glsl: reset current stream tracker
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 foreach_in_list(ir_instruction, node, sh->ir) {
117 ir_variable *var = node->as_variable();
118 if (!var || var->data.mode != ir_var_shader_out)
119 continue;
120
121 /* From the ARB_enhanced_layouts spec:
122 *
123 * "Any shader making any static use (after preprocessing) of any of
124 * these *xfb_* qualifiers will cause the shader to be in a
125 * transform feedback capturing mode and hence responsible for
126 * describing the transform feedback setup. This mode will capture
127 * any output selected by *xfb_offset*, directly or indirectly, to
128 * a transform feedback buffer."
129 */
130 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
131 has_xfb_qualifiers = true;
132 }
133
134 if (var->data.explicit_xfb_offset) {
135 *num_tfeedback_decls += var->type->varying_count();
136 has_xfb_qualifiers = true;
137 }
138 }
139
140 if (*num_tfeedback_decls == 0)
141 return has_xfb_qualifiers;
142
143 unsigned i = 0;
144 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
145 foreach_in_list(ir_instruction, node, sh->ir) {
146 ir_variable *var = node->as_variable();
147 if (!var || var->data.mode != ir_var_shader_out)
148 continue;
149
150 if (var->data.explicit_xfb_offset) {
151 char *name;
152 const glsl_type *type, *member_type;
153
154 if (var->data.from_named_ifc_block) {
155 type = var->get_interface_type();
156 /* Find the member type before it was altered by lowering */
157 member_type =
158 type->fields.structure[type->field_index(var->name)].type;
159 name = ralloc_strdup(NULL, type->without_array()->name);
160 } else {
161 type = var->type;
162 member_type = NULL;
163 name = ralloc_strdup(NULL, var->name);
164 }
165 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
166 var->name, member_type, varying_names);
167 ralloc_free(name);
168 }
169 }
170
171 assert(i == *num_tfeedback_decls);
172 return has_xfb_qualifiers;
173 }
174
175 /**
176 * Validate the types and qualifiers of an output from one stage against the
177 * matching input to another stage.
178 */
179 static void
180 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
181 const ir_variable *input,
182 const ir_variable *output,
183 gl_shader_stage consumer_stage,
184 gl_shader_stage producer_stage)
185 {
186 /* Check that the types match between stages.
187 */
188 const glsl_type *type_to_match = input->type;
189
190 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
191 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
192 consumer_stage != MESA_SHADER_FRAGMENT) ||
193 consumer_stage == MESA_SHADER_GEOMETRY;
194 if (extra_array_level) {
195 assert(type_to_match->is_array());
196 type_to_match = type_to_match->fields.array;
197 }
198
199 if (type_to_match != output->type) {
200 /* There is a bit of a special case for gl_TexCoord. This
201 * built-in is unsized by default. Applications that variable
202 * access it must redeclare it with a size. There is some
203 * language in the GLSL spec that implies the fragment shader
204 * and vertex shader do not have to agree on this size. Other
205 * driver behave this way, and one or two applications seem to
206 * rely on it.
207 *
208 * Neither declaration needs to be modified here because the array
209 * sizes are fixed later when update_array_sizes is called.
210 *
211 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
212 *
213 * "Unlike user-defined varying variables, the built-in
214 * varying variables don't have a strict one-to-one
215 * correspondence between the vertex language and the
216 * fragment language."
217 */
218 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
219 linker_error(prog,
220 "%s shader output `%s' declared as type `%s', "
221 "but %s shader input declared as type `%s'\n",
222 _mesa_shader_stage_to_string(producer_stage),
223 output->name,
224 output->type->name,
225 _mesa_shader_stage_to_string(consumer_stage),
226 input->type->name);
227 return;
228 }
229 }
230
231 /* Check that all of the qualifiers match between stages.
232 */
233 if (input->data.centroid != output->data.centroid) {
234 linker_error(prog,
235 "%s shader output `%s' %s centroid qualifier, "
236 "but %s shader input %s centroid qualifier\n",
237 _mesa_shader_stage_to_string(producer_stage),
238 output->name,
239 (output->data.centroid) ? "has" : "lacks",
240 _mesa_shader_stage_to_string(consumer_stage),
241 (input->data.centroid) ? "has" : "lacks");
242 return;
243 }
244
245 if (input->data.sample != output->data.sample) {
246 linker_error(prog,
247 "%s shader output `%s' %s sample qualifier, "
248 "but %s shader input %s sample qualifier\n",
249 _mesa_shader_stage_to_string(producer_stage),
250 output->name,
251 (output->data.sample) ? "has" : "lacks",
252 _mesa_shader_stage_to_string(consumer_stage),
253 (input->data.sample) ? "has" : "lacks");
254 return;
255 }
256
257 if (input->data.patch != output->data.patch) {
258 linker_error(prog,
259 "%s shader output `%s' %s patch qualifier, "
260 "but %s shader input %s patch qualifier\n",
261 _mesa_shader_stage_to_string(producer_stage),
262 output->name,
263 (output->data.patch) ? "has" : "lacks",
264 _mesa_shader_stage_to_string(consumer_stage),
265 (input->data.patch) ? "has" : "lacks");
266 return;
267 }
268
269 if (!prog->IsES && input->data.invariant != output->data.invariant) {
270 linker_error(prog,
271 "%s shader output `%s' %s invariant qualifier, "
272 "but %s shader input %s invariant qualifier\n",
273 _mesa_shader_stage_to_string(producer_stage),
274 output->name,
275 (output->data.invariant) ? "has" : "lacks",
276 _mesa_shader_stage_to_string(consumer_stage),
277 (input->data.invariant) ? "has" : "lacks");
278 return;
279 }
280
281 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
282 * to match cross stage, they must only match within the same stage.
283 *
284 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
285 *
286 * "It is a link-time error if, within the same stage, the interpolation
287 * qualifiers of variables of the same name do not match.
288 *
289 */
290 if (input->data.interpolation != output->data.interpolation &&
291 prog->Version < 440) {
292 linker_error(prog,
293 "%s shader output `%s' specifies %s "
294 "interpolation qualifier, "
295 "but %s shader input specifies %s "
296 "interpolation qualifier\n",
297 _mesa_shader_stage_to_string(producer_stage),
298 output->name,
299 interpolation_string(output->data.interpolation),
300 _mesa_shader_stage_to_string(consumer_stage),
301 interpolation_string(input->data.interpolation));
302 return;
303 }
304 }
305
306 /**
307 * Validate front and back color outputs against single color input
308 */
309 static void
310 cross_validate_front_and_back_color(struct gl_shader_program *prog,
311 const ir_variable *input,
312 const ir_variable *front_color,
313 const ir_variable *back_color,
314 gl_shader_stage consumer_stage,
315 gl_shader_stage producer_stage)
316 {
317 if (front_color != NULL && front_color->data.assigned)
318 cross_validate_types_and_qualifiers(prog, input, front_color,
319 consumer_stage, producer_stage);
320
321 if (back_color != NULL && back_color->data.assigned)
322 cross_validate_types_and_qualifiers(prog, input, back_color,
323 consumer_stage, producer_stage);
324 }
325
326 /**
327 * Validate that outputs from one stage match inputs of another
328 */
329 void
330 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
331 gl_shader *producer, gl_shader *consumer)
332 {
333 glsl_symbol_table parameters;
334 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
335
336 /* Find all shader outputs in the "producer" stage.
337 */
338 foreach_in_list(ir_instruction, node, producer->ir) {
339 ir_variable *const var = node->as_variable();
340
341 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
342 continue;
343
344 if (!var->data.explicit_location
345 || var->data.location < VARYING_SLOT_VAR0)
346 parameters.add_variable(var);
347 else {
348 /* User-defined varyings with explicit locations are handled
349 * differently because they do not need to have matching names.
350 */
351 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
352
353 if (explicit_locations[idx] != NULL) {
354 linker_error(prog,
355 "%s shader has multiple outputs explicitly "
356 "assigned to location %d\n",
357 _mesa_shader_stage_to_string(producer->Stage),
358 idx);
359 return;
360 }
361
362 explicit_locations[idx] = var;
363 }
364 }
365
366
367 /* Find all shader inputs in the "consumer" stage. Any variables that have
368 * matching outputs already in the symbol table must have the same type and
369 * qualifiers.
