glsl/link_varyings: switch to 64bit check instead of double.
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 static bool
186 anonymous_struct_type_matches(const glsl_type *output_type,
187 const glsl_type *to_match)
188 {
189 while (output_type->is_array() && to_match->is_array()) {
190 /* if the lengths at each level don't match fail. */
191 if (output_type->length != to_match->length)
192 return false;
193 output_type = output_type->fields.array;
194 to_match = to_match->fields.array;
195 }
196
197 if (output_type->is_array() || to_match->is_array())
198 return false;
199 return output_type->is_anonymous() &&
200 to_match->is_anonymous() &&
201 to_match->record_compare(output_type);
202 }
203
204 /**
205 * Validate the types and qualifiers of an output from one stage against the
206 * matching input to another stage.
207 */
208 static void
209 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
210 const ir_variable *input,
211 const ir_variable *output,
212 gl_shader_stage consumer_stage,
213 gl_shader_stage producer_stage)
214 {
215 /* Check that the types match between stages.
216 */
217 const glsl_type *type_to_match = input->type;
218
219 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
220 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
221 consumer_stage != MESA_SHADER_FRAGMENT) ||
222 consumer_stage == MESA_SHADER_GEOMETRY;
223 if (extra_array_level) {
224 assert(type_to_match->is_array());
225 type_to_match = type_to_match->fields.array;
226 }
227
228 if (type_to_match != output->type) {
229 /* There is a bit of a special case for gl_TexCoord. This
230 * built-in is unsized by default. Applications that variable
231 * access it must redeclare it with a size. There is some
232 * language in the GLSL spec that implies the fragment shader
233 * and vertex shader do not have to agree on this size. Other
234 * driver behave this way, and one or two applications seem to
235 * rely on it.
236 *
237 * Neither declaration needs to be modified here because the array
238 * sizes are fixed later when update_array_sizes is called.
239 *
240 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
241 *
242 * "Unlike user-defined varying variables, the built-in
243 * varying variables don't have a strict one-to-one
244 * correspondence between the vertex language and the
245 * fragment language."
246 */
247 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
248 bool anon_matches = anonymous_struct_type_matches(output->type, type_to_match);
249
250 if (!anon_matches) {
251 linker_error(prog,
252 "%s shader output `%s' declared as type `%s', "
253 "but %s shader input declared as type `%s'\n",
254 _mesa_shader_stage_to_string(producer_stage),
255 output->name,
256 output->type->name,
257 _mesa_shader_stage_to_string(consumer_stage),
258 input->type->name);
259 return;
260 }
261 }
262 }
263
264 /* Check that all of the qualifiers match between stages.
265 */
266
267 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
268 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
269 * conformance test suite does not verify that the qualifiers must match.
270 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
271 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
272 */
273 if (false /* always skip the centroid check */ &&
274 prog->Version < (prog->IsES ? 310 : 430) &&
275 input->data.centroid != output->data.centroid) {
276 linker_error(prog,
277 "%s shader output `%s' %s centroid qualifier, "
278 "but %s shader input %s centroid qualifier\n",
279 _mesa_shader_stage_to_string(producer_stage),
280 output->name,
281 (output->data.centroid) ? "has" : "lacks",
282 _mesa_shader_stage_to_string(consumer_stage),
283 (input->data.centroid) ? "has" : "lacks");
284 return;
285 }
286
287 if (input->data.sample != output->data.sample) {
288 linker_error(prog,
289 "%s shader output `%s' %s sample qualifier, "
290 "but %s shader input %s sample qualifier\n",
291 _mesa_shader_stage_to_string(producer_stage),
292 output->name,
293 (output->data.sample) ? "has" : "lacks",
294 _mesa_shader_stage_to_string(consumer_stage),
295 (input->data.sample) ? "has" : "lacks");
296 return;
297 }
298
299 if (input->data.patch != output->data.patch) {
300 linker_error(prog,
301 "%s shader output `%s' %s patch qualifier, "
302 "but %s shader input %s patch qualifier\n",
303 _mesa_shader_stage_to_string(producer_stage),
304 output->name,
305 (output->data.patch) ? "has" : "lacks",
306 _mesa_shader_stage_to_string(consumer_stage),
307 (input->data.patch) ? "has" : "lacks");
308 return;
309 }
310
311 if (!prog->IsES && input->data.invariant != output->data.invariant) {
312 linker_error(prog,
313 "%s shader output `%s' %s invariant qualifier, "
314 "but %s shader input %s invariant qualifier\n",
315 _mesa_shader_stage_to_string(producer_stage),
316 output->name,
317 (output->data.invariant) ? "has" : "lacks",
318 _mesa_shader_stage_to_string(consumer_stage),
319 (input->data.invariant) ? "has" : "lacks");
320 return;
321 }
322
323 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
324 * to match cross stage, they must only match within the same stage.
325 *
326 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
327 *
328 * "It is a link-time error if, within the same stage, the interpolation
329 * qualifiers of variables of the same name do not match.
330 *
331 */
332 if (input->data.interpolation != output->data.interpolation &&
333 prog->Version < 440) {
334 linker_error(prog,
335 "%s shader output `%s' specifies %s "
336 "interpolation qualifier, "
337 "but %s shader input specifies %s "
338 "interpolation qualifier\n",
339 _mesa_shader_stage_to_string(producer_stage),
340 output->name,
341 interpolation_string(output->data.interpolation),
342 _mesa_shader_stage_to_string(consumer_stage),
343 interpolation_string(input->data.interpolation));
344 return;
345 }
346 }
347
348 /**
349 * Validate front and back color outputs against single color input
350 */
351 static void
352 cross_validate_front_and_back_color(struct gl_shader_program *prog,
353 const ir_variable *input,
354 const ir_variable *front_color,
355 const ir_variable *back_color,
356 gl_shader_stage consumer_stage,
357 gl_shader_stage producer_stage)
358 {
359 if (front_color != NULL && front_color->data.assigned)
360 cross_validate_types_and_qualifiers(prog, input, front_color,
361 consumer_stage, producer_stage);
362
363 if (back_color != NULL && back_color->data.assigned)
364 cross_validate_types_and_qualifiers(prog, input, back_color,
365 consumer_stage, producer_stage);
366 }
367
368 /**
369 * Validate that outputs from one stage match inputs of another
370 */
371 void
372 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
373 gl_shader *producer, gl_shader *consumer)
374 {
375 glsl_symbol_table parameters;
376 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
377 { {NULL, NULL} };
378
379 /* Find all shader outputs in the "producer" stage.
380 */
381 foreach_in_list(ir_instruction, node, producer->ir) {
382 ir_variable *const var = node->as_variable();
383
384 if (var == NULL || var->data.mode != ir_var_shader_out)
385 continue;
386
387 if (!var->data.explicit_location
388 || var->data.location < VARYING_SLOT_VAR0)
389 parameters.add_variable(var);
390 else {
391 /* User-defined varyings with explicit locations are handled
392 * differently because they do not need to have matching names.
393 */
394 const glsl_type *type = get_varying_type(var, producer->Stage);
395 unsigned num_elements = type->count_attribute_slots(false);
396 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
397 unsigned slot_limit = idx + num_elements;
398 unsigned last_comp;
399
400 if (var->type->without_array()->is_record()) {
401 /* The component qualifier can't be used on structs so just treat
402 * all component slots as used.
403 */
404 last_comp = 4;
405 } else {
406 unsigned dmul = var->type->is_64bit() ? 2 : 1;
407 last_comp = var->data.location_frac +
408 var->type->without_array()->vector_elements * dmul;
409 }
410
411 while (idx < slot_limit) {
412 unsigned i = var->data.location_frac;
413 while (i < last_comp) {
414 if (explicit_locations[idx][i] != NULL) {
415 linker_error(prog,
416 "%s shader has multiple outputs explicitly "
417 "assigned to location %d and component %d\n",
418 _mesa_shader_stage_to_string(producer->Stage),
419 idx, var->data.location_frac);
420 return;
421 }
422
423 /* Make sure all component at this location have the same type.
424 */
425 for (unsigned j = 0; j < 4; j++) {
426 if (explicit_locations[idx][j] &&
427 (explicit_locations[idx][j]->type->without_array()
428 ->base_type != var->type->without_array()->base_type)) {
429 linker_error(prog,
430 "Varyings sharing the same location must "
431 "have the same underlying numerical type. "
432 "Location %u component %u\n", idx,
433 var->data.location_frac);
434 return;
435 }
436 }
437
438 explicit_locations[idx][i] = var;
439 i++;
440
441 /* We need to do some special handling for doubles as dvec3 and
442 * dvec4 consume two consecutive locations. We don't need to
443 * worry about components beginning at anything other than 0 as
444 * the spec does not allow this for dvec3 and dvec4.
