glsl: Track a unique intrinsic ID with each intrinsic function
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 struct ir_variable_data {
628
629 /**
630 * Is the variable read-only?
631 *
632 * This is set for variables declared as \c const, shader inputs,
633 * and uniforms.
634 */
635 unsigned read_only:1;
636 unsigned centroid:1;
637 unsigned sample:1;
638 unsigned patch:1;
639 unsigned invariant:1;
640 unsigned precise:1;
641
642 /**
643 * Has this variable been used for reading or writing?
644 *
645 * Several GLSL semantic checks require knowledge of whether or not a
646 * variable has been used. For example, it is an error to redeclare a
647 * variable as invariant after it has been used.
648 *
649 * This is only maintained in the ast_to_hir.cpp path, not in
650 * Mesa's fixed function or ARB program paths.
651 */
652 unsigned used:1;
653
654 /**
655 * Has this variable been statically assigned?
656 *
657 * This answers whether the variable was assigned in any path of
658 * the shader during ast_to_hir. This doesn't answer whether it is
659 * still written after dead code removal, nor is it maintained in
660 * non-ast_to_hir.cpp (GLSL parsing) paths.
661 */
662 unsigned assigned:1;
663
664 /**
665 * When separate shader programs are enabled, only input/outputs between
666 * the stages of a multi-stage separate program can be safely removed
667 * from the shader interface. Other input/outputs must remains active.
668 */
669 unsigned always_active_io:1;
670
671 /**
672 * Enum indicating how the variable was declared. See
673 * ir_var_declaration_type.
674 *
675 * This is used to detect certain kinds of illegal variable redeclarations.
676 */
677 unsigned how_declared:2;
678
679 /**
680 * Storage class of the variable.
681 *
682 * \sa ir_variable_mode
683 */
684 unsigned mode:4;
685
686 /**
687 * Interpolation mode for shader inputs / outputs
688 *
689 * \sa glsl_interp_mode
690 */
691 unsigned interpolation:2;
692
693 /**
694 * \name ARB_fragment_coord_conventions
695 * @{
696 */
697 unsigned origin_upper_left:1;
698 unsigned pixel_center_integer:1;
699 /*@}*/
700
701 /**
702 * Was the location explicitly set in the shader?
703 *
704 * If the location is explicitly set in the shader, it \b cannot be changed
705 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
706 * no effect).
707 */
708 unsigned explicit_location:1;
709 unsigned explicit_index:1;
710
711 /**
712 * Was an initial binding explicitly set in the shader?
713 *
714 * If so, constant_value contains an integer ir_constant representing the
715 * initial binding point.
716 */
717 unsigned explicit_binding:1;
718
719 /**
720 * Was an initial component explicitly set in the shader?
721 */
722 unsigned explicit_component:1;
723
724 /**
725 * Does this variable have an initializer?
726 *
727 * This is used by the linker to cross-validiate initializers of global
728 * variables.
729 */
730 unsigned has_initializer:1;
731
732 /**
733 * Is this variable a generic output or input that has not yet been matched
734 * up to a variable in another stage of the pipeline?
735 *
736 * This is used by the linker as scratch storage while assigning locations
737 * to generic inputs and outputs.
738 */
739 unsigned is_unmatched_generic_inout:1;
740
741 /**
742 * Is this varying used only by transform feedback?
743 *
744 * This is used by the linker to decide if its safe to pack the varying.
745 */
746 unsigned is_xfb_only:1;
747
748 /**
749 * Was a transfor feedback buffer set in the shader?
750 */
751 unsigned explicit_xfb_buffer:1;
752
753 /**
754 * Was a transfor feedback offset set in the shader?
755 */
756 unsigned explicit_xfb_offset:1;
757
758 /**
759 * Was a transfor feedback stride set in the shader?
760 */
761 unsigned explicit_xfb_stride:1;
762
763 /**
764 * If non-zero, then this variable may be packed along with other variables
765 * into a single varying slot, so this offset should be applied when
766 * accessing components. For example, an offset of 1 means that the x
767 * component of this variable is actually stored in component y of the
768 * location specified by \c location.
769 */
770 unsigned location_frac:2;
771
772 /**
773 * Layout of the matrix. Uses glsl_matrix_layout values.
774 */
775 unsigned matrix_layout:2;
776
777 /**
778 * Non-zero if this variable was created by lowering a named interface
779 * block.
780 */
781 unsigned from_named_ifc_block:1;
782
783 /**
784 * Non-zero if the variable must be a shader input. This is useful for
785 * constraints on function parameters.
786 */
787 unsigned must_be_shader_input:1;
788
789 /**
790 * Output index for dual source blending.
791 *
792 * \note
793 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
794 * source blending.
795 */
796 unsigned index:1;
797
798 /**
799 * Precision qualifier.
800 *
801 * In desktop GLSL we do not care about precision qualifiers at all, in
802 * fact, the spec says that precision qualifiers are ignored.
803 *
804 * To make things easy, we make it so that this field is always
805 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
806 * have the same precision value and the checks we add in the compiler
807 * for this field will never break a desktop shader compile.
808 */
809 unsigned precision:2;
810
811 /**
812 * \brief Layout qualifier for gl_FragDepth.
813 *
814 * This is not equal to \c ir_depth_layout_none if and only if this
815 * variable is \c gl_FragDepth and a layout qualifier is specified.
816 */
817 ir_depth_layout depth_layout:3;
818
819 /**
820 * ARB_shader_image_load_store qualifiers.
821 */
822 unsigned image_read_only:1; /**< "readonly" qualifier. */
823 unsigned image_write_only:1; /**< "writeonly" qualifier. */
824 unsigned image_coherent:1;
825 unsigned image_volatile:1;
826 unsigned image_restrict:1;
827
828 /**
829 * ARB_shader_storage_buffer_object
830 */
831 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
832
833 unsigned implicit_sized_array:1;
834
835 /**
836 * Whether this is a fragment shader output implicitly initialized with
837 * the previous contents of the specified render target at the
838 * framebuffer location corresponding to this shader invocation.
839 */
840 unsigned fb_fetch_output:1;
841
842 /**
843 * Emit a warning if this variable is accessed.
