5b1b5aa8eff4f6adb0e10f7d1d56d85ba73f684f
[mesa.git] / src / compiler / glsl / ir_constant_expression.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ir_constant_expression.cpp
26 * Evaluate and process constant valued expressions
27 *
28 * In GLSL, constant valued expressions are used in several places. These
29 * must be processed and evaluated very early in the compilation process.
30 *
31 * * Sizes of arrays
32 * * Initializers for uniforms
33 * * Initializers for \c const variables
34 */
35
36 #include <math.h>
37 #include "util/rounding.h" /* for _mesa_roundeven */
38 #include "util/half_float.h"
39 #include "ir.h"
40 #include "compiler/glsl_types.h"
41 #include "util/hash_table.h"
42 #include "util/u_math.h"
43
44 static float
45 dot_f(ir_constant *op0, ir_constant *op1)
46 {
47 assert(op0->type->is_float() && op1->type->is_float());
48
49 float result = 0;
50 for (unsigned c = 0; c < op0->type->components(); c++)
51 result += op0->value.f[c] * op1->value.f[c];
52
53 return result;
54 }
55
56 static double
57 dot_d(ir_constant *op0, ir_constant *op1)
58 {
59 assert(op0->type->is_double() && op1->type->is_double());
60
61 double result = 0;
62 for (unsigned c = 0; c < op0->type->components(); c++)
63 result += op0->value.d[c] * op1->value.d[c];
64
65 return result;
66 }
67
68 /* This method is the only one supported by gcc. Unions in particular
69 * are iffy, and read-through-converted-pointer is killed by strict
70 * aliasing. OTOH, the compiler sees through the memcpy, so the
71 * resulting asm is reasonable.
72 */
73 static float
74 bitcast_u2f(unsigned int u)
75 {
76 static_assert(sizeof(float) == sizeof(unsigned int),
77 "float and unsigned int size mismatch");
78 float f;
79 memcpy(&f, &u, sizeof(f));
80 return f;
81 }
82
83 static unsigned int
84 bitcast_f2u(float f)
85 {
86 static_assert(sizeof(float) == sizeof(unsigned int),
87 "float and unsigned int size mismatch");
88 unsigned int u;
89 memcpy(&u, &f, sizeof(f));
90 return u;
91 }
92
93 static double
94 bitcast_u642d(uint64_t u)
95 {
96 static_assert(sizeof(double) == sizeof(uint64_t),
97 "double and uint64_t size mismatch");
98 double d;
99 memcpy(&d, &u, sizeof(d));
100 return d;
101 }
102
103 static double
104 bitcast_i642d(int64_t i)
105 {
106 static_assert(sizeof(double) == sizeof(int64_t),
107 "double and int64_t size mismatch");
108 double d;
109 memcpy(&d, &i, sizeof(d));
110 return d;
111 }
112
113 static uint64_t
114 bitcast_d2u64(double d)
115 {
116 static_assert(sizeof(double) == sizeof(uint64_t),
117 "double and uint64_t size mismatch");
118 uint64_t u;
119 memcpy(&u, &d, sizeof(d));
120 return u;
121 }
122
123 static int64_t
124 bitcast_d2i64(double d)
125 {
126 static_assert(sizeof(double) == sizeof(int64_t),
127 "double and int64_t size mismatch");
128 int64_t i;
129 memcpy(&i, &d, sizeof(d));
130 return i;
131 }
132
133 /**
134 * Evaluate one component of a floating-point 4x8 unpacking function.
135 */
136 typedef uint8_t
137 (*pack_1x8_func_t)(float);
138
139 /**
140 * Evaluate one component of a floating-point 2x16 unpacking function.
141 */
142 typedef uint16_t
143 (*pack_1x16_func_t)(float);
144
145 /**
146 * Evaluate one component of a floating-point 4x8 unpacking function.
147 */
148 typedef float
149 (*unpack_1x8_func_t)(uint8_t);
150
151 /**
152 * Evaluate one component of a floating-point 2x16 unpacking function.
153 */
154 typedef float
155 (*unpack_1x16_func_t)(uint16_t);
156
157 /**
158 * Evaluate a 2x16 floating-point packing function.