445 */
446 if (i == 3 && last_comp > 4) {
447 last_comp = last_comp - 4;
448 /* Bump location index and reset the component index */
449 idx++;
450 i = 0;
451 }
452 }
453 idx++;
454 }
455 }
456 }
457
458
459 /* Find all shader inputs in the "consumer" stage. Any variables that have
460 * matching outputs already in the symbol table must have the same type and
461 * qualifiers.
462 *
463 * Exception: if the consumer is the geometry shader, then the inputs
464 * should be arrays and the type of the array element should match the type
465 * of the corresponding producer output.
466 */
467 foreach_in_list(ir_instruction, node, consumer->ir) {
468 ir_variable *const input = node->as_variable();
469
470 if (input == NULL || input->data.mode != ir_var_shader_in)
471 continue;
472
473 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
474 const ir_variable *const front_color =
475 parameters.get_variable("gl_FrontColor");
476
477 const ir_variable *const back_color =
478 parameters.get_variable("gl_BackColor");
479
480 cross_validate_front_and_back_color(prog, input,
481 front_color, back_color,
482 consumer->Stage, producer->Stage);
483 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
484 const ir_variable *const front_color =
485 parameters.get_variable("gl_FrontSecondaryColor");
486
487 const ir_variable *const back_color =
488 parameters.get_variable("gl_BackSecondaryColor");
489
490 cross_validate_front_and_back_color(prog, input,
491 front_color, back_color,
492 consumer->Stage, producer->Stage);
493 } else {
494 /* The rules for connecting inputs and outputs change in the presence
495 * of explicit locations. In this case, we no longer care about the
496 * names of the variables. Instead, we care only about the
497 * explicitly assigned location.
498 */
499 ir_variable *output = NULL;
500 if (input->data.explicit_location
501 && input->data.location >= VARYING_SLOT_VAR0) {
502
503 const glsl_type *type = get_varying_type(input, consumer->Stage);
504 unsigned num_elements = type->count_attribute_slots(false);
505 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
506 unsigned slot_limit = idx + num_elements;
507
508 while (idx < slot_limit) {
509 output = explicit_locations[idx][input->data.location_frac];
510
511 if (output == NULL ||
512 input->data.location != output->data.location) {
513 linker_error(prog,
514 "%s shader input `%s' with explicit location "
515 "has no matching output\n",
516 _mesa_shader_stage_to_string(consumer->Stage),
517 input->name);
518 break;
519 }
520 idx++;
521 }
522 } else {
523 output = parameters.get_variable(input->name);
524 }
525
526 if (output != NULL) {
527 /* Interface blocks have their own validation elsewhere so don't
528 * try validating them here.
529 */
530 if (!(input->get_interface_type() &&
531 output->get_interface_type()))
532 cross_validate_types_and_qualifiers(prog, input, output,
533 consumer->Stage,
534 producer->Stage);
535 } else {
536 /* Check for input vars with unmatched output vars in prev stage
537 * taking into account that interface blocks could have a matching
538 * output but with different name, so we ignore them.
539 */
540 assert(!input->data.assigned);
541 if (input->data.used && !input->get_interface_type() &&
542 !input->data.explicit_location && !prog->SeparateShader)
543 linker_error(prog,
544 "%s shader input `%s' "
545 "has no matching output in the previous stage\n",
546 _mesa_shader_stage_to_string(consumer->Stage),
547 input->name);
548 }
549 }
550 }
551 }
552
553 /**
554 * Demote shader inputs and outputs that are not used in other stages, and
555 * remove them via dead code elimination.
556 */
557 void
558 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
559 gl_shader *sh,
560 enum ir_variable_mode mode)
561 {
562 if (is_separate_shader_object)
563 return;
564
565 foreach_in_list(ir_instruction, node, sh->ir) {
566 ir_variable *const var = node->as_variable();
567
568 if (var == NULL || var->data.mode != int(mode))
569 continue;
570
571 /* A shader 'in' or 'out' variable is only really an input or output if
572 * its value is used by other shader stages. This will cause the
573 * variable to have a location assigned.
574 */
575 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
576 assert(var->data.mode != ir_var_temporary);
577 var->data.mode = ir_var_auto;
578 }
579 }
580
581 /* Eliminate code that is now dead due to unused inputs/outputs being
582 * demoted.
583 */
584 while (do_dead_code(sh->ir, false))
585 ;
586
587 }
588
589 /**
590 * Initialize this object based on a string that was passed to
591 * glTransformFeedbackVaryings.
592 *
593 * If the input is mal-formed, this call still succeeds, but it sets
594 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
595 * will fail to find any matching variable.
596 */
597 void
598 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
599 const char *input)
600 {
601 /* We don't have to be pedantic about what is a valid GLSL variable name,
602 * because any variable with an invalid name can't exist in the IR anyway.
603 */
604
605 this->location = -1;
606 this->orig_name = input;
607 this->lowered_builtin_array_variable = none;
608 this->skip_components = 0;
609 this->next_buffer_separator = false;
610 this->matched_candidate = NULL;
611 this->stream_id = 0;
612 this->buffer = 0;
613 this->offset = 0;
614
615 if (ctx->Extensions.ARB_transform_feedback3) {
616 /* Parse gl_NextBuffer. */
617 if (strcmp(input, "gl_NextBuffer") == 0) {
618 this->next_buffer_separator = true;
619 return;
620 }
621
622 /* Parse gl_SkipComponents. */
623 if (strcmp(input, "gl_SkipComponents1") == 0)
624 this->skip_components = 1;
625 else if (strcmp(input, "gl_SkipComponents2") == 0)
626 this->skip_components = 2;
627 else if (strcmp(input, "gl_SkipComponents3") == 0)
628 this->skip_components = 3;
629 else if (strcmp(input, "gl_SkipComponents4") == 0)
630 this->skip_components = 4;
631
632 if (this->skip_components)
633 return;
634 }
635
636 /* Parse a declaration. */
637 const char *base_name_end;
638 long subscript = parse_program_resource_name(input, &base_name_end);
639 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
640 if (this->var_name == NULL) {
641 _mesa_error_no_memory(__func__);
642 return;
643 }
644
645 if (subscript >= 0) {
646 this->array_subscript = subscript;
647 this->is_subscripted = true;
648 } else {
649 this->is_subscripted = false;
650 }
651
652 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
653 * class must behave specially to account for the fact that gl_ClipDistance
654 * is converted from a float[8] to a vec4[2].
655 */
656 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
657 strcmp(this->var_name, "gl_ClipDistance") == 0) {
658 this->lowered_builtin_array_variable = clip_distance;
659 }
660 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
661 strcmp(this->var_name, "gl_CullDistance") == 0) {
662 this->lowered_builtin_array_variable = cull_distance;
663 }
664
665 if (ctx->Const.LowerTessLevel &&
666 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
667 this->lowered_builtin_array_variable = tess_level_outer;
668 if (ctx->Const.LowerTessLevel &&
669 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
670 this->lowered_builtin_array_variable = tess_level_inner;
671 }
672
673
674 /**
675 * Determine whether two tfeedback_decl objects refer to the same variable and
676 * array index (if applicable).
677 */
678 bool
679 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
680 {
681 assert(x.is_varying() && y.is_varying());
682
683 if (strcmp(x.var_name, y.var_name) != 0)
684 return false;
685 if (x.is_subscripted != y.is_subscripted)
686 return false;
687 if (x.is_subscripted && x.array_subscript != y.array_subscript)
688 return false;
689 return true;
690 }
691
692
693 /**
694 * Assign a location and stream ID for this tfeedback_decl object based on the
695 * transform feedback candidate found by find_candidate.
696 *
697 * If an error occurs, the error is reported through linker_error() and false
698 * is returned.
699 */
700 bool
701 tfeedback_decl::assign_location(struct gl_context *ctx,
702 struct gl_shader_program *prog)
703 {
704 assert(this->is_varying());
705
706 unsigned fine_location
707 = this->matched_candidate->toplevel_var->data.location * 4
708 + this->matched_candidate->toplevel_var->data.location_frac
709 + this->matched_candidate->offset;
710 const unsigned dmul =
711 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
712
713 if (this->matched_candidate->type->is_array()) {
714 /* Array variable */
715 const unsigned matrix_cols =
716 this->matched_candidate->type->fields.array->matrix_columns;
717 const unsigned vector_elements =
718 this->matched_candidate->type->fields.array->vector_elements;
719 unsigned actual_array_size;
720 switch (this->lowered_builtin_array_variable) {
721 case clip_distance:
722 actual_array_size = prog->LastClipDistanceArraySize;
723 break;
724 case cull_distance:
725 actual_array_size = prog->LastCullDistanceArraySize;
726 break;
727 case tess_level_outer:
728 actual_array_size = 4;
729 break;
730 case tess_level_inner:
731 actual_array_size = 2;
732 break;
733 case none:
734 default:
735 actual_array_size = this->matched_candidate->type->array_size();
736 break;
737 }
738
739 if (this->is_subscripted) {
740 /* Check array bounds. */
741 if (this->array_subscript >= actual_array_size) {
742 linker_error(prog, "Transform feedback varying %s has index "
743 "%i, but the array size is %u.",
744 this->orig_name, this->array_subscript,
745 actual_array_size);
746 return false;
747 }
748 unsigned array_elem_size = this->lowered_builtin_array_variable ?
