freedreno/ir3: do better job of marking convergence points
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_emit_vertex,
78 ir_type_end_primitive,
79 ir_type_barrier,
80 ir_type_max, /**< maximum ir_type enum number, for validation */
81 ir_type_unset = ir_type_max
82 };
83
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104 void fprint(FILE *f) const;
105
106 virtual void accept(ir_visitor *) = 0;
107 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108 virtual ir_instruction *clone(void *mem_ctx,
109 struct hash_table *ht) const = 0;
110
111 bool is_rvalue() const
112 {
113 return ir_type == ir_type_dereference_array ||
114 ir_type == ir_type_dereference_record ||
115 ir_type == ir_type_dereference_variable ||
116 ir_type == ir_type_constant ||
117 ir_type == ir_type_expression ||
118 ir_type == ir_type_swizzle ||
119 ir_type == ir_type_texture;
120 }
121
122 bool is_dereference() const
123 {
124 return ir_type == ir_type_dereference_array ||
125 ir_type == ir_type_dereference_record ||
126 ir_type == ir_type_dereference_variable;
127 }
128
129 bool is_jump() const
130 {
131 return ir_type == ir_type_loop_jump ||
132 ir_type == ir_type_return ||
133 ir_type == ir_type_discard;
134 }
135
136 /**
137 * \name IR instruction downcast functions
138 *
139 * These functions either cast the object to a derived class or return
140 * \c NULL if the object's type does not match the specified derived class.
141 * Additional downcast functions will be added as needed.
142 */
143 /*@{*/
144 #define AS_BASE(TYPE) \
145 class ir_##TYPE *as_##TYPE() \
146 { \
147 assume(this != NULL); \
148 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
149 } \
150 const class ir_##TYPE *as_##TYPE() const \
151 { \
152 assume(this != NULL); \
153 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
154 }
155
156 AS_BASE(rvalue)
157 AS_BASE(dereference)
158 AS_BASE(jump)
159 #undef AS_BASE
160
161 #define AS_CHILD(TYPE) \
162 class ir_##TYPE * as_##TYPE() \
163 { \
164 assume(this != NULL); \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 assume(this != NULL); \
170 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171 }
172 AS_CHILD(variable)
173 AS_CHILD(function)
174 AS_CHILD(dereference_array)
175 AS_CHILD(dereference_variable)
176 AS_CHILD(dereference_record)
177 AS_CHILD(expression)
178 AS_CHILD(loop)
179 AS_CHILD(assignment)
180 AS_CHILD(call)
181 AS_CHILD(return)
182 AS_CHILD(if)
183 AS_CHILD(swizzle)
184 AS_CHILD(texture)
185 AS_CHILD(constant)
186 AS_CHILD(discard)
187 #undef AS_CHILD
188 /*@}*/
189
190 /**
191 * IR equality method: Return true if the referenced instruction would
192 * return the same value as this one.
193 *
194 * This intended to be used for CSE and algebraic optimizations, on rvalues
195 * in particular. No support for other instruction types (assignments,
196 * jumps, calls, etc.) is planned.
197 */
198 virtual bool equals(const ir_instruction *ir,
199 enum ir_node_type ignore = ir_type_unset) const;
200
201 protected:
202 ir_instruction(enum ir_node_type t)
203 : ir_type(t)
204 {
205 }
206
207 private:
208 ir_instruction()
209 {
210 assert(!"Should not get here.");
211 }
212 };
213
214
215 /**
216 * The base class for all "values"/expression trees.
217 */
218 class ir_rvalue : public ir_instruction {
219 public:
220 const struct glsl_type *type;
221
222 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224 virtual void accept(ir_visitor *v)
225 {
226 v->visit(this);
227 }
228
229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231 virtual ir_constant *constant_expression_value(void *mem_ctx,
232 struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 gl_state_index16 tokens[STATE_LENGTH];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \c glsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Return whether this variable contains a bindless sampler/image.
479 */
480 inline bool contains_bindless() const
481 {
482 if (!this->type->contains_sampler() && !this->type->contains_image())
483 return false;
484
485 return this->data.bindless || this->data.mode != ir_var_uniform;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 ralloc_array(this, int, type->length);
498 for (unsigned i = 0; i < type->length; i++) {
499 this->u.max_ifc_array_access[i] = -1;
500 }
501 }
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, but compatible, interface_type. This is used during linking
507 * to set the size of arrays in interface blocks.
508 */
509 void change_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 /* max_ifc_array_access has already been allocated, so make sure the
513 * new interface has the same number of fields as the old one.
514 */
515 assert(this->interface_type->length == type->length);
516 }
517 this->interface_type = type;
518 }
519
520 /**
521 * Change this->interface_type on a variable that previously had a
522 * different, and incompatible, interface_type. This is used during
523 * compilation to handle redeclaration of the built-in gl_PerVertex
524 * interface block.
525 */
526 void reinit_interface_type(const struct glsl_type *type)
527 {
528 if (this->u.max_ifc_array_access != NULL) {
529 #ifndef NDEBUG
530 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531 * it defines have been accessed yet; so it's safe to throw away the
532 * old max_ifc_array_access pointer, since all of its values are
533 * zero.
534 */
535 for (unsigned i = 0; i < this->interface_type->length; i++)
536 assert(this->u.max_ifc_array_access[i] == -1);
537 #endif
538 ralloc_free(this->u.max_ifc_array_access);
539 this->u.max_ifc_array_access = NULL;
540 }
541 this->interface_type = NULL;
542 init_interface_type(type);
543 }
544
545 const glsl_type *get_interface_type() const
546 {
547 return this->interface_type;
548 }
549
550 enum glsl_interface_packing get_interface_type_packing() const
551 {
552 return this->interface_type->get_interface_packing();
553 }
554 /**
555 * Get the max_ifc_array_access pointer
556 *
557 * A "set" function is not needed because the array is dynmically allocated
558 * as necessary.
559 */
560 inline int *get_max_ifc_array_access()
561 {
562 assert(this->data._num_state_slots == 0);
563 return this->u.max_ifc_array_access;
564 }
565
566 inline unsigned get_num_state_slots() const
567 {
568 assert(!this->is_interface_instance()
569 || this->data._num_state_slots == 0);
570 return this->data._num_state_slots;
571 }
572
573 inline void set_num_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance()
576 || n == 0);
577 this->data._num_state_slots = n;
578 }
579
580 inline ir_state_slot *get_state_slots()
581 {
582 return this->is_interface_instance() ? NULL : this->u.state_slots;
583 }
584
585 inline const ir_state_slot *get_state_slots() const
586 {
587 return this->is_interface_instance() ? NULL : this->u.state_slots;
588 }
589
590 inline ir_state_slot *allocate_state_slots(unsigned n)
591 {
592 assert(!this->is_interface_instance());
593
594 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595 this->data._num_state_slots = 0;
596
597 if (this->u.state_slots != NULL)
598 this->data._num_state_slots = n;
599
600 return this->u.state_slots;
601 }
602
603 inline bool is_interpolation_flat() const
604 {
605 return this->data.interpolation == INTERP_MODE_FLAT ||
606 this->type->contains_integer() ||
607 this->type->contains_double();
608 }
609
610 inline bool is_name_ralloced() const
611 {
612 return this->name != ir_variable::tmp_name &&
613 this->name != this->name_storage;
614 }
615
616 /**
617 * Enable emitting extension warnings for this variable
618 */
619 void enable_extension_warning(const char *extension);
620
621 /**
622 * Get the extension warning string for this variable
623 *
624 * If warnings are not enabled, \c NULL is returned.