159 */
160 static uint32_t
161 pack_2x16(pack_1x16_func_t pack_1x16,
162 float x, float y)
163 {
164 /* From section 8.4 of the GLSL ES 3.00 spec:
165 *
166 * packSnorm2x16
167 * -------------
168 * The first component of the vector will be written to the least
169 * significant bits of the output; the last component will be written to
170 * the most significant bits.
171 *
172 * The specifications for the other packing functions contain similar
173 * language.
174 */
175 uint32_t u = 0;
176 u |= ((uint32_t) pack_1x16(x) << 0);
177 u |= ((uint32_t) pack_1x16(y) << 16);
178 return u;
179 }
180
181 /**
182 * Evaluate a 4x8 floating-point packing function.
183 */
184 static uint32_t
185 pack_4x8(pack_1x8_func_t pack_1x8,
186 float x, float y, float z, float w)
187 {
188 /* From section 8.4 of the GLSL 4.30 spec:
189 *
190 * packSnorm4x8
191 * ------------
192 * The first component of the vector will be written to the least
193 * significant bits of the output; the last component will be written to
194 * the most significant bits.
195 *
196 * The specifications for the other packing functions contain similar
197 * language.
198 */
199 uint32_t u = 0;
200 u |= ((uint32_t) pack_1x8(x) << 0);
201 u |= ((uint32_t) pack_1x8(y) << 8);
202 u |= ((uint32_t) pack_1x8(z) << 16);
203 u |= ((uint32_t) pack_1x8(w) << 24);
204 return u;
205 }
206
207 /**
208 * Evaluate a 2x16 floating-point unpacking function.
209 */
210 static void
211 unpack_2x16(unpack_1x16_func_t unpack_1x16,
212 uint32_t u,
213 float *x, float *y)
214 {
215 /* From section 8.4 of the GLSL ES 3.00 spec:
216 *
217 * unpackSnorm2x16
218 * ---------------
219 * The first component of the returned vector will be extracted from
220 * the least significant bits of the input; the last component will be
221 * extracted from the most significant bits.
222 *
223 * The specifications for the other unpacking functions contain similar
224 * language.
225 */
226 *x = unpack_1x16((uint16_t) (u & 0xffff));
227 *y = unpack_1x16((uint16_t) (u >> 16));
228 }
229
230 /**
231 * Evaluate a 4x8 floating-point unpacking function.
232 */
233 static void
234 unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u,
235 float *x, float *y, float *z, float *w)
236 {
237 /* From section 8.4 of the GLSL 4.30 spec:
238 *
239 * unpackSnorm4x8
240 * --------------
241 * The first component of the returned vector will be extracted from
242 * the least significant bits of the input; the last component will be
243 * extracted from the most significant bits.
244 *
245 * The specifications for the other unpacking functions contain similar
246 * language.
247 */
248 *x = unpack_1x8((uint8_t) (u & 0xff));
249 *y = unpack_1x8((uint8_t) (u >> 8));
250 *z = unpack_1x8((uint8_t) (u >> 16));
251 *w = unpack_1x8((uint8_t) (u >> 24));
252 }
253
254 /**
255 * Evaluate one component of packSnorm4x8.
256 */
257 static uint8_t
258 pack_snorm_1x8(float x)
259 {
260 /* From section 8.4 of the GLSL 4.30 spec:
261 *
262 * packSnorm4x8
263 * ------------
264 * The conversion for component c of v to fixed point is done as
265 * follows:
266 *
267 * packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
268 */
269 return (uint8_t)
270 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f);
271 }
272
273 /**
274 * Evaluate one component of packSnorm2x16.
275 */
276 static uint16_t
277 pack_snorm_1x16(float x)
278 {
279 /* From section 8.4 of the GLSL ES 3.00 spec:
280 *
281 * packSnorm2x16
282 * -------------
283 * The conversion for component c of v to fixed point is done as
284 * follows:
285 *
286 * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
287 */
288 return (uint16_t)
289 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f);
290 }
291
292 /**
293 * Evaluate one component of unpackSnorm4x8.
294 */
295 static float
296 unpack_snorm_1x8(uint8_t u)
297 {
298 /* From section 8.4 of the GLSL 4.30 spec:
299 *
300 * unpackSnorm4x8
301 * --------------
302 * The conversion for unpacked fixed-point value f to floating point is
303 * done as follows:
304 *
305 * unpackSnorm4x8: clamp(f / 127.0, -1, +1)
306 */
307 return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f);
308 }
309
310 /**
311 * Evaluate one component of unpackSnorm2x16.
