5645f783f3fc74ac1c004282dc41f9207fb9f96f
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 foreach_in_list(ir_instruction, node, sh->ir) {
117 ir_variable *var = node->as_variable();
118 if (!var || var->data.mode != ir_var_shader_out)
119 continue;
120
121 /* From the ARB_enhanced_layouts spec:
122 *
123 * "Any shader making any static use (after preprocessing) of any of
124 * these *xfb_* qualifiers will cause the shader to be in a
125 * transform feedback capturing mode and hence responsible for
126 * describing the transform feedback setup. This mode will capture
127 * any output selected by *xfb_offset*, directly or indirectly, to
128 * a transform feedback buffer."
129 */
130 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
131 has_xfb_qualifiers = true;
132 }
133
134 if (var->data.explicit_xfb_offset) {
135 *num_tfeedback_decls += var->type->varying_count();
136 has_xfb_qualifiers = true;
137 }
138 }
139
140 if (*num_tfeedback_decls == 0)
141 return has_xfb_qualifiers;
142
143 unsigned i = 0;
144 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
145 foreach_in_list(ir_instruction, node, sh->ir) {
146 ir_variable *var = node->as_variable();
147 if (!var || var->data.mode != ir_var_shader_out)
148 continue;
149
150 if (var->data.explicit_xfb_offset) {
151 char *name;
152 const glsl_type *type, *member_type;
153
154 if (var->data.from_named_ifc_block) {
155 type = var->get_interface_type();
156 /* Find the member type before it was altered by lowering */
157 member_type =
158 type->fields.structure[type->field_index(var->name)].type;
159 name = ralloc_strdup(NULL, type->without_array()->name);
160 } else {
161 type = var->type;
162 member_type = NULL;
163 name = ralloc_strdup(NULL, var->name);
164 }
165 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
166 var->name, member_type, varying_names);
167 ralloc_free(name);
168 }
169 }
170
171 assert(i == *num_tfeedback_decls);
172 return has_xfb_qualifiers;
173 }
174
175 /**
176 * Validate the types and qualifiers of an output from one stage against the
177 * matching input to another stage.
178 */
179 static void
180 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
181 const ir_variable *input,
182 const ir_variable *output,
183 gl_shader_stage consumer_stage,
184 gl_shader_stage producer_stage)
185 {
186 /* Check that the types match between stages.
187 */
188 const glsl_type *type_to_match = input->type;
189
190 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
191 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
192 consumer_stage != MESA_SHADER_FRAGMENT) ||
193 consumer_stage == MESA_SHADER_GEOMETRY;
194 if (extra_array_level) {
195 assert(type_to_match->is_array());
196 type_to_match = type_to_match->fields.array;
197 }
198
199 if (type_to_match != output->type) {
200 /* There is a bit of a special case for gl_TexCoord. This
201 * built-in is unsized by default. Applications that variable
202 * access it must redeclare it with a size. There is some
203 * language in the GLSL spec that implies the fragment shader
204 * and vertex shader do not have to agree on this size. Other
205 * driver behave this way, and one or two applications seem to
206 * rely on it.
207 *
208 * Neither declaration needs to be modified here because the array
209 * sizes are fixed later when update_array_sizes is called.
210 *
211 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
212 *
213 * "Unlike user-defined varying variables, the built-in
214 * varying variables don't have a strict one-to-one
215 * correspondence between the vertex language and the
216 * fragment language."
217 */
218 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
219 linker_error(prog,
220 "%s shader output `%s' declared as type `%s', "
221 "but %s shader input declared as type `%s'\n",
222 _mesa_shader_stage_to_string(producer_stage),
223 output->name,
224 output->type->name,
225 _mesa_shader_stage_to_string(consumer_stage),
226 input->type->name);
227 return;
228 }
229 }
230
231 /* Check that all of the qualifiers match between stages.
232 */
233 if (input->data.centroid != output->data.centroid) {
234 linker_error(prog,
235 "%s shader output `%s' %s centroid qualifier, "
236 "but %s shader input %s centroid qualifier\n",
237 _mesa_shader_stage_to_string(producer_stage),
238 output->name,
239 (output->data.centroid) ? "has" : "lacks",
240 _mesa_shader_stage_to_string(consumer_stage),
241 (input->data.centroid) ? "has" : "lacks");
242 return;
243 }
244
245 if (input->data.sample != output->data.sample) {
246 linker_error(prog,
247 "%s shader output `%s' %s sample qualifier, "
248 "but %s shader input %s sample qualifier\n",
249 _mesa_shader_stage_to_string(producer_stage),
250 output->name,
251 (output->data.sample) ? "has" : "lacks",
252 _mesa_shader_stage_to_string(consumer_stage),
253 (input->data.sample) ? "has" : "lacks");
254 return;
255 }
256
257 if (input->data.patch != output->data.patch) {
258 linker_error(prog,
259 "%s shader output `%s' %s patch qualifier, "
260 "but %s shader input %s patch qualifier\n",
261 _mesa_shader_stage_to_string(producer_stage),
262 output->name,
263 (output->data.patch) ? "has" : "lacks",
264 _mesa_shader_stage_to_string(consumer_stage),
265 (input->data.patch) ? "has" : "lacks");
266 return;
267 }
268
269 if (!prog->IsES && input->data.invariant != output->data.invariant) {
270 linker_error(prog,
271 "%s shader output `%s' %s invariant qualifier, "
272 "but %s shader input %s invariant qualifier\n",
273 _mesa_shader_stage_to_string(producer_stage),
274 output->name,
275 (output->data.invariant) ? "has" : "lacks",
276 _mesa_shader_stage_to_string(consumer_stage),
277 (input->data.invariant) ? "has" : "lacks");
278 return;
279 }
280
281 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
282 * to match cross stage, they must only match within the same stage.
283 *
284 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
285 *
286 * "It is a link-time error if, within the same stage, the interpolation
287 * qualifiers of variables of the same name do not match.
288 *
289 */
290 if (input->data.interpolation != output->data.interpolation &&
291 prog->Version < 440) {
292 linker_error(prog,
293 "%s shader output `%s' specifies %s "
294 "interpolation qualifier, "
295 "but %s shader input specifies %s "
296 "interpolation qualifier\n",
297 _mesa_shader_stage_to_string(producer_stage),
298 output->name,
299 interpolation_string(output->data.interpolation),
300 _mesa_shader_stage_to_string(consumer_stage),
301 interpolation_string(input->data.interpolation));
302 return;
303 }
304 }
305
306 /**
307 * Validate front and back color outputs against single color input
308 */
309 static void
310 cross_validate_front_and_back_color(struct gl_shader_program *prog,
311 const ir_variable *input,
312 const ir_variable *front_color,
313 const ir_variable *back_color,
314 gl_shader_stage consumer_stage,
315 gl_shader_stage producer_stage)
316 {
317 if (front_color != NULL && front_color->data.assigned)
318 cross_validate_types_and_qualifiers(prog, input, front_color,
319 consumer_stage, producer_stage);
320
321 if (back_color != NULL && back_color->data.assigned)
322 cross_validate_types_and_qualifiers(prog, input, back_color,
323 consumer_stage, producer_stage);
324 }
325
326 /**
327 * Validate that outputs from one stage match inputs of another
328 */
329 void
330 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
331 gl_shader *producer, gl_shader *consumer)
332 {
333 glsl_symbol_table parameters;
334 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
335
336 /* Find all shader outputs in the "producer" stage.
337 */
338 foreach_in_list(ir_instruction, node, producer->ir) {
339 ir_variable *const var = node->as_variable();
340
341 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
342 continue;
343
344 if (!var->data.explicit_location
345 || var->data.location < VARYING_SLOT_VAR0)
346 parameters.add_variable(var);
347 else {
348 /* User-defined varyings with explicit locations are handled
349 * differently because they do not need to have matching names.
350 */
351 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
352
353 if (explicit_locations[idx] != NULL) {
354 linker_error(prog,
355 "%s shader has multiple outputs explicitly "
356 "assigned to location %d\n",
357 _mesa_shader_stage_to_string(producer->Stage),
358 idx);
359 return;
360 }
361
362 explicit_locations[idx] = var;
363 }
364 }
365
366
367 /* Find all shader inputs in the "consumer" stage. Any variables that have
368 * matching outputs already in the symbol table must have the same type and
369 * qualifiers.
