glsl: TCS outputs can not be transform feedback candidates on GLES
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_emit_vertex,
78 ir_type_end_primitive,
79 ir_type_barrier,
80 ir_type_max, /**< maximum ir_type enum number, for validation */
81 ir_type_unset = ir_type_max
82 };
83
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104 void fprint(FILE *f) const;
105
106 virtual void accept(ir_visitor *) = 0;
107 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108 virtual ir_instruction *clone(void *mem_ctx,
109 struct hash_table *ht) const = 0;
110
111 bool is_rvalue() const
112 {
113 return ir_type == ir_type_dereference_array ||
114 ir_type == ir_type_dereference_record ||
115 ir_type == ir_type_dereference_variable ||
116 ir_type == ir_type_constant ||
117 ir_type == ir_type_expression ||
118 ir_type == ir_type_swizzle ||
119 ir_type == ir_type_texture;
120 }
121
122 bool is_dereference() const
123 {
124 return ir_type == ir_type_dereference_array ||
125 ir_type == ir_type_dereference_record ||
126 ir_type == ir_type_dereference_variable;
127 }
128
129 bool is_jump() const
130 {
131 return ir_type == ir_type_loop_jump ||
132 ir_type == ir_type_return ||
133 ir_type == ir_type_discard;
134 }
135
136 /**
137 * \name IR instruction downcast functions
138 *
139 * These functions either cast the object to a derived class or return
140 * \c NULL if the object's type does not match the specified derived class.
141 * Additional downcast functions will be added as needed.
142 */
143 /*@{*/
144 #define AS_BASE(TYPE) \
145 class ir_##TYPE *as_##TYPE() \
146 { \
147 assume(this != NULL); \
148 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
149 } \
150 const class ir_##TYPE *as_##TYPE() const \
151 { \
152 assume(this != NULL); \
153 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
154 }
155
156 AS_BASE(rvalue)
157 AS_BASE(dereference)
158 AS_BASE(jump)
159 #undef AS_BASE
160
161 #define AS_CHILD(TYPE) \
162 class ir_##TYPE * as_##TYPE() \
163 { \
164 assume(this != NULL); \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 assume(this != NULL); \
170 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171 }
172 AS_CHILD(variable)
173 AS_CHILD(function)
174 AS_CHILD(dereference_array)
175 AS_CHILD(dereference_variable)
176 AS_CHILD(dereference_record)
177 AS_CHILD(expression)
178 AS_CHILD(loop)
179 AS_CHILD(assignment)
180 AS_CHILD(call)
181 AS_CHILD(return)
182 AS_CHILD(if)
183 AS_CHILD(swizzle)
184 AS_CHILD(texture)
185 AS_CHILD(constant)
186 AS_CHILD(discard)
187 #undef AS_CHILD
188 /*@}*/
189
190 /**
191 * IR equality method: Return true if the referenced instruction would
192 * return the same value as this one.
193 *
194 * This intended to be used for CSE and algebraic optimizations, on rvalues
195 * in particular. No support for other instruction types (assignments,
196 * jumps, calls, etc.) is planned.
197 */
198 virtual bool equals(const ir_instruction *ir,
199 enum ir_node_type ignore = ir_type_unset) const;
200
201 protected:
202 ir_instruction(enum ir_node_type t)
203 : ir_type(t)
204 {
205 }
206
207 private:
208 ir_instruction()
209 {
210 assert(!"Should not get here.");
211 }
212 };
213
214
215 /**
216 * The base class for all "values"/expression trees.
217 */
218 class ir_rvalue : public ir_instruction {
219 public:
220 const struct glsl_type *type;
221
222 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224 virtual void accept(ir_visitor *v)
225 {
226 v->visit(this);
227 }
228
229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231 virtual ir_constant *constant_expression_value(void *mem_ctx,
232 struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 gl_state_index16 tokens[STATE_LENGTH];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \c glsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Return whether this variable contains a bindless sampler/image.
479 */
480 inline bool contains_bindless() const
481 {
482 if (!this->type->contains_sampler() && !this->type->contains_image())
483 return false;
484
485 return this->data.bindless || this->data.mode != ir_var_uniform;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 ralloc_array(this, int, type->length);
498 for (unsigned i = 0; i < type->length; i++) {
499 this->u.max_ifc_array_access[i] = -1;
500 }
501 }
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, but compatible, interface_type. This is used during linking
507 * to set the size of arrays in interface blocks.
508 */
509 void change_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 /* max_ifc_array_access has already been allocated, so make sure the
513 * new interface has the same number of fields as the old one.
514 */
515 assert(this->interface_type->length == type->length);
516 }
517 this->interface_type = type;
518 }
519
520 /**
521 * Change this->interface_type on a variable that previously had a
522 * different, and incompatible, interface_type. This is used during
523 * compilation to handle redeclaration of the built-in gl_PerVertex
524 * interface block.
525 */
526 void reinit_interface_type(const struct glsl_type *type)
527 {
528 if (this->u.max_ifc_array_access != NULL) {
529 #ifndef NDEBUG
530 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531 * it defines have been accessed yet; so it's safe to throw away the
532 * old max_ifc_array_access pointer, since all of its values are
533 * zero.
534 */
535 for (unsigned i = 0; i < this->interface_type->length; i++)
536 assert(this->u.max_ifc_array_access[i] == -1);
537 #endif
538 ralloc_free(this->u.max_ifc_array_access);
539 this->u.max_ifc_array_access = NULL;
540 }
541 this->interface_type = NULL;
542 init_interface_type(type);
543 }
544
545 const glsl_type *get_interface_type() const
546 {
547 return this->interface_type;
548 }
549
550 enum glsl_interface_packing get_interface_type_packing() const
551 {
552 return this->interface_type->get_interface_packing();
553 }
554 /**
555 * Get the max_ifc_array_access pointer
556 *
557 * A "set" function is not needed because the array is dynmically allocated
558 * as necessary.
559 */
560 inline int *get_max_ifc_array_access()
561 {
562 assert(this->data._num_state_slots == 0);
563 return this->u.max_ifc_array_access;
564 }
565
566 inline unsigned get_num_state_slots() const
567 {
568 assert(!this->is_interface_instance()
569 || this->data._num_state_slots == 0);
570 return this->data._num_state_slots;
571 }
572
573 inline void set_num_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance()
576 || n == 0);
577 this->data._num_state_slots = n;
578 }
579
580 inline ir_state_slot *get_state_slots()
581 {
582 return this->is_interface_instance() ? NULL : this->u.state_slots;
583 }
584
585 inline const ir_state_slot *get_state_slots() const
586 {
587 return this->is_interface_instance() ? NULL : this->u.state_slots;
588 }
589
590 inline ir_state_slot *allocate_state_slots(unsigned n)
591 {
592 assert(!this->is_interface_instance());
593
594 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595 this->data._num_state_slots = 0;
596
597 if (this->u.state_slots != NULL)
598 this->data._num_state_slots = n;
599
600 return this->u.state_slots;
601 }
602
603 inline bool is_interpolation_flat() const
604 {
605 return this->data.interpolation == INTERP_MODE_FLAT ||
606 this->type->contains_integer() ||
607 this->type->contains_double();
608 }
609
610 inline bool is_name_ralloced() const
611 {
612 return this->name != ir_variable::tmp_name &&
613 this->name != this->name_storage;
614 }
615
616 /**
617 * Enable emitting extension warnings for this variable
618 */
619 void enable_extension_warning(const char *extension);
620
621 /**
622 * Get the extension warning string for this variable
623 *
624 * If warnings are not enabled, \c NULL is returned.
