nir/drawpixels: handle load_color0, load_input, load_interpolated_input
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/errors.h"
33 #include "main/mtypes.h"
34 #include "glsl_symbol_table.h"
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37 #include "linker.h"
38 #include "link_varyings.h"
39 #include "main/macros.h"
40 #include "util/hash_table.h"
41 #include "util/u_math.h"
42 #include "program.h"
43
44
45 /**
46 * Get the varying type stripped of the outermost array if we're processing
47 * a stage whose varyings are arrays indexed by a vertex number (such as
48 * geometry shader inputs).
49 */
50 static const glsl_type *
51 get_varying_type(const ir_variable *var, gl_shader_stage stage)
52 {
53 const glsl_type *type = var->type;
54
55 if (!var->data.patch &&
56 ((var->data.mode == ir_var_shader_out &&
57 stage == MESA_SHADER_TESS_CTRL) ||
58 (var->data.mode == ir_var_shader_in &&
59 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
60 stage == MESA_SHADER_GEOMETRY)))) {
61 assert(type->is_array());
62 type = type->fields.array;
63 }
64
65 return type;
66 }
67
68 static void
69 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
70 size_t name_length, unsigned *count,
71 const char *ifc_member_name,
72 const glsl_type *ifc_member_t, char ***varying_names)
73 {
74 if (t->is_interface()) {
75 size_t new_length = name_length;
76
77 assert(ifc_member_name && ifc_member_t);
78 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
79
80 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
81 NULL, NULL, varying_names);
82 } else if (t->is_struct()) {
83 for (unsigned i = 0; i < t->length; i++) {
84 const char *field = t->fields.structure[i].name;
85 size_t new_length = name_length;
86
87 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
88
89 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
90 new_length, count, NULL, NULL,
91 varying_names);
92 }
93 } else if (t->without_array()->is_struct() ||
94 t->without_array()->is_interface() ||
95 (t->is_array() && t->fields.array->is_array())) {
96 for (unsigned i = 0; i < t->length; i++) {
97 size_t new_length = name_length;
98
99 /* Append the subscript to the current variable name */
100 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
101
102 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
103 count, ifc_member_name, ifc_member_t,
104 varying_names);
105 }
106 } else {
107 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
108 }
109 }
110
111 static bool
112 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
113 struct gl_shader_program *prog,
114 unsigned *num_tfeedback_decls,
115 char ***varying_names)
116 {
117 bool has_xfb_qualifiers = false;
118
119 /* We still need to enable transform feedback mode even if xfb_stride is
120 * only applied to a global out. Also we don't bother to propagate
121 * xfb_stride to interface block members so this will catch that case also.
122 */
123 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
124 if (prog->TransformFeedback.BufferStride[j]) {
125 has_xfb_qualifiers = true;
126 break;
127 }
128 }
129
130 foreach_in_list(ir_instruction, node, sh->ir) {
131 ir_variable *var = node->as_variable();
132 if (!var || var->data.mode != ir_var_shader_out)
133 continue;
134
135 /* From the ARB_enhanced_layouts spec:
136 *
137 * "Any shader making any static use (after preprocessing) of any of
138 * these *xfb_* qualifiers will cause the shader to be in a
139 * transform feedback capturing mode and hence responsible for
140 * describing the transform feedback setup. This mode will capture
141 * any output selected by *xfb_offset*, directly or indirectly, to
142 * a transform feedback buffer."
143 */
144 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
145 has_xfb_qualifiers = true;
146 }
147
148 if (var->data.explicit_xfb_offset) {
149 *num_tfeedback_decls += var->type->varying_count();
150 has_xfb_qualifiers = true;
151 }
152 }
153
154 if (*num_tfeedback_decls == 0)
155 return has_xfb_qualifiers;
156
157 unsigned i = 0;
158 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
159 foreach_in_list(ir_instruction, node, sh->ir) {
160 ir_variable *var = node->as_variable();
161 if (!var || var->data.mode != ir_var_shader_out)
162 continue;
163
164 if (var->data.explicit_xfb_offset) {
165 char *name;
166 const glsl_type *type, *member_type;
167
168 if (var->data.from_named_ifc_block) {
169 type = var->get_interface_type();
170
171 /* Find the member type before it was altered by lowering */
172 const glsl_type *type_wa = type->without_array();
173 member_type =
174 type_wa->fields.structure[type_wa->field_index(var->name)].type;
175 name = ralloc_strdup(NULL, type_wa->name);
176 } else {
177 type = var->type;
178 member_type = NULL;
179 name = ralloc_strdup(NULL, var->name);
180 }
181 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
182 var->name, member_type, varying_names);
183 ralloc_free(name);
184 }
185 }
186
187 assert(i == *num_tfeedback_decls);
188 return has_xfb_qualifiers;
189 }
190
191 /**
192 * Validate the types and qualifiers of an output from one stage against the
193 * matching input to another stage.
194 */
195 static void
196 cross_validate_types_and_qualifiers(struct gl_context *ctx,
197 struct gl_shader_program *prog,
198 const ir_variable *input,
199 const ir_variable *output,
200 gl_shader_stage consumer_stage,
201 gl_shader_stage producer_stage)
202 {
203 /* Check that the types match between stages.
204 */
205 const glsl_type *type_to_match = input->type;
206
207 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
208 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
209 consumer_stage != MESA_SHADER_FRAGMENT) ||
210 consumer_stage == MESA_SHADER_GEOMETRY;
211 if (extra_array_level) {
212 assert(type_to_match->is_array());
213 type_to_match = type_to_match->fields.array;
214 }
215
216 if (type_to_match != output->type) {
217 if (output->type->is_struct()) {
218 /* Structures across shader stages can have different name
219 * and considered to match in type if and only if structure
220 * members match in name, type, qualification, and declaration
221 * order. The precision doesn’t need to match.
222 */
223 if (!output->type->record_compare(type_to_match,
224 false, /* match_name */
225 true, /* match_locations */
226 false /* match_precision */)) {
227 linker_error(prog,
228 "%s shader output `%s' declared as struct `%s', "
229 "doesn't match in type with %s shader input "
230 "declared as struct `%s'\n",
231 _mesa_shader_stage_to_string(producer_stage),
232 output->name,
233 output->type->name,
234 _mesa_shader_stage_to_string(consumer_stage),
235 input->type->name);
236 }
237 } else if (!output->type->is_array() || !is_gl_identifier(output->name)) {
238 /* There is a bit of a special case for gl_TexCoord. This
239 * built-in is unsized by default. Applications that variable
240 * access it must redeclare it with a size. There is some
241 * language in the GLSL spec that implies the fragment shader
242 * and vertex shader do not have to agree on this size. Other
243 * driver behave this way, and one or two applications seem to
244 * rely on it.
245 *
246 * Neither declaration needs to be modified here because the array
247 * sizes are fixed later when update_array_sizes is called.
248 *
249 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
250 *
251 * "Unlike user-defined varying variables, the built-in
252 * varying variables don't have a strict one-to-one
253 * correspondence between the vertex language and the
254 * fragment language."
255 */
256 linker_error(prog,
257 "%s shader output `%s' declared as type `%s', "
258 "but %s shader input declared as type `%s'\n",
259 _mesa_shader_stage_to_string(producer_stage),
260 output->name,
261 output->type->name,
262 _mesa_shader_stage_to_string(consumer_stage),
263 input->type->name);
264 return;
265 }
266 }
267
268 /* Check that all of the qualifiers match between stages.
269 */
270
271 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
272 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
273 * conformance test suite does not verify that the qualifiers must match.
274 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
275 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
276 */
277 if (false /* always skip the centroid check */ &&
278 prog->data->Version < (prog->IsES ? 310 : 430) &&
279 input->data.centroid != output->data.centroid) {
280 linker_error(prog,
281 "%s shader output `%s' %s centroid qualifier, "
282 "but %s shader input %s centroid qualifier\n",
283 _mesa_shader_stage_to_string(producer_stage),
284 output->name,
285 (output->data.centroid) ? "has" : "lacks",
286 _mesa_shader_stage_to_string(consumer_stage),
287 (input->data.centroid) ? "has" : "lacks");
288 return;
289 }
290
291 if (input->data.sample != output->data.sample) {
292 linker_error(prog,
293 "%s shader output `%s' %s sample qualifier, "
294 "but %s shader input %s sample qualifier\n",
295 _mesa_shader_stage_to_string(producer_stage),
296 output->name,
297 (output->data.sample) ? "has" : "lacks",
298 _mesa_shader_stage_to_string(consumer_stage),
299 (input->data.sample) ? "has" : "lacks");
300 return;
301 }
302
303 if (input->data.patch != output->data.patch) {
304 linker_error(prog,
305 "%s shader output `%s' %s patch qualifier, "
306 "but %s shader input %s patch qualifier\n",
307 _mesa_shader_stage_to_string(producer_stage),
308 output->name,
309 (output->data.patch) ? "has" : "lacks",
310 _mesa_shader_stage_to_string(consumer_stage),
311 (input->data.patch) ? "has" : "lacks");
312 return;
313 }
314
315 /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
316 *
317 * "As only outputs need be declared with invariant, an output from
318 * one shader stage will still match an input of a subsequent stage
319 * without the input being declared as invariant."
320 *
321 * while GLSL 4.20 says:
322 *
323 * "For variables leaving one shader and coming into another shader,
324 * the invariant keyword has to be used in both shaders, or a link
325 * error will result."
326 *
327 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
328 *
329 * "The invariance of varyings that are declared in both the vertex
330 * and fragment shaders must match."
331 */
332 if (input->data.explicit_invariant != output->data.explicit_invariant &&
333 prog->data->Version < (prog->IsES ? 300 : 430)) {
334 linker_error(prog,
335 "%s shader output `%s' %s invariant qualifier, "
336 "but %s shader input %s invariant qualifier\n",
337 _mesa_shader_stage_to_string(producer_stage),
338 output->name,
339 (output->data.explicit_invariant) ? "has" : "lacks",
340 _mesa_shader_stage_to_string(consumer_stage),
341 (input->data.explicit_invariant) ? "has" : "lacks");
342 return;
343 }
344
345 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
346 * to match cross stage, they must only match within the same stage.
347 *
348 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
349 *
350 * "It is a link-time error if, within the same stage, the interpolation
351 * qualifiers of variables of the same name do not match.
352 *
353 * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
354 *
355 * "When no interpolation qualifier is present, smooth interpolation
356 * is used."
357 *
358 * So we match variables where one is smooth and the other has no explicit
359 * qualifier.
360 */
361 unsigned input_interpolation = input->data.interpolation;
362 unsigned output_interpolation = output->data.interpolation;
363 if (prog->IsES) {
364 if (input_interpolation == INTERP_MODE_NONE)
365 input_interpolation = INTERP_MODE_SMOOTH;
366 if (output_interpolation == INTERP_MODE_NONE)
367 output_interpolation = INTERP_MODE_SMOOTH;
368 }
369 if (input_interpolation != output_interpolation &&
370 prog->data->Version < 440) {
371 if (!ctx->Const.AllowGLSLCrossStageInterpolationMismatch) {
372 linker_error(prog,
373 "%s shader output `%s' specifies %s "
374 "interpolation qualifier, "
375 "but %s shader input specifies %s "
376 "interpolation qualifier\n",
377 _mesa_shader_stage_to_string(producer_stage),
378 output->name,
379 interpolation_string(output->data.interpolation),
380 _mesa_shader_stage_to_string(consumer_stage),
381 interpolation_string(input->data.interpolation));
382 return;
383 } else {
384 linker_warning(prog,
385 "%s shader output `%s' specifies %s "
386 "interpolation qualifier, "
387 "but %s shader input specifies %s "
388 "interpolation qualifier\n",
389 _mesa_shader_stage_to_string(producer_stage),
390 output->name,
391 interpolation_string(output->data.interpolation),
392 _mesa_shader_stage_to_string(consumer_stage),
393 interpolation_string(input->data.interpolation));
394 }
395 }
396 }
397
398 /**
399 * Validate front and back color outputs against single color input
400 */
401 static void
402 cross_validate_front_and_back_color(struct gl_context *ctx,
403 struct gl_shader_program *prog,
404 const ir_variable *input,
405 const ir_variable *front_color,
406 const ir_variable *back_color,
407 gl_shader_stage consumer_stage,
408 gl_shader_stage producer_stage)
409 {
410 if (front_color != NULL && front_color->data.assigned)
411 cross_validate_types_and_qualifiers(ctx, prog, input, front_color,
412 consumer_stage, producer_stage);
413
414 if (back_color != NULL && back_color->data.assigned)
415 cross_validate_types_and_qualifiers(ctx, prog, input, back_color,
416 consumer_stage, producer_stage);
417 }
418
419 static unsigned
420 compute_variable_location_slot(ir_variable *var, gl_shader_stage stage)
421 {
422 unsigned location_start = VARYING_SLOT_VAR0;
423
424 switch (stage) {
425 case MESA_SHADER_VERTEX:
426 if (var->data.mode == ir_var_shader_in)
427 location_start = VERT_ATTRIB_GENERIC0;
428 break;
429 case MESA_SHADER_TESS_CTRL:
430 case MESA_SHADER_TESS_EVAL:
431 if (var->data.patch)
432 location_start = VARYING_SLOT_PATCH0;
433 break;
434 case MESA_SHADER_FRAGMENT:
435 if (var->data.mode == ir_var_shader_out)
436 location_start = FRAG_RESULT_DATA0;
437 break;
438 default:
439 break;
440 }
441
442 return var->data.location - location_start;
443 }
444
445 struct explicit_location_info {
446 ir_variable *var;
447 bool base_type_is_integer;
448 unsigned base_type_bit_size;
449 unsigned interpolation;
450 bool centroid;
451 bool sample;
452 bool patch;
453 };
454
455 static bool
456 check_location_aliasing(struct explicit_location_info explicit_locations[][4],
457 ir_variable *var,
458 unsigned location,
459 unsigned component,
460 unsigned location_limit,
461 const glsl_type *type,
462 unsigned interpolation,
463 bool centroid,
464 bool sample,
465 bool patch,
466 gl_shader_program *prog,
467 gl_shader_stage stage)
468 {
469 unsigned last_comp;
470 unsigned base_type_bit_size;
471 const glsl_type *type_without_array = type->without_array();
472 const bool base_type_is_integer =
473 glsl_base_type_is_integer(type_without_array->base_type);
474 const bool is_struct = type_without_array->is_struct();
475 if (is_struct) {
476 /* structs don't have a defined underlying base type so just treat all
477 * component slots as used and set the bit size to 0. If there is
478 * location aliasing, we'll fail anyway later.
