glsl: Size TCS->TES unsized arrays to gl_MaxPatchVertices for queries.
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 struct ir_variable_data {
628
629 /**
630 * Is the variable read-only?
631 *
632 * This is set for variables declared as \c const, shader inputs,
633 * and uniforms.
634 */
635 unsigned read_only:1;
636 unsigned centroid:1;
637 unsigned sample:1;
638 unsigned patch:1;
639 unsigned invariant:1;
640 unsigned precise:1;
641
642 /**
643 * Has this variable been used for reading or writing?
644 *
645 * Several GLSL semantic checks require knowledge of whether or not a
646 * variable has been used. For example, it is an error to redeclare a
647 * variable as invariant after it has been used.
648 *
649 * This is only maintained in the ast_to_hir.cpp path, not in
650 * Mesa's fixed function or ARB program paths.
651 */
652 unsigned used:1;
653
654 /**
655 * Has this variable been statically assigned?
656 *
657 * This answers whether the variable was assigned in any path of
658 * the shader during ast_to_hir. This doesn't answer whether it is
659 * still written after dead code removal, nor is it maintained in
660 * non-ast_to_hir.cpp (GLSL parsing) paths.
661 */
662 unsigned assigned:1;
663
664 /**
665 * When separate shader programs are enabled, only input/outputs between
666 * the stages of a multi-stage separate program can be safely removed
667 * from the shader interface. Other input/outputs must remains active.
668 */
669 unsigned always_active_io:1;
670
671 /**
672 * Enum indicating how the variable was declared. See
673 * ir_var_declaration_type.
674 *
675 * This is used to detect certain kinds of illegal variable redeclarations.
676 */
677 unsigned how_declared:2;
678
679 /**
680 * Storage class of the variable.
681 *
682 * \sa ir_variable_mode
683 */
684 unsigned mode:4;
685
686 /**
687 * Interpolation mode for shader inputs / outputs
688 *
689 * \sa glsl_interp_mode
690 */
691 unsigned interpolation:2;
692
693 /**
694 * \name ARB_fragment_coord_conventions
695 * @{
696 */
697 unsigned origin_upper_left:1;
698 unsigned pixel_center_integer:1;
699 /*@}*/
700
701 /**
702 * Was the location explicitly set in the shader?
703 *
704 * If the location is explicitly set in the shader, it \b cannot be changed
705 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
706 * no effect).
707 */
708 unsigned explicit_location:1;
709 unsigned explicit_index:1;
710
711 /**
712 * Was an initial binding explicitly set in the shader?
713 *
714 * If so, constant_value contains an integer ir_constant representing the
715 * initial binding point.
716 */
717 unsigned explicit_binding:1;
718
719 /**
720 * Was an initial component explicitly set in the shader?
721 */
722 unsigned explicit_component:1;
723
724 /**
725 * Does this variable have an initializer?
726 *
727 * This is used by the linker to cross-validiate initializers of global
728 * variables.
729 */
730 unsigned has_initializer:1;
731
732 /**
733 * Is this variable a generic output or input that has not yet been matched
734 * up to a variable in another stage of the pipeline?
735 *
736 * This is used by the linker as scratch storage while assigning locations
737 * to generic inputs and outputs.
738 */
739 unsigned is_unmatched_generic_inout:1;
740
741 /**
742 * Is this varying used only by transform feedback?
743 *
744 * This is used by the linker to decide if its safe to pack the varying.
745 */
746 unsigned is_xfb_only:1;
747
748 /**
749 * Was a transfor feedback buffer set in the shader?
750 */
751 unsigned explicit_xfb_buffer:1;
752
753 /**
754 * Was a transfor feedback offset set in the shader?
755 */
756 unsigned explicit_xfb_offset:1;
757
758 /**
759 * Was a transfor feedback stride set in the shader?
760 */
761 unsigned explicit_xfb_stride:1;
762
763 /**
764 * If non-zero, then this variable may be packed along with other variables
765 * into a single varying slot, so this offset should be applied when
766 * accessing components. For example, an offset of 1 means that the x
767 * component of this variable is actually stored in component y of the
768 * location specified by \c location.
769 */
770 unsigned location_frac:2;
771
772 /**
773 * Layout of the matrix. Uses glsl_matrix_layout values.
774 */
775 unsigned matrix_layout:2;
776
777 /**
778 * Non-zero if this variable was created by lowering a named interface
779 * block.
780 */
781 unsigned from_named_ifc_block:1;
782
783 /**
784 * Non-zero if the variable must be a shader input. This is useful for
785 * constraints on function parameters.
786 */
787 unsigned must_be_shader_input:1;
788
789 /**
790 * Output index for dual source blending.
791 *
792 * \note
793 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
794 * source blending.
795 */
796 unsigned index:1;
797
798 /**
799 * Precision qualifier.
800 *
801 * In desktop GLSL we do not care about precision qualifiers at all, in
802 * fact, the spec says that precision qualifiers are ignored.
803 *
804 * To make things easy, we make it so that this field is always
805 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
806 * have the same precision value and the checks we add in the compiler
807 * for this field will never break a desktop shader compile.
808 */
809 unsigned precision:2;
810
811 /**
812 * \brief Layout qualifier for gl_FragDepth.
813 *
814 * This is not equal to \c ir_depth_layout_none if and only if this
815 * variable is \c gl_FragDepth and a layout qualifier is specified.
816 */
817 ir_depth_layout depth_layout:3;
818
819 /**
820 * ARB_shader_image_load_store qualifiers.
821 */
822 unsigned image_read_only:1; /**< "readonly" qualifier. */
823 unsigned image_write_only:1; /**< "writeonly" qualifier. */
824 unsigned image_coherent:1;
825 unsigned image_volatile:1;
826 unsigned image_restrict:1;
827
828 /**
829 * ARB_shader_storage_buffer_object
830 */
831 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
832
833 unsigned implicit_sized_array:1;
834
835 /**
836 * Is this a non-patch TCS output / TES input array that was implicitly
837 * sized to gl_MaxPatchVertices?
838 */
839 unsigned tess_varying_implicit_sized_array:1;
840
841 /**
842 * Whether this is a fragment shader output implicitly initialized with
843 * the previous contents of the specified render target at the
844 * framebuffer location corresponding to this shader invocation.
