glsl: Remove unused function import_prototypes
[mesa.git] / src / compiler / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "compiler/glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \cglsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Set this->interface_type on a newly created variable.
480 */
481 void init_interface_type(const struct glsl_type *type)
482 {
483 assert(this->interface_type == NULL);
484 this->interface_type = type;
485 if (this->is_interface_instance()) {
486 this->u.max_ifc_array_access =
487 ralloc_array(this, int, type->length);
488 for (unsigned i = 0; i < type->length; i++) {
489 this->u.max_ifc_array_access[i] = -1;
490 }
491 }
492 }
493
494 /**
495 * Change this->interface_type on a variable that previously had a
496 * different, but compatible, interface_type. This is used during linking
497 * to set the size of arrays in interface blocks.
498 */
499 void change_interface_type(const struct glsl_type *type)
500 {
501 if (this->u.max_ifc_array_access != NULL) {
502 /* max_ifc_array_access has already been allocated, so make sure the
503 * new interface has the same number of fields as the old one.
504 */
505 assert(this->interface_type->length == type->length);
506 }
507 this->interface_type = type;
508 }
509
510 /**
511 * Change this->interface_type on a variable that previously had a
512 * different, and incompatible, interface_type. This is used during
513 * compilation to handle redeclaration of the built-in gl_PerVertex
514 * interface block.
515 */
516 void reinit_interface_type(const struct glsl_type *type)
517 {
518 if (this->u.max_ifc_array_access != NULL) {
519 #ifndef NDEBUG
520 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
521 * it defines have been accessed yet; so it's safe to throw away the
522 * old max_ifc_array_access pointer, since all of its values are
523 * zero.
524 */
525 for (unsigned i = 0; i < this->interface_type->length; i++)
526 assert(this->u.max_ifc_array_access[i] == -1);
527 #endif
528 ralloc_free(this->u.max_ifc_array_access);
529 this->u.max_ifc_array_access = NULL;
530 }
531 this->interface_type = NULL;
532 init_interface_type(type);
533 }
534
535 const glsl_type *get_interface_type() const
536 {
537 return this->interface_type;
538 }
539
540 enum glsl_interface_packing get_interface_type_packing() const
541 {
542 return this->interface_type->get_interface_packing();
543 }
544 /**
545 * Get the max_ifc_array_access pointer
546 *
547 * A "set" function is not needed because the array is dynmically allocated
548 * as necessary.
549 */
550 inline int *get_max_ifc_array_access()
551 {
552 assert(this->data._num_state_slots == 0);
553 return this->u.max_ifc_array_access;
554 }
555
556 inline unsigned get_num_state_slots() const
557 {
558 assert(!this->is_interface_instance()
559 || this->data._num_state_slots == 0);
560 return this->data._num_state_slots;
561 }
562
563 inline void set_num_state_slots(unsigned n)
564 {
565 assert(!this->is_interface_instance()
566 || n == 0);
567 this->data._num_state_slots = n;
568 }
569
570 inline ir_state_slot *get_state_slots()
571 {
572 return this->is_interface_instance() ? NULL : this->u.state_slots;
573 }
574
575 inline const ir_state_slot *get_state_slots() const
576 {
577 return this->is_interface_instance() ? NULL : this->u.state_slots;
578 }
579
580 inline ir_state_slot *allocate_state_slots(unsigned n)
581 {
582 assert(!this->is_interface_instance());
583
584 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
585 this->data._num_state_slots = 0;
586
587 if (this->u.state_slots != NULL)
588 this->data._num_state_slots = n;
589
590 return this->u.state_slots;
591 }
592
593 inline bool is_interpolation_flat() const
594 {
595 return this->data.interpolation == INTERP_MODE_FLAT ||
596 this->type->contains_integer() ||
597 this->type->contains_double();
598 }
599
600 inline bool is_name_ralloced() const
601 {
602 return this->name != ir_variable::tmp_name;
603 }
604
605 /**
606 * Enable emitting extension warnings for this variable
607 */
608 void enable_extension_warning(const char *extension);
609
610 /**
611 * Get the extension warning string for this variable
612 *
613 * If warnings are not enabled, \c NULL is returned.
614 */
615 const char *get_extension_warning() const;
616
617 /**
618 * Declared type of the variable
619 */
620 const struct glsl_type *type;
621
622 /**
623 * Declared name of the variable
624 */
625 const char *name;
626
627 struct ir_variable_data {
628
629 /**
630 * Is the variable read-only?
631 *
632 * This is set for variables declared as \c const, shader inputs,
633 * and uniforms.
634 */
635 unsigned read_only:1;
636 unsigned centroid:1;
637 unsigned sample:1;
638 unsigned patch:1;
639 unsigned invariant:1;
640 unsigned precise:1;
641
642 /**
643 * Has this variable been used for reading or writing?
644 *
645 * Several GLSL semantic checks require knowledge of whether or not a
646 * variable has been used. For example, it is an error to redeclare a
647 * variable as invariant after it has been used.
648 *
649 * This is only maintained in the ast_to_hir.cpp path, not in
650 * Mesa's fixed function or ARB program paths.
651 */
652 unsigned used:1;
653
654 /**
655 * Has this variable been statically assigned?
656 *
657 * This answers whether the variable was assigned in any path of
658 * the shader during ast_to_hir. This doesn't answer whether it is
659 * still written after dead code removal, nor is it maintained in
660 * non-ast_to_hir.cpp (GLSL parsing) paths.
661 */
662 unsigned assigned:1;
663
664 /**
665 * When separate shader programs are enabled, only input/outputs between
666 * the stages of a multi-stage separate program can be safely removed
667 * from the shader interface. Other input/outputs must remains active.
668 */
669 unsigned always_active_io:1;
670
671 /**
672 * Enum indicating how the variable was declared. See
673 * ir_var_declaration_type.
674 *
675 * This is used to detect certain kinds of illegal variable redeclarations.
676 */
677 unsigned how_declared:2;
678
679 /**
680 * Storage class of the variable.
681 *
682 * \sa ir_variable_mode
683 */
684 unsigned mode:4;
685
686 /**
687 * Interpolation mode for shader inputs / outputs
688 *
689 * \sa glsl_interp_mode
690 */
691 unsigned interpolation:2;
692
693 /**
694 * \name ARB_fragment_coord_conventions
695 * @{
696 */
697 unsigned origin_upper_left:1;
698 unsigned pixel_center_integer:1;
699 /*@}*/
700
701 /**
702 * Was the location explicitly set in the shader?
703 *
704 * If the location is explicitly set in the shader, it \b cannot be changed
705 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
706 * no effect).
707 */
708 unsigned explicit_location:1;
709 unsigned explicit_index:1;
710
711 /**
712 * Was an initial binding explicitly set in the shader?