479 */
480 last_comp = 4;
481 base_type_bit_size = 0;
482 } else {
483 unsigned dmul = type_without_array->is_64bit() ? 2 : 1;
484 last_comp = component + type_without_array->vector_elements * dmul;
485 base_type_bit_size =
486 glsl_base_type_get_bit_size(type_without_array->base_type);
487 }
488
489 while (location < location_limit) {
490 unsigned comp = 0;
491 while (comp < 4) {
492 struct explicit_location_info *info =
493 &explicit_locations[location][comp];
494
495 if (info->var) {
496 if (info->var->type->without_array()->is_struct() || is_struct) {
497 /* Structs cannot share location since they are incompatible
498 * with any other underlying numerical type.
499 */
500 linker_error(prog,
501 "%s shader has multiple %sputs sharing the "
502 "same location that don't have the same "
503 "underlying numerical type. Struct variable '%s', "
504 "location %u\n",
505 _mesa_shader_stage_to_string(stage),
506 var->data.mode == ir_var_shader_in ? "in" : "out",
507 is_struct ? var->name : info->var->name,
508 location);
509 return false;
510 } else if (comp >= component && comp < last_comp) {
511 /* Component aliasing is not allowed */
512 linker_error(prog,
513 "%s shader has multiple %sputs explicitly "
514 "assigned to location %d and component %d\n",
515 _mesa_shader_stage_to_string(stage),
516 var->data.mode == ir_var_shader_in ? "in" : "out",
517 location, comp);
518 return false;
519 } else {
520 /* From the OpenGL 4.60.5 spec, section 4.4.1 Input Layout
521 * Qualifiers, Page 67, (Location aliasing):
522 *
523 * " Further, when location aliasing, the aliases sharing the
524 * location must have the same underlying numerical type
525 * and bit width (floating-point or integer, 32-bit versus
526 * 64-bit, etc.) and the same auxiliary storage and
527 * interpolation qualification."
528 */
529
530 /* If the underlying numerical type isn't integer, implicitly
531 * it will be float or else we would have failed by now.
532 */
533 if (info->base_type_is_integer != base_type_is_integer) {
534 linker_error(prog,
535 "%s shader has multiple %sputs sharing the "
536 "same location that don't have the same "
537 "underlying numerical type. Location %u "
538 "component %u.\n",
539 _mesa_shader_stage_to_string(stage),
540 var->data.mode == ir_var_shader_in ?
541 "in" : "out", location, comp);
542 return false;
543 }
544
545 if (info->base_type_bit_size != base_type_bit_size) {
546 linker_error(prog,
547 "%s shader has multiple %sputs sharing the "
548 "same location that don't have the same "
549 "underlying numerical bit size. Location %u "
550 "component %u.\n",
551 _mesa_shader_stage_to_string(stage),
552 var->data.mode == ir_var_shader_in ?
553 "in" : "out", location, comp);
554 return false;
555 }
556
557 if (info->interpolation != interpolation) {
558 linker_error(prog,
559 "%s shader has multiple %sputs sharing the "
560 "same location that don't have the same "
561 "interpolation qualification. Location %u "
562 "component %u.\n",
563 _mesa_shader_stage_to_string(stage),
564 var->data.mode == ir_var_shader_in ?
565 "in" : "out", location, comp);
566 return false;
567 }
568
569 if (info->centroid != centroid ||
570 info->sample != sample ||
571 info->patch != patch) {
572 linker_error(prog,
573 "%s shader has multiple %sputs sharing the "
574 "same location that don't have the same "
575 "auxiliary storage qualification. Location %u "
576 "component %u.\n",
577 _mesa_shader_stage_to_string(stage),
578 var->data.mode == ir_var_shader_in ?
579 "in" : "out", location, comp);
580 return false;
581 }
582 }
583 } else if (comp >= component && comp < last_comp) {
584 info->var = var;
585 info->base_type_is_integer = base_type_is_integer;
586 info->base_type_bit_size = base_type_bit_size;
587 info->interpolation = interpolation;
588 info->centroid = centroid;
589 info->sample = sample;
590 info->patch = patch;
591 }
592
593 comp++;
594
595 /* We need to do some special handling for doubles as dvec3 and
596 * dvec4 consume two consecutive locations. We don't need to
597 * worry about components beginning at anything other than 0 as
598 * the spec does not allow this for dvec3 and dvec4.
599 */
600 if (comp == 4 && last_comp > 4) {
601 last_comp = last_comp - 4;
602 /* Bump location index and reset the component index */
603 location++;
604 comp = 0;
605 component = 0;
606 }
607 }
608
609 location++;
610 }
611
612 return true;
613 }
614
615 static bool
616 validate_explicit_variable_location(struct gl_context *ctx,
617 struct explicit_location_info explicit_locations[][4],
618 ir_variable *var,
619 gl_shader_program *prog,
620 gl_linked_shader *sh)
621 {
622 const glsl_type *type = get_varying_type(var, sh->Stage);
623 unsigned num_elements = type->count_attribute_slots(false);
624 unsigned idx = compute_variable_location_slot(var, sh->Stage);
625 unsigned slot_limit = idx + num_elements;
626
627 /* Vertex shader inputs and fragment shader outputs are validated in
628 * assign_attribute_or_color_locations() so we should not attempt to
629 * validate them again here.
630 */
631 unsigned slot_max;
632 if (var->data.mode == ir_var_shader_out) {
633 assert(sh->Stage != MESA_SHADER_FRAGMENT);
634 slot_max =
635 ctx->Const.Program[sh->Stage].MaxOutputComponents / 4;
636 } else {
637 assert(var->data.mode == ir_var_shader_in);
638 assert(sh->Stage != MESA_SHADER_VERTEX);
639 slot_max =
640 ctx->Const.Program[sh->Stage].MaxInputComponents / 4;
641 }
642
643 if (slot_limit > slot_max) {
644 linker_error(prog,
645 "Invalid location %u in %s shader\n",
646 idx, _mesa_shader_stage_to_string(sh->Stage));
647 return false;
648 }
649
650 const glsl_type *type_without_array = type->without_array();
651 if (type_without_array->is_interface()) {
652 for (unsigned i = 0; i < type_without_array->length; i++) {
653 glsl_struct_field *field = &type_without_array->fields.structure[i];
654 unsigned field_location = field->location -
655 (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
656 if (!check_location_aliasing(explicit_locations, var,
657 field_location,
658 0, field_location + 1,
659 field->type,
660 field->interpolation,
661 field->centroid,
662 field->sample,
663 field->patch,
664 prog, sh->Stage)) {
665 return false;
666 }
667 }
668 } else if (!check_location_aliasing(explicit_locations, var,
669 idx, var->data.location_frac,
670 slot_limit, type,
671 var->data.interpolation,
672 var->data.centroid,
673 var->data.sample,
674 var->data.patch,
675 prog, sh->Stage)) {
676 return false;
677 }
678
679 return true;
680 }
681
682 /**
683 * Validate explicit locations for the inputs to the first stage and the
684 * outputs of the last stage in a program, if those are not the VS and FS
685 * shaders.
686 */
687 void
688 validate_first_and_last_interface_explicit_locations(struct gl_context *ctx,
689 struct gl_shader_program *prog,
690 gl_shader_stage first_stage,
691 gl_shader_stage last_stage)
692 {
693 /* VS inputs and FS outputs are validated in
694 * assign_attribute_or_color_locations()
695 */
696 bool validate_first_stage = first_stage != MESA_SHADER_VERTEX;
697 bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT;
698 if (!validate_first_stage && !validate_last_stage)
699 return;
700
701 struct explicit_location_info explicit_locations[MAX_VARYING][4];
702
703 gl_shader_stage stages[2] = { first_stage, last_stage };
704 bool validate_stage[2] = { validate_first_stage, validate_last_stage };
705 ir_variable_mode var_direction[2] = { ir_var_shader_in, ir_var_shader_out };
706
707 for (unsigned i = 0; i < 2; i++) {
708 if (!validate_stage[i])
709 continue;
710
711 gl_shader_stage stage = stages[i];
712
713 gl_linked_shader *sh = prog->_LinkedShaders[stage];
714 assert(sh);
715
716 memset(explicit_locations, 0, sizeof(explicit_locations));
717
718 foreach_in_list(ir_instruction, node, sh->ir) {
719 ir_variable *const var = node->as_variable();
720
721 if (var == NULL ||
722 !var->data.explicit_location ||
723 var->data.location < VARYING_SLOT_VAR0 ||
724 var->data.mode != var_direction[i])
725 continue;
726
727 if (!validate_explicit_variable_location(
728 ctx, explicit_locations, var, prog, sh)) {
729 return;
730 }
731 }
732 }
733 }
734
735 /**
736 * Validate that outputs from one stage match inputs of another
737 */
738 void
739 cross_validate_outputs_to_inputs(struct gl_context *ctx,
740 struct gl_shader_program *prog,
741 gl_linked_shader *producer,
742 gl_linked_shader *consumer)
743 {
744 glsl_symbol_table parameters;
745 struct explicit_location_info output_explicit_locations[MAX_VARYING][4] = {};
746 struct explicit_location_info input_explicit_locations[MAX_VARYING][4] = {};
747
748 /* Find all shader outputs in the "producer" stage.
749 */
750 foreach_in_list(ir_instruction, node, producer->ir) {
751 ir_variable *const var = node->as_variable();
752
753 if (var == NULL || var->data.mode != ir_var_shader_out)
754 continue;
755
756 if (!var->data.explicit_location
757 || var->data.location < VARYING_SLOT_VAR0)
758 parameters.add_variable(var);
759 else {
760 /* User-defined varyings with explicit locations are handled
761 * differently because they do not need to have matching names.
762 */
763 if (!validate_explicit_variable_location(ctx,
764 output_explicit_locations,
765 var, prog, producer)) {
766 return;
767 }
768 }
769 }
770
771
772 /* Find all shader inputs in the "consumer" stage. Any variables that have
773 * matching outputs already in the symbol table must have the same type and
774 * qualifiers.
775 *
776 * Exception: if the consumer is the geometry shader, then the inputs
777 * should be arrays and the type of the array element should match the type
778 * of the corresponding producer output.
