mesa: Revert INTEL_fragment_shader_ordering support
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36
37 #ifdef __cplusplus
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 ir_type_dereference_array,
61 ir_type_dereference_record,
62 ir_type_dereference_variable,
63 ir_type_constant,
64 ir_type_expression,
65 ir_type_swizzle,
66 ir_type_texture,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_function,
71 ir_type_function_signature,
72 ir_type_if,
73 ir_type_loop,
74 ir_type_loop_jump,
75 ir_type_return,
76 ir_type_discard,
77 ir_type_emit_vertex,
78 ir_type_end_primitive,
79 ir_type_barrier,
80 ir_type_max, /**< maximum ir_type enum number, for validation */
81 ir_type_unset = ir_type_max
82 };
83
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104 void fprint(FILE *f) const;
105
106 virtual void accept(ir_visitor *) = 0;
107 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108 virtual ir_instruction *clone(void *mem_ctx,
109 struct hash_table *ht) const = 0;
110
111 bool is_rvalue() const
112 {
113 return ir_type == ir_type_dereference_array ||
114 ir_type == ir_type_dereference_record ||
115 ir_type == ir_type_dereference_variable ||
116 ir_type == ir_type_constant ||
117 ir_type == ir_type_expression ||
118 ir_type == ir_type_swizzle ||
119 ir_type == ir_type_texture;
120 }
121
122 bool is_dereference() const
123 {
124 return ir_type == ir_type_dereference_array ||
125 ir_type == ir_type_dereference_record ||
126 ir_type == ir_type_dereference_variable;
127 }
128
129 bool is_jump() const
130 {
131 return ir_type == ir_type_loop_jump ||
132 ir_type == ir_type_return ||
133 ir_type == ir_type_discard;
134 }
135
136 /**
137 * \name IR instruction downcast functions
138 *
139 * These functions either cast the object to a derived class or return
140 * \c NULL if the object's type does not match the specified derived class.
141 * Additional downcast functions will be added as needed.
142 */
143 /*@{*/
144 #define AS_BASE(TYPE) \
145 class ir_##TYPE *as_##TYPE() \
146 { \
147 assume(this != NULL); \
148 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
149 } \
150 const class ir_##TYPE *as_##TYPE() const \
151 { \
152 assume(this != NULL); \
153 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
154 }
155
156 AS_BASE(rvalue)
157 AS_BASE(dereference)
158 AS_BASE(jump)
159 #undef AS_BASE
160
161 #define AS_CHILD(TYPE) \
162 class ir_##TYPE * as_##TYPE() \
163 { \
164 assume(this != NULL); \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 assume(this != NULL); \
170 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171 }
172 AS_CHILD(variable)
173 AS_CHILD(function)
174 AS_CHILD(dereference_array)
175 AS_CHILD(dereference_variable)
176 AS_CHILD(dereference_record)
177 AS_CHILD(expression)
178 AS_CHILD(loop)
179 AS_CHILD(assignment)
180 AS_CHILD(call)
181 AS_CHILD(return)
182 AS_CHILD(if)
183 AS_CHILD(swizzle)
184 AS_CHILD(texture)
185 AS_CHILD(constant)
186 AS_CHILD(discard)
187 #undef AS_CHILD
188 /*@}*/
189
190 /**
191 * IR equality method: Return true if the referenced instruction would
192 * return the same value as this one.
193 *
194 * This intended to be used for CSE and algebraic optimizations, on rvalues
195 * in particular. No support for other instruction types (assignments,
196 * jumps, calls, etc.) is planned.
197 */
198 virtual bool equals(const ir_instruction *ir,
199 enum ir_node_type ignore = ir_type_unset) const;
200
201 protected:
202 ir_instruction(enum ir_node_type t)
203 : ir_type(t)
204 {
205 }
206
207 private:
208 ir_instruction()
209 {
210 assert(!"Should not get here.");
211 }
212 };
213
214
215 /**
216 * The base class for all "values"/expression trees.
217 */
218 class ir_rvalue : public ir_instruction {
219 public:
220 const struct glsl_type *type;
221
222 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224 virtual void accept(ir_visitor *v)
225 {
226 v->visit(this);
227 }
228
229 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231 virtual ir_constant *constant_expression_value(void *mem_ctx,
232 struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_storage, /**< Variable declared as an ssbo. */
327 ir_var_shader_shared, /**< Variable declared as shared. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 gl_state_index16 tokens[STATE_LENGTH];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine whether or not a variable is part of a uniform or
435 * shader storage block.
436 */
437 inline bool is_in_buffer_block() const
438 {
439 return (this->data.mode == ir_var_uniform ||
440 this->data.mode == ir_var_shader_storage) &&
441 this->interface_type != NULL;
442 }
443
444 /**
445 * Determine whether or not a variable is part of a shader storage block.
446 */
447 inline bool is_in_shader_storage_block() const
448 {
449 return this->data.mode == ir_var_shader_storage &&
450 this->interface_type != NULL;
451 }
452
453 /**
454 * Determine whether or not a variable is the declaration of an interface
455 * block
456 *
457 * For the first declaration below, there will be an \c ir_variable named
458 * "instance" whose type and whose instance_type will be the same
459 * \c glsl_type. For the second declaration, there will be an \c ir_variable
460 * named "f" whose type is float and whose instance_type is B2.
461 *
462 * "instance" is an interface instance variable, but "f" is not.
463 *
464 * uniform B1 {
465 * float f;
466 * } instance;
467 *
468 * uniform B2 {
469 * float f;
470 * };
471 */
472 inline bool is_interface_instance() const
473 {
474 return this->type->without_array() == this->interface_type;
475 }
476
477 /**
478 * Return whether this variable contains a bindless sampler/image.
479 */
480 inline bool contains_bindless() const
481 {
482 if (!this->type->contains_sampler() && !this->type->contains_image())
483 return false;
484
485 return this->data.bindless || this->data.mode != ir_var_uniform;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 ralloc_array(this, int, type->length);
498 for (unsigned i = 0; i < type->length; i++) {
499 this->u.max_ifc_array_access[i] = -1;
500 }
501 }
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, but compatible, interface_type. This is used during linking
507 * to set the size of arrays in interface blocks.
508 */
509 void change_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 /* max_ifc_array_access has already been allocated, so make sure the
513 * new interface has the same number of fields as the old one.
514 */
515 assert(this->interface_type->length == type->length);
516 }
517 this->interface_type = type;
518 }
519
520 /**
521 * Change this->interface_type on a variable that previously had a
522 * different, and incompatible, interface_type. This is used during
523 * compilation to handle redeclaration of the built-in gl_PerVertex
524 * interface block.
525 */
526 void reinit_interface_type(const struct glsl_type *type)
527 {
528 if (this->u.max_ifc_array_access != NULL) {
529 #ifndef NDEBUG
530 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531 * it defines have been accessed yet; so it's safe to throw away the
532 * old max_ifc_array_access pointer, since all of its values are
533 * zero.
534 */
535 for (unsigned i = 0; i < this->interface_type->length; i++)
536 assert(this->u.max_ifc_array_access[i] == -1);
537 #endif
538 ralloc_free(this->u.max_ifc_array_access);
539 this->u.max_ifc_array_access = NULL;
540 }
541 this->interface_type = NULL;
542 init_interface_type(type);
543 }
544
545 const glsl_type *get_interface_type() const
546 {
547 return this->interface_type;
548 }
549
550 enum glsl_interface_packing get_interface_type_packing() const
551 {
552 return this->interface_type->get_interface_packing();
553 }
554 /**
555 * Get the max_ifc_array_access pointer
556 *
557 * A "set" function is not needed because the array is dynmically allocated
558 * as necessary.
