glsl: re-enable varying packing in GL4.4+
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->info.TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 static bool
186 anonymous_struct_type_matches(const glsl_type *output_type,
187 const glsl_type *to_match)
188 {
189 while (output_type->is_array() && to_match->is_array()) {
190 /* if the lengths at each level don't match fail. */
191 if (output_type->length != to_match->length)
192 return false;
193 output_type = output_type->fields.array;
194 to_match = to_match->fields.array;
195 }
196
197 if (output_type->is_array() || to_match->is_array())
198 return false;
199 return output_type->is_anonymous() &&
200 to_match->is_anonymous() &&
201 to_match->record_compare(output_type);
202 }
203
204 /**
205 * Validate the types and qualifiers of an output from one stage against the
206 * matching input to another stage.
207 */
208 static void
209 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
210 const ir_variable *input,
211 const ir_variable *output,
212 gl_shader_stage consumer_stage,
213 gl_shader_stage producer_stage)
214 {
215 /* Check that the types match between stages.
216 */
217 const glsl_type *type_to_match = input->type;
218
219 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
220 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
221 consumer_stage != MESA_SHADER_FRAGMENT) ||
222 consumer_stage == MESA_SHADER_GEOMETRY;
223 if (extra_array_level) {
224 assert(type_to_match->is_array());
225 type_to_match = type_to_match->fields.array;
226 }
227
228 if (type_to_match != output->type) {
229 /* There is a bit of a special case for gl_TexCoord. This
230 * built-in is unsized by default. Applications that variable
231 * access it must redeclare it with a size. There is some
232 * language in the GLSL spec that implies the fragment shader
233 * and vertex shader do not have to agree on this size. Other
234 * driver behave this way, and one or two applications seem to
235 * rely on it.
236 *
237 * Neither declaration needs to be modified here because the array
238 * sizes are fixed later when update_array_sizes is called.
239 *
240 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
241 *
242 * "Unlike user-defined varying variables, the built-in
243 * varying variables don't have a strict one-to-one
244 * correspondence between the vertex language and the
245 * fragment language."
246 */
247 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
248 bool anon_matches = anonymous_struct_type_matches(output->type, type_to_match);
249
250 if (!anon_matches) {
251 linker_error(prog,
252 "%s shader output `%s' declared as type `%s', "
253 "but %s shader input declared as type `%s'\n",
254 _mesa_shader_stage_to_string(producer_stage),
255 output->name,
256 output->type->name,
257 _mesa_shader_stage_to_string(consumer_stage),
258 input->type->name);
259 return;
260 }
261 }
262 }
263
264 /* Check that all of the qualifiers match between stages.
265 */
266
267 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
268 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
269 * conformance test suite does not verify that the qualifiers must match.
270 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
271 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
272 */
273 if (false /* always skip the centroid check */ &&
274 prog->Version < (prog->IsES ? 310 : 430) &&
275 input->data.centroid != output->data.centroid) {
276 linker_error(prog,
277 "%s shader output `%s' %s centroid qualifier, "
278 "but %s shader input %s centroid qualifier\n",
279 _mesa_shader_stage_to_string(producer_stage),
280 output->name,
281 (output->data.centroid) ? "has" : "lacks",
282 _mesa_shader_stage_to_string(consumer_stage),
283 (input->data.centroid) ? "has" : "lacks");
284 return;
285 }
286
287 if (input->data.sample != output->data.sample) {
288 linker_error(prog,
289 "%s shader output `%s' %s sample qualifier, "
290 "but %s shader input %s sample qualifier\n",
291 _mesa_shader_stage_to_string(producer_stage),
292 output->name,
293 (output->data.sample) ? "has" : "lacks",
294 _mesa_shader_stage_to_string(consumer_stage),
295 (input->data.sample) ? "has" : "lacks");
296 return;
297 }
298
299 if (input->data.patch != output->data.patch) {
300 linker_error(prog,
301 "%s shader output `%s' %s patch qualifier, "
302 "but %s shader input %s patch qualifier\n",
303 _mesa_shader_stage_to_string(producer_stage),
304 output->name,
305 (output->data.patch) ? "has" : "lacks",
306 _mesa_shader_stage_to_string(consumer_stage),
307 (input->data.patch) ? "has" : "lacks");
308 return;
309 }
310
311 if (!prog->IsES && input->data.invariant != output->data.invariant) {
312 linker_error(prog,
313 "%s shader output `%s' %s invariant qualifier, "
314 "but %s shader input %s invariant qualifier\n",
315 _mesa_shader_stage_to_string(producer_stage),
316 output->name,
317 (output->data.invariant) ? "has" : "lacks",
318 _mesa_shader_stage_to_string(consumer_stage),
319 (input->data.invariant) ? "has" : "lacks");
320 return;
321 }
322
323 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
324 * to match cross stage, they must only match within the same stage.
325 *
326 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
327 *
328 * "It is a link-time error if, within the same stage, the interpolation
329 * qualifiers of variables of the same name do not match.
330 *
331 */
332 if (input->data.interpolation != output->data.interpolation &&
333 prog->Version < 440) {
334 linker_error(prog,
335 "%s shader output `%s' specifies %s "
336 "interpolation qualifier, "
337 "but %s shader input specifies %s "
338 "interpolation qualifier\n",
339 _mesa_shader_stage_to_string(producer_stage),
340 output->name,
341 interpolation_string(output->data.interpolation),
342 _mesa_shader_stage_to_string(consumer_stage),
343 interpolation_string(input->data.interpolation));
344 return;
345 }
346 }
347
348 /**
349 * Validate front and back color outputs against single color input
350 */
351 static void
352 cross_validate_front_and_back_color(struct gl_shader_program *prog,
353 const ir_variable *input,
354 const ir_variable *front_color,
355 const ir_variable *back_color,
356 gl_shader_stage consumer_stage,
357 gl_shader_stage producer_stage)
358 {
359 if (front_color != NULL && front_color->data.assigned)
360 cross_validate_types_and_qualifiers(prog, input, front_color,
361 consumer_stage, producer_stage);
362
363 if (back_color != NULL && back_color->data.assigned)
364 cross_validate_types_and_qualifiers(prog, input, back_color,
365 consumer_stage, producer_stage);
366 }
367
368 /**
369 * Validate that outputs from one stage match inputs of another
370 */
371 void
372 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
373 gl_linked_shader *producer,
374 gl_linked_shader *consumer)
375 {
376 glsl_symbol_table parameters;
377 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
378 { {NULL, NULL} };
379
380 /* Find all shader outputs in the "producer" stage.
381 */
382 foreach_in_list(ir_instruction, node, producer->ir) {
383 ir_variable *const var = node->as_variable();
384
385 if (var == NULL || var->data.mode != ir_var_shader_out)
386 continue;
387
388 if (!var->data.explicit_location
389 || var->data.location < VARYING_SLOT_VAR0)
390 parameters.add_variable(var);
391 else {
392 /* User-defined varyings with explicit locations are handled
393 * differently because they do not need to have matching names.
394 */
395 const glsl_type *type = get_varying_type(var, producer->Stage);
396 unsigned num_elements = type->count_attribute_slots(false);
397 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
398 unsigned slot_limit = idx + num_elements;
399 unsigned last_comp;
400
401 if (type->without_array()->is_record()) {
402 /* The component qualifier can't be used on structs so just treat
403 * all component slots as used.
404 */
405 last_comp = 4;
406 } else {
407 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
408 last_comp = var->data.location_frac +
409 type->without_array()->vector_elements * dmul;
410 }
411
412 while (idx < slot_limit) {
413 unsigned i = var->data.location_frac;
414 while (i < last_comp) {
415 if (explicit_locations[idx][i] != NULL) {
416 linker_error(prog,
417 "%s shader has multiple outputs explicitly "
418 "assigned to location %d and component %d\n",
419 _mesa_shader_stage_to_string(producer->Stage),
420 idx, var->data.location_frac);
421 return;
422 }
423
424 /* Make sure all component at this location have the same type.
425 */
426 for (unsigned j = 0; j < 4; j++) {
427 if (explicit_locations[idx][j] &&
428 (explicit_locations[idx][j]->type->without_array()
429 ->base_type != type->without_array()->base_type)) {
430 linker_error(prog,
431 "Varyings sharing the same location must "
432 "have the same underlying numerical type. "
433 "Location %u component %u\n", idx,
434 var->data.location_frac);
435 return;
436 }
437 }
438
439 explicit_locations[idx][i] = var;
440 i++;
441
442 /* We need to do some special handling for doubles as dvec3 and
443 * dvec4 consume two consecutive locations. We don't need to
444 * worry about components beginning at anything other than 0 as
445 * the spec does not allow this for dvec3 and dvec4.