844 */
845 private:
846 uint8_t warn_extension_index;
847
848 public:
849 /** Image internal format if specified explicitly, otherwise GL_NONE. */
850 uint16_t image_format;
851
852 private:
853 /**
854 * Number of state slots used
855 *
856 * \note
857 * This could be stored in as few as 7-bits, if necessary. If it is made
858 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
859 * be safe.
860 */
861 uint16_t _num_state_slots;
862
863 public:
864 /**
865 * Initial binding point for a sampler, atomic, or UBO.
866 *
867 * For array types, this represents the binding point for the first element.
868 */
869 int16_t binding;
870
871 /**
872 * Storage location of the base of this variable
873 *
874 * The precise meaning of this field depends on the nature of the variable.
875 *
876 * - Vertex shader input: one of the values from \c gl_vert_attrib.
877 * - Vertex shader output: one of the values from \c gl_varying_slot.
878 * - Geometry shader input: one of the values from \c gl_varying_slot.
879 * - Geometry shader output: one of the values from \c gl_varying_slot.
880 * - Fragment shader input: one of the values from \c gl_varying_slot.
881 * - Fragment shader output: one of the values from \c gl_frag_result.
882 * - Uniforms: Per-stage uniform slot number for default uniform block.
883 * - Uniforms: Index within the uniform block definition for UBO members.
884 * - Non-UBO Uniforms: explicit location until linking then reused to
885 * store uniform slot number.
886 * - Other: This field is not currently used.
887 *
888 * If the variable is a uniform, shader input, or shader output, and the
889 * slot has not been assigned, the value will be -1.
890 */
891 int location;
892
893 /**
894 * for glsl->tgsi/mesa IR we need to store the index into the
895 * parameters for uniforms, initially the code overloaded location
896 * but this causes problems with indirect samplers and AoA.
897 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
898 */
899 int param_index;
900
901 /**
902 * Vertex stream output identifier.
903 */
904 unsigned stream;
905
906 /**
907 * Atomic, transform feedback or block member offset.
908 */
909 unsigned offset;
910
911 /**
912 * Highest element accessed with a constant expression array index
913 *
914 * Not used for non-array variables. -1 is never accessed.
915 */
916 int max_array_access;
917
918 /**
919 * Transform feedback buffer.
920 */
921 unsigned xfb_buffer;
922
923 /**
924 * Transform feedback stride.
925 */
926 unsigned xfb_stride;
927
928 /**
929 * Allow (only) ir_variable direct access private members.
930 */
931 friend class ir_variable;
932 } data;
933
934 /**
935 * Value assigned in the initializer of a variable declared "const"
936 */
937 ir_constant *constant_value;
938
939 /**
940 * Constant expression assigned in the initializer of the variable
941 *
942 * \warning
943 * This field and \c ::constant_value are distinct. Even if the two fields
944 * refer to constants with the same value, they must point to separate
945 * objects.
946 */
947 ir_constant *constant_initializer;
948
949 private:
950 static const char *const warn_extension_table[];
951
952 union {
953 /**
954 * For variables which satisfy the is_interface_instance() predicate,
955 * this points to an array of integers such that if the ith member of
956 * the interface block is an array, max_ifc_array_access[i] is the
957 * maximum array element of that member that has been accessed. If the
958 * ith member of the interface block is not an array,
959 * max_ifc_array_access[i] is unused.
960 *
961 * For variables whose type is not an interface block, this pointer is
962 * NULL.
963 */
964 int *max_ifc_array_access;
965
966 /**
967 * Built-in state that backs this uniform
968 *
969 * Once set at variable creation, \c state_slots must remain invariant.
970 *
971 * If the variable is not a uniform, \c _num_state_slots will be zero
972 * and \c state_slots will be \c NULL.
973 */
974 ir_state_slot *state_slots;
975 } u;
976
977 /**
978 * For variables that are in an interface block or are an instance of an
979 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
980 *
981 * \sa ir_variable::location
982 */
983 const glsl_type *interface_type;
984
985 /**
986 * Name used for anonymous compiler temporaries
987 */
988 static const char tmp_name[];
989
990 public:
991 /**
992 * Should the construct keep names for ir_var_temporary variables?
993 *
994 * When this global is false, names passed to the constructor for
995 * \c ir_var_temporary variables will be dropped. Instead, the variable will
996 * be named "compiler_temp". This name will be in static storage.
997 *
998 * \warning
999 * \b NEVER change the mode of an \c ir_var_temporary.
1000 *
1001 * \warning
1002 * This variable is \b not thread-safe. It is global, \b not
1003 * per-context. It begins life false. A context can, at some point, make
1004 * it true. From that point on, it will be true forever. This should be
1005 * okay since it will only be set true while debugging.
1006 */
1007 static bool temporaries_allocate_names;
1008 };
1009
1010 /**
1011 * A function that returns whether a built-in function is available in the
1012 * current shading language (based on version, ES or desktop, and extensions).
1013 */
1014 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1015
1016 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1017 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1018
1019 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1020 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1021
1022 enum ir_intrinsic_id {
1023 ir_intrinsic_invalid = 0,
1024
1025 /**
1026 * \name Generic intrinsics
1027 *
1028 * Each of these intrinsics has a specific version for shared variables and
1029 * SSBOs.