713 *
714 * If so, constant_value contains an integer ir_constant representing the
715 * initial binding point.
716 */
717 unsigned explicit_binding:1;
718
719 /**
720 * Was an initial component explicitly set in the shader?
721 */
722 unsigned explicit_component:1;
723
724 /**
725 * Does this variable have an initializer?
726 *
727 * This is used by the linker to cross-validiate initializers of global
728 * variables.
729 */
730 unsigned has_initializer:1;
731
732 /**
733 * Is this variable a generic output or input that has not yet been matched
734 * up to a variable in another stage of the pipeline?
735 *
736 * This is used by the linker as scratch storage while assigning locations
737 * to generic inputs and outputs.
738 */
739 unsigned is_unmatched_generic_inout:1;
740
741 /**
742 * Is this varying used only by transform feedback?
743 *
744 * This is used by the linker to decide if its safe to pack the varying.
745 */
746 unsigned is_xfb_only:1;
747
748 /**
749 * Was a transfor feedback buffer set in the shader?
750 */
751 unsigned explicit_xfb_buffer:1;
752
753 /**
754 * Was a transfor feedback offset set in the shader?
755 */
756 unsigned explicit_xfb_offset:1;
757
758 /**
759 * Was a transfor feedback stride set in the shader?
760 */
761 unsigned explicit_xfb_stride:1;
762
763 /**
764 * If non-zero, then this variable may be packed along with other variables
765 * into a single varying slot, so this offset should be applied when
766 * accessing components. For example, an offset of 1 means that the x
767 * component of this variable is actually stored in component y of the
768 * location specified by \c location.
769 */
770 unsigned location_frac:2;
771
772 /**
773 * Layout of the matrix. Uses glsl_matrix_layout values.
774 */
775 unsigned matrix_layout:2;
776
777 /**
778 * Non-zero if this variable was created by lowering a named interface
779 * block.
780 */
781 unsigned from_named_ifc_block:1;
782
783 /**
784 * Non-zero if the variable must be a shader input. This is useful for
785 * constraints on function parameters.
786 */
787 unsigned must_be_shader_input:1;
788
789 /**
790 * Output index for dual source blending.
791 *
792 * \note
793 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
794 * source blending.
795 */
796 unsigned index:1;
797
798 /**
799 * Precision qualifier.
800 *
801 * In desktop GLSL we do not care about precision qualifiers at all, in
802 * fact, the spec says that precision qualifiers are ignored.
803 *
804 * To make things easy, we make it so that this field is always
805 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
806 * have the same precision value and the checks we add in the compiler
807 * for this field will never break a desktop shader compile.
808 */
809 unsigned precision:2;
810
811 /**
812 * \brief Layout qualifier for gl_FragDepth.
813 *
814 * This is not equal to \c ir_depth_layout_none if and only if this
815 * variable is \c gl_FragDepth and a layout qualifier is specified.
816 */
817 ir_depth_layout depth_layout:3;
818
819 /**
820 * ARB_shader_image_load_store qualifiers.
821 */
822 unsigned image_read_only:1; /**< "readonly" qualifier. */
823 unsigned image_write_only:1; /**< "writeonly" qualifier. */
824 unsigned image_coherent:1;
825 unsigned image_volatile:1;
826 unsigned image_restrict:1;
827
828 /**
829 * ARB_shader_storage_buffer_object
830 */
831 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
832
833 unsigned implicit_sized_array:1;
834
835 /**
836 * Whether this is a fragment shader output implicitly initialized with
837 * the previous contents of the specified render target at the
838 * framebuffer location corresponding to this shader invocation.
839 */
840 unsigned fb_fetch_output:1;
841
842 /**
843 * Emit a warning if this variable is accessed.
844 */
845 private:
846 uint8_t warn_extension_index;
847
848 public:
849 /** Image internal format if specified explicitly, otherwise GL_NONE. */
850 uint16_t image_format;
851
852 private:
853 /**
854 * Number of state slots used
855 *
856 * \note
857 * This could be stored in as few as 7-bits, if necessary. If it is made
858 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
859 * be safe.
860 */
861 uint16_t _num_state_slots;
862
863 public:
864 /**
865 * Initial binding point for a sampler, atomic, or UBO.
866 *
867 * For array types, this represents the binding point for the first element.
868 */
869 int16_t binding;
870
871 /**
872 * Storage location of the base of this variable
873 *
874 * The precise meaning of this field depends on the nature of the variable.
875 *
876 * - Vertex shader input: one of the values from \c gl_vert_attrib.
877 * - Vertex shader output: one of the values from \c gl_varying_slot.
878 * - Geometry shader input: one of the values from \c gl_varying_slot.
879 * - Geometry shader output: one of the values from \c gl_varying_slot.
880 * - Fragment shader input: one of the values from \c gl_varying_slot.
881 * - Fragment shader output: one of the values from \c gl_frag_result.
882 * - Uniforms: Per-stage uniform slot number for default uniform block.
883 * - Uniforms: Index within the uniform block definition for UBO members.
884 * - Non-UBO Uniforms: explicit location until linking then reused to
885 * store uniform slot number.
886 * - Other: This field is not currently used.
887 *
888 * If the variable is a uniform, shader input, or shader output, and the
889 * slot has not been assigned, the value will be -1.
890 */
891 int location;
892
893 /**
894 * for glsl->tgsi/mesa IR we need to store the index into the
895 * parameters for uniforms, initially the code overloaded location
896 * but this causes problems with indirect samplers and AoA.
897 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
898 */
899 int param_index;
900
901 /**
902 * Vertex stream output identifier.
903 */
904 unsigned stream;
905
906 /**
907 * Atomic, transform feedback or block member offset.
908 */
909 unsigned offset;
910
911 /**
912 * Highest element accessed with a constant expression array index
913 *
914 * Not used for non-array variables. -1 is never accessed.
915 */
916 int max_array_access;
917
918 /**
919 * Transform feedback buffer.
920 */
921 unsigned xfb_buffer;
922
923 /**
924 * Transform feedback stride.
925 */
926 unsigned xfb_stride;
927
928 /**
929 * Allow (only) ir_variable direct access private members.
930 */
931 friend class ir_variable;
932 } data;
933
934 /**
935 * Value assigned in the initializer of a variable declared "const"
936 */
937 ir_constant *constant_value;
938
939 /**
940 * Constant expression assigned in the initializer of the variable
941 *
942 * \warning
943 * This field and \c ::constant_value are distinct. Even if the two fields
944 * refer to constants with the same value, they must point to separate
945 * objects.