446 */
447 if (i == 4 && last_comp > 4) {
448 last_comp = last_comp - 4;
449 /* Bump location index and reset the component index */
450 idx++;
451 i = 0;
452 }
453 }
454 idx++;
455 }
456 }
457 }
458
459
460 /* Find all shader inputs in the "consumer" stage. Any variables that have
461 * matching outputs already in the symbol table must have the same type and
462 * qualifiers.
463 *
464 * Exception: if the consumer is the geometry shader, then the inputs
465 * should be arrays and the type of the array element should match the type
466 * of the corresponding producer output.
467 */
468 foreach_in_list(ir_instruction, node, consumer->ir) {
469 ir_variable *const input = node->as_variable();
470
471 if (input == NULL || input->data.mode != ir_var_shader_in)
472 continue;
473
474 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
475 const ir_variable *const front_color =
476 parameters.get_variable("gl_FrontColor");
477
478 const ir_variable *const back_color =
479 parameters.get_variable("gl_BackColor");
480
481 cross_validate_front_and_back_color(prog, input,
482 front_color, back_color,
483 consumer->Stage, producer->Stage);
484 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
485 const ir_variable *const front_color =
486 parameters.get_variable("gl_FrontSecondaryColor");
487
488 const ir_variable *const back_color =
489 parameters.get_variable("gl_BackSecondaryColor");
490
491 cross_validate_front_and_back_color(prog, input,
492 front_color, back_color,
493 consumer->Stage, producer->Stage);
494 } else {
495 /* The rules for connecting inputs and outputs change in the presence
496 * of explicit locations. In this case, we no longer care about the
497 * names of the variables. Instead, we care only about the
498 * explicitly assigned location.
499 */
500 ir_variable *output = NULL;
501 if (input->data.explicit_location
502 && input->data.location >= VARYING_SLOT_VAR0) {
503
504 const glsl_type *type = get_varying_type(input, consumer->Stage);
505 unsigned num_elements = type->count_attribute_slots(false);
506 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
507 unsigned slot_limit = idx + num_elements;
508
509 while (idx < slot_limit) {
510 output = explicit_locations[idx][input->data.location_frac];
511
512 if (output == NULL ||
513 input->data.location != output->data.location) {
514 linker_error(prog,
515 "%s shader input `%s' with explicit location "
516 "has no matching output\n",
517 _mesa_shader_stage_to_string(consumer->Stage),
518 input->name);
519 break;
520 }
521 idx++;
522 }
523 } else {
524 output = parameters.get_variable(input->name);
525 }
526
527 if (output != NULL) {
528 /* Interface blocks have their own validation elsewhere so don't
529 * try validating them here.
530 */
531 if (!(input->get_interface_type() &&
532 output->get_interface_type()))
533 cross_validate_types_and_qualifiers(prog, input, output,
534 consumer->Stage,
535 producer->Stage);
536 } else {
537 /* Check for input vars with unmatched output vars in prev stage
538 * taking into account that interface blocks could have a matching
539 * output but with different name, so we ignore them.
540 */
541 assert(!input->data.assigned);
542 if (input->data.used && !input->get_interface_type() &&
543 !input->data.explicit_location && !prog->SeparateShader)
544 linker_error(prog,
545 "%s shader input `%s' "
546 "has no matching output in the previous stage\n",
547 _mesa_shader_stage_to_string(consumer->Stage),
548 input->name);
549 }
550 }
551 }
552 }
553
554 /**
555 * Demote shader inputs and outputs that are not used in other stages, and
556 * remove them via dead code elimination.
557 */
558 void
559 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
560 gl_linked_shader *sh,
561 enum ir_variable_mode mode)
562 {
563 if (is_separate_shader_object)
564 return;
565
566 foreach_in_list(ir_instruction, node, sh->ir) {
567 ir_variable *const var = node->as_variable();
568
569 if (var == NULL || var->data.mode != int(mode))
570 continue;
571
572 /* A shader 'in' or 'out' variable is only really an input or output if
573 * its value is used by other shader stages. This will cause the
574 * variable to have a location assigned.
575 */
576 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
577 assert(var->data.mode != ir_var_temporary);
578 var->data.mode = ir_var_auto;
579 }
580 }
581
582 /* Eliminate code that is now dead due to unused inputs/outputs being
583 * demoted.
584 */
585 while (do_dead_code(sh->ir, false))
586 ;
587
588 }
589
590 /**
591 * Initialize this object based on a string that was passed to
592 * glTransformFeedbackVaryings.
593 *
594 * If the input is mal-formed, this call still succeeds, but it sets
595 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
596 * will fail to find any matching variable.
597 */
598 void
599 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
600 const char *input)
601 {
602 /* We don't have to be pedantic about what is a valid GLSL variable name,
603 * because any variable with an invalid name can't exist in the IR anyway.
604 */
605
606 this->location = -1;
607 this->orig_name = input;
608 this->lowered_builtin_array_variable = none;
609 this->skip_components = 0;
610 this->next_buffer_separator = false;
611 this->matched_candidate = NULL;
612 this->stream_id = 0;
613 this->buffer = 0;
614 this->offset = 0;
615
616 if (ctx->Extensions.ARB_transform_feedback3) {
617 /* Parse gl_NextBuffer. */
618 if (strcmp(input, "gl_NextBuffer") == 0) {
619 this->next_buffer_separator = true;
620 return;
621 }
622
623 /* Parse gl_SkipComponents. */
624 if (strcmp(input, "gl_SkipComponents1") == 0)
625 this->skip_components = 1;
626 else if (strcmp(input, "gl_SkipComponents2") == 0)
627 this->skip_components = 2;
628 else if (strcmp(input, "gl_SkipComponents3") == 0)
629 this->skip_components = 3;
630 else if (strcmp(input, "gl_SkipComponents4") == 0)
631 this->skip_components = 4;
632
633 if (this->skip_components)
634 return;
635 }
636
637 /* Parse a declaration. */
638 const char *base_name_end;
639 long subscript = parse_program_resource_name(input, &base_name_end);
640 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
641 if (this->var_name == NULL) {
642 _mesa_error_no_memory(__func__);
643 return;
644 }
645
646 if (subscript >= 0) {
647 this->array_subscript = subscript;
648 this->is_subscripted = true;
649 } else {
650 this->is_subscripted = false;
651 }
652
653 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
654 * class must behave specially to account for the fact that gl_ClipDistance
655 * is converted from a float[8] to a vec4[2].
656 */
657 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
658 strcmp(this->var_name, "gl_ClipDistance") == 0) {
659 this->lowered_builtin_array_variable = clip_distance;
660 }
661 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
662 strcmp(this->var_name, "gl_CullDistance") == 0) {
663 this->lowered_builtin_array_variable = cull_distance;
664 }
665
666 if (ctx->Const.LowerTessLevel &&
667 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
668 this->lowered_builtin_array_variable = tess_level_outer;
669 if (ctx->Const.LowerTessLevel &&
670 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
671 this->lowered_builtin_array_variable = tess_level_inner;
672 }
673
674
675 /**
676 * Determine whether two tfeedback_decl objects refer to the same variable and
677 * array index (if applicable).
678 */
679 bool
680 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
681 {
682 assert(x.is_varying() && y.is_varying());
683
684 if (strcmp(x.var_name, y.var_name) != 0)
685 return false;
686 if (x.is_subscripted != y.is_subscripted)
687 return false;
688 if (x.is_subscripted && x.array_subscript != y.array_subscript)
689 return false;
690 return true;
691 }
692
693
694 /**
695 * Assign a location and stream ID for this tfeedback_decl object based on the
696 * transform feedback candidate found by find_candidate.
697 *
698 * If an error occurs, the error is reported through linker_error() and false
699 * is returned.
700 */
701 bool
702 tfeedback_decl::assign_location(struct gl_context *ctx,
703 struct gl_shader_program *prog)
704 {
705 assert(this->is_varying());
706
707 unsigned fine_location
708 = this->matched_candidate->toplevel_var->data.location * 4
709 + this->matched_candidate->toplevel_var->data.location_frac
710 + this->matched_candidate->offset;
711 const unsigned dmul =
712 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
713
714 if (this->matched_candidate->type->is_array()) {
715 /* Array variable */
716 const unsigned matrix_cols =
717 this->matched_candidate->type->fields.array->matrix_columns;
718 const unsigned vector_elements =
719 this->matched_candidate->type->fields.array->vector_elements;
720 unsigned actual_array_size;
721 switch (this->lowered_builtin_array_variable) {
722 case clip_distance:
723 actual_array_size = prog->LastClipDistanceArraySize;
724 break;
725 case cull_distance:
726 actual_array_size = prog->LastCullDistanceArraySize;
727 break;
728 case tess_level_outer:
729 actual_array_size = 4;
730 break;
731 case tess_level_inner:
732 actual_array_size = 2;
733 break;
734 case none:
735 default:
736 actual_array_size = this->matched_candidate->type->array_size();
737 break;
738 }
739
740 if (this->is_subscripted) {
741 /* Check array bounds. */
742 if (this->array_subscript >= actual_array_size) {
743 linker_error(prog, "Transform feedback varying %s has index "
744 "%i, but the array size is %u.",
745 this->orig_name, this->array_subscript,
746 actual_array_size);
747 return false;
748 }
749 unsigned array_elem_size = this->lowered_builtin_array_variable ?