749 1 : vector_elements * matrix_cols * dmul;
750 fine_location += array_elem_size * this->array_subscript;
751 this->size = 1;
752 } else {
753 this->size = actual_array_size;
754 }
755 this->vector_elements = vector_elements;
756 this->matrix_columns = matrix_cols;
757 if (this->lowered_builtin_array_variable)
758 this->type = GL_FLOAT;
759 else
760 this->type = this->matched_candidate->type->fields.array->gl_type;
761 } else {
762 /* Regular variable (scalar, vector, or matrix) */
763 if (this->is_subscripted) {
764 linker_error(prog, "Transform feedback varying %s requested, "
765 "but %s is not an array.",
766 this->orig_name, this->var_name);
767 return false;
768 }
769 this->size = 1;
770 this->vector_elements = this->matched_candidate->type->vector_elements;
771 this->matrix_columns = this->matched_candidate->type->matrix_columns;
772 this->type = this->matched_candidate->type->gl_type;
773 }
774 this->location = fine_location / 4;
775 this->location_frac = fine_location % 4;
776
777 /* From GL_EXT_transform_feedback:
778 * A program will fail to link if:
779 *
780 * * the total number of components to capture in any varying
781 * variable in <varyings> is greater than the constant
782 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
783 * buffer mode is SEPARATE_ATTRIBS_EXT;
784 */
785 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
786 this->num_components() >
787 ctx->Const.MaxTransformFeedbackSeparateComponents) {
788 linker_error(prog, "Transform feedback varying %s exceeds "
789 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
790 this->orig_name);
791 return false;
792 }
793
794 /* Only transform feedback varyings can be assigned to non-zero streams,
795 * so assign the stream id here.
796 */
797 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
798
799 unsigned array_offset = this->array_subscript * 4 * dmul;
800 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
801 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
802 this->offset = this->matched_candidate->toplevel_var->data.offset +
803 array_offset + struct_offset;
804
805 return true;
806 }
807
808
809 unsigned
810 tfeedback_decl::get_num_outputs() const
811 {
812 if (!this->is_varying()) {
813 return 0;
814 }
815 return (this->num_components() + this->location_frac + 3)/4;
816 }
817
818
819 /**
820 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
821 *
822 * If an error occurs, the error is reported through linker_error() and false
823 * is returned.
824 */
825 bool
826 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
827 struct gl_transform_feedback_info *info,
828 unsigned buffer, unsigned buffer_index,
829 const unsigned max_outputs, bool *explicit_stride,
830 bool has_xfb_qualifiers) const
831 {
832 unsigned xfb_offset = 0;
833 unsigned size = this->size;
834 /* Handle gl_SkipComponents. */
835 if (this->skip_components) {
836 info->Buffers[buffer].Stride += this->skip_components;
837 size = this->skip_components;
838 goto store_varying;
839 }
840
841 if (this->next_buffer_separator) {
842 size = 0;
843 goto store_varying;
844 }
845
846 if (has_xfb_qualifiers) {
847 xfb_offset = this->offset / 4;
848 } else {
849 xfb_offset = info->Buffers[buffer].Stride;
850 }
851 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
852
853 {
854 unsigned location = this->location;
855 unsigned location_frac = this->location_frac;
856 unsigned num_components = this->num_components();
857 while (num_components > 0) {
858 unsigned output_size = MIN2(num_components, 4 - location_frac);
859 assert((info->NumOutputs == 0 && max_outputs == 0) ||
860 info->NumOutputs < max_outputs);
861
862 /* From the ARB_enhanced_layouts spec:
863 *
864 * "If such a block member or variable is not written during a shader
865 * invocation, the buffer contents at the assigned offset will be
866 * undefined. Even if there are no static writes to a variable or
867 * member that is assigned a transform feedback offset, the space is
868 * still allocated in the buffer and still affects the stride."
869 */
870 if (this->is_varying_written()) {
871 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
872 info->Outputs[info->NumOutputs].OutputRegister = location;
873 info->Outputs[info->NumOutputs].NumComponents = output_size;
874 info->Outputs[info->NumOutputs].StreamId = stream_id;
875 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
876 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
877 ++info->NumOutputs;
878 }
879 info->Buffers[buffer].Stream = this->stream_id;
880 xfb_offset += output_size;
881
882 num_components -= output_size;
883 location++;
884 location_frac = 0;
885 }
886 }
887
888 if (explicit_stride && explicit_stride[buffer]) {
889 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
890 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
891 "multiple of 8 as its applied to a type that is or "
892 "contains a double.",
893 info->Buffers[buffer].Stride * 4);
894 return false;
895 }
896
897 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
898 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
899 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
900 "buffer (%d)", xfb_offset * 4,
901 info->Buffers[buffer].Stride * 4, buffer);
902 return false;
903 }
904 } else {
905 info->Buffers[buffer].Stride = xfb_offset;
906 }
907
908 /* From GL_EXT_transform_feedback:
909 * A program will fail to link if:
910 *
911 * * the total number of components to capture is greater than
912 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
913 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
914 *
915 * From GL_ARB_enhanced_layouts:
916 *
917 * "The resulting stride (implicit or explicit) must be less than or
918 * equal to the implementation-dependent constant
919 * gl_MaxTransformFeedbackInterleavedComponents."
920 */
921 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
922 has_xfb_qualifiers) &&
923 info->Buffers[buffer].Stride >
924 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
925 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
926 "limit has been exceeded.");
927 return false;
928 }
929
930 store_varying:
931 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
932 this->orig_name);
933 info->Varyings[info->NumVarying].Type = this->type;
934 info->Varyings[info->NumVarying].Size = size;
935 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
936 info->NumVarying++;
937 info->Buffers[buffer].NumVaryings++;
938
939 return true;
940 }
941
942
943 const tfeedback_candidate *
944 tfeedback_decl::find_candidate(gl_shader_program *prog,
945 hash_table *tfeedback_candidates)
946 {
947 const char *name = this->var_name;
948 switch (this->lowered_builtin_array_variable) {
949 case none:
950 name = this->var_name;
951 break;
952 case clip_distance:
953 name = "gl_ClipDistanceMESA";
954 break;
955 case cull_distance:
956 name = "gl_CullDistanceMESA";
957 break;
958 case tess_level_outer:
959 name = "gl_TessLevelOuterMESA";
960 break;
961 case tess_level_inner:
962 name = "gl_TessLevelInnerMESA";
963 break;
964 }
965 this->matched_candidate = (const tfeedback_candidate *)
966 hash_table_find(tfeedback_candidates, name);
967 if (!this->matched_candidate) {
968 /* From GL_EXT_transform_feedback:
969 * A program will fail to link if:
970 *
971 * * any variable name specified in the <varyings> array is not
972 * declared as an output in the geometry shader (if present) or
973 * the vertex shader (if no geometry shader is present);
974 */
975 linker_error(prog, "Transform feedback varying %s undeclared.",
976 this->orig_name);
977 }
978 return this->matched_candidate;
979 }
980
981
982 /**
983 * Parse all the transform feedback declarations that were passed to
984 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
985 *
986 * If an error occurs, the error is reported through linker_error() and false
987 * is returned.
988 */
989 bool
990 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
991 const void *mem_ctx, unsigned num_names,
992 char **varying_names, tfeedback_decl *decls)
993 {
994 for (unsigned i = 0; i < num_names; ++i) {
995 decls[i].init(ctx, mem_ctx, varying_names[i]);
996
997 if (!decls[i].is_varying())
998 continue;
999
1000 /* From GL_EXT_transform_feedback:
1001 * A program will fail to link if:
1002 *
1003 * * any two entries in the <varyings> array specify the same varying
1004 * variable;
1005 *
1006 * We interpret this to mean "any two entries in the <varyings> array
1007 * specify the same varying variable and array index", since transform
1008 * feedback of arrays would be useless otherwise.