946 */
947 ir_constant *constant_initializer;
948
949 private:
950 static const char *const warn_extension_table[];
951
952 union {
953 /**
954 * For variables which satisfy the is_interface_instance() predicate,
955 * this points to an array of integers such that if the ith member of
956 * the interface block is an array, max_ifc_array_access[i] is the
957 * maximum array element of that member that has been accessed. If the
958 * ith member of the interface block is not an array,
959 * max_ifc_array_access[i] is unused.
960 *
961 * For variables whose type is not an interface block, this pointer is
962 * NULL.
963 */
964 int *max_ifc_array_access;
965
966 /**
967 * Built-in state that backs this uniform
968 *
969 * Once set at variable creation, \c state_slots must remain invariant.
970 *
971 * If the variable is not a uniform, \c _num_state_slots will be zero
972 * and \c state_slots will be \c NULL.
973 */
974 ir_state_slot *state_slots;
975 } u;
976
977 /**
978 * For variables that are in an interface block or are an instance of an
979 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
980 *
981 * \sa ir_variable::location
982 */
983 const glsl_type *interface_type;
984
985 /**
986 * Name used for anonymous compiler temporaries
987 */
988 static const char tmp_name[];
989
990 public:
991 /**
992 * Should the construct keep names for ir_var_temporary variables?
993 *
994 * When this global is false, names passed to the constructor for
995 * \c ir_var_temporary variables will be dropped. Instead, the variable will
996 * be named "compiler_temp". This name will be in static storage.
997 *
998 * \warning
999 * \b NEVER change the mode of an \c ir_var_temporary.
1000 *
1001 * \warning
1002 * This variable is \b not thread-safe. It is global, \b not
1003 * per-context. It begins life false. A context can, at some point, make
1004 * it true. From that point on, it will be true forever. This should be
1005 * okay since it will only be set true while debugging.
1006 */
1007 static bool temporaries_allocate_names;
1008 };
1009
1010 /**
1011 * A function that returns whether a built-in function is available in the
1012 * current shading language (based on version, ES or desktop, and extensions).
1013 */
1014 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1015
1016 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1017 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1018
1019 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1020 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1021
1022 enum ir_intrinsic_id {
1023 ir_intrinsic_invalid = 0,
1024
1025 /**
1026 * \name Generic intrinsics
1027 *
1028 * Each of these intrinsics has a specific version for shared variables and
1029 * SSBOs.
1030 */
1031 /*@{*/
1032 ir_intrinsic_generic_load,
1033 ir_intrinsic_generic_store,
1034 ir_intrinsic_generic_atomic_add,
1035 ir_intrinsic_generic_atomic_and,
1036 ir_intrinsic_generic_atomic_or,
1037 ir_intrinsic_generic_atomic_xor,
1038 ir_intrinsic_generic_atomic_min,
1039 ir_intrinsic_generic_atomic_max,
1040 ir_intrinsic_generic_atomic_exchange,
1041 ir_intrinsic_generic_atomic_comp_swap,
1042 /*@}*/
1043
1044 ir_intrinsic_atomic_counter_read,
1045 ir_intrinsic_atomic_counter_increment,
1046 ir_intrinsic_atomic_counter_predecrement,
1047 ir_intrinsic_atomic_counter_add,
1048 ir_intrinsic_atomic_counter_and,
1049 ir_intrinsic_atomic_counter_or,
1050 ir_intrinsic_atomic_counter_xor,
1051 ir_intrinsic_atomic_counter_min,
1052 ir_intrinsic_atomic_counter_max,
1053 ir_intrinsic_atomic_counter_exchange,
1054 ir_intrinsic_atomic_counter_comp_swap,
1055
1056 ir_intrinsic_image_load,
1057 ir_intrinsic_image_store,
1058 ir_intrinsic_image_atomic_add,
1059 ir_intrinsic_image_atomic_and,
1060 ir_intrinsic_image_atomic_or,
1061 ir_intrinsic_image_atomic_xor,
1062 ir_intrinsic_image_atomic_min,
1063 ir_intrinsic_image_atomic_max,
1064 ir_intrinsic_image_atomic_exchange,
1065 ir_intrinsic_image_atomic_comp_swap,
1066 ir_intrinsic_image_size,
1067 ir_intrinsic_image_samples,
1068
1069 ir_intrinsic_ssbo_load,
1070 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1071 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1072 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1073 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1074 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1075 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1076 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1077 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1078 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1079
1080 ir_intrinsic_memory_barrier,
1081 ir_intrinsic_shader_clock,
1082 ir_intrinsic_group_memory_barrier,
1083 ir_intrinsic_memory_barrier_atomic_counter,
1084 ir_intrinsic_memory_barrier_buffer,
1085 ir_intrinsic_memory_barrier_image,
1086 ir_intrinsic_memory_barrier_shared,
1087
1088 ir_intrinsic_shared_load,
1089 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1090 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1091 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1092 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1093 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1094 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1095 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1096 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1097 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1098 };
1099
1100 /*@{*/
1101 /**
1102 * The representation of a function instance; may be the full definition or
1103 * simply a prototype.
1104 */
1105 class ir_function_signature : public ir_instruction {
1106 /* An ir_function_signature will be part of the list of signatures in
1107 * an ir_function.
1108 */
1109 public:
1110 ir_function_signature(const glsl_type *return_type,
1111 builtin_available_predicate builtin_avail = NULL);
1112
1113 virtual ir_function_signature *clone(void *mem_ctx,
1114 struct hash_table *ht) const;
1115 ir_function_signature *clone_prototype(void *mem_ctx,
1116 struct hash_table *ht) const;
1117
1118 virtual void accept(ir_visitor *v)
1119 {
1120 v->visit(this);
1121 }
1122
1123 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1124
1125 /**
1126 * Attempt to evaluate this function as a constant expression,
1127 * given a list of the actual parameters and the variable context.
1128 * Returns NULL for non-built-ins.
1129 */
1130 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1131
1132 /**
1133 * Get the name of the function for which this is a signature
1134 */
1135 const char *function_name() const;
1136
1137 /**
1138 * Get a handle to the function for which this is a signature
1139 *
1140 * There is no setter function, this function returns a \c const pointer,
1141 * and \c ir_function_signature::_function is private for a reason. The
1142 * only way to make a connection between a function and function signature
1143 * is via \c ir_function::add_signature. This helps ensure that certain
1144 * invariants (i.e., a function signature is in the list of signatures for
1145 * its \c _function) are met.
1146 *
1147 * \sa ir_function::add_signature
1148 */
1149 inline const class ir_function *function() const
1150 {
1151 return this->_function;
1152 }
1153
1154 /**
1155 * Check whether the qualifiers match between this signature's parameters
1156 * and the supplied parameter list. If not, returns the name of the first
1157 * parameter with mismatched qualifiers (for use in error messages).