559 */
560 inline int *get_max_ifc_array_access()
561 {
562 assert(this->data._num_state_slots == 0);
563 return this->u.max_ifc_array_access;
564 }
565
566 inline unsigned get_num_state_slots() const
567 {
568 assert(!this->is_interface_instance()
569 || this->data._num_state_slots == 0);
570 return this->data._num_state_slots;
571 }
572
573 inline void set_num_state_slots(unsigned n)
574 {
575 assert(!this->is_interface_instance()
576 || n == 0);
577 this->data._num_state_slots = n;
578 }
579
580 inline ir_state_slot *get_state_slots()
581 {
582 return this->is_interface_instance() ? NULL : this->u.state_slots;
583 }
584
585 inline const ir_state_slot *get_state_slots() const
586 {
587 return this->is_interface_instance() ? NULL : this->u.state_slots;
588 }
589
590 inline ir_state_slot *allocate_state_slots(unsigned n)
591 {
592 assert(!this->is_interface_instance());
593
594 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595 this->data._num_state_slots = 0;
596
597 if (this->u.state_slots != NULL)
598 this->data._num_state_slots = n;
599
600 return this->u.state_slots;
601 }
602
603 inline bool is_interpolation_flat() const
604 {
605 return this->data.interpolation == INTERP_MODE_FLAT ||
606 this->type->contains_integer() ||
607 this->type->contains_double();
608 }
609
610 inline bool is_name_ralloced() const
611 {
612 return this->name != ir_variable::tmp_name &&
613 this->name != this->name_storage;
614 }
615
616 /**
617 * Enable emitting extension warnings for this variable
618 */
619 void enable_extension_warning(const char *extension);
620
621 /**
622 * Get the extension warning string for this variable
623 *
624 * If warnings are not enabled, \c NULL is returned.
625 */
626 const char *get_extension_warning() const;
627
628 /**
629 * Declared type of the variable
630 */
631 const struct glsl_type *type;
632
633 /**
634 * Declared name of the variable
635 */
636 const char *name;
637
638 private:
639 /**
640 * If the name length fits into name_storage, it's used, otherwise
641 * the name is ralloc'd. shader-db mining showed that 70% of variables
642 * fit here. This is a win over ralloc where only ralloc_header has
643 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644 */
645 char name_storage[16];
646
647 public:
648 struct ir_variable_data {
649
650 /**
651 * Is the variable read-only?
652 *
653 * This is set for variables declared as \c const, shader inputs,
654 * and uniforms.
655 */
656 unsigned read_only:1;
657 unsigned centroid:1;
658 unsigned sample:1;
659 unsigned patch:1;
660 unsigned invariant:1;
661 unsigned precise:1;
662
663 /**
664 * Has this variable been used for reading or writing?
665 *
666 * Several GLSL semantic checks require knowledge of whether or not a
667 * variable has been used. For example, it is an error to redeclare a
668 * variable as invariant after it has been used.
669 *
670 * This is maintained in the ast_to_hir.cpp path and during linking,
671 * but not in Mesa's fixed function or ARB program paths.
672 */
673 unsigned used:1;
674
675 /**
676 * Has this variable been statically assigned?
677 *
678 * This answers whether the variable was assigned in any path of
679 * the shader during ast_to_hir. This doesn't answer whether it is
680 * still written after dead code removal, nor is it maintained in
681 * non-ast_to_hir.cpp (GLSL parsing) paths.
682 */
683 unsigned assigned:1;
684
685 /**
686 * When separate shader programs are enabled, only input/outputs between
687 * the stages of a multi-stage separate program can be safely removed
688 * from the shader interface. Other input/outputs must remains active.
689 */
690 unsigned always_active_io:1;
691
692 /**
693 * Enum indicating how the variable was declared. See
694 * ir_var_declaration_type.
695 *
696 * This is used to detect certain kinds of illegal variable redeclarations.
697 */
698 unsigned how_declared:2;
699
700 /**
701 * Storage class of the variable.
702 *
703 * \sa ir_variable_mode
704 */
705 unsigned mode:4;
706
707 /**
708 * Interpolation mode for shader inputs / outputs
709 *
710 * \sa glsl_interp_mode
711 */
712 unsigned interpolation:2;
713
714 /**
715 * \name ARB_fragment_coord_conventions
716 * @{
717 */
718 unsigned origin_upper_left:1;
719 unsigned pixel_center_integer:1;
720 /*@}*/
721
722 /**
723 * Was the location explicitly set in the shader?
724 *
725 * If the location is explicitly set in the shader, it \b cannot be changed
726 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
727 * no effect).
728 */
729 unsigned explicit_location:1;
730 unsigned explicit_index:1;
731
732 /**
733 * Was an initial binding explicitly set in the shader?
734 *
735 * If so, constant_value contains an integer ir_constant representing the
736 * initial binding point.
737 */
738 unsigned explicit_binding:1;
739
740 /**
741 * Was an initial component explicitly set in the shader?
742 */
743 unsigned explicit_component:1;
744
745 /**
746 * Does this variable have an initializer?
747 *
748 * This is used by the linker to cross-validiate initializers of global
749 * variables.
750 */
751 unsigned has_initializer:1;
752
753 /**
754 * Is this variable a generic output or input that has not yet been matched
755 * up to a variable in another stage of the pipeline?
756 *
757 * This is used by the linker as scratch storage while assigning locations
758 * to generic inputs and outputs.
759 */
760 unsigned is_unmatched_generic_inout:1;
761
762 /**
763 * Is this varying used only by transform feedback?
764 *
765 * This is used by the linker to decide if its safe to pack the varying.
766 */
767 unsigned is_xfb_only:1;
768
769 /**
770 * Was a transfor feedback buffer set in the shader?
771 */
772 unsigned explicit_xfb_buffer:1;
773
774 /**
775 * Was a transfor feedback offset set in the shader?
776 */
777 unsigned explicit_xfb_offset:1;
778
779 /**
780 * Was a transfor feedback stride set in the shader?
781 */
782 unsigned explicit_xfb_stride:1;
783
784 /**
785 * If non-zero, then this variable may be packed along with other variables
786 * into a single varying slot, so this offset should be applied when
787 * accessing components. For example, an offset of 1 means that the x
788 * component of this variable is actually stored in component y of the
789 * location specified by \c location.
790 */
791 unsigned location_frac:2;
792
793 /**
794 * Layout of the matrix. Uses glsl_matrix_layout values.
795 */
796 unsigned matrix_layout:2;
797
798 /**
799 * Non-zero if this variable was created by lowering a named interface
800 * block.
801 */
802 unsigned from_named_ifc_block:1;
803
804 /**
805 * Non-zero if the variable must be a shader input. This is useful for
806 * constraints on function parameters.
807 */
808 unsigned must_be_shader_input:1;
809
810 /**
811 * Output index for dual source blending.
812 *
813 * \note
814 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
815 * source blending.
816 */
817 unsigned index:1;
818
819 /**
820 * Precision qualifier.
821 *
822 * In desktop GLSL we do not care about precision qualifiers at all, in
823 * fact, the spec says that precision qualifiers are ignored.
824 *
825 * To make things easy, we make it so that this field is always
826 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
827 * have the same precision value and the checks we add in the compiler
828 * for this field will never break a desktop shader compile.
829 */
830 unsigned precision:2;
831
832 /**
833 * \brief Layout qualifier for gl_FragDepth.
834 *
835 * This is not equal to \c ir_depth_layout_none if and only if this
836 * variable is \c gl_FragDepth and a layout qualifier is specified.