845 */
846 unsigned fb_fetch_output:1;
847
848 /**
849 * Emit a warning if this variable is accessed.
850 */
851 private:
852 uint8_t warn_extension_index;
853
854 public:
855 /** Image internal format if specified explicitly, otherwise GL_NONE. */
856 uint16_t image_format;
857
858 private:
859 /**
860 * Number of state slots used
861 *
862 * \note
863 * This could be stored in as few as 7-bits, if necessary. If it is made
864 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
865 * be safe.
866 */
867 uint16_t _num_state_slots;
868
869 public:
870 /**
871 * Initial binding point for a sampler, atomic, or UBO.
872 *
873 * For array types, this represents the binding point for the first element.
874 */
875 int16_t binding;
876
877 /**
878 * Storage location of the base of this variable
879 *
880 * The precise meaning of this field depends on the nature of the variable.
881 *
882 * - Vertex shader input: one of the values from \c gl_vert_attrib.
883 * - Vertex shader output: one of the values from \c gl_varying_slot.
884 * - Geometry shader input: one of the values from \c gl_varying_slot.
885 * - Geometry shader output: one of the values from \c gl_varying_slot.
886 * - Fragment shader input: one of the values from \c gl_varying_slot.
887 * - Fragment shader output: one of the values from \c gl_frag_result.
888 * - Uniforms: Per-stage uniform slot number for default uniform block.
889 * - Uniforms: Index within the uniform block definition for UBO members.
890 * - Non-UBO Uniforms: explicit location until linking then reused to
891 * store uniform slot number.
892 * - Other: This field is not currently used.
893 *
894 * If the variable is a uniform, shader input, or shader output, and the
895 * slot has not been assigned, the value will be -1.
896 */
897 int location;
898
899 /**
900 * for glsl->tgsi/mesa IR we need to store the index into the
901 * parameters for uniforms, initially the code overloaded location
902 * but this causes problems with indirect samplers and AoA.
903 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
904 */
905 int param_index;
906
907 /**
908 * Vertex stream output identifier.
909 */
910 unsigned stream;
911
912 /**
913 * Atomic, transform feedback or block member offset.
914 */
915 unsigned offset;
916
917 /**
918 * Highest element accessed with a constant expression array index
919 *
920 * Not used for non-array variables. -1 is never accessed.
921 */
922 int max_array_access;
923
924 /**
925 * Transform feedback buffer.
926 */
927 unsigned xfb_buffer;
928
929 /**
930 * Transform feedback stride.
931 */
932 unsigned xfb_stride;
933
934 /**
935 * Allow (only) ir_variable direct access private members.
936 */
937 friend class ir_variable;
938 } data;
939
940 /**
941 * Value assigned in the initializer of a variable declared "const"
942 */
943 ir_constant *constant_value;
944
945 /**
946 * Constant expression assigned in the initializer of the variable
947 *
948 * \warning
949 * This field and \c ::constant_value are distinct. Even if the two fields
950 * refer to constants with the same value, they must point to separate
951 * objects.
952 */
953 ir_constant *constant_initializer;
954
955 private:
956 static const char *const warn_extension_table[];
957
958 union {
959 /**
960 * For variables which satisfy the is_interface_instance() predicate,
961 * this points to an array of integers such that if the ith member of
962 * the interface block is an array, max_ifc_array_access[i] is the
963 * maximum array element of that member that has been accessed. If the
964 * ith member of the interface block is not an array,
965 * max_ifc_array_access[i] is unused.
966 *
967 * For variables whose type is not an interface block, this pointer is
968 * NULL.
969 */
970 int *max_ifc_array_access;
971
972 /**
973 * Built-in state that backs this uniform
974 *
975 * Once set at variable creation, \c state_slots must remain invariant.
976 *
977 * If the variable is not a uniform, \c _num_state_slots will be zero
978 * and \c state_slots will be \c NULL.
979 */
980 ir_state_slot *state_slots;
981 } u;
982
983 /**
984 * For variables that are in an interface block or are an instance of an
985 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
986 *
987 * \sa ir_variable::location
988 */
989 const glsl_type *interface_type;
990
991 /**
992 * Name used for anonymous compiler temporaries
993 */
994 static const char tmp_name[];
995
996 public:
997 /**
998 * Should the construct keep names for ir_var_temporary variables?
999 *
1000 * When this global is false, names passed to the constructor for
1001 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1002 * be named "compiler_temp". This name will be in static storage.
1003 *
1004 * \warning
1005 * \b NEVER change the mode of an \c ir_var_temporary.
1006 *
1007 * \warning
1008 * This variable is \b not thread-safe. It is global, \b not
1009 * per-context. It begins life false. A context can, at some point, make
1010 * it true. From that point on, it will be true forever. This should be
1011 * okay since it will only be set true while debugging.
1012 */
1013 static bool temporaries_allocate_names;
1014 };
1015
1016 /**
1017 * A function that returns whether a built-in function is available in the
1018 * current shading language (based on version, ES or desktop, and extensions).
1019 */
1020 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1021
1022 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1023 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1024
1025 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1026 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1027
1028 enum ir_intrinsic_id {
1029 ir_intrinsic_invalid = 0,
1030
1031 /**
1032 * \name Generic intrinsics
1033 *
1034 * Each of these intrinsics has a specific version for shared variables and
1035 * SSBOs.