1158 */
1159 const char *qualifiers_match(exec_list *params);
1160
1161 /**
1162 * Replace the current parameter list with the given one. This is useful
1163 * if the current information came from a prototype, and either has invalid
1164 * or missing parameter names.
1165 */
1166 void replace_parameters(exec_list *new_params);
1167
1168 /**
1169 * Function return type.
1170 *
1171 * \note This discards the optional precision qualifier.
1172 */
1173 const struct glsl_type *return_type;
1174
1175 /**
1176 * List of ir_variable of function parameters.
1177 *
1178 * This represents the storage. The paramaters passed in a particular
1179 * call will be in ir_call::actual_paramaters.
1180 */
1181 struct exec_list parameters;
1182
1183 /** Whether or not this function has a body (which may be empty). */
1184 unsigned is_defined:1;
1185
1186 /** Whether or not this function signature is a built-in. */
1187 bool is_builtin() const;
1188
1189 /**
1190 * Whether or not this function is an intrinsic to be implemented
1191 * by the driver.
1192 */
1193 inline bool is_intrinsic() const
1194 {
1195 return intrinsic_id != ir_intrinsic_invalid;
1196 }
1197
1198 /** Indentifier for this intrinsic. */
1199 enum ir_intrinsic_id intrinsic_id;
1200
1201 /** Whether or not a built-in is available for this shader. */
1202 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1203
1204 /** Body of instructions in the function. */
1205 struct exec_list body;
1206
1207 private:
1208 /**
1209 * A function pointer to a predicate that answers whether a built-in
1210 * function is available in the current shader. NULL if not a built-in.
1211 */
1212 builtin_available_predicate builtin_avail;
1213
1214 /** Function of which this signature is one overload. */
1215 class ir_function *_function;
1216
1217 /** Function signature of which this one is a prototype clone */
1218 const ir_function_signature *origin;
1219
1220 friend class ir_function;
1221
1222 /**
1223 * Helper function to run a list of instructions for constant
1224 * expression evaluation.
1225 *
1226 * The hash table represents the values of the visible variables.
1227 * There are no scoping issues because the table is indexed on
1228 * ir_variable pointers, not variable names.
1229 *
1230 * Returns false if the expression is not constant, true otherwise,
1231 * and the value in *result if result is non-NULL.
1232 */
1233 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1234 struct hash_table *variable_context,
1235 ir_constant **result);
1236 };
1237
1238
1239 /**
1240 * Header for tracking multiple overloaded functions with the same name.
1241 * Contains a list of ir_function_signatures representing each of the
1242 * actual functions.
1243 */
1244 class ir_function : public ir_instruction {
1245 public:
1246 ir_function(const char *name);
1247
1248 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1249
1250 virtual void accept(ir_visitor *v)
1251 {
1252 v->visit(this);
1253 }
1254
1255 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1256
1257 void add_signature(ir_function_signature *sig)
1258 {
1259 sig->_function = this;
1260 this->signatures.push_tail(sig);
1261 }
1262
1263 /**
1264 * Find a signature that matches a set of actual parameters, taking implicit
1265 * conversions into account. Also flags whether the match was exact.
1266 */
1267 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1268 const exec_list *actual_param,
1269 bool allow_builtins,
1270 bool *match_is_exact);
1271
1272 /**
1273 * Find a signature that matches a set of actual parameters, taking implicit
1274 * conversions into account.
1275 */
1276 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1277 const exec_list *actual_param,
1278 bool allow_builtins);
1279
1280 /**
1281 * Find a signature that exactly matches a set of actual parameters without
1282 * any implicit type conversions.
1283 */
1284 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1285 const exec_list *actual_ps);
1286
1287 /**
1288 * Name of the function.
1289 */
1290 const char *name;
1291
1292 /** Whether or not this function has a signature that isn't a built-in. */
1293 bool has_user_signature();
1294
1295 /**
1296 * List of ir_function_signature for each overloaded function with this name.
1297 */
1298 struct exec_list signatures;
1299
1300 /**
1301 * is this function a subroutine type declaration
1302 * e.g. subroutine void type1(float arg1);
1303 */
1304 bool is_subroutine;
1305
1306 /**
1307 * is this function associated to a subroutine type
1308 * e.g. subroutine (type1, type2) function_name { function_body };
1309 * would have num_subroutine_types 2,
1310 * and pointers to the type1 and type2 types.
1311 */
1312 int num_subroutine_types;
1313 const struct glsl_type **subroutine_types;
1314
1315 int subroutine_index;
1316 };
1317
1318 inline const char *ir_function_signature::function_name() const
1319 {
1320 return this->_function->name;
1321 }
1322 /*@}*/
1323
1324
1325 /**
1326 * IR instruction representing high-level if-statements
1327 */
1328 class ir_if : public ir_instruction {
1329 public:
1330 ir_if(ir_rvalue *condition)
1331 : ir_instruction(ir_type_if), condition(condition)
1332 {
1333 }
1334
1335 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1336
1337 virtual void accept(ir_visitor *v)
1338 {
1339 v->visit(this);
1340 }
1341
1342 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1343
1344 ir_rvalue *condition;
1345 /** List of ir_instruction for the body of the then branch */
1346 exec_list then_instructions;
1347 /** List of ir_instruction for the body of the else branch */
1348 exec_list else_instructions;
1349 };
1350
1351
1352 /**
1353 * IR instruction representing a high-level loop structure.
1354 */
1355 class ir_loop : public ir_instruction {
1356 public:
1357 ir_loop();
1358
1359 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1360
1361 virtual void accept(ir_visitor *v)
1362 {
1363 v->visit(this);
1364 }
1365
1366 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1367
1368 /** List of ir_instruction that make up the body of the loop. */
1369 exec_list body_instructions;
1370 };
1371
1372
1373 class ir_assignment : public ir_instruction {
1374 public:
1375 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1376
1377 /**
1378 * Construct an assignment with an explicit write mask
1379 *
1380 * \note
1381 * Since a write mask is supplied, the LHS must already be a bare
1382 * \c ir_dereference. The cannot be any swizzles in the LHS.
1383 */
1384 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1385 unsigned write_mask);
1386
1387 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1388
1389 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1390
1391 virtual void accept(ir_visitor *v)
1392 {
1393 v->visit(this);
1394 }
1395
1396 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1397
1398 /**
1399 * Get a whole variable written by an assignment
1400 *
1401 * If the LHS of the assignment writes a whole variable, the variable is
1402 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1403 * assignment are:
1404 *
1405 * - Assigning to a scalar
1406 * - Assigning to all components of a vector
1407 * - Whole array (or matrix) assignment
1408 * - Whole structure assignment
1409 */
1410 ir_variable *whole_variable_written();
1411
1412 /**
1413 * Set the LHS of an assignment
1414 */
1415 void set_lhs(ir_rvalue *lhs);
1416
1417 /**
1418 * Left-hand side of the assignment.
