glsl: fix cross validation for explicit locations on structs and arrays
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 linker_error(prog,
230 "%s shader output `%s' declared as type `%s', "
231 "but %s shader input declared as type `%s'\n",
232 _mesa_shader_stage_to_string(producer_stage),
233 output->name,
234 output->type->name,
235 _mesa_shader_stage_to_string(consumer_stage),
236 input->type->name);
237 return;
238 }
239 }
240
241 /* Check that all of the qualifiers match between stages.
242 */
243
244 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
245 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
246 * conformance test suite does not verify that the qualifiers must match.
247 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
248 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
249 */
250 if (false /* always skip the centroid check */ &&
251 prog->Version < (prog->IsES ? 310 : 430) &&
252 input->data.centroid != output->data.centroid) {
253 linker_error(prog,
254 "%s shader output `%s' %s centroid qualifier, "
255 "but %s shader input %s centroid qualifier\n",
256 _mesa_shader_stage_to_string(producer_stage),
257 output->name,
258 (output->data.centroid) ? "has" : "lacks",
259 _mesa_shader_stage_to_string(consumer_stage),
260 (input->data.centroid) ? "has" : "lacks");
261 return;
262 }
263
264 if (input->data.sample != output->data.sample) {
265 linker_error(prog,
266 "%s shader output `%s' %s sample qualifier, "
267 "but %s shader input %s sample qualifier\n",
268 _mesa_shader_stage_to_string(producer_stage),
269 output->name,
270 (output->data.sample) ? "has" : "lacks",
271 _mesa_shader_stage_to_string(consumer_stage),
272 (input->data.sample) ? "has" : "lacks");
273 return;
274 }
275
276 if (input->data.patch != output->data.patch) {
277 linker_error(prog,
278 "%s shader output `%s' %s patch qualifier, "
279 "but %s shader input %s patch qualifier\n",
280 _mesa_shader_stage_to_string(producer_stage),
281 output->name,
282 (output->data.patch) ? "has" : "lacks",
283 _mesa_shader_stage_to_string(consumer_stage),
284 (input->data.patch) ? "has" : "lacks");
285 return;
286 }
287
288 if (!prog->IsES && input->data.invariant != output->data.invariant) {
289 linker_error(prog,
290 "%s shader output `%s' %s invariant qualifier, "
291 "but %s shader input %s invariant qualifier\n",
292 _mesa_shader_stage_to_string(producer_stage),
293 output->name,
294 (output->data.invariant) ? "has" : "lacks",
295 _mesa_shader_stage_to_string(consumer_stage),
296 (input->data.invariant) ? "has" : "lacks");
297 return;
298 }
299
300 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
301 * to match cross stage, they must only match within the same stage.
302 *
303 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
304 *
305 * "It is a link-time error if, within the same stage, the interpolation
306 * qualifiers of variables of the same name do not match.
307 *
308 */
309 if (input->data.interpolation != output->data.interpolation &&
310 prog->Version < 440) {
311 linker_error(prog,
312 "%s shader output `%s' specifies %s "
313 "interpolation qualifier, "
314 "but %s shader input specifies %s "
315 "interpolation qualifier\n",
316 _mesa_shader_stage_to_string(producer_stage),
317 output->name,
318 interpolation_string(output->data.interpolation),
319 _mesa_shader_stage_to_string(consumer_stage),
320 interpolation_string(input->data.interpolation));
321 return;
322 }
323 }
324
325 /**
326 * Validate front and back color outputs against single color input
327 */
328 static void
329 cross_validate_front_and_back_color(struct gl_shader_program *prog,
330 const ir_variable *input,
331 const ir_variable *front_color,
332 const ir_variable *back_color,
333 gl_shader_stage consumer_stage,
334 gl_shader_stage producer_stage)
335 {
336 if (front_color != NULL && front_color->data.assigned)
337 cross_validate_types_and_qualifiers(prog, input, front_color,
338 consumer_stage, producer_stage);
339
340 if (back_color != NULL && back_color->data.assigned)
341 cross_validate_types_and_qualifiers(prog, input, back_color,
342 consumer_stage, producer_stage);
343 }
344
345 /**
346 * Validate that outputs from one stage match inputs of another
347 */
348 void
349 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
350 gl_shader *producer, gl_shader *consumer)
351 {
352 glsl_symbol_table parameters;
353 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
354
355 /* Find all shader outputs in the "producer" stage.
356 */
357 foreach_in_list(ir_instruction, node, producer->ir) {
358 ir_variable *const var = node->as_variable();
359
360 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
361 continue;
362
363 if (!var->data.explicit_location
364 || var->data.location < VARYING_SLOT_VAR0)
365 parameters.add_variable(var);
366 else {
367 /* User-defined varyings with explicit locations are handled
368 * differently because they do not need to have matching names.
369 */
370 const glsl_type *type = get_varying_type(var, producer->Stage);
371 unsigned num_elements = type->count_attribute_slots(false);
372 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
373 unsigned slot_limit = idx + num_elements;
374
375 while (idx < slot_limit) {
376 if (explicit_locations[idx] != NULL) {
377 linker_error(prog,
378 "%s shader has multiple outputs explicitly "
379 "assigned to location %d\n",
380 _mesa_shader_stage_to_string(producer->Stage),
381 idx);
382 return;
383 }
384
385 explicit_locations[idx] = var;
386 idx++;
387 }
388 }
389 }
390
391
392 /* Find all shader inputs in the "consumer" stage. Any variables that have
393 * matching outputs already in the symbol table must have the same type and
394 * qualifiers.
395 *
396 * Exception: if the consumer is the geometry shader, then the inputs
397 * should be arrays and the type of the array element should match the type
398 * of the corresponding producer output.
399 */
400 foreach_in_list(ir_instruction, node, consumer->ir) {
401 ir_variable *const input = node->as_variable();
402
403 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
404 continue;
405
406 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
407 const ir_variable *const front_color =
408 parameters.get_variable("gl_FrontColor");
409
410 const ir_variable *const back_color =
411 parameters.get_variable("gl_BackColor");
412
413 cross_validate_front_and_back_color(prog, input,
414 front_color, back_color,
415 consumer->Stage, producer->Stage);
416 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
417 const ir_variable *const front_color =
418 parameters.get_variable("gl_FrontSecondaryColor");
419
420 const ir_variable *const back_color =
421 parameters.get_variable("gl_BackSecondaryColor");
422
423 cross_validate_front_and_back_color(prog, input,
424 front_color, back_color,
425 consumer->Stage, producer->Stage);
426 } else {
427 /* The rules for connecting inputs and outputs change in the presence
428 * of explicit locations. In this case, we no longer care about the
429 * names of the variables. Instead, we care only about the
430 * explicitly assigned location.
431 */
432 ir_variable *output = NULL;
433 if (input->data.explicit_location
434 && input->data.location >= VARYING_SLOT_VAR0) {
435
436 const glsl_type *type = get_varying_type(input, consumer->Stage);
437 unsigned num_elements = type->count_attribute_slots(false);
438 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
439 unsigned slot_limit = idx + num_elements;
440
441 while (idx < slot_limit) {
442 output = explicit_locations[idx];
443
444 if (output == NULL ||
445 input->data.location != output->data.location) {
446 linker_error(prog,
447 "%s shader input `%s' with explicit location "
448 "has no matching output\n",
449 _mesa_shader_stage_to_string(consumer->Stage),
450 input->name);
451 break;
452 }
453 idx++;
454 }
455 } else {
456 output = parameters.get_variable(input->name);
457 }
458
459 if (output != NULL) {
460 /* Interface blocks have their own validation elsewhere so don't
461 * try validating them here.
462 */
463 if (!(input->get_interface_type() &&
464 output->get_interface_type()))
465 cross_validate_types_and_qualifiers(prog, input, output,
466 consumer->Stage,
467 producer->Stage);
468 } else {
469 /* Check for input vars with unmatched output vars in prev stage
470 * taking into account that interface blocks could have a matching
471 * output but with different name, so we ignore them.