370 *
371 * Exception: if the consumer is the geometry shader, then the inputs
372 * should be arrays and the type of the array element should match the type
373 * of the corresponding producer output.
374 */
375 foreach_in_list(ir_instruction, node, consumer->ir) {
376 ir_variable *const input = node->as_variable();
377
378 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
379 continue;
380
381 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
382 const ir_variable *const front_color =
383 parameters.get_variable("gl_FrontColor");
384
385 const ir_variable *const back_color =
386 parameters.get_variable("gl_BackColor");
387
388 cross_validate_front_and_back_color(prog, input,
389 front_color, back_color,
390 consumer->Stage, producer->Stage);
391 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
392 const ir_variable *const front_color =
393 parameters.get_variable("gl_FrontSecondaryColor");
394
395 const ir_variable *const back_color =
396 parameters.get_variable("gl_BackSecondaryColor");
397
398 cross_validate_front_and_back_color(prog, input,
399 front_color, back_color,
400 consumer->Stage, producer->Stage);
401 } else {
402 /* The rules for connecting inputs and outputs change in the presence
403 * of explicit locations. In this case, we no longer care about the
404 * names of the variables. Instead, we care only about the
405 * explicitly assigned location.
406 */
407 ir_variable *output = NULL;
408 if (input->data.explicit_location
409 && input->data.location >= VARYING_SLOT_VAR0) {
410 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
411
412 if (output == NULL) {
413 linker_error(prog,
414 "%s shader input `%s' with explicit location "
415 "has no matching output\n",
416 _mesa_shader_stage_to_string(consumer->Stage),
417 input->name);
418 }
419 } else {
420 output = parameters.get_variable(input->name);
421 }
422
423 if (output != NULL) {
424 /* Interface blocks have their own validation elsewhere so don't
425 * try validating them here.
426 */
427 if (!(input->get_interface_type() &&
428 output->get_interface_type()))
429 cross_validate_types_and_qualifiers(prog, input, output,
430 consumer->Stage,
431 producer->Stage);
432 } else {
433 /* Check for input vars with unmatched output vars in prev stage
434 * taking into account that interface blocks could have a matching
435 * output but with different name, so we ignore them.
436 */
437 assert(!input->data.assigned);
438 if (input->data.used && !input->get_interface_type() &&
439 !input->data.explicit_location && !prog->SeparateShader)
440 linker_error(prog,
441 "%s shader input `%s' "
442 "has no matching output in the previous stage\n",
443 _mesa_shader_stage_to_string(consumer->Stage),
444 input->name);
445 }
446 }
447 }
448 }
449
450 /**
451 * Demote shader inputs and outputs that are not used in other stages, and
452 * remove them via dead code elimination.
453 */
454 void
455 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
456 gl_shader *sh,
457 enum ir_variable_mode mode)
458 {
459 if (is_separate_shader_object)
460 return;
461
462 foreach_in_list(ir_instruction, node, sh->ir) {
463 ir_variable *const var = node->as_variable();
464
465 if ((var == NULL) || (var->data.mode != int(mode)))
466 continue;
467
468 /* A shader 'in' or 'out' variable is only really an input or output if
469 * its value is used by other shader stages. This will cause the
470 * variable to have a location assigned.
471 */
472 if (var->data.is_unmatched_generic_inout) {
473 assert(var->data.mode != ir_var_temporary);
474 var->data.mode = ir_var_auto;
475 }
476 }
477
478 /* Eliminate code that is now dead due to unused inputs/outputs being
479 * demoted.
480 */
481 while (do_dead_code(sh->ir, false))
482 ;
483
484 }
485
486 /**
487 * Initialize this object based on a string that was passed to
488 * glTransformFeedbackVaryings.
489 *
490 * If the input is mal-formed, this call still succeeds, but it sets
491 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
492 * will fail to find any matching variable.
493 */
494 void
495 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
496 const char *input)
497 {
498 /* We don't have to be pedantic about what is a valid GLSL variable name,
499 * because any variable with an invalid name can't exist in the IR anyway.
500 */
501
502 this->location = -1;
503 this->orig_name = input;
504 this->lowered_builtin_array_variable = none;
505 this->skip_components = 0;
506 this->next_buffer_separator = false;
507 this->matched_candidate = NULL;
508 this->stream_id = 0;
509 this->buffer = 0;
510 this->offset = 0;
511
512 if (ctx->Extensions.ARB_transform_feedback3) {
513 /* Parse gl_NextBuffer. */
514 if (strcmp(input, "gl_NextBuffer") == 0) {
515 this->next_buffer_separator = true;
516 return;
517 }
518
519 /* Parse gl_SkipComponents. */
520 if (strcmp(input, "gl_SkipComponents1") == 0)
521 this->skip_components = 1;
522 else if (strcmp(input, "gl_SkipComponents2") == 0)
523 this->skip_components = 2;
524 else if (strcmp(input, "gl_SkipComponents3") == 0)
525 this->skip_components = 3;
526 else if (strcmp(input, "gl_SkipComponents4") == 0)
527 this->skip_components = 4;
528
529 if (this->skip_components)
530 return;
531 }
532
533 /* Parse a declaration. */
534 const char *base_name_end;
535 long subscript = parse_program_resource_name(input, &base_name_end);
536 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
537 if (this->var_name == NULL) {
538 _mesa_error_no_memory(__func__);
539 return;
540 }
541
542 if (subscript >= 0) {
543 this->array_subscript = subscript;
544 this->is_subscripted = true;
545 } else {
546 this->is_subscripted = false;
547 }
548
549 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
550 * class must behave specially to account for the fact that gl_ClipDistance
551 * is converted from a float[8] to a vec4[2].
552 */
553 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
554 strcmp(this->var_name, "gl_ClipDistance") == 0) {
555 this->lowered_builtin_array_variable = clip_distance;
556 }
557
558 if (ctx->Const.LowerTessLevel &&
559 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
560 this->lowered_builtin_array_variable = tess_level_outer;
561 if (ctx->Const.LowerTessLevel &&
562 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
563 this->lowered_builtin_array_variable = tess_level_inner;
564 }
565
566
567 /**
568 * Determine whether two tfeedback_decl objects refer to the same variable and
569 * array index (if applicable).
570 */
571 bool
572 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
573 {
574 assert(x.is_varying() && y.is_varying());
575
576 if (strcmp(x.var_name, y.var_name) != 0)
577 return false;
578 if (x.is_subscripted != y.is_subscripted)
579 return false;
580 if (x.is_subscripted && x.array_subscript != y.array_subscript)
581 return false;
582 return true;
583 }
584
585
586 /**
587 * Assign a location and stream ID for this tfeedback_decl object based on the
588 * transform feedback candidate found by find_candidate.
589 *
590 * If an error occurs, the error is reported through linker_error() and false
591 * is returned.
592 */
593 bool
594 tfeedback_decl::assign_location(struct gl_context *ctx,
595 struct gl_shader_program *prog)
596 {
597 assert(this->is_varying());
598
599 unsigned fine_location
600 = this->matched_candidate->toplevel_var->data.location * 4
601 + this->matched_candidate->toplevel_var->data.location_frac
602 + this->matched_candidate->offset;
603 const unsigned dmul =
604 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
605
606 if (this->matched_candidate->type->is_array()) {
607 /* Array variable */
608 const unsigned matrix_cols =
609 this->matched_candidate->type->fields.array->matrix_columns;
610 const unsigned vector_elements =
611 this->matched_candidate->type->fields.array->vector_elements;
612 unsigned actual_array_size;
613 switch (this->lowered_builtin_array_variable) {
614 case clip_distance:
615 actual_array_size = prog->LastClipDistanceArraySize;
616 break;
617 case tess_level_outer:
618 actual_array_size = 4;
619 break;
620 case tess_level_inner:
621 actual_array_size = 2;
622 break;
623 case none:
624 default:
625 actual_array_size = this->matched_candidate->type->array_size();
626 break;
627 }
628
629 if (this->is_subscripted) {
630 /* Check array bounds. */
631 if (this->array_subscript >= actual_array_size) {
632 linker_error(prog, "Transform feedback varying %s has index "
633 "%i, but the array size is %u.",
634 this->orig_name, this->array_subscript,
635 actual_array_size);
636 return false;
637 }
638 unsigned array_elem_size = this->lowered_builtin_array_variable ?