837 */
838 ir_depth_layout depth_layout:3;
839
840 /**
841 * Memory qualifiers.
842 */
843 unsigned memory_read_only:1; /**< "readonly" qualifier. */
844 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
845 unsigned memory_coherent:1;
846 unsigned memory_volatile:1;
847 unsigned memory_restrict:1;
848
849 /**
850 * ARB_shader_storage_buffer_object
851 */
852 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
853
854 unsigned implicit_sized_array:1;
855
856 /**
857 * Whether this is a fragment shader output implicitly initialized with
858 * the previous contents of the specified render target at the
859 * framebuffer location corresponding to this shader invocation.
860 */
861 unsigned fb_fetch_output:1;
862
863 /**
864 * Non-zero if this variable is considered bindless as defined by
865 * ARB_bindless_texture.
866 */
867 unsigned bindless:1;
868
869 /**
870 * Non-zero if this variable is considered bound as defined by
871 * ARB_bindless_texture.
872 */
873 unsigned bound:1;
874
875 /**
876 * Emit a warning if this variable is accessed.
877 */
878 private:
879 uint8_t warn_extension_index;
880
881 public:
882 /** Image internal format if specified explicitly, otherwise GL_NONE. */
883 uint16_t image_format;
884
885 private:
886 /**
887 * Number of state slots used
888 *
889 * \note
890 * This could be stored in as few as 7-bits, if necessary. If it is made
891 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
892 * be safe.
893 */
894 uint16_t _num_state_slots;
895
896 public:
897 /**
898 * Initial binding point for a sampler, atomic, or UBO.
899 *
900 * For array types, this represents the binding point for the first element.
901 */
902 int16_t binding;
903
904 /**
905 * Storage location of the base of this variable
906 *
907 * The precise meaning of this field depends on the nature of the variable.
908 *
909 * - Vertex shader input: one of the values from \c gl_vert_attrib.
910 * - Vertex shader output: one of the values from \c gl_varying_slot.
911 * - Geometry shader input: one of the values from \c gl_varying_slot.
912 * - Geometry shader output: one of the values from \c gl_varying_slot.
913 * - Fragment shader input: one of the values from \c gl_varying_slot.
914 * - Fragment shader output: one of the values from \c gl_frag_result.
915 * - Uniforms: Per-stage uniform slot number for default uniform block.
916 * - Uniforms: Index within the uniform block definition for UBO members.
917 * - Non-UBO Uniforms: explicit location until linking then reused to
918 * store uniform slot number.
919 * - Other: This field is not currently used.
920 *
921 * If the variable is a uniform, shader input, or shader output, and the
922 * slot has not been assigned, the value will be -1.
923 */
924 int location;
925
926 /**
927 * for glsl->tgsi/mesa IR we need to store the index into the
928 * parameters for uniforms, initially the code overloaded location
929 * but this causes problems with indirect samplers and AoA.
930 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
931 */
932 int param_index;
933
934 /**
935 * Vertex stream output identifier.
936 *
937 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
938 * stream of the i-th component.
939 */
940 unsigned stream;
941
942 /**
943 * Atomic, transform feedback or block member offset.
944 */
945 unsigned offset;
946
947 /**
948 * Highest element accessed with a constant expression array index
949 *
950 * Not used for non-array variables. -1 is never accessed.
951 */
952 int max_array_access;
953
954 /**
955 * Transform feedback buffer.
956 */
957 unsigned xfb_buffer;
958
959 /**
960 * Transform feedback stride.
961 */
962 unsigned xfb_stride;
963
964 /**
965 * Allow (only) ir_variable direct access private members.
966 */
967 friend class ir_variable;
968 } data;
969
970 /**
971 * Value assigned in the initializer of a variable declared "const"
972 */
973 ir_constant *constant_value;
974
975 /**
976 * Constant expression assigned in the initializer of the variable
977 *
978 * \warning
979 * This field and \c ::constant_value are distinct. Even if the two fields
980 * refer to constants with the same value, they must point to separate
981 * objects.
982 */
983 ir_constant *constant_initializer;
984
985 private:
986 static const char *const warn_extension_table[];
987
988 union {
989 /**
990 * For variables which satisfy the is_interface_instance() predicate,
991 * this points to an array of integers such that if the ith member of
992 * the interface block is an array, max_ifc_array_access[i] is the
993 * maximum array element of that member that has been accessed. If the
994 * ith member of the interface block is not an array,
995 * max_ifc_array_access[i] is unused.
996 *
997 * For variables whose type is not an interface block, this pointer is
998 * NULL.
999 */
1000 int *max_ifc_array_access;
1001
1002 /**
1003 * Built-in state that backs this uniform
1004 *
1005 * Once set at variable creation, \c state_slots must remain invariant.
1006 *
1007 * If the variable is not a uniform, \c _num_state_slots will be zero
1008 * and \c state_slots will be \c NULL.
1009 */
1010 ir_state_slot *state_slots;
1011 } u;
1012
1013 /**
1014 * For variables that are in an interface block or are an instance of an
1015 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1016 *
1017 * \sa ir_variable::location
1018 */
1019 const glsl_type *interface_type;
1020
1021 /**
1022 * Name used for anonymous compiler temporaries
1023 */
1024 static const char tmp_name[];
1025
1026 public:
1027 /**
1028 * Should the construct keep names for ir_var_temporary variables?
1029 *
1030 * When this global is false, names passed to the constructor for
1031 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1032 * be named "compiler_temp". This name will be in static storage.
1033 *
1034 * \warning
1035 * \b NEVER change the mode of an \c ir_var_temporary.
1036 *
1037 * \warning
1038 * This variable is \b not thread-safe. It is global, \b not
1039 * per-context. It begins life false. A context can, at some point, make
1040 * it true. From that point on, it will be true forever. This should be
1041 * okay since it will only be set true while debugging.
1042 */
1043 static bool temporaries_allocate_names;
1044 };
1045
1046 /**
1047 * A function that returns whether a built-in function is available in the
1048 * current shading language (based on version, ES or desktop, and extensions).
1049 */
1050 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1051
1052 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1053 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1054
1055 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1056 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1057
1058 enum ir_intrinsic_id {
1059 ir_intrinsic_invalid = 0,
1060
1061 /**
1062 * \name Generic intrinsics
1063 *
1064 * Each of these intrinsics has a specific version for shared variables and
1065 * SSBOs.