472 */
473 assert(!input->data.assigned);
474 if (input->data.used && !input->get_interface_type() &&
475 !input->data.explicit_location && !prog->SeparateShader)
476 linker_error(prog,
477 "%s shader input `%s' "
478 "has no matching output in the previous stage\n",
479 _mesa_shader_stage_to_string(consumer->Stage),
480 input->name);
481 }
482 }
483 }
484 }
485
486 /**
487 * Demote shader inputs and outputs that are not used in other stages, and
488 * remove them via dead code elimination.
489 */
490 void
491 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
492 gl_shader *sh,
493 enum ir_variable_mode mode)
494 {
495 if (is_separate_shader_object)
496 return;
497
498 foreach_in_list(ir_instruction, node, sh->ir) {
499 ir_variable *const var = node->as_variable();
500
501 if ((var == NULL) || (var->data.mode != int(mode)))
502 continue;
503
504 /* A shader 'in' or 'out' variable is only really an input or output if
505 * its value is used by other shader stages. This will cause the
506 * variable to have a location assigned.
507 */
508 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
509 assert(var->data.mode != ir_var_temporary);
510 var->data.mode = ir_var_auto;
511 }
512 }
513
514 /* Eliminate code that is now dead due to unused inputs/outputs being
515 * demoted.
516 */
517 while (do_dead_code(sh->ir, false))
518 ;
519
520 }
521
522 /**
523 * Initialize this object based on a string that was passed to
524 * glTransformFeedbackVaryings.
525 *
526 * If the input is mal-formed, this call still succeeds, but it sets
527 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
528 * will fail to find any matching variable.
529 */
530 void
531 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
532 const char *input)
533 {
534 /* We don't have to be pedantic about what is a valid GLSL variable name,
535 * because any variable with an invalid name can't exist in the IR anyway.
536 */
537
538 this->location = -1;
539 this->orig_name = input;
540 this->lowered_builtin_array_variable = none;
541 this->skip_components = 0;
542 this->next_buffer_separator = false;
543 this->matched_candidate = NULL;
544 this->stream_id = 0;
545 this->buffer = 0;
546 this->offset = 0;
547
548 if (ctx->Extensions.ARB_transform_feedback3) {
549 /* Parse gl_NextBuffer. */
550 if (strcmp(input, "gl_NextBuffer") == 0) {
551 this->next_buffer_separator = true;
552 return;
553 }
554
555 /* Parse gl_SkipComponents. */
556 if (strcmp(input, "gl_SkipComponents1") == 0)
557 this->skip_components = 1;
558 else if (strcmp(input, "gl_SkipComponents2") == 0)
559 this->skip_components = 2;
560 else if (strcmp(input, "gl_SkipComponents3") == 0)
561 this->skip_components = 3;
562 else if (strcmp(input, "gl_SkipComponents4") == 0)
563 this->skip_components = 4;
564
565 if (this->skip_components)
566 return;
567 }
568
569 /* Parse a declaration. */
570 const char *base_name_end;
571 long subscript = parse_program_resource_name(input, &base_name_end);
572 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
573 if (this->var_name == NULL) {
574 _mesa_error_no_memory(__func__);
575 return;
576 }
577
578 if (subscript >= 0) {
579 this->array_subscript = subscript;
580 this->is_subscripted = true;
581 } else {
582 this->is_subscripted = false;
583 }
584
585 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
586 * class must behave specially to account for the fact that gl_ClipDistance
587 * is converted from a float[8] to a vec4[2].
588 */
589 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
590 strcmp(this->var_name, "gl_ClipDistance") == 0) {
591 this->lowered_builtin_array_variable = clip_distance;
592 }
593
594 if (ctx->Const.LowerTessLevel &&
595 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
596 this->lowered_builtin_array_variable = tess_level_outer;
597 if (ctx->Const.LowerTessLevel &&
598 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
599 this->lowered_builtin_array_variable = tess_level_inner;
600 }
601
602
603 /**
604 * Determine whether two tfeedback_decl objects refer to the same variable and
605 * array index (if applicable).
606 */
607 bool
608 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
609 {
610 assert(x.is_varying() && y.is_varying());
611
612 if (strcmp(x.var_name, y.var_name) != 0)
613 return false;
614 if (x.is_subscripted != y.is_subscripted)
615 return false;
616 if (x.is_subscripted && x.array_subscript != y.array_subscript)
617 return false;
618 return true;
619 }
620
621
622 /**
623 * Assign a location and stream ID for this tfeedback_decl object based on the
624 * transform feedback candidate found by find_candidate.
625 *
626 * If an error occurs, the error is reported through linker_error() and false
627 * is returned.
628 */
629 bool
630 tfeedback_decl::assign_location(struct gl_context *ctx,
631 struct gl_shader_program *prog)
632 {
633 assert(this->is_varying());
634
635 unsigned fine_location
636 = this->matched_candidate->toplevel_var->data.location * 4
637 + this->matched_candidate->toplevel_var->data.location_frac
638 + this->matched_candidate->offset;
639 const unsigned dmul =
640 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
641
642 if (this->matched_candidate->type->is_array()) {
643 /* Array variable */
644 const unsigned matrix_cols =
645 this->matched_candidate->type->fields.array->matrix_columns;
646 const unsigned vector_elements =
647 this->matched_candidate->type->fields.array->vector_elements;
648 unsigned actual_array_size;
649 switch (this->lowered_builtin_array_variable) {
650 case clip_distance:
651 actual_array_size = prog->LastClipDistanceArraySize;
652 break;
653 case tess_level_outer:
654 actual_array_size = 4;
655 break;
656 case tess_level_inner:
657 actual_array_size = 2;
658 break;
659 case none:
660 default:
661 actual_array_size = this->matched_candidate->type->array_size();
662 break;
663 }
664
665 if (this->is_subscripted) {
666 /* Check array bounds. */
667 if (this->array_subscript >= actual_array_size) {
668 linker_error(prog, "Transform feedback varying %s has index "
669 "%i, but the array size is %u.",
670 this->orig_name, this->array_subscript,
671 actual_array_size);
672 return false;
673 }
674 unsigned array_elem_size = this->lowered_builtin_array_variable ?
675 1 : vector_elements * matrix_cols * dmul;
676 fine_location += array_elem_size * this->array_subscript;
677 this->size = 1;
678 } else {
679 this->size = actual_array_size;
680 }
681 this->vector_elements = vector_elements;
682 this->matrix_columns = matrix_cols;
683 if (this->lowered_builtin_array_variable)
684 this->type = GL_FLOAT;
685 else
686 this->type = this->matched_candidate->type->fields.array->gl_type;
687 } else {
688 /* Regular variable (scalar, vector, or matrix) */
689 if (this->is_subscripted) {
690 linker_error(prog, "Transform feedback varying %s requested, "
691 "but %s is not an array.",
692 this->orig_name, this->var_name);
693 return false;
694 }
695 this->size = 1;
696 this->vector_elements = this->matched_candidate->type->vector_elements;
697 this->matrix_columns = this->matched_candidate->type->matrix_columns;
698 this->type = this->matched_candidate->type->gl_type;
699 }
700 this->location = fine_location / 4;
701 this->location_frac = fine_location % 4;
702
703 /* From GL_EXT_transform_feedback:
704 * A program will fail to link if:
705 *
706 * * the total number of components to capture in any varying
707 * variable in <varyings> is greater than the constant
708 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
709 * buffer mode is SEPARATE_ATTRIBS_EXT;
710 */
711 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
712 this->num_components() >
713 ctx->Const.MaxTransformFeedbackSeparateComponents) {
714 linker_error(prog, "Transform feedback varying %s exceeds "
715 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
716 this->orig_name);
717 return false;
718 }
719
720 /* Only transform feedback varyings can be assigned to non-zero streams,
721 * so assign the stream id here.
722 */
723 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
724
725 unsigned array_offset = this->array_subscript * 4 * dmul;
726 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
727 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
728 this->offset = this->matched_candidate->toplevel_var->data.offset +
729 array_offset + struct_offset;
730
731 return true;
732 }
733
734
735 unsigned
736 tfeedback_decl::get_num_outputs() const
737 {
738 if (!this->is_varying()) {
739 return 0;
740 }
741 return (this->num_components() + this->location_frac + 3)/4;
742 }
743
744
745 /**
746 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
747 *
748 * If an error occurs, the error is reported through linker_error() and false
749 * is returned.