639 1 : vector_elements * matrix_cols * dmul;
640 fine_location += array_elem_size * this->array_subscript;
641 this->size = 1;
642 } else {
643 this->size = actual_array_size;
644 }
645 this->vector_elements = vector_elements;
646 this->matrix_columns = matrix_cols;
647 if (this->lowered_builtin_array_variable)
648 this->type = GL_FLOAT;
649 else
650 this->type = this->matched_candidate->type->fields.array->gl_type;
651 } else {
652 /* Regular variable (scalar, vector, or matrix) */
653 if (this->is_subscripted) {
654 linker_error(prog, "Transform feedback varying %s requested, "
655 "but %s is not an array.",
656 this->orig_name, this->var_name);
657 return false;
658 }
659 this->size = 1;
660 this->vector_elements = this->matched_candidate->type->vector_elements;
661 this->matrix_columns = this->matched_candidate->type->matrix_columns;
662 this->type = this->matched_candidate->type->gl_type;
663 }
664 this->location = fine_location / 4;
665 this->location_frac = fine_location % 4;
666
667 /* From GL_EXT_transform_feedback:
668 * A program will fail to link if:
669 *
670 * * the total number of components to capture in any varying
671 * variable in <varyings> is greater than the constant
672 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
673 * buffer mode is SEPARATE_ATTRIBS_EXT;
674 */
675 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
676 this->num_components() >
677 ctx->Const.MaxTransformFeedbackSeparateComponents) {
678 linker_error(prog, "Transform feedback varying %s exceeds "
679 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
680 this->orig_name);
681 return false;
682 }
683
684 /* Only transform feedback varyings can be assigned to non-zero streams,
685 * so assign the stream id here.
686 */
687 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
688
689 unsigned array_offset = this->array_subscript * 4 * dmul;
690 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
691 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
692 this->offset = this->matched_candidate->toplevel_var->data.offset +
693 array_offset + struct_offset;
694
695 return true;
696 }
697
698
699 unsigned
700 tfeedback_decl::get_num_outputs() const
701 {
702 if (!this->is_varying()) {
703 return 0;
704 }
705 return (this->num_components() + this->location_frac + 3)/4;
706 }
707
708
709 /**
710 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
711 *
712 * If an error occurs, the error is reported through linker_error() and false
713 * is returned.
714 */
715 bool
716 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
717 struct gl_transform_feedback_info *info,
718 unsigned buffer, const unsigned max_outputs,
719 bool has_xfb_qualifiers) const
720 {
721 assert(!this->next_buffer_separator);
722
723 /* Handle gl_SkipComponents. */
724 if (this->skip_components) {
725 info->Buffers[buffer].Stride += this->skip_components;
726 return true;
727 }
728
729 /* From GL_EXT_transform_feedback:
730 * A program will fail to link if:
731 *
732 * * the total number of components to capture is greater than
733 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
734 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
735 */
736 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
737 info->Buffers[buffer].Stride + this->num_components() >
738 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
739 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
740 "limit has been exceeded.");
741 return false;
742 }
743
744 unsigned location = this->location;
745 unsigned location_frac = this->location_frac;
746 unsigned num_components = this->num_components();
747 while (num_components > 0) {
748 unsigned output_size = MIN2(num_components, 4 - location_frac);
749 assert(info->NumOutputs < max_outputs);
750 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
751 info->Outputs[info->NumOutputs].OutputRegister = location;
752 info->Outputs[info->NumOutputs].NumComponents = output_size;
753 info->Outputs[info->NumOutputs].StreamId = stream_id;
754 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
755 info->Outputs[info->NumOutputs].DstOffset =
756 info->Buffers[buffer].Stride;
757 ++info->NumOutputs;
758 info->Buffers[buffer].Stride += output_size;
759 info->Buffers[buffer].Stream = this->stream_id;
760 num_components -= output_size;
761 location++;
762 location_frac = 0;
763 }
764
765 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, this->orig_name);
766 info->Varyings[info->NumVarying].Type = this->type;
767 info->Varyings[info->NumVarying].Size = this->size;
768 info->NumVarying++;
769
770 return true;
771 }
772
773
774 const tfeedback_candidate *
775 tfeedback_decl::find_candidate(gl_shader_program *prog,
776 hash_table *tfeedback_candidates)
777 {
778 const char *name = this->var_name;
779 switch (this->lowered_builtin_array_variable) {
780 case none:
781 name = this->var_name;
782 break;
783 case clip_distance:
784 name = "gl_ClipDistanceMESA";
785 break;
786 case tess_level_outer:
787 name = "gl_TessLevelOuterMESA";
788 break;
789 case tess_level_inner:
790 name = "gl_TessLevelInnerMESA";
791 break;
792 }
793 this->matched_candidate = (const tfeedback_candidate *)
794 hash_table_find(tfeedback_candidates, name);
795 if (!this->matched_candidate) {
796 /* From GL_EXT_transform_feedback:
797 * A program will fail to link if:
798 *
799 * * any variable name specified in the <varyings> array is not
800 * declared as an output in the geometry shader (if present) or
801 * the vertex shader (if no geometry shader is present);
802 */
803 linker_error(prog, "Transform feedback varying %s undeclared.",
804 this->orig_name);
805 }
806 return this->matched_candidate;
807 }
808
809
810 /**
811 * Parse all the transform feedback declarations that were passed to
812 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
813 *
814 * If an error occurs, the error is reported through linker_error() and false
815 * is returned.
816 */
817 bool
818 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
819 const void *mem_ctx, unsigned num_names,
820 char **varying_names, tfeedback_decl *decls)
821 {
822 for (unsigned i = 0; i < num_names; ++i) {
823 decls[i].init(ctx, mem_ctx, varying_names[i]);
824
825 if (!decls[i].is_varying())
826 continue;
827
828 /* From GL_EXT_transform_feedback:
829 * A program will fail to link if:
830 *
831 * * any two entries in the <varyings> array specify the same varying
832 * variable;
833 *
834 * We interpret this to mean "any two entries in the <varyings> array
835 * specify the same varying variable and array index", since transform
836 * feedback of arrays would be useless otherwise.
837 */
838 for (unsigned j = 0; j < i; ++j) {
839 if (!decls[j].is_varying())
840 continue;
841
842 if (tfeedback_decl::is_same(decls[i], decls[j])) {
843 linker_error(prog, "Transform feedback varying %s specified "
844 "more than once.", varying_names[i]);
845 return false;
846 }
847 }
848 }
849 return true;
850 }
851
852
853 static int
854 cmp_xfb_offset(const void * x_generic, const void * y_generic)
855 {
856 tfeedback_decl *x = (tfeedback_decl *) x_generic;
857 tfeedback_decl *y = (tfeedback_decl *) y_generic;
858
859 if (x->get_buffer() != y->get_buffer())
860 return x->get_buffer() - y->get_buffer();
861 return x->get_offset() - y->get_offset();
862 }
863
864 /**
865 * Store transform feedback location assignments into
866 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
867 *
868 * If an error occurs, the error is reported through linker_error() and false
869 * is returned.
870 */
871 bool
872 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
873 unsigned num_tfeedback_decls,
874 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
875 {
876 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
877 * tracking the number of buffers doesn't overflow.
878 */
879 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
880
881 bool separate_attribs_mode =
882 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
883
884 ralloc_free(prog->LinkedTransformFeedback.Varyings);
885 ralloc_free(prog->LinkedTransformFeedback.Outputs);
886
887 memset(&prog->LinkedTransformFeedback, 0,
888 sizeof(prog->LinkedTransformFeedback));
889
890 /* The xfb_offset qualifier does not have to be used in increasing order
891 * however some drivers expect to receive the list of transform feedback
892 * declarations in order so sort it now for convenience.