370 *
371 * Exception: if the consumer is the geometry shader, then the inputs
372 * should be arrays and the type of the array element should match the type
373 * of the corresponding producer output.
374 */
375 foreach_in_list(ir_instruction, node, consumer->ir) {
376 ir_variable *const input = node->as_variable();
377
378 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
379 continue;
380
381 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
382 const ir_variable *const front_color =
383 parameters.get_variable("gl_FrontColor");
384
385 const ir_variable *const back_color =
386 parameters.get_variable("gl_BackColor");
387
388 cross_validate_front_and_back_color(prog, input,
389 front_color, back_color,
390 consumer->Stage, producer->Stage);
391 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
392 const ir_variable *const front_color =
393 parameters.get_variable("gl_FrontSecondaryColor");
394
395 const ir_variable *const back_color =
396 parameters.get_variable("gl_BackSecondaryColor");
397
398 cross_validate_front_and_back_color(prog, input,
399 front_color, back_color,
400 consumer->Stage, producer->Stage);
401 } else {
402 /* The rules for connecting inputs and outputs change in the presence
403 * of explicit locations. In this case, we no longer care about the
404 * names of the variables. Instead, we care only about the
405 * explicitly assigned location.
406 */
407 ir_variable *output = NULL;
408 if (input->data.explicit_location
409 && input->data.location >= VARYING_SLOT_VAR0) {
410 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
411
412 if (output == NULL) {
413 linker_error(prog,
414 "%s shader input `%s' with explicit location "
415 "has no matching output\n",
416 _mesa_shader_stage_to_string(consumer->Stage),
417 input->name);
418 }
419 } else {
420 output = parameters.get_variable(input->name);
421 }
422
423 if (output != NULL) {
424 /* Interface blocks have their own validation elsewhere so don't
425 * try validating them here.
426 */
427 if (!(input->get_interface_type() &&
428 output->get_interface_type()))
429 cross_validate_types_and_qualifiers(prog, input, output,
430 consumer->Stage,
431 producer->Stage);
432 } else {
433 /* Check for input vars with unmatched output vars in prev stage
434 * taking into account that interface blocks could have a matching
435 * output but with different name, so we ignore them.
436 */
437 assert(!input->data.assigned);
438 if (input->data.used && !input->get_interface_type() &&
439 !input->data.explicit_location && !prog->SeparateShader)
440 linker_error(prog,
441 "%s shader input `%s' "
442 "has no matching output in the previous stage\n",
443 _mesa_shader_stage_to_string(consumer->Stage),
444 input->name);
445 }
446 }
447 }
448 }
449
450 /**
451 * Demote shader inputs and outputs that are not used in other stages, and
452 * remove them via dead code elimination.
453 */
454 void
455 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
456 gl_shader *sh,
457 enum ir_variable_mode mode)
458 {
459 if (is_separate_shader_object)
460 return;
461
462 foreach_in_list(ir_instruction, node, sh->ir) {
463 ir_variable *const var = node->as_variable();
464
465 if ((var == NULL) || (var->data.mode != int(mode)))
466 continue;
467
468 /* A shader 'in' or 'out' variable is only really an input or output if
469 * its value is used by other shader stages. This will cause the
470 * variable to have a location assigned.
471 */
472 if (var->data.is_unmatched_generic_inout) {
473 assert(var->data.mode != ir_var_temporary);
474 var->data.mode = ir_var_auto;
475 }
476 }
477
478 /* Eliminate code that is now dead due to unused inputs/outputs being
479 * demoted.
480 */
481 while (do_dead_code(sh->ir, false))
482 ;
483
484 }
485
486 /**
487 * Initialize this object based on a string that was passed to
488 * glTransformFeedbackVaryings.
489 *
490 * If the input is mal-formed, this call still succeeds, but it sets
491 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
492 * will fail to find any matching variable.
493 */
494 void
495 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
496 const char *input)
497 {
498 /* We don't have to be pedantic about what is a valid GLSL variable name,
499 * because any variable with an invalid name can't exist in the IR anyway.
500 */
501
502 this->location = -1;
503 this->orig_name = input;
504 this->lowered_builtin_array_variable = none;
505 this->skip_components = 0;
506 this->next_buffer_separator = false;
507 this->matched_candidate = NULL;
508 this->stream_id = 0;
509 this->buffer = 0;
510 this->offset = 0;
511
512 if (ctx->Extensions.ARB_transform_feedback3) {
513 /* Parse gl_NextBuffer. */
514 if (strcmp(input, "gl_NextBuffer") == 0) {
515 this->next_buffer_separator = true;
516 return;
517 }
518
519 /* Parse gl_SkipComponents. */
520 if (strcmp(input, "gl_SkipComponents1") == 0)
521 this->skip_components = 1;
522 else if (strcmp(input, "gl_SkipComponents2") == 0)
523 this->skip_components = 2;
524 else if (strcmp(input, "gl_SkipComponents3") == 0)
525 this->skip_components = 3;
526 else if (strcmp(input, "gl_SkipComponents4") == 0)
527 this->skip_components = 4;
528
529 if (this->skip_components)
530 return;
531 }
532
533 /* Parse a declaration. */
534 const char *base_name_end;
535 long subscript = parse_program_resource_name(input, &base_name_end);
536 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
537 if (this->var_name == NULL) {
538 _mesa_error_no_memory(__func__);
539 return;
540 }
541
542 if (subscript >= 0) {
543 this->array_subscript = subscript;
544 this->is_subscripted = true;
545 } else {
546 this->is_subscripted = false;
547 }
548
549 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
550 * class must behave specially to account for the fact that gl_ClipDistance
551 * is converted from a float[8] to a vec4[2].
552 */
553 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
554 strcmp(this->var_name, "gl_ClipDistance") == 0) {
555 this->lowered_builtin_array_variable = clip_distance;
556 }
557
558 if (ctx->Const.LowerTessLevel &&
559 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
560 this->lowered_builtin_array_variable = tess_level_outer;
561 if (ctx->Const.LowerTessLevel &&
562 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
563 this->lowered_builtin_array_variable = tess_level_inner;
564 }
565
566
567 /**
568 * Determine whether two tfeedback_decl objects refer to the same variable and
569 * array index (if applicable).
570 */
571 bool
572 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
573 {
574 assert(x.is_varying() && y.is_varying());
575
576 if (strcmp(x.var_name, y.var_name) != 0)
577 return false;
578 if (x.is_subscripted != y.is_subscripted)
579 return false;
580 if (x.is_subscripted && x.array_subscript != y.array_subscript)
581 return false;
582 return true;
583 }
584
585
586 /**
587 * Assign a location and stream ID for this tfeedback_decl object based on the
588 * transform feedback candidate found by find_candidate.
589 *
590 * If an error occurs, the error is reported through linker_error() and false
591 * is returned.
592 */
593 bool
594 tfeedback_decl::assign_location(struct gl_context *ctx,
595 struct gl_shader_program *prog)
596 {
597 assert(this->is_varying());
598
599 unsigned fine_location
600 = this->matched_candidate->toplevel_var->data.location * 4
601 + this->matched_candidate->toplevel_var->data.location_frac
602 + this->matched_candidate->offset;
603 const unsigned dmul =
604 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
605
606 if (this->matched_candidate->type->is_array()) {
607 /* Array variable */
608 const unsigned matrix_cols =
609 this->matched_candidate->type->fields.array->matrix_columns;
610 const unsigned vector_elements =
611 this->matched_candidate->type->fields.array->vector_elements;
612 unsigned actual_array_size;
613 switch (this->lowered_builtin_array_variable) {
614 case clip_distance:
615 actual_array_size = prog->LastClipDistanceArraySize;
616 break;
617 case tess_level_outer:
618 actual_array_size = 4;
619 break;
620 case tess_level_inner:
621 actual_array_size = 2;
622 break;
623 case none:
624 default:
625 actual_array_size = this->matched_candidate->type->array_size();
626 break;
627 }
628
629 if (this->is_subscripted) {
630 /* Check array bounds. */
631 if (this->array_subscript >= actual_array_size) {
632 linker_error(prog, "Transform feedback varying %s has index "
633 "%i, but the array size is %u.",
634 this->orig_name, this->array_subscript,
635 actual_array_size);
636 return false;
637 }
638 unsigned array_elem_size = this->lowered_builtin_array_variable ?