1030 */
1031 /*@{*/
1032 ir_intrinsic_generic_load,
1033 ir_intrinsic_generic_store,
1034 ir_intrinsic_generic_atomic_add,
1035 ir_intrinsic_generic_atomic_and,
1036 ir_intrinsic_generic_atomic_or,
1037 ir_intrinsic_generic_atomic_xor,
1038 ir_intrinsic_generic_atomic_min,
1039 ir_intrinsic_generic_atomic_max,
1040 ir_intrinsic_generic_atomic_exchange,
1041 ir_intrinsic_generic_atomic_comp_swap,
1042 /*@}*/
1043
1044 ir_intrinsic_atomic_counter_read,
1045 ir_intrinsic_atomic_counter_increment,
1046 ir_intrinsic_atomic_counter_predecrement,
1047 ir_intrinsic_atomic_counter_add,
1048 ir_intrinsic_atomic_counter_sub,
1049 ir_intrinsic_atomic_counter_and,
1050 ir_intrinsic_atomic_counter_or,
1051 ir_intrinsic_atomic_counter_xor,
1052 ir_intrinsic_atomic_counter_min,
1053 ir_intrinsic_atomic_counter_max,
1054 ir_intrinsic_atomic_counter_exchange,
1055 ir_intrinsic_atomic_counter_comp_swap,
1056
1057 ir_intrinsic_image_load,
1058 ir_intrinsic_image_store,
1059 ir_intrinsic_image_atomic_add,
1060 ir_intrinsic_image_atomic_and,
1061 ir_intrinsic_image_atomic_or,
1062 ir_intrinsic_image_atomic_xor,
1063 ir_intrinsic_image_atomic_min,
1064 ir_intrinsic_image_atomic_max,
1065 ir_intrinsic_image_atomic_exchange,
1066 ir_intrinsic_image_atomic_comp_swap,
1067 ir_intrinsic_image_size,
1068 ir_intrinsic_image_samples,
1069
1070 ir_intrinsic_ssbo_load,
1071 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1072 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1073 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1074 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1075 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1076 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1077 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1078 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1079 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1080
1081 ir_intrinsic_memory_barrier,
1082 ir_intrinsic_shader_clock,
1083 ir_intrinsic_group_memory_barrier,
1084 ir_intrinsic_memory_barrier_atomic_counter,
1085 ir_intrinsic_memory_barrier_buffer,
1086 ir_intrinsic_memory_barrier_image,
1087 ir_intrinsic_memory_barrier_shared,
1088
1089 ir_intrinsic_shared_load,
1090 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1091 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1092 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1093 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1094 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1095 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1096 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1097 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1098 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1099 };
1100
1101 /*@{*/
1102 /**
1103 * The representation of a function instance; may be the full definition or
1104 * simply a prototype.
1105 */
1106 class ir_function_signature : public ir_instruction {
1107 /* An ir_function_signature will be part of the list of signatures in
1108 * an ir_function.
1109 */
1110 public:
1111 ir_function_signature(const glsl_type *return_type,
1112 builtin_available_predicate builtin_avail = NULL);
1113
1114 virtual ir_function_signature *clone(void *mem_ctx,
1115 struct hash_table *ht) const;
1116 ir_function_signature *clone_prototype(void *mem_ctx,
1117 struct hash_table *ht) const;
1118
1119 virtual void accept(ir_visitor *v)
1120 {
1121 v->visit(this);
1122 }
1123
1124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1125
1126 /**
1127 * Attempt to evaluate this function as a constant expression,
1128 * given a list of the actual parameters and the variable context.
1129 * Returns NULL for non-built-ins.
1130 */
1131 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1132
1133 /**
1134 * Get the name of the function for which this is a signature
1135 */
1136 const char *function_name() const;
1137
1138 /**
1139 * Get a handle to the function for which this is a signature
1140 *
1141 * There is no setter function, this function returns a \c const pointer,
1142 * and \c ir_function_signature::_function is private for a reason. The
1143 * only way to make a connection between a function and function signature
1144 * is via \c ir_function::add_signature. This helps ensure that certain
1145 * invariants (i.e., a function signature is in the list of signatures for
1146 * its \c _function) are met.
1147 *
1148 * \sa ir_function::add_signature
1149 */
1150 inline const class ir_function *function() const
1151 {
1152 return this->_function;
1153 }
1154
1155 /**
1156 * Check whether the qualifiers match between this signature's parameters
1157 * and the supplied parameter list. If not, returns the name of the first
1158 * parameter with mismatched qualifiers (for use in error messages).
1159 */
1160 const char *qualifiers_match(exec_list *params);
1161
1162 /**
1163 * Replace the current parameter list with the given one. This is useful
1164 * if the current information came from a prototype, and either has invalid
1165 * or missing parameter names.
1166 */
1167 void replace_parameters(exec_list *new_params);
1168
1169 /**
1170 * Function return type.
1171 *
1172 * \note This discards the optional precision qualifier.
1173 */
1174 const struct glsl_type *return_type;
1175
1176 /**
1177 * List of ir_variable of function parameters.
1178 *
1179 * This represents the storage. The paramaters passed in a particular
1180 * call will be in ir_call::actual_paramaters.
1181 */
1182 struct exec_list parameters;
1183
1184 /** Whether or not this function has a body (which may be empty). */
1185 unsigned is_defined:1;
1186
1187 /** Whether or not this function signature is a built-in. */
1188 bool is_builtin() const;
1189
1190 /**
1191 * Whether or not this function is an intrinsic to be implemented
1192 * by the driver.
1193 */
1194 bool is_intrinsic;
1195
1196 /** Indentifier for this intrinsic. */
1197 enum ir_intrinsic_id intrinsic_id;
1198
1199 /** Whether or not a built-in is available for this shader. */
1200 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1201
1202 /** Body of instructions in the function. */
1203 struct exec_list body;
1204
1205 private:
1206 /**
1207 * A function pointer to a predicate that answers whether a built-in
1208 * function is available in the current shader. NULL if not a built-in.
1209 */
1210 builtin_available_predicate builtin_avail;
1211
1212 /** Function of which this signature is one overload. */
1213 class ir_function *_function;
1214
1215 /** Function signature of which this one is a prototype clone */
1216 const ir_function_signature *origin;
1217
1218 friend class ir_function;
1219
1220 /**
1221 * Helper function to run a list of instructions for constant
1222 * expression evaluation.
1223 *
1224 * The hash table represents the values of the visible variables.
1225 * There are no scoping issues because the table is indexed on
1226 * ir_variable pointers, not variable names.
1227 *
1228 * Returns false if the expression is not constant, true otherwise,
1229 * and the value in *result if result is non-NULL.
1230 */
1231 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1232 struct hash_table *variable_context,
1233 ir_constant **result);
1234 };
1235
1236
1237 /**
1238 * Header for tracking multiple overloaded functions with the same name.
1239 * Contains a list of ir_function_signatures representing each of the
1240 * actual functions.
1241 */
1242 class ir_function : public ir_instruction {
1243 public:
1244 ir_function(const char *name);
1245
1246 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1247
1248 virtual void accept(ir_visitor *v)
1249 {
1250 v->visit(this);
1251 }
1252
1253 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1254
1255 void add_signature(ir_function_signature *sig)
1256 {
1257 sig->_function = this;
1258 this->signatures.push_tail(sig);
1259 }
1260
1261 /**
1262 * Find a signature that matches a set of actual parameters, taking implicit
1263 * conversions into account. Also flags whether the match was exact.