779 */
780 foreach_in_list(ir_instruction, node, consumer->ir) {
781 ir_variable *const input = node->as_variable();
782
783 if (input == NULL || input->data.mode != ir_var_shader_in)
784 continue;
785
786 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
787 const ir_variable *const front_color =
788 parameters.get_variable("gl_FrontColor");
789
790 const ir_variable *const back_color =
791 parameters.get_variable("gl_BackColor");
792
793 cross_validate_front_and_back_color(ctx, prog, input,
794 front_color, back_color,
795 consumer->Stage, producer->Stage);
796 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
797 const ir_variable *const front_color =
798 parameters.get_variable("gl_FrontSecondaryColor");
799
800 const ir_variable *const back_color =
801 parameters.get_variable("gl_BackSecondaryColor");
802
803 cross_validate_front_and_back_color(ctx, prog, input,
804 front_color, back_color,
805 consumer->Stage, producer->Stage);
806 } else {
807 /* The rules for connecting inputs and outputs change in the presence
808 * of explicit locations. In this case, we no longer care about the
809 * names of the variables. Instead, we care only about the
810 * explicitly assigned location.
811 */
812 ir_variable *output = NULL;
813 if (input->data.explicit_location
814 && input->data.location >= VARYING_SLOT_VAR0) {
815
816 const glsl_type *type = get_varying_type(input, consumer->Stage);
817 unsigned num_elements = type->count_attribute_slots(false);
818 unsigned idx =
819 compute_variable_location_slot(input, consumer->Stage);
820 unsigned slot_limit = idx + num_elements;
821
822 if (!validate_explicit_variable_location(ctx,
823 input_explicit_locations,
824 input, prog, consumer)) {
825 return;
826 }
827
828 while (idx < slot_limit) {
829 if (idx >= MAX_VARYING) {
830 linker_error(prog,
831 "Invalid location %u in %s shader\n", idx,
832 _mesa_shader_stage_to_string(consumer->Stage));
833 return;
834 }
835
836 output = output_explicit_locations[idx][input->data.location_frac].var;
837
838 if (output == NULL) {
839 /* A linker failure should only happen when there is no
840 * output declaration and there is Static Use of the
841 * declared input.
842 */
843 if (input->data.used) {
844 linker_error(prog,
845 "%s shader input `%s' with explicit location "
846 "has no matching output\n",
847 _mesa_shader_stage_to_string(consumer->Stage),
848 input->name);
849 break;
850 }
851 } else if (input->data.location != output->data.location) {
852 linker_error(prog,
853 "%s shader input `%s' with explicit location "
854 "has no matching output\n",
855 _mesa_shader_stage_to_string(consumer->Stage),
856 input->name);
857 break;
858 }
859 idx++;
860 }
861 } else {
862 output = parameters.get_variable(input->name);
863 }
864
865 if (output != NULL) {
866 /* Interface blocks have their own validation elsewhere so don't
867 * try validating them here.
868 */
869 if (!(input->get_interface_type() &&
870 output->get_interface_type()))
871 cross_validate_types_and_qualifiers(ctx, prog, input, output,
872 consumer->Stage,
873 producer->Stage);
874 } else {
875 /* Check for input vars with unmatched output vars in prev stage
876 * taking into account that interface blocks could have a matching
877 * output but with different name, so we ignore them.
878 */
879 assert(!input->data.assigned);
880 if (input->data.used && !input->get_interface_type() &&
881 !input->data.explicit_location)
882 linker_error(prog,
883 "%s shader input `%s' "
884 "has no matching output in the previous stage\n",
885 _mesa_shader_stage_to_string(consumer->Stage),
886 input->name);
887 }
888 }
889 }
890 }
891
892 /**
893 * Demote shader inputs and outputs that are not used in other stages, and
894 * remove them via dead code elimination.
895 */
896 static void
897 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
898 gl_linked_shader *sh,
899 enum ir_variable_mode mode)
900 {
901 if (is_separate_shader_object)
902 return;
903
904 foreach_in_list(ir_instruction, node, sh->ir) {
905 ir_variable *const var = node->as_variable();
906
907 if (var == NULL || var->data.mode != int(mode))
908 continue;
909
910 /* A shader 'in' or 'out' variable is only really an input or output if
911 * its value is used by other shader stages. This will cause the
912 * variable to have a location assigned.
913 */
914 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
915 assert(var->data.mode != ir_var_temporary);
916
917 /* Assign zeros to demoted inputs to allow more optimizations. */
918 if (var->data.mode == ir_var_shader_in && !var->constant_value)
919 var->constant_value = ir_constant::zero(var, var->type);
920
921 var->data.mode = ir_var_auto;
922 }
923 }
924
925 /* Eliminate code that is now dead due to unused inputs/outputs being
926 * demoted.
927 */
928 while (do_dead_code(sh->ir, false))
929 ;
930
931 }
932
933 /**
934 * Initialize this object based on a string that was passed to
935 * glTransformFeedbackVaryings.
936 *
937 * If the input is mal-formed, this call still succeeds, but it sets
938 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
939 * will fail to find any matching variable.
940 */
941 void
942 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
943 const char *input)
944 {
945 /* We don't have to be pedantic about what is a valid GLSL variable name,
946 * because any variable with an invalid name can't exist in the IR anyway.
947 */
948
949 this->location = -1;
950 this->orig_name = input;
951 this->lowered_builtin_array_variable = none;
952 this->skip_components = 0;
953 this->next_buffer_separator = false;
954 this->matched_candidate = NULL;
955 this->stream_id = 0;
956 this->buffer = 0;
957 this->offset = 0;
958
959 if (ctx->Extensions.ARB_transform_feedback3) {
960 /* Parse gl_NextBuffer. */
961 if (strcmp(input, "gl_NextBuffer") == 0) {
962 this->next_buffer_separator = true;
963 return;
964 }
965
966 /* Parse gl_SkipComponents. */
967 if (strcmp(input, "gl_SkipComponents1") == 0)
968 this->skip_components = 1;
969 else if (strcmp(input, "gl_SkipComponents2") == 0)
970 this->skip_components = 2;
971 else if (strcmp(input, "gl_SkipComponents3") == 0)
972 this->skip_components = 3;
973 else if (strcmp(input, "gl_SkipComponents4") == 0)
974 this->skip_components = 4;
975
976 if (this->skip_components)
977 return;
978 }
979
980 /* Parse a declaration. */
981 const char *base_name_end;
982 long subscript = parse_program_resource_name(input, &base_name_end);
983 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
984 if (this->var_name == NULL) {
985 _mesa_error_no_memory(__func__);
986 return;
987 }
988
989 if (subscript >= 0) {
990 this->array_subscript = subscript;
991 this->is_subscripted = true;
992 } else {
993 this->is_subscripted = false;
994 }
995
996 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
997 * class must behave specially to account for the fact that gl_ClipDistance
998 * is converted from a float[8] to a vec4[2].
999 */
1000 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
1001 strcmp(this->var_name, "gl_ClipDistance") == 0) {
1002 this->lowered_builtin_array_variable = clip_distance;
1003 }
1004 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
1005 strcmp(this->var_name, "gl_CullDistance") == 0) {
1006 this->lowered_builtin_array_variable = cull_distance;
1007 }
1008
1009 if (ctx->Const.LowerTessLevel &&
1010 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
1011 this->lowered_builtin_array_variable = tess_level_outer;
1012 if (ctx->Const.LowerTessLevel &&
1013 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
1014 this->lowered_builtin_array_variable = tess_level_inner;
1015 }
1016
1017
1018 /**
1019 * Determine whether two tfeedback_decl objects refer to the same variable and
1020 * array index (if applicable).
1021 */
1022 bool
1023 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1024 {
1025 assert(x.is_varying() && y.is_varying());
1026
1027 if (strcmp(x.var_name, y.var_name) != 0)
1028 return false;
1029 if (x.is_subscripted != y.is_subscripted)
1030 return false;
1031 if (x.is_subscripted && x.array_subscript != y.array_subscript)
1032 return false;
1033 return true;
1034 }
1035
1036
1037 /**
1038 * Assign a location and stream ID for this tfeedback_decl object based on the
1039 * transform feedback candidate found by find_candidate.
1040 *
1041 * If an error occurs, the error is reported through linker_error() and false
1042 * is returned.
1043 */
1044 bool
1045 tfeedback_decl::assign_location(struct gl_context *ctx,
1046 struct gl_shader_program *prog)
1047 {
1048 assert(this->is_varying());
1049
1050 unsigned fine_location
1051 = this->matched_candidate->toplevel_var->data.location * 4
1052 + this->matched_candidate->toplevel_var->data.location_frac
1053 + this->matched_candidate->offset;
1054 const unsigned dmul =
1055 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
1056
1057 if (this->matched_candidate->type->is_array()) {
1058 /* Array variable */
1059 const unsigned matrix_cols =
1060 this->matched_candidate->type->fields.array->matrix_columns;
1061 const unsigned vector_elements =
1062 this->matched_candidate->type->fields.array->vector_elements;
1063 unsigned actual_array_size;
1064 switch (this->lowered_builtin_array_variable) {
1065 case clip_distance:
1066 actual_array_size = prog->last_vert_prog ?
1067 prog->last_vert_prog->info.clip_distance_array_size : 0;
1068 break;
1069 case cull_distance:
1070 actual_array_size = prog->last_vert_prog ?
1071 prog->last_vert_prog->info.cull_distance_array_size : 0;
1072 break;
1073 case tess_level_outer:
1074 actual_array_size = 4;
1075 break;
1076 case tess_level_inner:
1077 actual_array_size = 2;
1078 break;
1079 case none:
1080 default:
1081 actual_array_size = this->matched_candidate->type->array_size();
1082 break;
1083 }
1084
1085 if (this->is_subscripted) {
1086 /* Check array bounds. */
1087 if (this->array_subscript >= actual_array_size) {
1088 linker_error(prog, "Transform feedback varying %s has index "
1089 "%i, but the array size is %u.",
1090 this->orig_name, this->array_subscript,
1091 actual_array_size);
1092 return false;
1093 }
1094 unsigned array_elem_size = this->lowered_builtin_array_variable ?
1095 1 : vector_elements * matrix_cols * dmul;
1096 fine_location += array_elem_size * this->array_subscript;
1097 this->size = 1;
1098 } else {
1099 this->size = actual_array_size;
1100 }
1101 this->vector_elements = vector_elements;
1102 this->matrix_columns = matrix_cols;
1103 if (this->lowered_builtin_array_variable)
1104 this->type = GL_FLOAT;
1105 else
1106 this->type = this->matched_candidate->type->fields.array->gl_type;
1107 } else {
1108 /* Regular variable (scalar, vector, or matrix) */
1109 if (this->is_subscripted) {
1110 linker_error(prog, "Transform feedback varying %s requested, "
1111 "but %s is not an array.",
1112 this->orig_name, this->var_name);
1113 return false;
1114 }
1115 this->size = 1;
1116 this->vector_elements = this->matched_candidate->type->vector_elements;
1117 this->matrix_columns = this->matched_candidate->type->matrix_columns;
1118 this->type = this->matched_candidate->type->gl_type;
1119 }
1120 this->location = fine_location / 4;
1121 this->location_frac = fine_location % 4;
1122
1123 /* From GL_EXT_transform_feedback:
1124 * A program will fail to link if:
1125 *
1126 * * the total number of components to capture in any varying
1127 * variable in <varyings> is greater than the constant
1128 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1129 * buffer mode is SEPARATE_ATTRIBS_EXT;
1130 */
1131 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1132 this->num_components() >
1133 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1134 linker_error(prog, "Transform feedback varying %s exceeds "
1135 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1136 this->orig_name);
1137 return false;
1138 }
1139
1140 /* Only transform feedback varyings can be assigned to non-zero streams,
1141 * so assign the stream id here.
1142 */
1143 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
1144
1145 unsigned array_offset = this->array_subscript * 4 * dmul;
1146 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
1147 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
1148 this->offset = this->matched_candidate->toplevel_var->data.offset +
1149 array_offset + struct_offset;
1150
1151 return true;
1152 }
1153
1154
1155 unsigned
1156 tfeedback_decl::get_num_outputs() const
1157 {
1158 if (!this->is_varying()) {
1159 return 0;
1160 }
1161 return (this->num_components() + this->location_frac + 3)/4;
1162 }
1163
1164
1165 /**
1166 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1167 *
1168 * If an error occurs, the error is reported through linker_error() and false
1169 * is returned.