312 */
313 static float
314 unpack_snorm_1x16(uint16_t u)
315 {
316 /* From section 8.4 of the GLSL ES 3.00 spec:
317 *
318 * unpackSnorm2x16
319 * ---------------
320 * The conversion for unpacked fixed-point value f to floating point is
321 * done as follows:
322 *
323 * unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
324 */
325 return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f);
326 }
327
328 /**
329 * Evaluate one component packUnorm4x8.
330 */
331 static uint8_t
332 pack_unorm_1x8(float x)
333 {
334 /* From section 8.4 of the GLSL 4.30 spec:
335 *
336 * packUnorm4x8
337 * ------------
338 * The conversion for component c of v to fixed point is done as
339 * follows:
340 *
341 * packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
342 */
343 return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f);
344 }
345
346 /**
347 * Evaluate one component packUnorm2x16.
348 */
349 static uint16_t
350 pack_unorm_1x16(float x)
351 {
352 /* From section 8.4 of the GLSL ES 3.00 spec:
353 *
354 * packUnorm2x16
355 * -------------
356 * The conversion for component c of v to fixed point is done as
357 * follows:
358 *
359 * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
360 */
361 return (uint16_t) (int)
362 _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f);
363 }
364
365 /**
366 * Evaluate one component of unpackUnorm4x8.
367 */
368 static float
369 unpack_unorm_1x8(uint8_t u)
370 {
371 /* From section 8.4 of the GLSL 4.30 spec:
372 *
373 * unpackUnorm4x8
374 * --------------
375 * The conversion for unpacked fixed-point value f to floating point is
376 * done as follows:
377 *
378 * unpackUnorm4x8: f / 255.0
379 */
380 return (float) u / 255.0f;
381 }
382
383 /**
384 * Evaluate one component of unpackUnorm2x16.
385 */
386 static float
387 unpack_unorm_1x16(uint16_t u)
388 {
389 /* From section 8.4 of the GLSL ES 3.00 spec:
390 *
391 * unpackUnorm2x16
392 * ---------------
393 * The conversion for unpacked fixed-point value f to floating point is
394 * done as follows:
395 *
396 * unpackUnorm2x16: f / 65535.0
397 */
398 return (float) u / 65535.0f;
399 }
400
401 /**
402 * Evaluate one component of packHalf2x16.
403 */
404 static uint16_t
405 pack_half_1x16(float x)
406 {
407 return _mesa_float_to_half(x);
408 }
409
410 /**
411 * Evaluate one component of unpackHalf2x16.
412 */
413 static float
414 unpack_half_1x16(uint16_t u)
415 {
416 return _mesa_half_to_float(u);
417 }
418
419 /**
420 * Get the constant that is ultimately referenced by an r-value, in a constant
421 * expression evaluation context.
422 *
423 * The offset is used when the reference is to a specific column of a matrix.
424 */
425 static bool
426 constant_referenced(const ir_dereference *deref,
427 struct hash_table *variable_context,
428 ir_constant *&store, int &offset)
429 {
430 store = NULL;
431 offset = 0;
432
433 if (variable_context == NULL)
434 return false;
435
436 switch (deref->ir_type) {
437 case ir_type_dereference_array: {
438 const ir_dereference_array *const da =
439 (const ir_dereference_array *) deref;
440
441 ir_constant *const index_c =
442 da->array_index->constant_expression_value(variable_context);
443
444 if (!index_c || !index_c->type->is_scalar() ||
445 !index_c->type->is_integer_32())
446 break;
447
448 const int index = index_c->type->base_type == GLSL_TYPE_INT ?
449 index_c->get_int_component(0) :
450 index_c->get_uint_component(0);
451
452 ir_constant *substore;
453 int suboffset;
454
455 const ir_dereference *const deref = da->array->as_dereference();
456 if (!deref)
457 break;
458
459 if (!constant_referenced(deref, variable_context, substore, suboffset))
460 break;
461
462 const glsl_type *const vt = da->array->type;
463 if (vt->is_array()) {
464 store = substore->get_array_element(index);
465 offset = 0;
466 } else if (vt->is_matrix()) {
467 store = substore;
468 offset = index * vt->vector_elements;
469 } else if (vt->is_vector()) {
470 store = substore;
471 offset = suboffset + index;
472 }
473
474 break;
475 }
476
477 case ir_type_dereference_record: {
478 const ir_dereference_record *const dr =
479 (const ir_dereference_record *) deref;
480
481 const ir_dereference *const deref = dr->record->as_dereference();
482 if (!deref)
483 break;
484
485 ir_constant *substore;
486 int suboffset;
487
488 if (!constant_referenced(deref, variable_context, substore, suboffset))
489 break;
490
491 /* Since we're dropping it on the floor...