1264 */
1265 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1266 const exec_list *actual_param,
1267 bool allow_builtins,
1268 bool *match_is_exact);
1269
1270 /**
1271 * Find a signature that matches a set of actual parameters, taking implicit
1272 * conversions into account.
1273 */
1274 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1275 const exec_list *actual_param,
1276 bool allow_builtins);
1277
1278 /**
1279 * Find a signature that exactly matches a set of actual parameters without
1280 * any implicit type conversions.
1281 */
1282 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1283 const exec_list *actual_ps);
1284
1285 /**
1286 * Name of the function.
1287 */
1288 const char *name;
1289
1290 /** Whether or not this function has a signature that isn't a built-in. */
1291 bool has_user_signature();
1292
1293 /**
1294 * List of ir_function_signature for each overloaded function with this name.
1295 */
1296 struct exec_list signatures;
1297
1298 /**
1299 * is this function a subroutine type declaration
1300 * e.g. subroutine void type1(float arg1);
1301 */
1302 bool is_subroutine;
1303
1304 /**
1305 * is this function associated to a subroutine type
1306 * e.g. subroutine (type1, type2) function_name { function_body };
1307 * would have num_subroutine_types 2,
1308 * and pointers to the type1 and type2 types.
1309 */
1310 int num_subroutine_types;
1311 const struct glsl_type **subroutine_types;
1312
1313 int subroutine_index;
1314 };
1315
1316 inline const char *ir_function_signature::function_name() const
1317 {
1318 return this->_function->name;
1319 }
1320 /*@}*/
1321
1322
1323 /**
1324 * IR instruction representing high-level if-statements
1325 */
1326 class ir_if : public ir_instruction {
1327 public:
1328 ir_if(ir_rvalue *condition)
1329 : ir_instruction(ir_type_if), condition(condition)
1330 {
1331 }
1332
1333 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1334
1335 virtual void accept(ir_visitor *v)
1336 {
1337 v->visit(this);
1338 }
1339
1340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
1342 ir_rvalue *condition;
1343 /** List of ir_instruction for the body of the then branch */
1344 exec_list then_instructions;
1345 /** List of ir_instruction for the body of the else branch */
1346 exec_list else_instructions;
1347 };
1348
1349
1350 /**
1351 * IR instruction representing a high-level loop structure.
1352 */
1353 class ir_loop : public ir_instruction {
1354 public:
1355 ir_loop();
1356
1357 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1358
1359 virtual void accept(ir_visitor *v)
1360 {
1361 v->visit(this);
1362 }
1363
1364 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1365
1366 /** List of ir_instruction that make up the body of the loop. */
1367 exec_list body_instructions;
1368 };
1369
1370
1371 class ir_assignment : public ir_instruction {
1372 public:
1373 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1374
1375 /**
1376 * Construct an assignment with an explicit write mask
1377 *
1378 * \note
1379 * Since a write mask is supplied, the LHS must already be a bare
1380 * \c ir_dereference. The cannot be any swizzles in the LHS.
1381 */
1382 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1383 unsigned write_mask);
1384
1385 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1386
1387 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1388
1389 virtual void accept(ir_visitor *v)
1390 {
1391 v->visit(this);
1392 }
1393
1394 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1395
1396 /**
1397 * Get a whole variable written by an assignment
1398 *
1399 * If the LHS of the assignment writes a whole variable, the variable is
1400 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1401 * assignment are:
1402 *
1403 * - Assigning to a scalar
1404 * - Assigning to all components of a vector
1405 * - Whole array (or matrix) assignment
1406 * - Whole structure assignment
1407 */
1408 ir_variable *whole_variable_written();
1409
1410 /**
1411 * Set the LHS of an assignment
1412 */
1413 void set_lhs(ir_rvalue *lhs);
1414
1415 /**
1416 * Left-hand side of the assignment.
1417 *
1418 * This should be treated as read only. If you need to set the LHS of an
1419 * assignment, use \c ir_assignment::set_lhs.
1420 */
1421 ir_dereference *lhs;
1422
1423 /**
1424 * Value being assigned
1425 */
1426 ir_rvalue *rhs;
1427
1428 /**
1429 * Optional condition for the assignment.
1430 */
1431 ir_rvalue *condition;
1432
1433
1434 /**
1435 * Component mask written
1436 *
1437 * For non-vector types in the LHS, this field will be zero. For vector
1438 * types, a bit will be set for each component that is written. Note that
1439 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1440 *
1441 * A partially-set write mask means that each enabled channel gets
1442 * the value from a consecutive channel of the rhs. For example,
1443 * to write just .xyw of gl_FrontColor with color:
1444 *
1445 * (assign (constant bool (1)) (xyw)
1446 * (var_ref gl_FragColor)
1447 * (swiz xyw (var_ref color)))
1448 */
1449 unsigned write_mask:4;
1450 };
1451
1452 #include "ir_expression_operation.h"
1453
1454 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1455
1456 class ir_expression : public ir_rvalue {
1457 public:
1458 ir_expression(int op, const struct glsl_type *type,
1459 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1460 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1461
1462 /**
1463 * Constructor for unary operation expressions
1464 */
1465 ir_expression(int op, ir_rvalue *);
1466
1467 /**
1468 * Constructor for binary operation expressions
1469 */
1470 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1471
1472 /**
1473 * Constructor for ternary operation expressions
1474 */
1475 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1476
1477 virtual bool equals(const ir_instruction *ir,
1478 enum ir_node_type ignore = ir_type_unset) const;
1479
1480 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1481
1482 /**
1483 * Attempt to constant-fold the expression
1484 *
1485 * The "variable_context" hash table links ir_variable * to ir_constant *
1486 * that represent the variables' values. \c NULL represents an empty
1487 * context.
1488 *
1489 * If the expression cannot be constant folded, this method will return
1490 * \c NULL.