1170 */
1171 bool
1172 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1173 struct gl_transform_feedback_info *info,
1174 unsigned buffer, unsigned buffer_index,
1175 const unsigned max_outputs,
1176 BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS],
1177 bool *explicit_stride, bool has_xfb_qualifiers,
1178 const void* mem_ctx) const
1179 {
1180 unsigned xfb_offset = 0;
1181 unsigned size = this->size;
1182 /* Handle gl_SkipComponents. */
1183 if (this->skip_components) {
1184 info->Buffers[buffer].Stride += this->skip_components;
1185 size = this->skip_components;
1186 goto store_varying;
1187 }
1188
1189 if (this->next_buffer_separator) {
1190 size = 0;
1191 goto store_varying;
1192 }
1193
1194 if (has_xfb_qualifiers) {
1195 xfb_offset = this->offset / 4;
1196 } else {
1197 xfb_offset = info->Buffers[buffer].Stride;
1198 }
1199 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
1200
1201 {
1202 unsigned location = this->location;
1203 unsigned location_frac = this->location_frac;
1204 unsigned num_components = this->num_components();
1205
1206 /* From GL_EXT_transform_feedback:
1207 *
1208 * " A program will fail to link if:
1209 *
1210 * * the total number of components to capture is greater than the
1211 * constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1212 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT."
1213 *
1214 * From GL_ARB_enhanced_layouts:
1215 *
1216 * " The resulting stride (implicit or explicit) must be less than or
1217 * equal to the implementation-dependent constant
1218 * gl_MaxTransformFeedbackInterleavedComponents."
1219 */
1220 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
1221 has_xfb_qualifiers) &&
1222 xfb_offset + num_components >
1223 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1224 linker_error(prog,
1225 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1226 "limit has been exceeded.");
1227 return false;
1228 }
1229
1230 /* From the OpenGL 4.60.5 spec, section 4.4.2. Output Layout Qualifiers,
1231 * Page 76, (Transform Feedback Layout Qualifiers):
1232 *
1233 * " No aliasing in output buffers is allowed: It is a compile-time or
1234 * link-time error to specify variables with overlapping transform
1235 * feedback offsets."
1236 */
1237 const unsigned max_components =
1238 ctx->Const.MaxTransformFeedbackInterleavedComponents;
1239 const unsigned first_component = xfb_offset;
1240 const unsigned last_component = xfb_offset + num_components - 1;
1241 const unsigned start_word = BITSET_BITWORD(first_component);
1242 const unsigned end_word = BITSET_BITWORD(last_component);
1243 BITSET_WORD *used;
1244 assert(last_component < max_components);
1245
1246 if (!used_components[buffer]) {
1247 used_components[buffer] =
1248 rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_components));
1249 }
1250 used = used_components[buffer];
1251
1252 for (unsigned word = start_word; word <= end_word; word++) {
1253 unsigned start_range = 0;
1254 unsigned end_range = BITSET_WORDBITS - 1;
1255
1256 if (word == start_word)
1257 start_range = first_component % BITSET_WORDBITS;
1258
1259 if (word == end_word)
1260 end_range = last_component % BITSET_WORDBITS;
1261
1262 if (used[word] & BITSET_RANGE(start_range, end_range)) {
1263 linker_error(prog,
1264 "variable '%s', xfb_offset (%d) is causing aliasing.",
1265 this->orig_name, xfb_offset * 4);
1266 return false;
1267 }
1268 used[word] |= BITSET_RANGE(start_range, end_range);
1269 }
1270
1271 while (num_components > 0) {
1272 unsigned output_size = MIN2(num_components, 4 - location_frac);
1273 assert((info->NumOutputs == 0 && max_outputs == 0) ||
1274 info->NumOutputs < max_outputs);
1275
1276 /* From the ARB_enhanced_layouts spec:
1277 *
1278 * "If such a block member or variable is not written during a shader
1279 * invocation, the buffer contents at the assigned offset will be
1280 * undefined. Even if there are no static writes to a variable or
1281 * member that is assigned a transform feedback offset, the space is
1282 * still allocated in the buffer and still affects the stride."
1283 */
1284 if (this->is_varying_written()) {
1285 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
1286 info->Outputs[info->NumOutputs].OutputRegister = location;
1287 info->Outputs[info->NumOutputs].NumComponents = output_size;
1288 info->Outputs[info->NumOutputs].StreamId = stream_id;
1289 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1290 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
1291 ++info->NumOutputs;
1292 }
1293 info->Buffers[buffer].Stream = this->stream_id;
1294 xfb_offset += output_size;
1295
1296 num_components -= output_size;
1297 location++;
1298 location_frac = 0;
1299 }
1300 }
1301
1302 if (explicit_stride && explicit_stride[buffer]) {
1303 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
1304 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1305 "multiple of 8 as its applied to a type that is or "
1306 "contains a double.",
1307 info->Buffers[buffer].Stride * 4);
1308 return false;
1309 }
1310
1311 if (xfb_offset > info->Buffers[buffer].Stride) {
1312 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
1313 "buffer (%d)", xfb_offset * 4,
1314 info->Buffers[buffer].Stride * 4, buffer);
1315 return false;
1316 }
1317 } else {
1318 info->Buffers[buffer].Stride = xfb_offset;
1319 }
1320
1321 store_varying:
1322 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
1323 this->orig_name);
1324 info->Varyings[info->NumVarying].Type = this->type;
1325 info->Varyings[info->NumVarying].Size = size;
1326 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
1327 info->NumVarying++;
1328 info->Buffers[buffer].NumVaryings++;
1329
1330 return true;
1331 }
1332
1333
1334 const tfeedback_candidate *
1335 tfeedback_decl::find_candidate(gl_shader_program *prog,
1336 hash_table *tfeedback_candidates)
1337 {
1338 const char *name = this->var_name;
1339 switch (this->lowered_builtin_array_variable) {
1340 case none:
1341 name = this->var_name;
1342 break;
1343 case clip_distance:
1344 name = "gl_ClipDistanceMESA";
1345 break;
1346 case cull_distance:
1347 name = "gl_CullDistanceMESA";
1348 break;
1349 case tess_level_outer:
1350 name = "gl_TessLevelOuterMESA";
1351 break;
1352 case tess_level_inner:
1353 name = "gl_TessLevelInnerMESA";
1354 break;
1355 }
1356 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
1357
1358 this->matched_candidate = entry ?
1359 (const tfeedback_candidate *) entry->data : NULL;
1360
1361 if (!this->matched_candidate) {
1362 /* From GL_EXT_transform_feedback:
1363 * A program will fail to link if:
1364 *
1365 * * any variable name specified in the <varyings> array is not
1366 * declared as an output in the geometry shader (if present) or
1367 * the vertex shader (if no geometry shader is present);
1368 */
1369 linker_error(prog, "Transform feedback varying %s undeclared.",
1370 this->orig_name);
1371 }
1372
1373 return this->matched_candidate;
1374 }
1375
1376
1377 /**
1378 * Parse all the transform feedback declarations that were passed to
1379 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1380 *
1381 * If an error occurs, the error is reported through linker_error() and false
1382 * is returned.
1383 */
1384 static bool
1385 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1386 const void *mem_ctx, unsigned num_names,
1387 char **varying_names, tfeedback_decl *decls)
1388 {
1389 for (unsigned i = 0; i < num_names; ++i) {
1390 decls[i].init(ctx, mem_ctx, varying_names[i]);
1391
1392 if (!decls[i].is_varying())
1393 continue;
1394
1395 /* From GL_EXT_transform_feedback:
1396 * A program will fail to link if:
1397 *
1398 * * any two entries in the <varyings> array specify the same varying
1399 * variable;
1400 *
1401 * We interpret this to mean "any two entries in the <varyings> array
1402 * specify the same varying variable and array index", since transform
1403 * feedback of arrays would be useless otherwise.
1404 */
1405 for (unsigned j = 0; j < i; ++j) {
1406 if (decls[j].is_varying()) {
1407 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1408 linker_error(prog, "Transform feedback varying %s specified "
1409 "more than once.", varying_names[i]);
1410 return false;
1411 }
1412 }
1413 }
1414 }
1415 return true;
1416 }
1417
1418
1419 static int
1420 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1421 {
1422 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1423 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1424
1425 if (x->get_buffer() != y->get_buffer())
1426 return x->get_buffer() - y->get_buffer();
1427 return x->get_offset() - y->get_offset();
1428 }
1429
1430 /**
1431 * Store transform feedback location assignments into
1432 * prog->sh.LinkedTransformFeedback based on the data stored in
1433 * tfeedback_decls.
1434 *
1435 * If an error occurs, the error is reported through linker_error() and false
1436 * is returned.
1437 */
1438 static bool
1439 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1440 unsigned num_tfeedback_decls,
1441 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers,
1442 const void *mem_ctx)
1443 {
1444 if (!prog->last_vert_prog)
1445 return true;
1446
1447 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1448 * tracking the number of buffers doesn't overflow.
1449 */
1450 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1451
1452 bool separate_attribs_mode =
1453 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1454
1455 struct gl_program *xfb_prog = prog->last_vert_prog;
1456 xfb_prog->sh.LinkedTransformFeedback =
1457 rzalloc(xfb_prog, struct gl_transform_feedback_info);
1458
1459 /* The xfb_offset qualifier does not have to be used in increasing order
1460 * however some drivers expect to receive the list of transform feedback
1461 * declarations in order so sort it now for convenience.
1462 */
1463 if (has_xfb_qualifiers) {
1464 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1465 cmp_xfb_offset);
1466 }
1467
1468 xfb_prog->sh.LinkedTransformFeedback->Varyings =
1469 rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
1470 num_tfeedback_decls);
1471
1472 unsigned num_outputs = 0;
1473 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1474 if (tfeedback_decls[i].is_varying_written())
1475 num_outputs += tfeedback_decls[i].get_num_outputs();
1476 }
1477
1478 xfb_prog->sh.LinkedTransformFeedback->Outputs =
1479 rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
1480 num_outputs);
1481
1482 unsigned num_buffers = 0;
1483 unsigned buffers = 0;
1484 BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS] = {};
1485
1486 if (!has_xfb_qualifiers && separate_attribs_mode) {
1487 /* GL_SEPARATE_ATTRIBS */
1488 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1489 if (!tfeedback_decls[i].store(ctx, prog,
1490 xfb_prog->sh.LinkedTransformFeedback,
1491 num_buffers, num_buffers, num_outputs,
1492 used_components, NULL,
1493 has_xfb_qualifiers, mem_ctx))
1494 return false;
1495
1496 buffers |= 1 << num_buffers;
1497 num_buffers++;
1498 }
1499 }
1500 else {
1501 /* GL_INVERLEAVED_ATTRIBS */
1502 int buffer_stream_id = -1;
1503 unsigned buffer =
1504 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1505 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1506
1507 /* Apply any xfb_stride global qualifiers */
1508 if (has_xfb_qualifiers) {
1509 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1510 if (prog->TransformFeedback.BufferStride[j]) {
1511 explicit_stride[j] = true;
1512 xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
1513 prog->TransformFeedback.BufferStride[j] / 4;
1514 }
1515 }
1516 }
1517
1518 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1519 if (has_xfb_qualifiers &&
1520 buffer != tfeedback_decls[i].get_buffer()) {
1521 /* we have moved to the next buffer so reset stream id */
1522 buffer_stream_id = -1;
1523 num_buffers++;
1524 }
1525
1526 if (tfeedback_decls[i].is_next_buffer_separator()) {
1527 if (!tfeedback_decls[i].store(ctx, prog,
1528 xfb_prog->sh.LinkedTransformFeedback,
1529 buffer, num_buffers, num_outputs,
1530 used_components, explicit_stride,
1531 has_xfb_qualifiers, mem_ctx))
1532 return false;
1533 num_buffers++;
1534 buffer_stream_id = -1;
1535 continue;
1536 }
1537
1538 if (has_xfb_qualifiers) {
1539 buffer = tfeedback_decls[i].get_buffer();
1540 } else {
1541 buffer = num_buffers;
1542 }
1543
1544 if (tfeedback_decls[i].is_varying()) {
1545 if (buffer_stream_id == -1) {
1546 /* First varying writing to this buffer: remember its stream */
1547 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1548
1549 /* Only mark a buffer as active when there is a varying
1550 * attached to it. This behaviour is based on a revised version
1551 * of section 13.2.2 of the GL 4.6 spec.
1552 */
1553 buffers |= 1 << buffer;
1554 } else if (buffer_stream_id !=
1555 (int) tfeedback_decls[i].get_stream_id()) {
1556 /* Varying writes to the same buffer from a different stream */
1557 linker_error(prog,
1558 "Transform feedback can't capture varyings belonging "
1559 "to different vertex streams in a single buffer. "
1560 "Varying %s writes to buffer from stream %u, other "
1561 "varyings in the same buffer write from stream %u.",
1562 tfeedback_decls[i].name(),
1563 tfeedback_decls[i].get_stream_id(),
1564 buffer_stream_id);
1565 return false;
1566 }
1567 }
1568
1569 if (!tfeedback_decls[i].store(ctx, prog,
1570 xfb_prog->sh.LinkedTransformFeedback,
1571 buffer, num_buffers, num_outputs,
1572 used_components, explicit_stride,
1573 has_xfb_qualifiers, mem_ctx))
1574 return false;
1575 }
1576 }
1577
1578 assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
1579
1580 xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
1581 return true;
1582 }
1583
1584 namespace {
1585
1586 /**
1587 * Data structure recording the relationship between outputs of one shader
1588 * stage (the "producer") and inputs of another (the "consumer").