1036 */
1037 /*@{*/
1038 ir_intrinsic_generic_load,
1039 ir_intrinsic_generic_store,
1040 ir_intrinsic_generic_atomic_add,
1041 ir_intrinsic_generic_atomic_and,
1042 ir_intrinsic_generic_atomic_or,
1043 ir_intrinsic_generic_atomic_xor,
1044 ir_intrinsic_generic_atomic_min,
1045 ir_intrinsic_generic_atomic_max,
1046 ir_intrinsic_generic_atomic_exchange,
1047 ir_intrinsic_generic_atomic_comp_swap,
1048 /*@}*/
1049
1050 ir_intrinsic_atomic_counter_read,
1051 ir_intrinsic_atomic_counter_increment,
1052 ir_intrinsic_atomic_counter_predecrement,
1053 ir_intrinsic_atomic_counter_add,
1054 ir_intrinsic_atomic_counter_and,
1055 ir_intrinsic_atomic_counter_or,
1056 ir_intrinsic_atomic_counter_xor,
1057 ir_intrinsic_atomic_counter_min,
1058 ir_intrinsic_atomic_counter_max,
1059 ir_intrinsic_atomic_counter_exchange,
1060 ir_intrinsic_atomic_counter_comp_swap,
1061
1062 ir_intrinsic_image_load,
1063 ir_intrinsic_image_store,
1064 ir_intrinsic_image_atomic_add,
1065 ir_intrinsic_image_atomic_and,
1066 ir_intrinsic_image_atomic_or,
1067 ir_intrinsic_image_atomic_xor,
1068 ir_intrinsic_image_atomic_min,
1069 ir_intrinsic_image_atomic_max,
1070 ir_intrinsic_image_atomic_exchange,
1071 ir_intrinsic_image_atomic_comp_swap,
1072 ir_intrinsic_image_size,
1073 ir_intrinsic_image_samples,
1074
1075 ir_intrinsic_ssbo_load,
1076 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1077 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1078 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1079 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1080 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1081 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1082 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1083 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1084 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1085
1086 ir_intrinsic_memory_barrier,
1087 ir_intrinsic_shader_clock,
1088 ir_intrinsic_group_memory_barrier,
1089 ir_intrinsic_memory_barrier_atomic_counter,
1090 ir_intrinsic_memory_barrier_buffer,
1091 ir_intrinsic_memory_barrier_image,
1092 ir_intrinsic_memory_barrier_shared,
1093
1094 ir_intrinsic_shared_load,
1095 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1096 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1097 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1098 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1099 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1100 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1101 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1102 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1103 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1104 };
1105
1106 /*@{*/
1107 /**
1108 * The representation of a function instance; may be the full definition or
1109 * simply a prototype.
1110 */
1111 class ir_function_signature : public ir_instruction {
1112 /* An ir_function_signature will be part of the list of signatures in
1113 * an ir_function.
1114 */
1115 public:
1116 ir_function_signature(const glsl_type *return_type,
1117 builtin_available_predicate builtin_avail = NULL);
1118
1119 virtual ir_function_signature *clone(void *mem_ctx,
1120 struct hash_table *ht) const;
1121 ir_function_signature *clone_prototype(void *mem_ctx,
1122 struct hash_table *ht) const;
1123
1124 virtual void accept(ir_visitor *v)
1125 {
1126 v->visit(this);
1127 }
1128
1129 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1130
1131 /**
1132 * Attempt to evaluate this function as a constant expression,
1133 * given a list of the actual parameters and the variable context.
1134 * Returns NULL for non-built-ins.
1135 */
1136 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1137
1138 /**
1139 * Get the name of the function for which this is a signature
1140 */
1141 const char *function_name() const;
1142
1143 /**
1144 * Get a handle to the function for which this is a signature
1145 *
1146 * There is no setter function, this function returns a \c const pointer,
1147 * and \c ir_function_signature::_function is private for a reason. The
1148 * only way to make a connection between a function and function signature
1149 * is via \c ir_function::add_signature. This helps ensure that certain
1150 * invariants (i.e., a function signature is in the list of signatures for
1151 * its \c _function) are met.
1152 *
1153 * \sa ir_function::add_signature
1154 */
1155 inline const class ir_function *function() const
1156 {
1157 return this->_function;
1158 }
1159
1160 /**
1161 * Check whether the qualifiers match between this signature's parameters
1162 * and the supplied parameter list. If not, returns the name of the first
1163 * parameter with mismatched qualifiers (for use in error messages).
1164 */
1165 const char *qualifiers_match(exec_list *params);
1166
1167 /**
1168 * Replace the current parameter list with the given one. This is useful
1169 * if the current information came from a prototype, and either has invalid
1170 * or missing parameter names.
1171 */
1172 void replace_parameters(exec_list *new_params);
1173
1174 /**
1175 * Function return type.
1176 *
1177 * \note This discards the optional precision qualifier.
1178 */
1179 const struct glsl_type *return_type;
1180
1181 /**
1182 * List of ir_variable of function parameters.
1183 *
1184 * This represents the storage. The paramaters passed in a particular
1185 * call will be in ir_call::actual_paramaters.
1186 */
1187 struct exec_list parameters;
1188
1189 /** Whether or not this function has a body (which may be empty). */
1190 unsigned is_defined:1;
1191
1192 /** Whether or not this function signature is a built-in. */
1193 bool is_builtin() const;
1194
1195 /**
1196 * Whether or not this function is an intrinsic to be implemented
1197 * by the driver.
1198 */
1199 inline bool is_intrinsic() const
1200 {
1201 return intrinsic_id != ir_intrinsic_invalid;
1202 }
1203
1204 /** Indentifier for this intrinsic. */
1205 enum ir_intrinsic_id intrinsic_id;
1206
1207 /** Whether or not a built-in is available for this shader. */
1208 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1209
1210 /** Body of instructions in the function. */
1211 struct exec_list body;
1212
1213 private:
1214 /**
1215 * A function pointer to a predicate that answers whether a built-in
1216 * function is available in the current shader. NULL if not a built-in.
1217 */
1218 builtin_available_predicate builtin_avail;
1219
1220 /** Function of which this signature is one overload. */
1221 class ir_function *_function;
1222
1223 /** Function signature of which this one is a prototype clone */
1224 const ir_function_signature *origin;
1225
1226 friend class ir_function;
1227
1228 /**
1229 * Helper function to run a list of instructions for constant
1230 * expression evaluation.
1231 *
1232 * The hash table represents the values of the visible variables.
1233 * There are no scoping issues because the table is indexed on
1234 * ir_variable pointers, not variable names.
1235 *
1236 * Returns false if the expression is not constant, true otherwise,
1237 * and the value in *result if result is non-NULL.
1238 */
1239 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1240 struct hash_table *variable_context,
1241 ir_constant **result);
1242 };
1243
1244
1245 /**
1246 * Header for tracking multiple overloaded functions with the same name.
1247 * Contains a list of ir_function_signatures representing each of the
1248 * actual functions.