1491 */
1492 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1493
1494 /**
1495 * Determine the number of operands used by an expression
1496 */
1497 static unsigned int get_num_operands(ir_expression_operation);
1498
1499 /**
1500 * Determine the number of operands used by an expression
1501 */
1502 unsigned int get_num_operands() const
1503 {
1504 return (this->operation == ir_quadop_vector)
1505 ? this->type->vector_elements : get_num_operands(operation);
1506 }
1507
1508 /**
1509 * Return whether the expression operates on vectors horizontally.
1510 */
1511 bool is_horizontal() const
1512 {
1513 return operation == ir_binop_all_equal ||
1514 operation == ir_binop_any_nequal ||
1515 operation == ir_binop_dot ||
1516 operation == ir_binop_vector_extract ||
1517 operation == ir_triop_vector_insert ||
1518 operation == ir_binop_ubo_load ||
1519 operation == ir_quadop_vector;
1520 }
1521
1522 /**
1523 * Do a reverse-lookup to translate the given string into an operator.
1524 */
1525 static ir_expression_operation get_operator(const char *);
1526
1527 virtual void accept(ir_visitor *v)
1528 {
1529 v->visit(this);
1530 }
1531
1532 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1533
1534 virtual ir_variable *variable_referenced() const;
1535
1536 ir_expression_operation operation;
1537 ir_rvalue *operands[4];
1538 };
1539
1540
1541 /**
1542 * HIR instruction representing a high-level function call, containing a list
1543 * of parameters and returning a value in the supplied temporary.
1544 */
1545 class ir_call : public ir_instruction {
1546 public:
1547 ir_call(ir_function_signature *callee,
1548 ir_dereference_variable *return_deref,
1549 exec_list *actual_parameters)
1550 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1551 {
1552 assert(callee->return_type != NULL);
1553 actual_parameters->move_nodes_to(& this->actual_parameters);
1554 this->use_builtin = callee->is_builtin();
1555 }
1556
1557 ir_call(ir_function_signature *callee,
1558 ir_dereference_variable *return_deref,
1559 exec_list *actual_parameters,
1560 ir_variable *var, ir_rvalue *array_idx)
1561 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1562 {
1563 assert(callee->return_type != NULL);
1564 actual_parameters->move_nodes_to(& this->actual_parameters);
1565 this->use_builtin = callee->is_builtin();
1566 }
1567
1568 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1569
1570 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1571
1572 virtual void accept(ir_visitor *v)
1573 {
1574 v->visit(this);
1575 }
1576
1577 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1578
1579 /**
1580 * Get the name of the function being called.
1581 */
1582 const char *callee_name() const
1583 {
1584 return callee->function_name();
1585 }
1586
1587 /**
1588 * Generates an inline version of the function before @ir,
1589 * storing the return value in return_deref.
1590 */
1591 void generate_inline(ir_instruction *ir);
1592
1593 /**
1594 * Storage for the function's return value.
1595 * This must be NULL if the return type is void.
1596 */
1597 ir_dereference_variable *return_deref;
1598
1599 /**
1600 * The specific function signature being called.
1601 */
1602 ir_function_signature *callee;
1603
1604 /* List of ir_rvalue of paramaters passed in this call. */
1605 exec_list actual_parameters;
1606
1607 /** Should this call only bind to a built-in function? */
1608 bool use_builtin;
1609
1610 /*
1611 * ARB_shader_subroutine support -
1612 * the subroutine uniform variable and array index
1613 * rvalue to be used in the lowering pass later.
1614 */
1615 ir_variable *sub_var;
1616 ir_rvalue *array_idx;
1617 };
1618
1619
1620 /**
1621 * \name Jump-like IR instructions.
1622 *
1623 * These include \c break, \c continue, \c return, and \c discard.
1624 */
1625 /*@{*/
1626 class ir_jump : public ir_instruction {
1627 protected:
1628 ir_jump(enum ir_node_type t)
1629 : ir_instruction(t)
1630 {
1631 }
1632 };
1633
1634 class ir_return : public ir_jump {
1635 public:
1636 ir_return()
1637 : ir_jump(ir_type_return), value(NULL)
1638 {
1639 }
1640
1641 ir_return(ir_rvalue *value)
1642 : ir_jump(ir_type_return), value(value)
1643 {
1644 }
1645
1646 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1647
1648 ir_rvalue *get_value() const
1649 {
1650 return value;
1651 }
1652
1653 virtual void accept(ir_visitor *v)
1654 {
1655 v->visit(this);
1656 }
1657
1658 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1659
1660 ir_rvalue *value;
1661 };
1662
1663
1664 /**
1665 * Jump instructions used inside loops
1666 *
1667 * These include \c break and \c continue. The \c break within a loop is
1668 * different from the \c break within a switch-statement.
1669 *
1670 * \sa ir_switch_jump
1671 */
1672 class ir_loop_jump : public ir_jump {
1673 public:
1674 enum jump_mode {
1675 jump_break,
1676 jump_continue
1677 };
1678
1679 ir_loop_jump(jump_mode mode)
1680 : ir_jump(ir_type_loop_jump)
1681 {
1682 this->mode = mode;
1683 }
1684
1685 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1686
1687 virtual void accept(ir_visitor *v)
1688 {
1689 v->visit(this);
1690 }
1691
1692 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1693
1694 bool is_break() const
1695 {
1696 return mode == jump_break;
1697 }
1698
1699 bool is_continue() const
1700 {
1701 return mode == jump_continue;
1702 }
1703
1704 /** Mode selector for the jump instruction. */
1705 enum jump_mode mode;
1706 };
1707
1708 /**
1709 * IR instruction representing discard statements.