893 */
894 if (has_xfb_qualifiers)
895 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
896 cmp_xfb_offset);
897
898 prog->LinkedTransformFeedback.Varyings =
899 rzalloc_array(prog,
900 struct gl_transform_feedback_varying_info,
901 num_tfeedback_decls);
902
903 unsigned num_outputs = 0;
904 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
905 num_outputs += tfeedback_decls[i].get_num_outputs();
906
907 prog->LinkedTransformFeedback.Outputs =
908 rzalloc_array(prog,
909 struct gl_transform_feedback_output,
910 num_outputs);
911
912 unsigned num_buffers = 0;
913 unsigned buffers = 0;
914
915 if (!has_xfb_qualifiers && separate_attribs_mode) {
916 /* GL_SEPARATE_ATTRIBS */
917 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
918 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
919 num_buffers, num_outputs,
920 has_xfb_qualifiers))
921 return false;
922
923 buffers |= 1 << num_buffers;
924 num_buffers++;
925 }
926 }
927 else {
928 /* GL_INVERLEAVED_ATTRIBS */
929 int buffer_stream_id = -1;
930 unsigned buffer =
931 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
932
933 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
934 if (tfeedback_decls[i].is_next_buffer_separator()) {
935 num_buffers++;
936 buffer_stream_id = -1;
937 continue;
938 } else if (buffer_stream_id == -1) {
939 /* First varying writing to this buffer: remember its stream */
940 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
941 } else if (buffer_stream_id !=
942 (int) tfeedback_decls[i].get_stream_id()) {
943 /* Varying writes to the same buffer from a different stream */
944 linker_error(prog,
945 "Transform feedback can't capture varyings belonging "
946 "to different vertex streams in a single buffer. "
947 "Varying %s writes to buffer from stream %u, other "
948 "varyings in the same buffer write from stream %u.",
949 tfeedback_decls[i].name(),
950 tfeedback_decls[i].get_stream_id(),
951 buffer_stream_id);
952 return false;
953 }
954
955 if (has_xfb_qualifiers) {
956 buffer = tfeedback_decls[i].get_buffer();
957 } else {
958 buffer = num_buffers;
959 }
960 buffers |= 1 << num_buffers;
961
962 if (!tfeedback_decls[i].store(ctx, prog,
963 &prog->LinkedTransformFeedback,
964 num_buffers, num_outputs,
965 has_xfb_qualifiers))
966 return false;
967 }
968 }
969
970 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
971
972 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
973 return true;
974 }
975
976 namespace {
977
978 /**
979 * Data structure recording the relationship between outputs of one shader
980 * stage (the "producer") and inputs of another (the "consumer").
981 */
982 class varying_matches
983 {
984 public:
985 varying_matches(bool disable_varying_packing, bool xfb_enabled,
986 gl_shader_stage producer_stage,
987 gl_shader_stage consumer_stage);
988 ~varying_matches();
989 void record(ir_variable *producer_var, ir_variable *consumer_var);
990 unsigned assign_locations(struct gl_shader_program *prog,
991 uint64_t reserved_slots, bool separate_shader);
992 void store_locations() const;
993
994 private:
995 bool is_varying_packing_safe(const glsl_type *type,
996 const ir_variable *var);
997
998 /**
999 * If true, this driver disables varying packing, so all varyings need to
1000 * be aligned on slot boundaries, and take up a number of slots equal to
1001 * their number of matrix columns times their array size.
1002 *
1003 * Packing may also be disabled because our current packing method is not
1004 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1005 * guaranteed to match across stages.
1006 */
1007 const bool disable_varying_packing;
1008
1009 /**
1010 * If true, this driver has transform feedback enabled. The transform
1011 * feedback code requires at least some packing be done even when varying
1012 * packing is disabled, fortunately where transform feedback requires
1013 * packing it's safe to override the disabled setting. See
1014 * is_varying_packing_safe().
1015 */
1016 const bool xfb_enabled;
1017
1018 /**
1019 * Enum representing the order in which varyings are packed within a
1020 * packing class.
1021 *
1022 * Currently we pack vec4's first, then vec2's, then scalar values, then
1023 * vec3's. This order ensures that the only vectors that are at risk of
1024 * having to be "double parked" (split between two adjacent varying slots)
1025 * are the vec3's.
1026 */
1027 enum packing_order_enum {
1028 PACKING_ORDER_VEC4,
1029 PACKING_ORDER_VEC2,
1030 PACKING_ORDER_SCALAR,
1031 PACKING_ORDER_VEC3,
1032 };
1033
1034 static unsigned compute_packing_class(const ir_variable *var);
1035 static packing_order_enum compute_packing_order(const ir_variable *var);
1036 static int match_comparator(const void *x_generic, const void *y_generic);
1037 static int xfb_comparator(const void *x_generic, const void *y_generic);
1038
1039 /**
1040 * Structure recording the relationship between a single producer output
1041 * and a single consumer input.
1042 */
1043 struct match {
1044 /**
1045 * Packing class for this varying, computed by compute_packing_class().
1046 */
1047 unsigned packing_class;
1048
1049 /**
1050 * Packing order for this varying, computed by compute_packing_order().
1051 */
1052 packing_order_enum packing_order;
1053 unsigned num_components;
1054
1055 /**
1056 * The output variable in the producer stage.
1057 */
1058 ir_variable *producer_var;
1059
1060 /**
1061 * The input variable in the consumer stage.
1062 */
1063 ir_variable *consumer_var;
1064
1065 /**
1066 * The location which has been assigned for this varying. This is
1067 * expressed in multiples of a float, with the first generic varying
1068 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1069 * value 0.
1070 */
1071 unsigned generic_location;
1072 } *matches;
1073
1074 /**
1075 * The number of elements in the \c matches array that are currently in
1076 * use.
1077 */
1078 unsigned num_matches;
1079
1080 /**
1081 * The number of elements that were set aside for the \c matches array when
1082 * it was allocated.
1083 */
1084 unsigned matches_capacity;
1085
1086 gl_shader_stage producer_stage;
1087 gl_shader_stage consumer_stage;
1088 };
1089
1090 } /* anonymous namespace */
1091
1092 varying_matches::varying_matches(bool disable_varying_packing,
1093 bool xfb_enabled,
1094 gl_shader_stage producer_stage,
1095 gl_shader_stage consumer_stage)
1096 : disable_varying_packing(disable_varying_packing),
1097 xfb_enabled(xfb_enabled),
1098 producer_stage(producer_stage),
1099 consumer_stage(consumer_stage)
1100 {
1101 /* Note: this initial capacity is rather arbitrarily chosen to be large
1102 * enough for many cases without wasting an unreasonable amount of space.
1103 * varying_matches::record() will resize the array if there are more than
1104 * this number of varyings.
1105 */
1106 this->matches_capacity = 8;
1107 this->matches = (match *)
1108 malloc(sizeof(*this->matches) * this->matches_capacity);
1109 this->num_matches = 0;
1110 }
1111
1112
1113 varying_matches::~varying_matches()
1114 {
1115 free(this->matches);
1116 }
1117
1118
1119 /**
1120 * Packing is always safe on individual arrays, structure and matices. It is
1121 * also safe if the varying is only used for transform feedback.
1122 */
1123 bool
1124 varying_matches::is_varying_packing_safe(const glsl_type *type,
1125 const ir_variable *var)
1126 {
1127 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1128 consumer_stage == MESA_SHADER_TESS_CTRL ||
1129 producer_stage == MESA_SHADER_TESS_CTRL)
1130 return false;
1131
1132 return xfb_enabled && (type->is_array() || type->is_record() ||
1133 type->is_matrix() || var->data.is_xfb_only);
1134 }
1135
1136
1137 /**
1138 * Record the given producer/consumer variable pair in the list of variables
1139 * that should later be assigned locations.
1140 *
1141 * It is permissible for \c consumer_var to be NULL (this happens if a
1142 * variable is output by the producer and consumed by transform feedback, but
1143 * not consumed by the consumer).
1144 *
1145 * If \c producer_var has already been paired up with a consumer_var, or
1146 * producer_var is part of fixed pipeline functionality (and hence already has
1147 * a location assigned), this function has no effect.
1148 *
1149 * Note: as a side effect this function may change the interpolation type of
1150 * \c producer_var, but only when the change couldn't possibly affect
1151 * rendering.
1152 */
1153 void
1154 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1155 {
1156 assert(producer_var != NULL || consumer_var != NULL);
1157
1158 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1159 producer_var->data.explicit_location)) ||
1160 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1161 consumer_var->data.explicit_location))) {
1162 /* Either a location already exists for this variable (since it is part
1163 * of fixed functionality), or it has already been recorded as part of a
1164 * previous match.