639 1 : vector_elements * matrix_cols * dmul;
640 fine_location += array_elem_size * this->array_subscript;
641 this->size = 1;
642 } else {
643 this->size = actual_array_size;
644 }
645 this->vector_elements = vector_elements;
646 this->matrix_columns = matrix_cols;
647 if (this->lowered_builtin_array_variable)
648 this->type = GL_FLOAT;
649 else
650 this->type = this->matched_candidate->type->fields.array->gl_type;
651 } else {
652 /* Regular variable (scalar, vector, or matrix) */
653 if (this->is_subscripted) {
654 linker_error(prog, "Transform feedback varying %s requested, "
655 "but %s is not an array.",
656 this->orig_name, this->var_name);
657 return false;
658 }
659 this->size = 1;
660 this->vector_elements = this->matched_candidate->type->vector_elements;
661 this->matrix_columns = this->matched_candidate->type->matrix_columns;
662 this->type = this->matched_candidate->type->gl_type;
663 }
664 this->location = fine_location / 4;
665 this->location_frac = fine_location % 4;
666
667 /* From GL_EXT_transform_feedback:
668 * A program will fail to link if:
669 *
670 * * the total number of components to capture in any varying
671 * variable in <varyings> is greater than the constant
672 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
673 * buffer mode is SEPARATE_ATTRIBS_EXT;
674 */
675 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
676 this->num_components() >
677 ctx->Const.MaxTransformFeedbackSeparateComponents) {
678 linker_error(prog, "Transform feedback varying %s exceeds "
679 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
680 this->orig_name);
681 return false;
682 }
683
684 /* Only transform feedback varyings can be assigned to non-zero streams,
685 * so assign the stream id here.
686 */
687 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
688
689 unsigned array_offset = this->array_subscript * 4 * dmul;
690 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
691 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
692 this->offset = this->matched_candidate->toplevel_var->data.offset +
693 array_offset + struct_offset;
694
695 return true;
696 }
697
698
699 unsigned
700 tfeedback_decl::get_num_outputs() const
701 {
702 if (!this->is_varying()) {
703 return 0;
704 }
705 return (this->num_components() + this->location_frac + 3)/4;
706 }
707
708
709 /**
710 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
711 *
712 * If an error occurs, the error is reported through linker_error() and false
713 * is returned.
714 */
715 bool
716 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
717 struct gl_transform_feedback_info *info,
718 unsigned buffer, const unsigned max_outputs,
719 bool *explicit_stride, bool has_xfb_qualifiers) const
720 {
721 assert(!this->next_buffer_separator);
722
723 /* Handle gl_SkipComponents. */
724 if (this->skip_components) {
725 info->Buffers[buffer].Stride += this->skip_components;
726 return true;
727 }
728
729 unsigned xfb_offset = 0;
730 if (has_xfb_qualifiers) {
731 xfb_offset = this->offset / 4;
732 } else {
733 xfb_offset = info->Buffers[buffer].Stride;
734 }
735
736 unsigned location = this->location;
737 unsigned location_frac = this->location_frac;
738 unsigned num_components = this->num_components();
739 while (num_components > 0) {
740 unsigned output_size = MIN2(num_components, 4 - location_frac);
741 assert(info->NumOutputs < max_outputs);
742 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
743 info->Outputs[info->NumOutputs].OutputRegister = location;
744 info->Outputs[info->NumOutputs].NumComponents = output_size;
745 info->Outputs[info->NumOutputs].StreamId = stream_id;
746 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
747 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
748 ++info->NumOutputs;
749 info->Buffers[buffer].Stream = this->stream_id;
750 xfb_offset += output_size;
751
752 num_components -= output_size;
753 location++;
754 location_frac = 0;
755 }
756
757 if (explicit_stride && explicit_stride[buffer]) {
758 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
759 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
760 "multiple of 8 as its applied to a type that is or "
761 "contains a double.",
762 info->Buffers[buffer].Stride * 4);
763 return false;
764 }
765
766 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
767 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
768 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
769 "buffer (%d)", xfb_offset * 4,
770 info->Buffers[buffer].Stride * 4, buffer);
771 return false;
772 }
773 } else {
774 info->Buffers[buffer].Stride = xfb_offset;
775 }
776
777 /* From GL_EXT_transform_feedback:
778 * A program will fail to link if:
779 *
780 * * the total number of components to capture is greater than
781 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
782 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
783 *
784 * From GL_ARB_enhanced_layouts:
785 *
786 * "The resulting stride (implicit or explicit) must be less than or
787 * equal to the implementation-dependent constant
788 * gl_MaxTransformFeedbackInterleavedComponents."
789 */
790 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
791 has_xfb_qualifiers) &&
792 info->Buffers[buffer].Stride >
793 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
794 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
795 "limit has been exceeded.");
796 return false;
797 }
798
799 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
800 this->orig_name);
801 info->Varyings[info->NumVarying].Type = this->type;
802 info->Varyings[info->NumVarying].Size = this->size;
803 info->NumVarying++;
804
805 return true;
806 }
807
808
809 const tfeedback_candidate *
810 tfeedback_decl::find_candidate(gl_shader_program *prog,
811 hash_table *tfeedback_candidates)
812 {
813 const char *name = this->var_name;
814 switch (this->lowered_builtin_array_variable) {
815 case none:
816 name = this->var_name;
817 break;
818 case clip_distance:
819 name = "gl_ClipDistanceMESA";
820 break;
821 case tess_level_outer:
822 name = "gl_TessLevelOuterMESA";
823 break;
824 case tess_level_inner:
825 name = "gl_TessLevelInnerMESA";
826 break;
827 }
828 this->matched_candidate = (const tfeedback_candidate *)
829 hash_table_find(tfeedback_candidates, name);
830 if (!this->matched_candidate) {
831 /* From GL_EXT_transform_feedback:
832 * A program will fail to link if:
833 *
834 * * any variable name specified in the <varyings> array is not
835 * declared as an output in the geometry shader (if present) or
836 * the vertex shader (if no geometry shader is present);
837 */
838 linker_error(prog, "Transform feedback varying %s undeclared.",
839 this->orig_name);
840 }
841 return this->matched_candidate;
842 }
843
844
845 /**
846 * Parse all the transform feedback declarations that were passed to
847 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
848 *
849 * If an error occurs, the error is reported through linker_error() and false
850 * is returned.
851 */
852 bool
853 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
854 const void *mem_ctx, unsigned num_names,
855 char **varying_names, tfeedback_decl *decls)
856 {
857 for (unsigned i = 0; i < num_names; ++i) {
858 decls[i].init(ctx, mem_ctx, varying_names[i]);
859
860 if (!decls[i].is_varying())
861 continue;
862
863 /* From GL_EXT_transform_feedback:
864 * A program will fail to link if:
865 *
866 * * any two entries in the <varyings> array specify the same varying
867 * variable;
868 *
869 * We interpret this to mean "any two entries in the <varyings> array
870 * specify the same varying variable and array index", since transform
871 * feedback of arrays would be useless otherwise.
872 */
873 for (unsigned j = 0; j < i; ++j) {
874 if (!decls[j].is_varying())
875 continue;
876
877 if (tfeedback_decl::is_same(decls[i], decls[j])) {
878 linker_error(prog, "Transform feedback varying %s specified "
879 "more than once.", varying_names[i]);
880 return false;
881 }
882 }
883 }
884 return true;
885 }
886
887
888 static int
889 cmp_xfb_offset(const void * x_generic, const void * y_generic)
890 {
891 tfeedback_decl *x = (tfeedback_decl *) x_generic;
892 tfeedback_decl *y = (tfeedback_decl *) y_generic;
893
894 if (x->get_buffer() != y->get_buffer())
895 return x->get_buffer() - y->get_buffer();
896 return x->get_offset() - y->get_offset();
897 }
898
899 /**
900 * Store transform feedback location assignments into
901 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
902 *
903 * If an error occurs, the error is reported through linker_error() and false
904 * is returned.