1009 */
1010 for (unsigned j = 0; j < i; ++j) {
1011 if (!decls[j].is_varying())
1012 continue;
1013
1014 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1015 linker_error(prog, "Transform feedback varying %s specified "
1016 "more than once.", varying_names[i]);
1017 return false;
1018 }
1019 }
1020 }
1021 return true;
1022 }
1023
1024
1025 static int
1026 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1027 {
1028 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1029 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1030
1031 if (x->get_buffer() != y->get_buffer())
1032 return x->get_buffer() - y->get_buffer();
1033 return x->get_offset() - y->get_offset();
1034 }
1035
1036 /**
1037 * Store transform feedback location assignments into
1038 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1039 *
1040 * If an error occurs, the error is reported through linker_error() and false
1041 * is returned.
1042 */
1043 bool
1044 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1045 unsigned num_tfeedback_decls,
1046 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1047 {
1048 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1049 * tracking the number of buffers doesn't overflow.
1050 */
1051 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1052
1053 bool separate_attribs_mode =
1054 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1055
1056 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1057 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1058
1059 memset(&prog->LinkedTransformFeedback, 0,
1060 sizeof(prog->LinkedTransformFeedback));
1061
1062 /* The xfb_offset qualifier does not have to be used in increasing order
1063 * however some drivers expect to receive the list of transform feedback
1064 * declarations in order so sort it now for convenience.
1065 */
1066 if (has_xfb_qualifiers)
1067 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1068 cmp_xfb_offset);
1069
1070 prog->LinkedTransformFeedback.Varyings =
1071 rzalloc_array(prog,
1072 struct gl_transform_feedback_varying_info,
1073 num_tfeedback_decls);
1074
1075 unsigned num_outputs = 0;
1076 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1077 if (tfeedback_decls[i].is_varying_written())
1078 num_outputs += tfeedback_decls[i].get_num_outputs();
1079 }
1080
1081 prog->LinkedTransformFeedback.Outputs =
1082 rzalloc_array(prog,
1083 struct gl_transform_feedback_output,
1084 num_outputs);
1085
1086 unsigned num_buffers = 0;
1087 unsigned buffers = 0;
1088
1089 if (!has_xfb_qualifiers && separate_attribs_mode) {
1090 /* GL_SEPARATE_ATTRIBS */
1091 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1092 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1093 num_buffers, num_buffers, num_outputs,
1094 NULL, has_xfb_qualifiers))
1095 return false;
1096
1097 buffers |= 1 << num_buffers;
1098 num_buffers++;
1099 }
1100 }
1101 else {
1102 /* GL_INVERLEAVED_ATTRIBS */
1103 int buffer_stream_id = -1;
1104 unsigned buffer =
1105 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1106 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1107
1108 /* Apply any xfb_stride global qualifiers */
1109 if (has_xfb_qualifiers) {
1110 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1111 if (prog->TransformFeedback.BufferStride[j]) {
1112 buffers |= 1 << j;
1113 explicit_stride[j] = true;
1114 prog->LinkedTransformFeedback.Buffers[j].Stride =
1115 prog->TransformFeedback.BufferStride[j] / 4;
1116 }
1117 }
1118 }
1119
1120 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1121 if (has_xfb_qualifiers &&
1122 buffer != tfeedback_decls[i].get_buffer()) {
1123 /* we have moved to the next buffer so reset stream id */
1124 buffer_stream_id = -1;
1125 num_buffers++;
1126 }
1127
1128 if (tfeedback_decls[i].is_next_buffer_separator()) {
1129 if (!tfeedback_decls[i].store(ctx, prog,
1130 &prog->LinkedTransformFeedback,
1131 buffer, num_buffers, num_outputs,
1132 explicit_stride, has_xfb_qualifiers))
1133 return false;
1134 num_buffers++;
1135 buffer_stream_id = -1;
1136 continue;
1137 } else if (tfeedback_decls[i].is_varying()) {
1138 if (buffer_stream_id == -1) {
1139 /* First varying writing to this buffer: remember its stream */
1140 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1141 } else if (buffer_stream_id !=
1142 (int) tfeedback_decls[i].get_stream_id()) {
1143 /* Varying writes to the same buffer from a different stream */
1144 linker_error(prog,
1145 "Transform feedback can't capture varyings belonging "
1146 "to different vertex streams in a single buffer. "
1147 "Varying %s writes to buffer from stream %u, other "
1148 "varyings in the same buffer write from stream %u.",
1149 tfeedback_decls[i].name(),
1150 tfeedback_decls[i].get_stream_id(),
1151 buffer_stream_id);
1152 return false;
1153 }
1154 }
1155
1156 if (has_xfb_qualifiers) {
1157 buffer = tfeedback_decls[i].get_buffer();
1158 } else {
1159 buffer = num_buffers;
1160 }
1161 buffers |= 1 << buffer;
1162
1163 if (!tfeedback_decls[i].store(ctx, prog,
1164 &prog->LinkedTransformFeedback,
1165 buffer, num_buffers, num_outputs,
1166 explicit_stride, has_xfb_qualifiers))
1167 return false;
1168 }
1169 }
1170
1171 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1172
1173 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1174 return true;
1175 }
1176
1177 namespace {
1178
1179 /**
1180 * Data structure recording the relationship between outputs of one shader
1181 * stage (the "producer") and inputs of another (the "consumer").
1182 */
1183 class varying_matches
1184 {
1185 public:
1186 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1187 gl_shader_stage producer_stage,
1188 gl_shader_stage consumer_stage);
1189 ~varying_matches();
1190 void record(ir_variable *producer_var, ir_variable *consumer_var);
1191 unsigned assign_locations(struct gl_shader_program *prog,
1192 uint64_t reserved_slots);
1193 void store_locations() const;
1194
1195 private:
1196 bool is_varying_packing_safe(const glsl_type *type,
1197 const ir_variable *var);
1198
1199 /**
1200 * If true, this driver disables varying packing, so all varyings need to
1201 * be aligned on slot boundaries, and take up a number of slots equal to
1202 * their number of matrix columns times their array size.
1203 *
1204 * Packing may also be disabled because our current packing method is not
1205 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1206 * guaranteed to match across stages.
1207 */
1208 const bool disable_varying_packing;
1209
1210 /**
1211 * If true, this driver has transform feedback enabled. The transform
1212 * feedback code requires at least some packing be done even when varying
1213 * packing is disabled, fortunately where transform feedback requires
1214 * packing it's safe to override the disabled setting. See
1215 * is_varying_packing_safe().
1216 */
1217 const bool xfb_enabled;
1218
1219 /**
1220 * Enum representing the order in which varyings are packed within a
1221 * packing class.
1222 *
1223 * Currently we pack vec4's first, then vec2's, then scalar values, then
1224 * vec3's. This order ensures that the only vectors that are at risk of
1225 * having to be "double parked" (split between two adjacent varying slots)
1226 * are the vec3's.
1227 */
1228 enum packing_order_enum {
1229 PACKING_ORDER_VEC4,
1230 PACKING_ORDER_VEC2,
1231 PACKING_ORDER_SCALAR,
1232 PACKING_ORDER_VEC3,
1233 };
1234
1235 static unsigned compute_packing_class(const ir_variable *var);
1236 static packing_order_enum compute_packing_order(const ir_variable *var);
1237 static int match_comparator(const void *x_generic, const void *y_generic);
1238 static int xfb_comparator(const void *x_generic, const void *y_generic);
1239
1240 /**
1241 * Structure recording the relationship between a single producer output
1242 * and a single consumer input.
1243 */
1244 struct match {
1245 /**
1246 * Packing class for this varying, computed by compute_packing_class().
1247 */
1248 unsigned packing_class;
1249
1250 /**
1251 * Packing order for this varying, computed by compute_packing_order().
1252 */
1253 packing_order_enum packing_order;
1254 unsigned num_components;
1255
1256 /**
1257 * The output variable in the producer stage.
1258 */
1259 ir_variable *producer_var;
1260
1261 /**
1262 * The input variable in the consumer stage.
1263 */
1264 ir_variable *consumer_var;
1265
1266 /**
1267 * The location which has been assigned for this varying. This is
1268 * expressed in multiples of a float, with the first generic varying
1269 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1270 * value 0.
1271 */
1272 unsigned generic_location;
1273 } *matches;
1274
1275 /**
1276 * The number of elements in the \c matches array that are currently in
1277 * use.
1278 */
1279 unsigned num_matches;
1280
1281 /**
1282 * The number of elements that were set aside for the \c matches array when
1283 * it was allocated.
1284 */
1285 unsigned matches_capacity;
1286
1287 gl_shader_stage producer_stage;
1288 gl_shader_stage consumer_stage;
1289 };
1290
1291 } /* anonymous namespace */
1292
1293 varying_matches::varying_matches(bool disable_varying_packing,
1294 bool xfb_enabled,
1295 gl_shader_stage producer_stage,
1296 gl_shader_stage consumer_stage)
1297 : disable_varying_packing(disable_varying_packing),
1298 xfb_enabled(xfb_enabled),
1299 producer_stage(producer_stage),
1300 consumer_stage(consumer_stage)
1301 {
1302 /* Note: this initial capacity is rather arbitrarily chosen to be large
1303 * enough for many cases without wasting an unreasonable amount of space.