1710 */
1711 class ir_discard : public ir_jump {
1712 public:
1713 ir_discard()
1714 : ir_jump(ir_type_discard)
1715 {
1716 this->condition = NULL;
1717 }
1718
1719 ir_discard(ir_rvalue *cond)
1720 : ir_jump(ir_type_discard)
1721 {
1722 this->condition = cond;
1723 }
1724
1725 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1726
1727 virtual void accept(ir_visitor *v)
1728 {
1729 v->visit(this);
1730 }
1731
1732 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1733
1734 ir_rvalue *condition;
1735 };
1736 /*@}*/
1737
1738
1739 /**
1740 * Texture sampling opcodes used in ir_texture
1741 */
1742 enum ir_texture_opcode {
1743 ir_tex, /**< Regular texture look-up */
1744 ir_txb, /**< Texture look-up with LOD bias */
1745 ir_txl, /**< Texture look-up with explicit LOD */
1746 ir_txd, /**< Texture look-up with partial derivatvies */
1747 ir_txf, /**< Texel fetch with explicit LOD */
1748 ir_txf_ms, /**< Multisample texture fetch */
1749 ir_txs, /**< Texture size */
1750 ir_lod, /**< Texture lod query */
1751 ir_tg4, /**< Texture gather */
1752 ir_query_levels, /**< Texture levels query */
1753 ir_texture_samples, /**< Texture samples query */
1754 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1755 };
1756
1757
1758 /**
1759 * IR instruction to sample a texture
1760 *
1761 * The specific form of the IR instruction depends on the \c mode value
1762 * selected from \c ir_texture_opcodes. In the printed IR, these will
1763 * appear as:
1764 *
1765 * Texel offset (0 or an expression)
1766 * | Projection divisor
1767 * | | Shadow comparitor
1768 * | | |
1769 * v v v
1770 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1771 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1772 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1773 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1774 * (txf <type> <sampler> <coordinate> 0 <lod>)
1775 * (txf_ms
1776 * <type> <sampler> <coordinate> <sample_index>)
1777 * (txs <type> <sampler> <lod>)
1778 * (lod <type> <sampler> <coordinate>)
1779 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1780 * (query_levels <type> <sampler>)
1781 * (samples_identical <sampler> <coordinate>)
1782 */
1783 class ir_texture : public ir_rvalue {
1784 public:
1785 ir_texture(enum ir_texture_opcode op)
1786 : ir_rvalue(ir_type_texture),
1787 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1788 shadow_comparitor(NULL), offset(NULL)
1789 {
1790 memset(&lod_info, 0, sizeof(lod_info));
1791 }
1792
1793 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1794
1795 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1796
1797 virtual void accept(ir_visitor *v)
1798 {
1799 v->visit(this);
1800 }
1801
1802 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1803
1804 virtual bool equals(const ir_instruction *ir,
1805 enum ir_node_type ignore = ir_type_unset) const;
1806
1807 /**
1808 * Return a string representing the ir_texture_opcode.
1809 */
1810 const char *opcode_string();
1811
1812 /** Set the sampler and type. */
1813 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1814
1815 /**
1816 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1817 */
1818 static ir_texture_opcode get_opcode(const char *);
1819
1820 enum ir_texture_opcode op;
1821
1822 /** Sampler to use for the texture access. */
1823 ir_dereference *sampler;
1824
1825 /** Texture coordinate to sample */
1826 ir_rvalue *coordinate;
1827
1828 /**
1829 * Value used for projective divide.
1830 *
1831 * If there is no projective divide (the common case), this will be
1832 * \c NULL. Optimization passes should check for this to point to a constant
1833 * of 1.0 and replace that with \c NULL.
1834 */
1835 ir_rvalue *projector;
1836
1837 /**
1838 * Coordinate used for comparison on shadow look-ups.
1839 *
1840 * If there is no shadow comparison, this will be \c NULL. For the
1841 * \c ir_txf opcode, this *must* be \c NULL.
1842 */
1843 ir_rvalue *shadow_comparitor;
1844
1845 /** Texel offset. */
1846 ir_rvalue *offset;
1847
1848 union {
1849 ir_rvalue *lod; /**< Floating point LOD */
1850 ir_rvalue *bias; /**< Floating point LOD bias */
1851 ir_rvalue *sample_index; /**< MSAA sample index */
1852 ir_rvalue *component; /**< Gather component selector */
1853 struct {
1854 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1855 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1856 } grad;
1857 } lod_info;
1858 };
1859
1860
1861 struct ir_swizzle_mask {
1862 unsigned x:2;
1863 unsigned y:2;
1864 unsigned z:2;
1865 unsigned w:2;
1866
1867 /**
1868 * Number of components in the swizzle.
1869 */
1870 unsigned num_components:3;
1871
1872 /**
1873 * Does the swizzle contain duplicate components?
1874 *
1875 * L-value swizzles cannot contain duplicate components.
1876 */
1877 unsigned has_duplicates:1;
1878 };
1879
1880
1881 class ir_swizzle : public ir_rvalue {
1882 public:
1883 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1884 unsigned count);
1885
1886 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1887
1888 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1889
1890 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1891
1892 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1893
1894 /**
1895 * Construct an ir_swizzle from the textual representation. Can fail.
1896 */
1897 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1898
1899 virtual void accept(ir_visitor *v)
1900 {
1901 v->visit(this);
1902 }
1903
1904 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1905
1906 virtual bool equals(const ir_instruction *ir,
1907 enum ir_node_type ignore = ir_type_unset) const;
1908
1909 bool is_lvalue() const
1910 {
1911 return val->is_lvalue() && !mask.has_duplicates;
1912 }
1913
1914 /**
1915 * Get the variable that is ultimately referenced by an r-value
1916 */
1917 virtual ir_variable *variable_referenced() const;
1918
1919 ir_rvalue *val;
1920 ir_swizzle_mask mask;
1921
1922 private:
1923 /**
1924 * Initialize the mask component of a swizzle
1925 *
1926 * This is used by the \c ir_swizzle constructors.
1927 */
1928 void init_mask(const unsigned *components, unsigned count);
1929 };
1930
1931
1932 class ir_dereference : public ir_rvalue {
1933 public:
1934 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1935
1936 bool is_lvalue() const;
1937
1938 /**
1939 * Get the variable that is ultimately referenced by an r-value
1940 */
1941 virtual ir_variable *variable_referenced() const = 0;
1942
1943 protected:
1944 ir_dereference(enum ir_node_type t)
1945 : ir_rvalue(t)
1946 {
1947 }
1948 };
1949
1950
1951 class ir_dereference_variable : public ir_dereference {
1952 public:
1953 ir_dereference_variable(ir_variable *var);
1954
1955 virtual ir_dereference_variable *clone(void *mem_ctx,
1956 struct hash_table *) const;
1957
1958 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1959
1960 virtual bool equals(const ir_instruction *ir,
1961 enum ir_node_type ignore = ir_type_unset) const;
1962
1963 /**
1964 * Get the variable that is ultimately referenced by an r-value
1965 */
1966 virtual ir_variable *variable_referenced() const
1967 {
1968 return this->var;
1969 }
1970
1971 virtual ir_variable *whole_variable_referenced()
1972 {
1973 /* ir_dereference_variable objects always dereference the entire
1974 * variable. However, if this dereference is dereferenced by anything
1975 * else, the complete deferefernce chain is not a whole-variable
1976 * dereference. This method should only be called on the top most
1977 * ir_rvalue in a dereference chain.