1066 */
1067 /*@{*/
1068 ir_intrinsic_generic_load,
1069 ir_intrinsic_generic_store,
1070 ir_intrinsic_generic_atomic_add,
1071 ir_intrinsic_generic_atomic_and,
1072 ir_intrinsic_generic_atomic_or,
1073 ir_intrinsic_generic_atomic_xor,
1074 ir_intrinsic_generic_atomic_min,
1075 ir_intrinsic_generic_atomic_max,
1076 ir_intrinsic_generic_atomic_exchange,
1077 ir_intrinsic_generic_atomic_comp_swap,
1078 /*@}*/
1079
1080 ir_intrinsic_atomic_counter_read,
1081 ir_intrinsic_atomic_counter_increment,
1082 ir_intrinsic_atomic_counter_predecrement,
1083 ir_intrinsic_atomic_counter_add,
1084 ir_intrinsic_atomic_counter_and,
1085 ir_intrinsic_atomic_counter_or,
1086 ir_intrinsic_atomic_counter_xor,
1087 ir_intrinsic_atomic_counter_min,
1088 ir_intrinsic_atomic_counter_max,
1089 ir_intrinsic_atomic_counter_exchange,
1090 ir_intrinsic_atomic_counter_comp_swap,
1091
1092 ir_intrinsic_image_load,
1093 ir_intrinsic_image_store,
1094 ir_intrinsic_image_atomic_add,
1095 ir_intrinsic_image_atomic_and,
1096 ir_intrinsic_image_atomic_or,
1097 ir_intrinsic_image_atomic_xor,
1098 ir_intrinsic_image_atomic_min,
1099 ir_intrinsic_image_atomic_max,
1100 ir_intrinsic_image_atomic_exchange,
1101 ir_intrinsic_image_atomic_comp_swap,
1102 ir_intrinsic_image_size,
1103 ir_intrinsic_image_samples,
1104
1105 ir_intrinsic_ssbo_load,
1106 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1107 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1108 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1109 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1110 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1111 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1112 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1113 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1114 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1115
1116 ir_intrinsic_memory_barrier,
1117 ir_intrinsic_shader_clock,
1118 ir_intrinsic_group_memory_barrier,
1119 ir_intrinsic_memory_barrier_atomic_counter,
1120 ir_intrinsic_memory_barrier_buffer,
1121 ir_intrinsic_memory_barrier_image,
1122 ir_intrinsic_memory_barrier_shared,
1123 ir_intrinsic_begin_invocation_interlock,
1124 ir_intrinsic_end_invocation_interlock,
1125
1126 ir_intrinsic_vote_all,
1127 ir_intrinsic_vote_any,
1128 ir_intrinsic_vote_eq,
1129 ir_intrinsic_ballot,
1130 ir_intrinsic_read_invocation,
1131 ir_intrinsic_read_first_invocation,
1132
1133 ir_intrinsic_shared_load,
1134 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1135 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1136 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1137 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1138 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1139 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1140 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1141 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1142 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1143 };
1144
1145 /*@{*/
1146 /**
1147 * The representation of a function instance; may be the full definition or
1148 * simply a prototype.
1149 */
1150 class ir_function_signature : public ir_instruction {
1151 /* An ir_function_signature will be part of the list of signatures in
1152 * an ir_function.
1153 */
1154 public:
1155 ir_function_signature(const glsl_type *return_type,
1156 builtin_available_predicate builtin_avail = NULL);
1157
1158 virtual ir_function_signature *clone(void *mem_ctx,
1159 struct hash_table *ht) const;
1160 ir_function_signature *clone_prototype(void *mem_ctx,
1161 struct hash_table *ht) const;
1162
1163 virtual void accept(ir_visitor *v)
1164 {
1165 v->visit(this);
1166 }
1167
1168 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1169
1170 /**
1171 * Attempt to evaluate this function as a constant expression,
1172 * given a list of the actual parameters and the variable context.
1173 * Returns NULL for non-built-ins.
1174 */
1175 ir_constant *constant_expression_value(void *mem_ctx,
1176 exec_list *actual_parameters,
1177 struct hash_table *variable_context);
1178
1179 /**
1180 * Get the name of the function for which this is a signature
1181 */
1182 const char *function_name() const;
1183
1184 /**
1185 * Get a handle to the function for which this is a signature
1186 *
1187 * There is no setter function, this function returns a \c const pointer,
1188 * and \c ir_function_signature::_function is private for a reason. The
1189 * only way to make a connection between a function and function signature
1190 * is via \c ir_function::add_signature. This helps ensure that certain
1191 * invariants (i.e., a function signature is in the list of signatures for
1192 * its \c _function) are met.
1193 *
1194 * \sa ir_function::add_signature
1195 */
1196 inline const class ir_function *function() const
1197 {
1198 return this->_function;
1199 }
1200
1201 /**
1202 * Check whether the qualifiers match between this signature's parameters
1203 * and the supplied parameter list. If not, returns the name of the first
1204 * parameter with mismatched qualifiers (for use in error messages).
1205 */
1206 const char *qualifiers_match(exec_list *params);
1207
1208 /**
1209 * Replace the current parameter list with the given one. This is useful
1210 * if the current information came from a prototype, and either has invalid
1211 * or missing parameter names.
1212 */
1213 void replace_parameters(exec_list *new_params);
1214
1215 /**
1216 * Function return type.
1217 *
1218 * \note This discards the optional precision qualifier.
1219 */
1220 const struct glsl_type *return_type;
1221
1222 /**
1223 * List of ir_variable of function parameters.
1224 *
1225 * This represents the storage. The paramaters passed in a particular
1226 * call will be in ir_call::actual_paramaters.
1227 */
1228 struct exec_list parameters;
1229
1230 /** Whether or not this function has a body (which may be empty). */
1231 unsigned is_defined:1;
1232
1233 /** Whether or not this function signature is a built-in. */
1234 bool is_builtin() const;
1235
1236 /**
1237 * Whether or not this function is an intrinsic to be implemented
1238 * by the driver.
1239 */
1240 inline bool is_intrinsic() const
1241 {
1242 return intrinsic_id != ir_intrinsic_invalid;
1243 }
1244
1245 /** Indentifier for this intrinsic. */
1246 enum ir_intrinsic_id intrinsic_id;
1247
1248 /** Whether or not a built-in is available for this shader. */
1249 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1250
1251 /** Body of instructions in the function. */
1252 struct exec_list body;
1253
1254 private:
1255 /**
1256 * A function pointer to a predicate that answers whether a built-in
1257 * function is available in the current shader. NULL if not a built-in.
1258 */
1259 builtin_available_predicate builtin_avail;
1260
1261 /** Function of which this signature is one overload. */
1262 class ir_function *_function;
1263
1264 /** Function signature of which this one is a prototype clone */
1265 const ir_function_signature *origin;
1266
1267 friend class ir_function;
1268
1269 /**
1270 * Helper function to run a list of instructions for constant
1271 * expression evaluation.
1272 *
1273 * The hash table represents the values of the visible variables.
1274 * There are no scoping issues because the table is indexed on
1275 * ir_variable pointers, not variable names.
1276 *
1277 * Returns false if the expression is not constant, true otherwise,
1278 * and the value in *result if result is non-NULL.
1279 */
1280 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1281 const struct exec_list &body,
1282 struct hash_table *variable_context,
1283 ir_constant **result);
1284 };
1285
1286
1287 /**
1288 * Header for tracking multiple overloaded functions with the same name.
1289 * Contains a list of ir_function_signatures representing each of the
1290 * actual functions.
1291 */
1292 class ir_function : public ir_instruction {
1293 public:
1294 ir_function(const char *name);
1295
1296 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1297
1298 virtual void accept(ir_visitor *v)
1299 {
1300 v->visit(this);
1301 }
1302
1303 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1304
1305 void add_signature(ir_function_signature *sig)
1306 {
1307 sig->_function = this;
1308 this->signatures.push_tail(sig);
1309 }
1310
1311 /**
1312 * Find a signature that matches a set of actual parameters, taking implicit
1313 * conversions into account. Also flags whether the match was exact.
1314 */
1315 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1316 const exec_list *actual_param,
1317 bool allow_builtins,
1318 bool *match_is_exact);
1319
1320 /**
1321 * Find a signature that matches a set of actual parameters, taking implicit
1322 * conversions into account.
1323 */
1324 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1325 const exec_list *actual_param,
1326 bool allow_builtins);
1327
1328 /**
1329 * Find a signature that exactly matches a set of actual parameters without
1330 * any implicit type conversions.
1331 */
1332 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1333 const exec_list *actual_ps);
1334
1335 /**
1336 * Name of the function.
1337 */
1338 const char *name;
1339
1340 /** Whether or not this function has a signature that isn't a built-in. */
1341 bool has_user_signature();
1342
1343 /**
1344 * List of ir_function_signature for each overloaded function with this name.