1249 */
1250 class ir_function : public ir_instruction {
1251 public:
1252 ir_function(const char *name);
1253
1254 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1255
1256 virtual void accept(ir_visitor *v)
1257 {
1258 v->visit(this);
1259 }
1260
1261 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1262
1263 void add_signature(ir_function_signature *sig)
1264 {
1265 sig->_function = this;
1266 this->signatures.push_tail(sig);
1267 }
1268
1269 /**
1270 * Find a signature that matches a set of actual parameters, taking implicit
1271 * conversions into account. Also flags whether the match was exact.
1272 */
1273 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1274 const exec_list *actual_param,
1275 bool allow_builtins,
1276 bool *match_is_exact);
1277
1278 /**
1279 * Find a signature that matches a set of actual parameters, taking implicit
1280 * conversions into account.
1281 */
1282 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1283 const exec_list *actual_param,
1284 bool allow_builtins);
1285
1286 /**
1287 * Find a signature that exactly matches a set of actual parameters without
1288 * any implicit type conversions.
1289 */
1290 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1291 const exec_list *actual_ps);
1292
1293 /**
1294 * Name of the function.
1295 */
1296 const char *name;
1297
1298 /** Whether or not this function has a signature that isn't a built-in. */
1299 bool has_user_signature();
1300
1301 /**
1302 * List of ir_function_signature for each overloaded function with this name.
1303 */
1304 struct exec_list signatures;
1305
1306 /**
1307 * is this function a subroutine type declaration
1308 * e.g. subroutine void type1(float arg1);
1309 */
1310 bool is_subroutine;
1311
1312 /**
1313 * is this function associated to a subroutine type
1314 * e.g. subroutine (type1, type2) function_name { function_body };
1315 * would have num_subroutine_types 2,
1316 * and pointers to the type1 and type2 types.
1317 */
1318 int num_subroutine_types;
1319 const struct glsl_type **subroutine_types;
1320
1321 int subroutine_index;
1322 };
1323
1324 inline const char *ir_function_signature::function_name() const
1325 {
1326 return this->_function->name;
1327 }
1328 /*@}*/
1329
1330
1331 /**
1332 * IR instruction representing high-level if-statements
1333 */
1334 class ir_if : public ir_instruction {
1335 public:
1336 ir_if(ir_rvalue *condition)
1337 : ir_instruction(ir_type_if), condition(condition)
1338 {
1339 }
1340
1341 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1342
1343 virtual void accept(ir_visitor *v)
1344 {
1345 v->visit(this);
1346 }
1347
1348 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1349
1350 ir_rvalue *condition;
1351 /** List of ir_instruction for the body of the then branch */
1352 exec_list then_instructions;
1353 /** List of ir_instruction for the body of the else branch */
1354 exec_list else_instructions;
1355 };
1356
1357
1358 /**
1359 * IR instruction representing a high-level loop structure.
1360 */
1361 class ir_loop : public ir_instruction {
1362 public:
1363 ir_loop();
1364
1365 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1366
1367 virtual void accept(ir_visitor *v)
1368 {
1369 v->visit(this);
1370 }
1371
1372 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1373
1374 /** List of ir_instruction that make up the body of the loop. */
1375 exec_list body_instructions;
1376 };
1377
1378
1379 class ir_assignment : public ir_instruction {
1380 public:
1381 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1382
1383 /**
1384 * Construct an assignment with an explicit write mask
1385 *
1386 * \note
1387 * Since a write mask is supplied, the LHS must already be a bare
1388 * \c ir_dereference. The cannot be any swizzles in the LHS.
1389 */
1390 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1391 unsigned write_mask);
1392
1393 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1394
1395 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1396
1397 virtual void accept(ir_visitor *v)
1398 {
1399 v->visit(this);
1400 }
1401
1402 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1403
1404 /**
1405 * Get a whole variable written by an assignment
1406 *
1407 * If the LHS of the assignment writes a whole variable, the variable is
1408 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1409 * assignment are:
1410 *
1411 * - Assigning to a scalar
1412 * - Assigning to all components of a vector
1413 * - Whole array (or matrix) assignment
1414 * - Whole structure assignment
1415 */
1416 ir_variable *whole_variable_written();
1417
1418 /**
1419 * Set the LHS of an assignment
1420 */
1421 void set_lhs(ir_rvalue *lhs);
1422
1423 /**
1424 * Left-hand side of the assignment.
1425 *
1426 * This should be treated as read only. If you need to set the LHS of an
1427 * assignment, use \c ir_assignment::set_lhs.
1428 */
1429 ir_dereference *lhs;
1430
1431 /**
1432 * Value being assigned
1433 */
1434 ir_rvalue *rhs;
1435
1436 /**
1437 * Optional condition for the assignment.
1438 */
1439 ir_rvalue *condition;
1440
1441
1442 /**
1443 * Component mask written
1444 *
1445 * For non-vector types in the LHS, this field will be zero. For vector
1446 * types, a bit will be set for each component that is written. Note that
1447 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1448 *
1449 * A partially-set write mask means that each enabled channel gets
1450 * the value from a consecutive channel of the rhs. For example,
1451 * to write just .xyw of gl_FrontColor with color:
1452 *
1453 * (assign (constant bool (1)) (xyw)
1454 * (var_ref gl_FragColor)
1455 * (swiz xyw (var_ref color)))
1456 */
1457 unsigned write_mask:4;
1458 };
1459
1460 #include "ir_expression_operation.h"
1461
1462 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1463
1464 class ir_expression : public ir_rvalue {
1465 public:
1466 ir_expression(int op, const struct glsl_type *type,
1467 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1468 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1469
1470 /**
1471 * Constructor for unary operation expressions
1472 */
1473 ir_expression(int op, ir_rvalue *);
1474
1475 /**
1476 * Constructor for binary operation expressions
1477 */
1478 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1479
1480 /**
1481 * Constructor for ternary operation expressions
1482 */
1483 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1484
1485 virtual bool equals(const ir_instruction *ir,
1486 enum ir_node_type ignore = ir_type_unset) const;
1487
1488 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1489
1490 /**
1491 * Attempt to constant-fold the expression
1492 *
1493 * The "variable_context" hash table links ir_variable * to ir_constant *
1494 * that represent the variables' values. \c NULL represents an empty
1495 * context.