1304 * varying_matches::record() will resize the array if there are more than
1305 * this number of varyings.
1306 */
1307 this->matches_capacity = 8;
1308 this->matches = (match *)
1309 malloc(sizeof(*this->matches) * this->matches_capacity);
1310 this->num_matches = 0;
1311 }
1312
1313
1314 varying_matches::~varying_matches()
1315 {
1316 free(this->matches);
1317 }
1318
1319
1320 /**
1321 * Packing is always safe on individual arrays, structures, and matrices. It
1322 * is also safe if the varying is only used for transform feedback.
1323 */
1324 bool
1325 varying_matches::is_varying_packing_safe(const glsl_type *type,
1326 const ir_variable *var)
1327 {
1328 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1329 consumer_stage == MESA_SHADER_TESS_CTRL ||
1330 producer_stage == MESA_SHADER_TESS_CTRL)
1331 return false;
1332
1333 return xfb_enabled && (type->is_array() || type->is_record() ||
1334 type->is_matrix() || var->data.is_xfb_only);
1335 }
1336
1337
1338 /**
1339 * Record the given producer/consumer variable pair in the list of variables
1340 * that should later be assigned locations.
1341 *
1342 * It is permissible for \c consumer_var to be NULL (this happens if a
1343 * variable is output by the producer and consumed by transform feedback, but
1344 * not consumed by the consumer).
1345 *
1346 * If \c producer_var has already been paired up with a consumer_var, or
1347 * producer_var is part of fixed pipeline functionality (and hence already has
1348 * a location assigned), this function has no effect.
1349 *
1350 * Note: as a side effect this function may change the interpolation type of
1351 * \c producer_var, but only when the change couldn't possibly affect
1352 * rendering.
1353 */
1354 void
1355 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1356 {
1357 assert(producer_var != NULL || consumer_var != NULL);
1358
1359 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1360 producer_var->data.explicit_location)) ||
1361 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1362 consumer_var->data.explicit_location))) {
1363 /* Either a location already exists for this variable (since it is part
1364 * of fixed functionality), or it has already been recorded as part of a
1365 * previous match.
1366 */
1367 return;
1368 }
1369
1370 bool needs_flat_qualifier = consumer_var == NULL &&
1371 (producer_var->type->contains_integer() ||
1372 producer_var->type->contains_double());
1373
1374 if (needs_flat_qualifier ||
1375 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1376 /* Since this varying is not being consumed by the fragment shader, its
1377 * interpolation type varying cannot possibly affect rendering.
1378 * Also, this variable is non-flat and is (or contains) an integer
1379 * or a double.
1380 * If the consumer stage is unknown, don't modify the interpolation
1381 * type as it could affect rendering later with separate shaders.
1382 *
1383 * lower_packed_varyings requires all integer varyings to flat,
1384 * regardless of where they appear. We can trivially satisfy that
1385 * requirement by changing the interpolation type to flat here.
1386 */
1387 if (producer_var) {
1388 producer_var->data.centroid = false;
1389 producer_var->data.sample = false;
1390 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1391 }
1392
1393 if (consumer_var) {
1394 consumer_var->data.centroid = false;
1395 consumer_var->data.sample = false;
1396 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1397 }
1398 }
1399
1400 if (this->num_matches == this->matches_capacity) {
1401 this->matches_capacity *= 2;
1402 this->matches = (match *)
1403 realloc(this->matches,
1404 sizeof(*this->matches) * this->matches_capacity);
1405 }
1406
1407 const ir_variable *const var = (producer_var != NULL)
1408 ? producer_var : consumer_var;
1409 const gl_shader_stage stage = (producer_var != NULL)
1410 ? producer_stage : consumer_stage;
1411 const glsl_type *type = get_varying_type(var, stage);
1412
1413 this->matches[this->num_matches].packing_class
1414 = this->compute_packing_class(var);
1415 this->matches[this->num_matches].packing_order
1416 = this->compute_packing_order(var);
1417 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1418 unsigned slots = type->count_attribute_slots(false);
1419 this->matches[this->num_matches].num_components = slots * 4;
1420 } else {
1421 this->matches[this->num_matches].num_components
1422 = type->component_slots();
1423 }
1424 this->matches[this->num_matches].producer_var = producer_var;
1425 this->matches[this->num_matches].consumer_var = consumer_var;
1426 this->num_matches++;
1427 if (producer_var)
1428 producer_var->data.is_unmatched_generic_inout = 0;
1429 if (consumer_var)
1430 consumer_var->data.is_unmatched_generic_inout = 0;
1431 }
1432
1433
1434 /**
1435 * Choose locations for all of the variable matches that were previously
1436 * passed to varying_matches::record().
1437 */
1438 unsigned
1439 varying_matches::assign_locations(struct gl_shader_program *prog,
1440 uint64_t reserved_slots)
1441 {
1442 /* If packing has been disabled then we cannot safely sort the varyings by
1443 * class as it may mean we are using a version of OpenGL where
1444 * interpolation qualifiers are not guaranteed to be matching across
1445 * shaders, sorting in this case could result in mismatching shader
1446 * interfaces.
1447 * When packing is disabled the sort orders varyings used by transform
1448 * feedback first, but also depends on *undefined behaviour* of qsort to
1449 * reverse the order of the varyings. See: xfb_comparator().
1450 */
1451 if (!this->disable_varying_packing) {
1452 /* Sort varying matches into an order that makes them easy to pack. */
1453 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1454 &varying_matches::match_comparator);
1455 } else {
1456 /* Only sort varyings that are only used by transform feedback. */
1457 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1458 &varying_matches::xfb_comparator);
1459 }
1460
1461 unsigned generic_location = 0;
1462 unsigned generic_patch_location = MAX_VARYING*4;
1463 bool previous_var_xfb_only = false;
1464
1465 for (unsigned i = 0; i < this->num_matches; i++) {
1466 unsigned *location = &generic_location;
1467
1468 const ir_variable *var;
1469 const glsl_type *type;
1470 bool is_vertex_input = false;
1471 if (matches[i].consumer_var) {
1472 var = matches[i].consumer_var;
1473 type = get_varying_type(var, consumer_stage);
1474 if (consumer_stage == MESA_SHADER_VERTEX)
1475 is_vertex_input = true;
1476 } else {
1477 var = matches[i].producer_var;
1478 type = get_varying_type(var, producer_stage);
1479 }
1480
1481 if (var->data.patch)
1482 location = &generic_patch_location;
1483
1484 /* Advance to the next slot if this varying has a different packing
1485 * class than the previous one, and we're not already on a slot
1486 * boundary.
1487 *
1488 * Also advance to the next slot if packing is disabled. This makes sure
1489 * we don't assign varyings the same locations which is possible
1490 * because we still pack individual arrays, records and matrices even
1491 * when packing is disabled. Note we don't advance to the next slot if
1492 * we can pack varyings together that are only used for transform
1493 * feedback.
1494 */
1495 if ((this->disable_varying_packing &&
1496 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1497 (i > 0 && this->matches[i - 1].packing_class
1498 != this->matches[i].packing_class )) {
1499 *location = ALIGN(*location, 4);
1500 }
1501
1502 previous_var_xfb_only = var->data.is_xfb_only;
1503
1504 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1505 unsigned slot_end;
1506 if (this->disable_varying_packing &&
1507 !is_varying_packing_safe(type, var))
1508 slot_end = 4;
1509 else
1510 slot_end = type->without_array()->vector_elements;
1511 slot_end += *location - 1;
1512
1513 /* FIXME: We could be smarter in the below code and loop back over
1514 * trying to fill any locations that we skipped because we couldn't pack
1515 * the varying between an explicit location. For now just let the user
1516 * hit the linking error if we run out of room and suggest they use
1517 * explicit locations.
1518 */
1519 for (unsigned j = 0; j < num_elements; j++) {
1520 while ((slot_end < MAX_VARYING * 4u) &&
1521 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1522 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1523
1524 *location = ALIGN(*location + 1, 4);
1525 slot_end = *location;
1526
1527 /* reset the counter and try again */
1528 j = 0;
1529 }
1530
1531 /* Increase the slot to make sure there is enough room for next
1532 * array element.