1165 */
1166 return;
1167 }
1168
1169 bool needs_flat_qualifier = consumer_var == NULL &&
1170 (producer_var->type->contains_integer() ||
1171 producer_var->type->contains_double());
1172
1173 if (needs_flat_qualifier ||
1174 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1175 /* Since this varying is not being consumed by the fragment shader, its
1176 * interpolation type varying cannot possibly affect rendering.
1177 * Also, this variable is non-flat and is (or contains) an integer
1178 * or a double.
1179 * If the consumer stage is unknown, don't modify the interpolation
1180 * type as it could affect rendering later with separate shaders.
1181 *
1182 * lower_packed_varyings requires all integer varyings to flat,
1183 * regardless of where they appear. We can trivially satisfy that
1184 * requirement by changing the interpolation type to flat here.
1185 */
1186 if (producer_var) {
1187 producer_var->data.centroid = false;
1188 producer_var->data.sample = false;
1189 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1190 }
1191
1192 if (consumer_var) {
1193 consumer_var->data.centroid = false;
1194 consumer_var->data.sample = false;
1195 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1196 }
1197 }
1198
1199 if (this->num_matches == this->matches_capacity) {
1200 this->matches_capacity *= 2;
1201 this->matches = (match *)
1202 realloc(this->matches,
1203 sizeof(*this->matches) * this->matches_capacity);
1204 }
1205
1206 const ir_variable *const var = (producer_var != NULL)
1207 ? producer_var : consumer_var;
1208 const gl_shader_stage stage = (producer_var != NULL)
1209 ? producer_stage : consumer_stage;
1210 const glsl_type *type = get_varying_type(var, stage);
1211
1212 this->matches[this->num_matches].packing_class
1213 = this->compute_packing_class(var);
1214 this->matches[this->num_matches].packing_order
1215 = this->compute_packing_order(var);
1216 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1217 unsigned slots = type->count_attribute_slots(false);
1218 this->matches[this->num_matches].num_components = slots * 4;
1219 } else {
1220 this->matches[this->num_matches].num_components
1221 = type->component_slots();
1222 }
1223 this->matches[this->num_matches].producer_var = producer_var;
1224 this->matches[this->num_matches].consumer_var = consumer_var;
1225 this->num_matches++;
1226 if (producer_var)
1227 producer_var->data.is_unmatched_generic_inout = 0;
1228 if (consumer_var)
1229 consumer_var->data.is_unmatched_generic_inout = 0;
1230 }
1231
1232
1233 /**
1234 * Choose locations for all of the variable matches that were previously
1235 * passed to varying_matches::record().
1236 */
1237 unsigned
1238 varying_matches::assign_locations(struct gl_shader_program *prog,
1239 uint64_t reserved_slots,
1240 bool separate_shader)
1241 {
1242 /* If packing has been disabled then we cannot safely sort the varyings by
1243 * class as it may mean we are using a version of OpenGL where
1244 * interpolation qualifiers are not guaranteed to be matching across
1245 * shaders, sorting in this case could result in mismatching shader
1246 * interfaces.
1247 * When packing is disabled the sort orders varyings used by transform
1248 * feedback first, but also depends on *undefined behaviour* of qsort to
1249 * reverse the order of the varyings. See: xfb_comparator().
1250 */
1251 if (!this->disable_varying_packing) {
1252 /* Sort varying matches into an order that makes them easy to pack. */
1253 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1254 &varying_matches::match_comparator);
1255 } else {
1256 /* Only sort varyings that are only used by transform feedback. */
1257 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1258 &varying_matches::xfb_comparator);
1259 }
1260
1261 unsigned generic_location = 0;
1262 unsigned generic_patch_location = MAX_VARYING*4;
1263 bool previous_var_xfb_only = false;
1264
1265 for (unsigned i = 0; i < this->num_matches; i++) {
1266 unsigned *location = &generic_location;
1267
1268 const ir_variable *var;
1269 const glsl_type *type;
1270 bool is_vertex_input = false;
1271 if (matches[i].consumer_var) {
1272 var = matches[i].consumer_var;
1273 type = get_varying_type(var, consumer_stage);
1274 if (consumer_stage == MESA_SHADER_VERTEX)
1275 is_vertex_input = true;
1276 } else {
1277 var = matches[i].producer_var;
1278 type = get_varying_type(var, producer_stage);
1279 }
1280
1281 if (var->data.patch)
1282 location = &generic_patch_location;
1283
1284 /* Advance to the next slot if this varying has a different packing
1285 * class than the previous one, and we're not already on a slot
1286 * boundary.
1287 *
1288 * Also advance to the next slot if packing is disabled. This makes sure
1289 * we don't assign varyings the same locations which is possible
1290 * because we still pack individual arrays, records and matrices even
1291 * when packing is disabled. Note we don't advance to the next slot if
1292 * we can pack varyings together that are only used for transform
1293 * feedback.
1294 */
1295 if ((this->disable_varying_packing &&
1296 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1297 (i > 0 && this->matches[i - 1].packing_class
1298 != this->matches[i].packing_class )) {
1299 *location = ALIGN(*location, 4);
1300 }
1301
1302 previous_var_xfb_only = var->data.is_xfb_only;
1303
1304 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1305 unsigned slot_end;
1306 if (this->disable_varying_packing &&
1307 !is_varying_packing_safe(type, var))
1308 slot_end = 4;
1309 else
1310 slot_end = type->without_array()->vector_elements;
1311 slot_end += *location - 1;
1312
1313 /* FIXME: We could be smarter in the below code and loop back over
1314 * trying to fill any locations that we skipped because we couldn't pack
1315 * the varying between an explicit location. For now just let the user
1316 * hit the linking error if we run out of room and suggest they use
1317 * explicit locations.
1318 */
1319 for (unsigned j = 0; j < num_elements; j++) {
1320 while ((slot_end < MAX_VARYING * 4u) &&
1321 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1322 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1323
1324 *location = ALIGN(*location + 1, 4);
1325 slot_end = *location;
1326
1327 /* reset the counter and try again */
1328 j = 0;
1329 }
1330
1331 /* Increase the slot to make sure there is enough room for next
1332 * array element.
1333 */
1334 if (this->disable_varying_packing &&
1335 !is_varying_packing_safe(type, var))
1336 slot_end += 4;
1337 else
1338 slot_end += type->without_array()->vector_elements;
1339 }
1340
1341 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1342 linker_error(prog, "insufficient contiguous locations available for "
1343 "%s it is possible an array or struct could not be "
1344 "packed between varyings with explicit locations. Try "
1345 "using an explicit location for arrays and structs.",
1346 var->name);
1347 }
1348
1349 this->matches[i].generic_location = *location;
1350
1351 *location += this->matches[i].num_components;
1352 }
1353
1354 return (generic_location + 3) / 4;
1355 }
1356
1357
1358 /**
1359 * Update the producer and consumer shaders to reflect the locations
1360 * assignments that were made by varying_matches::assign_locations().
1361 */
1362 void
1363 varying_matches::store_locations() const
1364 {
1365 for (unsigned i = 0; i < this->num_matches; i++) {
1366 ir_variable *producer_var = this->matches[i].producer_var;
1367 ir_variable *consumer_var = this->matches[i].consumer_var;
1368 unsigned generic_location = this->matches[i].generic_location;
1369 unsigned slot = generic_location / 4;
1370 unsigned offset = generic_location % 4;
1371
1372 if (producer_var) {
1373 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1374 producer_var->data.location_frac = offset;
1375 }
1376
1377 if (consumer_var) {
1378 assert(consumer_var->data.location == -1);
1379 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1380 consumer_var->data.location_frac = offset;
1381 }
1382 }
1383 }
1384
1385
1386 /**
1387 * Compute the "packing class" of the given varying. This is an unsigned
1388 * integer with the property that two variables in the same packing class can
1389 * be safely backed into the same vec4.
1390 */
1391 unsigned
1392 varying_matches::compute_packing_class(const ir_variable *var)
1393 {
1394 /* Without help from the back-end, there is no way to pack together
1395 * variables with different interpolation types, because
1396 * lower_packed_varyings must choose exactly one interpolation type for
1397 * each packed varying it creates.