750 */
751 bool
752 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
753 struct gl_transform_feedback_info *info,
754 unsigned buffer, unsigned buffer_index,
755 const unsigned max_outputs, bool *explicit_stride,
756 bool has_xfb_qualifiers) const
757 {
758 assert(!this->next_buffer_separator);
759
760 /* Handle gl_SkipComponents. */
761 if (this->skip_components) {
762 info->Buffers[buffer].Stride += this->skip_components;
763 return true;
764 }
765
766 unsigned xfb_offset = 0;
767 if (has_xfb_qualifiers) {
768 xfb_offset = this->offset / 4;
769 } else {
770 xfb_offset = info->Buffers[buffer].Stride;
771 }
772 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
773
774 unsigned location = this->location;
775 unsigned location_frac = this->location_frac;
776 unsigned num_components = this->num_components();
777 while (num_components > 0) {
778 unsigned output_size = MIN2(num_components, 4 - location_frac);
779 assert((info->NumOutputs == 0 && max_outputs == 0) ||
780 info->NumOutputs < max_outputs);
781
782 /* From the ARB_enhanced_layouts spec:
783 *
784 * "If such a block member or variable is not written during a shader
785 * invocation, the buffer contents at the assigned offset will be
786 * undefined. Even if there are no static writes to a variable or
787 * member that is assigned a transform feedback offset, the space is
788 * still allocated in the buffer and still affects the stride."
789 */
790 if (this->is_varying_written()) {
791 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
792 info->Outputs[info->NumOutputs].OutputRegister = location;
793 info->Outputs[info->NumOutputs].NumComponents = output_size;
794 info->Outputs[info->NumOutputs].StreamId = stream_id;
795 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
796 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
797 ++info->NumOutputs;
798 }
799 info->Buffers[buffer].Stream = this->stream_id;
800 xfb_offset += output_size;
801
802 num_components -= output_size;
803 location++;
804 location_frac = 0;
805 }
806
807 if (explicit_stride && explicit_stride[buffer]) {
808 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
809 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
810 "multiple of 8 as its applied to a type that is or "
811 "contains a double.",
812 info->Buffers[buffer].Stride * 4);
813 return false;
814 }
815
816 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
817 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
818 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
819 "buffer (%d)", xfb_offset * 4,
820 info->Buffers[buffer].Stride * 4, buffer);
821 return false;
822 }
823 } else {
824 info->Buffers[buffer].Stride = xfb_offset;
825 }
826
827 /* From GL_EXT_transform_feedback:
828 * A program will fail to link if:
829 *
830 * * the total number of components to capture is greater than
831 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
832 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
833 *
834 * From GL_ARB_enhanced_layouts:
835 *
836 * "The resulting stride (implicit or explicit) must be less than or
837 * equal to the implementation-dependent constant
838 * gl_MaxTransformFeedbackInterleavedComponents."
839 */
840 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
841 has_xfb_qualifiers) &&
842 info->Buffers[buffer].Stride >
843 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
844 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
845 "limit has been exceeded.");
846 return false;
847 }
848
849 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
850 this->orig_name);
851 info->Varyings[info->NumVarying].Type = this->type;
852 info->Varyings[info->NumVarying].Size = this->size;
853 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
854 info->NumVarying++;
855 info->Buffers[buffer].NumVaryings++;
856
857 return true;
858 }
859
860
861 const tfeedback_candidate *
862 tfeedback_decl::find_candidate(gl_shader_program *prog,
863 hash_table *tfeedback_candidates)
864 {
865 const char *name = this->var_name;
866 switch (this->lowered_builtin_array_variable) {
867 case none:
868 name = this->var_name;
869 break;
870 case clip_distance:
871 name = "gl_ClipDistanceMESA";
872 break;
873 case tess_level_outer:
874 name = "gl_TessLevelOuterMESA";
875 break;
876 case tess_level_inner:
877 name = "gl_TessLevelInnerMESA";
878 break;
879 }
880 this->matched_candidate = (const tfeedback_candidate *)
881 hash_table_find(tfeedback_candidates, name);
882 if (!this->matched_candidate) {
883 /* From GL_EXT_transform_feedback:
884 * A program will fail to link if:
885 *
886 * * any variable name specified in the <varyings> array is not
887 * declared as an output in the geometry shader (if present) or
888 * the vertex shader (if no geometry shader is present);
889 */
890 linker_error(prog, "Transform feedback varying %s undeclared.",
891 this->orig_name);
892 }
893 return this->matched_candidate;
894 }
895
896
897 /**
898 * Parse all the transform feedback declarations that were passed to
899 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
900 *
901 * If an error occurs, the error is reported through linker_error() and false
902 * is returned.
903 */
904 bool
905 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
906 const void *mem_ctx, unsigned num_names,
907 char **varying_names, tfeedback_decl *decls)
908 {
909 for (unsigned i = 0; i < num_names; ++i) {
910 decls[i].init(ctx, mem_ctx, varying_names[i]);
911
912 if (!decls[i].is_varying())
913 continue;
914
915 /* From GL_EXT_transform_feedback:
916 * A program will fail to link if:
917 *
918 * * any two entries in the <varyings> array specify the same varying
919 * variable;
920 *
921 * We interpret this to mean "any two entries in the <varyings> array
922 * specify the same varying variable and array index", since transform
923 * feedback of arrays would be useless otherwise.
924 */
925 for (unsigned j = 0; j < i; ++j) {
926 if (!decls[j].is_varying())
927 continue;
928
929 if (tfeedback_decl::is_same(decls[i], decls[j])) {
930 linker_error(prog, "Transform feedback varying %s specified "
931 "more than once.", varying_names[i]);
932 return false;
933 }
934 }
935 }
936 return true;
937 }
938
939
940 static int
941 cmp_xfb_offset(const void * x_generic, const void * y_generic)
942 {
943 tfeedback_decl *x = (tfeedback_decl *) x_generic;
944 tfeedback_decl *y = (tfeedback_decl *) y_generic;
945
946 if (x->get_buffer() != y->get_buffer())
947 return x->get_buffer() - y->get_buffer();
948 return x->get_offset() - y->get_offset();
949 }
950
951 /**
952 * Store transform feedback location assignments into
953 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
954 *
955 * If an error occurs, the error is reported through linker_error() and false
956 * is returned.
957 */
958 bool
959 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
960 unsigned num_tfeedback_decls,
961 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
962 {
963 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
964 * tracking the number of buffers doesn't overflow.
965 */
966 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
967
968 bool separate_attribs_mode =
969 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
970
971 ralloc_free(prog->LinkedTransformFeedback.Varyings);
972 ralloc_free(prog->LinkedTransformFeedback.Outputs);
973
974 memset(&prog->LinkedTransformFeedback, 0,
975 sizeof(prog->LinkedTransformFeedback));
976
977 /* The xfb_offset qualifier does not have to be used in increasing order
978 * however some drivers expect to receive the list of transform feedback
979 * declarations in order so sort it now for convenience.