1589 */
1590 class varying_matches
1591 {
1592 public:
1593 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1594 bool enhanced_layouts_enabled,
1595 gl_shader_stage producer_stage,
1596 gl_shader_stage consumer_stage);
1597 ~varying_matches();
1598 void record(ir_variable *producer_var, ir_variable *consumer_var);
1599 unsigned assign_locations(struct gl_shader_program *prog,
1600 uint8_t components[],
1601 uint64_t reserved_slots);
1602 void store_locations() const;
1603
1604 private:
1605 bool is_varying_packing_safe(const glsl_type *type,
1606 const ir_variable *var) const;
1607
1608 /**
1609 * If true, this driver disables varying packing, so all varyings need to
1610 * be aligned on slot boundaries, and take up a number of slots equal to
1611 * their number of matrix columns times their array size.
1612 *
1613 * Packing may also be disabled because our current packing method is not
1614 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1615 * guaranteed to match across stages.
1616 */
1617 const bool disable_varying_packing;
1618
1619 /**
1620 * If true, this driver has transform feedback enabled. The transform
1621 * feedback code requires at least some packing be done even when varying
1622 * packing is disabled, fortunately where transform feedback requires
1623 * packing it's safe to override the disabled setting. See
1624 * is_varying_packing_safe().
1625 */
1626 const bool xfb_enabled;
1627
1628 const bool enhanced_layouts_enabled;
1629
1630 /**
1631 * Enum representing the order in which varyings are packed within a
1632 * packing class.
1633 *
1634 * Currently we pack vec4's first, then vec2's, then scalar values, then
1635 * vec3's. This order ensures that the only vectors that are at risk of
1636 * having to be "double parked" (split between two adjacent varying slots)
1637 * are the vec3's.
1638 */
1639 enum packing_order_enum {
1640 PACKING_ORDER_VEC4,
1641 PACKING_ORDER_VEC2,
1642 PACKING_ORDER_SCALAR,
1643 PACKING_ORDER_VEC3,
1644 };
1645
1646 static unsigned compute_packing_class(const ir_variable *var);
1647 static packing_order_enum compute_packing_order(const ir_variable *var);
1648 static int match_comparator(const void *x_generic, const void *y_generic);
1649 static int xfb_comparator(const void *x_generic, const void *y_generic);
1650
1651 /**
1652 * Structure recording the relationship between a single producer output
1653 * and a single consumer input.
1654 */
1655 struct match {
1656 /**
1657 * Packing class for this varying, computed by compute_packing_class().
1658 */
1659 unsigned packing_class;
1660
1661 /**
1662 * Packing order for this varying, computed by compute_packing_order().
1663 */
1664 packing_order_enum packing_order;
1665 unsigned num_components;
1666
1667 /**
1668 * The output variable in the producer stage.
1669 */
1670 ir_variable *producer_var;
1671
1672 /**
1673 * The input variable in the consumer stage.
1674 */
1675 ir_variable *consumer_var;
1676
1677 /**
1678 * The location which has been assigned for this varying. This is
1679 * expressed in multiples of a float, with the first generic varying
1680 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1681 * value 0.
1682 */
1683 unsigned generic_location;
1684 } *matches;
1685
1686 /**
1687 * The number of elements in the \c matches array that are currently in
1688 * use.
1689 */
1690 unsigned num_matches;
1691
1692 /**
1693 * The number of elements that were set aside for the \c matches array when
1694 * it was allocated.
1695 */
1696 unsigned matches_capacity;
1697
1698 gl_shader_stage producer_stage;
1699 gl_shader_stage consumer_stage;
1700 };
1701
1702 } /* anonymous namespace */
1703
1704 varying_matches::varying_matches(bool disable_varying_packing,
1705 bool xfb_enabled,
1706 bool enhanced_layouts_enabled,
1707 gl_shader_stage producer_stage,
1708 gl_shader_stage consumer_stage)
1709 : disable_varying_packing(disable_varying_packing),
1710 xfb_enabled(xfb_enabled),
1711 enhanced_layouts_enabled(enhanced_layouts_enabled),
1712 producer_stage(producer_stage),
1713 consumer_stage(consumer_stage)
1714 {
1715 /* Note: this initial capacity is rather arbitrarily chosen to be large
1716 * enough for many cases without wasting an unreasonable amount of space.
1717 * varying_matches::record() will resize the array if there are more than
1718 * this number of varyings.
1719 */
1720 this->matches_capacity = 8;
1721 this->matches = (match *)
1722 malloc(sizeof(*this->matches) * this->matches_capacity);
1723 this->num_matches = 0;
1724 }
1725
1726
1727 varying_matches::~varying_matches()
1728 {
1729 free(this->matches);
1730 }
1731
1732
1733 /**
1734 * Packing is always safe on individual arrays, structures, and matrices. It
1735 * is also safe if the varying is only used for transform feedback.
1736 */
1737 bool
1738 varying_matches::is_varying_packing_safe(const glsl_type *type,
1739 const ir_variable *var) const
1740 {
1741 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1742 consumer_stage == MESA_SHADER_TESS_CTRL ||
1743 producer_stage == MESA_SHADER_TESS_CTRL)
1744 return false;
1745
1746 return xfb_enabled && (type->is_array() || type->is_struct() ||
1747 type->is_matrix() || var->data.is_xfb_only);
1748 }
1749
1750
1751 /**
1752 * Record the given producer/consumer variable pair in the list of variables
1753 * that should later be assigned locations.
1754 *
1755 * It is permissible for \c consumer_var to be NULL (this happens if a
1756 * variable is output by the producer and consumed by transform feedback, but
1757 * not consumed by the consumer).
1758 *
1759 * If \c producer_var has already been paired up with a consumer_var, or
1760 * producer_var is part of fixed pipeline functionality (and hence already has
1761 * a location assigned), this function has no effect.
1762 *
1763 * Note: as a side effect this function may change the interpolation type of
1764 * \c producer_var, but only when the change couldn't possibly affect
1765 * rendering.
1766 */
1767 void
1768 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1769 {
1770 assert(producer_var != NULL || consumer_var != NULL);
1771
1772 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1773 producer_var->data.explicit_location)) ||
1774 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1775 consumer_var->data.explicit_location))) {
1776 /* Either a location already exists for this variable (since it is part
1777 * of fixed functionality), or it has already been recorded as part of a
1778 * previous match.
1779 */
1780 return;
1781 }
1782
1783 bool needs_flat_qualifier = consumer_var == NULL &&
1784 (producer_var->type->contains_integer() ||
1785 producer_var->type->contains_double());
1786
1787 if (!disable_varying_packing &&
1788 (needs_flat_qualifier ||
1789 (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) {
1790 /* Since this varying is not being consumed by the fragment shader, its
1791 * interpolation type varying cannot possibly affect rendering.
1792 * Also, this variable is non-flat and is (or contains) an integer
1793 * or a double.
1794 * If the consumer stage is unknown, don't modify the interpolation
1795 * type as it could affect rendering later with separate shaders.
1796 *
1797 * lower_packed_varyings requires all integer varyings to flat,
1798 * regardless of where they appear. We can trivially satisfy that
1799 * requirement by changing the interpolation type to flat here.
1800 */
1801 if (producer_var) {
1802 producer_var->data.centroid = false;
1803 producer_var->data.sample = false;
1804 producer_var->data.interpolation = INTERP_MODE_FLAT;
1805 }
1806
1807 if (consumer_var) {
1808 consumer_var->data.centroid = false;
1809 consumer_var->data.sample = false;
1810 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1811 }
1812 }
1813
1814 if (this->num_matches == this->matches_capacity) {
1815 this->matches_capacity *= 2;
1816 this->matches = (match *)
1817 realloc(this->matches,
1818 sizeof(*this->matches) * this->matches_capacity);
1819 }
1820
1821 /* We must use the consumer to compute the packing class because in GL4.4+
1822 * there is no guarantee interpolation qualifiers will match across stages.
1823 *
1824 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1825 *
1826 * "The type and presence of interpolation qualifiers of variables with
1827 * the same name declared in all linked shaders for the same cross-stage
1828 * interface must match, otherwise the link command will fail.
1829 *
1830 * When comparing an output from one stage to an input of a subsequent
1831 * stage, the input and output don't match if their interpolation
1832 * qualifiers (or lack thereof) are not the same."
1833 *
1834 * This text was also in at least revison 7 of the 4.40 spec but is no
1835 * longer in revision 9 and not in the 4.50 spec.
1836 */
1837 const ir_variable *const var = (consumer_var != NULL)
1838 ? consumer_var : producer_var;
1839 const gl_shader_stage stage = (consumer_var != NULL)
1840 ? consumer_stage : producer_stage;
1841 const glsl_type *type = get_varying_type(var, stage);
1842
1843 if (producer_var && consumer_var &&
1844 consumer_var->data.must_be_shader_input) {
1845 producer_var->data.must_be_shader_input = 1;
1846 }
1847
1848 this->matches[this->num_matches].packing_class
1849 = this->compute_packing_class(var);
1850 this->matches[this->num_matches].packing_order
1851 = this->compute_packing_order(var);
1852 if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) ||
1853 var->data.must_be_shader_input) {
1854 unsigned slots = type->count_attribute_slots(false);
1855 this->matches[this->num_matches].num_components = slots * 4;
1856 } else {
1857 this->matches[this->num_matches].num_components
1858 = type->component_slots();
1859 }
1860
1861 this->matches[this->num_matches].producer_var = producer_var;
1862 this->matches[this->num_matches].consumer_var = consumer_var;
1863 this->num_matches++;
1864 if (producer_var)
1865 producer_var->data.is_unmatched_generic_inout = 0;
1866 if (consumer_var)
1867 consumer_var->data.is_unmatched_generic_inout = 0;
1868 }
1869
1870
1871 /**
1872 * Choose locations for all of the variable matches that were previously
1873 * passed to varying_matches::record().
1874 * \param components returns array[slot] of number of components used
1875 * per slot (1, 2, 3 or 4)
1876 * \param reserved_slots bitmask indicating which varying slots are already
1877 * allocated
1878 * \return number of slots (4-element vectors) allocated
1879 */
1880 unsigned
1881 varying_matches::assign_locations(struct gl_shader_program *prog,
1882 uint8_t components[],
1883 uint64_t reserved_slots)
1884 {
1885 /* If packing has been disabled then we cannot safely sort the varyings by
1886 * class as it may mean we are using a version of OpenGL where
1887 * interpolation qualifiers are not guaranteed to be matching across
1888 * shaders, sorting in this case could result in mismatching shader
1889 * interfaces.
1890 * When packing is disabled the sort orders varyings used by transform
1891 * feedback first, but also depends on *undefined behaviour* of qsort to
1892 * reverse the order of the varyings. See: xfb_comparator().
1893 */
1894 if (!this->disable_varying_packing) {
1895 /* Sort varying matches into an order that makes them easy to pack. */
1896 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1897 &varying_matches::match_comparator);
1898 } else {
1899 /* Only sort varyings that are only used by transform feedback. */
1900 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1901 &varying_matches::xfb_comparator);
1902 }
1903
1904 unsigned generic_location = 0;
1905 unsigned generic_patch_location = MAX_VARYING*4;
1906 bool previous_var_xfb_only = false;
1907 unsigned previous_packing_class = ~0u;
1908
1909 /* For tranform feedback separate mode, we know the number of attributes
1910 * is <= the number of buffers. So packing isn't critical. In fact,
1911 * packing vec3 attributes can cause trouble because splitting a vec3
1912 * effectively creates an additional transform feedback output. The
1913 * extra TFB output may exceed device driver limits.
1914 */
1915 const bool dont_pack_vec3 =
1916 (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1917 prog->TransformFeedback.NumVarying > 0);
1918
1919 for (unsigned i = 0; i < this->num_matches; i++) {
1920 unsigned *location = &generic_location;
1921 const ir_variable *var;
1922 const glsl_type *type;
1923 bool is_vertex_input = false;
1924
1925 if (matches[i].consumer_var) {
1926 var = matches[i].consumer_var;
1927 type = get_varying_type(var, consumer_stage);
1928 if (consumer_stage == MESA_SHADER_VERTEX)
1929 is_vertex_input = true;
1930 } else {
1931 var = matches[i].producer_var;
1932 type = get_varying_type(var, producer_stage);
1933 }
1934
1935 if (var->data.patch)
1936 location = &generic_patch_location;
1937
1938 /* Advance to the next slot if this varying has a different packing
1939 * class than the previous one, and we're not already on a slot
1940 * boundary.