1419 *
1420 * This should be treated as read only. If you need to set the LHS of an
1421 * assignment, use \c ir_assignment::set_lhs.
1422 */
1423 ir_dereference *lhs;
1424
1425 /**
1426 * Value being assigned
1427 */
1428 ir_rvalue *rhs;
1429
1430 /**
1431 * Optional condition for the assignment.
1432 */
1433 ir_rvalue *condition;
1434
1435
1436 /**
1437 * Component mask written
1438 *
1439 * For non-vector types in the LHS, this field will be zero. For vector
1440 * types, a bit will be set for each component that is written. Note that
1441 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1442 *
1443 * A partially-set write mask means that each enabled channel gets
1444 * the value from a consecutive channel of the rhs. For example,
1445 * to write just .xyw of gl_FrontColor with color:
1446 *
1447 * (assign (constant bool (1)) (xyw)
1448 * (var_ref gl_FragColor)
1449 * (swiz xyw (var_ref color)))
1450 */
1451 unsigned write_mask:4;
1452 };
1453
1454 #include "ir_expression_operation.h"
1455
1456 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1457
1458 class ir_expression : public ir_rvalue {
1459 public:
1460 ir_expression(int op, const struct glsl_type *type,
1461 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1462 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1463
1464 /**
1465 * Constructor for unary operation expressions
1466 */
1467 ir_expression(int op, ir_rvalue *);
1468
1469 /**
1470 * Constructor for binary operation expressions
1471 */
1472 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1473
1474 /**
1475 * Constructor for ternary operation expressions
1476 */
1477 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1478
1479 virtual bool equals(const ir_instruction *ir,
1480 enum ir_node_type ignore = ir_type_unset) const;
1481
1482 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1483
1484 /**
1485 * Attempt to constant-fold the expression
1486 *
1487 * The "variable_context" hash table links ir_variable * to ir_constant *
1488 * that represent the variables' values. \c NULL represents an empty
1489 * context.
1490 *
1491 * If the expression cannot be constant folded, this method will return
1492 * \c NULL.
1493 */
1494 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1495
1496 /**
1497 * Determine the number of operands used by an expression
1498 */
1499 static unsigned int get_num_operands(ir_expression_operation);
1500
1501 /**
1502 * Determine the number of operands used by an expression
1503 */
1504 unsigned int get_num_operands() const
1505 {
1506 return (this->operation == ir_quadop_vector)
1507 ? this->type->vector_elements : get_num_operands(operation);
1508 }
1509
1510 /**
1511 * Return whether the expression operates on vectors horizontally.
1512 */
1513 bool is_horizontal() const
1514 {
1515 return operation == ir_binop_all_equal ||
1516 operation == ir_binop_any_nequal ||
1517 operation == ir_binop_dot ||
1518 operation == ir_binop_vector_extract ||
1519 operation == ir_triop_vector_insert ||
1520 operation == ir_binop_ubo_load ||
1521 operation == ir_quadop_vector;
1522 }
1523
1524 /**
1525 * Do a reverse-lookup to translate the given string into an operator.
1526 */
1527 static ir_expression_operation get_operator(const char *);
1528
1529 virtual void accept(ir_visitor *v)
1530 {
1531 v->visit(this);
1532 }
1533
1534 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1535
1536 virtual ir_variable *variable_referenced() const;
1537
1538 ir_expression_operation operation;
1539 ir_rvalue *operands[4];
1540 };
1541
1542
1543 /**
1544 * HIR instruction representing a high-level function call, containing a list
1545 * of parameters and returning a value in the supplied temporary.
1546 */
1547 class ir_call : public ir_instruction {
1548 public:
1549 ir_call(ir_function_signature *callee,
1550 ir_dereference_variable *return_deref,
1551 exec_list *actual_parameters)
1552 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1553 {
1554 assert(callee->return_type != NULL);
1555 actual_parameters->move_nodes_to(& this->actual_parameters);
1556 this->use_builtin = callee->is_builtin();
1557 }
1558
1559 ir_call(ir_function_signature *callee,
1560 ir_dereference_variable *return_deref,
1561 exec_list *actual_parameters,
1562 ir_variable *var, ir_rvalue *array_idx)
1563 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1564 {
1565 assert(callee->return_type != NULL);
1566 actual_parameters->move_nodes_to(& this->actual_parameters);
1567 this->use_builtin = callee->is_builtin();
1568 }
1569
1570 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1571
1572 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1573
1574 virtual void accept(ir_visitor *v)
1575 {
1576 v->visit(this);
1577 }
1578
1579 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1580
1581 /**
1582 * Get the name of the function being called.
1583 */
1584 const char *callee_name() const
1585 {
1586 return callee->function_name();
1587 }
1588
1589 /**
1590 * Generates an inline version of the function before @ir,
1591 * storing the return value in return_deref.
1592 */
1593 void generate_inline(ir_instruction *ir);
1594
1595 /**
1596 * Storage for the function's return value.
1597 * This must be NULL if the return type is void.
1598 */
1599 ir_dereference_variable *return_deref;
1600
1601 /**
1602 * The specific function signature being called.
1603 */
1604 ir_function_signature *callee;
1605
1606 /* List of ir_rvalue of paramaters passed in this call. */
1607 exec_list actual_parameters;
1608
1609 /** Should this call only bind to a built-in function? */
1610 bool use_builtin;
1611
1612 /*
1613 * ARB_shader_subroutine support -
1614 * the subroutine uniform variable and array index
1615 * rvalue to be used in the lowering pass later.
1616 */
1617 ir_variable *sub_var;
1618 ir_rvalue *array_idx;
1619 };
1620
1621
1622 /**
1623 * \name Jump-like IR instructions.
1624 *
1625 * These include \c break, \c continue, \c return, and \c discard.
1626 */
1627 /*@{*/
1628 class ir_jump : public ir_instruction {
1629 protected:
1630 ir_jump(enum ir_node_type t)
1631 : ir_instruction(t)
1632 {
1633 }
1634 };
1635
1636 class ir_return : public ir_jump {
1637 public:
1638 ir_return()
1639 : ir_jump(ir_type_return), value(NULL)
1640 {
1641 }
1642
1643 ir_return(ir_rvalue *value)
1644 : ir_jump(ir_type_return), value(value)
1645 {
1646 }
1647
1648 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1649
1650 ir_rvalue *get_value() const
1651 {
1652 return value;
1653 }
1654
1655 virtual void accept(ir_visitor *v)
1656 {
1657 v->visit(this);
1658 }
1659
1660 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1661
1662 ir_rvalue *value;
1663 };
1664
1665
1666 /**
1667 * Jump instructions used inside loops
1668 *
1669 * These include \c break and \c continue. The \c break within a loop is
1670 * different from the \c break within a switch-statement.