625 */
626 const char *get_extension_warning() const;
627
628 /**
629 * Declared type of the variable
630 */
631 const struct glsl_type *type;
632
633 /**
634 * Declared name of the variable
635 */
636 const char *name;
637
638 private:
639 /**
640 * If the name length fits into name_storage, it's used, otherwise
641 * the name is ralloc'd. shader-db mining showed that 70% of variables
642 * fit here. This is a win over ralloc where only ralloc_header has
643 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644 */
645 char name_storage[16];
646
647 public:
648 struct ir_variable_data {
649
650 /**
651 * Is the variable read-only?
652 *
653 * This is set for variables declared as \c const, shader inputs,
654 * and uniforms.
655 */
656 unsigned read_only:1;
657 unsigned centroid:1;
658 unsigned sample:1;
659 unsigned patch:1;
660 unsigned invariant:1;
661 unsigned precise:1;
662
663 /**
664 * Has this variable been used for reading or writing?
665 *
666 * Several GLSL semantic checks require knowledge of whether or not a
667 * variable has been used. For example, it is an error to redeclare a
668 * variable as invariant after it has been used.
669 *
670 * This is maintained in the ast_to_hir.cpp path and during linking,
671 * but not in Mesa's fixed function or ARB program paths.
672 */
673 unsigned used:1;
674
675 /**
676 * Has this variable been statically assigned?
677 *
678 * This answers whether the variable was assigned in any path of
679 * the shader during ast_to_hir. This doesn't answer whether it is
680 * still written after dead code removal, nor is it maintained in
681 * non-ast_to_hir.cpp (GLSL parsing) paths.
682 */
683 unsigned assigned:1;
684
685 /**
686 * When separate shader programs are enabled, only input/outputs between
687 * the stages of a multi-stage separate program can be safely removed
688 * from the shader interface. Other input/outputs must remains active.
689 */
690 unsigned always_active_io:1;
691
692 /**
693 * Enum indicating how the variable was declared. See
694 * ir_var_declaration_type.
695 *
696 * This is used to detect certain kinds of illegal variable redeclarations.
697 */
698 unsigned how_declared:2;
699
700 /**
701 * Storage class of the variable.
702 *
703 * \sa ir_variable_mode
704 */
705 unsigned mode:4;
706
707 /**
708 * Interpolation mode for shader inputs / outputs
709 *
710 * \sa glsl_interp_mode
711 */
712 unsigned interpolation:2;
713
714 /**
715 * Was the location explicitly set in the shader?
716 *
717 * If the location is explicitly set in the shader, it \b cannot be changed
718 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
719 * no effect).
720 */
721 unsigned explicit_location:1;
722 unsigned explicit_index:1;
723
724 /**
725 * Was an initial binding explicitly set in the shader?
726 *
727 * If so, constant_value contains an integer ir_constant representing the
728 * initial binding point.
729 */
730 unsigned explicit_binding:1;
731
732 /**
733 * Was an initial component explicitly set in the shader?
734 */
735 unsigned explicit_component:1;
736
737 /**
738 * Does this variable have an initializer?
739 *
740 * This is used by the linker to cross-validiate initializers of global
741 * variables.
742 */
743 unsigned has_initializer:1;
744
745 /**
746 * Is this variable a generic output or input that has not yet been matched
747 * up to a variable in another stage of the pipeline?
748 *
749 * This is used by the linker as scratch storage while assigning locations
750 * to generic inputs and outputs.
751 */
752 unsigned is_unmatched_generic_inout:1;
753
754 /**
755 * Is this varying used only by transform feedback?
756 *
757 * This is used by the linker to decide if its safe to pack the varying.
758 */
759 unsigned is_xfb_only:1;
760
761 /**
762 * Was a transform feedback buffer set in the shader?
763 */
764 unsigned explicit_xfb_buffer:1;
765
766 /**
767 * Was a transform feedback offset set in the shader?
768 */
769 unsigned explicit_xfb_offset:1;
770
771 /**
772 * Was a transform feedback stride set in the shader?
773 */
774 unsigned explicit_xfb_stride:1;
775
776 /**
777 * If non-zero, then this variable may be packed along with other variables
778 * into a single varying slot, so this offset should be applied when
779 * accessing components. For example, an offset of 1 means that the x
780 * component of this variable is actually stored in component y of the
781 * location specified by \c location.
782 */
783 unsigned location_frac:2;
784
785 /**
786 * Layout of the matrix. Uses glsl_matrix_layout values.
787 */
788 unsigned matrix_layout:2;
789
790 /**
791 * Non-zero if this variable was created by lowering a named interface
792 * block.
793 */
794 unsigned from_named_ifc_block:1;
795
796 /**
797 * Non-zero if the variable must be a shader input. This is useful for
798 * constraints on function parameters.
799 */
800 unsigned must_be_shader_input:1;
801
802 /**
803 * Output index for dual source blending.
804 *
805 * \note
806 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
807 * source blending.
808 */
809 unsigned index:1;
810
811 /**
812 * Precision qualifier.
813 *
814 * In desktop GLSL we do not care about precision qualifiers at all, in
815 * fact, the spec says that precision qualifiers are ignored.
816 *
817 * To make things easy, we make it so that this field is always
818 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
819 * have the same precision value and the checks we add in the compiler
820 * for this field will never break a desktop shader compile.
821 */
822 unsigned precision:2;
823
824 /**
825 * \brief Layout qualifier for gl_FragDepth.
826 *
827 * This is not equal to \c ir_depth_layout_none if and only if this
828 * variable is \c gl_FragDepth and a layout qualifier is specified.
829 */
830 ir_depth_layout depth_layout:3;
831
832 /**
833 * Memory qualifiers.
834 */
835 unsigned memory_read_only:1; /**< "readonly" qualifier. */
836 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
837 unsigned memory_coherent:1;
838 unsigned memory_volatile:1;
839 unsigned memory_restrict:1;
840
841 /**
842 * ARB_shader_storage_buffer_object
843 */
844 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
845
846 unsigned implicit_sized_array:1;
847
848 /**
849 * Whether this is a fragment shader output implicitly initialized with
850 * the previous contents of the specified render target at the
851 * framebuffer location corresponding to this shader invocation.
852 */
853 unsigned fb_fetch_output:1;
854
855 /**
856 * Non-zero if this variable is considered bindless as defined by
857 * ARB_bindless_texture.
858 */
859 unsigned bindless:1;
860
861 /**
862 * Non-zero if this variable is considered bound as defined by
863 * ARB_bindless_texture.
864 */
865 unsigned bound:1;
866
867 /**
868 * Emit a warning if this variable is accessed.
869 */
870 private:
871 uint8_t warn_extension_index;
872
873 public:
874 /** Image internal format if specified explicitly, otherwise GL_NONE. */
875 uint16_t image_format;
876
877 private:
878 /**
879 * Number of state slots used
880 *
881 * \note
882 * This could be stored in as few as 7-bits, if necessary. If it is made
883 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
884 * be safe.
885 */
886 uint16_t _num_state_slots;
887
888 public:
889 /**
890 * Initial binding point for a sampler, atomic, or UBO.