905 */
906 bool
907 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
908 unsigned num_tfeedback_decls,
909 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
910 {
911 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
912 * tracking the number of buffers doesn't overflow.
913 */
914 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
915
916 bool separate_attribs_mode =
917 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
918
919 ralloc_free(prog->LinkedTransformFeedback.Varyings);
920 ralloc_free(prog->LinkedTransformFeedback.Outputs);
921
922 memset(&prog->LinkedTransformFeedback, 0,
923 sizeof(prog->LinkedTransformFeedback));
924
925 /* The xfb_offset qualifier does not have to be used in increasing order
926 * however some drivers expect to receive the list of transform feedback
927 * declarations in order so sort it now for convenience.
928 */
929 if (has_xfb_qualifiers)
930 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
931 cmp_xfb_offset);
932
933 prog->LinkedTransformFeedback.Varyings =
934 rzalloc_array(prog,
935 struct gl_transform_feedback_varying_info,
936 num_tfeedback_decls);
937
938 unsigned num_outputs = 0;
939 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
940 num_outputs += tfeedback_decls[i].get_num_outputs();
941
942 prog->LinkedTransformFeedback.Outputs =
943 rzalloc_array(prog,
944 struct gl_transform_feedback_output,
945 num_outputs);
946
947 unsigned num_buffers = 0;
948 unsigned buffers = 0;
949
950 if (!has_xfb_qualifiers && separate_attribs_mode) {
951 /* GL_SEPARATE_ATTRIBS */
952 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
953 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
954 num_buffers, num_outputs, NULL,
955 has_xfb_qualifiers))
956 return false;
957
958 buffers |= 1 << num_buffers;
959 num_buffers++;
960 }
961 }
962 else {
963 /* GL_INVERLEAVED_ATTRIBS */
964 int buffer_stream_id = -1;
965 unsigned buffer =
966 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
967 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
968
969 /* Apply any xfb_stride global qualifiers */
970 if (has_xfb_qualifiers) {
971 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
972 if (prog->TransformFeedback.BufferStride[j]) {
973 buffers |= 1 << j;
974 explicit_stride[j] = true;
975 prog->LinkedTransformFeedback.Buffers[j].Stride =
976 prog->TransformFeedback.BufferStride[j] / 4;
977 }
978 }
979 }
980
981 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
982 if (has_xfb_qualifiers &&
983 buffer != tfeedback_decls[i].get_buffer()) {
984 /* we have moved to the next buffer so reset stream id */
985 buffer_stream_id = -1;
986 }
987
988 if (tfeedback_decls[i].is_next_buffer_separator()) {
989 num_buffers++;
990 buffer_stream_id = -1;
991 continue;
992 } else if (buffer_stream_id == -1) {
993 /* First varying writing to this buffer: remember its stream */
994 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
995 } else if (buffer_stream_id !=
996 (int) tfeedback_decls[i].get_stream_id()) {
997 /* Varying writes to the same buffer from a different stream */
998 linker_error(prog,
999 "Transform feedback can't capture varyings belonging "
1000 "to different vertex streams in a single buffer. "
1001 "Varying %s writes to buffer from stream %u, other "
1002 "varyings in the same buffer write from stream %u.",
1003 tfeedback_decls[i].name(),
1004 tfeedback_decls[i].get_stream_id(),
1005 buffer_stream_id);
1006 return false;
1007 }
1008
1009 if (has_xfb_qualifiers) {
1010 buffer = tfeedback_decls[i].get_buffer();
1011 } else {
1012 buffer = num_buffers;
1013 }
1014 buffers |= 1 << num_buffers;
1015
1016 if (!tfeedback_decls[i].store(ctx, prog,
1017 &prog->LinkedTransformFeedback,
1018 num_buffers, num_outputs,
1019 explicit_stride, has_xfb_qualifiers))
1020 return false;
1021 }
1022 }
1023
1024 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1025
1026 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1027 return true;
1028 }
1029
1030 namespace {
1031
1032 /**
1033 * Data structure recording the relationship between outputs of one shader
1034 * stage (the "producer") and inputs of another (the "consumer").
1035 */
1036 class varying_matches
1037 {
1038 public:
1039 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1040 gl_shader_stage producer_stage,
1041 gl_shader_stage consumer_stage);
1042 ~varying_matches();
1043 void record(ir_variable *producer_var, ir_variable *consumer_var);
1044 unsigned assign_locations(struct gl_shader_program *prog,
1045 uint64_t reserved_slots, bool separate_shader);
1046 void store_locations() const;
1047
1048 private:
1049 bool is_varying_packing_safe(const glsl_type *type,
1050 const ir_variable *var);
1051
1052 /**
1053 * If true, this driver disables varying packing, so all varyings need to
1054 * be aligned on slot boundaries, and take up a number of slots equal to
1055 * their number of matrix columns times their array size.
1056 *
1057 * Packing may also be disabled because our current packing method is not
1058 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1059 * guaranteed to match across stages.
1060 */
1061 const bool disable_varying_packing;
1062
1063 /**
1064 * If true, this driver has transform feedback enabled. The transform
1065 * feedback code requires at least some packing be done even when varying
1066 * packing is disabled, fortunately where transform feedback requires
1067 * packing it's safe to override the disabled setting. See
1068 * is_varying_packing_safe().
1069 */
1070 const bool xfb_enabled;
1071
1072 /**
1073 * Enum representing the order in which varyings are packed within a
1074 * packing class.
1075 *
1076 * Currently we pack vec4's first, then vec2's, then scalar values, then
1077 * vec3's. This order ensures that the only vectors that are at risk of
1078 * having to be "double parked" (split between two adjacent varying slots)
1079 * are the vec3's.
1080 */
1081 enum packing_order_enum {
1082 PACKING_ORDER_VEC4,
1083 PACKING_ORDER_VEC2,
1084 PACKING_ORDER_SCALAR,
1085 PACKING_ORDER_VEC3,
1086 };
1087
1088 static unsigned compute_packing_class(const ir_variable *var);
1089 static packing_order_enum compute_packing_order(const ir_variable *var);
1090 static int match_comparator(const void *x_generic, const void *y_generic);
1091 static int xfb_comparator(const void *x_generic, const void *y_generic);
1092
1093 /**
1094 * Structure recording the relationship between a single producer output
1095 * and a single consumer input.
1096 */
1097 struct match {
1098 /**
1099 * Packing class for this varying, computed by compute_packing_class().
1100 */
1101 unsigned packing_class;
1102
1103 /**
1104 * Packing order for this varying, computed by compute_packing_order().
1105 */
1106 packing_order_enum packing_order;
1107 unsigned num_components;
1108
1109 /**
1110 * The output variable in the producer stage.
1111 */
1112 ir_variable *producer_var;
1113
1114 /**
1115 * The input variable in the consumer stage.
1116 */
1117 ir_variable *consumer_var;
1118
1119 /**
1120 * The location which has been assigned for this varying. This is
1121 * expressed in multiples of a float, with the first generic varying
1122 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1123 * value 0.
1124 */
1125 unsigned generic_location;
1126 } *matches;
1127
1128 /**
1129 * The number of elements in the \c matches array that are currently in
1130 * use.
1131 */
1132 unsigned num_matches;
1133
1134 /**
1135 * The number of elements that were set aside for the \c matches array when
1136 * it was allocated.
1137 */
1138 unsigned matches_capacity;
1139
1140 gl_shader_stage producer_stage;
1141 gl_shader_stage consumer_stage;
1142 };
1143
1144 } /* anonymous namespace */
1145
1146 varying_matches::varying_matches(bool disable_varying_packing,
1147 bool xfb_enabled,
1148 gl_shader_stage producer_stage,
1149 gl_shader_stage consumer_stage)
1150 : disable_varying_packing(disable_varying_packing),
1151 xfb_enabled(xfb_enabled),
1152 producer_stage(producer_stage),
1153 consumer_stage(consumer_stage)
1154 {
1155 /* Note: this initial capacity is rather arbitrarily chosen to be large
1156 * enough for many cases without wasting an unreasonable amount of space.