1941 *
1942 * Also advance to the next slot if packing is disabled. This makes sure
1943 * we don't assign varyings the same locations which is possible
1944 * because we still pack individual arrays, records and matrices even
1945 * when packing is disabled. Note we don't advance to the next slot if
1946 * we can pack varyings together that are only used for transform
1947 * feedback.
1948 */
1949 if (var->data.must_be_shader_input ||
1950 (this->disable_varying_packing &&
1951 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1952 (previous_packing_class != this->matches[i].packing_class) ||
1953 (this->matches[i].packing_order == PACKING_ORDER_VEC3 &&
1954 dont_pack_vec3)) {
1955 *location = ALIGN(*location, 4);
1956 }
1957
1958 previous_var_xfb_only = var->data.is_xfb_only;
1959 previous_packing_class = this->matches[i].packing_class;
1960
1961 /* The number of components taken up by this variable. For vertex shader
1962 * inputs, we use the number of slots * 4, as they have different
1963 * counting rules.
1964 */
1965 unsigned num_components = is_vertex_input ?
1966 type->count_attribute_slots(is_vertex_input) * 4 :
1967 this->matches[i].num_components;
1968
1969 /* The last slot for this variable, inclusive. */
1970 unsigned slot_end = *location + num_components - 1;
1971
1972 /* FIXME: We could be smarter in the below code and loop back over
1973 * trying to fill any locations that we skipped because we couldn't pack
1974 * the varying between an explicit location. For now just let the user
1975 * hit the linking error if we run out of room and suggest they use
1976 * explicit locations.
1977 */
1978 while (slot_end < MAX_VARYING * 4u) {
1979 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
1980 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
1981
1982 assert(slots > 0);
1983
1984 if ((reserved_slots & slot_mask) == 0) {
1985 break;
1986 }
1987
1988 *location = ALIGN(*location + 1, 4);
1989 slot_end = *location + num_components - 1;
1990 }
1991
1992 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
1993 linker_error(prog, "insufficient contiguous locations available for "
1994 "%s it is possible an array or struct could not be "
1995 "packed between varyings with explicit locations. Try "
1996 "using an explicit location for arrays and structs.",
1997 var->name);
1998 }
1999
2000 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
2001 for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
2002 components[j] = 4;
2003 components[slot_end / 4u] = (slot_end & 3) + 1;
2004 }
2005
2006 this->matches[i].generic_location = *location;
2007
2008 *location = slot_end + 1;
2009 }
2010
2011 return (generic_location + 3) / 4;
2012 }
2013
2014
2015 /**
2016 * Update the producer and consumer shaders to reflect the locations
2017 * assignments that were made by varying_matches::assign_locations().
2018 */
2019 void
2020 varying_matches::store_locations() const
2021 {
2022 /* Check is location needs to be packed with lower_packed_varyings() or if
2023 * we can just use ARB_enhanced_layouts packing.
2024 */
2025 bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 };
2026 const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
2027
2028 for (unsigned i = 0; i < this->num_matches; i++) {
2029 ir_variable *producer_var = this->matches[i].producer_var;
2030 ir_variable *consumer_var = this->matches[i].consumer_var;
2031 unsigned generic_location = this->matches[i].generic_location;
2032 unsigned slot = generic_location / 4;
2033 unsigned offset = generic_location % 4;
2034
2035 if (producer_var) {
2036 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
2037 producer_var->data.location_frac = offset;
2038 }
2039
2040 if (consumer_var) {
2041 assert(consumer_var->data.location == -1);
2042 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
2043 consumer_var->data.location_frac = offset;
2044 }
2045
2046 /* Find locations suitable for native packing via
2047 * ARB_enhanced_layouts.
2048 */
2049 if (producer_var && consumer_var) {
2050 if (enhanced_layouts_enabled) {
2051 const glsl_type *type =
2052 get_varying_type(producer_var, producer_stage);
2053 if (type->is_array() || type->is_matrix() || type->is_struct() ||
2054 type->is_double()) {
2055 unsigned comp_slots = type->component_slots() + offset;
2056 unsigned slots = comp_slots / 4;
2057 if (comp_slots % 4)
2058 slots += 1;
2059
2060 for (unsigned j = 0; j < slots; j++) {
2061 pack_loc[slot + j] = true;
2062 }
2063 } else if (offset + type->vector_elements > 4) {
2064 pack_loc[slot] = true;
2065 pack_loc[slot + 1] = true;
2066 } else {
2067 loc_type[slot][offset] = type;
2068 }
2069 }
2070 }
2071 }
2072
2073 /* Attempt to use ARB_enhanced_layouts for more efficient packing if
2074 * suitable.
2075 */
2076 if (enhanced_layouts_enabled) {
2077 for (unsigned i = 0; i < this->num_matches; i++) {
2078 ir_variable *producer_var = this->matches[i].producer_var;
2079 ir_variable *consumer_var = this->matches[i].consumer_var;
2080 unsigned generic_location = this->matches[i].generic_location;
2081 unsigned slot = generic_location / 4;
2082
2083 if (pack_loc[slot] || !producer_var || !consumer_var)
2084 continue;
2085
2086 const glsl_type *type =
2087 get_varying_type(producer_var, producer_stage);
2088 bool type_match = true;
2089 for (unsigned j = 0; j < 4; j++) {
2090 if (loc_type[slot][j]) {
2091 if (type->base_type != loc_type[slot][j]->base_type)
2092 type_match = false;
2093 }
2094 }
2095
2096 if (type_match) {
2097 producer_var->data.explicit_location = 1;
2098 consumer_var->data.explicit_location = 1;
2099 producer_var->data.explicit_component = 1;
2100 consumer_var->data.explicit_component = 1;
2101 }
2102 }
2103 }
2104 }
2105
2106
2107 /**
2108 * Compute the "packing class" of the given varying. This is an unsigned
2109 * integer with the property that two variables in the same packing class can
2110 * be safely backed into the same vec4.
2111 */
2112 unsigned
2113 varying_matches::compute_packing_class(const ir_variable *var)
2114 {
2115 /* Without help from the back-end, there is no way to pack together
2116 * variables with different interpolation types, because
2117 * lower_packed_varyings must choose exactly one interpolation type for
2118 * each packed varying it creates.
2119 *
2120 * However, we can safely pack together floats, ints, and uints, because:
2121 *
2122 * - varyings of base type "int" and "uint" must use the "flat"
2123 * interpolation type, which can only occur in GLSL 1.30 and above.
2124 *
2125 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
2126 * can store flat floats as ints without losing any information (using
2127 * the ir_unop_bitcast_* opcodes).
2128 *
2129 * Therefore, the packing class depends only on the interpolation type.
2130 */
2131 const unsigned interp = var->is_interpolation_flat()
2132 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
2133
2134 assert(interp < (1 << 3));
2135
2136 const unsigned packing_class = (interp << 0) |
2137 (var->data.centroid << 3) |
2138 (var->data.sample << 4) |
2139 (var->data.patch << 5) |
2140 (var->data.must_be_shader_input << 6);
2141
2142 return packing_class;
2143 }
2144
2145
2146 /**
2147 * Compute the "packing order" of the given varying. This is a sort key we
2148 * use to determine when to attempt to pack the given varying relative to
2149 * other varyings in the same packing class.
2150 */
2151 varying_matches::packing_order_enum
2152 varying_matches::compute_packing_order(const ir_variable *var)
2153 {
2154 const glsl_type *element_type = var->type;
2155
2156 while (element_type->is_array()) {
2157 element_type = element_type->fields.array;
2158 }
2159
2160 switch (element_type->component_slots() % 4) {
2161 case 1: return PACKING_ORDER_SCALAR;
2162 case 2: return PACKING_ORDER_VEC2;
2163 case 3: return PACKING_ORDER_VEC3;
2164 case 0: return PACKING_ORDER_VEC4;
2165 default:
2166 assert(!"Unexpected value of vector_elements");
2167 return PACKING_ORDER_VEC4;
2168 }
2169 }
2170
2171
2172 /**
2173 * Comparison function passed to qsort() to sort varyings by packing_class and
2174 * then by packing_order.
2175 */
2176 int
2177 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
2178 {
2179 const match *x = (const match *) x_generic;
2180 const match *y = (const match *) y_generic;
2181
2182 if (x->packing_class != y->packing_class)
2183 return x->packing_class - y->packing_class;
2184 return x->packing_order - y->packing_order;
2185 }
2186
2187
2188 /**
2189 * Comparison function passed to qsort() to sort varyings used only by
2190 * transform feedback when packing of other varyings is disabled.
2191 */
2192 int
2193 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
2194 {
2195 const match *x = (const match *) x_generic;
2196
2197 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
2198 return match_comparator(x_generic, y_generic);
2199
2200 /* FIXME: When the comparator returns 0 it means the elements being
2201 * compared are equivalent. However the qsort documentation says:
2202 *
2203 * "The order of equivalent elements is undefined."
2204 *
2205 * In practice the sort ends up reversing the order of the varyings which
2206 * means locations are also assigned in this reversed order and happens to
2207 * be what we want. This is also whats happening in
2208 * varying_matches::match_comparator().
2209 */
2210 return 0;
2211 }
2212
2213
2214 /**
2215 * Is the given variable a varying variable to be counted against the
2216 * limit in ctx->Const.MaxVarying?
2217 * This includes variables such as texcoords, colors and generic
2218 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
2219 */
2220 static bool
2221 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
2222 {
2223 /* Only fragment shaders will take a varying variable as an input */
2224 if (stage == MESA_SHADER_FRAGMENT &&
2225 var->data.mode == ir_var_shader_in) {
2226 switch (var->data.location) {
2227 case VARYING_SLOT_POS:
2228 case VARYING_SLOT_FACE:
2229 case VARYING_SLOT_PNTC:
2230 return false;
2231 default:
2232 return true;
2233 }
2234 }
2235 return false;
2236 }
2237
2238
2239 /**
2240 * Visitor class that generates tfeedback_candidate structs describing all
2241 * possible targets of transform feedback.
2242 *
2243 * tfeedback_candidate structs are stored in the hash table
2244 * tfeedback_candidates, which is passed to the constructor. This hash table
2245 * maps varying names to instances of the tfeedback_candidate struct.
2246 */
2247 class tfeedback_candidate_generator : public program_resource_visitor
2248 {
2249 public:
2250 tfeedback_candidate_generator(void *mem_ctx,
2251 hash_table *tfeedback_candidates,
2252 gl_shader_stage stage)
2253 : mem_ctx(mem_ctx),
2254 tfeedback_candidates(tfeedback_candidates),
2255 stage(stage),
2256 toplevel_var(NULL),
2257 varying_floats(0)
2258 {
2259 }
2260
2261 void process(ir_variable *var)
2262 {
2263 /* All named varying interface blocks should be flattened by now */
2264 assert(!var->is_interface_instance());
2265 assert(var->data.mode == ir_var_shader_out);
2266
2267 this->toplevel_var = var;
2268 this->varying_floats = 0;
2269 const glsl_type *t =
2270 var->data.from_named_ifc_block ? var->get_interface_type() : var->type;
2271 if (!var->data.patch && stage == MESA_SHADER_TESS_CTRL) {
2272 assert(t->is_array());
2273 t = t->fields.array;
2274 }
2275 program_resource_visitor::process(var, t, false);
2276 }
2277
2278 private:
2279 virtual void visit_field(const glsl_type *type, const char *name,
2280 bool /* row_major */,
2281 const glsl_type * /* record_type */,
2282 const enum glsl_interface_packing,
2283 bool /* last_field */)
2284 {
2285 assert(!type->without_array()->is_struct());
2286 assert(!type->without_array()->is_interface());
2287
2288 tfeedback_candidate *candidate
2289 = rzalloc(this->mem_ctx, tfeedback_candidate);
2290 candidate->toplevel_var = this->toplevel_var;
2291 candidate->type = type;
2292 candidate->offset = this->varying_floats;
2293 _mesa_hash_table_insert(this->tfeedback_candidates,
2294 ralloc_strdup(this->mem_ctx, name),
2295 candidate);
2296 this->varying_floats += type->component_slots();
2297 }
2298
2299 /**
2300 * Memory context used to allocate hash table keys and values.
2301 */
2302 void * const mem_ctx;
2303
2304 /**
2305 * Hash table in which tfeedback_candidate objects should be stored.