750 1 : vector_elements * matrix_cols * dmul;
751 fine_location += array_elem_size * this->array_subscript;
752 this->size = 1;
753 } else {
754 this->size = actual_array_size;
755 }
756 this->vector_elements = vector_elements;
757 this->matrix_columns = matrix_cols;
758 if (this->lowered_builtin_array_variable)
759 this->type = GL_FLOAT;
760 else
761 this->type = this->matched_candidate->type->fields.array->gl_type;
762 } else {
763 /* Regular variable (scalar, vector, or matrix) */
764 if (this->is_subscripted) {
765 linker_error(prog, "Transform feedback varying %s requested, "
766 "but %s is not an array.",
767 this->orig_name, this->var_name);
768 return false;
769 }
770 this->size = 1;
771 this->vector_elements = this->matched_candidate->type->vector_elements;
772 this->matrix_columns = this->matched_candidate->type->matrix_columns;
773 this->type = this->matched_candidate->type->gl_type;
774 }
775 this->location = fine_location / 4;
776 this->location_frac = fine_location % 4;
777
778 /* From GL_EXT_transform_feedback:
779 * A program will fail to link if:
780 *
781 * * the total number of components to capture in any varying
782 * variable in <varyings> is greater than the constant
783 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
784 * buffer mode is SEPARATE_ATTRIBS_EXT;
785 */
786 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
787 this->num_components() >
788 ctx->Const.MaxTransformFeedbackSeparateComponents) {
789 linker_error(prog, "Transform feedback varying %s exceeds "
790 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
791 this->orig_name);
792 return false;
793 }
794
795 /* Only transform feedback varyings can be assigned to non-zero streams,
796 * so assign the stream id here.
797 */
798 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
799
800 unsigned array_offset = this->array_subscript * 4 * dmul;
801 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
802 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
803 this->offset = this->matched_candidate->toplevel_var->data.offset +
804 array_offset + struct_offset;
805
806 return true;
807 }
808
809
810 unsigned
811 tfeedback_decl::get_num_outputs() const
812 {
813 if (!this->is_varying()) {
814 return 0;
815 }
816 return (this->num_components() + this->location_frac + 3)/4;
817 }
818
819
820 /**
821 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
822 *
823 * If an error occurs, the error is reported through linker_error() and false
824 * is returned.
825 */
826 bool
827 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
828 struct gl_transform_feedback_info *info,
829 unsigned buffer, unsigned buffer_index,
830 const unsigned max_outputs, bool *explicit_stride,
831 bool has_xfb_qualifiers) const
832 {
833 unsigned xfb_offset = 0;
834 unsigned size = this->size;
835 /* Handle gl_SkipComponents. */
836 if (this->skip_components) {
837 info->Buffers[buffer].Stride += this->skip_components;
838 size = this->skip_components;
839 goto store_varying;
840 }
841
842 if (this->next_buffer_separator) {
843 size = 0;
844 goto store_varying;
845 }
846
847 if (has_xfb_qualifiers) {
848 xfb_offset = this->offset / 4;
849 } else {
850 xfb_offset = info->Buffers[buffer].Stride;
851 }
852 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
853
854 {
855 unsigned location = this->location;
856 unsigned location_frac = this->location_frac;
857 unsigned num_components = this->num_components();
858 while (num_components > 0) {
859 unsigned output_size = MIN2(num_components, 4 - location_frac);
860 assert((info->NumOutputs == 0 && max_outputs == 0) ||
861 info->NumOutputs < max_outputs);
862
863 /* From the ARB_enhanced_layouts spec:
864 *
865 * "If such a block member or variable is not written during a shader
866 * invocation, the buffer contents at the assigned offset will be
867 * undefined. Even if there are no static writes to a variable or
868 * member that is assigned a transform feedback offset, the space is
869 * still allocated in the buffer and still affects the stride."
870 */
871 if (this->is_varying_written()) {
872 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
873 info->Outputs[info->NumOutputs].OutputRegister = location;
874 info->Outputs[info->NumOutputs].NumComponents = output_size;
875 info->Outputs[info->NumOutputs].StreamId = stream_id;
876 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
877 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
878 ++info->NumOutputs;
879 }
880 info->Buffers[buffer].Stream = this->stream_id;
881 xfb_offset += output_size;
882
883 num_components -= output_size;
884 location++;
885 location_frac = 0;
886 }
887 }
888
889 if (explicit_stride && explicit_stride[buffer]) {
890 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
891 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
892 "multiple of 8 as its applied to a type that is or "
893 "contains a double.",
894 info->Buffers[buffer].Stride * 4);
895 return false;
896 }
897
898 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
899 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
900 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
901 "buffer (%d)", xfb_offset * 4,
902 info->Buffers[buffer].Stride * 4, buffer);
903 return false;
904 }
905 } else {
906 info->Buffers[buffer].Stride = xfb_offset;
907 }
908
909 /* From GL_EXT_transform_feedback:
910 * A program will fail to link if:
911 *
912 * * the total number of components to capture is greater than
913 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
914 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
915 *
916 * From GL_ARB_enhanced_layouts:
917 *
918 * "The resulting stride (implicit or explicit) must be less than or
919 * equal to the implementation-dependent constant
920 * gl_MaxTransformFeedbackInterleavedComponents."
921 */
922 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
923 has_xfb_qualifiers) &&
924 info->Buffers[buffer].Stride >
925 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
926 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
927 "limit has been exceeded.");
928 return false;
929 }
930
931 store_varying:
932 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
933 this->orig_name);
934 info->Varyings[info->NumVarying].Type = this->type;
935 info->Varyings[info->NumVarying].Size = size;
936 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
937 info->NumVarying++;
938 info->Buffers[buffer].NumVaryings++;
939
940 return true;
941 }
942
943
944 const tfeedback_candidate *
945 tfeedback_decl::find_candidate(gl_shader_program *prog,
946 hash_table *tfeedback_candidates)
947 {
948 const char *name = this->var_name;
949 switch (this->lowered_builtin_array_variable) {
950 case none:
951 name = this->var_name;
952 break;
953 case clip_distance:
954 name = "gl_ClipDistanceMESA";
955 break;
956 case cull_distance:
957 name = "gl_CullDistanceMESA";
958 break;
959 case tess_level_outer:
960 name = "gl_TessLevelOuterMESA";
961 break;
962 case tess_level_inner:
963 name = "gl_TessLevelInnerMESA";
964 break;
965 }
966 this->matched_candidate = (const tfeedback_candidate *)
967 hash_table_find(tfeedback_candidates, name);
968 if (!this->matched_candidate) {
969 /* From GL_EXT_transform_feedback:
970 * A program will fail to link if:
971 *
972 * * any variable name specified in the <varyings> array is not
973 * declared as an output in the geometry shader (if present) or
974 * the vertex shader (if no geometry shader is present);
975 */
976 linker_error(prog, "Transform feedback varying %s undeclared.",
977 this->orig_name);
978 }
979 return this->matched_candidate;
980 }
981
982
983 /**
984 * Parse all the transform feedback declarations that were passed to
985 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
986 *
987 * If an error occurs, the error is reported through linker_error() and false
988 * is returned.
989 */
990 bool
991 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
992 const void *mem_ctx, unsigned num_names,
993 char **varying_names, tfeedback_decl *decls)
994 {
995 for (unsigned i = 0; i < num_names; ++i) {
996 decls[i].init(ctx, mem_ctx, varying_names[i]);
997
998 if (!decls[i].is_varying())
999 continue;
1000
1001 /* From GL_EXT_transform_feedback:
1002 * A program will fail to link if:
1003 *
1004 * * any two entries in the <varyings> array specify the same varying
1005 * variable;
1006 *
1007 * We interpret this to mean "any two entries in the <varyings> array
1008 * specify the same varying variable and array index", since transform
1009 * feedback of arrays would be useless otherwise.