1157 * varying_matches::record() will resize the array if there are more than
1158 * this number of varyings.
1159 */
1160 this->matches_capacity = 8;
1161 this->matches = (match *)
1162 malloc(sizeof(*this->matches) * this->matches_capacity);
1163 this->num_matches = 0;
1164 }
1165
1166
1167 varying_matches::~varying_matches()
1168 {
1169 free(this->matches);
1170 }
1171
1172
1173 /**
1174 * Packing is always safe on individual arrays, structure and matices. It is
1175 * also safe if the varying is only used for transform feedback.
1176 */
1177 bool
1178 varying_matches::is_varying_packing_safe(const glsl_type *type,
1179 const ir_variable *var)
1180 {
1181 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1182 consumer_stage == MESA_SHADER_TESS_CTRL ||
1183 producer_stage == MESA_SHADER_TESS_CTRL)
1184 return false;
1185
1186 return xfb_enabled && (type->is_array() || type->is_record() ||
1187 type->is_matrix() || var->data.is_xfb_only);
1188 }
1189
1190
1191 /**
1192 * Record the given producer/consumer variable pair in the list of variables
1193 * that should later be assigned locations.
1194 *
1195 * It is permissible for \c consumer_var to be NULL (this happens if a
1196 * variable is output by the producer and consumed by transform feedback, but
1197 * not consumed by the consumer).
1198 *
1199 * If \c producer_var has already been paired up with a consumer_var, or
1200 * producer_var is part of fixed pipeline functionality (and hence already has
1201 * a location assigned), this function has no effect.
1202 *
1203 * Note: as a side effect this function may change the interpolation type of
1204 * \c producer_var, but only when the change couldn't possibly affect
1205 * rendering.
1206 */
1207 void
1208 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1209 {
1210 assert(producer_var != NULL || consumer_var != NULL);
1211
1212 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1213 producer_var->data.explicit_location)) ||
1214 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1215 consumer_var->data.explicit_location))) {
1216 /* Either a location already exists for this variable (since it is part
1217 * of fixed functionality), or it has already been recorded as part of a
1218 * previous match.
1219 */
1220 return;
1221 }
1222
1223 bool needs_flat_qualifier = consumer_var == NULL &&
1224 (producer_var->type->contains_integer() ||
1225 producer_var->type->contains_double());
1226
1227 if (needs_flat_qualifier ||
1228 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1229 /* Since this varying is not being consumed by the fragment shader, its
1230 * interpolation type varying cannot possibly affect rendering.
1231 * Also, this variable is non-flat and is (or contains) an integer
1232 * or a double.
1233 * If the consumer stage is unknown, don't modify the interpolation
1234 * type as it could affect rendering later with separate shaders.
1235 *
1236 * lower_packed_varyings requires all integer varyings to flat,
1237 * regardless of where they appear. We can trivially satisfy that
1238 * requirement by changing the interpolation type to flat here.
1239 */
1240 if (producer_var) {
1241 producer_var->data.centroid = false;
1242 producer_var->data.sample = false;
1243 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1244 }
1245
1246 if (consumer_var) {
1247 consumer_var->data.centroid = false;
1248 consumer_var->data.sample = false;
1249 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1250 }
1251 }
1252
1253 if (this->num_matches == this->matches_capacity) {
1254 this->matches_capacity *= 2;
1255 this->matches = (match *)
1256 realloc(this->matches,
1257 sizeof(*this->matches) * this->matches_capacity);
1258 }
1259
1260 const ir_variable *const var = (producer_var != NULL)
1261 ? producer_var : consumer_var;
1262 const gl_shader_stage stage = (producer_var != NULL)
1263 ? producer_stage : consumer_stage;
1264 const glsl_type *type = get_varying_type(var, stage);
1265
1266 this->matches[this->num_matches].packing_class
1267 = this->compute_packing_class(var);
1268 this->matches[this->num_matches].packing_order
1269 = this->compute_packing_order(var);
1270 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1271 unsigned slots = type->count_attribute_slots(false);
1272 this->matches[this->num_matches].num_components = slots * 4;
1273 } else {
1274 this->matches[this->num_matches].num_components
1275 = type->component_slots();
1276 }
1277 this->matches[this->num_matches].producer_var = producer_var;
1278 this->matches[this->num_matches].consumer_var = consumer_var;
1279 this->num_matches++;
1280 if (producer_var)
1281 producer_var->data.is_unmatched_generic_inout = 0;
1282 if (consumer_var)
1283 consumer_var->data.is_unmatched_generic_inout = 0;
1284 }
1285
1286
1287 /**
1288 * Choose locations for all of the variable matches that were previously
1289 * passed to varying_matches::record().
1290 */
1291 unsigned
1292 varying_matches::assign_locations(struct gl_shader_program *prog,
1293 uint64_t reserved_slots,
1294 bool separate_shader)
1295 {
1296 /* If packing has been disabled then we cannot safely sort the varyings by
1297 * class as it may mean we are using a version of OpenGL where
1298 * interpolation qualifiers are not guaranteed to be matching across
1299 * shaders, sorting in this case could result in mismatching shader
1300 * interfaces.
1301 * When packing is disabled the sort orders varyings used by transform
1302 * feedback first, but also depends on *undefined behaviour* of qsort to
1303 * reverse the order of the varyings. See: xfb_comparator().
1304 */
1305 if (!this->disable_varying_packing) {
1306 /* Sort varying matches into an order that makes them easy to pack. */
1307 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1308 &varying_matches::match_comparator);
1309 } else {
1310 /* Only sort varyings that are only used by transform feedback. */
1311 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1312 &varying_matches::xfb_comparator);
1313 }
1314
1315 unsigned generic_location = 0;
1316 unsigned generic_patch_location = MAX_VARYING*4;
1317 bool previous_var_xfb_only = false;
1318
1319 for (unsigned i = 0; i < this->num_matches; i++) {
1320 unsigned *location = &generic_location;
1321
1322 const ir_variable *var;
1323 const glsl_type *type;
1324 bool is_vertex_input = false;
1325 if (matches[i].consumer_var) {
1326 var = matches[i].consumer_var;
1327 type = get_varying_type(var, consumer_stage);
1328 if (consumer_stage == MESA_SHADER_VERTEX)
1329 is_vertex_input = true;
1330 } else {
1331 var = matches[i].producer_var;
1332 type = get_varying_type(var, producer_stage);
1333 }
1334
1335 if (var->data.patch)
1336 location = &generic_patch_location;
1337
1338 /* Advance to the next slot if this varying has a different packing
1339 * class than the previous one, and we're not already on a slot
1340 * boundary.
1341 *
1342 * Also advance to the next slot if packing is disabled. This makes sure
1343 * we don't assign varyings the same locations which is possible
1344 * because we still pack individual arrays, records and matrices even
1345 * when packing is disabled. Note we don't advance to the next slot if
1346 * we can pack varyings together that are only used for transform
1347 * feedback.
1348 */
1349 if ((this->disable_varying_packing &&
1350 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1351 (i > 0 && this->matches[i - 1].packing_class
1352 != this->matches[i].packing_class )) {
1353 *location = ALIGN(*location, 4);
1354 }
1355
1356 previous_var_xfb_only = var->data.is_xfb_only;
1357
1358 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1359 unsigned slot_end;
1360 if (this->disable_varying_packing &&
1361 !is_varying_packing_safe(type, var))
1362 slot_end = 4;
1363 else
1364 slot_end = type->without_array()->vector_elements;
1365 slot_end += *location - 1;
1366
1367 /* FIXME: We could be smarter in the below code and loop back over
1368 * trying to fill any locations that we skipped because we couldn't pack
1369 * the varying between an explicit location. For now just let the user
1370 * hit the linking error if we run out of room and suggest they use
1371 * explicit locations.