980 */
981 if (has_xfb_qualifiers)
982 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
983 cmp_xfb_offset);
984
985 prog->LinkedTransformFeedback.Varyings =
986 rzalloc_array(prog,
987 struct gl_transform_feedback_varying_info,
988 num_tfeedback_decls);
989
990 unsigned num_outputs = 0;
991 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
992 if (tfeedback_decls[i].is_varying_written())
993 num_outputs += tfeedback_decls[i].get_num_outputs();
994 }
995
996 prog->LinkedTransformFeedback.Outputs =
997 rzalloc_array(prog,
998 struct gl_transform_feedback_output,
999 num_outputs);
1000
1001 unsigned num_buffers = 0;
1002 unsigned buffers = 0;
1003
1004 if (!has_xfb_qualifiers && separate_attribs_mode) {
1005 /* GL_SEPARATE_ATTRIBS */
1006 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1007 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1008 num_buffers, num_buffers, num_outputs,
1009 NULL, has_xfb_qualifiers))
1010 return false;
1011
1012 buffers |= 1 << num_buffers;
1013 num_buffers++;
1014 }
1015 }
1016 else {
1017 /* GL_INVERLEAVED_ATTRIBS */
1018 int buffer_stream_id = -1;
1019 unsigned buffer =
1020 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1021 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1022
1023 /* Apply any xfb_stride global qualifiers */
1024 if (has_xfb_qualifiers) {
1025 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1026 if (prog->TransformFeedback.BufferStride[j]) {
1027 buffers |= 1 << j;
1028 explicit_stride[j] = true;
1029 prog->LinkedTransformFeedback.Buffers[j].Stride =
1030 prog->TransformFeedback.BufferStride[j] / 4;
1031 }
1032 }
1033 }
1034
1035 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1036 if (has_xfb_qualifiers &&
1037 buffer != tfeedback_decls[i].get_buffer()) {
1038 /* we have moved to the next buffer so reset stream id */
1039 buffer_stream_id = -1;
1040 num_buffers++;
1041 }
1042
1043 if (tfeedback_decls[i].is_next_buffer_separator()) {
1044 num_buffers++;
1045 buffer_stream_id = -1;
1046 continue;
1047 } else if (buffer_stream_id == -1) {
1048 /* First varying writing to this buffer: remember its stream */
1049 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1050 } else if (buffer_stream_id !=
1051 (int) tfeedback_decls[i].get_stream_id()) {
1052 /* Varying writes to the same buffer from a different stream */
1053 linker_error(prog,
1054 "Transform feedback can't capture varyings belonging "
1055 "to different vertex streams in a single buffer. "
1056 "Varying %s writes to buffer from stream %u, other "
1057 "varyings in the same buffer write from stream %u.",
1058 tfeedback_decls[i].name(),
1059 tfeedback_decls[i].get_stream_id(),
1060 buffer_stream_id);
1061 return false;
1062 }
1063
1064 if (has_xfb_qualifiers) {
1065 buffer = tfeedback_decls[i].get_buffer();
1066 } else {
1067 buffer = num_buffers;
1068 }
1069 buffers |= 1 << buffer;
1070
1071 if (!tfeedback_decls[i].store(ctx, prog,
1072 &prog->LinkedTransformFeedback,
1073 buffer, num_buffers, num_outputs,
1074 explicit_stride, has_xfb_qualifiers))
1075 return false;
1076 }
1077 }
1078
1079 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1080
1081 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1082 return true;
1083 }
1084
1085 namespace {
1086
1087 /**
1088 * Data structure recording the relationship between outputs of one shader
1089 * stage (the "producer") and inputs of another (the "consumer").
1090 */
1091 class varying_matches
1092 {
1093 public:
1094 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1095 gl_shader_stage producer_stage,
1096 gl_shader_stage consumer_stage);
1097 ~varying_matches();
1098 void record(ir_variable *producer_var, ir_variable *consumer_var);
1099 unsigned assign_locations(struct gl_shader_program *prog,
1100 uint64_t reserved_slots, bool separate_shader);
1101 void store_locations() const;
1102
1103 private:
1104 bool is_varying_packing_safe(const glsl_type *type,
1105 const ir_variable *var);
1106
1107 /**
1108 * If true, this driver disables varying packing, so all varyings need to
1109 * be aligned on slot boundaries, and take up a number of slots equal to
1110 * their number of matrix columns times their array size.
1111 *
1112 * Packing may also be disabled because our current packing method is not
1113 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1114 * guaranteed to match across stages.
1115 */
1116 const bool disable_varying_packing;
1117
1118 /**
1119 * If true, this driver has transform feedback enabled. The transform
1120 * feedback code requires at least some packing be done even when varying
1121 * packing is disabled, fortunately where transform feedback requires
1122 * packing it's safe to override the disabled setting. See
1123 * is_varying_packing_safe().
1124 */
1125 const bool xfb_enabled;
1126
1127 /**
1128 * Enum representing the order in which varyings are packed within a
1129 * packing class.
1130 *
1131 * Currently we pack vec4's first, then vec2's, then scalar values, then
1132 * vec3's. This order ensures that the only vectors that are at risk of
1133 * having to be "double parked" (split between two adjacent varying slots)
1134 * are the vec3's.
1135 */
1136 enum packing_order_enum {
1137 PACKING_ORDER_VEC4,
1138 PACKING_ORDER_VEC2,
1139 PACKING_ORDER_SCALAR,
1140 PACKING_ORDER_VEC3,
1141 };
1142
1143 static unsigned compute_packing_class(const ir_variable *var);
1144 static packing_order_enum compute_packing_order(const ir_variable *var);
1145 static int match_comparator(const void *x_generic, const void *y_generic);
1146 static int xfb_comparator(const void *x_generic, const void *y_generic);
1147
1148 /**
1149 * Structure recording the relationship between a single producer output
1150 * and a single consumer input.
1151 */
1152 struct match {
1153 /**
1154 * Packing class for this varying, computed by compute_packing_class().
1155 */
1156 unsigned packing_class;
1157
1158 /**
1159 * Packing order for this varying, computed by compute_packing_order().
1160 */
1161 packing_order_enum packing_order;
1162 unsigned num_components;
1163
1164 /**
1165 * The output variable in the producer stage.
1166 */
1167 ir_variable *producer_var;
1168
1169 /**
1170 * The input variable in the consumer stage.
1171 */
1172 ir_variable *consumer_var;
1173
1174 /**
1175 * The location which has been assigned for this varying. This is
1176 * expressed in multiples of a float, with the first generic varying
1177 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1178 * value 0.
1179 */
1180 unsigned generic_location;
1181 } *matches;
1182
1183 /**
1184 * The number of elements in the \c matches array that are currently in
1185 * use.
1186 */
1187 unsigned num_matches;
1188
1189 /**
1190 * The number of elements that were set aside for the \c matches array when
1191 * it was allocated.
1192 */
1193 unsigned matches_capacity;
1194
1195 gl_shader_stage producer_stage;
1196 gl_shader_stage consumer_stage;
1197 };
1198
1199 } /* anonymous namespace */
1200
1201 varying_matches::varying_matches(bool disable_varying_packing,
1202 bool xfb_enabled,
1203 gl_shader_stage producer_stage,
1204 gl_shader_stage consumer_stage)
1205 : disable_varying_packing(disable_varying_packing),
1206 xfb_enabled(xfb_enabled),
1207 producer_stage(producer_stage),
1208 consumer_stage(consumer_stage)
1209 {
1210 /* Note: this initial capacity is rather arbitrarily chosen to be large
1211 * enough for many cases without wasting an unreasonable amount of space.
1212 * varying_matches::record() will resize the array if there are more than
1213 * this number of varyings.
1214 */
1215 this->matches_capacity = 8;
1216 this->matches = (match *)
1217 malloc(sizeof(*this->matches) * this->matches_capacity);
1218 this->num_matches = 0;
1219 }
1220
1221
1222 varying_matches::~varying_matches()
1223 {
1224 free(this->matches);
1225 }
1226
1227
1228 /**
1229 * Packing is always safe on individual arrays, structure and matices. It is
1230 * also safe if the varying is only used for transform feedback.
1231 */
1232 bool
1233 varying_matches::is_varying_packing_safe(const glsl_type *type,
1234 const ir_variable *var)
1235 {
1236 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1237 consumer_stage == MESA_SHADER_TESS_CTRL ||
1238 producer_stage == MESA_SHADER_TESS_CTRL)
1239 return false;
1240
1241 return xfb_enabled && (type->is_array() || type->is_record() ||
1242 type->is_matrix() || var->data.is_xfb_only);
1243 }
1244
1245
1246 /**
1247 * Record the given producer/consumer variable pair in the list of variables
1248 * that should later be assigned locations.
1249 *
1250 * It is permissible for \c consumer_var to be NULL (this happens if a
1251 * variable is output by the producer and consumed by transform feedback, but
1252 * not consumed by the consumer).
1253 *
1254 * If \c producer_var has already been paired up with a consumer_var, or
1255 * producer_var is part of fixed pipeline functionality (and hence already has
1256 * a location assigned), this function has no effect.
1257 *
1258 * Note: as a side effect this function may change the interpolation type of
1259 * \c producer_var, but only when the change couldn't possibly affect
1260 * rendering.
1261 */
1262 void
1263 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1264 {
1265 assert(producer_var != NULL || consumer_var != NULL);
1266
1267 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1268 producer_var->data.explicit_location)) ||
1269 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1270 consumer_var->data.explicit_location))) {
1271 /* Either a location already exists for this variable (since it is part
1272 * of fixed functionality), or it has already been recorded as part of a
1273 * previous match.