1671 *
1672 * \sa ir_switch_jump
1673 */
1674 class ir_loop_jump : public ir_jump {
1675 public:
1676 enum jump_mode {
1677 jump_break,
1678 jump_continue
1679 };
1680
1681 ir_loop_jump(jump_mode mode)
1682 : ir_jump(ir_type_loop_jump)
1683 {
1684 this->mode = mode;
1685 }
1686
1687 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1688
1689 virtual void accept(ir_visitor *v)
1690 {
1691 v->visit(this);
1692 }
1693
1694 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1695
1696 bool is_break() const
1697 {
1698 return mode == jump_break;
1699 }
1700
1701 bool is_continue() const
1702 {
1703 return mode == jump_continue;
1704 }
1705
1706 /** Mode selector for the jump instruction. */
1707 enum jump_mode mode;
1708 };
1709
1710 /**
1711 * IR instruction representing discard statements.
1712 */
1713 class ir_discard : public ir_jump {
1714 public:
1715 ir_discard()
1716 : ir_jump(ir_type_discard)
1717 {
1718 this->condition = NULL;
1719 }
1720
1721 ir_discard(ir_rvalue *cond)
1722 : ir_jump(ir_type_discard)
1723 {
1724 this->condition = cond;
1725 }
1726
1727 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1728
1729 virtual void accept(ir_visitor *v)
1730 {
1731 v->visit(this);
1732 }
1733
1734 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1735
1736 ir_rvalue *condition;
1737 };
1738 /*@}*/
1739
1740
1741 /**
1742 * Texture sampling opcodes used in ir_texture
1743 */
1744 enum ir_texture_opcode {
1745 ir_tex, /**< Regular texture look-up */
1746 ir_txb, /**< Texture look-up with LOD bias */
1747 ir_txl, /**< Texture look-up with explicit LOD */
1748 ir_txd, /**< Texture look-up with partial derivatvies */
1749 ir_txf, /**< Texel fetch with explicit LOD */
1750 ir_txf_ms, /**< Multisample texture fetch */
1751 ir_txs, /**< Texture size */
1752 ir_lod, /**< Texture lod query */
1753 ir_tg4, /**< Texture gather */
1754 ir_query_levels, /**< Texture levels query */
1755 ir_texture_samples, /**< Texture samples query */
1756 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1757 };
1758
1759
1760 /**
1761 * IR instruction to sample a texture
1762 *
1763 * The specific form of the IR instruction depends on the \c mode value
1764 * selected from \c ir_texture_opcodes. In the printed IR, these will
1765 * appear as:
1766 *
1767 * Texel offset (0 or an expression)
1768 * | Projection divisor
1769 * | | Shadow comparitor
1770 * | | |
1771 * v v v
1772 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1773 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1774 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1775 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1776 * (txf <type> <sampler> <coordinate> 0 <lod>)
1777 * (txf_ms
1778 * <type> <sampler> <coordinate> <sample_index>)
1779 * (txs <type> <sampler> <lod>)
1780 * (lod <type> <sampler> <coordinate>)
1781 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1782 * (query_levels <type> <sampler>)
1783 * (samples_identical <sampler> <coordinate>)
1784 */
1785 class ir_texture : public ir_rvalue {
1786 public:
1787 ir_texture(enum ir_texture_opcode op)
1788 : ir_rvalue(ir_type_texture),
1789 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1790 shadow_comparitor(NULL), offset(NULL)
1791 {
1792 memset(&lod_info, 0, sizeof(lod_info));
1793 }
1794
1795 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1796
1797 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1798
1799 virtual void accept(ir_visitor *v)
1800 {
1801 v->visit(this);
1802 }
1803
1804 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1805
1806 virtual bool equals(const ir_instruction *ir,
1807 enum ir_node_type ignore = ir_type_unset) const;
1808
1809 /**
1810 * Return a string representing the ir_texture_opcode.
1811 */
1812 const char *opcode_string();
1813
1814 /** Set the sampler and type. */
1815 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1816
1817 /**
1818 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1819 */
1820 static ir_texture_opcode get_opcode(const char *);
1821
1822 enum ir_texture_opcode op;
1823
1824 /** Sampler to use for the texture access. */
1825 ir_dereference *sampler;
1826
1827 /** Texture coordinate to sample */
1828 ir_rvalue *coordinate;
1829
1830 /**
1831 * Value used for projective divide.
1832 *
1833 * If there is no projective divide (the common case), this will be
1834 * \c NULL. Optimization passes should check for this to point to a constant
1835 * of 1.0 and replace that with \c NULL.
1836 */
1837 ir_rvalue *projector;
1838
1839 /**
1840 * Coordinate used for comparison on shadow look-ups.
1841 *
1842 * If there is no shadow comparison, this will be \c NULL. For the
1843 * \c ir_txf opcode, this *must* be \c NULL.
1844 */
1845 ir_rvalue *shadow_comparitor;
1846
1847 /** Texel offset. */
1848 ir_rvalue *offset;
1849
1850 union {
1851 ir_rvalue *lod; /**< Floating point LOD */
1852 ir_rvalue *bias; /**< Floating point LOD bias */
1853 ir_rvalue *sample_index; /**< MSAA sample index */
1854 ir_rvalue *component; /**< Gather component selector */
1855 struct {
1856 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1857 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1858 } grad;
1859 } lod_info;
1860 };
1861
1862
1863 struct ir_swizzle_mask {
1864 unsigned x:2;
1865 unsigned y:2;
1866 unsigned z:2;
1867 unsigned w:2;
1868
1869 /**
1870 * Number of components in the swizzle.
1871 */
1872 unsigned num_components:3;
1873
1874 /**
1875 * Does the swizzle contain duplicate components?
1876 *
1877 * L-value swizzles cannot contain duplicate components.
1878 */
1879 unsigned has_duplicates:1;
1880 };
1881
1882
1883 class ir_swizzle : public ir_rvalue {
1884 public:
1885 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1886 unsigned count);
1887
1888 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1889
1890 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1891
1892 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1893
1894 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1895
1896 /**
1897 * Construct an ir_swizzle from the textual representation. Can fail.
1898 */
1899 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1900
1901 virtual void accept(ir_visitor *v)
1902 {
1903 v->visit(this);
1904 }
1905
1906 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1907
1908 virtual bool equals(const ir_instruction *ir,
1909 enum ir_node_type ignore = ir_type_unset) const;
1910
1911 bool is_lvalue() const
1912 {
1913 return val->is_lvalue() && !mask.has_duplicates;
1914 }
1915
1916 /**
1917 * Get the variable that is ultimately referenced by an r-value
1918 */
1919 virtual ir_variable *variable_referenced() const;
1920
1921 ir_rvalue *val;
1922 ir_swizzle_mask mask;
1923
1924 private:
1925 /**
1926 * Initialize the mask component of a swizzle
1927 *
1928 * This is used by the \c ir_swizzle constructors.