1533 */
1534 if (this->disable_varying_packing &&
1535 !is_varying_packing_safe(type, var))
1536 slot_end += 4;
1537 else
1538 slot_end += type->without_array()->vector_elements;
1539 }
1540
1541 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1542 linker_error(prog, "insufficient contiguous locations available for "
1543 "%s it is possible an array or struct could not be "
1544 "packed between varyings with explicit locations. Try "
1545 "using an explicit location for arrays and structs.",
1546 var->name);
1547 }
1548
1549 this->matches[i].generic_location = *location;
1550
1551 *location += this->matches[i].num_components;
1552 }
1553
1554 return (generic_location + 3) / 4;
1555 }
1556
1557
1558 /**
1559 * Update the producer and consumer shaders to reflect the locations
1560 * assignments that were made by varying_matches::assign_locations().
1561 */
1562 void
1563 varying_matches::store_locations() const
1564 {
1565 for (unsigned i = 0; i < this->num_matches; i++) {
1566 ir_variable *producer_var = this->matches[i].producer_var;
1567 ir_variable *consumer_var = this->matches[i].consumer_var;
1568 unsigned generic_location = this->matches[i].generic_location;
1569 unsigned slot = generic_location / 4;
1570 unsigned offset = generic_location % 4;
1571
1572 if (producer_var) {
1573 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1574 producer_var->data.location_frac = offset;
1575 }
1576
1577 if (consumer_var) {
1578 assert(consumer_var->data.location == -1);
1579 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1580 consumer_var->data.location_frac = offset;
1581 }
1582 }
1583 }
1584
1585
1586 /**
1587 * Compute the "packing class" of the given varying. This is an unsigned
1588 * integer with the property that two variables in the same packing class can
1589 * be safely backed into the same vec4.
1590 */
1591 unsigned
1592 varying_matches::compute_packing_class(const ir_variable *var)
1593 {
1594 /* Without help from the back-end, there is no way to pack together
1595 * variables with different interpolation types, because
1596 * lower_packed_varyings must choose exactly one interpolation type for
1597 * each packed varying it creates.
1598 *
1599 * However, we can safely pack together floats, ints, and uints, because:
1600 *
1601 * - varyings of base type "int" and "uint" must use the "flat"
1602 * interpolation type, which can only occur in GLSL 1.30 and above.
1603 *
1604 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1605 * can store flat floats as ints without losing any information (using
1606 * the ir_unop_bitcast_* opcodes).
1607 *
1608 * Therefore, the packing class depends only on the interpolation type.
1609 */
1610 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1611 (var->data.patch << 2);
1612 packing_class *= 4;
1613 packing_class += var->data.interpolation;
1614 return packing_class;
1615 }
1616
1617
1618 /**
1619 * Compute the "packing order" of the given varying. This is a sort key we
1620 * use to determine when to attempt to pack the given varying relative to
1621 * other varyings in the same packing class.
1622 */
1623 varying_matches::packing_order_enum
1624 varying_matches::compute_packing_order(const ir_variable *var)
1625 {
1626 const glsl_type *element_type = var->type;
1627
1628 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1629 element_type = element_type->fields.array;
1630 }
1631
1632 switch (element_type->component_slots() % 4) {
1633 case 1: return PACKING_ORDER_SCALAR;
1634 case 2: return PACKING_ORDER_VEC2;
1635 case 3: return PACKING_ORDER_VEC3;
1636 case 0: return PACKING_ORDER_VEC4;
1637 default:
1638 assert(!"Unexpected value of vector_elements");
1639 return PACKING_ORDER_VEC4;
1640 }
1641 }
1642
1643
1644 /**
1645 * Comparison function passed to qsort() to sort varyings by packing_class and
1646 * then by packing_order.
1647 */
1648 int
1649 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1650 {
1651 const match *x = (const match *) x_generic;
1652 const match *y = (const match *) y_generic;
1653
1654 if (x->packing_class != y->packing_class)
1655 return x->packing_class - y->packing_class;
1656 return x->packing_order - y->packing_order;
1657 }
1658
1659
1660 /**
1661 * Comparison function passed to qsort() to sort varyings used only by
1662 * transform feedback when packing of other varyings is disabled.
1663 */
1664 int
1665 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1666 {
1667 const match *x = (const match *) x_generic;
1668
1669 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1670 return match_comparator(x_generic, y_generic);
1671
1672 /* FIXME: When the comparator returns 0 it means the elements being
1673 * compared are equivalent. However the qsort documentation says:
1674 *
1675 * "The order of equivalent elements is undefined."
1676 *
1677 * In practice the sort ends up reversing the order of the varyings which
1678 * means locations are also assigned in this reversed order and happens to
1679 * be what we want. This is also whats happening in
1680 * varying_matches::match_comparator().
1681 */
1682 return 0;
1683 }
1684
1685
1686 /**
1687 * Is the given variable a varying variable to be counted against the
1688 * limit in ctx->Const.MaxVarying?
1689 * This includes variables such as texcoords, colors and generic
1690 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1691 */
1692 static bool
1693 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1694 {
1695 /* Only fragment shaders will take a varying variable as an input */
1696 if (stage == MESA_SHADER_FRAGMENT &&
1697 var->data.mode == ir_var_shader_in) {
1698 switch (var->data.location) {
1699 case VARYING_SLOT_POS:
1700 case VARYING_SLOT_FACE:
1701 case VARYING_SLOT_PNTC:
1702 return false;
1703 default:
1704 return true;
1705 }
1706 }
1707 return false;
1708 }
1709
1710
1711 /**
1712 * Visitor class that generates tfeedback_candidate structs describing all
1713 * possible targets of transform feedback.
1714 *
1715 * tfeedback_candidate structs are stored in the hash table
1716 * tfeedback_candidates, which is passed to the constructor. This hash table
1717 * maps varying names to instances of the tfeedback_candidate struct.
1718 */
1719 class tfeedback_candidate_generator : public program_resource_visitor
1720 {
1721 public:
1722 tfeedback_candidate_generator(void *mem_ctx,
1723 hash_table *tfeedback_candidates)
1724 : mem_ctx(mem_ctx),
1725 tfeedback_candidates(tfeedback_candidates),
1726 toplevel_var(NULL),
1727 varying_floats(0)
1728 {
1729 }
1730
1731 void process(ir_variable *var)
1732 {
1733 /* All named varying interface blocks should be flattened by now */
1734 assert(!var->is_interface_instance());
1735
1736 this->toplevel_var = var;
1737 this->varying_floats = 0;
1738 program_resource_visitor::process(var);
1739 }
1740
1741 private:
1742 virtual void visit_field(const glsl_type *type, const char *name,
1743 bool row_major)
1744 {
1745 assert(!type->without_array()->is_record());
1746 assert(!type->without_array()->is_interface());
1747
1748 (void) row_major;
1749
1750 tfeedback_candidate *candidate
1751 = rzalloc(this->mem_ctx, tfeedback_candidate);
1752 candidate->toplevel_var = this->toplevel_var;
1753 candidate->type = type;
1754 candidate->offset = this->varying_floats;
1755 hash_table_insert(this->tfeedback_candidates, candidate,
1756 ralloc_strdup(this->mem_ctx, name));
1757 this->varying_floats += type->component_slots();
1758 }
1759
1760 /**
1761 * Memory context used to allocate hash table keys and values.
1762 */
1763 void * const mem_ctx;
1764
1765 /**
1766 * Hash table in which tfeedback_candidate objects should be stored.
1767 */
1768 hash_table * const tfeedback_candidates;
1769
1770 /**
1771 * Pointer to the toplevel variable that is being traversed.
1772 */
1773 ir_variable *toplevel_var;
1774
1775 /**
1776 * Total number of varying floats that have been visited so far. This is
1777 * used to determine the offset to each varying within the toplevel
1778 * variable.
1779 */
1780 unsigned varying_floats;
1781 };
1782
1783
1784 namespace linker {
1785
1786 void
1787 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1788 hash_table *consumer_inputs,
1789 hash_table *consumer_interface_inputs,
1790 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1791 {
1792 memset(consumer_inputs_with_locations,
1793 0,
1794 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1795
1796 foreach_in_list(ir_instruction, node, ir) {
1797 ir_variable *const input_var = node->as_variable();
1798
1799 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
1800 /* All interface blocks should have been lowered by this point */
1801 assert(!input_var->type->is_interface());
1802
1803 if (input_var->data.explicit_location) {
1804 /* assign_varying_locations only cares about finding the
1805 * ir_variable at the start of a contiguous location block.
1806 *
1807 * - For !producer, consumer_inputs_with_locations isn't used.
1808 *
1809 * - For !consumer, consumer_inputs_with_locations is empty.
1810 *
1811 * For consumer && producer, if you were trying to set some
1812 * ir_variable to the middle of a location block on the other side
1813 * of producer/consumer, cross_validate_outputs_to_inputs() should
1814 * be link-erroring due to either type mismatch or location
1815 * overlaps. If the variables do match up, then they've got a
1816 * matching data.location and you only looked at
1817 * consumer_inputs_with_locations[var->data.location], not any
1818 * following entries for the array/structure.