1274 */
1275 return;
1276 }
1277
1278 bool needs_flat_qualifier = consumer_var == NULL &&
1279 (producer_var->type->contains_integer() ||
1280 producer_var->type->contains_double());
1281
1282 if (needs_flat_qualifier ||
1283 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1284 /* Since this varying is not being consumed by the fragment shader, its
1285 * interpolation type varying cannot possibly affect rendering.
1286 * Also, this variable is non-flat and is (or contains) an integer
1287 * or a double.
1288 * If the consumer stage is unknown, don't modify the interpolation
1289 * type as it could affect rendering later with separate shaders.
1290 *
1291 * lower_packed_varyings requires all integer varyings to flat,
1292 * regardless of where they appear. We can trivially satisfy that
1293 * requirement by changing the interpolation type to flat here.
1294 */
1295 if (producer_var) {
1296 producer_var->data.centroid = false;
1297 producer_var->data.sample = false;
1298 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1299 }
1300
1301 if (consumer_var) {
1302 consumer_var->data.centroid = false;
1303 consumer_var->data.sample = false;
1304 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1305 }
1306 }
1307
1308 if (this->num_matches == this->matches_capacity) {
1309 this->matches_capacity *= 2;
1310 this->matches = (match *)
1311 realloc(this->matches,
1312 sizeof(*this->matches) * this->matches_capacity);
1313 }
1314
1315 const ir_variable *const var = (producer_var != NULL)
1316 ? producer_var : consumer_var;
1317 const gl_shader_stage stage = (producer_var != NULL)
1318 ? producer_stage : consumer_stage;
1319 const glsl_type *type = get_varying_type(var, stage);
1320
1321 this->matches[this->num_matches].packing_class
1322 = this->compute_packing_class(var);
1323 this->matches[this->num_matches].packing_order
1324 = this->compute_packing_order(var);
1325 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1326 unsigned slots = type->count_attribute_slots(false);
1327 this->matches[this->num_matches].num_components = slots * 4;
1328 } else {
1329 this->matches[this->num_matches].num_components
1330 = type->component_slots();
1331 }
1332 this->matches[this->num_matches].producer_var = producer_var;
1333 this->matches[this->num_matches].consumer_var = consumer_var;
1334 this->num_matches++;
1335 if (producer_var)
1336 producer_var->data.is_unmatched_generic_inout = 0;
1337 if (consumer_var)
1338 consumer_var->data.is_unmatched_generic_inout = 0;
1339 }
1340
1341
1342 /**
1343 * Choose locations for all of the variable matches that were previously
1344 * passed to varying_matches::record().
1345 */
1346 unsigned
1347 varying_matches::assign_locations(struct gl_shader_program *prog,
1348 uint64_t reserved_slots,
1349 bool separate_shader)
1350 {
1351 /* If packing has been disabled then we cannot safely sort the varyings by
1352 * class as it may mean we are using a version of OpenGL where
1353 * interpolation qualifiers are not guaranteed to be matching across
1354 * shaders, sorting in this case could result in mismatching shader
1355 * interfaces.
1356 * When packing is disabled the sort orders varyings used by transform
1357 * feedback first, but also depends on *undefined behaviour* of qsort to
1358 * reverse the order of the varyings. See: xfb_comparator().
1359 */
1360 if (!this->disable_varying_packing) {
1361 /* Sort varying matches into an order that makes them easy to pack. */
1362 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1363 &varying_matches::match_comparator);
1364 } else {
1365 /* Only sort varyings that are only used by transform feedback. */
1366 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1367 &varying_matches::xfb_comparator);
1368 }
1369
1370 unsigned generic_location = 0;
1371 unsigned generic_patch_location = MAX_VARYING*4;
1372 bool previous_var_xfb_only = false;
1373
1374 for (unsigned i = 0; i < this->num_matches; i++) {
1375 unsigned *location = &generic_location;
1376
1377 const ir_variable *var;
1378 const glsl_type *type;
1379 bool is_vertex_input = false;
1380 if (matches[i].consumer_var) {
1381 var = matches[i].consumer_var;
1382 type = get_varying_type(var, consumer_stage);
1383 if (consumer_stage == MESA_SHADER_VERTEX)
1384 is_vertex_input = true;
1385 } else {
1386 var = matches[i].producer_var;
1387 type = get_varying_type(var, producer_stage);
1388 }
1389
1390 if (var->data.patch)
1391 location = &generic_patch_location;
1392
1393 /* Advance to the next slot if this varying has a different packing
1394 * class than the previous one, and we're not already on a slot
1395 * boundary.
1396 *
1397 * Also advance to the next slot if packing is disabled. This makes sure
1398 * we don't assign varyings the same locations which is possible
1399 * because we still pack individual arrays, records and matrices even
1400 * when packing is disabled. Note we don't advance to the next slot if
1401 * we can pack varyings together that are only used for transform
1402 * feedback.
1403 */
1404 if ((this->disable_varying_packing &&
1405 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1406 (i > 0 && this->matches[i - 1].packing_class
1407 != this->matches[i].packing_class )) {
1408 *location = ALIGN(*location, 4);
1409 }
1410
1411 previous_var_xfb_only = var->data.is_xfb_only;
1412
1413 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1414 unsigned slot_end;
1415 if (this->disable_varying_packing &&
1416 !is_varying_packing_safe(type, var))
1417 slot_end = 4;
1418 else
1419 slot_end = type->without_array()->vector_elements;
1420 slot_end += *location - 1;
1421
1422 /* FIXME: We could be smarter in the below code and loop back over
1423 * trying to fill any locations that we skipped because we couldn't pack
1424 * the varying between an explicit location. For now just let the user
1425 * hit the linking error if we run out of room and suggest they use
1426 * explicit locations.
1427 */
1428 for (unsigned j = 0; j < num_elements; j++) {
1429 while ((slot_end < MAX_VARYING * 4u) &&
1430 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1431 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1432
1433 *location = ALIGN(*location + 1, 4);
1434 slot_end = *location;
1435
1436 /* reset the counter and try again */
1437 j = 0;
1438 }
1439
1440 /* Increase the slot to make sure there is enough room for next
1441 * array element.
1442 */
1443 if (this->disable_varying_packing &&
1444 !is_varying_packing_safe(type, var))
1445 slot_end += 4;
1446 else
1447 slot_end += type->without_array()->vector_elements;
1448 }
1449
1450 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1451 linker_error(prog, "insufficient contiguous locations available for "
1452 "%s it is possible an array or struct could not be "
1453 "packed between varyings with explicit locations. Try "
1454 "using an explicit location for arrays and structs.",
1455 var->name);
1456 }
1457
1458 this->matches[i].generic_location = *location;
1459
1460 *location += this->matches[i].num_components;
1461 }
1462
1463 return (generic_location + 3) / 4;
1464 }
1465
1466
1467 /**
1468 * Update the producer and consumer shaders to reflect the locations
1469 * assignments that were made by varying_matches::assign_locations().
1470 */
1471 void
1472 varying_matches::store_locations() const
1473 {
1474 for (unsigned i = 0; i < this->num_matches; i++) {
1475 ir_variable *producer_var = this->matches[i].producer_var;
1476 ir_variable *consumer_var = this->matches[i].consumer_var;
1477 unsigned generic_location = this->matches[i].generic_location;
1478 unsigned slot = generic_location / 4;
1479 unsigned offset = generic_location % 4;
1480
1481 if (producer_var) {
1482 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1483 producer_var->data.location_frac = offset;
1484 }
1485
1486 if (consumer_var) {
1487 assert(consumer_var->data.location == -1);
1488 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1489 consumer_var->data.location_frac = offset;
1490 }
1491 }
1492 }
1493
1494
1495 /**
1496 * Compute the "packing class" of the given varying. This is an unsigned
1497 * integer with the property that two variables in the same packing class can
1498 * be safely backed into the same vec4.
1499 */
1500 unsigned
1501 varying_matches::compute_packing_class(const ir_variable *var)
1502 {
1503 /* Without help from the back-end, there is no way to pack together
1504 * variables with different interpolation types, because
1505 * lower_packed_varyings must choose exactly one interpolation type for
1506 * each packed varying it creates.
