * table encodes the base index encoded in the previous table plus the actual
1601 * index of the swizzle character. When processing swizzles, the first
1602 * character in the string is indexed in the previous table. Each character
1603 * in the string is indexed in this table, and the value found there has the
1604 * value form the first table subtracted. The result must be on the range
1605 * [0,3].
1606 *
1607 * For example, the string "wzyx" will get X from the first table. Each of
1608 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1609 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1610 *
1611 * The string "wzrg" will get X from the first table. Each of the characters
1612 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1613 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1614 * [0,3], the error is detected.
1615 */
1616 static const unsigned char idx_map[26] = {
1617 /* a b c d e f g h i j k l m */
1618 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1619 /* n o p q r s t u v w x y z */
1620 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1621 };
1622
1623 int swiz_idx[4] = { 0, 0, 0, 0 };
1624 unsigned i;
1625
1626
1627 /* Validate the first character in the swizzle string and look up the base
1628 * index value as described above.
1629 */
1630 if ((str[0] < 'a') || (str[0] > 'z'))
1631 return NULL;
1632
1633 const unsigned base = base_idx[str[0] - 'a'];
1634
1635
1636 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1637 /* Validate the next character, and, as described above, convert it to a
1638 * swizzle index.
1639 */
1640 if ((str[i] < 'a') || (str[i] > 'z'))
1641 return NULL;
1642
1643 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1644 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1645 return NULL;
1646 }
1647
1648 if (str[i] != '\0')
1649 return NULL;
1650
1651 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1652 swiz_idx[3], i);
1653 }
1654
1655 #undef X
1656 #undef R
1657 #undef S
1658 #undef I
1659
1660 ir_variable *
1661 ir_swizzle::variable_referenced() const
1662 {
1663 return this->val->variable_referenced();
1664 }
1665
1666
1667 bool ir_variable::temporaries_allocate_names = false;
1668
1669 const char ir_variable::tmp_name[] = "compiler_temp";
1670
1671 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1672 ir_variable_mode mode)
1673 : ir_instruction(ir_type_variable)
1674 {
1675 this->type = type;
1676
1677 if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1678 name = NULL;
1679
1680 /* The ir_variable clone method may call this constructor with name set to
1681 * tmp_name.
1682 */
1683 assert(name != NULL
1684 || mode == ir_var_temporary
1685 || mode == ir_var_function_in
1686 || mode == ir_var_function_out
1687 || mode == ir_var_function_inout);
1688 assert(name != ir_variable::tmp_name
1689 || mode == ir_var_temporary);
1690 if (mode == ir_var_temporary
1691 && (name == NULL || name == ir_variable::tmp_name)) {
1692 this->name = ir_variable::tmp_name;
1693 } else if (name == NULL ||
1694 strlen(name) < ARRAY_SIZE(this->name_storage)) {
1695 strcpy(this->name_storage, name ? name : "");
1696 this->name = this->name_storage;
1697 } else {
1698 this->name = ralloc_strdup(this, name);
1699 }
1700
1701 this->u.max_ifc_array_access = NULL;
1702
1703 this->data.explicit_location = false;
1704 this->data.has_initializer = false;
1705 this->data.location = -1;
1706 this->data.location_frac = 0;
1707 this->data.binding = 0;
1708 this->data.warn_extension_index = 0;
1709 this->constant_value = NULL;
1710 this->constant_initializer = NULL;
1711 this->data.origin_upper_left = false;
1712 this->data.pixel_center_integer = false;
1713 this->data.depth_layout = ir_depth_layout_none;
1714 this->data.used = false;
1715 this->data.always_active_io = false;
1716 this->data.read_only = false;
1717 this->data.centroid = false;
1718 this->data.sample = false;
1719 this->data.patch = false;
1720 this->data.invariant = false;
1721 this->data.how_declared = ir_var_declared_normally;
1722 this->data.mode = mode;
1723 this->data.interpolation = INTERP_MODE_NONE;
1724 this->data.max_array_access = -1;
1725 this->data.offset = 0;
1726 this->data.precision = GLSL_PRECISION_NONE;
1727 this->data.memory_read_only = false;
1728 this->data.memory_write_only = false;
1729 this->data.memory_coherent = false;
1730 this->data.memory_volatile = false;
1731 this->data.memory_restrict = false;
1732 this->data.from_ssbo_unsized_array = false;
1733 this->data.fb_fetch_output = false;
1734 this->data.bindless = false;
1735 this->data.bound = false;
1736
1737 if (type != NULL) {
1738 if (type->is_interface())
1739 this->init_interface_type(type);
1740 else if (type->without_array()->is_interface())
1741 this->init_interface_type(type->without_array());
1742 }
1743 }
1744
1745
1746 const char *
1747 interpolation_string(unsigned interpolation)
1748 {
1749 switch (interpolation) {
1750 case INTERP_MODE_NONE: return "no";
1751 case INTERP_MODE_SMOOTH: return "smooth";
1752 case INTERP_MODE_FLAT: return "flat";