1010 */
1011 for (unsigned j = 0; j < i; ++j) {
1012 if (!decls[j].is_varying())
1013 continue;
1014
1015 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1016 linker_error(prog, "Transform feedback varying %s specified "
1017 "more than once.", varying_names[i]);
1018 return false;
1019 }
1020 }
1021 }
1022 return true;
1023 }
1024
1025
1026 static int
1027 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1028 {
1029 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1030 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1031
1032 if (x->get_buffer() != y->get_buffer())
1033 return x->get_buffer() - y->get_buffer();
1034 return x->get_offset() - y->get_offset();
1035 }
1036
1037 /**
1038 * Store transform feedback location assignments into
1039 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1040 *
1041 * If an error occurs, the error is reported through linker_error() and false
1042 * is returned.
1043 */
1044 bool
1045 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1046 unsigned num_tfeedback_decls,
1047 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1048 {
1049 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1050 * tracking the number of buffers doesn't overflow.
1051 */
1052 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1053
1054 bool separate_attribs_mode =
1055 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1056
1057 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1058 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1059
1060 memset(&prog->LinkedTransformFeedback, 0,
1061 sizeof(prog->LinkedTransformFeedback));
1062
1063 /* The xfb_offset qualifier does not have to be used in increasing order
1064 * however some drivers expect to receive the list of transform feedback
1065 * declarations in order so sort it now for convenience.
1066 */
1067 if (has_xfb_qualifiers)
1068 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1069 cmp_xfb_offset);
1070
1071 prog->LinkedTransformFeedback.Varyings =
1072 rzalloc_array(prog,
1073 struct gl_transform_feedback_varying_info,
1074 num_tfeedback_decls);
1075
1076 unsigned num_outputs = 0;
1077 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1078 if (tfeedback_decls[i].is_varying_written())
1079 num_outputs += tfeedback_decls[i].get_num_outputs();
1080 }
1081
1082 prog->LinkedTransformFeedback.Outputs =
1083 rzalloc_array(prog,
1084 struct gl_transform_feedback_output,
1085 num_outputs);
1086
1087 unsigned num_buffers = 0;
1088 unsigned buffers = 0;
1089
1090 if (!has_xfb_qualifiers && separate_attribs_mode) {
1091 /* GL_SEPARATE_ATTRIBS */
1092 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1093 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1094 num_buffers, num_buffers, num_outputs,
1095 NULL, has_xfb_qualifiers))
1096 return false;
1097
1098 buffers |= 1 << num_buffers;
1099 num_buffers++;
1100 }
1101 }
1102 else {
1103 /* GL_INVERLEAVED_ATTRIBS */
1104 int buffer_stream_id = -1;
1105 unsigned buffer =
1106 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1107 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1108
1109 /* Apply any xfb_stride global qualifiers */
1110 if (has_xfb_qualifiers) {
1111 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1112 if (prog->TransformFeedback.BufferStride[j]) {
1113 buffers |= 1 << j;
1114 explicit_stride[j] = true;
1115 prog->LinkedTransformFeedback.Buffers[j].Stride =
1116 prog->TransformFeedback.BufferStride[j] / 4;
1117 }
1118 }
1119 }
1120
1121 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1122 if (has_xfb_qualifiers &&
1123 buffer != tfeedback_decls[i].get_buffer()) {
1124 /* we have moved to the next buffer so reset stream id */
1125 buffer_stream_id = -1;
1126 num_buffers++;
1127 }
1128
1129 if (tfeedback_decls[i].is_next_buffer_separator()) {
1130 if (!tfeedback_decls[i].store(ctx, prog,
1131 &prog->LinkedTransformFeedback,
1132 buffer, num_buffers, num_outputs,
1133 explicit_stride, has_xfb_qualifiers))
1134 return false;
1135 num_buffers++;
1136 buffer_stream_id = -1;
1137 continue;
1138 } else if (tfeedback_decls[i].is_varying()) {
1139 if (buffer_stream_id == -1) {
1140 /* First varying writing to this buffer: remember its stream */
1141 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1142 } else if (buffer_stream_id !=
1143 (int) tfeedback_decls[i].get_stream_id()) {
1144 /* Varying writes to the same buffer from a different stream */
1145 linker_error(prog,
1146 "Transform feedback can't capture varyings belonging "
1147 "to different vertex streams in a single buffer. "
1148 "Varying %s writes to buffer from stream %u, other "
1149 "varyings in the same buffer write from stream %u.",
1150 tfeedback_decls[i].name(),
1151 tfeedback_decls[i].get_stream_id(),
1152 buffer_stream_id);
1153 return false;
1154 }
1155 }
1156
1157 if (has_xfb_qualifiers) {
1158 buffer = tfeedback_decls[i].get_buffer();
1159 } else {
1160 buffer = num_buffers;
1161 }
1162 buffers |= 1 << buffer;
1163
1164 if (!tfeedback_decls[i].store(ctx, prog,
1165 &prog->LinkedTransformFeedback,
1166 buffer, num_buffers, num_outputs,
1167 explicit_stride, has_xfb_qualifiers))
1168 return false;
1169 }
1170 }
1171
1172 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1173
1174 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1175 return true;
1176 }
1177
1178 namespace {
1179
1180 /**
1181 * Data structure recording the relationship between outputs of one shader
1182 * stage (the "producer") and inputs of another (the "consumer").
1183 */
1184 class varying_matches
1185 {
1186 public:
1187 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1188 gl_shader_stage producer_stage,
1189 gl_shader_stage consumer_stage);
1190 ~varying_matches();
1191 void record(ir_variable *producer_var, ir_variable *consumer_var);
1192 unsigned assign_locations(struct gl_shader_program *prog,
1193 uint64_t reserved_slots);
1194 void store_locations() const;
1195
1196 private:
1197 bool is_varying_packing_safe(const glsl_type *type,
1198 const ir_variable *var);
1199
1200 /**
1201 * If true, this driver disables varying packing, so all varyings need to
1202 * be aligned on slot boundaries, and take up a number of slots equal to
1203 * their number of matrix columns times their array size.
1204 *
1205 * Packing may also be disabled because our current packing method is not
1206 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1207 * guaranteed to match across stages.
1208 */
1209 const bool disable_varying_packing;
1210
1211 /**
1212 * If true, this driver has transform feedback enabled. The transform
1213 * feedback code requires at least some packing be done even when varying
1214 * packing is disabled, fortunately where transform feedback requires
1215 * packing it's safe to override the disabled setting. See
1216 * is_varying_packing_safe().
1217 */
1218 const bool xfb_enabled;
1219
1220 /**
1221 * Enum representing the order in which varyings are packed within a
1222 * packing class.
1223 *
1224 * Currently we pack vec4's first, then vec2's, then scalar values, then
1225 * vec3's. This order ensures that the only vectors that are at risk of
1226 * having to be "double parked" (split between two adjacent varying slots)
1227 * are the vec3's.
1228 */
1229 enum packing_order_enum {
1230 PACKING_ORDER_VEC4,
1231 PACKING_ORDER_VEC2,
1232 PACKING_ORDER_SCALAR,
1233 PACKING_ORDER_VEC3,
1234 };
1235
1236 static unsigned compute_packing_class(const ir_variable *var);
1237 static packing_order_enum compute_packing_order(const ir_variable *var);
1238 static int match_comparator(const void *x_generic, const void *y_generic);
1239 static int xfb_comparator(const void *x_generic, const void *y_generic);
1240
1241 /**
1242 * Structure recording the relationship between a single producer output
1243 * and a single consumer input.
1244 */
1245 struct match {
1246 /**
1247 * Packing class for this varying, computed by compute_packing_class().
1248 */
1249 unsigned packing_class;
1250
1251 /**
1252 * Packing order for this varying, computed by compute_packing_order().
1253 */
1254 packing_order_enum packing_order;
1255 unsigned num_components;
1256
1257 /**
1258 * The output variable in the producer stage.
1259 */
1260 ir_variable *producer_var;
1261
1262 /**
1263 * The input variable in the consumer stage.
1264 */
1265 ir_variable *consumer_var;
1266
1267 /**
1268 * The location which has been assigned for this varying. This is
1269 * expressed in multiples of a float, with the first generic varying
1270 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1271 * value 0.
1272 */
1273 unsigned generic_location;
1274 } *matches;
1275
1276 /**
1277 * The number of elements in the \c matches array that are currently in
1278 * use.
1279 */
1280 unsigned num_matches;
1281
1282 /**
1283 * The number of elements that were set aside for the \c matches array when
1284 * it was allocated.
1285 */
1286 unsigned matches_capacity;
1287
1288 gl_shader_stage producer_stage;
1289 gl_shader_stage consumer_stage;
1290 };
1291
1292 } /* anonymous namespace */
1293
1294 varying_matches::varying_matches(bool disable_varying_packing,
1295 bool xfb_enabled,
1296 gl_shader_stage producer_stage,
1297 gl_shader_stage consumer_stage)
1298 : disable_varying_packing(disable_varying_packing),
1299 xfb_enabled(xfb_enabled),
1300 producer_stage(producer_stage),
1301 consumer_stage(consumer_stage)
1302 {
1303 /* Note: this initial capacity is rather arbitrarily chosen to be large
1304 * enough for many cases without wasting an unreasonable amount of space.