1507 *
1508 * However, we can safely pack together floats, ints, and uints, because:
1509 *
1510 * - varyings of base type "int" and "uint" must use the "flat"
1511 * interpolation type, which can only occur in GLSL 1.30 and above.
1512 *
1513 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1514 * can store flat floats as ints without losing any information (using
1515 * the ir_unop_bitcast_* opcodes).
1516 *
1517 * Therefore, the packing class depends only on the interpolation type.
1518 */
1519 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1520 (var->data.patch << 2);
1521 packing_class *= 4;
1522 packing_class += var->data.interpolation;
1523 return packing_class;
1524 }
1525
1526
1527 /**
1528 * Compute the "packing order" of the given varying. This is a sort key we
1529 * use to determine when to attempt to pack the given varying relative to
1530 * other varyings in the same packing class.
1531 */
1532 varying_matches::packing_order_enum
1533 varying_matches::compute_packing_order(const ir_variable *var)
1534 {
1535 const glsl_type *element_type = var->type;
1536
1537 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1538 element_type = element_type->fields.array;
1539 }
1540
1541 switch (element_type->component_slots() % 4) {
1542 case 1: return PACKING_ORDER_SCALAR;
1543 case 2: return PACKING_ORDER_VEC2;
1544 case 3: return PACKING_ORDER_VEC3;
1545 case 0: return PACKING_ORDER_VEC4;
1546 default:
1547 assert(!"Unexpected value of vector_elements");
1548 return PACKING_ORDER_VEC4;
1549 }
1550 }
1551
1552
1553 /**
1554 * Comparison function passed to qsort() to sort varyings by packing_class and
1555 * then by packing_order.
1556 */
1557 int
1558 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1559 {
1560 const match *x = (const match *) x_generic;
1561 const match *y = (const match *) y_generic;
1562
1563 if (x->packing_class != y->packing_class)
1564 return x->packing_class - y->packing_class;
1565 return x->packing_order - y->packing_order;
1566 }
1567
1568
1569 /**
1570 * Comparison function passed to qsort() to sort varyings used only by
1571 * transform feedback when packing of other varyings is disabled.
1572 */
1573 int
1574 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1575 {
1576 const match *x = (const match *) x_generic;
1577
1578 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1579 return match_comparator(x_generic, y_generic);
1580
1581 /* FIXME: When the comparator returns 0 it means the elements being
1582 * compared are equivalent. However the qsort documentation says:
1583 *
1584 * "The order of equivalent elements is undefined."
1585 *
1586 * In practice the sort ends up reversing the order of the varyings which
1587 * means locations are also assigned in this reversed order and happens to
1588 * be what we want. This is also whats happening in
1589 * varying_matches::match_comparator().
1590 */
1591 return 0;
1592 }
1593
1594
1595 /**
1596 * Is the given variable a varying variable to be counted against the
1597 * limit in ctx->Const.MaxVarying?
1598 * This includes variables such as texcoords, colors and generic
1599 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1600 */
1601 static bool
1602 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1603 {
1604 /* Only fragment shaders will take a varying variable as an input */
1605 if (stage == MESA_SHADER_FRAGMENT &&
1606 var->data.mode == ir_var_shader_in) {
1607 switch (var->data.location) {
1608 case VARYING_SLOT_POS:
1609 case VARYING_SLOT_FACE:
1610 case VARYING_SLOT_PNTC:
1611 return false;
1612 default:
1613 return true;
1614 }
1615 }
1616 return false;
1617 }
1618
1619
1620 /**
1621 * Visitor class that generates tfeedback_candidate structs describing all
1622 * possible targets of transform feedback.
1623 *
1624 * tfeedback_candidate structs are stored in the hash table
1625 * tfeedback_candidates, which is passed to the constructor. This hash table
1626 * maps varying names to instances of the tfeedback_candidate struct.
1627 */
1628 class tfeedback_candidate_generator : public program_resource_visitor
1629 {
1630 public:
1631 tfeedback_candidate_generator(void *mem_ctx,
1632 hash_table *tfeedback_candidates)
1633 : mem_ctx(mem_ctx),
1634 tfeedback_candidates(tfeedback_candidates),
1635 toplevel_var(NULL),
1636 varying_floats(0)
1637 {
1638 }
1639
1640 void process(ir_variable *var)
1641 {
1642 /* All named varying interface blocks should be flattened by now */
1643 assert(!var->is_interface_instance());
1644
1645 this->toplevel_var = var;
1646 this->varying_floats = 0;
1647 program_resource_visitor::process(var);
1648 }
1649
1650 private:
1651 virtual void visit_field(const glsl_type *type, const char *name,
1652 bool row_major)
1653 {
1654 assert(!type->without_array()->is_record());
1655 assert(!type->without_array()->is_interface());
1656
1657 (void) row_major;
1658
1659 tfeedback_candidate *candidate
1660 = rzalloc(this->mem_ctx, tfeedback_candidate);
1661 candidate->toplevel_var = this->toplevel_var;
1662 candidate->type = type;
1663 candidate->offset = this->varying_floats;
1664 hash_table_insert(this->tfeedback_candidates, candidate,
1665 ralloc_strdup(this->mem_ctx, name));
1666 this->varying_floats += type->component_slots();
1667 }
1668
1669 /**
1670 * Memory context used to allocate hash table keys and values.
1671 */
1672 void * const mem_ctx;
1673
1674 /**
1675 * Hash table in which tfeedback_candidate objects should be stored.
1676 */
1677 hash_table * const tfeedback_candidates;
1678
1679 /**
1680 * Pointer to the toplevel variable that is being traversed.
1681 */
1682 ir_variable *toplevel_var;
1683
1684 /**
1685 * Total number of varying floats that have been visited so far. This is
1686 * used to determine the offset to each varying within the toplevel
1687 * variable.
1688 */
1689 unsigned varying_floats;
1690 };
1691
1692
1693 namespace linker {
1694
1695 void
1696 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1697 hash_table *consumer_inputs,
1698 hash_table *consumer_interface_inputs,
1699 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1700 {
1701 memset(consumer_inputs_with_locations,
1702 0,
1703 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1704
1705 foreach_in_list(ir_instruction, node, ir) {
1706 ir_variable *const input_var = node->as_variable();
1707
1708 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1709 /* All interface blocks should have been lowered by this point */
1710 assert(!input_var->type->is_interface());
1711
1712 if (input_var->data.explicit_location) {
1713 /* assign_varying_locations only cares about finding the
1714 * ir_variable at the start of a contiguous location block.
1715 *
1716 * - For !producer, consumer_inputs_with_locations isn't used.
1717 *
1718 * - For !consumer, consumer_inputs_with_locations is empty.
1719 *
1720 * For consumer && producer, if you were trying to set some
1721 * ir_variable to the middle of a location block on the other side
1722 * of producer/consumer, cross_validate_outputs_to_inputs() should
1723 * be link-erroring due to either type mismatch or location
1724 * overlaps. If the variables do match up, then they've got a
1725 * matching data.location and you only looked at
1726 * consumer_inputs_with_locations[var->data.location], not any
1727 * following entries for the array/structure.
1728 */
1729 consumer_inputs_with_locations[input_var->data.location] =
1730 input_var;
1731 } else if (input_var->get_interface_type() != NULL) {
1732 char *const iface_field_name =
1733 ralloc_asprintf(mem_ctx, "%s.%s",
1734 input_var->get_interface_type()->without_array()->name,
1735 input_var->name);
1736 hash_table_insert(consumer_interface_inputs, input_var,
1737 iface_field_name);
1738 } else {
1739 hash_table_insert(consumer_inputs, input_var,
1740 ralloc_strdup(mem_ctx, input_var->name));
1741 }
1742 }
1743 }
1744 }
1745
1746 /**
1747 * Find a variable from the consumer that "matches" the specified variable
1748 *
1749 * This function only finds inputs with names that match. There is no
1750 * validation (here) that the types, etc. are compatible.