1978 */
1979 return this->var;
1980 }
1981
1982 virtual void accept(ir_visitor *v)
1983 {
1984 v->visit(this);
1985 }
1986
1987 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1988
1989 /**
1990 * Object being dereferenced.
1991 */
1992 ir_variable *var;
1993 };
1994
1995
1996 class ir_dereference_array : public ir_dereference {
1997 public:
1998 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1999
2000 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2001
2002 virtual ir_dereference_array *clone(void *mem_ctx,
2003 struct hash_table *) const;
2004
2005 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2006
2007 virtual bool equals(const ir_instruction *ir,
2008 enum ir_node_type ignore = ir_type_unset) const;
2009
2010 /**
2011 * Get the variable that is ultimately referenced by an r-value
2012 */
2013 virtual ir_variable *variable_referenced() const
2014 {
2015 return this->array->variable_referenced();
2016 }
2017
2018 virtual void accept(ir_visitor *v)
2019 {
2020 v->visit(this);
2021 }
2022
2023 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2024
2025 ir_rvalue *array;
2026 ir_rvalue *array_index;
2027
2028 private:
2029 void set_array(ir_rvalue *value);
2030 };
2031
2032
2033 class ir_dereference_record : public ir_dereference {
2034 public:
2035 ir_dereference_record(ir_rvalue *value, const char *field);
2036
2037 ir_dereference_record(ir_variable *var, const char *field);
2038
2039 virtual ir_dereference_record *clone(void *mem_ctx,
2040 struct hash_table *) const;
2041
2042 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2043
2044 /**
2045 * Get the variable that is ultimately referenced by an r-value
2046 */
2047 virtual ir_variable *variable_referenced() const
2048 {
2049 return this->record->variable_referenced();
2050 }
2051
2052 virtual void accept(ir_visitor *v)
2053 {
2054 v->visit(this);
2055 }
2056
2057 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2058
2059 ir_rvalue *record;
2060 const char *field;
2061 };
2062
2063
2064 /**
2065 * Data stored in an ir_constant
2066 */
2067 union ir_constant_data {
2068 unsigned u[16];
2069 int i[16];
2070 float f[16];
2071 bool b[16];
2072 double d[16];
2073 };
2074
2075
2076 class ir_constant : public ir_rvalue {
2077 public:
2078 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2079 ir_constant(bool b, unsigned vector_elements=1);
2080 ir_constant(unsigned int u, unsigned vector_elements=1);
2081 ir_constant(int i, unsigned vector_elements=1);
2082 ir_constant(float f, unsigned vector_elements=1);
2083 ir_constant(double d, unsigned vector_elements=1);
2084
2085 /**
2086 * Construct an ir_constant from a list of ir_constant values
2087 */
2088 ir_constant(const struct glsl_type *type, exec_list *values);
2089
2090 /**
2091 * Construct an ir_constant from a scalar component of another ir_constant
2092 *
2093 * The new \c ir_constant inherits the type of the component from the
2094 * source constant.
2095 *
2096 * \note
2097 * In the case of a matrix constant, the new constant is a scalar, \b not
2098 * a vector.
2099 */
2100 ir_constant(const ir_constant *c, unsigned i);
2101
2102 /**
2103 * Return a new ir_constant of the specified type containing all zeros.
2104 */
2105 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2106
2107 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2108
2109 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2110
2111 virtual void accept(ir_visitor *v)
2112 {
2113 v->visit(this);
2114 }
2115
2116 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2117
2118 virtual bool equals(const ir_instruction *ir,
2119 enum ir_node_type ignore = ir_type_unset) const;
2120
2121 /**
2122 * Get a particular component of a constant as a specific type
2123 *
2124 * This is useful, for example, to get a value from an integer constant
2125 * as a float or bool. This appears frequently when constructors are
2126 * called with all constant parameters.
2127 */
2128 /*@{*/
2129 bool get_bool_component(unsigned i) const;
2130 float get_float_component(unsigned i) const;
2131 double get_double_component(unsigned i) const;
2132 int get_int_component(unsigned i) const;
2133 unsigned get_uint_component(unsigned i) const;
2134 /*@}*/
2135
2136 ir_constant *get_array_element(unsigned i) const;
2137
2138 ir_constant *get_record_field(const char *name);
2139
2140 /**
2141 * Copy the values on another constant at a given offset.
2142 *
2143 * The offset is ignored for array or struct copies, it's only for
2144 * scalars or vectors into vectors or matrices.
2145 *
2146 * With identical types on both sides and zero offset it's clone()
2147 * without creating a new object.
2148 */
2149
2150 void copy_offset(ir_constant *src, int offset);
2151
2152 /**
2153 * Copy the values on another constant at a given offset and
2154 * following an assign-like mask.
2155 *
2156 * The mask is ignored for scalars.
2157 *
2158 * Note that this function only handles what assign can handle,
2159 * i.e. at most a vector as source and a column of a matrix as
2160 * destination.
2161 */
2162
2163 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2164
2165 /**
2166 * Determine whether a constant has the same value as another constant
2167 *
2168 * \sa ir_constant::is_zero, ir_constant::is_one,
2169 * ir_constant::is_negative_one
2170 */
2171 bool has_value(const ir_constant *) const;
2172
2173 /**
2174 * Return true if this ir_constant represents the given value.
2175 *
2176 * For vectors, this checks that each component is the given value.
2177 */
2178 virtual bool is_value(float f, int i) const;
2179 virtual bool is_zero() const;
2180 virtual bool is_one() const;
2181 virtual bool is_negative_one() const;
2182
2183 /**
2184 * Return true for constants that could be stored as 16-bit unsigned values.
2185 *
2186 * Note that this will return true even for signed integer ir_constants, as
2187 * long as the value is non-negative and fits in 16-bits.