891 *
892 * For array types, this represents the binding point for the first element.
893 */
894 int16_t binding;
895
896 /**
897 * Storage location of the base of this variable
898 *
899 * The precise meaning of this field depends on the nature of the variable.
900 *
901 * - Vertex shader input: one of the values from \c gl_vert_attrib.
902 * - Vertex shader output: one of the values from \c gl_varying_slot.
903 * - Geometry shader input: one of the values from \c gl_varying_slot.
904 * - Geometry shader output: one of the values from \c gl_varying_slot.
905 * - Fragment shader input: one of the values from \c gl_varying_slot.
906 * - Fragment shader output: one of the values from \c gl_frag_result.
907 * - Uniforms: Per-stage uniform slot number for default uniform block.
908 * - Uniforms: Index within the uniform block definition for UBO members.
909 * - Non-UBO Uniforms: explicit location until linking then reused to
910 * store uniform slot number.
911 * - Other: This field is not currently used.
912 *
913 * If the variable is a uniform, shader input, or shader output, and the
914 * slot has not been assigned, the value will be -1.
915 */
916 int location;
917
918 /**
919 * for glsl->tgsi/mesa IR we need to store the index into the
920 * parameters for uniforms, initially the code overloaded location
921 * but this causes problems with indirect samplers and AoA.
922 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
923 */
924 int param_index;
925
926 /**
927 * Vertex stream output identifier.
928 *
929 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
930 * stream of the i-th component.
931 */
932 unsigned stream;
933
934 /**
935 * Atomic, transform feedback or block member offset.
936 */
937 unsigned offset;
938
939 /**
940 * Highest element accessed with a constant expression array index
941 *
942 * Not used for non-array variables. -1 is never accessed.
943 */
944 int max_array_access;
945
946 /**
947 * Transform feedback buffer.
948 */
949 unsigned xfb_buffer;
950
951 /**
952 * Transform feedback stride.
953 */
954 unsigned xfb_stride;
955
956 /**
957 * Allow (only) ir_variable direct access private members.
958 */
959 friend class ir_variable;
960 } data;
961
962 /**
963 * Value assigned in the initializer of a variable declared "const"
964 */
965 ir_constant *constant_value;
966
967 /**
968 * Constant expression assigned in the initializer of the variable
969 *
970 * \warning
971 * This field and \c ::constant_value are distinct. Even if the two fields
972 * refer to constants with the same value, they must point to separate
973 * objects.
974 */
975 ir_constant *constant_initializer;
976
977 private:
978 static const char *const warn_extension_table[];
979
980 union {
981 /**
982 * For variables which satisfy the is_interface_instance() predicate,
983 * this points to an array of integers such that if the ith member of
984 * the interface block is an array, max_ifc_array_access[i] is the
985 * maximum array element of that member that has been accessed. If the
986 * ith member of the interface block is not an array,
987 * max_ifc_array_access[i] is unused.
988 *
989 * For variables whose type is not an interface block, this pointer is
990 * NULL.
991 */
992 int *max_ifc_array_access;
993
994 /**
995 * Built-in state that backs this uniform
996 *
997 * Once set at variable creation, \c state_slots must remain invariant.
998 *
999 * If the variable is not a uniform, \c _num_state_slots will be zero
1000 * and \c state_slots will be \c NULL.
1001 */
1002 ir_state_slot *state_slots;
1003 } u;
1004
1005 /**
1006 * For variables that are in an interface block or are an instance of an
1007 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1008 *
1009 * \sa ir_variable::location
1010 */
1011 const glsl_type *interface_type;
1012
1013 /**
1014 * Name used for anonymous compiler temporaries
1015 */
1016 static const char tmp_name[];
1017
1018 public:
1019 /**
1020 * Should the construct keep names for ir_var_temporary variables?
1021 *
1022 * When this global is false, names passed to the constructor for
1023 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1024 * be named "compiler_temp". This name will be in static storage.
1025 *
1026 * \warning
1027 * \b NEVER change the mode of an \c ir_var_temporary.
1028 *
1029 * \warning
1030 * This variable is \b not thread-safe. It is global, \b not
1031 * per-context. It begins life false. A context can, at some point, make
1032 * it true. From that point on, it will be true forever. This should be
1033 * okay since it will only be set true while debugging.
1034 */
1035 static bool temporaries_allocate_names;
1036 };
1037
1038 /**
1039 * A function that returns whether a built-in function is available in the
1040 * current shading language (based on version, ES or desktop, and extensions).
1041 */
1042 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1043
1044 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1045 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1046
1047 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1048 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1049
1050 enum ir_intrinsic_id {
1051 ir_intrinsic_invalid = 0,
1052
1053 /**
1054 * \name Generic intrinsics
1055 *
1056 * Each of these intrinsics has a specific version for shared variables and
1057 * SSBOs.
1058 */
1059 /*@{*/
1060 ir_intrinsic_generic_load,
1061 ir_intrinsic_generic_store,
1062 ir_intrinsic_generic_atomic_add,
1063 ir_intrinsic_generic_atomic_and,
1064 ir_intrinsic_generic_atomic_or,
1065 ir_intrinsic_generic_atomic_xor,
1066 ir_intrinsic_generic_atomic_min,
1067 ir_intrinsic_generic_atomic_max,
1068 ir_intrinsic_generic_atomic_exchange,
1069 ir_intrinsic_generic_atomic_comp_swap,
1070 /*@}*/
1071
1072 ir_intrinsic_atomic_counter_read,
1073 ir_intrinsic_atomic_counter_increment,
1074 ir_intrinsic_atomic_counter_predecrement,
1075 ir_intrinsic_atomic_counter_add,
1076 ir_intrinsic_atomic_counter_and,
1077 ir_intrinsic_atomic_counter_or,
1078 ir_intrinsic_atomic_counter_xor,
1079 ir_intrinsic_atomic_counter_min,
1080 ir_intrinsic_atomic_counter_max,
1081 ir_intrinsic_atomic_counter_exchange,
1082 ir_intrinsic_atomic_counter_comp_swap,
1083
1084 ir_intrinsic_image_load,
1085 ir_intrinsic_image_store,
1086 ir_intrinsic_image_atomic_add,
1087 ir_intrinsic_image_atomic_and,
1088 ir_intrinsic_image_atomic_or,
1089 ir_intrinsic_image_atomic_xor,
1090 ir_intrinsic_image_atomic_min,
1091 ir_intrinsic_image_atomic_max,
1092 ir_intrinsic_image_atomic_exchange,
1093 ir_intrinsic_image_atomic_comp_swap,
1094 ir_intrinsic_image_size,
1095 ir_intrinsic_image_samples,
1096
1097 ir_intrinsic_ssbo_load,
1098 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1099 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1100 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1101 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1102 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1103 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1104 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1105 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1106 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1107
1108 ir_intrinsic_memory_barrier,
1109 ir_intrinsic_shader_clock,
1110 ir_intrinsic_group_memory_barrier,
1111 ir_intrinsic_memory_barrier_atomic_counter,
1112 ir_intrinsic_memory_barrier_buffer,
1113 ir_intrinsic_memory_barrier_image,
1114 ir_intrinsic_memory_barrier_shared,
1115 ir_intrinsic_begin_invocation_interlock,
1116 ir_intrinsic_end_invocation_interlock,
1117
1118 ir_intrinsic_vote_all,
1119 ir_intrinsic_vote_any,
1120 ir_intrinsic_vote_eq,
1121 ir_intrinsic_ballot,
1122 ir_intrinsic_read_invocation,
1123 ir_intrinsic_read_first_invocation,
1124
1125 ir_intrinsic_shared_load,
1126 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1127 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1128 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1129 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1130 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1131 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1132 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1133 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1134 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1135 };
1136
1137 /*@{*/
1138 /**
1139 * The representation of a function instance; may be the full definition or
1140 * simply a prototype.