1345 */
1346 struct exec_list signatures;
1347
1348 /**
1349 * is this function a subroutine type declaration
1350 * e.g. subroutine void type1(float arg1);
1351 */
1352 bool is_subroutine;
1353
1354 /**
1355 * is this function associated to a subroutine type
1356 * e.g. subroutine (type1, type2) function_name { function_body };
1357 * would have num_subroutine_types 2,
1358 * and pointers to the type1 and type2 types.
1359 */
1360 int num_subroutine_types;
1361 const struct glsl_type **subroutine_types;
1362
1363 int subroutine_index;
1364 };
1365
1366 inline const char *ir_function_signature::function_name() const
1367 {
1368 return this->_function->name;
1369 }
1370 /*@}*/
1371
1372
1373 /**
1374 * IR instruction representing high-level if-statements
1375 */
1376 class ir_if : public ir_instruction {
1377 public:
1378 ir_if(ir_rvalue *condition)
1379 : ir_instruction(ir_type_if), condition(condition)
1380 {
1381 }
1382
1383 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1384
1385 virtual void accept(ir_visitor *v)
1386 {
1387 v->visit(this);
1388 }
1389
1390 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1391
1392 ir_rvalue *condition;
1393 /** List of ir_instruction for the body of the then branch */
1394 exec_list then_instructions;
1395 /** List of ir_instruction for the body of the else branch */
1396 exec_list else_instructions;
1397 };
1398
1399
1400 /**
1401 * IR instruction representing a high-level loop structure.
1402 */
1403 class ir_loop : public ir_instruction {
1404 public:
1405 ir_loop();
1406
1407 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1408
1409 virtual void accept(ir_visitor *v)
1410 {
1411 v->visit(this);
1412 }
1413
1414 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1415
1416 /** List of ir_instruction that make up the body of the loop. */
1417 exec_list body_instructions;
1418 };
1419
1420
1421 class ir_assignment : public ir_instruction {
1422 public:
1423 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1424
1425 /**
1426 * Construct an assignment with an explicit write mask
1427 *
1428 * \note
1429 * Since a write mask is supplied, the LHS must already be a bare
1430 * \c ir_dereference. The cannot be any swizzles in the LHS.
1431 */
1432 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1433 unsigned write_mask);
1434
1435 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1436
1437 virtual ir_constant *constant_expression_value(void *mem_ctx,
1438 struct hash_table *variable_context = NULL);
1439
1440 virtual void accept(ir_visitor *v)
1441 {
1442 v->visit(this);
1443 }
1444
1445 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1446
1447 /**
1448 * Get a whole variable written by an assignment
1449 *
1450 * If the LHS of the assignment writes a whole variable, the variable is
1451 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1452 * assignment are:
1453 *
1454 * - Assigning to a scalar
1455 * - Assigning to all components of a vector
1456 * - Whole array (or matrix) assignment
1457 * - Whole structure assignment
1458 */
1459 ir_variable *whole_variable_written();
1460
1461 /**
1462 * Set the LHS of an assignment
1463 */
1464 void set_lhs(ir_rvalue *lhs);
1465
1466 /**
1467 * Left-hand side of the assignment.
1468 *
1469 * This should be treated as read only. If you need to set the LHS of an
1470 * assignment, use \c ir_assignment::set_lhs.
1471 */
1472 ir_dereference *lhs;
1473
1474 /**
1475 * Value being assigned
1476 */
1477 ir_rvalue *rhs;
1478
1479 /**
1480 * Optional condition for the assignment.
1481 */
1482 ir_rvalue *condition;
1483
1484
1485 /**
1486 * Component mask written
1487 *
1488 * For non-vector types in the LHS, this field will be zero. For vector
1489 * types, a bit will be set for each component that is written. Note that
1490 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1491 *
1492 * A partially-set write mask means that each enabled channel gets
1493 * the value from a consecutive channel of the rhs. For example,
1494 * to write just .xyw of gl_FrontColor with color:
1495 *
1496 * (assign (constant bool (1)) (xyw)
1497 * (var_ref gl_FragColor)
1498 * (swiz xyw (var_ref color)))
1499 */
1500 unsigned write_mask:4;
1501 };
1502
1503 #include "ir_expression_operation.h"
1504
1505 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1506 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1507
1508 class ir_expression : public ir_rvalue {
1509 public:
1510 ir_expression(int op, const struct glsl_type *type,
1511 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1512 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1513
1514 /**
1515 * Constructor for unary operation expressions
1516 */
1517 ir_expression(int op, ir_rvalue *);
1518
1519 /**
1520 * Constructor for binary operation expressions
1521 */
1522 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1523
1524 /**
1525 * Constructor for ternary operation expressions
1526 */
1527 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1528
1529 virtual bool equals(const ir_instruction *ir,
1530 enum ir_node_type ignore = ir_type_unset) const;
1531
1532 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1533
1534 /**
1535 * Attempt to constant-fold the expression
1536 *
1537 * The "variable_context" hash table links ir_variable * to ir_constant *
1538 * that represent the variables' values. \c NULL represents an empty
1539 * context.
1540 *
1541 * If the expression cannot be constant folded, this method will return
1542 * \c NULL.
1543 */
1544 virtual ir_constant *constant_expression_value(void *mem_ctx,
1545 struct hash_table *variable_context = NULL);
1546
1547 /**
1548 * This is only here for ir_reader to used for testing purposes please use
1549 * the precomputed num_operands field if you need the number of operands.
1550 */
1551 static unsigned get_num_operands(ir_expression_operation);
1552
1553 /**
1554 * Return whether the expression operates on vectors horizontally.
1555 */
1556 bool is_horizontal() const
1557 {
1558 return operation == ir_binop_all_equal ||
1559 operation == ir_binop_any_nequal ||
1560 operation == ir_binop_dot ||
1561 operation == ir_binop_vector_extract ||
1562 operation == ir_triop_vector_insert ||
1563 operation == ir_binop_ubo_load ||
1564 operation == ir_quadop_vector;
1565 }
1566
1567 /**
1568 * Do a reverse-lookup to translate the given string into an operator.
1569 */
1570 static ir_expression_operation get_operator(const char *);
1571
1572 virtual void accept(ir_visitor *v)
1573 {
1574 v->visit(this);
1575 }
1576
1577 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1578
1579 virtual ir_variable *variable_referenced() const;
1580
1581 /**
1582 * Determine the number of operands used by an expression
1583 */
1584 void init_num_operands()
1585 {
1586 if (operation == ir_quadop_vector) {
1587 num_operands = this->type->vector_elements;
1588 } else {
1589 num_operands = get_num_operands(operation);
1590 }
1591 }
1592
1593 ir_expression_operation operation;
1594 ir_rvalue *operands[4];
1595 uint8_t num_operands;
1596 };
1597
1598
1599 /**
1600 * HIR instruction representing a high-level function call, containing a list
1601 * of parameters and returning a value in the supplied temporary.
1602 */
1603 class ir_call : public ir_instruction {
1604 public:
1605 ir_call(ir_function_signature *callee,
1606 ir_dereference_variable *return_deref,
1607 exec_list *actual_parameters)
1608 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1609 {
1610 assert(callee->return_type != NULL);
1611 actual_parameters->move_nodes_to(& this->actual_parameters);
1612 }
1613
1614 ir_call(ir_function_signature *callee,
1615 ir_dereference_variable *return_deref,
1616 exec_list *actual_parameters,
1617 ir_variable *var, ir_rvalue *array_idx)
1618 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1619 {
1620 assert(callee->return_type != NULL);
1621 actual_parameters->move_nodes_to(& this->actual_parameters);
1622 }
1623
1624 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1625
1626 virtual ir_constant *constant_expression_value(void *mem_ctx,
1627 struct hash_table *variable_context = NULL);
1628
1629 virtual void accept(ir_visitor *v)
1630 {
1631 v->visit(this);
1632 }
1633
1634 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1635
1636 /**
1637 * Get the name of the function being called.