492 */
493 assert(suboffset == 0);
494
495 store = substore->get_record_field(dr->field_idx);
496 break;
497 }
498
499 case ir_type_dereference_variable: {
500 const ir_dereference_variable *const dv =
501 (const ir_dereference_variable *) deref;
502
503 hash_entry *entry = _mesa_hash_table_search(variable_context, dv->var);
504 if (entry)
505 store = (ir_constant *) entry->data;
506 break;
507 }
508
509 default:
510 assert(!"Should not get here.");
511 break;
512 }
513
514 return store != NULL;
515 }
516
517
518 ir_constant *
519 ir_rvalue::constant_expression_value(void *, struct hash_table *)
520 {
521 assert(this->type->is_error());
522 return NULL;
523 }
524
525 static uint32_t
526 bitfield_reverse(uint32_t v)
527 {
528 /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
529 uint32_t r = v; // r will be reversed bits of v; first get LSB of v
530 int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end
531
532 for (v >>= 1; v; v >>= 1) {
533 r <<= 1;
534 r |= v & 1;
535 s--;
536 }
537 r <<= s; // shift when v's highest bits are zero
538
539 return r;
540 }
541
542 static int
543 find_msb_uint(uint32_t v)
544 {
545 int count = 0;
546
547 /* If v == 0, then the loop will terminate when count == 32. In that case
548 * 31-count will produce the -1 result required by GLSL findMSB().
549 */
550 while (((v & (1u << 31)) == 0) && count != 32) {
551 count++;
552 v <<= 1;
553 }
554
555 return 31 - count;
556 }
557
558 static int
559 find_msb_int(int32_t v)
560 {
561 /* If v is signed, findMSB() returns the position of the most significant
562 * zero bit.
563 */
564 return find_msb_uint(v < 0 ? ~v : v);
565 }
566
567 static float
568 ldexpf_flush_subnormal(float x, int exp)
569 {
570 const float result = ldexpf(x, exp);
571
572 /* Flush subnormal values to zero. */
573 return !isnormal(result) ? copysignf(0.0f, x) : result;
574 }
575
576 static double
577 ldexp_flush_subnormal(double x, int exp)
578 {
579 const double result = ldexp(x, exp);
580
581 /* Flush subnormal values to zero. */
582 return !isnormal(result) ? copysign(0.0, x) : result;
583 }
584
585 static uint32_t
586 bitfield_extract_uint(uint32_t value, int offset, int bits)
587 {
588 if (bits == 0)
589 return 0;
590 else if (offset < 0 || bits < 0)
591 return 0; /* Undefined, per spec. */
592 else if (offset + bits > 32)
593 return 0; /* Undefined, per spec. */
594 else {
595 value <<= 32 - bits - offset;
596 value >>= 32 - bits;
597 return value;
598 }
599 }
600
601 static int32_t
602 bitfield_extract_int(int32_t value, int offset, int bits)
603 {
604 if (bits == 0)
605 return 0;
606 else if (offset < 0 || bits < 0)
607 return 0; /* Undefined, per spec. */
608 else if (offset + bits > 32)
609 return 0; /* Undefined, per spec. */
610 else {
611 value <<= 32 - bits - offset;
612 value >>= 32 - bits;
613 return value;
614 }
615 }
616
617 static uint32_t
618 bitfield_insert(uint32_t base, uint32_t insert, int offset, int bits)
619 {
620 if (bits == 0)
621 return base;
622 else if (offset < 0 || bits < 0)
623 return 0; /* Undefined, per spec. */
624 else if (offset + bits > 32)
625 return 0; /* Undefined, per spec. */
626 else {
627 unsigned insert_mask = ((1ull << bits) - 1) << offset;
628
629 insert <<= offset;
630 insert &= insert_mask;
631 base &= ~insert_mask;
632
633 return base | insert;
634 }
635 }
636
637 ir_constant *
638 ir_expression::constant_expression_value(void *mem_ctx,
639 struct hash_table *variable_context)
640 {
641 assert(mem_ctx);
642
643 if (this->type->is_error())
644 return NULL;
645
646 ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, };