1305 * varying_matches::record() will resize the array if there are more than
1306 * this number of varyings.
1307 */
1308 this->matches_capacity = 8;
1309 this->matches = (match *)
1310 malloc(sizeof(*this->matches) * this->matches_capacity);
1311 this->num_matches = 0;
1312 }
1313
1314
1315 varying_matches::~varying_matches()
1316 {
1317 free(this->matches);
1318 }
1319
1320
1321 /**
1322 * Packing is always safe on individual arrays, structures, and matrices. It
1323 * is also safe if the varying is only used for transform feedback.
1324 */
1325 bool
1326 varying_matches::is_varying_packing_safe(const glsl_type *type,
1327 const ir_variable *var)
1328 {
1329 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1330 consumer_stage == MESA_SHADER_TESS_CTRL ||
1331 producer_stage == MESA_SHADER_TESS_CTRL)
1332 return false;
1333
1334 return xfb_enabled && (type->is_array() || type->is_record() ||
1335 type->is_matrix() || var->data.is_xfb_only);
1336 }
1337
1338
1339 /**
1340 * Record the given producer/consumer variable pair in the list of variables
1341 * that should later be assigned locations.
1342 *
1343 * It is permissible for \c consumer_var to be NULL (this happens if a
1344 * variable is output by the producer and consumed by transform feedback, but
1345 * not consumed by the consumer).
1346 *
1347 * If \c producer_var has already been paired up with a consumer_var, or
1348 * producer_var is part of fixed pipeline functionality (and hence already has
1349 * a location assigned), this function has no effect.
1350 *
1351 * Note: as a side effect this function may change the interpolation type of
1352 * \c producer_var, but only when the change couldn't possibly affect
1353 * rendering.
1354 */
1355 void
1356 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1357 {
1358 assert(producer_var != NULL || consumer_var != NULL);
1359
1360 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1361 producer_var->data.explicit_location)) ||
1362 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1363 consumer_var->data.explicit_location))) {
1364 /* Either a location already exists for this variable (since it is part
1365 * of fixed functionality), or it has already been recorded as part of a
1366 * previous match.
1367 */
1368 return;
1369 }
1370
1371 bool needs_flat_qualifier = consumer_var == NULL &&
1372 (producer_var->type->contains_integer() ||
1373 producer_var->type->contains_double());
1374
1375 if (needs_flat_qualifier ||
1376 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1377 /* Since this varying is not being consumed by the fragment shader, its
1378 * interpolation type varying cannot possibly affect rendering.
1379 * Also, this variable is non-flat and is (or contains) an integer
1380 * or a double.
1381 * If the consumer stage is unknown, don't modify the interpolation
1382 * type as it could affect rendering later with separate shaders.
1383 *
1384 * lower_packed_varyings requires all integer varyings to flat,
1385 * regardless of where they appear. We can trivially satisfy that
1386 * requirement by changing the interpolation type to flat here.
1387 */
1388 if (producer_var) {
1389 producer_var->data.centroid = false;
1390 producer_var->data.sample = false;
1391 producer_var->data.interpolation = INTERP_MODE_FLAT;
1392 }
1393
1394 if (consumer_var) {
1395 consumer_var->data.centroid = false;
1396 consumer_var->data.sample = false;
1397 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1398 }
1399 }
1400
1401 if (this->num_matches == this->matches_capacity) {
1402 this->matches_capacity *= 2;
1403 this->matches = (match *)
1404 realloc(this->matches,
1405 sizeof(*this->matches) * this->matches_capacity);
1406 }
1407
1408 /* We must use the consumer to compute the packing class because in GL4.4+
1409 * there is no guarantee interpolation qualifiers will match across stages.
1410 *
1411 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1412 *
1413 * "The type and presence of interpolation qualifiers of variables with
1414 * the same name declared in all linked shaders for the same cross-stage
1415 * interface must match, otherwise the link command will fail.
1416 *
1417 * When comparing an output from one stage to an input of a subsequent
1418 * stage, the input and output don't match if their interpolation
1419 * qualifiers (or lack thereof) are not the same."
1420 *
1421 * This text was also in at least revison 7 of the 4.40 spec but is no
1422 * longer in revision 9 and not in the 4.50 spec.
1423 */
1424 const ir_variable *const var = (consumer_var != NULL)
1425 ? consumer_var : producer_var;
1426 const gl_shader_stage stage = (consumer_var != NULL)
1427 ? consumer_stage : producer_stage;
1428 const glsl_type *type = get_varying_type(var, stage);
1429
1430 this->matches[this->num_matches].packing_class
1431 = this->compute_packing_class(var);
1432 this->matches[this->num_matches].packing_order
1433 = this->compute_packing_order(var);
1434 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1435 unsigned slots = type->count_attribute_slots(false);
1436 this->matches[this->num_matches].num_components = slots * 4;
1437 } else {
1438 this->matches[this->num_matches].num_components
1439 = type->component_slots();
1440 }
1441 this->matches[this->num_matches].producer_var = producer_var;
1442 this->matches[this->num_matches].consumer_var = consumer_var;
1443 this->num_matches++;
1444 if (producer_var)
1445 producer_var->data.is_unmatched_generic_inout = 0;
1446 if (consumer_var)
1447 consumer_var->data.is_unmatched_generic_inout = 0;
1448 }
1449
1450
1451 /**
1452 * Choose locations for all of the variable matches that were previously
1453 * passed to varying_matches::record().
1454 */
1455 unsigned
1456 varying_matches::assign_locations(struct gl_shader_program *prog,
1457 uint64_t reserved_slots)
1458 {
1459 /* If packing has been disabled then we cannot safely sort the varyings by
1460 * class as it may mean we are using a version of OpenGL where
1461 * interpolation qualifiers are not guaranteed to be matching across
1462 * shaders, sorting in this case could result in mismatching shader
1463 * interfaces.
1464 * When packing is disabled the sort orders varyings used by transform
1465 * feedback first, but also depends on *undefined behaviour* of qsort to
1466 * reverse the order of the varyings. See: xfb_comparator().
1467 */
1468 if (!this->disable_varying_packing) {
1469 /* Sort varying matches into an order that makes them easy to pack. */
1470 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1471 &varying_matches::match_comparator);
1472 } else {
1473 /* Only sort varyings that are only used by transform feedback. */
1474 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1475 &varying_matches::xfb_comparator);
1476 }
1477
1478 unsigned generic_location = 0;
1479 unsigned generic_patch_location = MAX_VARYING*4;
1480 bool previous_var_xfb_only = false;
1481
1482 for (unsigned i = 0; i < this->num_matches; i++) {
1483 unsigned *location = &generic_location;
1484
1485 const ir_variable *var;
1486 const glsl_type *type;
1487 bool is_vertex_input = false;
1488 if (matches[i].consumer_var) {
1489 var = matches[i].consumer_var;
1490 type = get_varying_type(var, consumer_stage);
1491 if (consumer_stage == MESA_SHADER_VERTEX)
1492 is_vertex_input = true;
1493 } else {
1494 var = matches[i].producer_var;
1495 type = get_varying_type(var, producer_stage);
1496 }
1497
1498 if (var->data.patch)
1499 location = &generic_patch_location;
1500
1501 /* Advance to the next slot if this varying has a different packing
1502 * class than the previous one, and we're not already on a slot
1503 * boundary.
1504 *
1505 * Also advance to the next slot if packing is disabled. This makes sure
1506 * we don't assign varyings the same locations which is possible
1507 * because we still pack individual arrays, records and matrices even
1508 * when packing is disabled. Note we don't advance to the next slot if
1509 * we can pack varyings together that are only used for transform
1510 * feedback.
1511 */
1512 if ((this->disable_varying_packing &&
1513 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1514 (i > 0 && this->matches[i - 1].packing_class
1515 != this->matches[i].packing_class )) {
1516 *location = ALIGN(*location, 4);
1517 }
1518
1519 previous_var_xfb_only = var->data.is_xfb_only;
1520
1521 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1522 unsigned slot_end;
1523 if (this->disable_varying_packing &&
1524 !is_varying_packing_safe(type, var))
1525 slot_end = 4;
1526 else
1527 slot_end = type->without_array()->vector_elements;
1528 slot_end += *location - 1;
1529
1530 /* FIXME: We could be smarter in the below code and loop back over
1531 * trying to fill any locations that we skipped because we couldn't pack
1532 * the varying between an explicit location. For now just let the user
1533 * hit the linking error if we run out of room and suggest they use
1534 * explicit locations.