1929 */
1930 void init_mask(const unsigned *components, unsigned count);
1931 };
1932
1933
1934 class ir_dereference : public ir_rvalue {
1935 public:
1936 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1937
1938 bool is_lvalue() const;
1939
1940 /**
1941 * Get the variable that is ultimately referenced by an r-value
1942 */
1943 virtual ir_variable *variable_referenced() const = 0;
1944
1945 protected:
1946 ir_dereference(enum ir_node_type t)
1947 : ir_rvalue(t)
1948 {
1949 }
1950 };
1951
1952
1953 class ir_dereference_variable : public ir_dereference {
1954 public:
1955 ir_dereference_variable(ir_variable *var);
1956
1957 virtual ir_dereference_variable *clone(void *mem_ctx,
1958 struct hash_table *) const;
1959
1960 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1961
1962 virtual bool equals(const ir_instruction *ir,
1963 enum ir_node_type ignore = ir_type_unset) const;
1964
1965 /**
1966 * Get the variable that is ultimately referenced by an r-value
1967 */
1968 virtual ir_variable *variable_referenced() const
1969 {
1970 return this->var;
1971 }
1972
1973 virtual ir_variable *whole_variable_referenced()
1974 {
1975 /* ir_dereference_variable objects always dereference the entire
1976 * variable. However, if this dereference is dereferenced by anything
1977 * else, the complete deferefernce chain is not a whole-variable
1978 * dereference. This method should only be called on the top most
1979 * ir_rvalue in a dereference chain.
1980 */
1981 return this->var;
1982 }
1983
1984 virtual void accept(ir_visitor *v)
1985 {
1986 v->visit(this);
1987 }
1988
1989 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1990
1991 /**
1992 * Object being dereferenced.
1993 */
1994 ir_variable *var;
1995 };
1996
1997
1998 class ir_dereference_array : public ir_dereference {
1999 public:
2000 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2001
2002 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2003
2004 virtual ir_dereference_array *clone(void *mem_ctx,
2005 struct hash_table *) const;
2006
2007 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2008
2009 virtual bool equals(const ir_instruction *ir,
2010 enum ir_node_type ignore = ir_type_unset) const;
2011
2012 /**
2013 * Get the variable that is ultimately referenced by an r-value
2014 */
2015 virtual ir_variable *variable_referenced() const
2016 {
2017 return this->array->variable_referenced();
2018 }
2019
2020 virtual void accept(ir_visitor *v)
2021 {
2022 v->visit(this);
2023 }
2024
2025 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2026
2027 ir_rvalue *array;
2028 ir_rvalue *array_index;
2029
2030 private:
2031 void set_array(ir_rvalue *value);
2032 };
2033
2034
2035 class ir_dereference_record : public ir_dereference {
2036 public:
2037 ir_dereference_record(ir_rvalue *value, const char *field);
2038
2039 ir_dereference_record(ir_variable *var, const char *field);
2040
2041 virtual ir_dereference_record *clone(void *mem_ctx,
2042 struct hash_table *) const;
2043
2044 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2045
2046 /**
2047 * Get the variable that is ultimately referenced by an r-value
2048 */
2049 virtual ir_variable *variable_referenced() const
2050 {
2051 return this->record->variable_referenced();
2052 }
2053
2054 virtual void accept(ir_visitor *v)
2055 {
2056 v->visit(this);
2057 }
2058
2059 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2060
2061 ir_rvalue *record;
2062 const char *field;
2063 };
2064
2065
2066 /**
2067 * Data stored in an ir_constant
2068 */
2069 union ir_constant_data {
2070 unsigned u[16];
2071 int i[16];
2072 float f[16];
2073 bool b[16];
2074 double d[16];
2075 };
2076
2077
2078 class ir_constant : public ir_rvalue {
2079 public:
2080 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2081 ir_constant(bool b, unsigned vector_elements=1);
2082 ir_constant(unsigned int u, unsigned vector_elements=1);
2083 ir_constant(int i, unsigned vector_elements=1);
2084 ir_constant(float f, unsigned vector_elements=1);
2085 ir_constant(double d, unsigned vector_elements=1);
2086
2087 /**
2088 * Construct an ir_constant from a list of ir_constant values
2089 */
2090 ir_constant(const struct glsl_type *type, exec_list *values);
2091
2092 /**
2093 * Construct an ir_constant from a scalar component of another ir_constant
2094 *
2095 * The new \c ir_constant inherits the type of the component from the
2096 * source constant.
2097 *
2098 * \note
2099 * In the case of a matrix constant, the new constant is a scalar, \b not
2100 * a vector.
2101 */
2102 ir_constant(const ir_constant *c, unsigned i);
2103
2104 /**
2105 * Return a new ir_constant of the specified type containing all zeros.
2106 */
2107 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2108
2109 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2110
2111 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2112
2113 virtual void accept(ir_visitor *v)
2114 {
2115 v->visit(this);
2116 }
2117
2118 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2119
2120 virtual bool equals(const ir_instruction *ir,
2121 enum ir_node_type ignore = ir_type_unset) const;
2122
2123 /**
2124 * Get a particular component of a constant as a specific type
2125 *
2126 * This is useful, for example, to get a value from an integer constant
2127 * as a float or bool. This appears frequently when constructors are
2128 * called with all constant parameters.
2129 */
2130 /*@{*/
2131 bool get_bool_component(unsigned i) const;
2132 float get_float_component(unsigned i) const;
2133 double get_double_component(unsigned i) const;
2134 int get_int_component(unsigned i) const;
2135 unsigned get_uint_component(unsigned i) const;
2136 /*@}*/
2137
2138 ir_constant *get_array_element(unsigned i) const;
2139
2140 ir_constant *get_record_field(const char *name);
2141
2142 /**
2143 * Copy the values on another constant at a given offset.
2144 *
2145 * The offset is ignored for array or struct copies, it's only for
2146 * scalars or vectors into vectors or matrices.
2147 *
2148 * With identical types on both sides and zero offset it's clone()
2149 * without creating a new object.
2150 */
2151
2152 void copy_offset(ir_constant *src, int offset);
2153
2154 /**
2155 * Copy the values on another constant at a given offset and
2156 * following an assign-like mask.
2157 *
2158 * The mask is ignored for scalars.
2159 *
2160 * Note that this function only handles what assign can handle,
2161 * i.e. at most a vector as source and a column of a matrix as
2162 * destination.