1819 */
1820 consumer_inputs_with_locations[input_var->data.location] =
1821 input_var;
1822 } else if (input_var->get_interface_type() != NULL) {
1823 char *const iface_field_name =
1824 ralloc_asprintf(mem_ctx, "%s.%s",
1825 input_var->get_interface_type()->without_array()->name,
1826 input_var->name);
1827 hash_table_insert(consumer_interface_inputs, input_var,
1828 iface_field_name);
1829 } else {
1830 hash_table_insert(consumer_inputs, input_var,
1831 ralloc_strdup(mem_ctx, input_var->name));
1832 }
1833 }
1834 }
1835 }
1836
1837 /**
1838 * Find a variable from the consumer that "matches" the specified variable
1839 *
1840 * This function only finds inputs with names that match. There is no
1841 * validation (here) that the types, etc. are compatible.
1842 */
1843 ir_variable *
1844 get_matching_input(void *mem_ctx,
1845 const ir_variable *output_var,
1846 hash_table *consumer_inputs,
1847 hash_table *consumer_interface_inputs,
1848 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1849 {
1850 ir_variable *input_var;
1851
1852 if (output_var->data.explicit_location) {
1853 input_var = consumer_inputs_with_locations[output_var->data.location];
1854 } else if (output_var->get_interface_type() != NULL) {
1855 char *const iface_field_name =
1856 ralloc_asprintf(mem_ctx, "%s.%s",
1857 output_var->get_interface_type()->without_array()->name,
1858 output_var->name);
1859 input_var =
1860 (ir_variable *) hash_table_find(consumer_interface_inputs,
1861 iface_field_name);
1862 } else {
1863 input_var =
1864 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1865 }
1866
1867 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1868 ? NULL : input_var;
1869 }
1870
1871 }
1872
1873 static int
1874 io_variable_cmp(const void *_a, const void *_b)
1875 {
1876 const ir_variable *const a = *(const ir_variable **) _a;
1877 const ir_variable *const b = *(const ir_variable **) _b;
1878
1879 if (a->data.explicit_location && b->data.explicit_location)
1880 return b->data.location - a->data.location;
1881
1882 if (a->data.explicit_location && !b->data.explicit_location)
1883 return 1;
1884
1885 if (!a->data.explicit_location && b->data.explicit_location)
1886 return -1;
1887
1888 return -strcmp(a->name, b->name);
1889 }
1890
1891 /**
1892 * Sort the shader IO variables into canonical order
1893 */
1894 static void
1895 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1896 {
1897 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1898 unsigned num_variables = 0;
1899
1900 foreach_in_list(ir_instruction, node, ir) {
1901 ir_variable *const var = node->as_variable();
1902
1903 if (var == NULL || var->data.mode != io_mode)
1904 continue;
1905
1906 /* If we have already encountered more I/O variables that could
1907 * successfully link, bail.
1908 */
1909 if (num_variables == ARRAY_SIZE(var_table))
1910 return;
1911
1912 var_table[num_variables++] = var;
1913 }
1914
1915 if (num_variables == 0)
1916 return;
1917
1918 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1919 * we're going to push the variables on to the IR list as a stack, so we
1920 * want the last variable (in canonical order) to be first in the list.
1921 */
1922 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1923
1924 /* Remove the variable from it's current location in the IR, and put it at
1925 * the front.
1926 */
1927 for (unsigned i = 0; i < num_variables; i++) {
1928 var_table[i]->remove();
1929 ir->push_head(var_table[i]);
1930 }
1931 }
1932
1933 /**
1934 * Generate a bitfield map of the explicit locations for shader varyings.
1935 *
1936 * Note: For Tessellation shaders we are sitting right on the limits of the
1937 * 64 bit map. Per-vertex and per-patch both have separate location domains
1938 * with a max of MAX_VARYING.
1939 */
1940 static uint64_t
1941 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1942 {
1943 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1944 /* Avoid an overflow of the returned value */
1945 assert(MAX_VARYINGS_INCL_PATCH <= 64);
1946
1947 uint64_t slots = 0;
1948 int var_slot;
1949
1950 if (!stage)
1951 return slots;
1952
1953 foreach_in_list(ir_instruction, node, stage->ir) {
1954 ir_variable *const var = node->as_variable();
1955
1956 if (var == NULL || var->data.mode != io_mode ||
1957 !var->data.explicit_location ||
1958 var->data.location < VARYING_SLOT_VAR0)
1959 continue;
1960
1961 var_slot = var->data.location - VARYING_SLOT_VAR0;
1962
1963 unsigned num_elements = get_varying_type(var, stage->Stage)
1964 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1965 for (unsigned i = 0; i < num_elements; i++) {
1966 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
1967 slots |= UINT64_C(1) << var_slot;
1968 var_slot += 1;
1969 }
1970 }
1971
1972 return slots;
1973 }
1974
1975
1976 /**
1977 * Assign locations for all variables that are produced in one pipeline stage
1978 * (the "producer") and consumed in the next stage (the "consumer").
1979 *
1980 * Variables produced by the producer may also be consumed by transform
1981 * feedback.
1982 *
1983 * \param num_tfeedback_decls is the number of declarations indicating
1984 * variables that may be consumed by transform feedback.
1985 *
1986 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1987 * representing the result of parsing the strings passed to
1988 * glTransformFeedbackVaryings(). assign_location() will be called for
1989 * each of these objects that matches one of the outputs of the
1990 * producer.
1991 *
1992 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1993 * be NULL. In this case, varying locations are assigned solely based on the
1994 * requirements of transform feedback.
1995 */
1996 bool
1997 assign_varying_locations(struct gl_context *ctx,
1998 void *mem_ctx,
1999 struct gl_shader_program *prog,
2000 gl_shader *producer, gl_shader *consumer,
2001 unsigned num_tfeedback_decls,
2002 tfeedback_decl *tfeedback_decls)
2003 {
2004 /* Tessellation shaders treat inputs and outputs as shared memory and can
2005 * access inputs and outputs of other invocations.
2006 * Therefore, they can't be lowered to temps easily (and definitely not
2007 * efficiently).
2008 */
2009 bool unpackable_tess =
2010 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2011 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2012 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2013
2014 /* Transform feedback code assumes varying arrays are packed, so if the
2015 * driver has disabled varying packing, make sure to at least enable
2016 * packing required by transform feedback.
2017 */
2018 bool xfb_enabled =
2019 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2020
2021 /* Disable varying packing for GL 4.4+ as there is no guarantee
2022 * that interpolation qualifiers will match between shaders in these
2023 * versions. We also disable packing on outward facing interfaces for
2024 * SSO because in ES we need to retain the unpacked varying information
2025 * for draw time validation. For desktop GL we could allow packing for
2026 * versions < 4.4 but it's just safer not to do packing.
2027 *
2028 * Packing is still enabled on individual arrays, structs, and matrices as
2029 * these are required by the transform feedback code and it is still safe
2030 * to do so. We also enable packing when a varying is only used for
2031 * transform feedback and its not a SSO.
2032 *
2033 * Varying packing currently only packs together varyings with matching
2034 * interpolation qualifiers as the backends assume all packed components
2035 * are to be processed in the same way. Therefore we cannot do packing in
2036 * these versions of GL without the risk of mismatching interfaces.
2037 *
2038 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
2039 *
2040 * "The type and presence of interpolation qualifiers of variables with
2041 * the same name declared in all linked shaders for the same cross-stage
2042 * interface must match, otherwise the link command will fail.
2043 *
2044 * When comparing an output from one stage to an input of a subsequent
2045 * stage, the input and output don't match if their interpolation
2046 * qualifiers (or lack thereof) are not the same."
2047 *
2048 * This text was also in at least revison 7 of the 4.40 spec but is no
2049 * longer in revision 9 and not in the 4.50 spec.
2050 */
2051 bool disable_varying_packing =
2052 ctx->Const.DisableVaryingPacking || unpackable_tess;
2053 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
2054 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
2055 disable_varying_packing = true;
2056
2057 varying_matches matches(disable_varying_packing, xfb_enabled,
2058 producer ? producer->Stage : (gl_shader_stage)-1,
2059 consumer ? consumer->Stage : (gl_shader_stage)-1);
2060 hash_table *tfeedback_candidates
2061 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2062 hash_table *consumer_inputs
2063 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2064 hash_table *consumer_interface_inputs
2065 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2066 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2067 NULL,
2068 };
2069
2070 unsigned consumer_vertices = 0;
2071 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2072 consumer_vertices = prog->Geom.VerticesIn;
2073
2074 /* Operate in a total of four passes.
2075 *
2076 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2077 * that inputs / outputs of separable shaders will be assigned
2078 * predictable locations regardless of the order in which declarations
2079 * appeared in the shader source.