647 ir_constant_data data;
648
649 memset(&data, 0, sizeof(data));
650
651 for (unsigned operand = 0; operand < this->num_operands; operand++) {
652 op[operand] =
653 this->operands[operand]->constant_expression_value(mem_ctx,
654 variable_context);
655 if (!op[operand])
656 return NULL;
657 }
658
659 if (op[1] != NULL)
660 switch (this->operation) {
661 case ir_binop_lshift:
662 case ir_binop_rshift:
663 case ir_binop_ldexp:
664 case ir_binop_interpolate_at_offset:
665 case ir_binop_interpolate_at_sample:
666 case ir_binop_vector_extract:
667 case ir_triop_csel:
668 case ir_triop_bitfield_extract:
669 break;
670
671 default:
672 assert(op[0]->type->base_type == op[1]->type->base_type);
673 break;
674 }
675
676 bool op0_scalar = op[0]->type->is_scalar();
677 bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
678
679 /* When iterating over a vector or matrix's components, we want to increase
680 * the loop counter. However, for scalars, we want to stay at 0.
681 */
682 unsigned c0_inc = op0_scalar ? 0 : 1;
683 unsigned c1_inc = op1_scalar ? 0 : 1;
684 unsigned components;
685 if (op1_scalar || !op[1]) {
686 components = op[0]->type->components();
687 } else {
688 components = op[1]->type->components();
689 }
690
691 /* Handle array operations here, rather than below. */
692 if (op[0]->type->is_array()) {
693 assert(op[1] != NULL && op[1]->type->is_array());
694 switch (this->operation) {
695 case ir_binop_all_equal:
696 return new(mem_ctx) ir_constant(op[0]->has_value(op[1]));
697 case ir_binop_any_nequal:
698 return new(mem_ctx) ir_constant(!op[0]->has_value(op[1]));
699 default:
700 break;
701 }
702 return NULL;
703 }
704
705 #include "ir_expression_operation_constant.h"
706
707 return new(mem_ctx) ir_constant(this->type, &data);
708 }
709
710
711 ir_constant *
712 ir_texture::constant_expression_value(void *, struct hash_table *)
713 {
714 /* texture lookups aren't constant expressions */
715 return NULL;
716 }
717
718
719 ir_constant *
720 ir_swizzle::constant_expression_value(void *mem_ctx,
721 struct hash_table *variable_context)
722 {
723 assert(mem_ctx);
724
725 ir_constant *v = this->val->constant_expression_value(mem_ctx,
726 variable_context);
727
728 if (v != NULL) {
729 ir_constant_data data = { { 0 } };
730
731 const unsigned swiz_idx[4] = {
732 this->mask.x, this->mask.y, this->mask.z, this->mask.w
733 };
734
735 for (unsigned i = 0; i < this->mask.num_components; i++) {
736 switch (v->type->base_type) {
737 case GLSL_TYPE_UINT:
738 case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
739 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
740 case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
741 case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break;
742 case GLSL_TYPE_UINT64:data.u64[i] = v->value.u64[swiz_idx[i]]; break;
743 case GLSL_TYPE_INT64: data.i64[i] = v->value.i64[swiz_idx[i]]; break;
744 default: assert(!"Should not get here."); break;
745 }
746 }
747
748 return new(mem_ctx) ir_constant(this->type, &data);
749 }
750 return NULL;
751 }
752
753
754 ir_constant *
755 ir_dereference_variable::constant_expression_value(void *mem_ctx,
756 struct hash_table *variable_context)
757 {
758 assert(var);
759 assert(mem_ctx);
760
761 /* Give priority to the context hashtable, if it exists */
762 if (variable_context) {
763 hash_entry *entry = _mesa_hash_table_search(variable_context, var);
764
765 if(entry)
766 return (ir_constant *) entry->data;
767 }
768
769 /* The constant_value of a uniform variable is its initializer,
770 * not the lifetime constant value of the uniform.