1535 */
1536 for (unsigned j = 0; j < num_elements; j++) {
1537 while ((slot_end < MAX_VARYING * 4u) &&
1538 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1539 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1540
1541 *location = ALIGN(*location + 1, 4);
1542 slot_end = *location;
1543
1544 /* reset the counter and try again */
1545 j = 0;
1546 }
1547
1548 /* Increase the slot to make sure there is enough room for next
1549 * array element.
1550 */
1551 if (this->disable_varying_packing &&
1552 !is_varying_packing_safe(type, var))
1553 slot_end += 4;
1554 else
1555 slot_end += type->without_array()->vector_elements;
1556 }
1557
1558 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1559 linker_error(prog, "insufficient contiguous locations available for "
1560 "%s it is possible an array or struct could not be "
1561 "packed between varyings with explicit locations. Try "
1562 "using an explicit location for arrays and structs.",
1563 var->name);
1564 }
1565
1566 this->matches[i].generic_location = *location;
1567
1568 *location += this->matches[i].num_components;
1569 }
1570
1571 return (generic_location + 3) / 4;
1572 }
1573
1574
1575 /**
1576 * Update the producer and consumer shaders to reflect the locations
1577 * assignments that were made by varying_matches::assign_locations().
1578 */
1579 void
1580 varying_matches::store_locations() const
1581 {
1582 for (unsigned i = 0; i < this->num_matches; i++) {
1583 ir_variable *producer_var = this->matches[i].producer_var;
1584 ir_variable *consumer_var = this->matches[i].consumer_var;
1585 unsigned generic_location = this->matches[i].generic_location;
1586 unsigned slot = generic_location / 4;
1587 unsigned offset = generic_location % 4;
1588
1589 if (producer_var) {
1590 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1591 producer_var->data.location_frac = offset;
1592 }
1593
1594 if (consumer_var) {
1595 assert(consumer_var->data.location == -1);
1596 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1597 consumer_var->data.location_frac = offset;
1598 }
1599 }
1600 }
1601
1602
1603 /**
1604 * Compute the "packing class" of the given varying. This is an unsigned
1605 * integer with the property that two variables in the same packing class can
1606 * be safely backed into the same vec4.
1607 */
1608 unsigned
1609 varying_matches::compute_packing_class(const ir_variable *var)
1610 {
1611 /* Without help from the back-end, there is no way to pack together
1612 * variables with different interpolation types, because
1613 * lower_packed_varyings must choose exactly one interpolation type for
1614 * each packed varying it creates.
1615 *
1616 * However, we can safely pack together floats, ints, and uints, because:
1617 *
1618 * - varyings of base type "int" and "uint" must use the "flat"
1619 * interpolation type, which can only occur in GLSL 1.30 and above.
1620 *
1621 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1622 * can store flat floats as ints without losing any information (using
1623 * the ir_unop_bitcast_* opcodes).
1624 *
1625 * Therefore, the packing class depends only on the interpolation type.
1626 */
1627 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1628 (var->data.patch << 2);
1629 packing_class *= 4;
1630 packing_class += var->is_interpolation_flat()
1631 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
1632 return packing_class;
1633 }
1634
1635
1636 /**
1637 * Compute the "packing order" of the given varying. This is a sort key we
1638 * use to determine when to attempt to pack the given varying relative to
1639 * other varyings in the same packing class.
1640 */
1641 varying_matches::packing_order_enum
1642 varying_matches::compute_packing_order(const ir_variable *var)
1643 {
1644 const glsl_type *element_type = var->type;
1645
1646 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1647 element_type = element_type->fields.array;
1648 }
1649
1650 switch (element_type->component_slots() % 4) {
1651 case 1: return PACKING_ORDER_SCALAR;
1652 case 2: return PACKING_ORDER_VEC2;
1653 case 3: return PACKING_ORDER_VEC3;
1654 case 0: return PACKING_ORDER_VEC4;
1655 default:
1656 assert(!"Unexpected value of vector_elements");
1657 return PACKING_ORDER_VEC4;
1658 }
1659 }
1660
1661
1662 /**
1663 * Comparison function passed to qsort() to sort varyings by packing_class and
1664 * then by packing_order.
1665 */
1666 int
1667 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1668 {
1669 const match *x = (const match *) x_generic;
1670 const match *y = (const match *) y_generic;
1671
1672 if (x->packing_class != y->packing_class)
1673 return x->packing_class - y->packing_class;
1674 return x->packing_order - y->packing_order;
1675 }
1676
1677
1678 /**
1679 * Comparison function passed to qsort() to sort varyings used only by
1680 * transform feedback when packing of other varyings is disabled.
1681 */
1682 int
1683 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1684 {
1685 const match *x = (const match *) x_generic;
1686
1687 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1688 return match_comparator(x_generic, y_generic);
1689
1690 /* FIXME: When the comparator returns 0 it means the elements being
1691 * compared are equivalent. However the qsort documentation says:
1692 *
1693 * "The order of equivalent elements is undefined."
1694 *
1695 * In practice the sort ends up reversing the order of the varyings which
1696 * means locations are also assigned in this reversed order and happens to
1697 * be what we want. This is also whats happening in
1698 * varying_matches::match_comparator().
1699 */
1700 return 0;
1701 }
1702
1703
1704 /**
1705 * Is the given variable a varying variable to be counted against the
1706 * limit in ctx->Const.MaxVarying?
1707 * This includes variables such as texcoords, colors and generic
1708 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1709 */
1710 static bool
1711 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1712 {
1713 /* Only fragment shaders will take a varying variable as an input */
1714 if (stage == MESA_SHADER_FRAGMENT &&
1715 var->data.mode == ir_var_shader_in) {
1716 switch (var->data.location) {
1717 case VARYING_SLOT_POS:
1718 case VARYING_SLOT_FACE:
1719 case VARYING_SLOT_PNTC:
1720 return false;
1721 default:
1722 return true;
1723 }
1724 }
1725 return false;
1726 }
1727
1728
1729 /**
1730 * Visitor class that generates tfeedback_candidate structs describing all
1731 * possible targets of transform feedback.
1732 *
1733 * tfeedback_candidate structs are stored in the hash table
1734 * tfeedback_candidates, which is passed to the constructor. This hash table
1735 * maps varying names to instances of the tfeedback_candidate struct.
1736 */
1737 class tfeedback_candidate_generator : public program_resource_visitor
1738 {
1739 public:
1740 tfeedback_candidate_generator(void *mem_ctx,
1741 hash_table *tfeedback_candidates)
1742 : mem_ctx(mem_ctx),
1743 tfeedback_candidates(tfeedback_candidates),
1744 toplevel_var(NULL),
1745 varying_floats(0)
1746 {
1747 }
1748
1749 void process(ir_variable *var)
1750 {
1751 /* All named varying interface blocks should be flattened by now */
1752 assert(!var->is_interface_instance());
1753
1754 this->toplevel_var = var;
1755 this->varying_floats = 0;
1756 program_resource_visitor::process(var);
1757 }
1758
1759 private:
1760 virtual void visit_field(const glsl_type *type, const char *name,
1761 bool row_major)
1762 {
1763 assert(!type->without_array()->is_record());
1764 assert(!type->without_array()->is_interface());
1765
1766 (void) row_major;
1767
1768 tfeedback_candidate *candidate
1769 = rzalloc(this->mem_ctx, tfeedback_candidate);
1770 candidate->toplevel_var = this->toplevel_var;
1771 candidate->type = type;
1772 candidate->offset = this->varying_floats;
1773 hash_table_insert(this->tfeedback_candidates, candidate,
1774 ralloc_strdup(this->mem_ctx, name));
1775 this->varying_floats += type->component_slots();
1776 }
1777
1778 /**
1779 * Memory context used to allocate hash table keys and values.
1780 */
1781 void * const mem_ctx;
1782
1783 /**
1784 * Hash table in which tfeedback_candidate objects should be stored.
1785 */
1786 hash_table * const tfeedback_candidates;
1787
1788 /**
1789 * Pointer to the toplevel variable that is being traversed.
1790 */
1791 ir_variable *toplevel_var;
1792
1793 /**
1794 * Total number of varying floats that have been visited so far. This is
1795 * used to determine the offset to each varying within the toplevel
1796 * variable.
1797 */
1798 unsigned varying_floats;
1799 };
1800
1801
1802 namespace linker {
1803
1804 void
1805 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1806 hash_table *consumer_inputs,
1807 hash_table *consumer_interface_inputs,
1808 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1809 {
1810 memset(consumer_inputs_with_locations,
1811 0,
1812 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1813
1814 foreach_in_list(ir_instruction, node, ir) {
1815 ir_variable *const input_var = node->as_variable();
1816
1817 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
1818 /* All interface blocks should have been lowered by this point */
1819 assert(!input_var->type->is_interface());
1820
1821 if (input_var->data.explicit_location) {
1822 /* assign_varying_locations only cares about finding the
1823 * ir_variable at the start of a contiguous location block.