1638 */
1639 const char *callee_name() const
1640 {
1641 return callee->function_name();
1642 }
1643
1644 /**
1645 * Generates an inline version of the function before @ir,
1646 * storing the return value in return_deref.
1647 */
1648 void generate_inline(ir_instruction *ir);
1649
1650 /**
1651 * Storage for the function's return value.
1652 * This must be NULL if the return type is void.
1653 */
1654 ir_dereference_variable *return_deref;
1655
1656 /**
1657 * The specific function signature being called.
1658 */
1659 ir_function_signature *callee;
1660
1661 /* List of ir_rvalue of paramaters passed in this call. */
1662 exec_list actual_parameters;
1663
1664 /*
1665 * ARB_shader_subroutine support -
1666 * the subroutine uniform variable and array index
1667 * rvalue to be used in the lowering pass later.
1668 */
1669 ir_variable *sub_var;
1670 ir_rvalue *array_idx;
1671 };
1672
1673
1674 /**
1675 * \name Jump-like IR instructions.
1676 *
1677 * These include \c break, \c continue, \c return, and \c discard.
1678 */
1679 /*@{*/
1680 class ir_jump : public ir_instruction {
1681 protected:
1682 ir_jump(enum ir_node_type t)
1683 : ir_instruction(t)
1684 {
1685 }
1686 };
1687
1688 class ir_return : public ir_jump {
1689 public:
1690 ir_return()
1691 : ir_jump(ir_type_return), value(NULL)
1692 {
1693 }
1694
1695 ir_return(ir_rvalue *value)
1696 : ir_jump(ir_type_return), value(value)
1697 {
1698 }
1699
1700 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1701
1702 ir_rvalue *get_value() const
1703 {
1704 return value;
1705 }
1706
1707 virtual void accept(ir_visitor *v)
1708 {
1709 v->visit(this);
1710 }
1711
1712 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1713
1714 ir_rvalue *value;
1715 };
1716
1717
1718 /**
1719 * Jump instructions used inside loops
1720 *
1721 * These include \c break and \c continue. The \c break within a loop is
1722 * different from the \c break within a switch-statement.
1723 *
1724 * \sa ir_switch_jump
1725 */
1726 class ir_loop_jump : public ir_jump {
1727 public:
1728 enum jump_mode {
1729 jump_break,
1730 jump_continue
1731 };
1732
1733 ir_loop_jump(jump_mode mode)
1734 : ir_jump(ir_type_loop_jump)
1735 {
1736 this->mode = mode;
1737 }
1738
1739 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1740
1741 virtual void accept(ir_visitor *v)
1742 {
1743 v->visit(this);
1744 }
1745
1746 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1747
1748 bool is_break() const
1749 {
1750 return mode == jump_break;
1751 }
1752
1753 bool is_continue() const
1754 {
1755 return mode == jump_continue;
1756 }
1757
1758 /** Mode selector for the jump instruction. */
1759 enum jump_mode mode;
1760 };
1761
1762 /**
1763 * IR instruction representing discard statements.
1764 */
1765 class ir_discard : public ir_jump {
1766 public:
1767 ir_discard()
1768 : ir_jump(ir_type_discard)
1769 {
1770 this->condition = NULL;
1771 }
1772
1773 ir_discard(ir_rvalue *cond)
1774 : ir_jump(ir_type_discard)
1775 {
1776 this->condition = cond;
1777 }
1778
1779 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1780
1781 virtual void accept(ir_visitor *v)
1782 {
1783 v->visit(this);
1784 }
1785
1786 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1787
1788 ir_rvalue *condition;
1789 };
1790 /*@}*/
1791
1792
1793 /**
1794 * Texture sampling opcodes used in ir_texture
1795 */
1796 enum ir_texture_opcode {
1797 ir_tex, /**< Regular texture look-up */
1798 ir_txb, /**< Texture look-up with LOD bias */
1799 ir_txl, /**< Texture look-up with explicit LOD */
1800 ir_txd, /**< Texture look-up with partial derivatvies */
1801 ir_txf, /**< Texel fetch with explicit LOD */
1802 ir_txf_ms, /**< Multisample texture fetch */
1803 ir_txs, /**< Texture size */
1804 ir_lod, /**< Texture lod query */
1805 ir_tg4, /**< Texture gather */
1806 ir_query_levels, /**< Texture levels query */
1807 ir_texture_samples, /**< Texture samples query */
1808 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1809 };
1810
1811
1812 /**
1813 * IR instruction to sample a texture
1814 *
1815 * The specific form of the IR instruction depends on the \c mode value
1816 * selected from \c ir_texture_opcodes. In the printed IR, these will
1817 * appear as:
1818 *
1819 * Texel offset (0 or an expression)
1820 * | Projection divisor
1821 * | | Shadow comparator
1822 * | | |
1823 * v v v
1824 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1825 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1826 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1827 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1828 * (txf <type> <sampler> <coordinate> 0 <lod>)
1829 * (txf_ms
1830 * <type> <sampler> <coordinate> <sample_index>)
1831 * (txs <type> <sampler> <lod>)
1832 * (lod <type> <sampler> <coordinate>)
1833 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1834 * (query_levels <type> <sampler>)
1835 * (samples_identical <sampler> <coordinate>)
1836 */
1837 class ir_texture : public ir_rvalue {
1838 public:
1839 ir_texture(enum ir_texture_opcode op)
1840 : ir_rvalue(ir_type_texture),
1841 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1842 shadow_comparator(NULL), offset(NULL)
1843 {
1844 memset(&lod_info, 0, sizeof(lod_info));
1845 }
1846
1847 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1848
1849 virtual ir_constant *constant_expression_value(void *mem_ctx,
1850 struct hash_table *variable_context = NULL);
1851
1852 virtual void accept(ir_visitor *v)
1853 {
1854 v->visit(this);
1855 }
1856
1857 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1858
1859 virtual bool equals(const ir_instruction *ir,
1860 enum ir_node_type ignore = ir_type_unset) const;
1861
1862 /**
1863 * Return a string representing the ir_texture_opcode.
1864 */
1865 const char *opcode_string();
1866
1867 /** Set the sampler and type. */
1868 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1869
1870 /**
1871 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1872 */
1873 static ir_texture_opcode get_opcode(const char *);
1874
1875 enum ir_texture_opcode op;
1876
1877 /** Sampler to use for the texture access. */
1878 ir_dereference *sampler;
1879
1880 /** Texture coordinate to sample */
1881 ir_rvalue *coordinate;
1882
1883 /**
1884 * Value used for projective divide.
1885 *
1886 * If there is no projective divide (the common case), this will be
1887 * \c NULL. Optimization passes should check for this to point to a constant
1888 * of 1.0 and replace that with \c NULL.
1889 */
1890 ir_rvalue *projector;
1891
1892 /**
1893 * Coordinate used for comparison on shadow look-ups.
1894 *
1895 * If there is no shadow comparison, this will be \c NULL. For the
1896 * \c ir_txf opcode, this *must* be \c NULL.