625 */
626 const char *get_extension_warning() const;
627
628 /**
629 * Declared type of the variable
630 */
631 const struct glsl_type *type;
632
633 /**
634 * Declared name of the variable
635 */
636 const char *name;
637
638 private:
639 /**
640 * If the name length fits into name_storage, it's used, otherwise
641 * the name is ralloc'd. shader-db mining showed that 70% of variables
642 * fit here. This is a win over ralloc where only ralloc_header has
643 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644 */
645 char name_storage[16];
646
647 public:
648 struct ir_variable_data {
649
650 /**
651 * Is the variable read-only?
652 *
653 * This is set for variables declared as \c const, shader inputs,
654 * and uniforms.
655 */
656 unsigned read_only:1;
657 unsigned centroid:1;
658 unsigned sample:1;
659 unsigned patch:1;
660 /**
661 * Was an 'invariant' qualifier explicitly set in the shader?
662 *
663 * This is used to cross validate qualifiers.
664 */
665 unsigned explicit_invariant:1;
666 /**
667 * Is the variable invariant?
668 *
669 * It can happen either by having the 'invariant' qualifier
670 * explicitly set in the shader or by being used in calculations
671 * of other invariant variables.
672 */
673 unsigned invariant:1;
674 unsigned precise:1;
675
676 /**
677 * Has this variable been used for reading or writing?
678 *
679 * Several GLSL semantic checks require knowledge of whether or not a
680 * variable has been used. For example, it is an error to redeclare a
681 * variable as invariant after it has been used.
682 *
683 * This is maintained in the ast_to_hir.cpp path and during linking,
684 * but not in Mesa's fixed function or ARB program paths.
685 */
686 unsigned used:1;
687
688 /**
689 * Has this variable been statically assigned?
690 *
691 * This answers whether the variable was assigned in any path of
692 * the shader during ast_to_hir. This doesn't answer whether it is
693 * still written after dead code removal, nor is it maintained in
694 * non-ast_to_hir.cpp (GLSL parsing) paths.
695 */
696 unsigned assigned:1;
697
698 /**
699 * When separate shader programs are enabled, only input/outputs between
700 * the stages of a multi-stage separate program can be safely removed
701 * from the shader interface. Other input/outputs must remains active.
702 */
703 unsigned always_active_io:1;
704
705 /**
706 * Enum indicating how the variable was declared. See
707 * ir_var_declaration_type.
708 *
709 * This is used to detect certain kinds of illegal variable redeclarations.
710 */
711 unsigned how_declared:2;
712
713 /**
714 * Storage class of the variable.
715 *
716 * \sa ir_variable_mode
717 */
718 unsigned mode:4;
719
720 /**
721 * Interpolation mode for shader inputs / outputs
722 *
723 * \sa glsl_interp_mode
724 */
725 unsigned interpolation:2;
726
727 /**
728 * Was the location explicitly set in the shader?
729 *
730 * If the location is explicitly set in the shader, it \b cannot be changed
731 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
732 * no effect).
733 */
734 unsigned explicit_location:1;
735 unsigned explicit_index:1;
736
737 /**
738 * Was an initial binding explicitly set in the shader?
739 *
740 * If so, constant_value contains an integer ir_constant representing the
741 * initial binding point.
742 */
743 unsigned explicit_binding:1;
744
745 /**
746 * Was an initial component explicitly set in the shader?
747 */
748 unsigned explicit_component:1;
749
750 /**
751 * Does this variable have an initializer?
752 *
753 * This is used by the linker to cross-validiate initializers of global
754 * variables.
755 */
756 unsigned has_initializer:1;
757
758 /**
759 * Is this variable a generic output or input that has not yet been matched
760 * up to a variable in another stage of the pipeline?
761 *
762 * This is used by the linker as scratch storage while assigning locations
763 * to generic inputs and outputs.
764 */
765 unsigned is_unmatched_generic_inout:1;
766
767 /**
768 * Is this varying used only by transform feedback?
769 *
770 * This is used by the linker to decide if its safe to pack the varying.
771 */
772 unsigned is_xfb_only:1;
773
774 /**
775 * Was a transform feedback buffer set in the shader?
776 */
777 unsigned explicit_xfb_buffer:1;
778
779 /**
780 * Was a transform feedback offset set in the shader?
781 */
782 unsigned explicit_xfb_offset:1;
783
784 /**
785 * Was a transform feedback stride set in the shader?
786 */
787 unsigned explicit_xfb_stride:1;
788
789 /**
790 * If non-zero, then this variable may be packed along with other variables
791 * into a single varying slot, so this offset should be applied when
792 * accessing components. For example, an offset of 1 means that the x
793 * component of this variable is actually stored in component y of the
794 * location specified by \c location.
795 */
796 unsigned location_frac:2;
797
798 /**
799 * Layout of the matrix. Uses glsl_matrix_layout values.
800 */
801 unsigned matrix_layout:2;
802
803 /**
804 * Non-zero if this variable was created by lowering a named interface
805 * block.
806 */
807 unsigned from_named_ifc_block:1;
808
809 /**
810 * Non-zero if the variable must be a shader input. This is useful for
811 * constraints on function parameters.
812 */
813 unsigned must_be_shader_input:1;
814
815 /**
816 * Output index for dual source blending.
817 *
818 * \note
819 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
820 * source blending.
821 */
822 unsigned index:1;
823
824 /**
825 * Precision qualifier.
826 *
827 * In desktop GLSL we do not care about precision qualifiers at all, in
828 * fact, the spec says that precision qualifiers are ignored.
829 *
830 * To make things easy, we make it so that this field is always
831 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
832 * have the same precision value and the checks we add in the compiler
833 * for this field will never break a desktop shader compile.
834 */
835 unsigned precision:2;
836
837 /**
838 * \brief Layout qualifier for gl_FragDepth.
839 *
840 * This is not equal to \c ir_depth_layout_none if and only if this
841 * variable is \c gl_FragDepth and a layout qualifier is specified.
842 */
843 ir_depth_layout depth_layout:3;
844
845 /**
846 * Memory qualifiers.
847 */
848 unsigned memory_read_only:1; /**< "readonly" qualifier. */
849 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
850 unsigned memory_coherent:1;
851 unsigned memory_volatile:1;
852 unsigned memory_restrict:1;
853
854 /**
855 * ARB_shader_storage_buffer_object
856 */
857 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
858
859 unsigned implicit_sized_array:1;
860
861 /**
862 * Whether this is a fragment shader output implicitly initialized with
863 * the previous contents of the specified render target at the
864 * framebuffer location corresponding to this shader invocation.
865 */
866 unsigned fb_fetch_output:1;
867
868 /**
869 * Non-zero if this variable is considered bindless as defined by
870 * ARB_bindless_texture.
871 */
872 unsigned bindless:1;
873
874 /**
875 * Non-zero if this variable is considered bound as defined by
876 * ARB_bindless_texture.
877 */
878 unsigned bound:1;
879
880 /**
881 * Emit a warning if this variable is accessed.
882 */
883 private:
884 uint8_t warn_extension_index;
885
886 public:
887 /** Image internal format if specified explicitly, otherwise GL_NONE. */
888 uint16_t image_format;
889
890 private:
891 /**
892 * Number of state slots used
893 *
894 * \note
895 * This could be stored in as few as 7-bits, if necessary. If it is made
896 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
897 * be safe.