1496 *
1497 * If the expression cannot be constant folded, this method will return
1498 * \c NULL.
1499 */
1500 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1501
1502 /**
1503 * Determine the number of operands used by an expression
1504 */
1505 static unsigned int get_num_operands(ir_expression_operation);
1506
1507 /**
1508 * Determine the number of operands used by an expression
1509 */
1510 unsigned int get_num_operands() const
1511 {
1512 return (this->operation == ir_quadop_vector)
1513 ? this->type->vector_elements : get_num_operands(operation);
1514 }
1515
1516 /**
1517 * Return whether the expression operates on vectors horizontally.
1518 */
1519 bool is_horizontal() const
1520 {
1521 return operation == ir_binop_all_equal ||
1522 operation == ir_binop_any_nequal ||
1523 operation == ir_binop_dot ||
1524 operation == ir_binop_vector_extract ||
1525 operation == ir_triop_vector_insert ||
1526 operation == ir_binop_ubo_load ||
1527 operation == ir_quadop_vector;
1528 }
1529
1530 /**
1531 * Do a reverse-lookup to translate the given string into an operator.
1532 */
1533 static ir_expression_operation get_operator(const char *);
1534
1535 virtual void accept(ir_visitor *v)
1536 {
1537 v->visit(this);
1538 }
1539
1540 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1541
1542 virtual ir_variable *variable_referenced() const;
1543
1544 ir_expression_operation operation;
1545 ir_rvalue *operands[4];
1546 };
1547
1548
1549 /**
1550 * HIR instruction representing a high-level function call, containing a list
1551 * of parameters and returning a value in the supplied temporary.
1552 */
1553 class ir_call : public ir_instruction {
1554 public:
1555 ir_call(ir_function_signature *callee,
1556 ir_dereference_variable *return_deref,
1557 exec_list *actual_parameters)
1558 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1559 {
1560 assert(callee->return_type != NULL);
1561 actual_parameters->move_nodes_to(& this->actual_parameters);
1562 this->use_builtin = callee->is_builtin();
1563 }
1564
1565 ir_call(ir_function_signature *callee,
1566 ir_dereference_variable *return_deref,
1567 exec_list *actual_parameters,
1568 ir_variable *var, ir_rvalue *array_idx)
1569 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1570 {
1571 assert(callee->return_type != NULL);
1572 actual_parameters->move_nodes_to(& this->actual_parameters);
1573 this->use_builtin = callee->is_builtin();
1574 }
1575
1576 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1577
1578 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1579
1580 virtual void accept(ir_visitor *v)
1581 {
1582 v->visit(this);
1583 }
1584
1585 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1586
1587 /**
1588 * Get the name of the function being called.
1589 */
1590 const char *callee_name() const
1591 {
1592 return callee->function_name();
1593 }
1594
1595 /**
1596 * Generates an inline version of the function before @ir,
1597 * storing the return value in return_deref.
1598 */
1599 void generate_inline(ir_instruction *ir);
1600
1601 /**
1602 * Storage for the function's return value.
1603 * This must be NULL if the return type is void.
1604 */
1605 ir_dereference_variable *return_deref;
1606
1607 /**
1608 * The specific function signature being called.
1609 */
1610 ir_function_signature *callee;
1611
1612 /* List of ir_rvalue of paramaters passed in this call. */
1613 exec_list actual_parameters;
1614
1615 /** Should this call only bind to a built-in function? */
1616 bool use_builtin;
1617
1618 /*
1619 * ARB_shader_subroutine support -
1620 * the subroutine uniform variable and array index
1621 * rvalue to be used in the lowering pass later.
1622 */
1623 ir_variable *sub_var;
1624 ir_rvalue *array_idx;
1625 };
1626
1627
1628 /**
1629 * \name Jump-like IR instructions.
1630 *
1631 * These include \c break, \c continue, \c return, and \c discard.
1632 */
1633 /*@{*/
1634 class ir_jump : public ir_instruction {
1635 protected:
1636 ir_jump(enum ir_node_type t)
1637 : ir_instruction(t)
1638 {
1639 }
1640 };
1641
1642 class ir_return : public ir_jump {
1643 public:
1644 ir_return()
1645 : ir_jump(ir_type_return), value(NULL)
1646 {
1647 }
1648
1649 ir_return(ir_rvalue *value)
1650 : ir_jump(ir_type_return), value(value)
1651 {
1652 }
1653
1654 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1655
1656 ir_rvalue *get_value() const
1657 {
1658 return value;
1659 }
1660
1661 virtual void accept(ir_visitor *v)
1662 {
1663 v->visit(this);
1664 }
1665
1666 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1667
1668 ir_rvalue *value;
1669 };
1670
1671
1672 /**
1673 * Jump instructions used inside loops
1674 *
1675 * These include \c break and \c continue. The \c break within a loop is
1676 * different from the \c break within a switch-statement.
1677 *
1678 * \sa ir_switch_jump
1679 */
1680 class ir_loop_jump : public ir_jump {
1681 public:
1682 enum jump_mode {
1683 jump_break,
1684 jump_continue
1685 };
1686
1687 ir_loop_jump(jump_mode mode)
1688 : ir_jump(ir_type_loop_jump)
1689 {
1690 this->mode = mode;
1691 }
1692
1693 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1694
1695 virtual void accept(ir_visitor *v)
1696 {
1697 v->visit(this);
1698 }
1699
1700 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1701
1702 bool is_break() const
1703 {
1704 return mode == jump_break;
1705 }
1706
1707 bool is_continue() const
1708 {
1709 return mode == jump_continue;
1710 }
1711
1712 /** Mode selector for the jump instruction. */
1713 enum jump_mode mode;
1714 };
1715
1716 /**
1717 * IR instruction representing discard statements.