1897 */
1898 ir_rvalue *shadow_comparator;
1899
1900 /** Texel offset. */
1901 ir_rvalue *offset;
1902
1903 union {
1904 ir_rvalue *lod; /**< Floating point LOD */
1905 ir_rvalue *bias; /**< Floating point LOD bias */
1906 ir_rvalue *sample_index; /**< MSAA sample index */
1907 ir_rvalue *component; /**< Gather component selector */
1908 struct {
1909 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1910 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1911 } grad;
1912 } lod_info;
1913 };
1914
1915
1916 struct ir_swizzle_mask {
1917 unsigned x:2;
1918 unsigned y:2;
1919 unsigned z:2;
1920 unsigned w:2;
1921
1922 /**
1923 * Number of components in the swizzle.
1924 */
1925 unsigned num_components:3;
1926
1927 /**
1928 * Does the swizzle contain duplicate components?
1929 *
1930 * L-value swizzles cannot contain duplicate components.
1931 */
1932 unsigned has_duplicates:1;
1933 };
1934
1935
1936 class ir_swizzle : public ir_rvalue {
1937 public:
1938 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1939 unsigned count);
1940
1941 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1942
1943 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1944
1945 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1946
1947 virtual ir_constant *constant_expression_value(void *mem_ctx,
1948 struct hash_table *variable_context = NULL);
1949
1950 /**
1951 * Construct an ir_swizzle from the textual representation. Can fail.
1952 */
1953 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1954
1955 virtual void accept(ir_visitor *v)
1956 {
1957 v->visit(this);
1958 }
1959
1960 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1961
1962 virtual bool equals(const ir_instruction *ir,
1963 enum ir_node_type ignore = ir_type_unset) const;
1964
1965 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1966 {
1967 return val->is_lvalue(state) && !mask.has_duplicates;
1968 }
1969
1970 /**
1971 * Get the variable that is ultimately referenced by an r-value
1972 */
1973 virtual ir_variable *variable_referenced() const;
1974
1975 ir_rvalue *val;
1976 ir_swizzle_mask mask;
1977
1978 private:
1979 /**
1980 * Initialize the mask component of a swizzle
1981 *
1982 * This is used by the \c ir_swizzle constructors.
1983 */
1984 void init_mask(const unsigned *components, unsigned count);
1985 };
1986
1987
1988 class ir_dereference : public ir_rvalue {
1989 public:
1990 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1991
1992 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1993
1994 /**
1995 * Get the variable that is ultimately referenced by an r-value
1996 */
1997 virtual ir_variable *variable_referenced() const = 0;
1998
1999 protected:
2000 ir_dereference(enum ir_node_type t)
2001 : ir_rvalue(t)
2002 {
2003 }
2004 };
2005
2006
2007 class ir_dereference_variable : public ir_dereference {
2008 public:
2009 ir_dereference_variable(ir_variable *var);
2010
2011 virtual ir_dereference_variable *clone(void *mem_ctx,
2012 struct hash_table *) const;
2013
2014 virtual ir_constant *constant_expression_value(void *mem_ctx,
2015 struct hash_table *variable_context = NULL);
2016
2017 virtual bool equals(const ir_instruction *ir,
2018 enum ir_node_type ignore = ir_type_unset) const;
2019
2020 /**
2021 * Get the variable that is ultimately referenced by an r-value
2022 */
2023 virtual ir_variable *variable_referenced() const
2024 {
2025 return this->var;
2026 }
2027
2028 virtual ir_variable *whole_variable_referenced()
2029 {
2030 /* ir_dereference_variable objects always dereference the entire
2031 * variable. However, if this dereference is dereferenced by anything
2032 * else, the complete deferefernce chain is not a whole-variable
2033 * dereference. This method should only be called on the top most
2034 * ir_rvalue in a dereference chain.
2035 */
2036 return this->var;
2037 }
2038
2039 virtual void accept(ir_visitor *v)
2040 {
2041 v->visit(this);
2042 }
2043
2044 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2045
2046 /**
2047 * Object being dereferenced.
2048 */
2049 ir_variable *var;
2050 };
2051
2052
2053 class ir_dereference_array : public ir_dereference {
2054 public:
2055 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2056
2057 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2058
2059 virtual ir_dereference_array *clone(void *mem_ctx,
2060 struct hash_table *) const;
2061
2062 virtual ir_constant *constant_expression_value(void *mem_ctx,
2063 struct hash_table *variable_context = NULL);
2064
2065 virtual bool equals(const ir_instruction *ir,
2066 enum ir_node_type ignore = ir_type_unset) const;
2067
2068 /**
2069 * Get the variable that is ultimately referenced by an r-value
2070 */
2071 virtual ir_variable *variable_referenced() const
2072 {
2073 return this->array->variable_referenced();
2074 }
2075
2076 virtual void accept(ir_visitor *v)
2077 {
2078 v->visit(this);
2079 }
2080
2081 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2082
2083 ir_rvalue *array;
2084 ir_rvalue *array_index;
2085
2086 private:
2087 void set_array(ir_rvalue *value);
2088 };
2089
2090
2091 class ir_dereference_record : public ir_dereference {
2092 public:
2093 ir_dereference_record(ir_rvalue *value, const char *field);
2094
2095 ir_dereference_record(ir_variable *var, const char *field);
2096
2097 virtual ir_dereference_record *clone(void *mem_ctx,
2098 struct hash_table *) const;
2099
2100 virtual ir_constant *constant_expression_value(void *mem_ctx,
2101 struct hash_table *variable_context = NULL);
2102
2103 /**
2104 * Get the variable that is ultimately referenced by an r-value
2105 */
2106 virtual ir_variable *variable_referenced() const
2107 {
2108 return this->record->variable_referenced();
2109 }
2110
2111 virtual void accept(ir_visitor *v)
2112 {
2113 v->visit(this);
2114 }
2115
2116 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2117
2118 ir_rvalue *record;
2119 int field_idx;
2120 };
2121
2122
2123 /**
2124 * Data stored in an ir_constant
2125 */
2126 union ir_constant_data {
2127 unsigned u[16];
2128 int i[16];
2129 float f[16];
2130 bool b[16];
2131 double d[16];
2132 uint64_t u64[16];
2133 int64_t i64[16];
2134 };
2135
2136
2137 class ir_constant : public ir_rvalue {
2138 public:
2139 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2140 ir_constant(bool b, unsigned vector_elements=1);
2141 ir_constant(unsigned int u, unsigned vector_elements=1);
2142 ir_constant(int i, unsigned vector_elements=1);
2143 ir_constant(float f, unsigned vector_elements=1);
2144 ir_constant(double d, unsigned vector_elements=1);
2145 ir_constant(uint64_t u64, unsigned vector_elements=1);
2146 ir_constant(int64_t i64, unsigned vector_elements=1);
2147
2148 /**
2149 * Construct an ir_constant from a list of ir_constant values
2150 */
2151 ir_constant(const struct glsl_type *type, exec_list *values);
2152
2153 /**
2154 * Construct an ir_constant from a scalar component of another ir_constant
2155 *
2156 * The new \c ir_constant inherits the type of the component from the
2157 * source constant.
2158 *
2159 * \note
2160 * In the case of a matrix constant, the new constant is a scalar, \b not
2161 * a vector.
2162 */
2163 ir_constant(const ir_constant *c, unsigned i);
2164
2165 /**
2166 * Return a new ir_constant of the specified type containing all zeros.