898 */
899 uint16_t _num_state_slots;
900
901 public:
902 /**
903 * Initial binding point for a sampler, atomic, or UBO.
904 *
905 * For array types, this represents the binding point for the first element.
906 */
907 int16_t binding;
908
909 /**
910 * Storage location of the base of this variable
911 *
912 * The precise meaning of this field depends on the nature of the variable.
913 *
914 * - Vertex shader input: one of the values from \c gl_vert_attrib.
915 * - Vertex shader output: one of the values from \c gl_varying_slot.
916 * - Geometry shader input: one of the values from \c gl_varying_slot.
917 * - Geometry shader output: one of the values from \c gl_varying_slot.
918 * - Fragment shader input: one of the values from \c gl_varying_slot.
919 * - Fragment shader output: one of the values from \c gl_frag_result.
920 * - Uniforms: Per-stage uniform slot number for default uniform block.
921 * - Uniforms: Index within the uniform block definition for UBO members.
922 * - Non-UBO Uniforms: explicit location until linking then reused to
923 * store uniform slot number.
924 * - Other: This field is not currently used.
925 *
926 * If the variable is a uniform, shader input, or shader output, and the
927 * slot has not been assigned, the value will be -1.
928 */
929 int location;
930
931 /**
932 * for glsl->tgsi/mesa IR we need to store the index into the
933 * parameters for uniforms, initially the code overloaded location
934 * but this causes problems with indirect samplers and AoA.
935 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
936 */
937 int param_index;
938
939 /**
940 * Vertex stream output identifier.
941 *
942 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
943 * stream of the i-th component.
944 */
945 unsigned stream;
946
947 /**
948 * Atomic, transform feedback or block member offset.
949 */
950 unsigned offset;
951
952 /**
953 * Highest element accessed with a constant expression array index
954 *
955 * Not used for non-array variables. -1 is never accessed.
956 */
957 int max_array_access;
958
959 /**
960 * Transform feedback buffer.
961 */
962 unsigned xfb_buffer;
963
964 /**
965 * Transform feedback stride.
966 */
967 unsigned xfb_stride;
968
969 /**
970 * Allow (only) ir_variable direct access private members.
971 */
972 friend class ir_variable;
973 } data;
974
975 /**
976 * Value assigned in the initializer of a variable declared "const"
977 */
978 ir_constant *constant_value;
979
980 /**
981 * Constant expression assigned in the initializer of the variable
982 *
983 * \warning
984 * This field and \c ::constant_value are distinct. Even if the two fields
985 * refer to constants with the same value, they must point to separate
986 * objects.
987 */
988 ir_constant *constant_initializer;
989
990 private:
991 static const char *const warn_extension_table[];
992
993 union {
994 /**
995 * For variables which satisfy the is_interface_instance() predicate,
996 * this points to an array of integers such that if the ith member of
997 * the interface block is an array, max_ifc_array_access[i] is the
998 * maximum array element of that member that has been accessed. If the
999 * ith member of the interface block is not an array,
1000 * max_ifc_array_access[i] is unused.
1001 *
1002 * For variables whose type is not an interface block, this pointer is
1003 * NULL.
1004 */
1005 int *max_ifc_array_access;
1006
1007 /**
1008 * Built-in state that backs this uniform
1009 *
1010 * Once set at variable creation, \c state_slots must remain invariant.
1011 *
1012 * If the variable is not a uniform, \c _num_state_slots will be zero
1013 * and \c state_slots will be \c NULL.
1014 */
1015 ir_state_slot *state_slots;
1016 } u;
1017
1018 /**
1019 * For variables that are in an interface block or are an instance of an
1020 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1021 *
1022 * \sa ir_variable::location
1023 */
1024 const glsl_type *interface_type;
1025
1026 /**
1027 * Name used for anonymous compiler temporaries
1028 */
1029 static const char tmp_name[];
1030
1031 public:
1032 /**
1033 * Should the construct keep names for ir_var_temporary variables?
1034 *
1035 * When this global is false, names passed to the constructor for
1036 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1037 * be named "compiler_temp". This name will be in static storage.
1038 *
1039 * \warning
1040 * \b NEVER change the mode of an \c ir_var_temporary.
1041 *
1042 * \warning
1043 * This variable is \b not thread-safe. It is global, \b not
1044 * per-context. It begins life false. A context can, at some point, make
1045 * it true. From that point on, it will be true forever. This should be
1046 * okay since it will only be set true while debugging.
1047 */
1048 static bool temporaries_allocate_names;
1049 };
1050
1051 /**
1052 * A function that returns whether a built-in function is available in the
1053 * current shading language (based on version, ES or desktop, and extensions).
1054 */
1055 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1056
1057 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1058 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1059
1060 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1061 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1062
1063 enum ir_intrinsic_id {
1064 ir_intrinsic_invalid = 0,
1065
1066 /**
1067 * \name Generic intrinsics
1068 *
1069 * Each of these intrinsics has a specific version for shared variables and
1070 * SSBOs.
1071 */
1072 /*@{*/
1073 ir_intrinsic_generic_load,
1074 ir_intrinsic_generic_store,
1075 ir_intrinsic_generic_atomic_add,
1076 ir_intrinsic_generic_atomic_and,
1077 ir_intrinsic_generic_atomic_or,
1078 ir_intrinsic_generic_atomic_xor,
1079 ir_intrinsic_generic_atomic_min,
1080 ir_intrinsic_generic_atomic_max,
1081 ir_intrinsic_generic_atomic_exchange,
1082 ir_intrinsic_generic_atomic_comp_swap,
1083 /*@}*/
1084
1085 ir_intrinsic_atomic_counter_read,
1086 ir_intrinsic_atomic_counter_increment,
1087 ir_intrinsic_atomic_counter_predecrement,
1088 ir_intrinsic_atomic_counter_add,
1089 ir_intrinsic_atomic_counter_and,
1090 ir_intrinsic_atomic_counter_or,
1091 ir_intrinsic_atomic_counter_xor,
1092 ir_intrinsic_atomic_counter_min,
1093 ir_intrinsic_atomic_counter_max,
1094 ir_intrinsic_atomic_counter_exchange,
1095 ir_intrinsic_atomic_counter_comp_swap,
1096
1097 ir_intrinsic_image_load,
1098 ir_intrinsic_image_store,
1099 ir_intrinsic_image_atomic_add,
1100 ir_intrinsic_image_atomic_and,
1101 ir_intrinsic_image_atomic_or,
1102 ir_intrinsic_image_atomic_xor,
1103 ir_intrinsic_image_atomic_min,
1104 ir_intrinsic_image_atomic_max,
1105 ir_intrinsic_image_atomic_exchange,
1106 ir_intrinsic_image_atomic_comp_swap,
1107 ir_intrinsic_image_size,
1108 ir_intrinsic_image_samples,
1109 ir_intrinsic_image_atomic_inc_wrap,
1110 ir_intrinsic_image_atomic_dec_wrap,
1111
1112 ir_intrinsic_ssbo_load,
1113 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1114 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1115 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1116 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1117 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1118 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1119 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1120 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1121 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1122
1123 ir_intrinsic_memory_barrier,
1124 ir_intrinsic_shader_clock,
1125 ir_intrinsic_group_memory_barrier,
1126 ir_intrinsic_memory_barrier_atomic_counter,
1127 ir_intrinsic_memory_barrier_buffer,
1128 ir_intrinsic_memory_barrier_image,
1129 ir_intrinsic_memory_barrier_shared,
1130 ir_intrinsic_begin_invocation_interlock,
1131 ir_intrinsic_end_invocation_interlock,
1132
1133 ir_intrinsic_vote_all,
1134 ir_intrinsic_vote_any,
1135 ir_intrinsic_vote_eq,
1136 ir_intrinsic_ballot,
1137 ir_intrinsic_read_invocation,
1138 ir_intrinsic_read_first_invocation,
1139
1140 ir_intrinsic_shared_load,
1141 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1142 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1143 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1144 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1145 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1146 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1147 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1148 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1149 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1150 };
1151
1152 /*@{*/
1153 /**
1154 * The representation of a function instance; may be the full definition or
1155 * simply a prototype.