2163 */
2164
2165 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2166
2167 /**
2168 * Determine whether a constant has the same value as another constant
2169 *
2170 * \sa ir_constant::is_zero, ir_constant::is_one,
2171 * ir_constant::is_negative_one
2172 */
2173 bool has_value(const ir_constant *) const;
2174
2175 /**
2176 * Return true if this ir_constant represents the given value.
2177 *
2178 * For vectors, this checks that each component is the given value.
2179 */
2180 virtual bool is_value(float f, int i) const;
2181 virtual bool is_zero() const;
2182 virtual bool is_one() const;
2183 virtual bool is_negative_one() const;
2184
2185 /**
2186 * Return true for constants that could be stored as 16-bit unsigned values.
2187 *
2188 * Note that this will return true even for signed integer ir_constants, as
2189 * long as the value is non-negative and fits in 16-bits.
2190 */
2191 virtual bool is_uint16_constant() const;
2192
2193 /**
2194 * Value of the constant.
2195 *
2196 * The field used to back the values supplied by the constant is determined
2197 * by the type associated with the \c ir_instruction. Constants may be
2198 * scalars, vectors, or matrices.
2199 */
2200 union ir_constant_data value;
2201
2202 /* Array elements */
2203 ir_constant **array_elements;
2204
2205 /* Structure fields */
2206 exec_list components;
2207
2208 private:
2209 /**
2210 * Parameterless constructor only used by the clone method
2211 */
2212 ir_constant(void);
2213 };
2214
2215 /**
2216 * IR instruction to emit a vertex in a geometry shader.
2217 */
2218 class ir_emit_vertex : public ir_instruction {
2219 public:
2220 ir_emit_vertex(ir_rvalue *stream)
2221 : ir_instruction(ir_type_emit_vertex),
2222 stream(stream)
2223 {
2224 assert(stream);
2225 }
2226
2227 virtual void accept(ir_visitor *v)
2228 {
2229 v->visit(this);
2230 }
2231
2232 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2233 {
2234 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2235 }
2236
2237 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2238
2239 int stream_id() const
2240 {
2241 return stream->as_constant()->value.i[0];
2242 }
2243
2244 ir_rvalue *stream;
2245 };
2246
2247 /**
2248 * IR instruction to complete the current primitive and start a new one in a
2249 * geometry shader.
2250 */
2251 class ir_end_primitive : public ir_instruction {
2252 public:
2253 ir_end_primitive(ir_rvalue *stream)
2254 : ir_instruction(ir_type_end_primitive),
2255 stream(stream)
2256 {
2257 assert(stream);
2258 }
2259
2260 virtual void accept(ir_visitor *v)
2261 {
2262 v->visit(this);
2263 }
2264
2265 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2266 {
2267 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2268 }
2269
2270 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2271
2272 int stream_id() const
2273 {
2274 return stream->as_constant()->value.i[0];
2275 }
2276
2277 ir_rvalue *stream;
2278 };
2279
2280 /**
2281 * IR instruction for tessellation control and compute shader barrier.
2282 */
2283 class ir_barrier : public ir_instruction {
2284 public:
2285 ir_barrier()
2286 : ir_instruction(ir_type_barrier)
2287 {
2288 }
2289
2290 virtual void accept(ir_visitor *v)
2291 {
2292 v->visit(this);
2293 }
2294
2295 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2296 {
2297 return new(mem_ctx) ir_barrier();
2298 }
2299
2300 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2301 };
2302
2303 /*@}*/
2304
2305 /**
2306 * Apply a visitor to each IR node in a list
2307 */
2308 void
2309 visit_exec_list(exec_list *list, ir_visitor *visitor);
2310
2311 /**
2312 * Validate invariants on each IR node in a list
2313 */
2314 void validate_ir_tree(exec_list *instructions);
2315
2316 struct _mesa_glsl_parse_state;
2317 struct gl_shader_program;
2318
2319 /**
2320 * Detect whether an unlinked shader contains static recursion
2321 *
2322 * If the list of instructions is determined to contain static recursion,
2323 * \c _mesa_glsl_error will be called to emit error messages for each function
2324 * that is in the recursion cycle.
2325 */
2326 void
2327 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2328 exec_list *instructions);
2329
2330 /**
2331 * Detect whether a linked shader contains static recursion
2332 *
2333 * If the list of instructions is determined to contain static recursion,
2334 * \c link_error_printf will be called to emit error messages for each function
2335 * that is in the recursion cycle. In addition,
2336 * \c gl_shader_program::LinkStatus will be set to false.
2337 */
2338 void
2339 detect_recursion_linked(struct gl_shader_program *prog,
2340 exec_list *instructions);
2341
2342 /**
2343 * Make a clone of each IR instruction in a list
2344 *
2345 * \param in List of IR instructions that are to be cloned
2346 * \param out List to hold the cloned instructions
2347 */
2348 void
2349 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2350
2351 extern void
2352 _mesa_glsl_initialize_variables(exec_list *instructions,
2353 struct _mesa_glsl_parse_state *state);
2354
2355 extern void
2356 _mesa_glsl_initialize_derived_variables(struct gl_context *ctx,
2357 gl_shader *shader);
2358
2359 extern void
2360 _mesa_glsl_initialize_builtin_functions();
2361
2362 extern ir_function_signature *
2363 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2364 const char *name, exec_list *actual_parameters);
2365
2366 extern ir_function *
2367 _mesa_glsl_find_builtin_function_by_name(const char *name);
2368
2369 extern gl_shader *
2370 _mesa_glsl_get_builtin_function_shader(void);
2371
2372 extern ir_function_signature *
2373 _mesa_get_main_function_signature(glsl_symbol_table *symbols);
2374
2375 extern void
2376 _mesa_glsl_release_builtin_functions(void);
2377
2378 extern void
2379 reparent_ir(exec_list *list, void *mem_ctx);
2380
2381 extern void
2382 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2383 gl_shader_stage shader_stage);
2384
2385 extern char *
2386 prototype_string(const glsl_type *return_type, const char *name,
2387 exec_list *parameters);
2388
2389 const char *
2390 mode_string(const ir_variable *var);
2391
2392 /**
2393 * Built-in / reserved GL variables names start with "gl_"
2394 */
2395 static inline bool
2396 is_gl_identifier(const char *s)
2397 {
2398 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2399 }
2400
2401 extern "C" {
2402 #endif /* __cplusplus */
2403
2404 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2405 struct _mesa_glsl_parse_state *state);
2406
2407 extern void
2408 fprint_ir(FILE *f, const void *instruction);
2409
2410 extern const struct gl_builtin_uniform_desc *
2411 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2412
2413 #ifdef __cplusplus
2414 } /* extern "C" */
2415 #endif
2416
2417 unsigned
2418 vertices_per_prim(GLenum prim);
2419
2420 #endif /* IR_H */