1751 */
1752 ir_variable *
1753 get_matching_input(void *mem_ctx,
1754 const ir_variable *output_var,
1755 hash_table *consumer_inputs,
1756 hash_table *consumer_interface_inputs,
1757 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1758 {
1759 ir_variable *input_var;
1760
1761 if (output_var->data.explicit_location) {
1762 input_var = consumer_inputs_with_locations[output_var->data.location];
1763 } else if (output_var->get_interface_type() != NULL) {
1764 char *const iface_field_name =
1765 ralloc_asprintf(mem_ctx, "%s.%s",
1766 output_var->get_interface_type()->without_array()->name,
1767 output_var->name);
1768 input_var =
1769 (ir_variable *) hash_table_find(consumer_interface_inputs,
1770 iface_field_name);
1771 } else {
1772 input_var =
1773 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1774 }
1775
1776 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1777 ? NULL : input_var;
1778 }
1779
1780 }
1781
1782 static int
1783 io_variable_cmp(const void *_a, const void *_b)
1784 {
1785 const ir_variable *const a = *(const ir_variable **) _a;
1786 const ir_variable *const b = *(const ir_variable **) _b;
1787
1788 if (a->data.explicit_location && b->data.explicit_location)
1789 return b->data.location - a->data.location;
1790
1791 if (a->data.explicit_location && !b->data.explicit_location)
1792 return 1;
1793
1794 if (!a->data.explicit_location && b->data.explicit_location)
1795 return -1;
1796
1797 return -strcmp(a->name, b->name);
1798 }
1799
1800 /**
1801 * Sort the shader IO variables into canonical order
1802 */
1803 static void
1804 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1805 {
1806 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1807 unsigned num_variables = 0;
1808
1809 foreach_in_list(ir_instruction, node, ir) {
1810 ir_variable *const var = node->as_variable();
1811
1812 if (var == NULL || var->data.mode != io_mode)
1813 continue;
1814
1815 /* If we have already encountered more I/O variables that could
1816 * successfully link, bail.
1817 */
1818 if (num_variables == ARRAY_SIZE(var_table))
1819 return;
1820
1821 var_table[num_variables++] = var;
1822 }
1823
1824 if (num_variables == 0)
1825 return;
1826
1827 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1828 * we're going to push the variables on to the IR list as a stack, so we
1829 * want the last variable (in canonical order) to be first in the list.
1830 */
1831 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1832
1833 /* Remove the variable from it's current location in the IR, and put it at
1834 * the front.
1835 */
1836 for (unsigned i = 0; i < num_variables; i++) {
1837 var_table[i]->remove();
1838 ir->push_head(var_table[i]);
1839 }
1840 }
1841
1842 /**
1843 * Generate a bitfield map of the explicit locations for shader varyings.
1844 *
1845 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1846 */
1847 uint64_t
1848 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1849 {
1850 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1851 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1852
1853 uint64_t slots = 0;
1854 int var_slot;
1855
1856 if (!stage)
1857 return slots;
1858
1859 foreach_in_list(ir_instruction, node, stage->ir) {
1860 ir_variable *const var = node->as_variable();
1861
1862 if (var == NULL || var->data.mode != io_mode ||
1863 !var->data.explicit_location ||
1864 var->data.location < VARYING_SLOT_VAR0)
1865 continue;
1866
1867 var_slot = var->data.location - VARYING_SLOT_VAR0;
1868
1869 unsigned num_elements = get_varying_type(var, stage->Stage)
1870 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1871 for (unsigned i = 0; i < num_elements; i++) {
1872 if (var_slot >= 0 && var_slot < MAX_VARYING)
1873 slots |= UINT64_C(1) << var_slot;
1874 var_slot += 1;
1875 }
1876 }
1877
1878 return slots;
1879 }
1880
1881
1882 /**
1883 * Assign locations for all variables that are produced in one pipeline stage
1884 * (the "producer") and consumed in the next stage (the "consumer").
1885 *
1886 * Variables produced by the producer may also be consumed by transform
1887 * feedback.
1888 *
1889 * \param num_tfeedback_decls is the number of declarations indicating
1890 * variables that may be consumed by transform feedback.
1891 *
1892 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1893 * representing the result of parsing the strings passed to
1894 * glTransformFeedbackVaryings(). assign_location() will be called for
1895 * each of these objects that matches one of the outputs of the
1896 * producer.
1897 *
1898 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1899 * be NULL. In this case, varying locations are assigned solely based on the
1900 * requirements of transform feedback.
1901 */
1902 bool
1903 assign_varying_locations(struct gl_context *ctx,
1904 void *mem_ctx,
1905 struct gl_shader_program *prog,
1906 gl_shader *producer, gl_shader *consumer,
1907 unsigned num_tfeedback_decls,
1908 tfeedback_decl *tfeedback_decls)
1909 {
1910 /* Tessellation shaders treat inputs and outputs as shared memory and can
1911 * access inputs and outputs of other invocations.
1912 * Therefore, they can't be lowered to temps easily (and definitely not
1913 * efficiently).
1914 */
1915 bool unpackable_tess =
1916 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1917 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1918 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1919
1920 /* Transform feedback code assumes varying arrays are packed, so if the
1921 * driver has disabled varying packing, make sure to at least enable
1922 * packing required by transform feedback.
1923 */
1924 bool xfb_enabled =
1925 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1926
1927 /* Disable varying packing for GL 4.4+ as there is no guarantee
1928 * that interpolation qualifiers will match between shaders in these
1929 * versions. We also disable packing on outerward facing interfaces for
1930 * SSO because in ES we need to retain the unpacked varying information
1931 * for draw time validation. For desktop GL we could allow packing for
1932 * versions < 4.4 but its just safer not to do packing.
1933 *
1934 * Packing is still enabled on individual arrays, structs, and matrices as
1935 * these are required by the transform feedback code and it is still safe
1936 * to do so. We also enable packing when a varying is only used for
1937 * transform feedback and its not a SSO.
1938 *
1939 * Varying packing currently only packs together varyings with matching
1940 * interpolation qualifiers as the backends assume all packed components
1941 * are to be processed in the same way. Therefore we cannot do packing in
1942 * these versions of GL without the risk of mismatching interfaces.
1943 *
1944 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1945 *
1946 * "The type and presence of interpolation qualifiers of variables with
1947 * the same name declared in all linked shaders for the same cross-stage
1948 * interface must match, otherwise the link command will fail.
1949 *
1950 * When comparing an output from one stage to an input of a subsequent
1951 * stage, the input and output don't match if their interpolation
1952 * qualifiers (or lack thereof) are not the same."
1953 *
1954 * This text was also in at least revison 7 of the 4.40 spec but is no
1955 * longer in revision 9 and not in the 4.50 spec.
1956 */
1957 bool disable_varying_packing =
1958 ctx->Const.DisableVaryingPacking || unpackable_tess;
1959 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
1960 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
1961 disable_varying_packing = true;
1962
1963 varying_matches matches(disable_varying_packing, xfb_enabled,
1964 producer ? producer->Stage : (gl_shader_stage)-1,
1965 consumer ? consumer->Stage : (gl_shader_stage)-1);
1966 hash_table *tfeedback_candidates
1967 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1968 hash_table *consumer_inputs
1969 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1970 hash_table *consumer_interface_inputs
1971 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1972 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
1973 NULL,
1974 };
1975
1976 unsigned consumer_vertices = 0;
1977 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1978 consumer_vertices = prog->Geom.VerticesIn;
1979
1980 /* Operate in a total of four passes.
1981 *
1982 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1983 * that inputs / outputs of separable shaders will be assigned
1984 * predictable locations regardless of the order in which declarations
1985 * appeared in the shader source.
1986 *
1987 * 2. Assign locations for any matching inputs and outputs.
1988 *
1989 * 3. Mark output variables in the producer that do not have locations as
1990 * not being outputs. This lets the optimizer eliminate them.
1991 *
1992 * 4. Mark input variables in the consumer that do not have locations as
1993 * not being inputs. This lets the optimizer eliminate them.