1156 */
1157 class ir_function_signature : public ir_instruction {
1158 /* An ir_function_signature will be part of the list of signatures in
1159 * an ir_function.
1160 */
1161 public:
1162 ir_function_signature(const glsl_type *return_type,
1163 builtin_available_predicate builtin_avail = NULL);
1164
1165 virtual ir_function_signature *clone(void *mem_ctx,
1166 struct hash_table *ht) const;
1167 ir_function_signature *clone_prototype(void *mem_ctx,
1168 struct hash_table *ht) const;
1169
1170 virtual void accept(ir_visitor *v)
1171 {
1172 v->visit(this);
1173 }
1174
1175 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1176
1177 /**
1178 * Attempt to evaluate this function as a constant expression,
1179 * given a list of the actual parameters and the variable context.
1180 * Returns NULL for non-built-ins.
1181 */
1182 ir_constant *constant_expression_value(void *mem_ctx,
1183 exec_list *actual_parameters,
1184 struct hash_table *variable_context);
1185
1186 /**
1187 * Get the name of the function for which this is a signature
1188 */
1189 const char *function_name() const;
1190
1191 /**
1192 * Get a handle to the function for which this is a signature
1193 *
1194 * There is no setter function, this function returns a \c const pointer,
1195 * and \c ir_function_signature::_function is private for a reason. The
1196 * only way to make a connection between a function and function signature
1197 * is via \c ir_function::add_signature. This helps ensure that certain
1198 * invariants (i.e., a function signature is in the list of signatures for
1199 * its \c _function) are met.
1200 *
1201 * \sa ir_function::add_signature
1202 */
1203 inline const class ir_function *function() const
1204 {
1205 return this->_function;
1206 }
1207
1208 /**
1209 * Check whether the qualifiers match between this signature's parameters
1210 * and the supplied parameter list. If not, returns the name of the first
1211 * parameter with mismatched qualifiers (for use in error messages).
1212 */
1213 const char *qualifiers_match(exec_list *params);
1214
1215 /**
1216 * Replace the current parameter list with the given one. This is useful
1217 * if the current information came from a prototype, and either has invalid
1218 * or missing parameter names.
1219 */
1220 void replace_parameters(exec_list *new_params);
1221
1222 /**
1223 * Function return type.
1224 *
1225 * \note This discards the optional precision qualifier.
1226 */
1227 const struct glsl_type *return_type;
1228
1229 /**
1230 * List of ir_variable of function parameters.
1231 *
1232 * This represents the storage. The paramaters passed in a particular
1233 * call will be in ir_call::actual_paramaters.
1234 */
1235 struct exec_list parameters;
1236
1237 /** Whether or not this function has a body (which may be empty). */
1238 unsigned is_defined:1;
1239
1240 /** Whether or not this function signature is a built-in. */
1241 bool is_builtin() const;
1242
1243 /**
1244 * Whether or not this function is an intrinsic to be implemented
1245 * by the driver.
1246 */
1247 inline bool is_intrinsic() const
1248 {
1249 return intrinsic_id != ir_intrinsic_invalid;
1250 }
1251
1252 /** Indentifier for this intrinsic. */
1253 enum ir_intrinsic_id intrinsic_id;
1254
1255 /** Whether or not a built-in is available for this shader. */
1256 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1257
1258 /** Body of instructions in the function. */
1259 struct exec_list body;
1260
1261 private:
1262 /**
1263 * A function pointer to a predicate that answers whether a built-in
1264 * function is available in the current shader. NULL if not a built-in.
1265 */
1266 builtin_available_predicate builtin_avail;
1267
1268 /** Function of which this signature is one overload. */
1269 class ir_function *_function;
1270
1271 /** Function signature of which this one is a prototype clone */
1272 const ir_function_signature *origin;
1273
1274 friend class ir_function;
1275
1276 /**
1277 * Helper function to run a list of instructions for constant
1278 * expression evaluation.
1279 *
1280 * The hash table represents the values of the visible variables.
1281 * There are no scoping issues because the table is indexed on
1282 * ir_variable pointers, not variable names.
1283 *
1284 * Returns false if the expression is not constant, true otherwise,
1285 * and the value in *result if result is non-NULL.
1286 */
1287 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1288 const struct exec_list &body,
1289 struct hash_table *variable_context,
1290 ir_constant **result);
1291 };
1292
1293
1294 /**
1295 * Header for tracking multiple overloaded functions with the same name.
1296 * Contains a list of ir_function_signatures representing each of the
1297 * actual functions.
1298 */
1299 class ir_function : public ir_instruction {
1300 public:
1301 ir_function(const char *name);
1302
1303 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1304
1305 virtual void accept(ir_visitor *v)
1306 {
1307 v->visit(this);
1308 }
1309
1310 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1311
1312 void add_signature(ir_function_signature *sig)
1313 {
1314 sig->_function = this;
1315 this->signatures.push_tail(sig);
1316 }
1317
1318 /**
1319 * Find a signature that matches a set of actual parameters, taking implicit
1320 * conversions into account. Also flags whether the match was exact.
1321 */
1322 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1323 const exec_list *actual_param,
1324 bool allow_builtins,
1325 bool *match_is_exact);
1326
1327 /**
1328 * Find a signature that matches a set of actual parameters, taking implicit
1329 * conversions into account.
1330 */
1331 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1332 const exec_list *actual_param,
1333 bool allow_builtins);
1334
1335 /**
1336 * Find a signature that exactly matches a set of actual parameters without
1337 * any implicit type conversions.
1338 */
1339 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1340 const exec_list *actual_ps);
1341
1342 /**
1343 * Name of the function.
1344 */
1345 const char *name;
1346
1347 /** Whether or not this function has a signature that isn't a built-in. */
1348 bool has_user_signature();
1349
1350 /**
1351 * List of ir_function_signature for each overloaded function with this name.
1352 */
1353 struct exec_list signatures;
1354
1355 /**
1356 * is this function a subroutine type declaration
1357 * e.g. subroutine void type1(float arg1);
1358 */
1359 bool is_subroutine;
1360
1361 /**
1362 * is this function associated to a subroutine type
1363 * e.g. subroutine (type1, type2) function_name { function_body };
1364 * would have num_subroutine_types 2,
1365 * and pointers to the type1 and type2 types.