1824 *
1825 * - For !producer, consumer_inputs_with_locations isn't used.
1826 *
1827 * - For !consumer, consumer_inputs_with_locations is empty.
1828 *
1829 * For consumer && producer, if you were trying to set some
1830 * ir_variable to the middle of a location block on the other side
1831 * of producer/consumer, cross_validate_outputs_to_inputs() should
1832 * be link-erroring due to either type mismatch or location
1833 * overlaps. If the variables do match up, then they've got a
1834 * matching data.location and you only looked at
1835 * consumer_inputs_with_locations[var->data.location], not any
1836 * following entries for the array/structure.
1837 */
1838 consumer_inputs_with_locations[input_var->data.location] =
1839 input_var;
1840 } else if (input_var->get_interface_type() != NULL) {
1841 char *const iface_field_name =
1842 ralloc_asprintf(mem_ctx, "%s.%s",
1843 input_var->get_interface_type()->without_array()->name,
1844 input_var->name);
1845 hash_table_insert(consumer_interface_inputs, input_var,
1846 iface_field_name);
1847 } else {
1848 hash_table_insert(consumer_inputs, input_var,
1849 ralloc_strdup(mem_ctx, input_var->name));
1850 }
1851 }
1852 }
1853 }
1854
1855 /**
1856 * Find a variable from the consumer that "matches" the specified variable
1857 *
1858 * This function only finds inputs with names that match. There is no
1859 * validation (here) that the types, etc. are compatible.
1860 */
1861 ir_variable *
1862 get_matching_input(void *mem_ctx,
1863 const ir_variable *output_var,
1864 hash_table *consumer_inputs,
1865 hash_table *consumer_interface_inputs,
1866 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1867 {
1868 ir_variable *input_var;
1869
1870 if (output_var->data.explicit_location) {
1871 input_var = consumer_inputs_with_locations[output_var->data.location];
1872 } else if (output_var->get_interface_type() != NULL) {
1873 char *const iface_field_name =
1874 ralloc_asprintf(mem_ctx, "%s.%s",
1875 output_var->get_interface_type()->without_array()->name,
1876 output_var->name);
1877 input_var =
1878 (ir_variable *) hash_table_find(consumer_interface_inputs,
1879 iface_field_name);
1880 } else {
1881 input_var =
1882 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1883 }
1884
1885 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1886 ? NULL : input_var;
1887 }
1888
1889 }
1890
1891 static int
1892 io_variable_cmp(const void *_a, const void *_b)
1893 {
1894 const ir_variable *const a = *(const ir_variable **) _a;
1895 const ir_variable *const b = *(const ir_variable **) _b;
1896
1897 if (a->data.explicit_location && b->data.explicit_location)
1898 return b->data.location - a->data.location;
1899
1900 if (a->data.explicit_location && !b->data.explicit_location)
1901 return 1;
1902
1903 if (!a->data.explicit_location && b->data.explicit_location)
1904 return -1;
1905
1906 return -strcmp(a->name, b->name);
1907 }
1908
1909 /**
1910 * Sort the shader IO variables into canonical order
1911 */
1912 static void
1913 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1914 {
1915 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1916 unsigned num_variables = 0;
1917
1918 foreach_in_list(ir_instruction, node, ir) {
1919 ir_variable *const var = node->as_variable();
1920
1921 if (var == NULL || var->data.mode != io_mode)
1922 continue;
1923
1924 /* If we have already encountered more I/O variables that could
1925 * successfully link, bail.
1926 */
1927 if (num_variables == ARRAY_SIZE(var_table))
1928 return;
1929
1930 var_table[num_variables++] = var;
1931 }
1932
1933 if (num_variables == 0)
1934 return;
1935
1936 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1937 * we're going to push the variables on to the IR list as a stack, so we
1938 * want the last variable (in canonical order) to be first in the list.
1939 */
1940 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1941
1942 /* Remove the variable from it's current location in the IR, and put it at
1943 * the front.
1944 */
1945 for (unsigned i = 0; i < num_variables; i++) {
1946 var_table[i]->remove();
1947 ir->push_head(var_table[i]);
1948 }
1949 }
1950
1951 /**
1952 * Generate a bitfield map of the explicit locations for shader varyings.
1953 *
1954 * Note: For Tessellation shaders we are sitting right on the limits of the
1955 * 64 bit map. Per-vertex and per-patch both have separate location domains
1956 * with a max of MAX_VARYING.
1957 */
1958 uint64_t
1959 reserved_varying_slot(struct gl_linked_shader *stage,
1960 ir_variable_mode io_mode)
1961 {
1962 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1963 /* Avoid an overflow of the returned value */
1964 assert(MAX_VARYINGS_INCL_PATCH <= 64);
1965
1966 uint64_t slots = 0;
1967 int var_slot;
1968
1969 if (!stage)
1970 return slots;
1971
1972 foreach_in_list(ir_instruction, node, stage->ir) {
1973 ir_variable *const var = node->as_variable();
1974
1975 if (var == NULL || var->data.mode != io_mode ||
1976 !var->data.explicit_location ||
1977 var->data.location < VARYING_SLOT_VAR0)
1978 continue;
1979
1980 var_slot = var->data.location - VARYING_SLOT_VAR0;
1981
1982 unsigned num_elements = get_varying_type(var, stage->Stage)
1983 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1984 for (unsigned i = 0; i < num_elements; i++) {
1985 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
1986 slots |= UINT64_C(1) << var_slot;
1987 var_slot += 1;
1988 }
1989 }
1990
1991 return slots;
1992 }
1993
1994
1995 /**
1996 * Assign locations for all variables that are produced in one pipeline stage
1997 * (the "producer") and consumed in the next stage (the "consumer").
1998 *
1999 * Variables produced by the producer may also be consumed by transform
2000 * feedback.
2001 *
2002 * \param num_tfeedback_decls is the number of declarations indicating
2003 * variables that may be consumed by transform feedback.
2004 *
2005 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2006 * representing the result of parsing the strings passed to
2007 * glTransformFeedbackVaryings(). assign_location() will be called for
2008 * each of these objects that matches one of the outputs of the
2009 * producer.
2010 *
2011 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2012 * be NULL. In this case, varying locations are assigned solely based on the
2013 * requirements of transform feedback.
2014 */
2015 bool
2016 assign_varying_locations(struct gl_context *ctx,
2017 void *mem_ctx,
2018 struct gl_shader_program *prog,
2019 gl_linked_shader *producer,
2020 gl_linked_shader *consumer,
2021 unsigned num_tfeedback_decls,
2022 tfeedback_decl *tfeedback_decls,
2023 const uint64_t reserved_slots)
2024 {
2025 /* Tessellation shaders treat inputs and outputs as shared memory and can
2026 * access inputs and outputs of other invocations.
2027 * Therefore, they can't be lowered to temps easily (and definitely not
2028 * efficiently).
2029 */
2030 bool unpackable_tess =
2031 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2032 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2033 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2034
2035 /* Transform feedback code assumes varying arrays are packed, so if the
2036 * driver has disabled varying packing, make sure to at least enable
2037 * packing required by transform feedback.
2038 */
2039 bool xfb_enabled =
2040 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2041
2042 /* Disable packing on outward facing interfaces for SSO because in ES we
2043 * need to retain the unpacked varying information for draw time
2044 * validation.
2045 *
2046 * Packing is still enabled on individual arrays, structs, and matrices as
2047 * these are required by the transform feedback code and it is still safe
2048 * to do so. We also enable packing when a varying is only used for
2049 * transform feedback and its not a SSO.
2050 */
2051 bool disable_varying_packing =
2052 ctx->Const.DisableVaryingPacking || unpackable_tess;
2053 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2054 disable_varying_packing = true;
2055
2056 varying_matches matches(disable_varying_packing, xfb_enabled,
2057 producer ? producer->Stage : (gl_shader_stage)-1,
2058 consumer ? consumer->Stage : (gl_shader_stage)-1);
2059 hash_table *tfeedback_candidates
2060 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2061 hash_table *consumer_inputs
2062 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2063 hash_table *consumer_interface_inputs
2064 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2065 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2066 NULL,
2067 };
2068
2069 unsigned consumer_vertices = 0;
2070 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2071 consumer_vertices = prog->Geom.VerticesIn;
2072
2073 /* Operate in a total of four passes.
2074 *
2075 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2076 * that inputs / outputs of separable shaders will be assigned
2077 * predictable locations regardless of the order in which declarations
2078 * appeared in the shader source.
2079 *
2080 * 2. Assign locations for any matching inputs and outputs.