1372 */
1373 for (unsigned j = 0; j < num_elements; j++) {
1374 while ((slot_end < MAX_VARYING * 4u) &&
1375 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1376 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1377
1378 *location = ALIGN(*location + 1, 4);
1379 slot_end = *location;
1380
1381 /* reset the counter and try again */
1382 j = 0;
1383 }
1384
1385 /* Increase the slot to make sure there is enough room for next
1386 * array element.
1387 */
1388 if (this->disable_varying_packing &&
1389 !is_varying_packing_safe(type, var))
1390 slot_end += 4;
1391 else
1392 slot_end += type->without_array()->vector_elements;
1393 }
1394
1395 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1396 linker_error(prog, "insufficient contiguous locations available for "
1397 "%s it is possible an array or struct could not be "
1398 "packed between varyings with explicit locations. Try "
1399 "using an explicit location for arrays and structs.",
1400 var->name);
1401 }
1402
1403 this->matches[i].generic_location = *location;
1404
1405 *location += this->matches[i].num_components;
1406 }
1407
1408 return (generic_location + 3) / 4;
1409 }
1410
1411
1412 /**
1413 * Update the producer and consumer shaders to reflect the locations
1414 * assignments that were made by varying_matches::assign_locations().
1415 */
1416 void
1417 varying_matches::store_locations() const
1418 {
1419 for (unsigned i = 0; i < this->num_matches; i++) {
1420 ir_variable *producer_var = this->matches[i].producer_var;
1421 ir_variable *consumer_var = this->matches[i].consumer_var;
1422 unsigned generic_location = this->matches[i].generic_location;
1423 unsigned slot = generic_location / 4;
1424 unsigned offset = generic_location % 4;
1425
1426 if (producer_var) {
1427 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1428 producer_var->data.location_frac = offset;
1429 }
1430
1431 if (consumer_var) {
1432 assert(consumer_var->data.location == -1);
1433 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1434 consumer_var->data.location_frac = offset;
1435 }
1436 }
1437 }
1438
1439
1440 /**
1441 * Compute the "packing class" of the given varying. This is an unsigned
1442 * integer with the property that two variables in the same packing class can
1443 * be safely backed into the same vec4.
1444 */
1445 unsigned
1446 varying_matches::compute_packing_class(const ir_variable *var)
1447 {
1448 /* Without help from the back-end, there is no way to pack together
1449 * variables with different interpolation types, because
1450 * lower_packed_varyings must choose exactly one interpolation type for
1451 * each packed varying it creates.
1452 *
1453 * However, we can safely pack together floats, ints, and uints, because:
1454 *
1455 * - varyings of base type "int" and "uint" must use the "flat"
1456 * interpolation type, which can only occur in GLSL 1.30 and above.
1457 *
1458 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1459 * can store flat floats as ints without losing any information (using
1460 * the ir_unop_bitcast_* opcodes).
1461 *
1462 * Therefore, the packing class depends only on the interpolation type.
1463 */
1464 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1465 (var->data.patch << 2);
1466 packing_class *= 4;
1467 packing_class += var->data.interpolation;
1468 return packing_class;
1469 }
1470
1471
1472 /**
1473 * Compute the "packing order" of the given varying. This is a sort key we
1474 * use to determine when to attempt to pack the given varying relative to
1475 * other varyings in the same packing class.
1476 */
1477 varying_matches::packing_order_enum
1478 varying_matches::compute_packing_order(const ir_variable *var)
1479 {
1480 const glsl_type *element_type = var->type;
1481
1482 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1483 element_type = element_type->fields.array;
1484 }
1485
1486 switch (element_type->component_slots() % 4) {
1487 case 1: return PACKING_ORDER_SCALAR;
1488 case 2: return PACKING_ORDER_VEC2;
1489 case 3: return PACKING_ORDER_VEC3;
1490 case 0: return PACKING_ORDER_VEC4;
1491 default:
1492 assert(!"Unexpected value of vector_elements");
1493 return PACKING_ORDER_VEC4;
1494 }
1495 }
1496
1497
1498 /**
1499 * Comparison function passed to qsort() to sort varyings by packing_class and
1500 * then by packing_order.
1501 */
1502 int
1503 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1504 {
1505 const match *x = (const match *) x_generic;
1506 const match *y = (const match *) y_generic;
1507
1508 if (x->packing_class != y->packing_class)
1509 return x->packing_class - y->packing_class;
1510 return x->packing_order - y->packing_order;
1511 }
1512
1513
1514 /**
1515 * Comparison function passed to qsort() to sort varyings used only by
1516 * transform feedback when packing of other varyings is disabled.
1517 */
1518 int
1519 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1520 {
1521 const match *x = (const match *) x_generic;
1522
1523 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1524 return match_comparator(x_generic, y_generic);
1525
1526 /* FIXME: When the comparator returns 0 it means the elements being
1527 * compared are equivalent. However the qsort documentation says:
1528 *
1529 * "The order of equivalent elements is undefined."
1530 *
1531 * In practice the sort ends up reversing the order of the varyings which
1532 * means locations are also assigned in this reversed order and happens to
1533 * be what we want. This is also whats happening in
1534 * varying_matches::match_comparator().
1535 */
1536 return 0;
1537 }
1538
1539
1540 /**
1541 * Is the given variable a varying variable to be counted against the
1542 * limit in ctx->Const.MaxVarying?
1543 * This includes variables such as texcoords, colors and generic
1544 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1545 */
1546 static bool
1547 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1548 {
1549 /* Only fragment shaders will take a varying variable as an input */
1550 if (stage == MESA_SHADER_FRAGMENT &&
1551 var->data.mode == ir_var_shader_in) {
1552 switch (var->data.location) {
1553 case VARYING_SLOT_POS:
1554 case VARYING_SLOT_FACE:
1555 case VARYING_SLOT_PNTC:
1556 return false;
1557 default:
1558 return true;
1559 }
1560 }
1561 return false;
1562 }
1563
1564
1565 /**
1566 * Visitor class that generates tfeedback_candidate structs describing all
1567 * possible targets of transform feedback.
1568 *
1569 * tfeedback_candidate structs are stored in the hash table
1570 * tfeedback_candidates, which is passed to the constructor. This hash table
1571 * maps varying names to instances of the tfeedback_candidate struct.
1572 */
1573 class tfeedback_candidate_generator : public program_resource_visitor
1574 {
1575 public:
1576 tfeedback_candidate_generator(void *mem_ctx,
1577 hash_table *tfeedback_candidates)
1578 : mem_ctx(mem_ctx),
1579 tfeedback_candidates(tfeedback_candidates),
1580 toplevel_var(NULL),
1581 varying_floats(0)
1582 {
1583 }
1584
1585 void process(ir_variable *var)
1586 {
1587 /* All named varying interface blocks should be flattened by now */
1588 assert(!var->is_interface_instance());
1589
1590 this->toplevel_var = var;
1591 this->varying_floats = 0;
1592 program_resource_visitor::process(var);
1593 }
1594
1595 private:
1596 virtual void visit_field(const glsl_type *type, const char *name,
1597 bool row_major)
1598 {
1599 assert(!type->without_array()->is_record());
1600 assert(!type->without_array()->is_interface());
1601
1602 (void) row_major;
1603
1604 tfeedback_candidate *candidate
1605 = rzalloc(this->mem_ctx, tfeedback_candidate);
1606 candidate->toplevel_var = this->toplevel_var;
1607 candidate->type = type;
1608 candidate->offset = this->varying_floats;
1609 hash_table_insert(this->tfeedback_candidates, candidate,
1610 ralloc_strdup(this->mem_ctx, name));
1611 this->varying_floats += type->component_slots();
1612 }
1613
1614 /**
1615 * Memory context used to allocate hash table keys and values.
1616 */
1617 void * const mem_ctx;
1618
1619 /**
1620 * Hash table in which tfeedback_candidate objects should be stored.
1621 */
1622 hash_table * const tfeedback_candidates;
1623
1624 /**
1625 * Pointer to the toplevel variable that is being traversed.
1626 */
1627 ir_variable *toplevel_var;
1628
1629 /**
1630 * Total number of varying floats that have been visited so far. This is
1631 * used to determine the offset to each varying within the toplevel
1632 * variable.