2188 */
2189 virtual bool is_uint16_constant() const;
2190
2191 /**
2192 * Value of the constant.
2193 *
2194 * The field used to back the values supplied by the constant is determined
2195 * by the type associated with the \c ir_instruction. Constants may be
2196 * scalars, vectors, or matrices.
2197 */
2198 union ir_constant_data value;
2199
2200 /* Array elements */
2201 ir_constant **array_elements;
2202
2203 /* Structure fields */
2204 exec_list components;
2205
2206 private:
2207 /**
2208 * Parameterless constructor only used by the clone method
2209 */
2210 ir_constant(void);
2211 };
2212
2213 /**
2214 * IR instruction to emit a vertex in a geometry shader.
2215 */
2216 class ir_emit_vertex : public ir_instruction {
2217 public:
2218 ir_emit_vertex(ir_rvalue *stream)
2219 : ir_instruction(ir_type_emit_vertex),
2220 stream(stream)
2221 {
2222 assert(stream);
2223 }
2224
2225 virtual void accept(ir_visitor *v)
2226 {
2227 v->visit(this);
2228 }
2229
2230 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2231 {
2232 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2233 }
2234
2235 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2236
2237 int stream_id() const
2238 {
2239 return stream->as_constant()->value.i[0];
2240 }
2241
2242 ir_rvalue *stream;
2243 };
2244
2245 /**
2246 * IR instruction to complete the current primitive and start a new one in a
2247 * geometry shader.
2248 */
2249 class ir_end_primitive : public ir_instruction {
2250 public:
2251 ir_end_primitive(ir_rvalue *stream)
2252 : ir_instruction(ir_type_end_primitive),
2253 stream(stream)
2254 {
2255 assert(stream);
2256 }
2257
2258 virtual void accept(ir_visitor *v)
2259 {
2260 v->visit(this);
2261 }
2262
2263 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2264 {
2265 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2266 }
2267
2268 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2269
2270 int stream_id() const
2271 {
2272 return stream->as_constant()->value.i[0];
2273 }
2274
2275 ir_rvalue *stream;
2276 };
2277
2278 /**
2279 * IR instruction for tessellation control and compute shader barrier.
2280 */
2281 class ir_barrier : public ir_instruction {
2282 public:
2283 ir_barrier()
2284 : ir_instruction(ir_type_barrier)
2285 {
2286 }
2287
2288 virtual void accept(ir_visitor *v)
2289 {
2290 v->visit(this);
2291 }
2292
2293 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2294 {
2295 return new(mem_ctx) ir_barrier();
2296 }
2297
2298 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2299 };
2300
2301 /*@}*/
2302
2303 /**
2304 * Apply a visitor to each IR node in a list
2305 */
2306 void
2307 visit_exec_list(exec_list *list, ir_visitor *visitor);
2308
2309 /**
2310 * Validate invariants on each IR node in a list
2311 */
2312 void validate_ir_tree(exec_list *instructions);
2313
2314 struct _mesa_glsl_parse_state;
2315 struct gl_shader_program;
2316
2317 /**
2318 * Detect whether an unlinked shader contains static recursion
2319 *
2320 * If the list of instructions is determined to contain static recursion,
2321 * \c _mesa_glsl_error will be called to emit error messages for each function
2322 * that is in the recursion cycle.
2323 */
2324 void
2325 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2326 exec_list *instructions);
2327
2328 /**
2329 * Detect whether a linked shader contains static recursion
2330 *
2331 * If the list of instructions is determined to contain static recursion,
2332 * \c link_error_printf will be called to emit error messages for each function
2333 * that is in the recursion cycle. In addition,
2334 * \c gl_shader_program::LinkStatus will be set to false.
2335 */
2336 void
2337 detect_recursion_linked(struct gl_shader_program *prog,
2338 exec_list *instructions);
2339
2340 /**
2341 * Make a clone of each IR instruction in a list
2342 *
2343 * \param in List of IR instructions that are to be cloned
2344 * \param out List to hold the cloned instructions
2345 */
2346 void
2347 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2348
2349 extern void
2350 _mesa_glsl_initialize_variables(exec_list *instructions,
2351 struct _mesa_glsl_parse_state *state);
2352
2353 extern void
2354 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2355 gl_shader *shader);
2356
2357 extern void
2358 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2359
2360 extern void
2361 _mesa_glsl_initialize_builtin_functions();
2362
2363 extern ir_function_signature *
2364 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2365 const char *name, exec_list *actual_parameters);
2366
2367 extern ir_function *
2368 _mesa_glsl_find_builtin_function_by_name(const char *name);
2369
2370 extern gl_shader *
2371 _mesa_glsl_get_builtin_function_shader(void);
2372
2373 extern ir_function_signature *
2374 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2375
2376 extern void
2377 _mesa_glsl_release_functions(void);
2378
2379 extern void
2380 _mesa_glsl_release_builtin_functions(void);
2381
2382 extern void
2383 reparent_ir(exec_list *list, void *mem_ctx);
2384
2385 struct glsl_symbol_table;
2386
2387 extern void
2388 import_prototypes(const exec_list *source, exec_list *dest,
2389 struct glsl_symbol_table *symbols, void *mem_ctx);
2390
2391 extern bool
2392 ir_has_call(ir_instruction *ir);
2393
2394 extern void
2395 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2396 gl_shader_stage shader_stage);
2397
2398 extern char *
2399 prototype_string(const glsl_type *return_type, const char *name,
2400 exec_list *parameters);
2401
2402 const char *
2403 mode_string(const ir_variable *var);
2404
2405 /**
2406 * Built-in / reserved GL variables names start with "gl_"
2407 */
2408 static inline bool
2409 is_gl_identifier(const char *s)
2410 {
2411 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2412 }
2413
2414 extern "C" {
2415 #endif /* __cplusplus */
2416
2417 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2418 struct _mesa_glsl_parse_state *state);
2419
2420 extern void
2421 fprint_ir(FILE *f, const void *instruction);
2422
2423 extern const struct gl_builtin_uniform_desc *
2424 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2425
2426 #ifdef __cplusplus
2427 } /* extern "C" */
2428 #endif
2429
2430 unsigned
2431 vertices_per_prim(GLenum prim);
2432
2433 #endif /* IR_H */