1398 *
1399 * However, we can safely pack together floats, ints, and uints, because:
1400 *
1401 * - varyings of base type "int" and "uint" must use the "flat"
1402 * interpolation type, which can only occur in GLSL 1.30 and above.
1403 *
1404 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1405 * can store flat floats as ints without losing any information (using
1406 * the ir_unop_bitcast_* opcodes).
1407 *
1408 * Therefore, the packing class depends only on the interpolation type.
1409 */
1410 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1411 (var->data.patch << 2);
1412 packing_class *= 4;
1413 packing_class += var->data.interpolation;
1414 return packing_class;
1415 }
1416
1417
1418 /**
1419 * Compute the "packing order" of the given varying. This is a sort key we
1420 * use to determine when to attempt to pack the given varying relative to
1421 * other varyings in the same packing class.
1422 */
1423 varying_matches::packing_order_enum
1424 varying_matches::compute_packing_order(const ir_variable *var)
1425 {
1426 const glsl_type *element_type = var->type;
1427
1428 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1429 element_type = element_type->fields.array;
1430 }
1431
1432 switch (element_type->component_slots() % 4) {
1433 case 1: return PACKING_ORDER_SCALAR;
1434 case 2: return PACKING_ORDER_VEC2;
1435 case 3: return PACKING_ORDER_VEC3;
1436 case 0: return PACKING_ORDER_VEC4;
1437 default:
1438 assert(!"Unexpected value of vector_elements");
1439 return PACKING_ORDER_VEC4;
1440 }
1441 }
1442
1443
1444 /**
1445 * Comparison function passed to qsort() to sort varyings by packing_class and
1446 * then by packing_order.
1447 */
1448 int
1449 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1450 {
1451 const match *x = (const match *) x_generic;
1452 const match *y = (const match *) y_generic;
1453
1454 if (x->packing_class != y->packing_class)
1455 return x->packing_class - y->packing_class;
1456 return x->packing_order - y->packing_order;
1457 }
1458
1459
1460 /**
1461 * Comparison function passed to qsort() to sort varyings used only by
1462 * transform feedback when packing of other varyings is disabled.
1463 */
1464 int
1465 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1466 {
1467 const match *x = (const match *) x_generic;
1468
1469 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1470 return match_comparator(x_generic, y_generic);
1471
1472 /* FIXME: When the comparator returns 0 it means the elements being
1473 * compared are equivalent. However the qsort documentation says:
1474 *
1475 * "The order of equivalent elements is undefined."
1476 *
1477 * In practice the sort ends up reversing the order of the varyings which
1478 * means locations are also assigned in this reversed order and happens to
1479 * be what we want. This is also whats happening in
1480 * varying_matches::match_comparator().
1481 */
1482 return 0;
1483 }
1484
1485
1486 /**
1487 * Is the given variable a varying variable to be counted against the
1488 * limit in ctx->Const.MaxVarying?
1489 * This includes variables such as texcoords, colors and generic
1490 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1491 */
1492 static bool
1493 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1494 {
1495 /* Only fragment shaders will take a varying variable as an input */
1496 if (stage == MESA_SHADER_FRAGMENT &&
1497 var->data.mode == ir_var_shader_in) {
1498 switch (var->data.location) {
1499 case VARYING_SLOT_POS:
1500 case VARYING_SLOT_FACE:
1501 case VARYING_SLOT_PNTC:
1502 return false;
1503 default:
1504 return true;
1505 }
1506 }
1507 return false;
1508 }
1509
1510
1511 /**
1512 * Visitor class that generates tfeedback_candidate structs describing all
1513 * possible targets of transform feedback.
1514 *
1515 * tfeedback_candidate structs are stored in the hash table
1516 * tfeedback_candidates, which is passed to the constructor. This hash table
1517 * maps varying names to instances of the tfeedback_candidate struct.
1518 */
1519 class tfeedback_candidate_generator : public program_resource_visitor
1520 {
1521 public:
1522 tfeedback_candidate_generator(void *mem_ctx,
1523 hash_table *tfeedback_candidates)
1524 : mem_ctx(mem_ctx),
1525 tfeedback_candidates(tfeedback_candidates),
1526 toplevel_var(NULL),
1527 varying_floats(0)
1528 {
1529 }
1530
1531 void process(ir_variable *var)
1532 {
1533 /* All named varying interface blocks should be flattened by now */
1534 assert(!var->is_interface_instance());
1535
1536 this->toplevel_var = var;
1537 this->varying_floats = 0;
1538 program_resource_visitor::process(var);
1539 }
1540
1541 private:
1542 virtual void visit_field(const glsl_type *type, const char *name,
1543 bool row_major)
1544 {
1545 assert(!type->without_array()->is_record());
1546 assert(!type->without_array()->is_interface());
1547
1548 (void) row_major;
1549
1550 tfeedback_candidate *candidate
1551 = rzalloc(this->mem_ctx, tfeedback_candidate);
1552 candidate->toplevel_var = this->toplevel_var;
1553 candidate->type = type;
1554 candidate->offset = this->varying_floats;
1555 hash_table_insert(this->tfeedback_candidates, candidate,
1556 ralloc_strdup(this->mem_ctx, name));
1557 this->varying_floats += type->component_slots();
1558 }
1559
1560 /**
1561 * Memory context used to allocate hash table keys and values.
1562 */
1563 void * const mem_ctx;
1564
1565 /**
1566 * Hash table in which tfeedback_candidate objects should be stored.
1567 */
1568 hash_table * const tfeedback_candidates;
1569
1570 /**
1571 * Pointer to the toplevel variable that is being traversed.
1572 */
1573 ir_variable *toplevel_var;
1574
1575 /**
1576 * Total number of varying floats that have been visited so far. This is
1577 * used to determine the offset to each varying within the toplevel
1578 * variable.
1579 */
1580 unsigned varying_floats;
1581 };
1582
1583
1584 namespace linker {
1585
1586 void
1587 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1588 hash_table *consumer_inputs,
1589 hash_table *consumer_interface_inputs,
1590 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1591 {
1592 memset(consumer_inputs_with_locations,
1593 0,
1594 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1595
1596 foreach_in_list(ir_instruction, node, ir) {
1597 ir_variable *const input_var = node->as_variable();
1598
1599 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1600 /* All interface blocks should have been lowered by this point */
1601 assert(!input_var->type->is_interface());
1602
1603 if (input_var->data.explicit_location) {
1604 /* assign_varying_locations only cares about finding the
1605 * ir_variable at the start of a contiguous location block.
1606 *
1607 * - For !producer, consumer_inputs_with_locations isn't used.
1608 *
1609 * - For !consumer, consumer_inputs_with_locations is empty.
1610 *
1611 * For consumer && producer, if you were trying to set some
1612 * ir_variable to the middle of a location block on the other side
1613 * of producer/consumer, cross_validate_outputs_to_inputs() should
1614 * be link-erroring due to either type mismatch or location
1615 * overlaps. If the variables do match up, then they've got a
1616 * matching data.location and you only looked at
1617 * consumer_inputs_with_locations[var->data.location], not any
1618 * following entries for the array/structure.
1619 */
1620 consumer_inputs_with_locations[input_var->data.location] =
1621 input_var;
1622 } else if (input_var->get_interface_type() != NULL) {
1623 char *const iface_field_name =
1624 ralloc_asprintf(mem_ctx, "%s.%s",
1625 input_var->get_interface_type()->without_array()->name,
1626 input_var->name);
1627 hash_table_insert(consumer_interface_inputs, input_var,
1628 iface_field_name);
1629 } else {
1630 hash_table_insert(consumer_inputs, input_var,
1631 ralloc_strdup(mem_ctx, input_var->name));
1632 }
1633 }
1634 }
1635 }
1636
1637 /**
1638 * Find a variable from the consumer that "matches" the specified variable
1639 *
1640 * This function only finds inputs with names that match. There is no
1641 * validation (here) that the types, etc. are compatible.