1633 */
1634 unsigned varying_floats;
1635 };
1636
1637
1638 namespace linker {
1639
1640 void
1641 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1642 hash_table *consumer_inputs,
1643 hash_table *consumer_interface_inputs,
1644 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1645 {
1646 memset(consumer_inputs_with_locations,
1647 0,
1648 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1649
1650 foreach_in_list(ir_instruction, node, ir) {
1651 ir_variable *const input_var = node->as_variable();
1652
1653 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1654 /* All interface blocks should have been lowered by this point */
1655 assert(!input_var->type->is_interface());
1656
1657 if (input_var->data.explicit_location) {
1658 /* assign_varying_locations only cares about finding the
1659 * ir_variable at the start of a contiguous location block.
1660 *
1661 * - For !producer, consumer_inputs_with_locations isn't used.
1662 *
1663 * - For !consumer, consumer_inputs_with_locations is empty.
1664 *
1665 * For consumer && producer, if you were trying to set some
1666 * ir_variable to the middle of a location block on the other side
1667 * of producer/consumer, cross_validate_outputs_to_inputs() should
1668 * be link-erroring due to either type mismatch or location
1669 * overlaps. If the variables do match up, then they've got a
1670 * matching data.location and you only looked at
1671 * consumer_inputs_with_locations[var->data.location], not any
1672 * following entries for the array/structure.
1673 */
1674 consumer_inputs_with_locations[input_var->data.location] =
1675 input_var;
1676 } else if (input_var->get_interface_type() != NULL) {
1677 char *const iface_field_name =
1678 ralloc_asprintf(mem_ctx, "%s.%s",
1679 input_var->get_interface_type()->without_array()->name,
1680 input_var->name);
1681 hash_table_insert(consumer_interface_inputs, input_var,
1682 iface_field_name);
1683 } else {
1684 hash_table_insert(consumer_inputs, input_var,
1685 ralloc_strdup(mem_ctx, input_var->name));
1686 }
1687 }
1688 }
1689 }
1690
1691 /**
1692 * Find a variable from the consumer that "matches" the specified variable
1693 *
1694 * This function only finds inputs with names that match. There is no
1695 * validation (here) that the types, etc. are compatible.
1696 */
1697 ir_variable *
1698 get_matching_input(void *mem_ctx,
1699 const ir_variable *output_var,
1700 hash_table *consumer_inputs,
1701 hash_table *consumer_interface_inputs,
1702 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1703 {
1704 ir_variable *input_var;
1705
1706 if (output_var->data.explicit_location) {
1707 input_var = consumer_inputs_with_locations[output_var->data.location];
1708 } else if (output_var->get_interface_type() != NULL) {
1709 char *const iface_field_name =
1710 ralloc_asprintf(mem_ctx, "%s.%s",
1711 output_var->get_interface_type()->without_array()->name,
1712 output_var->name);
1713 input_var =
1714 (ir_variable *) hash_table_find(consumer_interface_inputs,
1715 iface_field_name);
1716 } else {
1717 input_var =
1718 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1719 }
1720
1721 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1722 ? NULL : input_var;
1723 }
1724
1725 }
1726
1727 static int
1728 io_variable_cmp(const void *_a, const void *_b)
1729 {
1730 const ir_variable *const a = *(const ir_variable **) _a;
1731 const ir_variable *const b = *(const ir_variable **) _b;
1732
1733 if (a->data.explicit_location && b->data.explicit_location)
1734 return b->data.location - a->data.location;
1735
1736 if (a->data.explicit_location && !b->data.explicit_location)
1737 return 1;
1738
1739 if (!a->data.explicit_location && b->data.explicit_location)
1740 return -1;
1741
1742 return -strcmp(a->name, b->name);
1743 }
1744
1745 /**
1746 * Sort the shader IO variables into canonical order
1747 */
1748 static void
1749 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1750 {
1751 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1752 unsigned num_variables = 0;
1753
1754 foreach_in_list(ir_instruction, node, ir) {
1755 ir_variable *const var = node->as_variable();
1756
1757 if (var == NULL || var->data.mode != io_mode)
1758 continue;
1759
1760 /* If we have already encountered more I/O variables that could
1761 * successfully link, bail.
1762 */
1763 if (num_variables == ARRAY_SIZE(var_table))
1764 return;
1765
1766 var_table[num_variables++] = var;
1767 }
1768
1769 if (num_variables == 0)
1770 return;
1771
1772 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1773 * we're going to push the variables on to the IR list as a stack, so we
1774 * want the last variable (in canonical order) to be first in the list.
1775 */
1776 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1777
1778 /* Remove the variable from it's current location in the IR, and put it at
1779 * the front.
1780 */
1781 for (unsigned i = 0; i < num_variables; i++) {
1782 var_table[i]->remove();
1783 ir->push_head(var_table[i]);
1784 }
1785 }
1786
1787 /**
1788 * Generate a bitfield map of the explicit locations for shader varyings.
1789 *
1790 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1791 */
1792 uint64_t
1793 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1794 {
1795 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1796 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1797
1798 uint64_t slots = 0;
1799 int var_slot;
1800
1801 if (!stage)
1802 return slots;
1803
1804 foreach_in_list(ir_instruction, node, stage->ir) {
1805 ir_variable *const var = node->as_variable();
1806
1807 if (var == NULL || var->data.mode != io_mode ||
1808 !var->data.explicit_location ||
1809 var->data.location < VARYING_SLOT_VAR0)
1810 continue;
1811
1812 var_slot = var->data.location - VARYING_SLOT_VAR0;
1813
1814 unsigned num_elements = get_varying_type(var, stage->Stage)
1815 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1816 for (unsigned i = 0; i < num_elements; i++) {
1817 if (var_slot >= 0 && var_slot < MAX_VARYING)
1818 slots |= UINT64_C(1) << var_slot;
1819 var_slot += 1;
1820 }
1821 }
1822
1823 return slots;
1824 }
1825
1826
1827 /**
1828 * Assign locations for all variables that are produced in one pipeline stage
1829 * (the "producer") and consumed in the next stage (the "consumer").
1830 *
1831 * Variables produced by the producer may also be consumed by transform
1832 * feedback.
1833 *
1834 * \param num_tfeedback_decls is the number of declarations indicating
1835 * variables that may be consumed by transform feedback.
1836 *
1837 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1838 * representing the result of parsing the strings passed to
1839 * glTransformFeedbackVaryings(). assign_location() will be called for
1840 * each of these objects that matches one of the outputs of the
1841 * producer.
1842 *
1843 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1844 * be NULL. In this case, varying locations are assigned solely based on the
1845 * requirements of transform feedback.
1846 */
1847 bool
1848 assign_varying_locations(struct gl_context *ctx,
1849 void *mem_ctx,
1850 struct gl_shader_program *prog,
1851 gl_shader *producer, gl_shader *consumer,
1852 unsigned num_tfeedback_decls,
1853 tfeedback_decl *tfeedback_decls)
1854 {
1855 /* Tessellation shaders treat inputs and outputs as shared memory and can
1856 * access inputs and outputs of other invocations.
1857 * Therefore, they can't be lowered to temps easily (and definitely not
1858 * efficiently).
1859 */
1860 bool unpackable_tess =
1861 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1862 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1863 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1864
1865 /* Transform feedback code assumes varying arrays are packed, so if the
1866 * driver has disabled varying packing, make sure to at least enable
1867 * packing required by transform feedback.
1868 */
1869 bool xfb_enabled =
1870 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1871
1872 /* Disable varying packing for GL 4.4+ as there is no guarantee
1873 * that interpolation qualifiers will match between shaders in these
1874 * versions. We also disable packing on outerward facing interfaces for
1875 * SSO because in ES we need to retain the unpacked varying information
1876 * for draw time validation. For desktop GL we could allow packing for
1877 * versions < 4.4 but its just safer not to do packing.
1878 *
1879 * Packing is still enabled on individual arrays, structs, and matrices as
1880 * these are required by the transform feedback code and it is still safe
1881 * to do so. We also enable packing when a varying is only used for
1882 * transform feedback and its not a SSO.