1141 */
1142 class ir_function_signature : public ir_instruction {
1143 /* An ir_function_signature will be part of the list of signatures in
1144 * an ir_function.
1145 */
1146 public:
1147 ir_function_signature(const glsl_type *return_type,
1148 builtin_available_predicate builtin_avail = NULL);
1149
1150 virtual ir_function_signature *clone(void *mem_ctx,
1151 struct hash_table *ht) const;
1152 ir_function_signature *clone_prototype(void *mem_ctx,
1153 struct hash_table *ht) const;
1154
1155 virtual void accept(ir_visitor *v)
1156 {
1157 v->visit(this);
1158 }
1159
1160 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1161
1162 /**
1163 * Attempt to evaluate this function as a constant expression,
1164 * given a list of the actual parameters and the variable context.
1165 * Returns NULL for non-built-ins.
1166 */
1167 ir_constant *constant_expression_value(void *mem_ctx,
1168 exec_list *actual_parameters,
1169 struct hash_table *variable_context);
1170
1171 /**
1172 * Get the name of the function for which this is a signature
1173 */
1174 const char *function_name() const;
1175
1176 /**
1177 * Get a handle to the function for which this is a signature
1178 *
1179 * There is no setter function, this function returns a \c const pointer,
1180 * and \c ir_function_signature::_function is private for a reason. The
1181 * only way to make a connection between a function and function signature
1182 * is via \c ir_function::add_signature. This helps ensure that certain
1183 * invariants (i.e., a function signature is in the list of signatures for
1184 * its \c _function) are met.
1185 *
1186 * \sa ir_function::add_signature
1187 */
1188 inline const class ir_function *function() const
1189 {
1190 return this->_function;
1191 }
1192
1193 /**
1194 * Check whether the qualifiers match between this signature's parameters
1195 * and the supplied parameter list. If not, returns the name of the first
1196 * parameter with mismatched qualifiers (for use in error messages).
1197 */
1198 const char *qualifiers_match(exec_list *params);
1199
1200 /**
1201 * Replace the current parameter list with the given one. This is useful
1202 * if the current information came from a prototype, and either has invalid
1203 * or missing parameter names.
1204 */
1205 void replace_parameters(exec_list *new_params);
1206
1207 /**
1208 * Function return type.
1209 *
1210 * \note This discards the optional precision qualifier.
1211 */
1212 const struct glsl_type *return_type;
1213
1214 /**
1215 * List of ir_variable of function parameters.
1216 *
1217 * This represents the storage. The paramaters passed in a particular
1218 * call will be in ir_call::actual_paramaters.
1219 */
1220 struct exec_list parameters;
1221
1222 /** Whether or not this function has a body (which may be empty). */
1223 unsigned is_defined:1;
1224
1225 /** Whether or not this function signature is a built-in. */
1226 bool is_builtin() const;
1227
1228 /**
1229 * Whether or not this function is an intrinsic to be implemented
1230 * by the driver.
1231 */
1232 inline bool is_intrinsic() const
1233 {
1234 return intrinsic_id != ir_intrinsic_invalid;
1235 }
1236
1237 /** Indentifier for this intrinsic. */
1238 enum ir_intrinsic_id intrinsic_id;
1239
1240 /** Whether or not a built-in is available for this shader. */
1241 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1242
1243 /** Body of instructions in the function. */
1244 struct exec_list body;
1245
1246 private:
1247 /**
1248 * A function pointer to a predicate that answers whether a built-in
1249 * function is available in the current shader. NULL if not a built-in.
1250 */
1251 builtin_available_predicate builtin_avail;
1252
1253 /** Function of which this signature is one overload. */
1254 class ir_function *_function;
1255
1256 /** Function signature of which this one is a prototype clone */
1257 const ir_function_signature *origin;
1258
1259 friend class ir_function;
1260
1261 /**
1262 * Helper function to run a list of instructions for constant
1263 * expression evaluation.
1264 *
1265 * The hash table represents the values of the visible variables.
1266 * There are no scoping issues because the table is indexed on
1267 * ir_variable pointers, not variable names.
1268 *
1269 * Returns false if the expression is not constant, true otherwise,
1270 * and the value in *result if result is non-NULL.
1271 */
1272 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1273 const struct exec_list &body,
1274 struct hash_table *variable_context,
1275 ir_constant **result);
1276 };
1277
1278
1279 /**
1280 * Header for tracking multiple overloaded functions with the same name.
1281 * Contains a list of ir_function_signatures representing each of the
1282 * actual functions.
1283 */
1284 class ir_function : public ir_instruction {
1285 public:
1286 ir_function(const char *name);
1287
1288 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1289
1290 virtual void accept(ir_visitor *v)
1291 {
1292 v->visit(this);
1293 }
1294
1295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1296
1297 void add_signature(ir_function_signature *sig)
1298 {
1299 sig->_function = this;
1300 this->signatures.push_tail(sig);
1301 }
1302
1303 /**
1304 * Find a signature that matches a set of actual parameters, taking implicit
1305 * conversions into account. Also flags whether the match was exact.
1306 */
1307 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1308 const exec_list *actual_param,
1309 bool allow_builtins,
1310 bool *match_is_exact);
1311
1312 /**
1313 * Find a signature that matches a set of actual parameters, taking implicit
1314 * conversions into account.
1315 */
1316 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1317 const exec_list *actual_param,
1318 bool allow_builtins);
1319
1320 /**
1321 * Find a signature that exactly matches a set of actual parameters without
1322 * any implicit type conversions.
1323 */
1324 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1325 const exec_list *actual_ps);
1326
1327 /**
1328 * Name of the function.
1329 */
1330 const char *name;
1331
1332 /** Whether or not this function has a signature that isn't a built-in. */
1333 bool has_user_signature();
1334
1335 /**
1336 * List of ir_function_signature for each overloaded function with this name.
1337 */
1338 struct exec_list signatures;
1339
1340 /**
1341 * is this function a subroutine type declaration
1342 * e.g. subroutine void type1(float arg1);
1343 */
1344 bool is_subroutine;
1345
1346 /**
1347 * is this function associated to a subroutine type
1348 * e.g. subroutine (type1, type2) function_name { function_body };
1349 * would have num_subroutine_types 2,
1350 * and pointers to the type1 and type2 types.
1351 */
1352 int num_subroutine_types;
1353 const struct glsl_type **subroutine_types;
1354
1355 int subroutine_index;
1356 };
1357
1358 inline const char *ir_function_signature::function_name() const
1359 {
1360 return this->_function->name;
1361 }
1362 /*@}*/
1363
1364
1365 /**
1366 * IR instruction representing high-level if-statements
1367 */
1368 class ir_if : public ir_instruction {
1369 public:
1370 ir_if(ir_rvalue *condition)
1371 : ir_instruction(ir_type_if), condition(condition)
1372 {
1373 }
1374
1375 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1376
1377 virtual void accept(ir_visitor *v)
1378 {
1379 v->visit(this);
1380 }
1381
1382 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1383
1384 ir_rvalue *condition;
1385 /** List of ir_instruction for the body of the then branch */
1386 exec_list then_instructions;
1387 /** List of ir_instruction for the body of the else branch */
1388 exec_list else_instructions;
1389 };
1390
1391
1392 /**
1393 * IR instruction representing a high-level loop structure.