771 */
772 if (var->data.mode == ir_var_uniform)
773 return NULL;
774
775 if (!var->constant_value)
776 return NULL;
777
778 return var->constant_value->clone(mem_ctx, NULL);
779 }
780
781
782 ir_constant *
783 ir_dereference_array::constant_expression_value(void *mem_ctx,
784 struct hash_table *variable_context)
785 {
786 assert(mem_ctx);
787
788 ir_constant *array = this->array->constant_expression_value(mem_ctx, variable_context);
789 ir_constant *idx = this->array_index->constant_expression_value(mem_ctx, variable_context);
790
791 if ((array != NULL) && (idx != NULL)) {
792 if (array->type->is_matrix()) {
793 /* Array access of a matrix results in a vector.
794 */
795 const unsigned column = idx->value.u[0];
796
797 const glsl_type *const column_type = array->type->column_type();
798
799 /* Offset in the constant matrix to the first element of the column
800 * to be extracted.
801 */
802 const unsigned mat_idx = column * column_type->vector_elements;
803
804 ir_constant_data data = { { 0 } };
805
806 switch (column_type->base_type) {
807 case GLSL_TYPE_UINT:
808 case GLSL_TYPE_INT:
809 for (unsigned i = 0; i < column_type->vector_elements; i++)
810 data.u[i] = array->value.u[mat_idx + i];
811
812 break;
813
814 case GLSL_TYPE_FLOAT:
815 for (unsigned i = 0; i < column_type->vector_elements; i++)
816 data.f[i] = array->value.f[mat_idx + i];
817
818 break;
819
820 case GLSL_TYPE_DOUBLE:
821 for (unsigned i = 0; i < column_type->vector_elements; i++)
822 data.d[i] = array->value.d[mat_idx + i];
823
824 break;
825
826 default:
827 assert(!"Should not get here.");
828 break;
829 }
830
831 return new(mem_ctx) ir_constant(column_type, &data);
832 } else if (array->type->is_vector()) {
833 const unsigned component = idx->value.u[0];
834
835 return new(mem_ctx) ir_constant(array, component);
836 } else if (array->type->is_array()) {
837 const unsigned index = idx->value.u[0];
838 return array->get_array_element(index)->clone(mem_ctx, NULL);
839 }
840 }
841 return NULL;
842 }
843
844
845 ir_constant *
846 ir_dereference_record::constant_expression_value(void *mem_ctx,
847 struct hash_table *)
848 {
849 assert(mem_ctx);
850
851 ir_constant *v = this->record->constant_expression_value(mem_ctx);
852
853 return (v != NULL) ? v->get_record_field(this->field_idx) : NULL;
854 }
855
856
857 ir_constant *
858 ir_assignment::constant_expression_value(void *, struct hash_table *)
859 {
860 /* FINISHME: Handle CEs involving assignment (return RHS) */
861 return NULL;
862 }
863
864
865 ir_constant *
866 ir_constant::constant_expression_value(void *, struct hash_table *)
867 {
868 return this;
869 }
870
871
872 ir_constant *
873 ir_call::constant_expression_value(void *mem_ctx, struct hash_table *variable_context)
874 {
875 assert(mem_ctx);
876
877 return this->callee->constant_expression_value(mem_ctx,
878 &this->actual_parameters,
879 variable_context);
880 }
881
882
883 bool ir_function_signature::constant_expression_evaluate_expression_list(void *mem_ctx,
884 const struct exec_list &body,
885 struct hash_table *variable_context,
886 ir_constant **result)
887 {
888 assert(mem_ctx);
889
890 foreach_in_list(ir_instruction, inst, &body) {
891 switch(inst->ir_type) {
892
893 /* (declare () type symbol) */
894 case ir_type_variable: {
895 ir_variable *var = inst->as_variable();
896 _mesa_hash_table_insert(variable_context, var, ir_constant::zero(this, var->type));
897 break;
898 }
899
900 /* (assign [condition] (write-mask) (ref) (value)) */
901 case ir_type_assignment: {
902 ir_assignment *asg = inst->as_assignment();
903 if (asg->condition) {
904 ir_constant *cond =
905 asg->condition->constant_expression_value(mem_ctx,
906 variable_context);
907 if (!cond)
908 return false;
909 if (!cond->get_bool_component(0))
910 break;
911 }
912
913 ir_constant *store = NULL;
914 int offset = 0;
915
916 if (!constant_referenced(asg->lhs, variable_context, store, offset))
917 return false;
918
919 ir_constant *value =
920 asg->rhs->constant_expression_value(mem_ctx, variable_context);
921
922 if (!value)
923 return false;
924
925 store->copy_masked_offset(value, offset, asg->write_mask);
926 break;
927 }
928
929 /* (return (expression)) */
930 case ir_type_return:
931 assert (result);
932 *result =
933 inst->as_return()->value->constant_expression_value(mem_ctx,
934 variable_context);
935 return *result != NULL;
936
937 /* (call name (ref) (params))*/
938 case ir_type_call: {
939 ir_call *call = inst->as_call();
940
941 /* Just say no to void functions in constant expressions. We
942 * don't need them at that point.