1366 */
1367 int num_subroutine_types;
1368 const struct glsl_type **subroutine_types;
1369
1370 int subroutine_index;
1371 };
1372
1373 inline const char *ir_function_signature::function_name() const
1374 {
1375 return this->_function->name;
1376 }
1377 /*@}*/
1378
1379
1380 /**
1381 * IR instruction representing high-level if-statements
1382 */
1383 class ir_if : public ir_instruction {
1384 public:
1385 ir_if(ir_rvalue *condition)
1386 : ir_instruction(ir_type_if), condition(condition)
1387 {
1388 }
1389
1390 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1391
1392 virtual void accept(ir_visitor *v)
1393 {
1394 v->visit(this);
1395 }
1396
1397 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1398
1399 ir_rvalue *condition;
1400 /** List of ir_instruction for the body of the then branch */
1401 exec_list then_instructions;
1402 /** List of ir_instruction for the body of the else branch */
1403 exec_list else_instructions;
1404 };
1405
1406
1407 /**
1408 * IR instruction representing a high-level loop structure.
1409 */
1410 class ir_loop : public ir_instruction {
1411 public:
1412 ir_loop();
1413
1414 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1415
1416 virtual void accept(ir_visitor *v)
1417 {
1418 v->visit(this);
1419 }
1420
1421 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1422
1423 /** List of ir_instruction that make up the body of the loop. */
1424 exec_list body_instructions;
1425 };
1426
1427
1428 class ir_assignment : public ir_instruction {
1429 public:
1430 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1431
1432 /**
1433 * Construct an assignment with an explicit write mask
1434 *
1435 * \note
1436 * Since a write mask is supplied, the LHS must already be a bare
1437 * \c ir_dereference. The cannot be any swizzles in the LHS.
1438 */
1439 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1440 unsigned write_mask);
1441
1442 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1443
1444 virtual ir_constant *constant_expression_value(void *mem_ctx,
1445 struct hash_table *variable_context = NULL);
1446
1447 virtual void accept(ir_visitor *v)
1448 {
1449 v->visit(this);
1450 }
1451
1452 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1453
1454 /**
1455 * Get a whole variable written by an assignment
1456 *
1457 * If the LHS of the assignment writes a whole variable, the variable is
1458 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1459 * assignment are:
1460 *
1461 * - Assigning to a scalar
1462 * - Assigning to all components of a vector
1463 * - Whole array (or matrix) assignment
1464 * - Whole structure assignment
1465 */
1466 ir_variable *whole_variable_written();
1467
1468 /**
1469 * Set the LHS of an assignment
1470 */
1471 void set_lhs(ir_rvalue *lhs);
1472
1473 /**
1474 * Left-hand side of the assignment.
1475 *
1476 * This should be treated as read only. If you need to set the LHS of an
1477 * assignment, use \c ir_assignment::set_lhs.
1478 */
1479 ir_dereference *lhs;
1480
1481 /**
1482 * Value being assigned
1483 */
1484 ir_rvalue *rhs;
1485
1486 /**
1487 * Optional condition for the assignment.
1488 */
1489 ir_rvalue *condition;
1490
1491
1492 /**
1493 * Component mask written
1494 *
1495 * For non-vector types in the LHS, this field will be zero. For vector
1496 * types, a bit will be set for each component that is written. Note that
1497 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1498 *
1499 * A partially-set write mask means that each enabled channel gets
1500 * the value from a consecutive channel of the rhs. For example,
1501 * to write just .xyw of gl_FrontColor with color:
1502 *
1503 * (assign (constant bool (1)) (xyw)
1504 * (var_ref gl_FragColor)
1505 * (swiz xyw (var_ref color)))
1506 */
1507 unsigned write_mask:4;
1508 };
1509
1510 #include "ir_expression_operation.h"
1511
1512 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1513 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1514
1515 class ir_expression : public ir_rvalue {
1516 public:
1517 ir_expression(int op, const struct glsl_type *type,
1518 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1519 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1520
1521 /**
1522 * Constructor for unary operation expressions
1523 */
1524 ir_expression(int op, ir_rvalue *);
1525
1526 /**
1527 * Constructor for binary operation expressions
1528 */
1529 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1530
1531 /**
1532 * Constructor for ternary operation expressions
1533 */
1534 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1535
1536 virtual bool equals(const ir_instruction *ir,
1537 enum ir_node_type ignore = ir_type_unset) const;
1538
1539 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1540
1541 /**
1542 * Attempt to constant-fold the expression
1543 *
1544 * The "variable_context" hash table links ir_variable * to ir_constant *
1545 * that represent the variables' values. \c NULL represents an empty
1546 * context.
1547 *
1548 * If the expression cannot be constant folded, this method will return
1549 * \c NULL.
1550 */
1551 virtual ir_constant *constant_expression_value(void *mem_ctx,
1552 struct hash_table *variable_context = NULL);
1553
1554 /**
1555 * This is only here for ir_reader to used for testing purposes please use
1556 * the precomputed num_operands field if you need the number of operands.
1557 */
1558 static unsigned get_num_operands(ir_expression_operation);
1559
1560 /**
1561 * Return whether the expression operates on vectors horizontally.
1562 */
1563 bool is_horizontal() const
1564 {
1565 return operation == ir_binop_all_equal ||
1566 operation == ir_binop_any_nequal ||
1567 operation == ir_binop_dot ||
1568 operation == ir_binop_vector_extract ||
1569 operation == ir_triop_vector_insert ||
1570 operation == ir_binop_ubo_load ||
1571 operation == ir_quadop_vector;
1572 }
1573
1574 /**
1575 * Do a reverse-lookup to translate the given string into an operator.
1576 */
1577 static ir_expression_operation get_operator(const char *);
1578
1579 virtual void accept(ir_visitor *v)
1580 {
1581 v->visit(this);
1582 }
1583
1584 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1585
1586 virtual ir_variable *variable_referenced() const;
1587
1588 /**
1589 * Determine the number of operands used by an expression
1590 */
1591 void init_num_operands()
1592 {
1593 if (operation == ir_quadop_vector) {
1594 num_operands = this->type->vector_elements;
1595 } else {
1596 num_operands = get_num_operands(operation);
1597 }
1598 }
1599
1600 ir_expression_operation operation;
1601 ir_rvalue *operands[4];
1602 uint8_t num_operands;
1603 };
1604
1605
1606 /**
1607 * HIR instruction representing a high-level function call, containing a list
1608 * of parameters and returning a value in the supplied temporary.
1609 */
1610 class ir_call : public ir_instruction {
1611 public:
1612 ir_call(ir_function_signature *callee,
1613 ir_dereference_variable *return_deref,
1614 exec_list *actual_parameters)
1615 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1616 {
1617 assert(callee->return_type != NULL);
1618 actual_parameters->move_nodes_to(& this->actual_parameters);
1619 }
1620
1621 ir_call(ir_function_signature *callee,
1622 ir_dereference_variable *return_deref,
1623 exec_list *actual_parameters,
1624 ir_variable *var, ir_rvalue *array_idx)
1625 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1626 {
1627 assert(callee->return_type != NULL);
1628 actual_parameters->move_nodes_to(& this->actual_parameters);
1629 }
1630
1631 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1632
1633 virtual ir_constant *constant_expression_value(void *mem_ctx,
1634 struct hash_table *variable_context = NULL);
1635
1636 virtual void accept(ir_visitor *v)
1637 {
1638 v->visit(this);
1639 }
1640
1641 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1642
1643 /**
1644 * Get the name of the function being called.
1645 */
1646 const char *callee_name() const
1647 {
1648 return callee->function_name();
1649 }
1650
1651 /**
1652 * Generates an inline version of the function before @ir,
1653 * storing the return value in return_deref.