1394 */
1395 class ir_loop : public ir_instruction {
1396 public:
1397 ir_loop();
1398
1399 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1400
1401 virtual void accept(ir_visitor *v)
1402 {
1403 v->visit(this);
1404 }
1405
1406 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1407
1408 /** List of ir_instruction that make up the body of the loop. */
1409 exec_list body_instructions;
1410 };
1411
1412
1413 class ir_assignment : public ir_instruction {
1414 public:
1415 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1416
1417 /**
1418 * Construct an assignment with an explicit write mask
1419 *
1420 * \note
1421 * Since a write mask is supplied, the LHS must already be a bare
1422 * \c ir_dereference. The cannot be any swizzles in the LHS.
1423 */
1424 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1425 unsigned write_mask);
1426
1427 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1428
1429 virtual ir_constant *constant_expression_value(void *mem_ctx,
1430 struct hash_table *variable_context = NULL);
1431
1432 virtual void accept(ir_visitor *v)
1433 {
1434 v->visit(this);
1435 }
1436
1437 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1438
1439 /**
1440 * Get a whole variable written by an assignment
1441 *
1442 * If the LHS of the assignment writes a whole variable, the variable is
1443 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1444 * assignment are:
1445 *
1446 * - Assigning to a scalar
1447 * - Assigning to all components of a vector
1448 * - Whole array (or matrix) assignment
1449 * - Whole structure assignment
1450 */
1451 ir_variable *whole_variable_written();
1452
1453 /**
1454 * Set the LHS of an assignment
1455 */
1456 void set_lhs(ir_rvalue *lhs);
1457
1458 /**
1459 * Left-hand side of the assignment.
1460 *
1461 * This should be treated as read only. If you need to set the LHS of an
1462 * assignment, use \c ir_assignment::set_lhs.
1463 */
1464 ir_dereference *lhs;
1465
1466 /**
1467 * Value being assigned
1468 */
1469 ir_rvalue *rhs;
1470
1471 /**
1472 * Optional condition for the assignment.
1473 */
1474 ir_rvalue *condition;
1475
1476
1477 /**
1478 * Component mask written
1479 *
1480 * For non-vector types in the LHS, this field will be zero. For vector
1481 * types, a bit will be set for each component that is written. Note that
1482 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1483 *
1484 * A partially-set write mask means that each enabled channel gets
1485 * the value from a consecutive channel of the rhs. For example,
1486 * to write just .xyw of gl_FrontColor with color:
1487 *
1488 * (assign (constant bool (1)) (xyw)
1489 * (var_ref gl_FragColor)
1490 * (swiz xyw (var_ref color)))
1491 */
1492 unsigned write_mask:4;
1493 };
1494
1495 #include "ir_expression_operation.h"
1496
1497 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1498 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1499
1500 class ir_expression : public ir_rvalue {
1501 public:
1502 ir_expression(int op, const struct glsl_type *type,
1503 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1504 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1505
1506 /**
1507 * Constructor for unary operation expressions
1508 */
1509 ir_expression(int op, ir_rvalue *);
1510
1511 /**
1512 * Constructor for binary operation expressions
1513 */
1514 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1515
1516 /**
1517 * Constructor for ternary operation expressions
1518 */
1519 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1520
1521 virtual bool equals(const ir_instruction *ir,
1522 enum ir_node_type ignore = ir_type_unset) const;
1523
1524 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1525
1526 /**
1527 * Attempt to constant-fold the expression
1528 *
1529 * The "variable_context" hash table links ir_variable * to ir_constant *
1530 * that represent the variables' values. \c NULL represents an empty
1531 * context.
1532 *
1533 * If the expression cannot be constant folded, this method will return
1534 * \c NULL.
1535 */
1536 virtual ir_constant *constant_expression_value(void *mem_ctx,
1537 struct hash_table *variable_context = NULL);
1538
1539 /**
1540 * This is only here for ir_reader to used for testing purposes please use
1541 * the precomputed num_operands field if you need the number of operands.
1542 */
1543 static unsigned get_num_operands(ir_expression_operation);
1544
1545 /**
1546 * Return whether the expression operates on vectors horizontally.
1547 */
1548 bool is_horizontal() const
1549 {
1550 return operation == ir_binop_all_equal ||
1551 operation == ir_binop_any_nequal ||
1552 operation == ir_binop_dot ||
1553 operation == ir_binop_vector_extract ||
1554 operation == ir_triop_vector_insert ||
1555 operation == ir_binop_ubo_load ||
1556 operation == ir_quadop_vector;
1557 }
1558
1559 /**
1560 * Do a reverse-lookup to translate the given string into an operator.
1561 */
1562 static ir_expression_operation get_operator(const char *);
1563
1564 virtual void accept(ir_visitor *v)
1565 {
1566 v->visit(this);
1567 }
1568
1569 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1570
1571 virtual ir_variable *variable_referenced() const;
1572
1573 /**
1574 * Determine the number of operands used by an expression
1575 */
1576 void init_num_operands()
1577 {
1578 if (operation == ir_quadop_vector) {
1579 num_operands = this->type->vector_elements;
1580 } else {
1581 num_operands = get_num_operands(operation);
1582 }
1583 }
1584
1585 ir_expression_operation operation;
1586 ir_rvalue *operands[4];
1587 uint8_t num_operands;
1588 };
1589
1590
1591 /**
1592 * HIR instruction representing a high-level function call, containing a list
1593 * of parameters and returning a value in the supplied temporary.
1594 */
1595 class ir_call : public ir_instruction {
1596 public:
1597 ir_call(ir_function_signature *callee,
1598 ir_dereference_variable *return_deref,
1599 exec_list *actual_parameters)
1600 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1601 {
1602 assert(callee->return_type != NULL);
1603 actual_parameters->move_nodes_to(& this->actual_parameters);
1604 }
1605
1606 ir_call(ir_function_signature *callee,
1607 ir_dereference_variable *return_deref,
1608 exec_list *actual_parameters,
1609 ir_variable *var, ir_rvalue *array_idx)
1610 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1611 {
1612 assert(callee->return_type != NULL);
1613 actual_parameters->move_nodes_to(& this->actual_parameters);
1614 }
1615
1616 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1617
1618 virtual ir_constant *constant_expression_value(void *mem_ctx,
1619 struct hash_table *variable_context = NULL);
1620
1621 virtual void accept(ir_visitor *v)
1622 {
1623 v->visit(this);
1624 }
1625
1626 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1627
1628 /**
1629 * Get the name of the function being called.
1630 */
1631 const char *callee_name() const
1632 {
1633 return callee->function_name();
1634 }
1635
1636 /**
1637 * Generates an inline version of the function before @ir,
1638 * storing the return value in return_deref.
1639 */
1640 void generate_inline(ir_instruction *ir);
1641
1642 /**
1643 * Storage for the function's return value.