1642 */
1643 ir_variable *
1644 get_matching_input(void *mem_ctx,
1645 const ir_variable *output_var,
1646 hash_table *consumer_inputs,
1647 hash_table *consumer_interface_inputs,
1648 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1649 {
1650 ir_variable *input_var;
1651
1652 if (output_var->data.explicit_location) {
1653 input_var = consumer_inputs_with_locations[output_var->data.location];
1654 } else if (output_var->get_interface_type() != NULL) {
1655 char *const iface_field_name =
1656 ralloc_asprintf(mem_ctx, "%s.%s",
1657 output_var->get_interface_type()->without_array()->name,
1658 output_var->name);
1659 input_var =
1660 (ir_variable *) hash_table_find(consumer_interface_inputs,
1661 iface_field_name);
1662 } else {
1663 input_var =
1664 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1665 }
1666
1667 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1668 ? NULL : input_var;
1669 }
1670
1671 }
1672
1673 static int
1674 io_variable_cmp(const void *_a, const void *_b)
1675 {
1676 const ir_variable *const a = *(const ir_variable **) _a;
1677 const ir_variable *const b = *(const ir_variable **) _b;
1678
1679 if (a->data.explicit_location && b->data.explicit_location)
1680 return b->data.location - a->data.location;
1681
1682 if (a->data.explicit_location && !b->data.explicit_location)
1683 return 1;
1684
1685 if (!a->data.explicit_location && b->data.explicit_location)
1686 return -1;
1687
1688 return -strcmp(a->name, b->name);
1689 }
1690
1691 /**
1692 * Sort the shader IO variables into canonical order
1693 */
1694 static void
1695 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1696 {
1697 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1698 unsigned num_variables = 0;
1699
1700 foreach_in_list(ir_instruction, node, ir) {
1701 ir_variable *const var = node->as_variable();
1702
1703 if (var == NULL || var->data.mode != io_mode)
1704 continue;
1705
1706 /* If we have already encountered more I/O variables that could
1707 * successfully link, bail.
1708 */
1709 if (num_variables == ARRAY_SIZE(var_table))
1710 return;
1711
1712 var_table[num_variables++] = var;
1713 }
1714
1715 if (num_variables == 0)
1716 return;
1717
1718 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1719 * we're going to push the variables on to the IR list as a stack, so we
1720 * want the last variable (in canonical order) to be first in the list.
1721 */
1722 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1723
1724 /* Remove the variable from it's current location in the IR, and put it at
1725 * the front.
1726 */
1727 for (unsigned i = 0; i < num_variables; i++) {
1728 var_table[i]->remove();
1729 ir->push_head(var_table[i]);
1730 }
1731 }
1732
1733 /**
1734 * Generate a bitfield map of the explicit locations for shader varyings.
1735 *
1736 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1737 */
1738 uint64_t
1739 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1740 {
1741 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1742 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1743
1744 uint64_t slots = 0;
1745 int var_slot;
1746
1747 if (!stage)
1748 return slots;
1749
1750 foreach_in_list(ir_instruction, node, stage->ir) {
1751 ir_variable *const var = node->as_variable();
1752
1753 if (var == NULL || var->data.mode != io_mode ||
1754 !var->data.explicit_location ||
1755 var->data.location < VARYING_SLOT_VAR0)
1756 continue;
1757
1758 var_slot = var->data.location - VARYING_SLOT_VAR0;
1759
1760 unsigned num_elements = get_varying_type(var, stage->Stage)
1761 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1762 for (unsigned i = 0; i < num_elements; i++) {
1763 if (var_slot >= 0 && var_slot < MAX_VARYING)
1764 slots |= UINT64_C(1) << var_slot;
1765 var_slot += 1;
1766 }
1767 }
1768
1769 return slots;
1770 }
1771
1772
1773 /**
1774 * Assign locations for all variables that are produced in one pipeline stage
1775 * (the "producer") and consumed in the next stage (the "consumer").
1776 *
1777 * Variables produced by the producer may also be consumed by transform
1778 * feedback.
1779 *
1780 * \param num_tfeedback_decls is the number of declarations indicating
1781 * variables that may be consumed by transform feedback.
1782 *
1783 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1784 * representing the result of parsing the strings passed to
1785 * glTransformFeedbackVaryings(). assign_location() will be called for
1786 * each of these objects that matches one of the outputs of the
1787 * producer.
1788 *
1789 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1790 * be NULL. In this case, varying locations are assigned solely based on the
1791 * requirements of transform feedback.
1792 */
1793 bool
1794 assign_varying_locations(struct gl_context *ctx,
1795 void *mem_ctx,
1796 struct gl_shader_program *prog,
1797 gl_shader *producer, gl_shader *consumer,
1798 unsigned num_tfeedback_decls,
1799 tfeedback_decl *tfeedback_decls)
1800 {
1801 /* Tessellation shaders treat inputs and outputs as shared memory and can
1802 * access inputs and outputs of other invocations.
1803 * Therefore, they can't be lowered to temps easily (and definitely not
1804 * efficiently).
1805 */
1806 bool unpackable_tess =
1807 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1808 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1809 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1810
1811 /* Transform feedback code assumes varying arrays are packed, so if the
1812 * driver has disabled varying packing, make sure to at least enable
1813 * packing required by transform feedback.
1814 */
1815 bool xfb_enabled =
1816 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1817
1818 /* Disable varying packing for GL 4.4+ as there is no guarantee
1819 * that interpolation qualifiers will match between shaders in these
1820 * versions. We also disable packing on outerward facing interfaces for
1821 * SSO because in ES we need to retain the unpacked varying information
1822 * for draw time validation. For desktop GL we could allow packing for
1823 * versions < 4.4 but its just safer not to do packing.
1824 *
1825 * Packing is still enabled on individual arrays, structs, and matrices as
1826 * these are required by the transform feedback code and it is still safe
1827 * to do so. We also enable packing when a varying is only used for
1828 * transform feedback and its not a SSO.
1829 *
1830 * Varying packing currently only packs together varyings with matching
1831 * interpolation qualifiers as the backends assume all packed components
1832 * are to be processed in the same way. Therefore we cannot do packing in
1833 * these versions of GL without the risk of mismatching interfaces.
1834 *
1835 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1836 *
1837 * "The type and presence of interpolation qualifiers of variables with
1838 * the same name declared in all linked shaders for the same cross-stage
1839 * interface must match, otherwise the link command will fail.
1840 *
1841 * When comparing an output from one stage to an input of a subsequent
1842 * stage, the input and output don't match if their interpolation
1843 * qualifiers (or lack thereof) are not the same."
1844 *
1845 * This text was also in at least revison 7 of the 4.40 spec but is no
1846 * longer in revision 9 and not in the 4.50 spec.
1847 */
1848 bool disable_varying_packing =
1849 ctx->Const.DisableVaryingPacking || unpackable_tess;
1850 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
1851 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
1852 disable_varying_packing = true;
1853
1854 varying_matches matches(disable_varying_packing, xfb_enabled,
1855 producer ? producer->Stage : (gl_shader_stage)-1,
1856 consumer ? consumer->Stage : (gl_shader_stage)-1);
1857 hash_table *tfeedback_candidates
1858 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1859 hash_table *consumer_inputs
1860 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1861 hash_table *consumer_interface_inputs
1862 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1863 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
1864 NULL,
1865 };
1866
1867 unsigned consumer_vertices = 0;
1868 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1869 consumer_vertices = prog->Geom.VerticesIn;
1870
1871 /* Operate in a total of four passes.
1872 *
1873 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1874 * that inputs / outputs of separable shaders will be assigned
1875 * predictable locations regardless of the order in which declarations
1876 * appeared in the shader source.
1877 *
1878 * 2. Assign locations for any matching inputs and outputs.
1879 *
1880 * 3. Mark output variables in the producer that do not have locations as
1881 * not being outputs. This lets the optimizer eliminate them.
1882 *
1883 * 4. Mark input variables in the consumer that do not have locations as
1884 * not being inputs. This lets the optimizer eliminate them.