1654 */
1655 void generate_inline(ir_instruction *ir);
1656
1657 /**
1658 * Storage for the function's return value.
1659 * This must be NULL if the return type is void.
1660 */
1661 ir_dereference_variable *return_deref;
1662
1663 /**
1664 * The specific function signature being called.
1665 */
1666 ir_function_signature *callee;
1667
1668 /* List of ir_rvalue of paramaters passed in this call. */
1669 exec_list actual_parameters;
1670
1671 /*
1672 * ARB_shader_subroutine support -
1673 * the subroutine uniform variable and array index
1674 * rvalue to be used in the lowering pass later.
1675 */
1676 ir_variable *sub_var;
1677 ir_rvalue *array_idx;
1678 };
1679
1680
1681 /**
1682 * \name Jump-like IR instructions.
1683 *
1684 * These include \c break, \c continue, \c return, and \c discard.
1685 */
1686 /*@{*/
1687 class ir_jump : public ir_instruction {
1688 protected:
1689 ir_jump(enum ir_node_type t)
1690 : ir_instruction(t)
1691 {
1692 }
1693 };
1694
1695 class ir_return : public ir_jump {
1696 public:
1697 ir_return()
1698 : ir_jump(ir_type_return), value(NULL)
1699 {
1700 }
1701
1702 ir_return(ir_rvalue *value)
1703 : ir_jump(ir_type_return), value(value)
1704 {
1705 }
1706
1707 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1708
1709 ir_rvalue *get_value() const
1710 {
1711 return value;
1712 }
1713
1714 virtual void accept(ir_visitor *v)
1715 {
1716 v->visit(this);
1717 }
1718
1719 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1720
1721 ir_rvalue *value;
1722 };
1723
1724
1725 /**
1726 * Jump instructions used inside loops
1727 *
1728 * These include \c break and \c continue. The \c break within a loop is
1729 * different from the \c break within a switch-statement.
1730 *
1731 * \sa ir_switch_jump
1732 */
1733 class ir_loop_jump : public ir_jump {
1734 public:
1735 enum jump_mode {
1736 jump_break,
1737 jump_continue
1738 };
1739
1740 ir_loop_jump(jump_mode mode)
1741 : ir_jump(ir_type_loop_jump)
1742 {
1743 this->mode = mode;
1744 }
1745
1746 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1747
1748 virtual void accept(ir_visitor *v)
1749 {
1750 v->visit(this);
1751 }
1752
1753 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1754
1755 bool is_break() const
1756 {
1757 return mode == jump_break;
1758 }
1759
1760 bool is_continue() const
1761 {
1762 return mode == jump_continue;
1763 }
1764
1765 /** Mode selector for the jump instruction. */
1766 enum jump_mode mode;
1767 };
1768
1769 /**
1770 * IR instruction representing discard statements.
1771 */
1772 class ir_discard : public ir_jump {
1773 public:
1774 ir_discard()
1775 : ir_jump(ir_type_discard)
1776 {
1777 this->condition = NULL;
1778 }
1779
1780 ir_discard(ir_rvalue *cond)
1781 : ir_jump(ir_type_discard)
1782 {
1783 this->condition = cond;
1784 }
1785
1786 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1787
1788 virtual void accept(ir_visitor *v)
1789 {
1790 v->visit(this);
1791 }
1792
1793 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1794
1795 ir_rvalue *condition;
1796 };
1797 /*@}*/
1798
1799
1800 /**
1801 * Texture sampling opcodes used in ir_texture
1802 */
1803 enum ir_texture_opcode {
1804 ir_tex, /**< Regular texture look-up */
1805 ir_txb, /**< Texture look-up with LOD bias */
1806 ir_txl, /**< Texture look-up with explicit LOD */
1807 ir_txd, /**< Texture look-up with partial derivatvies */
1808 ir_txf, /**< Texel fetch with explicit LOD */
1809 ir_txf_ms, /**< Multisample texture fetch */
1810 ir_txs, /**< Texture size */
1811 ir_lod, /**< Texture lod query */
1812 ir_tg4, /**< Texture gather */
1813 ir_query_levels, /**< Texture levels query */
1814 ir_texture_samples, /**< Texture samples query */
1815 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1816 };
1817
1818
1819 /**
1820 * IR instruction to sample a texture
1821 *
1822 * The specific form of the IR instruction depends on the \c mode value
1823 * selected from \c ir_texture_opcodes. In the printed IR, these will
1824 * appear as:
1825 *
1826 * Texel offset (0 or an expression)
1827 * | Projection divisor
1828 * | | Shadow comparator
1829 * | | |
1830 * v v v
1831 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1832 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1833 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1834 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1835 * (txf <type> <sampler> <coordinate> 0 <lod>)
1836 * (txf_ms
1837 * <type> <sampler> <coordinate> <sample_index>)
1838 * (txs <type> <sampler> <lod>)
1839 * (lod <type> <sampler> <coordinate>)
1840 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1841 * (query_levels <type> <sampler>)
1842 * (samples_identical <sampler> <coordinate>)
1843 */
1844 class ir_texture : public ir_rvalue {
1845 public:
1846 ir_texture(enum ir_texture_opcode op)
1847 : ir_rvalue(ir_type_texture),
1848 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1849 shadow_comparator(NULL), offset(NULL)
1850 {
1851 memset(&lod_info, 0, sizeof(lod_info));
1852 }
1853
1854 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1855
1856 virtual ir_constant *constant_expression_value(void *mem_ctx,
1857 struct hash_table *variable_context = NULL);
1858
1859 virtual void accept(ir_visitor *v)
1860 {
1861 v->visit(this);
1862 }
1863
1864 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1865
1866 virtual bool equals(const ir_instruction *ir,
1867 enum ir_node_type ignore = ir_type_unset) const;
1868
1869 /**
1870 * Return a string representing the ir_texture_opcode.
1871 */
1872 const char *opcode_string();
1873
1874 /** Set the sampler and type. */
1875 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1876
1877 /**
1878 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1879 */
1880 static ir_texture_opcode get_opcode(const char *);
1881
1882 enum ir_texture_opcode op;
1883
1884 /** Sampler to use for the texture access. */
1885 ir_dereference *sampler;
1886
1887 /** Texture coordinate to sample */
1888 ir_rvalue *coordinate;
1889
1890 /**
1891 * Value used for projective divide.
1892 *
1893 * If there is no projective divide (the common case), this will be
1894 * \c NULL. Optimization passes should check for this to point to a constant
1895 * of 1.0 and replace that with \c NULL.
1896 */
1897 ir_rvalue *projector;
1898
1899 /**
1900 * Coordinate used for comparison on shadow look-ups.
1901 *
1902 * If there is no shadow comparison, this will be \c NULL. For the
1903 * \c ir_txf opcode, this *must* be \c NULL.
1904 */
1905 ir_rvalue *shadow_comparator;
1906
1907 /** Texel offset. */
1908 ir_rvalue *offset;
1909
1910 union {
1911 ir_rvalue *lod; /**< Floating point LOD */
1912 ir_rvalue *bias; /**< Floating point LOD bias */
1913 ir_rvalue *sample_index; /**< MSAA sample index */
1914 ir_rvalue *component; /**< Gather component selector */
1915 struct {
1916 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1917 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1918 } grad;
1919 } lod_info;
1920 };
1921
1922
1923 struct ir_swizzle_mask {
1924 unsigned x:2;
1925 unsigned y:2;
1926 unsigned z:2;
1927 unsigned w:2;
1928
1929 /**
1930 * Number of components in the swizzle.