1718 */
1719 class ir_discard : public ir_jump {
1720 public:
1721 ir_discard()
1722 : ir_jump(ir_type_discard)
1723 {
1724 this->condition = NULL;
1725 }
1726
1727 ir_discard(ir_rvalue *cond)
1728 : ir_jump(ir_type_discard)
1729 {
1730 this->condition = cond;
1731 }
1732
1733 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1734
1735 virtual void accept(ir_visitor *v)
1736 {
1737 v->visit(this);
1738 }
1739
1740 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1741
1742 ir_rvalue *condition;
1743 };
1744 /*@}*/
1745
1746
1747 /**
1748 * Texture sampling opcodes used in ir_texture
1749 */
1750 enum ir_texture_opcode {
1751 ir_tex, /**< Regular texture look-up */
1752 ir_txb, /**< Texture look-up with LOD bias */
1753 ir_txl, /**< Texture look-up with explicit LOD */
1754 ir_txd, /**< Texture look-up with partial derivatvies */
1755 ir_txf, /**< Texel fetch with explicit LOD */
1756 ir_txf_ms, /**< Multisample texture fetch */
1757 ir_txs, /**< Texture size */
1758 ir_lod, /**< Texture lod query */
1759 ir_tg4, /**< Texture gather */
1760 ir_query_levels, /**< Texture levels query */
1761 ir_texture_samples, /**< Texture samples query */
1762 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1763 };
1764
1765
1766 /**
1767 * IR instruction to sample a texture
1768 *
1769 * The specific form of the IR instruction depends on the \c mode value
1770 * selected from \c ir_texture_opcodes. In the printed IR, these will
1771 * appear as:
1772 *
1773 * Texel offset (0 or an expression)
1774 * | Projection divisor
1775 * | | Shadow comparitor
1776 * | | |
1777 * v v v
1778 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1779 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1780 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1781 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1782 * (txf <type> <sampler> <coordinate> 0 <lod>)
1783 * (txf_ms
1784 * <type> <sampler> <coordinate> <sample_index>)
1785 * (txs <type> <sampler> <lod>)
1786 * (lod <type> <sampler> <coordinate>)
1787 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1788 * (query_levels <type> <sampler>)
1789 * (samples_identical <sampler> <coordinate>)
1790 */
1791 class ir_texture : public ir_rvalue {
1792 public:
1793 ir_texture(enum ir_texture_opcode op)
1794 : ir_rvalue(ir_type_texture),
1795 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1796 shadow_comparitor(NULL), offset(NULL)
1797 {
1798 memset(&lod_info, 0, sizeof(lod_info));
1799 }
1800
1801 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1802
1803 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1804
1805 virtual void accept(ir_visitor *v)
1806 {
1807 v->visit(this);
1808 }
1809
1810 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1811
1812 virtual bool equals(const ir_instruction *ir,
1813 enum ir_node_type ignore = ir_type_unset) const;
1814
1815 /**
1816 * Return a string representing the ir_texture_opcode.
1817 */
1818 const char *opcode_string();
1819
1820 /** Set the sampler and type. */
1821 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1822
1823 /**
1824 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1825 */
1826 static ir_texture_opcode get_opcode(const char *);
1827
1828 enum ir_texture_opcode op;
1829
1830 /** Sampler to use for the texture access. */
1831 ir_dereference *sampler;
1832
1833 /** Texture coordinate to sample */
1834 ir_rvalue *coordinate;
1835
1836 /**
1837 * Value used for projective divide.
1838 *
1839 * If there is no projective divide (the common case), this will be
1840 * \c NULL. Optimization passes should check for this to point to a constant
1841 * of 1.0 and replace that with \c NULL.
1842 */
1843 ir_rvalue *projector;
1844
1845 /**
1846 * Coordinate used for comparison on shadow look-ups.
1847 *
1848 * If there is no shadow comparison, this will be \c NULL. For the
1849 * \c ir_txf opcode, this *must* be \c NULL.
1850 */
1851 ir_rvalue *shadow_comparitor;
1852
1853 /** Texel offset. */
1854 ir_rvalue *offset;
1855
1856 union {
1857 ir_rvalue *lod; /**< Floating point LOD */
1858 ir_rvalue *bias; /**< Floating point LOD bias */
1859 ir_rvalue *sample_index; /**< MSAA sample index */
1860 ir_rvalue *component; /**< Gather component selector */
1861 struct {
1862 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1863 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1864 } grad;
1865 } lod_info;
1866 };
1867
1868
1869 struct ir_swizzle_mask {
1870 unsigned x:2;
1871 unsigned y:2;
1872 unsigned z:2;
1873 unsigned w:2;
1874
1875 /**
1876 * Number of components in the swizzle.
1877 */
1878 unsigned num_components:3;
1879
1880 /**
1881 * Does the swizzle contain duplicate components?
1882 *
1883 * L-value swizzles cannot contain duplicate components.
1884 */
1885 unsigned has_duplicates:1;
1886 };
1887
1888
1889 class ir_swizzle : public ir_rvalue {
1890 public:
1891 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1892 unsigned count);
1893
1894 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1895
1896 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1897
1898 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1899
1900 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1901
1902 /**
1903 * Construct an ir_swizzle from the textual representation. Can fail.
1904 */
1905 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1906
1907 virtual void accept(ir_visitor *v)
1908 {
1909 v->visit(this);
1910 }
1911
1912 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1913
1914 virtual bool equals(const ir_instruction *ir,
1915 enum ir_node_type ignore = ir_type_unset) const;
1916
1917 bool is_lvalue() const
1918 {
1919 return val->is_lvalue() && !mask.has_duplicates;
1920 }
1921
1922 /**
1923 * Get the variable that is ultimately referenced by an r-value
1924 */
1925 virtual ir_variable *variable_referenced() const;
1926
1927 ir_rvalue *val;
1928 ir_swizzle_mask mask;
1929
1930 private:
1931 /**
1932 * Initialize the mask component of a swizzle
1933 *
1934 * This is used by the \c ir_swizzle constructors.