2167 */
2168 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2169
2170 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2171
2172 virtual ir_constant *constant_expression_value(void *mem_ctx,
2173 struct hash_table *variable_context = NULL);
2174
2175 virtual void accept(ir_visitor *v)
2176 {
2177 v->visit(this);
2178 }
2179
2180 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2181
2182 virtual bool equals(const ir_instruction *ir,
2183 enum ir_node_type ignore = ir_type_unset) const;
2184
2185 /**
2186 * Get a particular component of a constant as a specific type
2187 *
2188 * This is useful, for example, to get a value from an integer constant
2189 * as a float or bool. This appears frequently when constructors are
2190 * called with all constant parameters.
2191 */
2192 /*@{*/
2193 bool get_bool_component(unsigned i) const;
2194 float get_float_component(unsigned i) const;
2195 double get_double_component(unsigned i) const;
2196 int get_int_component(unsigned i) const;
2197 unsigned get_uint_component(unsigned i) const;
2198 int64_t get_int64_component(unsigned i) const;
2199 uint64_t get_uint64_component(unsigned i) const;
2200 /*@}*/
2201
2202 ir_constant *get_array_element(unsigned i) const;
2203
2204 ir_constant *get_record_field(int idx);
2205
2206 /**
2207 * Copy the values on another constant at a given offset.
2208 *
2209 * The offset is ignored for array or struct copies, it's only for
2210 * scalars or vectors into vectors or matrices.
2211 *
2212 * With identical types on both sides and zero offset it's clone()
2213 * without creating a new object.
2214 */
2215
2216 void copy_offset(ir_constant *src, int offset);
2217
2218 /**
2219 * Copy the values on another constant at a given offset and
2220 * following an assign-like mask.
2221 *
2222 * The mask is ignored for scalars.
2223 *
2224 * Note that this function only handles what assign can handle,
2225 * i.e. at most a vector as source and a column of a matrix as
2226 * destination.
2227 */
2228
2229 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2230
2231 /**
2232 * Determine whether a constant has the same value as another constant
2233 *
2234 * \sa ir_constant::is_zero, ir_constant::is_one,
2235 * ir_constant::is_negative_one
2236 */
2237 bool has_value(const ir_constant *) const;
2238
2239 /**
2240 * Return true if this ir_constant represents the given value.
2241 *
2242 * For vectors, this checks that each component is the given value.
2243 */
2244 virtual bool is_value(float f, int i) const;
2245 virtual bool is_zero() const;
2246 virtual bool is_one() const;
2247 virtual bool is_negative_one() const;
2248
2249 /**
2250 * Return true for constants that could be stored as 16-bit unsigned values.
2251 *
2252 * Note that this will return true even for signed integer ir_constants, as
2253 * long as the value is non-negative and fits in 16-bits.
2254 */
2255 virtual bool is_uint16_constant() const;
2256
2257 /**
2258 * Value of the constant.
2259 *
2260 * The field used to back the values supplied by the constant is determined
2261 * by the type associated with the \c ir_instruction. Constants may be
2262 * scalars, vectors, or matrices.
2263 */
2264 union ir_constant_data value;
2265
2266 /* Array elements and structure fields */
2267 ir_constant **const_elements;
2268
2269 private:
2270 /**
2271 * Parameterless constructor only used by the clone method
2272 */
2273 ir_constant(void);
2274 };
2275
2276 /**
2277 * IR instruction to emit a vertex in a geometry shader.
2278 */
2279 class ir_emit_vertex : public ir_instruction {
2280 public:
2281 ir_emit_vertex(ir_rvalue *stream)
2282 : ir_instruction(ir_type_emit_vertex),
2283 stream(stream)
2284 {
2285 assert(stream);
2286 }
2287
2288 virtual void accept(ir_visitor *v)
2289 {
2290 v->visit(this);
2291 }
2292
2293 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2294 {
2295 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2296 }
2297
2298 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2299
2300 int stream_id() const
2301 {
2302 return stream->as_constant()->value.i[0];
2303 }
2304
2305 ir_rvalue *stream;
2306 };
2307
2308 /**
2309 * IR instruction to complete the current primitive and start a new one in a
2310 * geometry shader.
2311 */
2312 class ir_end_primitive : public ir_instruction {
2313 public:
2314 ir_end_primitive(ir_rvalue *stream)
2315 : ir_instruction(ir_type_end_primitive),
2316 stream(stream)
2317 {
2318 assert(stream);
2319 }
2320
2321 virtual void accept(ir_visitor *v)
2322 {
2323 v->visit(this);
2324 }
2325
2326 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2327 {
2328 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2329 }
2330
2331 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2332
2333 int stream_id() const
2334 {
2335 return stream->as_constant()->value.i[0];
2336 }
2337
2338 ir_rvalue *stream;
2339 };
2340
2341 /**
2342 * IR instruction for tessellation control and compute shader barrier.
2343 */
2344 class ir_barrier : public ir_instruction {
2345 public:
2346 ir_barrier()
2347 : ir_instruction(ir_type_barrier)
2348 {
2349 }
2350
2351 virtual void accept(ir_visitor *v)
2352 {
2353 v->visit(this);
2354 }
2355
2356 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2357 {
2358 return new(mem_ctx) ir_barrier();
2359 }
2360
2361 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2362 };
2363
2364 /*@}*/
2365
2366 /**
2367 * Apply a visitor to each IR node in a list
2368 */
2369 void
2370 visit_exec_list(exec_list *list, ir_visitor *visitor);
2371
2372 /**
2373 * Validate invariants on each IR node in a list
2374 */
2375 void validate_ir_tree(exec_list *instructions);
2376
2377 struct _mesa_glsl_parse_state;
2378 struct gl_shader_program;
2379
2380 /**
2381 * Detect whether an unlinked shader contains static recursion
2382 *
2383 * If the list of instructions is determined to contain static recursion,
2384 * \c _mesa_glsl_error will be called to emit error messages for each function
2385 * that is in the recursion cycle.
2386 */
2387 void
2388 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2389 exec_list *instructions);
2390
2391 /**
2392 * Detect whether a linked shader contains static recursion
2393 *
2394 * If the list of instructions is determined to contain static recursion,
2395 * \c link_error_printf will be called to emit error messages for each function
2396 * that is in the recursion cycle. In addition,
2397 * \c gl_shader_program::LinkStatus will be set to false.
2398 */
2399 void
2400 detect_recursion_linked(struct gl_shader_program *prog,
2401 exec_list *instructions);
2402
2403 /**
2404 * Make a clone of each IR instruction in a list
2405 *
2406 * \param in List of IR instructions that are to be cloned
2407 * \param out List to hold the cloned instructions
2408 */
2409 void
2410 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2411
2412 extern void
2413 _mesa_glsl_initialize_variables(exec_list *instructions,
2414 struct _mesa_glsl_parse_state *state);
2415
2416 extern void
2417 reparent_ir(exec_list *list, void *mem_ctx);
2418
2419 extern void
2420 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2421 gl_shader_stage shader_stage);
2422
2423 extern char *
2424 prototype_string(const glsl_type *return_type, const char *name,
2425 exec_list *parameters);
2426
2427 const char *
2428 mode_string(const ir_variable *var);
2429
2430 /**
2431 * Built-in / reserved GL variables names start with "gl_"
2432 */
2433 static inline bool
2434 is_gl_identifier(const char *s)
2435 {
2436 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2437 }
2438
2439 extern "C" {
2440 #endif /* __cplusplus */
2441
2442 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2443 struct _mesa_glsl_parse_state *state);
2444
2445 extern void
2446 fprint_ir(FILE *f, const void *instruction);
2447
2448 extern const struct gl_builtin_uniform_desc *
2449 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2450
2451 #ifdef __cplusplus
2452 } /* extern "C" */
2453 #endif
2454
2455 unsigned
2456 vertices_per_prim(GLenum prim);
2457
2458 #endif /* IR_H */