1885 */
1886 if (consumer)
1887 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1888
1889 if (producer)
1890 canonicalize_shader_io(producer->ir, ir_var_shader_out);
1891
1892 if (consumer)
1893 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
1894 consumer_inputs,
1895 consumer_interface_inputs,
1896 consumer_inputs_with_locations);
1897
1898 if (producer) {
1899 foreach_in_list(ir_instruction, node, producer->ir) {
1900 ir_variable *const output_var = node->as_variable();
1901
1902 if ((output_var == NULL) ||
1903 (output_var->data.mode != ir_var_shader_out))
1904 continue;
1905
1906 /* Only geometry shaders can use non-zero streams */
1907 assert(output_var->data.stream == 0 ||
1908 (output_var->data.stream < MAX_VERTEX_STREAMS &&
1909 producer->Stage == MESA_SHADER_GEOMETRY));
1910
1911 if (num_tfeedback_decls > 0) {
1912 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
1913 g.process(output_var);
1914 }
1915
1916 ir_variable *const input_var =
1917 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
1918 consumer_interface_inputs,
1919 consumer_inputs_with_locations);
1920
1921 /* If a matching input variable was found, add this ouptut (and the
1922 * input) to the set. If this is a separable program and there is no
1923 * consumer stage, add the output.
1924 *
1925 * Always add TCS outputs. They are shared by all invocations
1926 * within a patch and can be used as shared memory.
1927 */
1928 if (input_var || (prog->SeparateShader && consumer == NULL) ||
1929 producer->Type == GL_TESS_CONTROL_SHADER) {
1930 matches.record(output_var, input_var);
1931 }
1932
1933 /* Only stream 0 outputs can be consumed in the next stage */
1934 if (input_var && output_var->data.stream != 0) {
1935 linker_error(prog, "output %s is assigned to stream=%d but "
1936 "is linked to an input, which requires stream=0",
1937 output_var->name, output_var->data.stream);
1938 return false;
1939 }
1940 }
1941 } else {
1942 /* If there's no producer stage, then this must be a separable program.
1943 * For example, we may have a program that has just a fragment shader.
1944 * Later this program will be used with some arbitrary vertex (or
1945 * geometry) shader program. This means that locations must be assigned
1946 * for all the inputs.
1947 */
1948 foreach_in_list(ir_instruction, node, consumer->ir) {
1949 ir_variable *const input_var = node->as_variable();
1950
1951 if ((input_var == NULL) ||
1952 (input_var->data.mode != ir_var_shader_in))
1953 continue;
1954
1955 matches.record(NULL, input_var);
1956 }
1957 }
1958
1959 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1960 if (!tfeedback_decls[i].is_varying())
1961 continue;
1962
1963 const tfeedback_candidate *matched_candidate
1964 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
1965
1966 if (matched_candidate == NULL) {
1967 hash_table_dtor(tfeedback_candidates);
1968 hash_table_dtor(consumer_inputs);
1969 hash_table_dtor(consumer_interface_inputs);
1970 return false;
1971 }
1972
1973 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
1974 matched_candidate->toplevel_var->data.is_xfb_only = 1;
1975 matches.record(matched_candidate->toplevel_var, NULL);
1976 }
1977 }
1978
1979 const uint64_t reserved_slots =
1980 reserved_varying_slot(producer, ir_var_shader_out) |
1981 reserved_varying_slot(consumer, ir_var_shader_in);
1982
1983 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
1984 prog->SeparateShader);
1985 matches.store_locations();
1986
1987 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1988 if (!tfeedback_decls[i].is_varying())
1989 continue;
1990
1991 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
1992 hash_table_dtor(tfeedback_candidates);
1993 hash_table_dtor(consumer_inputs);
1994 hash_table_dtor(consumer_interface_inputs);
1995 return false;
1996 }
1997 }
1998
1999 hash_table_dtor(tfeedback_candidates);
2000 hash_table_dtor(consumer_inputs);
2001 hash_table_dtor(consumer_interface_inputs);
2002
2003 if (consumer && producer) {
2004 foreach_in_list(ir_instruction, node, consumer->ir) {
2005 ir_variable *const var = node->as_variable();
2006
2007 if (var && var->data.mode == ir_var_shader_in &&
2008 var->data.is_unmatched_generic_inout) {
2009 if (!prog->IsES && prog->Version <= 120) {
2010 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2011 *
2012 * Only those varying variables used (i.e. read) in
2013 * the fragment shader executable must be written to
2014 * by the vertex shader executable; declaring
2015 * superfluous varying variables in a vertex shader is
2016 * permissible.
2017 *
2018 * We interpret this text as meaning that the VS must
2019 * write the variable for the FS to read it. See
2020 * "glsl1-varying read but not written" in piglit.
2021 */
2022 linker_error(prog, "%s shader varying %s not written "
2023 "by %s shader\n.",
2024 _mesa_shader_stage_to_string(consumer->Stage),
2025 var->name,
2026 _mesa_shader_stage_to_string(producer->Stage));
2027 } else {
2028 linker_warning(prog, "%s shader varying %s not written "
2029 "by %s shader\n.",
2030 _mesa_shader_stage_to_string(consumer->Stage),
2031 var->name,
2032 _mesa_shader_stage_to_string(producer->Stage));
2033 }
2034 }
2035 }
2036
2037 /* Now that validation is done its safe to remove unused varyings. As
2038 * we have both a producer and consumer its safe to remove unused
2039 * varyings even if the program is a SSO because the stages are being
2040 * linked together i.e. we have a multi-stage SSO.
2041 */
2042 remove_unused_shader_inputs_and_outputs(false, producer,
2043 ir_var_shader_out);
2044 remove_unused_shader_inputs_and_outputs(false, consumer,
2045 ir_var_shader_in);
2046 }
2047
2048 if (producer) {
2049 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2050 0, producer, disable_varying_packing,
2051 xfb_enabled);
2052 }
2053
2054 if (consumer) {
2055 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2056 consumer_vertices, consumer,
2057 disable_varying_packing, xfb_enabled);
2058 }
2059
2060 return true;
2061 }
2062
2063 bool
2064 check_against_output_limit(struct gl_context *ctx,
2065 struct gl_shader_program *prog,
2066 gl_shader *producer)
2067 {
2068 unsigned output_vectors = 0;
2069
2070 foreach_in_list(ir_instruction, node, producer->ir) {
2071 ir_variable *const var = node->as_variable();
2072
2073 if (var && var->data.mode == ir_var_shader_out &&
2074 var_counts_against_varying_limit(producer->Stage, var)) {
2075 /* outputs for fragment shader can't be doubles */
2076 output_vectors += var->type->count_attribute_slots(false);
2077 }
2078 }
2079
2080 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2081 unsigned max_output_components =
2082 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2083
2084 const unsigned output_components = output_vectors * 4;
2085 if (output_components > max_output_components) {
2086 if (ctx->API == API_OPENGLES2 || prog->IsES)
2087 linker_error(prog, "%s shader uses too many output vectors "
2088 "(%u > %u)\n",
2089 _mesa_shader_stage_to_string(producer->Stage),
2090 output_vectors,
2091 max_output_components / 4);
2092 else
2093 linker_error(prog, "%s shader uses too many output components "
2094 "(%u > %u)\n",
2095 _mesa_shader_stage_to_string(producer->Stage),
2096 output_components,
2097 max_output_components);
2098
2099 return false;
2100 }
2101
2102 return true;
2103 }
2104
2105 bool
2106 check_against_input_limit(struct gl_context *ctx,
2107 struct gl_shader_program *prog,
2108 gl_shader *consumer)
2109 {
2110 unsigned input_vectors = 0;
2111
2112 foreach_in_list(ir_instruction, node, consumer->ir) {
2113 ir_variable *const var = node->as_variable();
2114
2115 if (var && var->data.mode == ir_var_shader_in &&
2116 var_counts_against_varying_limit(consumer->Stage, var)) {
2117 /* vertex inputs aren't varying counted */
2118 input_vectors += var->type->count_attribute_slots(false);
2119 }
2120 }
2121
2122 assert(consumer->Stage != MESA_SHADER_VERTEX);
2123 unsigned max_input_components =
2124 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2125
2126 const unsigned input_components = input_vectors * 4;
2127 if (input_components > max_input_components) {
2128 if (ctx->API == API_OPENGLES2 || prog->IsES)
2129 linker_error(prog, "%s shader uses too many input vectors "
2130 "(%u > %u)\n",
2131 _mesa_shader_stage_to_string(consumer->Stage),
2132 input_vectors,
2133 max_input_components / 4);
2134 else
2135 linker_error(prog, "%s shader uses too many input components "
2136 "(%u > %u)\n",
2137 _mesa_shader_stage_to_string(consumer->Stage),
2138 input_components,
2139 max_input_components);
2140
2141 return false;
2142 }
2143
2144 return true;
2145 }