1753 case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
1754 }
1755
1756 assert(!"Should not get here.");
1757 return "";
1758 }
1759
1760 const char *const ir_variable::warn_extension_table[] = {
1761 "",
1762 "GL_ARB_shader_stencil_export",
1763 "GL_AMD_shader_stencil_export",
1764 };
1765
1766 void
1767 ir_variable::enable_extension_warning(const char *extension)
1768 {
1769 for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
1770 if (strcmp(warn_extension_table[i], extension) == 0) {
1771 this->data.warn_extension_index = i;
1772 return;
1773 }
1774 }
1775
1776 assert(!"Should not get here.");
1777 this->data.warn_extension_index = 0;
1778 }
1779
1780 const char *
1781 ir_variable::get_extension_warning() const
1782 {
1783 return this->data.warn_extension_index == 0
1784 ? NULL : warn_extension_table[this->data.warn_extension_index];
1785 }
1786
1787 ir_function_signature::ir_function_signature(const glsl_type *return_type,
1788 builtin_available_predicate b)
1789 : ir_instruction(ir_type_function_signature),
1790 return_type(return_type), is_defined(false),
1791 intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
1792 {
1793 this->origin = NULL;
1794 }
1795
1796
1797 bool
1798 ir_function_signature::is_builtin() const
1799 {
1800 return builtin_avail != NULL;
1801 }
1802
1803
1804 bool
1805 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
1806 {
1807 /* We can't call the predicate without a state pointer, so just say that
1808 * the signature is available. At compile time, we need the filtering,
1809 * but also receive a valid state pointer. At link time, we're resolving
1810 * imported built-in prototypes to their definitions, which will always
1811 * be an exact match. So we can skip the filtering.
1812 */
1813 if (state == NULL)
1814 return true;
1815
1816 assert(builtin_avail != NULL);
1817 return builtin_avail(state);
1818 }
1819
1820
1821 static bool
1822 modes_match(unsigned a, unsigned b)
1823 {
1824 if (a == b)
1825 return true;
1826
1827 /* Accept "in" vs. "const in" */
1828 if ((a == ir_var_const_in && b == ir_var_function_in) ||
1829 (b == ir_var_const_in && a == ir_var_function_in))
1830 return true;
1831
1832 return false;
1833 }
1834
1835
1836 const char *
1837 ir_function_signature::qualifiers_match(exec_list *params)
1838 {
1839 /* check that the qualifiers match. */
1840 foreach_two_lists(a_node, &this->parameters, b_node, params) {
1841 ir_variable *a = (ir_variable *) a_node;
1842 ir_variable *b = (ir_variable *) b_node;
1843
1844 if (a->data.read_only != b->data.read_only ||
1845 !modes_match(a->data.mode, b->data.mode) ||
1846 a->data.interpolation != b->data.interpolation ||
1847 a->data.centroid != b->data.centroid ||
1848 a->data.sample != b->data.sample ||
1849 a->data.patch != b->data.patch ||
1850 a->data.memory_read_only != b->data.memory_read_only ||
1851 a->data.memory_write_only != b->data.memory_write_only ||
1852 a->data.memory_coherent != b->data.memory_coherent ||
1853 a->data.memory_volatile != b->data.memory_volatile ||
1854 a->data.memory_restrict != b->data.memory_restrict) {
1855
1856 /* parameter a's qualifiers don't match */
1857 return a->name;
1858 }
1859 }
1860 return NULL;
1861 }
1862
1863
1864 void
1865 ir_function_signature::replace_parameters(exec_list *new_params)
1866 {
1867 /* Destroy all of the previous parameter information. If the previous
1868 * parameter information comes from the function prototype, it may either
1869 * specify incorrect parameter names or not have names at all.
1870 */
1871 new_params->move_nodes_to(&parameters);
1872 }
1873
1874
1875 ir_function::ir_function(const char *name)
1876 : ir_instruction(ir_type_function)
1877 {
1878 this->subroutine_index = -1;
1879 this->name = ralloc_strdup(this, name);
1880 }
1881
1882
1883 bool
1884 ir_function::has_user_signature()
1885 {
1886 foreach_in_list(ir_function_signature, sig, &this->signatures) {
1887 if (!sig->is_builtin())
1888 return true;
1889 }
1890 return false;
1891 }
1892
1893
1894 ir_rvalue *
1895 ir_rvalue::error_value(void *mem_ctx)
1896 {
1897 ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
1898
1899 v->type = glsl_type::error_type;
1900 return v;
1901 }
1902
1903
1904 void
1905 visit_exec_list(exec_list *list, ir_visitor *visitor)
1906 {
1907 foreach_in_list_safe(ir_instruction, node, list) {
1908 node->accept(visitor);
1909 }
1910 }
1911
1912
1913 static void
1914 steal_memory(ir_instruction *ir, void *new_ctx)
1915 {
1916 ir_variable *var = ir->as_variable();
1917 ir_function *fn = ir->as_function();
1918 ir_constant *constant = ir->as_constant();
1919 if (var != NULL && var->constant_value != NULL)
1920 steal_memory(var->constant_value, ir);
1921
1922 if (var != NULL && var->constant_initializer != NULL)
1923 steal_memory(var->constant_initializer, ir);
1924
1925 if (fn != NULL && fn->subroutine_types)
1926 ralloc_steal(new_ctx, fn->subroutine_types);
1927
1928 /* The components of aggregate constants are not visited by the normal
1929 * visitor, so steal their values by hand.