2306 */
2307 hash_table * const tfeedback_candidates;
2308
2309 gl_shader_stage stage;
2310
2311 /**
2312 * Pointer to the toplevel variable that is being traversed.
2313 */
2314 ir_variable *toplevel_var;
2315
2316 /**
2317 * Total number of varying floats that have been visited so far. This is
2318 * used to determine the offset to each varying within the toplevel
2319 * variable.
2320 */
2321 unsigned varying_floats;
2322 };
2323
2324
2325 namespace linker {
2326
2327 void
2328 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
2329 hash_table *consumer_inputs,
2330 hash_table *consumer_interface_inputs,
2331 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2332 {
2333 memset(consumer_inputs_with_locations,
2334 0,
2335 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
2336
2337 foreach_in_list(ir_instruction, node, ir) {
2338 ir_variable *const input_var = node->as_variable();
2339
2340 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
2341 /* All interface blocks should have been lowered by this point */
2342 assert(!input_var->type->is_interface());
2343
2344 if (input_var->data.explicit_location) {
2345 /* assign_varying_locations only cares about finding the
2346 * ir_variable at the start of a contiguous location block.
2347 *
2348 * - For !producer, consumer_inputs_with_locations isn't used.
2349 *
2350 * - For !consumer, consumer_inputs_with_locations is empty.
2351 *
2352 * For consumer && producer, if you were trying to set some
2353 * ir_variable to the middle of a location block on the other side
2354 * of producer/consumer, cross_validate_outputs_to_inputs() should
2355 * be link-erroring due to either type mismatch or location
2356 * overlaps. If the variables do match up, then they've got a
2357 * matching data.location and you only looked at
2358 * consumer_inputs_with_locations[var->data.location], not any
2359 * following entries for the array/structure.
2360 */
2361 consumer_inputs_with_locations[input_var->data.location] =
2362 input_var;
2363 } else if (input_var->get_interface_type() != NULL) {
2364 char *const iface_field_name =
2365 ralloc_asprintf(mem_ctx, "%s.%s",
2366 input_var->get_interface_type()->without_array()->name,
2367 input_var->name);
2368 _mesa_hash_table_insert(consumer_interface_inputs,
2369 iface_field_name, input_var);
2370 } else {
2371 _mesa_hash_table_insert(consumer_inputs,
2372 ralloc_strdup(mem_ctx, input_var->name),
2373 input_var);
2374 }
2375 }
2376 }
2377 }
2378
2379 /**
2380 * Find a variable from the consumer that "matches" the specified variable
2381 *
2382 * This function only finds inputs with names that match. There is no
2383 * validation (here) that the types, etc. are compatible.
2384 */
2385 ir_variable *
2386 get_matching_input(void *mem_ctx,
2387 const ir_variable *output_var,
2388 hash_table *consumer_inputs,
2389 hash_table *consumer_interface_inputs,
2390 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2391 {
2392 ir_variable *input_var;
2393
2394 if (output_var->data.explicit_location) {
2395 input_var = consumer_inputs_with_locations[output_var->data.location];
2396 } else if (output_var->get_interface_type() != NULL) {
2397 char *const iface_field_name =
2398 ralloc_asprintf(mem_ctx, "%s.%s",
2399 output_var->get_interface_type()->without_array()->name,
2400 output_var->name);
2401 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
2402 input_var = entry ? (ir_variable *) entry->data : NULL;
2403 } else {
2404 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
2405 input_var = entry ? (ir_variable *) entry->data : NULL;
2406 }
2407
2408 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2409 ? NULL : input_var;
2410 }
2411
2412 }
2413
2414 static int
2415 io_variable_cmp(const void *_a, const void *_b)
2416 {
2417 const ir_variable *const a = *(const ir_variable **) _a;
2418 const ir_variable *const b = *(const ir_variable **) _b;
2419
2420 if (a->data.explicit_location && b->data.explicit_location)
2421 return b->data.location - a->data.location;
2422
2423 if (a->data.explicit_location && !b->data.explicit_location)
2424 return 1;
2425
2426 if (!a->data.explicit_location && b->data.explicit_location)
2427 return -1;
2428
2429 return -strcmp(a->name, b->name);
2430 }
2431
2432 /**
2433 * Sort the shader IO variables into canonical order
2434 */
2435 static void
2436 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
2437 {
2438 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
2439 unsigned num_variables = 0;
2440
2441 foreach_in_list(ir_instruction, node, ir) {
2442 ir_variable *const var = node->as_variable();
2443
2444 if (var == NULL || var->data.mode != io_mode)
2445 continue;
2446
2447 /* If we have already encountered more I/O variables that could
2448 * successfully link, bail.
2449 */
2450 if (num_variables == ARRAY_SIZE(var_table))
2451 return;
2452
2453 var_table[num_variables++] = var;
2454 }
2455
2456 if (num_variables == 0)
2457 return;
2458
2459 /* Sort the list in reverse order (io_variable_cmp handles this). Later
2460 * we're going to push the variables on to the IR list as a stack, so we
2461 * want the last variable (in canonical order) to be first in the list.
2462 */
2463 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
2464
2465 /* Remove the variable from it's current location in the IR, and put it at
2466 * the front.
2467 */
2468 for (unsigned i = 0; i < num_variables; i++) {
2469 var_table[i]->remove();
2470 ir->push_head(var_table[i]);
2471 }
2472 }
2473
2474 /**
2475 * Generate a bitfield map of the explicit locations for shader varyings.
2476 *
2477 * Note: For Tessellation shaders we are sitting right on the limits of the
2478 * 64 bit map. Per-vertex and per-patch both have separate location domains
2479 * with a max of MAX_VARYING.
2480 */
2481 static uint64_t
2482 reserved_varying_slot(struct gl_linked_shader *stage,
2483 ir_variable_mode io_mode)
2484 {
2485 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
2486 /* Avoid an overflow of the returned value */
2487 assert(MAX_VARYINGS_INCL_PATCH <= 64);
2488
2489 uint64_t slots = 0;
2490 int var_slot;
2491
2492 if (!stage)
2493 return slots;
2494
2495 foreach_in_list(ir_instruction, node, stage->ir) {
2496 ir_variable *const var = node->as_variable();
2497
2498 if (var == NULL || var->data.mode != io_mode ||
2499 !var->data.explicit_location ||
2500 var->data.location < VARYING_SLOT_VAR0)
2501 continue;
2502
2503 var_slot = var->data.location - VARYING_SLOT_VAR0;
2504
2505 unsigned num_elements = get_varying_type(var, stage->Stage)
2506 ->count_attribute_slots(io_mode == ir_var_shader_in &&
2507 stage->Stage == MESA_SHADER_VERTEX);
2508 for (unsigned i = 0; i < num_elements; i++) {
2509 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
2510 slots |= UINT64_C(1) << var_slot;
2511 var_slot += 1;
2512 }
2513 }
2514
2515 return slots;
2516 }
2517
2518
2519 /**
2520 * Assign locations for all variables that are produced in one pipeline stage
2521 * (the "producer") and consumed in the next stage (the "consumer").
2522 *
2523 * Variables produced by the producer may also be consumed by transform
2524 * feedback.
2525 *
2526 * \param num_tfeedback_decls is the number of declarations indicating
2527 * variables that may be consumed by transform feedback.
2528 *
2529 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2530 * representing the result of parsing the strings passed to
2531 * glTransformFeedbackVaryings(). assign_location() will be called for
2532 * each of these objects that matches one of the outputs of the
2533 * producer.
2534 *
2535 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2536 * be NULL. In this case, varying locations are assigned solely based on the
2537 * requirements of transform feedback.
2538 */
2539 static bool
2540 assign_varying_locations(struct gl_context *ctx,
2541 void *mem_ctx,
2542 struct gl_shader_program *prog,
2543 gl_linked_shader *producer,
2544 gl_linked_shader *consumer,
2545 unsigned num_tfeedback_decls,
2546 tfeedback_decl *tfeedback_decls,
2547 const uint64_t reserved_slots)
2548 {
2549 /* Tessellation shaders treat inputs and outputs as shared memory and can
2550 * access inputs and outputs of other invocations.
2551 * Therefore, they can't be lowered to temps easily (and definitely not
2552 * efficiently).
2553 */
2554 bool unpackable_tess =
2555 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2556 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2557 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2558
2559 /* Transform feedback code assumes varying arrays are packed, so if the
2560 * driver has disabled varying packing, make sure to at least enable
2561 * packing required by transform feedback.
2562 */
2563 bool xfb_enabled =
2564 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2565
2566 /* Disable packing on outward facing interfaces for SSO because in ES we
2567 * need to retain the unpacked varying information for draw time
2568 * validation.
2569 *
2570 * Packing is still enabled on individual arrays, structs, and matrices as
2571 * these are required by the transform feedback code and it is still safe
2572 * to do so. We also enable packing when a varying is only used for
2573 * transform feedback and its not a SSO.
2574 */
2575 bool disable_varying_packing =
2576 ctx->Const.DisableVaryingPacking || unpackable_tess;
2577 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2578 disable_varying_packing = true;
2579
2580 varying_matches matches(disable_varying_packing, xfb_enabled,
2581 ctx->Extensions.ARB_enhanced_layouts,
2582 producer ? producer->Stage : MESA_SHADER_NONE,
2583 consumer ? consumer->Stage : MESA_SHADER_NONE);
2584 void *hash_table_ctx = ralloc_context(NULL);
2585 hash_table *tfeedback_candidates =
2586 _mesa_hash_table_create(hash_table_ctx, _mesa_key_hash_string,
2587 _mesa_key_string_equal);
2588 hash_table *consumer_inputs =
2589 _mesa_hash_table_create(hash_table_ctx, _mesa_key_hash_string,
2590 _mesa_key_string_equal);
2591 hash_table *consumer_interface_inputs =
2592 _mesa_hash_table_create(hash_table_ctx, _mesa_key_hash_string,
2593 _mesa_key_string_equal);
2594 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2595 NULL,
2596 };
2597
2598 unsigned consumer_vertices = 0;
2599 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2600 consumer_vertices = prog->Geom.VerticesIn;
2601
2602 /* Operate in a total of four passes.
2603 *
2604 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2605 * that inputs / outputs of separable shaders will be assigned
2606 * predictable locations regardless of the order in which declarations
2607 * appeared in the shader source.
2608 *
2609 * 2. Assign locations for any matching inputs and outputs.
2610 *
2611 * 3. Mark output variables in the producer that do not have locations as
2612 * not being outputs. This lets the optimizer eliminate them.
2613 *
2614 * 4. Mark input variables in the consumer that do not have locations as
2615 * not being inputs. This lets the optimizer eliminate them.
2616 */
2617 if (consumer)
2618 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2619
2620 if (producer)
2621 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2622
2623 if (consumer)
2624 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2625 consumer_inputs,
2626 consumer_interface_inputs,
2627 consumer_inputs_with_locations);
2628
2629 if (producer) {
2630 foreach_in_list(ir_instruction, node, producer->ir) {
2631 ir_variable *const output_var = node->as_variable();
2632
2633 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2634 continue;
2635
2636 /* Only geometry shaders can use non-zero streams */
2637 assert(output_var->data.stream == 0 ||
2638 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2639 producer->Stage == MESA_SHADER_GEOMETRY));
2640
2641 if (num_tfeedback_decls > 0) {
2642 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates, producer->Stage);
2643 /* From OpenGL 4.6 (Core Profile) spec, section 11.1.2.1
2644 * ("Vertex Shader Variables / Output Variables")
2645 *
2646 * "Each program object can specify a set of output variables from
2647 * one shader to be recorded in transform feedback mode (see
2648 * section 13.3). The variables that can be recorded are those
2649 * emitted by the first active shader, in order, from the
2650 * following list:
2651 *
2652 * * geometry shader
2653 * * tessellation evaluation shader
2654 * * tessellation control shader
2655 * * vertex shader"
2656 *
2657 * But on OpenGL ES 3.2, section 11.1.2.1 ("Vertex Shader
2658 * Variables / Output Variables") tessellation control shader is
2659 * not included in the stages list.
2660 */
2661 if (!prog->IsES || producer->Stage != MESA_SHADER_TESS_CTRL) {
2662 g.process(output_var);
2663 }
2664 }
2665
2666 ir_variable *const input_var =
2667 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2668 consumer_interface_inputs,
2669 consumer_inputs_with_locations);
2670
2671 /* If a matching input variable was found, add this output (and the
2672 * input) to the set. If this is a separable program and there is no
2673 * consumer stage, add the output.
2674 *
2675 * Always add TCS outputs. They are shared by all invocations
2676 * within a patch and can be used as shared memory.