1935 */
1936 void init_mask(const unsigned *components, unsigned count);
1937 };
1938
1939
1940 class ir_dereference : public ir_rvalue {
1941 public:
1942 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1943
1944 bool is_lvalue() const;
1945
1946 /**
1947 * Get the variable that is ultimately referenced by an r-value
1948 */
1949 virtual ir_variable *variable_referenced() const = 0;
1950
1951 protected:
1952 ir_dereference(enum ir_node_type t)
1953 : ir_rvalue(t)
1954 {
1955 }
1956 };
1957
1958
1959 class ir_dereference_variable : public ir_dereference {
1960 public:
1961 ir_dereference_variable(ir_variable *var);
1962
1963 virtual ir_dereference_variable *clone(void *mem_ctx,
1964 struct hash_table *) const;
1965
1966 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1967
1968 virtual bool equals(const ir_instruction *ir,
1969 enum ir_node_type ignore = ir_type_unset) const;
1970
1971 /**
1972 * Get the variable that is ultimately referenced by an r-value
1973 */
1974 virtual ir_variable *variable_referenced() const
1975 {
1976 return this->var;
1977 }
1978
1979 virtual ir_variable *whole_variable_referenced()
1980 {
1981 /* ir_dereference_variable objects always dereference the entire
1982 * variable. However, if this dereference is dereferenced by anything
1983 * else, the complete deferefernce chain is not a whole-variable
1984 * dereference. This method should only be called on the top most
1985 * ir_rvalue in a dereference chain.
1986 */
1987 return this->var;
1988 }
1989
1990 virtual void accept(ir_visitor *v)
1991 {
1992 v->visit(this);
1993 }
1994
1995 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1996
1997 /**
1998 * Object being dereferenced.
1999 */
2000 ir_variable *var;
2001 };
2002
2003
2004 class ir_dereference_array : public ir_dereference {
2005 public:
2006 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2007
2008 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2009
2010 virtual ir_dereference_array *clone(void *mem_ctx,
2011 struct hash_table *) const;
2012
2013 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2014
2015 virtual bool equals(const ir_instruction *ir,
2016 enum ir_node_type ignore = ir_type_unset) const;
2017
2018 /**
2019 * Get the variable that is ultimately referenced by an r-value
2020 */
2021 virtual ir_variable *variable_referenced() const
2022 {
2023 return this->array->variable_referenced();
2024 }
2025
2026 virtual void accept(ir_visitor *v)
2027 {
2028 v->visit(this);
2029 }
2030
2031 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2032
2033 ir_rvalue *array;
2034 ir_rvalue *array_index;
2035
2036 private:
2037 void set_array(ir_rvalue *value);
2038 };
2039
2040
2041 class ir_dereference_record : public ir_dereference {
2042 public:
2043 ir_dereference_record(ir_rvalue *value, const char *field);
2044
2045 ir_dereference_record(ir_variable *var, const char *field);
2046
2047 virtual ir_dereference_record *clone(void *mem_ctx,
2048 struct hash_table *) const;
2049
2050 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2051
2052 /**
2053 * Get the variable that is ultimately referenced by an r-value
2054 */
2055 virtual ir_variable *variable_referenced() const
2056 {
2057 return this->record->variable_referenced();
2058 }
2059
2060 virtual void accept(ir_visitor *v)
2061 {
2062 v->visit(this);
2063 }
2064
2065 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2066
2067 ir_rvalue *record;
2068 const char *field;
2069 };
2070
2071
2072 /**
2073 * Data stored in an ir_constant
2074 */
2075 union ir_constant_data {
2076 unsigned u[16];
2077 int i[16];
2078 float f[16];
2079 bool b[16];
2080 double d[16];
2081 };
2082
2083
2084 class ir_constant : public ir_rvalue {
2085 public:
2086 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2087 ir_constant(bool b, unsigned vector_elements=1);
2088 ir_constant(unsigned int u, unsigned vector_elements=1);
2089 ir_constant(int i, unsigned vector_elements=1);
2090 ir_constant(float f, unsigned vector_elements=1);
2091 ir_constant(double d, unsigned vector_elements=1);
2092
2093 /**
2094 * Construct an ir_constant from a list of ir_constant values
2095 */
2096 ir_constant(const struct glsl_type *type, exec_list *values);
2097
2098 /**
2099 * Construct an ir_constant from a scalar component of another ir_constant
2100 *
2101 * The new \c ir_constant inherits the type of the component from the
2102 * source constant.
2103 *
2104 * \note
2105 * In the case of a matrix constant, the new constant is a scalar, \b not
2106 * a vector.
2107 */
2108 ir_constant(const ir_constant *c, unsigned i);
2109
2110 /**
2111 * Return a new ir_constant of the specified type containing all zeros.
2112 */
2113 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2114
2115 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2116
2117 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2118
2119 virtual void accept(ir_visitor *v)
2120 {
2121 v->visit(this);
2122 }
2123
2124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2125
2126 virtual bool equals(const ir_instruction *ir,
2127 enum ir_node_type ignore = ir_type_unset) const;
2128
2129 /**
2130 * Get a particular component of a constant as a specific type
2131 *
2132 * This is useful, for example, to get a value from an integer constant
2133 * as a float or bool. This appears frequently when constructors are
2134 * called with all constant parameters.
2135 */
2136 /*@{*/
2137 bool get_bool_component(unsigned i) const;
2138 float get_float_component(unsigned i) const;
2139 double get_double_component(unsigned i) const;
2140 int get_int_component(unsigned i) const;
2141 unsigned get_uint_component(unsigned i) const;
2142 /*@}*/
2143
2144 ir_constant *get_array_element(unsigned i) const;
2145
2146 ir_constant *get_record_field(const char *name);
2147
2148 /**
2149 * Copy the values on another constant at a given offset.
2150 *
2151 * The offset is ignored for array or struct copies, it's only for
2152 * scalars or vectors into vectors or matrices.
2153 *
2154 * With identical types on both sides and zero offset it's clone()
2155 * without creating a new object.
2156 */
2157
2158 void copy_offset(ir_constant *src, int offset);
2159
2160 /**
2161 * Copy the values on another constant at a given offset and
2162 * following an assign-like mask.
2163 *
2164 * The mask is ignored for scalars.
2165 *
2166 * Note that this function only handles what assign can handle,
2167 * i.e. at most a vector as source and a column of a matrix as
2168 * destination.
2169 */
2170
2171 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2172
2173 /**
2174 * Determine whether a constant has the same value as another constant
2175 *
2176 * \sa ir_constant::is_zero, ir_constant::is_one,
2177 * ir_constant::is_negative_one
2178 */
2179 bool has_value(const ir_constant *) const;
2180
2181 /**
2182 * Return true if this ir_constant represents the given value.
2183 *
2184 * For vectors, this checks that each component is the given value.