1930 */
1931 if (constant != NULL) {
1932 if (constant->type->is_record()) {
1933 foreach_in_list(ir_constant, field, &constant->components) {
1934 steal_memory(field, ir);
1935 }
1936 } else if (constant->type->is_array()) {
1937 for (unsigned int i = 0; i < constant->type->length; i++) {
1938 steal_memory(constant->array_elements[i], ir);
1939 }
1940 }
1941 }
1942
1943 ralloc_steal(new_ctx, ir);
1944 }
1945
1946
1947 void
1948 reparent_ir(exec_list *list, void *mem_ctx)
1949 {
1950 foreach_in_list(ir_instruction, node, list) {
1951 visit_tree(node, steal_memory, mem_ctx);
1952 }
1953 }
1954
1955
1956 static ir_rvalue *
1957 try_min_one(ir_rvalue *ir)
1958 {
1959 ir_expression *expr = ir->as_expression();
1960
1961 if (!expr || expr->operation != ir_binop_min)
1962 return NULL;
1963
1964 if (expr->operands[0]->is_one())
1965 return expr->operands[1];
1966
1967 if (expr->operands[1]->is_one())
1968 return expr->operands[0];
1969
1970 return NULL;
1971 }
1972
1973 static ir_rvalue *
1974 try_max_zero(ir_rvalue *ir)
1975 {
1976 ir_expression *expr = ir->as_expression();
1977
1978 if (!expr || expr->operation != ir_binop_max)
1979 return NULL;
1980
1981 if (expr->operands[0]->is_zero())
1982 return expr->operands[1];
1983
1984 if (expr->operands[1]->is_zero())
1985 return expr->operands[0];
1986
1987 return NULL;
1988 }
1989
1990 ir_rvalue *
1991 ir_rvalue::as_rvalue_to_saturate()
1992 {
1993 ir_expression *expr = this->as_expression();
1994
1995 if (!expr)
1996 return NULL;
1997
1998 ir_rvalue *max_zero = try_max_zero(expr);
1999 if (max_zero) {
2000 return try_min_one(max_zero);
2001 } else {
2002 ir_rvalue *min_one = try_min_one(expr);
2003 if (min_one) {
2004 return try_max_zero(min_one);
2005 }
2006 }
2007
2008 return NULL;
2009 }
2010
2011
2012 unsigned
2013 vertices_per_prim(GLenum prim)
2014 {
2015 switch (prim) {
2016 case GL_POINTS:
2017 return 1;
2018 case GL_LINES:
2019 return 2;
2020 case GL_TRIANGLES:
2021 return 3;
2022 case GL_LINES_ADJACENCY:
2023 return 4;
2024 case GL_TRIANGLES_ADJACENCY:
2025 return 6;
2026 default:
2027 assert(!"Bad primitive");
2028 return 3;
2029 }
2030 }
2031
2032 /**
2033 * Generate a string describing the mode of a variable
2034 */
2035 const char *
2036 mode_string(const ir_variable *var)
2037 {
2038 switch (var->data.mode) {
2039 case ir_var_auto:
2040 return (var->data.read_only) ? "global constant" : "global variable";
2041
2042 case ir_var_uniform:
2043 return "uniform";
2044
2045 case ir_var_shader_storage:
2046 return "buffer";
2047
2048 case ir_var_shader_in:
2049 return "shader input";
2050
2051 case ir_var_shader_out:
2052 return "shader output";
2053
2054 case ir_var_function_in:
2055 case ir_var_const_in:
2056 return "function input";
2057
2058 case ir_var_function_out:
2059 return "function output";
2060
2061 case ir_var_function_inout:
2062 return "function inout";
2063
2064 case ir_var_system_value:
2065 return "shader input";
2066
2067 case ir_var_temporary:
2068 return "compiler temporary";
2069
2070 case ir_var_mode_count:
2071 break;
2072 }
2073
2074 assert(!"Should not get here.");
2075 return "invalid variable";
2076 }