2677 */
2678 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2679 producer->Stage == MESA_SHADER_TESS_CTRL) {
2680 matches.record(output_var, input_var);
2681 }
2682
2683 /* Only stream 0 outputs can be consumed in the next stage */
2684 if (input_var && output_var->data.stream != 0) {
2685 linker_error(prog, "output %s is assigned to stream=%d but "
2686 "is linked to an input, which requires stream=0",
2687 output_var->name, output_var->data.stream);
2688 ralloc_free(hash_table_ctx);
2689 return false;
2690 }
2691 }
2692 } else {
2693 /* If there's no producer stage, then this must be a separable program.
2694 * For example, we may have a program that has just a fragment shader.
2695 * Later this program will be used with some arbitrary vertex (or
2696 * geometry) shader program. This means that locations must be assigned
2697 * for all the inputs.
2698 */
2699 foreach_in_list(ir_instruction, node, consumer->ir) {
2700 ir_variable *const input_var = node->as_variable();
2701 if (input_var && input_var->data.mode == ir_var_shader_in) {
2702 matches.record(NULL, input_var);
2703 }
2704 }
2705 }
2706
2707 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2708 if (!tfeedback_decls[i].is_varying())
2709 continue;
2710
2711 const tfeedback_candidate *matched_candidate
2712 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2713
2714 if (matched_candidate == NULL) {
2715 ralloc_free(hash_table_ctx);
2716 return false;
2717 }
2718
2719 /* Mark xfb varyings as always active */
2720 matched_candidate->toplevel_var->data.always_active_io = 1;
2721
2722 /* Mark any corresponding inputs as always active also. We must do this
2723 * because we have a NIR pass that lowers vectors to scalars and another
2724 * that removes unused varyings.
2725 * We don't split varyings marked as always active because there is no
2726 * point in doing so. This means we need to mark both sides of the
2727 * interface as always active otherwise we will have a mismatch and
2728 * start removing things we shouldn't.
2729 */
2730 ir_variable *const input_var =
2731 linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var,
2732 consumer_inputs,
2733 consumer_interface_inputs,
2734 consumer_inputs_with_locations);
2735 if (input_var)
2736 input_var->data.always_active_io = 1;
2737
2738 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2739 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2740 matches.record(matched_candidate->toplevel_var, NULL);
2741 }
2742 }
2743
2744 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
2745 const unsigned slots_used = matches.assign_locations(
2746 prog, components, reserved_slots);
2747 matches.store_locations();
2748
2749 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2750 if (tfeedback_decls[i].is_varying()) {
2751 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2752 ralloc_free(hash_table_ctx);
2753 return false;
2754 }
2755 }
2756 }
2757 ralloc_free(hash_table_ctx);
2758
2759 if (consumer && producer) {
2760 foreach_in_list(ir_instruction, node, consumer->ir) {
2761 ir_variable *const var = node->as_variable();
2762
2763 if (var && var->data.mode == ir_var_shader_in &&
2764 var->data.is_unmatched_generic_inout) {
2765 if (!prog->IsES && prog->data->Version <= 120) {
2766 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2767 *
2768 * Only those varying variables used (i.e. read) in
2769 * the fragment shader executable must be written to
2770 * by the vertex shader executable; declaring
2771 * superfluous varying variables in a vertex shader is
2772 * permissible.
2773 *
2774 * We interpret this text as meaning that the VS must
2775 * write the variable for the FS to read it. See
2776 * "glsl1-varying read but not written" in piglit.
2777 */
2778 linker_error(prog, "%s shader varying %s not written "
2779 "by %s shader\n.",
2780 _mesa_shader_stage_to_string(consumer->Stage),
2781 var->name,
2782 _mesa_shader_stage_to_string(producer->Stage));
2783 } else {
2784 linker_warning(prog, "%s shader varying %s not written "
2785 "by %s shader\n.",
2786 _mesa_shader_stage_to_string(consumer->Stage),
2787 var->name,
2788 _mesa_shader_stage_to_string(producer->Stage));
2789 }
2790 }
2791 }
2792
2793 /* Now that validation is done its safe to remove unused varyings. As
2794 * we have both a producer and consumer its safe to remove unused
2795 * varyings even if the program is a SSO because the stages are being
2796 * linked together i.e. we have a multi-stage SSO.
2797 */
2798 remove_unused_shader_inputs_and_outputs(false, producer,
2799 ir_var_shader_out);
2800 remove_unused_shader_inputs_and_outputs(false, consumer,
2801 ir_var_shader_in);
2802 }
2803
2804 if (producer) {
2805 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
2806 0, producer, disable_varying_packing,
2807 xfb_enabled);
2808 }
2809
2810 if (consumer) {
2811 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
2812 consumer_vertices, consumer,
2813 disable_varying_packing, xfb_enabled);
2814 }
2815
2816 return true;
2817 }
2818
2819 static bool
2820 check_against_output_limit(struct gl_context *ctx,
2821 struct gl_shader_program *prog,
2822 gl_linked_shader *producer,
2823 unsigned num_explicit_locations)
2824 {
2825 unsigned output_vectors = num_explicit_locations;
2826
2827 foreach_in_list(ir_instruction, node, producer->ir) {
2828 ir_variable *const var = node->as_variable();
2829
2830 if (var && !var->data.explicit_location &&
2831 var->data.mode == ir_var_shader_out &&
2832 var_counts_against_varying_limit(producer->Stage, var)) {
2833 /* outputs for fragment shader can't be doubles */
2834 output_vectors += var->type->count_attribute_slots(false);
2835 }
2836 }
2837
2838 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2839 unsigned max_output_components =
2840 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2841
2842 const unsigned output_components = output_vectors * 4;
2843 if (output_components > max_output_components) {
2844 if (ctx->API == API_OPENGLES2 || prog->IsES)
2845 linker_error(prog, "%s shader uses too many output vectors "
2846 "(%u > %u)\n",
2847 _mesa_shader_stage_to_string(producer->Stage),
2848 output_vectors,
2849 max_output_components / 4);
2850 else
2851 linker_error(prog, "%s shader uses too many output components "
2852 "(%u > %u)\n",
2853 _mesa_shader_stage_to_string(producer->Stage),
2854 output_components,
2855 max_output_components);
2856
2857 return false;
2858 }
2859
2860 return true;
2861 }
2862
2863 static bool
2864 check_against_input_limit(struct gl_context *ctx,
2865 struct gl_shader_program *prog,
2866 gl_linked_shader *consumer,
2867 unsigned num_explicit_locations)
2868 {
2869 unsigned input_vectors = num_explicit_locations;
2870
2871 foreach_in_list(ir_instruction, node, consumer->ir) {
2872 ir_variable *const var = node->as_variable();
2873
2874 if (var && !var->data.explicit_location &&
2875 var->data.mode == ir_var_shader_in &&
2876 var_counts_against_varying_limit(consumer->Stage, var)) {
2877 /* vertex inputs aren't varying counted */
2878 input_vectors += var->type->count_attribute_slots(false);
2879 }
2880 }
2881
2882 assert(consumer->Stage != MESA_SHADER_VERTEX);
2883 unsigned max_input_components =
2884 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2885
2886 const unsigned input_components = input_vectors * 4;
2887 if (input_components > max_input_components) {
2888 if (ctx->API == API_OPENGLES2 || prog->IsES)
2889 linker_error(prog, "%s shader uses too many input vectors "
2890 "(%u > %u)\n",
2891 _mesa_shader_stage_to_string(consumer->Stage),
2892 input_vectors,
2893 max_input_components / 4);
2894 else
2895 linker_error(prog, "%s shader uses too many input components "
2896 "(%u > %u)\n",
2897 _mesa_shader_stage_to_string(consumer->Stage),
2898 input_components,
2899 max_input_components);
2900
2901 return false;
2902 }
2903
2904 return true;
2905 }
2906
2907 bool
2908 link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last,
2909 struct gl_context *ctx, void *mem_ctx)
2910 {
2911 bool has_xfb_qualifiers = false;
2912 unsigned num_tfeedback_decls = 0;
2913 char **varying_names = NULL;
2914 tfeedback_decl *tfeedback_decls = NULL;
2915
2916 /* From the ARB_enhanced_layouts spec:
2917 *
2918 * "If the shader used to record output variables for transform feedback
2919 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
2920 * qualifiers, the values specified by TransformFeedbackVaryings are
2921 * ignored, and the set of variables captured for transform feedback is
2922 * instead derived from the specified layout qualifiers."
2923 */
2924 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
2925 /* Find last stage before fragment shader */
2926 if (prog->_LinkedShaders[i]) {
2927 has_xfb_qualifiers =
2928 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
2929 prog, &num_tfeedback_decls,
2930 &varying_names);
2931 break;
2932 }
2933 }
2934
2935 if (!has_xfb_qualifiers) {
2936 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2937 varying_names = prog->TransformFeedback.VaryingNames;
2938 }
2939
2940 if (num_tfeedback_decls != 0) {
2941 /* From GL_EXT_transform_feedback:
2942 * A program will fail to link if:
2943 *
2944 * * the <count> specified by TransformFeedbackVaryingsEXT is
2945 * non-zero, but the program object has no vertex or geometry
2946 * shader;
2947 */
2948 if (first >= MESA_SHADER_FRAGMENT) {
2949 linker_error(prog, "Transform feedback varyings specified, but "
2950 "no vertex, tessellation, or geometry shader is "
2951 "present.\n");
2952 return false;
2953 }
2954
2955 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
2956 num_tfeedback_decls);
2957 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2958 varying_names, tfeedback_decls))
2959 return false;
2960 }
2961
2962 /* If there is no fragment shader we need to set transform feedback.
2963 *
2964 * For SSO we also need to assign output locations. We assign them here
2965 * because we need to do it for both single stage programs and multi stage
2966 * programs.
2967 */
2968 if (last < MESA_SHADER_FRAGMENT &&
2969 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
2970 const uint64_t reserved_out_slots =
2971 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
2972 if (!assign_varying_locations(ctx, mem_ctx, prog,
2973 prog->_LinkedShaders[last], NULL,
2974 num_tfeedback_decls, tfeedback_decls,
2975 reserved_out_slots))
2976 return false;
2977 }
2978
2979 if (last <= MESA_SHADER_FRAGMENT) {
2980 /* Remove unused varyings from the first/last stage unless SSO */
2981 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2982 prog->_LinkedShaders[first],
2983 ir_var_shader_in);
2984 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2985 prog->_LinkedShaders[last],
2986 ir_var_shader_out);
2987
2988 /* If the program is made up of only a single stage */
2989 if (first == last) {
2990 gl_linked_shader *const sh = prog->_LinkedShaders[last];
2991
2992 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
2993 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
2994 tfeedback_decls);
2995
2996 if (prog->SeparateShader) {
2997 const uint64_t reserved_slots =
2998 reserved_varying_slot(sh, ir_var_shader_in);
2999
3000 /* Assign input locations for SSO, output locations are already
3001 * assigned.
3002 */
3003 if (!assign_varying_locations(ctx, mem_ctx, prog,
3004 NULL /* producer */,
3005 sh /* consumer */,
3006 0 /* num_tfeedback_decls */,
3007 NULL /* tfeedback_decls */,
3008 reserved_slots))
3009 return false;
3010 }
3011 } else {
3012 /* Linking the stages in the opposite order (from fragment to vertex)
3013 * ensures that inter-shader outputs written to in an earlier stage
3014 * are eliminated if they are (transitively) not used in a later
3015 * stage.
3016 */
3017 int next = last;
3018 for (int i = next - 1; i >= 0; i--) {
3019 if (prog->_LinkedShaders[i] == NULL && i != 0)
3020 continue;
3021
3022 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
3023 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
3024
3025 const uint64_t reserved_out_slots =
3026 reserved_varying_slot(sh_i, ir_var_shader_out);
3027 const uint64_t reserved_in_slots =
3028 reserved_varying_slot(sh_next, ir_var_shader_in);
3029
3030 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3031 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3032 tfeedback_decls);
3033
3034 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3035 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3036 tfeedback_decls,
3037 reserved_out_slots | reserved_in_slots))
3038 return false;
3039
3040 /* This must be done after all dead varyings are eliminated. */
3041 if (sh_i != NULL) {
3042 unsigned slots_used = util_bitcount64(reserved_out_slots);
3043 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
3044 return false;
3045 }
3046 }
3047
3048 unsigned slots_used = util_bitcount64(reserved_in_slots);
3049 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
3050 return false;
3051
3052 next = i;
3053 }
3054 }
3055 }
3056
3057 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
3058 has_xfb_qualifiers, mem_ctx))
3059 return false;
3060
3061 return true;
3062 }