1644 * This must be NULL if the return type is void.
1645 */
1646 ir_dereference_variable *return_deref;
1647
1648 /**
1649 * The specific function signature being called.
1650 */
1651 ir_function_signature *callee;
1652
1653 /* List of ir_rvalue of paramaters passed in this call. */
1654 exec_list actual_parameters;
1655
1656 /*
1657 * ARB_shader_subroutine support -
1658 * the subroutine uniform variable and array index
1659 * rvalue to be used in the lowering pass later.
1660 */
1661 ir_variable *sub_var;
1662 ir_rvalue *array_idx;
1663 };
1664
1665
1666 /**
1667 * \name Jump-like IR instructions.
1668 *
1669 * These include \c break, \c continue, \c return, and \c discard.
1670 */
1671 /*@{*/
1672 class ir_jump : public ir_instruction {
1673 protected:
1674 ir_jump(enum ir_node_type t)
1675 : ir_instruction(t)
1676 {
1677 }
1678 };
1679
1680 class ir_return : public ir_jump {
1681 public:
1682 ir_return()
1683 : ir_jump(ir_type_return), value(NULL)
1684 {
1685 }
1686
1687 ir_return(ir_rvalue *value)
1688 : ir_jump(ir_type_return), value(value)
1689 {
1690 }
1691
1692 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1693
1694 ir_rvalue *get_value() const
1695 {
1696 return value;
1697 }
1698
1699 virtual void accept(ir_visitor *v)
1700 {
1701 v->visit(this);
1702 }
1703
1704 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1705
1706 ir_rvalue *value;
1707 };
1708
1709
1710 /**
1711 * Jump instructions used inside loops
1712 *
1713 * These include \c break and \c continue. The \c break within a loop is
1714 * different from the \c break within a switch-statement.
1715 *
1716 * \sa ir_switch_jump
1717 */
1718 class ir_loop_jump : public ir_jump {
1719 public:
1720 enum jump_mode {
1721 jump_break,
1722 jump_continue
1723 };
1724
1725 ir_loop_jump(jump_mode mode)
1726 : ir_jump(ir_type_loop_jump)
1727 {
1728 this->mode = mode;
1729 }
1730
1731 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1732
1733 virtual void accept(ir_visitor *v)
1734 {
1735 v->visit(this);
1736 }
1737
1738 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1739
1740 bool is_break() const
1741 {
1742 return mode == jump_break;
1743 }
1744
1745 bool is_continue() const
1746 {
1747 return mode == jump_continue;
1748 }
1749
1750 /** Mode selector for the jump instruction. */
1751 enum jump_mode mode;
1752 };
1753
1754 /**
1755 * IR instruction representing discard statements.
1756 */
1757 class ir_discard : public ir_jump {
1758 public:
1759 ir_discard()
1760 : ir_jump(ir_type_discard)
1761 {
1762 this->condition = NULL;
1763 }
1764
1765 ir_discard(ir_rvalue *cond)
1766 : ir_jump(ir_type_discard)
1767 {
1768 this->condition = cond;
1769 }
1770
1771 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1772
1773 virtual void accept(ir_visitor *v)
1774 {
1775 v->visit(this);
1776 }
1777
1778 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1779
1780 ir_rvalue *condition;
1781 };
1782 /*@}*/
1783
1784
1785 /**
1786 * Texture sampling opcodes used in ir_texture
1787 */
1788 enum ir_texture_opcode {
1789 ir_tex, /**< Regular texture look-up */
1790 ir_txb, /**< Texture look-up with LOD bias */
1791 ir_txl, /**< Texture look-up with explicit LOD */
1792 ir_txd, /**< Texture look-up with partial derivatvies */
1793 ir_txf, /**< Texel fetch with explicit LOD */
1794 ir_txf_ms, /**< Multisample texture fetch */
1795 ir_txs, /**< Texture size */
1796 ir_lod, /**< Texture lod query */
1797 ir_tg4, /**< Texture gather */
1798 ir_query_levels, /**< Texture levels query */
1799 ir_texture_samples, /**< Texture samples query */
1800 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1801 };
1802
1803
1804 /**
1805 * IR instruction to sample a texture
1806 *
1807 * The specific form of the IR instruction depends on the \c mode value
1808 * selected from \c ir_texture_opcodes. In the printed IR, these will
1809 * appear as:
1810 *
1811 * Texel offset (0 or an expression)
1812 * | Projection divisor
1813 * | | Shadow comparator
1814 * | | |
1815 * v v v
1816 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1817 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1818 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1819 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1820 * (txf <type> <sampler> <coordinate> 0 <lod>)
1821 * (txf_ms
1822 * <type> <sampler> <coordinate> <sample_index>)
1823 * (txs <type> <sampler> <lod>)
1824 * (lod <type> <sampler> <coordinate>)
1825 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1826 * (query_levels <type> <sampler>)
1827 * (samples_identical <sampler> <coordinate>)
1828 */
1829 class ir_texture : public ir_rvalue {
1830 public:
1831 ir_texture(enum ir_texture_opcode op)
1832 : ir_rvalue(ir_type_texture),
1833 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1834 shadow_comparator(NULL), offset(NULL)
1835 {
1836 memset(&lod_info, 0, sizeof(lod_info));
1837 }
1838
1839 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1840
1841 virtual ir_constant *constant_expression_value(void *mem_ctx,
1842 struct hash_table *variable_context = NULL);
1843
1844 virtual void accept(ir_visitor *v)
1845 {
1846 v->visit(this);
1847 }
1848
1849 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1850
1851 virtual bool equals(const ir_instruction *ir,
1852 enum ir_node_type ignore = ir_type_unset) const;
1853
1854 /**
1855 * Return a string representing the ir_texture_opcode.
1856 */
1857 const char *opcode_string();
1858
1859 /** Set the sampler and type. */
1860 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1861
1862 /**
1863 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1864 */
1865 static ir_texture_opcode get_opcode(const char *);
1866
1867 enum ir_texture_opcode op;
1868
1869 /** Sampler to use for the texture access. */
1870 ir_dereference *sampler;
1871
1872 /** Texture coordinate to sample */
1873 ir_rvalue *coordinate;
1874
1875 /**
1876 * Value used for projective divide.
1877 *
1878 * If there is no projective divide (the common case), this will be
1879 * \c NULL. Optimization passes should check for this to point to a constant
1880 * of 1.0 and replace that with \c NULL.
1881 */
1882 ir_rvalue *projector;
1883
1884 /**
1885 * Coordinate used for comparison on shadow look-ups.
1886 *
1887 * If there is no shadow comparison, this will be \c NULL. For the
1888 * \c ir_txf opcode, this *must* be \c NULL.
1889 */
1890 ir_rvalue *shadow_comparator;
1891
1892 /** Texel offset. */
1893 ir_rvalue *offset;
1894
1895 union {
1896 ir_rvalue *lod; /**< Floating point LOD */
1897 ir_rvalue *bias; /**< Floating point LOD bias */
1898 ir_rvalue *sample_index; /**< MSAA sample index */
1899 ir_rvalue *component; /**< Gather component selector */
1900 struct {
1901 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1902 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1903 } grad;
1904 } lod_info;
1905 };
1906
1907
1908 struct ir_swizzle_mask {
1909 unsigned x:2;
1910 unsigned y:2;
1911 unsigned z:2;
1912 unsigned w:2;
1913
1914 /**
1915 * Number of components in the swizzle.