2185 */
2186 virtual bool is_value(float f, int i) const;
2187 virtual bool is_zero() const;
2188 virtual bool is_one() const;
2189 virtual bool is_negative_one() const;
2190
2191 /**
2192 * Return true for constants that could be stored as 16-bit unsigned values.
2193 *
2194 * Note that this will return true even for signed integer ir_constants, as
2195 * long as the value is non-negative and fits in 16-bits.
2196 */
2197 virtual bool is_uint16_constant() const;
2198
2199 /**
2200 * Value of the constant.
2201 *
2202 * The field used to back the values supplied by the constant is determined
2203 * by the type associated with the \c ir_instruction. Constants may be
2204 * scalars, vectors, or matrices.
2205 */
2206 union ir_constant_data value;
2207
2208 /* Array elements */
2209 ir_constant **array_elements;
2210
2211 /* Structure fields */
2212 exec_list components;
2213
2214 private:
2215 /**
2216 * Parameterless constructor only used by the clone method
2217 */
2218 ir_constant(void);
2219 };
2220
2221 /**
2222 * IR instruction to emit a vertex in a geometry shader.
2223 */
2224 class ir_emit_vertex : public ir_instruction {
2225 public:
2226 ir_emit_vertex(ir_rvalue *stream)
2227 : ir_instruction(ir_type_emit_vertex),
2228 stream(stream)
2229 {
2230 assert(stream);
2231 }
2232
2233 virtual void accept(ir_visitor *v)
2234 {
2235 v->visit(this);
2236 }
2237
2238 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2239 {
2240 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2241 }
2242
2243 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2244
2245 int stream_id() const
2246 {
2247 return stream->as_constant()->value.i[0];
2248 }
2249
2250 ir_rvalue *stream;
2251 };
2252
2253 /**
2254 * IR instruction to complete the current primitive and start a new one in a
2255 * geometry shader.
2256 */
2257 class ir_end_primitive : public ir_instruction {
2258 public:
2259 ir_end_primitive(ir_rvalue *stream)
2260 : ir_instruction(ir_type_end_primitive),
2261 stream(stream)
2262 {
2263 assert(stream);
2264 }
2265
2266 virtual void accept(ir_visitor *v)
2267 {
2268 v->visit(this);
2269 }
2270
2271 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2272 {
2273 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2274 }
2275
2276 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2277
2278 int stream_id() const
2279 {
2280 return stream->as_constant()->value.i[0];
2281 }
2282
2283 ir_rvalue *stream;
2284 };
2285
2286 /**
2287 * IR instruction for tessellation control and compute shader barrier.
2288 */
2289 class ir_barrier : public ir_instruction {
2290 public:
2291 ir_barrier()
2292 : ir_instruction(ir_type_barrier)
2293 {
2294 }
2295
2296 virtual void accept(ir_visitor *v)
2297 {
2298 v->visit(this);
2299 }
2300
2301 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2302 {
2303 return new(mem_ctx) ir_barrier();
2304 }
2305
2306 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2307 };
2308
2309 /*@}*/
2310
2311 /**
2312 * Apply a visitor to each IR node in a list
2313 */
2314 void
2315 visit_exec_list(exec_list *list, ir_visitor *visitor);
2316
2317 /**
2318 * Validate invariants on each IR node in a list
2319 */
2320 void validate_ir_tree(exec_list *instructions);
2321
2322 struct _mesa_glsl_parse_state;
2323 struct gl_shader_program;
2324
2325 /**
2326 * Detect whether an unlinked shader contains static recursion
2327 *
2328 * If the list of instructions is determined to contain static recursion,
2329 * \c _mesa_glsl_error will be called to emit error messages for each function
2330 * that is in the recursion cycle.
2331 */
2332 void
2333 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2334 exec_list *instructions);
2335
2336 /**
2337 * Detect whether a linked shader contains static recursion
2338 *
2339 * If the list of instructions is determined to contain static recursion,
2340 * \c link_error_printf will be called to emit error messages for each function
2341 * that is in the recursion cycle. In addition,
2342 * \c gl_shader_program::LinkStatus will be set to false.
2343 */
2344 void
2345 detect_recursion_linked(struct gl_shader_program *prog,
2346 exec_list *instructions);
2347
2348 /**
2349 * Make a clone of each IR instruction in a list
2350 *
2351 * \param in List of IR instructions that are to be cloned
2352 * \param out List to hold the cloned instructions
2353 */
2354 void
2355 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2356
2357 extern void
2358 _mesa_glsl_initialize_variables(exec_list *instructions,
2359 struct _mesa_glsl_parse_state *state);
2360
2361 extern void
2362 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2363 gl_shader *shader);
2364
2365 extern void
2366 _mesa_glsl_initialize_builtin_functions();
2367
2368 extern ir_function_signature *
2369 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2370 const char *name, exec_list *actual_parameters);
2371
2372 extern ir_function *
2373 _mesa_glsl_find_builtin_function_by_name(const char *name);
2374
2375 extern gl_shader *
2376 _mesa_glsl_get_builtin_function_shader(void);
2377
2378 extern ir_function_signature *
2379 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2380
2381 extern void
2382 _mesa_glsl_release_builtin_functions(void);
2383
2384 extern void
2385 reparent_ir(exec_list *list, void *mem_ctx);
2386
2387 extern void
2388 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2389 gl_shader_stage shader_stage);
2390
2391 extern char *
2392 prototype_string(const glsl_type *return_type, const char *name,
2393 exec_list *parameters);
2394
2395 const char *
2396 mode_string(const ir_variable *var);
2397
2398 /**
2399 * Built-in / reserved GL variables names start with "gl_"
2400 */
2401 static inline bool
2402 is_gl_identifier(const char *s)
2403 {
2404 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2405 }
2406
2407 extern "C" {
2408 #endif /* __cplusplus */
2409
2410 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2411 struct _mesa_glsl_parse_state *state);
2412
2413 extern void
2414 fprint_ir(FILE *f, const void *instruction);
2415
2416 extern const struct gl_builtin_uniform_desc *
2417 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2418
2419 #ifdef __cplusplus
2420 } /* extern "C" */
2421 #endif
2422
2423 unsigned
2424 vertices_per_prim(GLenum prim);
2425
2426 #endif /* IR_H */