1994 */
1995 if (consumer)
1996 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1997
1998 if (producer)
1999 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2000
2001 if (consumer)
2002 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2003 consumer_inputs,
2004 consumer_interface_inputs,
2005 consumer_inputs_with_locations);
2006
2007 if (producer) {
2008 foreach_in_list(ir_instruction, node, producer->ir) {
2009 ir_variable *const output_var = node->as_variable();
2010
2011 if ((output_var == NULL) ||
2012 (output_var->data.mode != ir_var_shader_out))
2013 continue;
2014
2015 /* Only geometry shaders can use non-zero streams */
2016 assert(output_var->data.stream == 0 ||
2017 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2018 producer->Stage == MESA_SHADER_GEOMETRY));
2019
2020 if (num_tfeedback_decls > 0) {
2021 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2022 g.process(output_var);
2023 }
2024
2025 ir_variable *const input_var =
2026 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2027 consumer_interface_inputs,
2028 consumer_inputs_with_locations);
2029
2030 /* If a matching input variable was found, add this ouptut (and the
2031 * input) to the set. If this is a separable program and there is no
2032 * consumer stage, add the output.
2033 *
2034 * Always add TCS outputs. They are shared by all invocations
2035 * within a patch and can be used as shared memory.
2036 */
2037 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2038 producer->Type == GL_TESS_CONTROL_SHADER) {
2039 matches.record(output_var, input_var);
2040 }
2041
2042 /* Only stream 0 outputs can be consumed in the next stage */
2043 if (input_var && output_var->data.stream != 0) {
2044 linker_error(prog, "output %s is assigned to stream=%d but "
2045 "is linked to an input, which requires stream=0",
2046 output_var->name, output_var->data.stream);
2047 return false;
2048 }
2049 }
2050 } else {
2051 /* If there's no producer stage, then this must be a separable program.
2052 * For example, we may have a program that has just a fragment shader.
2053 * Later this program will be used with some arbitrary vertex (or
2054 * geometry) shader program. This means that locations must be assigned
2055 * for all the inputs.
2056 */
2057 foreach_in_list(ir_instruction, node, consumer->ir) {
2058 ir_variable *const input_var = node->as_variable();
2059
2060 if ((input_var == NULL) ||
2061 (input_var->data.mode != ir_var_shader_in))
2062 continue;
2063
2064 matches.record(NULL, input_var);
2065 }
2066 }
2067
2068 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2069 if (!tfeedback_decls[i].is_varying())
2070 continue;
2071
2072 const tfeedback_candidate *matched_candidate
2073 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2074
2075 if (matched_candidate == NULL) {
2076 hash_table_dtor(tfeedback_candidates);
2077 hash_table_dtor(consumer_inputs);
2078 hash_table_dtor(consumer_interface_inputs);
2079 return false;
2080 }
2081
2082 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2083 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2084 matches.record(matched_candidate->toplevel_var, NULL);
2085 }
2086 }
2087
2088 const uint64_t reserved_slots =
2089 reserved_varying_slot(producer, ir_var_shader_out) |
2090 reserved_varying_slot(consumer, ir_var_shader_in);
2091
2092 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2093 prog->SeparateShader);
2094 matches.store_locations();
2095
2096 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2097 if (!tfeedback_decls[i].is_varying())
2098 continue;
2099
2100 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2101 hash_table_dtor(tfeedback_candidates);
2102 hash_table_dtor(consumer_inputs);
2103 hash_table_dtor(consumer_interface_inputs);
2104 return false;
2105 }
2106 }
2107
2108 hash_table_dtor(tfeedback_candidates);
2109 hash_table_dtor(consumer_inputs);
2110 hash_table_dtor(consumer_interface_inputs);
2111
2112 if (consumer && producer) {
2113 foreach_in_list(ir_instruction, node, consumer->ir) {
2114 ir_variable *const var = node->as_variable();
2115
2116 if (var && var->data.mode == ir_var_shader_in &&
2117 var->data.is_unmatched_generic_inout) {
2118 if (!prog->IsES && prog->Version <= 120) {
2119 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2120 *
2121 * Only those varying variables used (i.e. read) in
2122 * the fragment shader executable must be written to
2123 * by the vertex shader executable; declaring
2124 * superfluous varying variables in a vertex shader is
2125 * permissible.
2126 *
2127 * We interpret this text as meaning that the VS must
2128 * write the variable for the FS to read it. See
2129 * "glsl1-varying read but not written" in piglit.
2130 */
2131 linker_error(prog, "%s shader varying %s not written "
2132 "by %s shader\n.",
2133 _mesa_shader_stage_to_string(consumer->Stage),
2134 var->name,
2135 _mesa_shader_stage_to_string(producer->Stage));
2136 } else {
2137 linker_warning(prog, "%s shader varying %s not written "
2138 "by %s shader\n.",
2139 _mesa_shader_stage_to_string(consumer->Stage),
2140 var->name,
2141 _mesa_shader_stage_to_string(producer->Stage));
2142 }
2143 }
2144 }
2145
2146 /* Now that validation is done its safe to remove unused varyings. As
2147 * we have both a producer and consumer its safe to remove unused
2148 * varyings even if the program is a SSO because the stages are being
2149 * linked together i.e. we have a multi-stage SSO.
2150 */
2151 remove_unused_shader_inputs_and_outputs(false, producer,
2152 ir_var_shader_out);
2153 remove_unused_shader_inputs_and_outputs(false, consumer,
2154 ir_var_shader_in);
2155 }
2156
2157 if (producer) {
2158 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2159 0, producer, disable_varying_packing,
2160 xfb_enabled);
2161 }
2162
2163 if (consumer) {
2164 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2165 consumer_vertices, consumer,
2166 disable_varying_packing, xfb_enabled);
2167 }
2168
2169 return true;
2170 }
2171
2172 bool
2173 check_against_output_limit(struct gl_context *ctx,
2174 struct gl_shader_program *prog,
2175 gl_shader *producer)
2176 {
2177 unsigned output_vectors = 0;
2178
2179 foreach_in_list(ir_instruction, node, producer->ir) {
2180 ir_variable *const var = node->as_variable();
2181
2182 if (var && var->data.mode == ir_var_shader_out &&
2183 var_counts_against_varying_limit(producer->Stage, var)) {
2184 /* outputs for fragment shader can't be doubles */
2185 output_vectors += var->type->count_attribute_slots(false);
2186 }
2187 }
2188
2189 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2190 unsigned max_output_components =
2191 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2192
2193 const unsigned output_components = output_vectors * 4;
2194 if (output_components > max_output_components) {
2195 if (ctx->API == API_OPENGLES2 || prog->IsES)
2196 linker_error(prog, "%s shader uses too many output vectors "
2197 "(%u > %u)\n",
2198 _mesa_shader_stage_to_string(producer->Stage),
2199 output_vectors,
2200 max_output_components / 4);
2201 else
2202 linker_error(prog, "%s shader uses too many output components "
2203 "(%u > %u)\n",
2204 _mesa_shader_stage_to_string(producer->Stage),
2205 output_components,
2206 max_output_components);
2207
2208 return false;
2209 }
2210
2211 return true;
2212 }
2213
2214 bool
2215 check_against_input_limit(struct gl_context *ctx,
2216 struct gl_shader_program *prog,
2217 gl_shader *consumer)
2218 {
2219 unsigned input_vectors = 0;
2220
2221 foreach_in_list(ir_instruction, node, consumer->ir) {
2222 ir_variable *const var = node->as_variable();
2223
2224 if (var && var->data.mode == ir_var_shader_in &&
2225 var_counts_against_varying_limit(consumer->Stage, var)) {
2226 /* vertex inputs aren't varying counted */
2227 input_vectors += var->type->count_attribute_slots(false);
2228 }
2229 }
2230
2231 assert(consumer->Stage != MESA_SHADER_VERTEX);
2232 unsigned max_input_components =
2233 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2234
2235 const unsigned input_components = input_vectors * 4;
2236 if (input_components > max_input_components) {
2237 if (ctx->API == API_OPENGLES2 || prog->IsES)
2238 linker_error(prog, "%s shader uses too many input vectors "
2239 "(%u > %u)\n",
2240 _mesa_shader_stage_to_string(consumer->Stage),
2241 input_vectors,
2242 max_input_components / 4);
2243 else
2244 linker_error(prog, "%s shader uses too many input components "
2245 "(%u > %u)\n",
2246 _mesa_shader_stage_to_string(consumer->Stage),
2247 input_components,
2248 max_input_components);
2249
2250 return false;
2251 }
2252
2253 return true;
2254 }