1916 */
1917 unsigned num_components:3;
1918
1919 /**
1920 * Does the swizzle contain duplicate components?
1921 *
1922 * L-value swizzles cannot contain duplicate components.
1923 */
1924 unsigned has_duplicates:1;
1925 };
1926
1927
1928 class ir_swizzle : public ir_rvalue {
1929 public:
1930 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1931 unsigned count);
1932
1933 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1934
1935 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1936
1937 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1938
1939 virtual ir_constant *constant_expression_value(void *mem_ctx,
1940 struct hash_table *variable_context = NULL);
1941
1942 /**
1943 * Construct an ir_swizzle from the textual representation. Can fail.
1944 */
1945 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1946
1947 virtual void accept(ir_visitor *v)
1948 {
1949 v->visit(this);
1950 }
1951
1952 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1953
1954 virtual bool equals(const ir_instruction *ir,
1955 enum ir_node_type ignore = ir_type_unset) const;
1956
1957 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1958 {
1959 return val->is_lvalue(state) && !mask.has_duplicates;
1960 }
1961
1962 /**
1963 * Get the variable that is ultimately referenced by an r-value
1964 */
1965 virtual ir_variable *variable_referenced() const;
1966
1967 ir_rvalue *val;
1968 ir_swizzle_mask mask;
1969
1970 private:
1971 /**
1972 * Initialize the mask component of a swizzle
1973 *
1974 * This is used by the \c ir_swizzle constructors.
1975 */
1976 void init_mask(const unsigned *components, unsigned count);
1977 };
1978
1979
1980 class ir_dereference : public ir_rvalue {
1981 public:
1982 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1983
1984 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1985
1986 /**
1987 * Get the variable that is ultimately referenced by an r-value
1988 */
1989 virtual ir_variable *variable_referenced() const = 0;
1990
1991 protected:
1992 ir_dereference(enum ir_node_type t)
1993 : ir_rvalue(t)
1994 {
1995 }
1996 };
1997
1998
1999 class ir_dereference_variable : public ir_dereference {
2000 public:
2001 ir_dereference_variable(ir_variable *var);
2002
2003 virtual ir_dereference_variable *clone(void *mem_ctx,
2004 struct hash_table *) const;
2005
2006 virtual ir_constant *constant_expression_value(void *mem_ctx,
2007 struct hash_table *variable_context = NULL);
2008
2009 virtual bool equals(const ir_instruction *ir,
2010 enum ir_node_type ignore = ir_type_unset) const;
2011
2012 /**
2013 * Get the variable that is ultimately referenced by an r-value
2014 */
2015 virtual ir_variable *variable_referenced() const
2016 {
2017 return this->var;
2018 }
2019
2020 virtual ir_variable *whole_variable_referenced()
2021 {
2022 /* ir_dereference_variable objects always dereference the entire
2023 * variable. However, if this dereference is dereferenced by anything
2024 * else, the complete deferefernce chain is not a whole-variable
2025 * dereference. This method should only be called on the top most
2026 * ir_rvalue in a dereference chain.
2027 */
2028 return this->var;
2029 }
2030
2031 virtual void accept(ir_visitor *v)
2032 {
2033 v->visit(this);
2034 }
2035
2036 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2037
2038 /**
2039 * Object being dereferenced.
2040 */
2041 ir_variable *var;
2042 };
2043
2044
2045 class ir_dereference_array : public ir_dereference {
2046 public:
2047 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2048
2049 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2050
2051 virtual ir_dereference_array *clone(void *mem_ctx,
2052 struct hash_table *) const;
2053
2054 virtual ir_constant *constant_expression_value(void *mem_ctx,
2055 struct hash_table *variable_context = NULL);
2056
2057 virtual bool equals(const ir_instruction *ir,
2058 enum ir_node_type ignore = ir_type_unset) const;
2059
2060 /**
2061 * Get the variable that is ultimately referenced by an r-value
2062 */
2063 virtual ir_variable *variable_referenced() const
2064 {
2065 return this->array->variable_referenced();
2066 }
2067
2068 virtual void accept(ir_visitor *v)
2069 {
2070 v->visit(this);
2071 }
2072
2073 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2074
2075 ir_rvalue *array;
2076 ir_rvalue *array_index;
2077
2078 private:
2079 void set_array(ir_rvalue *value);
2080 };
2081
2082
2083 class ir_dereference_record : public ir_dereference {
2084 public:
2085 ir_dereference_record(ir_rvalue *value, const char *field);
2086
2087 ir_dereference_record(ir_variable *var, const char *field);
2088
2089 virtual ir_dereference_record *clone(void *mem_ctx,
2090 struct hash_table *) const;
2091
2092 virtual ir_constant *constant_expression_value(void *mem_ctx,
2093 struct hash_table *variable_context = NULL);
2094
2095 /**
2096 * Get the variable that is ultimately referenced by an r-value
2097 */
2098 virtual ir_variable *variable_referenced() const
2099 {
2100 return this->record->variable_referenced();
2101 }
2102
2103 virtual void accept(ir_visitor *v)
2104 {
2105 v->visit(this);
2106 }
2107
2108 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2109
2110 ir_rvalue *record;
2111 int field_idx;
2112 };
2113
2114
2115 /**
2116 * Data stored in an ir_constant
2117 */
2118 union ir_constant_data {
2119 unsigned u[16];
2120 int i[16];
2121 float f[16];
2122 bool b[16];
2123 double d[16];
2124 uint64_t u64[16];
2125 int64_t i64[16];
2126 };
2127
2128
2129 class ir_constant : public ir_rvalue {
2130 public:
2131 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2132 ir_constant(bool b, unsigned vector_elements=1);
2133 ir_constant(unsigned int u, unsigned vector_elements=1);
2134 ir_constant(int i, unsigned vector_elements=1);
2135 ir_constant(float f, unsigned vector_elements=1);
2136 ir_constant(double d, unsigned vector_elements=1);
2137 ir_constant(uint64_t u64, unsigned vector_elements=1);
2138 ir_constant(int64_t i64, unsigned vector_elements=1);
2139
2140 /**
2141 * Construct an ir_constant from a list of ir_constant values
2142 */
2143 ir_constant(const struct glsl_type *type, exec_list *values);
2144
2145 /**
2146 * Construct an ir_constant from a scalar component of another ir_constant
2147 *
2148 * The new \c ir_constant inherits the type of the component from the
2149 * source constant.
2150 *
2151 * \note
2152 * In the case of a matrix constant, the new constant is a scalar, \b not
2153 * a vector.
2154 */
2155 ir_constant(const ir_constant *c, unsigned i);
2156
2157 /**
2158 * Return a new ir_constant of the specified type containing all zeros.
2159 */
2160 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2161
2162 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2163
2164 virtual ir_constant *constant_expression_value(void *mem_ctx,
2165 struct hash_table *variable_context = NULL);
2166
2167 virtual void accept(ir_visitor *v)
2168 {
2169 v->visit(this);
2170 }
2171
2172 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2173
2174 virtual bool equals(const ir_instruction *ir,
2175 enum ir_node_type ignore = ir_type_unset) const;
2176
2177 /**
2178 * Get a particular component of a constant as a specific type
2179 *
2180 * This is useful, for example, to get a value from an integer constant
2181 * as a float or bool. This appears frequently when constructors are
2182 * called with all constant parameters.