1931 */
1932 unsigned num_components:3;
1933
1934 /**
1935 * Does the swizzle contain duplicate components?
1936 *
1937 * L-value swizzles cannot contain duplicate components.
1938 */
1939 unsigned has_duplicates:1;
1940 };
1941
1942
1943 class ir_swizzle : public ir_rvalue {
1944 public:
1945 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1946 unsigned count);
1947
1948 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1949
1950 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1951
1952 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1953
1954 virtual ir_constant *constant_expression_value(void *mem_ctx,
1955 struct hash_table *variable_context = NULL);
1956
1957 /**
1958 * Construct an ir_swizzle from the textual representation. Can fail.
1959 */
1960 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1961
1962 virtual void accept(ir_visitor *v)
1963 {
1964 v->visit(this);
1965 }
1966
1967 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1968
1969 virtual bool equals(const ir_instruction *ir,
1970 enum ir_node_type ignore = ir_type_unset) const;
1971
1972 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1973 {
1974 return val->is_lvalue(state) && !mask.has_duplicates;
1975 }
1976
1977 /**
1978 * Get the variable that is ultimately referenced by an r-value
1979 */
1980 virtual ir_variable *variable_referenced() const;
1981
1982 ir_rvalue *val;
1983 ir_swizzle_mask mask;
1984
1985 private:
1986 /**
1987 * Initialize the mask component of a swizzle
1988 *
1989 * This is used by the \c ir_swizzle constructors.
1990 */
1991 void init_mask(const unsigned *components, unsigned count);
1992 };
1993
1994
1995 class ir_dereference : public ir_rvalue {
1996 public:
1997 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1998
1999 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2000
2001 /**
2002 * Get the variable that is ultimately referenced by an r-value
2003 */
2004 virtual ir_variable *variable_referenced() const = 0;
2005
2006 protected:
2007 ir_dereference(enum ir_node_type t)
2008 : ir_rvalue(t)
2009 {
2010 }
2011 };
2012
2013
2014 class ir_dereference_variable : public ir_dereference {
2015 public:
2016 ir_dereference_variable(ir_variable *var);
2017
2018 virtual ir_dereference_variable *clone(void *mem_ctx,
2019 struct hash_table *) const;
2020
2021 virtual ir_constant *constant_expression_value(void *mem_ctx,
2022 struct hash_table *variable_context = NULL);
2023
2024 virtual bool equals(const ir_instruction *ir,
2025 enum ir_node_type ignore = ir_type_unset) const;
2026
2027 /**
2028 * Get the variable that is ultimately referenced by an r-value
2029 */
2030 virtual ir_variable *variable_referenced() const
2031 {
2032 return this->var;
2033 }
2034
2035 virtual ir_variable *whole_variable_referenced()
2036 {
2037 /* ir_dereference_variable objects always dereference the entire
2038 * variable. However, if this dereference is dereferenced by anything
2039 * else, the complete deferefernce chain is not a whole-variable
2040 * dereference. This method should only be called on the top most
2041 * ir_rvalue in a dereference chain.
2042 */
2043 return this->var;
2044 }
2045
2046 virtual void accept(ir_visitor *v)
2047 {
2048 v->visit(this);
2049 }
2050
2051 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2052
2053 /**
2054 * Object being dereferenced.
2055 */
2056 ir_variable *var;
2057 };
2058
2059
2060 class ir_dereference_array : public ir_dereference {
2061 public:
2062 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2063
2064 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2065
2066 virtual ir_dereference_array *clone(void *mem_ctx,
2067 struct hash_table *) const;
2068
2069 virtual ir_constant *constant_expression_value(void *mem_ctx,
2070 struct hash_table *variable_context = NULL);
2071
2072 virtual bool equals(const ir_instruction *ir,
2073 enum ir_node_type ignore = ir_type_unset) const;
2074
2075 /**
2076 * Get the variable that is ultimately referenced by an r-value
2077 */
2078 virtual ir_variable *variable_referenced() const
2079 {
2080 return this->array->variable_referenced();
2081 }
2082
2083 virtual void accept(ir_visitor *v)
2084 {
2085 v->visit(this);
2086 }
2087
2088 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2089
2090 ir_rvalue *array;
2091 ir_rvalue *array_index;
2092
2093 private:
2094 void set_array(ir_rvalue *value);
2095 };
2096
2097
2098 class ir_dereference_record : public ir_dereference {
2099 public:
2100 ir_dereference_record(ir_rvalue *value, const char *field);
2101
2102 ir_dereference_record(ir_variable *var, const char *field);
2103
2104 virtual ir_dereference_record *clone(void *mem_ctx,
2105 struct hash_table *) const;
2106
2107 virtual ir_constant *constant_expression_value(void *mem_ctx,
2108 struct hash_table *variable_context = NULL);
2109
2110 /**
2111 * Get the variable that is ultimately referenced by an r-value
2112 */
2113 virtual ir_variable *variable_referenced() const
2114 {
2115 return this->record->variable_referenced();
2116 }
2117
2118 virtual void accept(ir_visitor *v)
2119 {
2120 v->visit(this);
2121 }
2122
2123 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2124
2125 ir_rvalue *record;
2126 int field_idx;
2127 };
2128
2129
2130 /**
2131 * Data stored in an ir_constant
2132 */
2133 union ir_constant_data {
2134 unsigned u[16];
2135 int i[16];
2136 float f[16];
2137 bool b[16];
2138 double d[16];
2139 uint64_t u64[16];
2140 int64_t i64[16];
2141 };
2142
2143
2144 class ir_constant : public ir_rvalue {
2145 public:
2146 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2147 ir_constant(bool b, unsigned vector_elements=1);
2148 ir_constant(unsigned int u, unsigned vector_elements=1);
2149 ir_constant(int i, unsigned vector_elements=1);
2150 ir_constant(float f, unsigned vector_elements=1);
2151 ir_constant(double d, unsigned vector_elements=1);
2152 ir_constant(uint64_t u64, unsigned vector_elements=1);
2153 ir_constant(int64_t i64, unsigned vector_elements=1);
2154
2155 /**
2156 * Construct an ir_constant from a list of ir_constant values
2157 */
2158 ir_constant(const struct glsl_type *type, exec_list *values);
2159
2160 /**
2161 * Construct an ir_constant from a scalar component of another ir_constant
2162 *
2163 * The new \c ir_constant inherits the type of the component from the
2164 * source constant.
2165 *
2166 * \note
2167 * In the case of a matrix constant, the new constant is a scalar, \b not
2168 * a vector.
2169 */
2170 ir_constant(const ir_constant *c, unsigned i);
2171
2172 /**
2173 * Return a new ir_constant of the specified type containing all zeros.
2174 */
2175 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2176
2177 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2178
2179 virtual ir_constant *constant_expression_value(void *mem_ctx,
2180 struct hash_table *variable_context = NULL);
2181
2182 virtual void accept(ir_visitor *v)
2183 {
2184 v->visit(this);
2185 }
2186
2187 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2188
2189 virtual bool equals(const ir_instruction *ir,
2190 enum ir_node_type ignore = ir_type_unset) const;
2191
2192 /**
2193 * Get a particular component of a constant as a specific type
2194 *
2195 * This is useful, for example, to get a value from an integer constant
2196 * as a float or bool. This appears frequently when constructors are
2197 * called with all constant parameters.