2080 *
2081 * 2. Assign locations for any matching inputs and outputs.
2082 *
2083 * 3. Mark output variables in the producer that do not have locations as
2084 * not being outputs. This lets the optimizer eliminate them.
2085 *
2086 * 4. Mark input variables in the consumer that do not have locations as
2087 * not being inputs. This lets the optimizer eliminate them.
2088 */
2089 if (consumer)
2090 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2091
2092 if (producer)
2093 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2094
2095 if (consumer)
2096 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2097 consumer_inputs,
2098 consumer_interface_inputs,
2099 consumer_inputs_with_locations);
2100
2101 if (producer) {
2102 foreach_in_list(ir_instruction, node, producer->ir) {
2103 ir_variable *const output_var = node->as_variable();
2104
2105 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2106 continue;
2107
2108 /* Only geometry shaders can use non-zero streams */
2109 assert(output_var->data.stream == 0 ||
2110 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2111 producer->Stage == MESA_SHADER_GEOMETRY));
2112
2113 if (num_tfeedback_decls > 0) {
2114 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2115 g.process(output_var);
2116 }
2117
2118 ir_variable *const input_var =
2119 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2120 consumer_interface_inputs,
2121 consumer_inputs_with_locations);
2122
2123 /* If a matching input variable was found, add this output (and the
2124 * input) to the set. If this is a separable program and there is no
2125 * consumer stage, add the output.
2126 *
2127 * Always add TCS outputs. They are shared by all invocations
2128 * within a patch and can be used as shared memory.
2129 */
2130 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2131 producer->Type == GL_TESS_CONTROL_SHADER) {
2132 matches.record(output_var, input_var);
2133 }
2134
2135 /* Only stream 0 outputs can be consumed in the next stage */
2136 if (input_var && output_var->data.stream != 0) {
2137 linker_error(prog, "output %s is assigned to stream=%d but "
2138 "is linked to an input, which requires stream=0",
2139 output_var->name, output_var->data.stream);
2140 return false;
2141 }
2142 }
2143 } else {
2144 /* If there's no producer stage, then this must be a separable program.
2145 * For example, we may have a program that has just a fragment shader.
2146 * Later this program will be used with some arbitrary vertex (or
2147 * geometry) shader program. This means that locations must be assigned
2148 * for all the inputs.
2149 */
2150 foreach_in_list(ir_instruction, node, consumer->ir) {
2151 ir_variable *const input_var = node->as_variable();
2152
2153 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2154 continue;
2155
2156 matches.record(NULL, input_var);
2157 }
2158 }
2159
2160 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2161 if (!tfeedback_decls[i].is_varying())
2162 continue;
2163
2164 const tfeedback_candidate *matched_candidate
2165 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2166
2167 if (matched_candidate == NULL) {
2168 hash_table_dtor(tfeedback_candidates);
2169 hash_table_dtor(consumer_inputs);
2170 hash_table_dtor(consumer_interface_inputs);
2171 return false;
2172 }
2173
2174 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2175 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2176 matches.record(matched_candidate->toplevel_var, NULL);
2177 }
2178 }
2179
2180 const uint64_t reserved_slots =
2181 reserved_varying_slot(producer, ir_var_shader_out) |
2182 reserved_varying_slot(consumer, ir_var_shader_in);
2183
2184 const unsigned slots_used = matches.assign_locations(prog, reserved_slots);
2185 matches.store_locations();
2186
2187 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2188 if (!tfeedback_decls[i].is_varying())
2189 continue;
2190
2191 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2192 hash_table_dtor(tfeedback_candidates);
2193 hash_table_dtor(consumer_inputs);
2194 hash_table_dtor(consumer_interface_inputs);
2195 return false;
2196 }
2197 }
2198
2199 hash_table_dtor(tfeedback_candidates);
2200 hash_table_dtor(consumer_inputs);
2201 hash_table_dtor(consumer_interface_inputs);
2202
2203 if (consumer && producer) {
2204 foreach_in_list(ir_instruction, node, consumer->ir) {
2205 ir_variable *const var = node->as_variable();
2206
2207 if (var && var->data.mode == ir_var_shader_in &&
2208 var->data.is_unmatched_generic_inout) {
2209 if (!prog->IsES && prog->Version <= 120) {
2210 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2211 *
2212 * Only those varying variables used (i.e. read) in
2213 * the fragment shader executable must be written to
2214 * by the vertex shader executable; declaring
2215 * superfluous varying variables in a vertex shader is
2216 * permissible.
2217 *
2218 * We interpret this text as meaning that the VS must
2219 * write the variable for the FS to read it. See
2220 * "glsl1-varying read but not written" in piglit.
2221 */
2222 linker_error(prog, "%s shader varying %s not written "
2223 "by %s shader\n.",
2224 _mesa_shader_stage_to_string(consumer->Stage),
2225 var->name,
2226 _mesa_shader_stage_to_string(producer->Stage));
2227 } else {
2228 linker_warning(prog, "%s shader varying %s not written "
2229 "by %s shader\n.",
2230 _mesa_shader_stage_to_string(consumer->Stage),
2231 var->name,
2232 _mesa_shader_stage_to_string(producer->Stage));
2233 }
2234 }
2235 }
2236
2237 /* Now that validation is done its safe to remove unused varyings. As
2238 * we have both a producer and consumer its safe to remove unused
2239 * varyings even if the program is a SSO because the stages are being
2240 * linked together i.e. we have a multi-stage SSO.
2241 */
2242 remove_unused_shader_inputs_and_outputs(false, producer,
2243 ir_var_shader_out);
2244 remove_unused_shader_inputs_and_outputs(false, consumer,
2245 ir_var_shader_in);
2246 }
2247
2248 if (producer) {
2249 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2250 0, producer, disable_varying_packing,
2251 xfb_enabled);
2252 }
2253
2254 if (consumer) {
2255 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2256 consumer_vertices, consumer,
2257 disable_varying_packing, xfb_enabled);
2258 }
2259
2260 return true;
2261 }
2262
2263 bool
2264 check_against_output_limit(struct gl_context *ctx,
2265 struct gl_shader_program *prog,
2266 gl_shader *producer)
2267 {
2268 unsigned output_vectors = 0;
2269
2270 foreach_in_list(ir_instruction, node, producer->ir) {
2271 ir_variable *const var = node->as_variable();
2272
2273 if (var && var->data.mode == ir_var_shader_out &&
2274 var_counts_against_varying_limit(producer->Stage, var)) {
2275 /* outputs for fragment shader can't be doubles */
2276 output_vectors += var->type->count_attribute_slots(false);
2277 }
2278 }
2279
2280 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2281 unsigned max_output_components =
2282 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2283
2284 const unsigned output_components = output_vectors * 4;
2285 if (output_components > max_output_components) {
2286 if (ctx->API == API_OPENGLES2 || prog->IsES)
2287 linker_error(prog, "%s shader uses too many output vectors "
2288 "(%u > %u)\n",
2289 _mesa_shader_stage_to_string(producer->Stage),
2290 output_vectors,
2291 max_output_components / 4);
2292 else
2293 linker_error(prog, "%s shader uses too many output components "
2294 "(%u > %u)\n",
2295 _mesa_shader_stage_to_string(producer->Stage),
2296 output_components,
2297 max_output_components);
2298
2299 return false;
2300 }
2301
2302 return true;
2303 }
2304
2305 bool
2306 check_against_input_limit(struct gl_context *ctx,
2307 struct gl_shader_program *prog,
2308 gl_shader *consumer)
2309 {
2310 unsigned input_vectors = 0;
2311
2312 foreach_in_list(ir_instruction, node, consumer->ir) {
2313 ir_variable *const var = node->as_variable();
2314
2315 if (var && var->data.mode == ir_var_shader_in &&
2316 var_counts_against_varying_limit(consumer->Stage, var)) {
2317 /* vertex inputs aren't varying counted */
2318 input_vectors += var->type->count_attribute_slots(false);
2319 }
2320 }
2321
2322 assert(consumer->Stage != MESA_SHADER_VERTEX);
2323 unsigned max_input_components =
2324 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2325
2326 const unsigned input_components = input_vectors * 4;
2327 if (input_components > max_input_components) {
2328 if (ctx->API == API_OPENGLES2 || prog->IsES)
2329 linker_error(prog, "%s shader uses too many input vectors "
2330 "(%u > %u)\n",
2331 _mesa_shader_stage_to_string(consumer->Stage),
2332 input_vectors,
2333 max_input_components / 4);
2334 else
2335 linker_error(prog, "%s shader uses too many input components "
2336 "(%u > %u)\n",
2337 _mesa_shader_stage_to_string(consumer->Stage),
2338 input_components,
2339 max_input_components);
2340
2341 return false;
2342 }
2343
2344 return true;
2345 }