2183 */
2184 /*@{*/
2185 bool get_bool_component(unsigned i) const;
2186 float get_float_component(unsigned i) const;
2187 double get_double_component(unsigned i) const;
2188 int get_int_component(unsigned i) const;
2189 unsigned get_uint_component(unsigned i) const;
2190 int64_t get_int64_component(unsigned i) const;
2191 uint64_t get_uint64_component(unsigned i) const;
2192 /*@}*/
2193
2194 ir_constant *get_array_element(unsigned i) const;
2195
2196 ir_constant *get_record_field(int idx);
2197
2198 /**
2199 * Copy the values on another constant at a given offset.
2200 *
2201 * The offset is ignored for array or struct copies, it's only for
2202 * scalars or vectors into vectors or matrices.
2203 *
2204 * With identical types on both sides and zero offset it's clone()
2205 * without creating a new object.
2206 */
2207
2208 void copy_offset(ir_constant *src, int offset);
2209
2210 /**
2211 * Copy the values on another constant at a given offset and
2212 * following an assign-like mask.
2213 *
2214 * The mask is ignored for scalars.
2215 *
2216 * Note that this function only handles what assign can handle,
2217 * i.e. at most a vector as source and a column of a matrix as
2218 * destination.
2219 */
2220
2221 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2222
2223 /**
2224 * Determine whether a constant has the same value as another constant
2225 *
2226 * \sa ir_constant::is_zero, ir_constant::is_one,
2227 * ir_constant::is_negative_one
2228 */
2229 bool has_value(const ir_constant *) const;
2230
2231 /**
2232 * Return true if this ir_constant represents the given value.
2233 *
2234 * For vectors, this checks that each component is the given value.
2235 */
2236 virtual bool is_value(float f, int i) const;
2237 virtual bool is_zero() const;
2238 virtual bool is_one() const;
2239 virtual bool is_negative_one() const;
2240
2241 /**
2242 * Return true for constants that could be stored as 16-bit unsigned values.
2243 *
2244 * Note that this will return true even for signed integer ir_constants, as
2245 * long as the value is non-negative and fits in 16-bits.
2246 */
2247 virtual bool is_uint16_constant() const;
2248
2249 /**
2250 * Value of the constant.
2251 *
2252 * The field used to back the values supplied by the constant is determined
2253 * by the type associated with the \c ir_instruction. Constants may be
2254 * scalars, vectors, or matrices.
2255 */
2256 union ir_constant_data value;
2257
2258 /* Array elements and structure fields */
2259 ir_constant **const_elements;
2260
2261 private:
2262 /**
2263 * Parameterless constructor only used by the clone method
2264 */
2265 ir_constant(void);
2266 };
2267
2268 /**
2269 * IR instruction to emit a vertex in a geometry shader.
2270 */
2271 class ir_emit_vertex : public ir_instruction {
2272 public:
2273 ir_emit_vertex(ir_rvalue *stream)
2274 : ir_instruction(ir_type_emit_vertex),
2275 stream(stream)
2276 {
2277 assert(stream);
2278 }
2279
2280 virtual void accept(ir_visitor *v)
2281 {
2282 v->visit(this);
2283 }
2284
2285 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2286 {
2287 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2288 }
2289
2290 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2291
2292 int stream_id() const
2293 {
2294 return stream->as_constant()->value.i[0];
2295 }
2296
2297 ir_rvalue *stream;
2298 };
2299
2300 /**
2301 * IR instruction to complete the current primitive and start a new one in a
2302 * geometry shader.
2303 */
2304 class ir_end_primitive : public ir_instruction {
2305 public:
2306 ir_end_primitive(ir_rvalue *stream)
2307 : ir_instruction(ir_type_end_primitive),
2308 stream(stream)
2309 {
2310 assert(stream);
2311 }
2312
2313 virtual void accept(ir_visitor *v)
2314 {
2315 v->visit(this);
2316 }
2317
2318 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2319 {
2320 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2321 }
2322
2323 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2324
2325 int stream_id() const
2326 {
2327 return stream->as_constant()->value.i[0];
2328 }
2329
2330 ir_rvalue *stream;
2331 };
2332
2333 /**
2334 * IR instruction for tessellation control and compute shader barrier.
2335 */
2336 class ir_barrier : public ir_instruction {
2337 public:
2338 ir_barrier()
2339 : ir_instruction(ir_type_barrier)
2340 {
2341 }
2342
2343 virtual void accept(ir_visitor *v)
2344 {
2345 v->visit(this);
2346 }
2347
2348 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2349 {
2350 return new(mem_ctx) ir_barrier();
2351 }
2352
2353 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2354 };
2355
2356 /*@}*/
2357
2358 /**
2359 * Apply a visitor to each IR node in a list
2360 */
2361 void
2362 visit_exec_list(exec_list *list, ir_visitor *visitor);
2363
2364 /**
2365 * Validate invariants on each IR node in a list
2366 */
2367 void validate_ir_tree(exec_list *instructions);
2368
2369 struct _mesa_glsl_parse_state;
2370 struct gl_shader_program;
2371
2372 /**
2373 * Detect whether an unlinked shader contains static recursion
2374 *
2375 * If the list of instructions is determined to contain static recursion,
2376 * \c _mesa_glsl_error will be called to emit error messages for each function
2377 * that is in the recursion cycle.
2378 */
2379 void
2380 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2381 exec_list *instructions);
2382
2383 /**
2384 * Detect whether a linked shader contains static recursion
2385 *
2386 * If the list of instructions is determined to contain static recursion,
2387 * \c link_error_printf will be called to emit error messages for each function
2388 * that is in the recursion cycle. In addition,
2389 * \c gl_shader_program::LinkStatus will be set to false.
2390 */
2391 void
2392 detect_recursion_linked(struct gl_shader_program *prog,
2393 exec_list *instructions);
2394
2395 /**
2396 * Make a clone of each IR instruction in a list
2397 *
2398 * \param in List of IR instructions that are to be cloned
2399 * \param out List to hold the cloned instructions
2400 */
2401 void
2402 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2403
2404 extern void
2405 _mesa_glsl_initialize_variables(exec_list *instructions,
2406 struct _mesa_glsl_parse_state *state);
2407
2408 extern void
2409 reparent_ir(exec_list *list, void *mem_ctx);
2410
2411 extern void
2412 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2413 gl_shader_stage shader_stage);
2414
2415 extern char *
2416 prototype_string(const glsl_type *return_type, const char *name,
2417 exec_list *parameters);
2418
2419 const char *
2420 mode_string(const ir_variable *var);
2421
2422 /**
2423 * Built-in / reserved GL variables names start with "gl_"
2424 */
2425 static inline bool
2426 is_gl_identifier(const char *s)
2427 {
2428 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2429 }
2430
2431 extern "C" {
2432 #endif /* __cplusplus */
2433
2434 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2435 struct _mesa_glsl_parse_state *state);
2436
2437 extern void
2438 fprint_ir(FILE *f, const void *instruction);
2439
2440 extern const struct gl_builtin_uniform_desc *
2441 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2442
2443 #ifdef __cplusplus
2444 } /* extern "C" */
2445 #endif
2446
2447 unsigned
2448 vertices_per_prim(GLenum prim);
2449
2450 #endif /* IR_H */