943 */
944
945 if (!call->return_deref)
946 return false;
947
948 ir_constant *store = NULL;
949 int offset = 0;
950
951 if (!constant_referenced(call->return_deref, variable_context,
952 store, offset))
953 return false;
954
955 ir_constant *value =
956 call->constant_expression_value(mem_ctx, variable_context);
957
958 if(!value)
959 return false;
960
961 store->copy_offset(value, offset);
962 break;
963 }
964
965 /* (if condition (then-instructions) (else-instructions)) */
966 case ir_type_if: {
967 ir_if *iif = inst->as_if();
968
969 ir_constant *cond =
970 iif->condition->constant_expression_value(mem_ctx,
971 variable_context);
972 if (!cond || !cond->type->is_boolean())
973 return false;
974
975 exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions;
976
977 *result = NULL;
978 if (!constant_expression_evaluate_expression_list(mem_ctx, branch,
979 variable_context,
980 result))
981 return false;
982
983 /* If there was a return in the branch chosen, drop out now. */
984 if (*result)
985 return true;
986
987 break;
988 }
989
990 /* Every other expression type, we drop out. */
991 default:
992 return false;
993 }
994 }
995
996 /* Reaching the end of the block is not an error condition */
997 if (result)
998 *result = NULL;
999
1000 return true;
1001 }
1002
1003 ir_constant *
1004 ir_function_signature::constant_expression_value(void *mem_ctx,
1005 exec_list *actual_parameters,
1006 struct hash_table *variable_context)
1007 {
1008 assert(mem_ctx);
1009
1010 const glsl_type *type = this->return_type;
1011 if (type == glsl_type::void_type)
1012 return NULL;
1013
1014 /* From the GLSL 1.20 spec, page 23:
1015 * "Function calls to user-defined functions (non-built-in functions)
1016 * cannot be used to form constant expressions."
1017 */
1018 if (!this->is_builtin())
1019 return NULL;
1020
1021 /*
1022 * Of the builtin functions, only the texture lookups and the noise
1023 * ones must not be used in constant expressions. They all include
1024 * specific opcodes so they don't need to be special-cased at this
1025 * point.
1026 */
1027
1028 /* Initialize the table of dereferencable names with the function
1029 * parameters. Verify their const-ness on the way.
1030 *
1031 * We expect the correctness of the number of parameters to have
1032 * been checked earlier.
1033 */
1034 hash_table *deref_hash = _mesa_pointer_hash_table_create(NULL);
1035
1036 /* If "origin" is non-NULL, then the function body is there. So we
1037 * have to use the variable objects from the object with the body,
1038 * but the parameter instanciation on the current object.
1039 */
1040 const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw();
1041
1042 foreach_in_list(ir_rvalue, n, actual_parameters) {
1043 ir_constant *constant =
1044 n->constant_expression_value(mem_ctx, variable_context);
1045 if (constant == NULL) {
1046 _mesa_hash_table_destroy(deref_hash, NULL);
1047 return NULL;
1048 }
1049
1050
1051 ir_variable *var = (ir_variable *)parameter_info;
1052 _mesa_hash_table_insert(deref_hash, var, constant);
1053
1054 parameter_info = parameter_info->next;
1055 }
1056
1057 ir_constant *result = NULL;
1058
1059 /* Now run the builtin function until something non-constant
1060 * happens or we get the result.
1061 */
1062 if (constant_expression_evaluate_expression_list(mem_ctx, origin ? origin->body : body, deref_hash, &result) &&
1063 result)
1064 result = result->clone(mem_ctx, NULL);
1065
1066 _mesa_hash_table_destroy(deref_hash, NULL);
1067
1068 return result;
1069 }