2198 */
2199 /*@{*/
2200 bool get_bool_component(unsigned i) const;
2201 float get_float_component(unsigned i) const;
2202 double get_double_component(unsigned i) const;
2203 int get_int_component(unsigned i) const;
2204 unsigned get_uint_component(unsigned i) const;
2205 int64_t get_int64_component(unsigned i) const;
2206 uint64_t get_uint64_component(unsigned i) const;
2207 /*@}*/
2208
2209 ir_constant *get_array_element(unsigned i) const;
2210
2211 ir_constant *get_record_field(int idx);
2212
2213 /**
2214 * Copy the values on another constant at a given offset.
2215 *
2216 * The offset is ignored for array or struct copies, it's only for
2217 * scalars or vectors into vectors or matrices.
2218 *
2219 * With identical types on both sides and zero offset it's clone()
2220 * without creating a new object.
2221 */
2222
2223 void copy_offset(ir_constant *src, int offset);
2224
2225 /**
2226 * Copy the values on another constant at a given offset and
2227 * following an assign-like mask.
2228 *
2229 * The mask is ignored for scalars.
2230 *
2231 * Note that this function only handles what assign can handle,
2232 * i.e. at most a vector as source and a column of a matrix as
2233 * destination.
2234 */
2235
2236 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2237
2238 /**
2239 * Determine whether a constant has the same value as another constant
2240 *
2241 * \sa ir_constant::is_zero, ir_constant::is_one,
2242 * ir_constant::is_negative_one
2243 */
2244 bool has_value(const ir_constant *) const;
2245
2246 /**
2247 * Return true if this ir_constant represents the given value.
2248 *
2249 * For vectors, this checks that each component is the given value.
2250 */
2251 virtual bool is_value(float f, int i) const;
2252 virtual bool is_zero() const;
2253 virtual bool is_one() const;
2254 virtual bool is_negative_one() const;
2255
2256 /**
2257 * Return true for constants that could be stored as 16-bit unsigned values.
2258 *
2259 * Note that this will return true even for signed integer ir_constants, as
2260 * long as the value is non-negative and fits in 16-bits.
2261 */
2262 virtual bool is_uint16_constant() const;
2263
2264 /**
2265 * Value of the constant.
2266 *
2267 * The field used to back the values supplied by the constant is determined
2268 * by the type associated with the \c ir_instruction. Constants may be
2269 * scalars, vectors, or matrices.
2270 */
2271 union ir_constant_data value;
2272
2273 /* Array elements and structure fields */
2274 ir_constant **const_elements;
2275
2276 private:
2277 /**
2278 * Parameterless constructor only used by the clone method
2279 */
2280 ir_constant(void);
2281 };
2282
2283 /**
2284 * IR instruction to emit a vertex in a geometry shader.
2285 */
2286 class ir_emit_vertex : public ir_instruction {
2287 public:
2288 ir_emit_vertex(ir_rvalue *stream)
2289 : ir_instruction(ir_type_emit_vertex),
2290 stream(stream)
2291 {
2292 assert(stream);
2293 }
2294
2295 virtual void accept(ir_visitor *v)
2296 {
2297 v->visit(this);
2298 }
2299
2300 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2301 {
2302 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2303 }
2304
2305 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2306
2307 int stream_id() const
2308 {
2309 return stream->as_constant()->value.i[0];
2310 }
2311
2312 ir_rvalue *stream;
2313 };
2314
2315 /**
2316 * IR instruction to complete the current primitive and start a new one in a
2317 * geometry shader.
2318 */
2319 class ir_end_primitive : public ir_instruction {
2320 public:
2321 ir_end_primitive(ir_rvalue *stream)
2322 : ir_instruction(ir_type_end_primitive),
2323 stream(stream)
2324 {
2325 assert(stream);
2326 }
2327
2328 virtual void accept(ir_visitor *v)
2329 {
2330 v->visit(this);
2331 }
2332
2333 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2334 {
2335 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2336 }
2337
2338 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2339
2340 int stream_id() const
2341 {
2342 return stream->as_constant()->value.i[0];
2343 }
2344
2345 ir_rvalue *stream;
2346 };
2347
2348 /**
2349 * IR instruction for tessellation control and compute shader barrier.
2350 */
2351 class ir_barrier : public ir_instruction {
2352 public:
2353 ir_barrier()
2354 : ir_instruction(ir_type_barrier)
2355 {
2356 }
2357
2358 virtual void accept(ir_visitor *v)
2359 {
2360 v->visit(this);
2361 }
2362
2363 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2364 {
2365 return new(mem_ctx) ir_barrier();
2366 }
2367
2368 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2369 };
2370
2371 /*@}*/
2372
2373 /**
2374 * Apply a visitor to each IR node in a list
2375 */
2376 void
2377 visit_exec_list(exec_list *list, ir_visitor *visitor);
2378
2379 /**
2380 * Validate invariants on each IR node in a list
2381 */
2382 void validate_ir_tree(exec_list *instructions);
2383
2384 struct _mesa_glsl_parse_state;
2385 struct gl_shader_program;
2386
2387 /**
2388 * Detect whether an unlinked shader contains static recursion
2389 *
2390 * If the list of instructions is determined to contain static recursion,
2391 * \c _mesa_glsl_error will be called to emit error messages for each function
2392 * that is in the recursion cycle.
2393 */
2394 void
2395 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2396 exec_list *instructions);
2397
2398 /**
2399 * Detect whether a linked shader contains static recursion
2400 *
2401 * If the list of instructions is determined to contain static recursion,
2402 * \c link_error_printf will be called to emit error messages for each function
2403 * that is in the recursion cycle. In addition,
2404 * \c gl_shader_program::LinkStatus will be set to false.
2405 */
2406 void
2407 detect_recursion_linked(struct gl_shader_program *prog,
2408 exec_list *instructions);
2409
2410 /**
2411 * Make a clone of each IR instruction in a list
2412 *
2413 * \param in List of IR instructions that are to be cloned
2414 * \param out List to hold the cloned instructions
2415 */
2416 void
2417 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2418
2419 extern void
2420 _mesa_glsl_initialize_variables(exec_list *instructions,
2421 struct _mesa_glsl_parse_state *state);
2422
2423 extern void
2424 reparent_ir(exec_list *list, void *mem_ctx);
2425
2426 extern void
2427 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2428 gl_shader_stage shader_stage);
2429
2430 extern char *
2431 prototype_string(const glsl_type *return_type, const char *name,
2432 exec_list *parameters);
2433
2434 const char *
2435 mode_string(const ir_variable *var);
2436
2437 /**
2438 * Built-in / reserved GL variables names start with "gl_"
2439 */
2440 static inline bool
2441 is_gl_identifier(const char *s)
2442 {
2443 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2444 }
2445
2446 extern "C" {
2447 #endif /* __cplusplus */
2448
2449 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2450 struct _mesa_glsl_parse_state *state);
2451
2452 extern void
2453 fprint_ir(FILE *f, const void *instruction);
2454
2455 extern const struct gl_builtin_uniform_desc *
2456 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2457
2458 #ifdef __cplusplus
2459 } /* extern "C" */
2460 #endif
2461
2462 unsigned
2463 vertices_per_prim(GLenum prim);
2464
2465 #endif /* IR_H */