2081 *
2082 * 3. Mark output variables in the producer that do not have locations as
2083 * not being outputs. This lets the optimizer eliminate them.
2084 *
2085 * 4. Mark input variables in the consumer that do not have locations as
2086 * not being inputs. This lets the optimizer eliminate them.
2087 */
2088 if (consumer)
2089 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2090
2091 if (producer)
2092 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2093
2094 if (consumer)
2095 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2096 consumer_inputs,
2097 consumer_interface_inputs,
2098 consumer_inputs_with_locations);
2099
2100 if (producer) {
2101 foreach_in_list(ir_instruction, node, producer->ir) {
2102 ir_variable *const output_var = node->as_variable();
2103
2104 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2105 continue;
2106
2107 /* Only geometry shaders can use non-zero streams */
2108 assert(output_var->data.stream == 0 ||
2109 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2110 producer->Stage == MESA_SHADER_GEOMETRY));
2111
2112 if (num_tfeedback_decls > 0) {
2113 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2114 g.process(output_var);
2115 }
2116
2117 ir_variable *const input_var =
2118 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2119 consumer_interface_inputs,
2120 consumer_inputs_with_locations);
2121
2122 /* If a matching input variable was found, add this output (and the
2123 * input) to the set. If this is a separable program and there is no
2124 * consumer stage, add the output.
2125 *
2126 * Always add TCS outputs. They are shared by all invocations
2127 * within a patch and can be used as shared memory.
2128 */
2129 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2130 producer->Stage == MESA_SHADER_TESS_CTRL) {
2131 matches.record(output_var, input_var);
2132 }
2133
2134 /* Only stream 0 outputs can be consumed in the next stage */
2135 if (input_var && output_var->data.stream != 0) {
2136 linker_error(prog, "output %s is assigned to stream=%d but "
2137 "is linked to an input, which requires stream=0",
2138 output_var->name, output_var->data.stream);
2139 return false;
2140 }
2141 }
2142 } else {
2143 /* If there's no producer stage, then this must be a separable program.
2144 * For example, we may have a program that has just a fragment shader.
2145 * Later this program will be used with some arbitrary vertex (or
2146 * geometry) shader program. This means that locations must be assigned
2147 * for all the inputs.
2148 */
2149 foreach_in_list(ir_instruction, node, consumer->ir) {
2150 ir_variable *const input_var = node->as_variable();
2151
2152 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2153 continue;
2154
2155 matches.record(NULL, input_var);
2156 }
2157 }
2158
2159 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2160 if (!tfeedback_decls[i].is_varying())
2161 continue;
2162
2163 const tfeedback_candidate *matched_candidate
2164 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2165
2166 if (matched_candidate == NULL) {
2167 hash_table_dtor(tfeedback_candidates);
2168 hash_table_dtor(consumer_inputs);
2169 hash_table_dtor(consumer_interface_inputs);
2170 return false;
2171 }
2172
2173 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2174 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2175 matches.record(matched_candidate->toplevel_var, NULL);
2176 }
2177 }
2178
2179 const unsigned slots_used = matches.assign_locations(prog, reserved_slots);
2180 matches.store_locations();
2181
2182 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2183 if (!tfeedback_decls[i].is_varying())
2184 continue;
2185
2186 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2187 hash_table_dtor(tfeedback_candidates);
2188 hash_table_dtor(consumer_inputs);
2189 hash_table_dtor(consumer_interface_inputs);
2190 return false;
2191 }
2192 }
2193
2194 hash_table_dtor(tfeedback_candidates);
2195 hash_table_dtor(consumer_inputs);
2196 hash_table_dtor(consumer_interface_inputs);
2197
2198 if (consumer && producer) {
2199 foreach_in_list(ir_instruction, node, consumer->ir) {
2200 ir_variable *const var = node->as_variable();
2201
2202 if (var && var->data.mode == ir_var_shader_in &&
2203 var->data.is_unmatched_generic_inout) {
2204 if (!prog->IsES && prog->Version <= 120) {
2205 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2206 *
2207 * Only those varying variables used (i.e. read) in
2208 * the fragment shader executable must be written to
2209 * by the vertex shader executable; declaring
2210 * superfluous varying variables in a vertex shader is
2211 * permissible.
2212 *
2213 * We interpret this text as meaning that the VS must
2214 * write the variable for the FS to read it. See
2215 * "glsl1-varying read but not written" in piglit.
2216 */
2217 linker_error(prog, "%s shader varying %s not written "
2218 "by %s shader\n.",
2219 _mesa_shader_stage_to_string(consumer->Stage),
2220 var->name,
2221 _mesa_shader_stage_to_string(producer->Stage));
2222 } else {
2223 linker_warning(prog, "%s shader varying %s not written "
2224 "by %s shader\n.",
2225 _mesa_shader_stage_to_string(consumer->Stage),
2226 var->name,
2227 _mesa_shader_stage_to_string(producer->Stage));
2228 }
2229 }
2230 }
2231
2232 /* Now that validation is done its safe to remove unused varyings. As
2233 * we have both a producer and consumer its safe to remove unused
2234 * varyings even if the program is a SSO because the stages are being
2235 * linked together i.e. we have a multi-stage SSO.
2236 */
2237 remove_unused_shader_inputs_and_outputs(false, producer,
2238 ir_var_shader_out);
2239 remove_unused_shader_inputs_and_outputs(false, consumer,
2240 ir_var_shader_in);
2241 }
2242
2243 if (producer) {
2244 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2245 0, producer, disable_varying_packing,
2246 xfb_enabled);
2247 }
2248
2249 if (consumer) {
2250 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2251 consumer_vertices, consumer,
2252 disable_varying_packing, xfb_enabled);
2253 }
2254
2255 return true;
2256 }
2257
2258 bool
2259 check_against_output_limit(struct gl_context *ctx,
2260 struct gl_shader_program *prog,
2261 gl_linked_shader *producer,
2262 unsigned num_explicit_locations)
2263 {
2264 unsigned output_vectors = num_explicit_locations;
2265
2266 foreach_in_list(ir_instruction, node, producer->ir) {
2267 ir_variable *const var = node->as_variable();
2268
2269 if (var && !var->data.explicit_location &&
2270 var->data.mode == ir_var_shader_out &&
2271 var_counts_against_varying_limit(producer->Stage, var)) {
2272 /* outputs for fragment shader can't be doubles */
2273 output_vectors += var->type->count_attribute_slots(false);
2274 }
2275 }
2276
2277 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2278 unsigned max_output_components =
2279 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2280
2281 const unsigned output_components = output_vectors * 4;
2282 if (output_components > max_output_components) {
2283 if (ctx->API == API_OPENGLES2 || prog->IsES)
2284 linker_error(prog, "%s shader uses too many output vectors "
2285 "(%u > %u)\n",
2286 _mesa_shader_stage_to_string(producer->Stage),
2287 output_vectors,
2288 max_output_components / 4);
2289 else
2290 linker_error(prog, "%s shader uses too many output components "
2291 "(%u > %u)\n",
2292 _mesa_shader_stage_to_string(producer->Stage),
2293 output_components,
2294 max_output_components);
2295
2296 return false;
2297 }
2298
2299 return true;
2300 }
2301
2302 bool
2303 check_against_input_limit(struct gl_context *ctx,
2304 struct gl_shader_program *prog,
2305 gl_linked_shader *consumer,
2306 unsigned num_explicit_locations)
2307 {
2308 unsigned input_vectors = num_explicit_locations;
2309
2310 foreach_in_list(ir_instruction, node, consumer->ir) {
2311 ir_variable *const var = node->as_variable();
2312
2313 if (var && !var->data.explicit_location &&
2314 var->data.mode == ir_var_shader_in &&
2315 var_counts_against_varying_limit(consumer->Stage, var)) {
2316 /* vertex inputs aren't varying counted */
2317 input_vectors += var->type->count_attribute_slots(false);
2318 }
2319 }
2320
2321 assert(consumer->Stage != MESA_SHADER_VERTEX);
2322 unsigned max_input_components =
2323 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2324
2325 const unsigned input_components = input_vectors * 4;
2326 if (input_components > max_input_components) {
2327 if (ctx->API == API_OPENGLES2 || prog->IsES)
2328 linker_error(prog, "%s shader uses too many input vectors "
2329 "(%u > %u)\n",
2330 _mesa_shader_stage_to_string(consumer->Stage),
2331 input_vectors,
2332 max_input_components / 4);
2333 else
2334 linker_error(prog, "%s shader uses too many input components "
2335 "(%u > %u)\n",
2336 _mesa_shader_stage_to_string(consumer->Stage),
2337 input_components,
2338 max_input_components);
2339
2340 return false;
2341 }
2342
2343 return true;
2344 }