1883 *
1884 * Varying packing currently only packs together varyings with matching
1885 * interpolation qualifiers as the backends assume all packed components
1886 * are to be processed in the same way. Therefore we cannot do packing in
1887 * these versions of GL without the risk of mismatching interfaces.
1888 *
1889 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1890 *
1891 * "The type and presence of interpolation qualifiers of variables with
1892 * the same name declared in all linked shaders for the same cross-stage
1893 * interface must match, otherwise the link command will fail.
1894 *
1895 * When comparing an output from one stage to an input of a subsequent
1896 * stage, the input and output don't match if their interpolation
1897 * qualifiers (or lack thereof) are not the same."
1898 *
1899 * This text was also in at least revison 7 of the 4.40 spec but is no
1900 * longer in revision 9 and not in the 4.50 spec.
1901 */
1902 bool disable_varying_packing =
1903 ctx->Const.DisableVaryingPacking || unpackable_tess;
1904 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
1905 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
1906 disable_varying_packing = true;
1907
1908 varying_matches matches(disable_varying_packing, xfb_enabled,
1909 producer ? producer->Stage : (gl_shader_stage)-1,
1910 consumer ? consumer->Stage : (gl_shader_stage)-1);
1911 hash_table *tfeedback_candidates
1912 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1913 hash_table *consumer_inputs
1914 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1915 hash_table *consumer_interface_inputs
1916 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1917 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
1918 NULL,
1919 };
1920
1921 unsigned consumer_vertices = 0;
1922 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1923 consumer_vertices = prog->Geom.VerticesIn;
1924
1925 /* Operate in a total of four passes.
1926 *
1927 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1928 * that inputs / outputs of separable shaders will be assigned
1929 * predictable locations regardless of the order in which declarations
1930 * appeared in the shader source.
1931 *
1932 * 2. Assign locations for any matching inputs and outputs.
1933 *
1934 * 3. Mark output variables in the producer that do not have locations as
1935 * not being outputs. This lets the optimizer eliminate them.
1936 *
1937 * 4. Mark input variables in the consumer that do not have locations as
1938 * not being inputs. This lets the optimizer eliminate them.
1939 */
1940 if (consumer)
1941 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1942
1943 if (producer)
1944 canonicalize_shader_io(producer->ir, ir_var_shader_out);
1945
1946 if (consumer)
1947 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
1948 consumer_inputs,
1949 consumer_interface_inputs,
1950 consumer_inputs_with_locations);
1951
1952 if (producer) {
1953 foreach_in_list(ir_instruction, node, producer->ir) {
1954 ir_variable *const output_var = node->as_variable();
1955
1956 if ((output_var == NULL) ||
1957 (output_var->data.mode != ir_var_shader_out))
1958 continue;
1959
1960 /* Only geometry shaders can use non-zero streams */
1961 assert(output_var->data.stream == 0 ||
1962 (output_var->data.stream < MAX_VERTEX_STREAMS &&
1963 producer->Stage == MESA_SHADER_GEOMETRY));
1964
1965 if (num_tfeedback_decls > 0) {
1966 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
1967 g.process(output_var);
1968 }
1969
1970 ir_variable *const input_var =
1971 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
1972 consumer_interface_inputs,
1973 consumer_inputs_with_locations);
1974
1975 /* If a matching input variable was found, add this ouptut (and the
1976 * input) to the set. If this is a separable program and there is no
1977 * consumer stage, add the output.
1978 *
1979 * Always add TCS outputs. They are shared by all invocations
1980 * within a patch and can be used as shared memory.
1981 */
1982 if (input_var || (prog->SeparateShader && consumer == NULL) ||
1983 producer->Type == GL_TESS_CONTROL_SHADER) {
1984 matches.record(output_var, input_var);
1985 }
1986
1987 /* Only stream 0 outputs can be consumed in the next stage */
1988 if (input_var && output_var->data.stream != 0) {
1989 linker_error(prog, "output %s is assigned to stream=%d but "
1990 "is linked to an input, which requires stream=0",
1991 output_var->name, output_var->data.stream);
1992 return false;
1993 }
1994 }
1995 } else {
1996 /* If there's no producer stage, then this must be a separable program.
1997 * For example, we may have a program that has just a fragment shader.
1998 * Later this program will be used with some arbitrary vertex (or
1999 * geometry) shader program. This means that locations must be assigned
2000 * for all the inputs.
2001 */
2002 foreach_in_list(ir_instruction, node, consumer->ir) {
2003 ir_variable *const input_var = node->as_variable();
2004
2005 if ((input_var == NULL) ||
2006 (input_var->data.mode != ir_var_shader_in))
2007 continue;
2008
2009 matches.record(NULL, input_var);
2010 }
2011 }
2012
2013 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2014 if (!tfeedback_decls[i].is_varying())
2015 continue;
2016
2017 const tfeedback_candidate *matched_candidate
2018 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2019
2020 if (matched_candidate == NULL) {
2021 hash_table_dtor(tfeedback_candidates);
2022 hash_table_dtor(consumer_inputs);
2023 hash_table_dtor(consumer_interface_inputs);
2024 return false;
2025 }
2026
2027 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2028 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2029 matches.record(matched_candidate->toplevel_var, NULL);
2030 }
2031 }
2032
2033 const uint64_t reserved_slots =
2034 reserved_varying_slot(producer, ir_var_shader_out) |
2035 reserved_varying_slot(consumer, ir_var_shader_in);
2036
2037 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2038 prog->SeparateShader);
2039 matches.store_locations();
2040
2041 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2042 if (!tfeedback_decls[i].is_varying())
2043 continue;
2044
2045 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2046 hash_table_dtor(tfeedback_candidates);
2047 hash_table_dtor(consumer_inputs);
2048 hash_table_dtor(consumer_interface_inputs);
2049 return false;
2050 }
2051 }
2052
2053 hash_table_dtor(tfeedback_candidates);
2054 hash_table_dtor(consumer_inputs);
2055 hash_table_dtor(consumer_interface_inputs);
2056
2057 if (consumer && producer) {
2058 foreach_in_list(ir_instruction, node, consumer->ir) {
2059 ir_variable *const var = node->as_variable();
2060
2061 if (var && var->data.mode == ir_var_shader_in &&
2062 var->data.is_unmatched_generic_inout) {
2063 if (!prog->IsES && prog->Version <= 120) {
2064 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2065 *
2066 * Only those varying variables used (i.e. read) in
2067 * the fragment shader executable must be written to
2068 * by the vertex shader executable; declaring
2069 * superfluous varying variables in a vertex shader is
2070 * permissible.
2071 *
2072 * We interpret this text as meaning that the VS must
2073 * write the variable for the FS to read it. See
2074 * "glsl1-varying read but not written" in piglit.
2075 */
2076 linker_error(prog, "%s shader varying %s not written "
2077 "by %s shader\n.",
2078 _mesa_shader_stage_to_string(consumer->Stage),
2079 var->name,
2080 _mesa_shader_stage_to_string(producer->Stage));
2081 } else {
2082 linker_warning(prog, "%s shader varying %s not written "
2083 "by %s shader\n.",
2084 _mesa_shader_stage_to_string(consumer->Stage),
2085 var->name,
2086 _mesa_shader_stage_to_string(producer->Stage));
2087 }
2088 }
2089 }
2090
2091 /* Now that validation is done its safe to remove unused varyings. As
2092 * we have both a producer and consumer its safe to remove unused
2093 * varyings even if the program is a SSO because the stages are being
2094 * linked together i.e. we have a multi-stage SSO.
2095 */
2096 remove_unused_shader_inputs_and_outputs(false, producer,
2097 ir_var_shader_out);
2098 remove_unused_shader_inputs_and_outputs(false, consumer,
2099 ir_var_shader_in);
2100 }
2101
2102 if (producer) {
2103 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2104 0, producer, disable_varying_packing,
2105 xfb_enabled);
2106 }
2107
2108 if (consumer) {
2109 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2110 consumer_vertices, consumer,
2111 disable_varying_packing, xfb_enabled);
2112 }
2113
2114 return true;
2115 }
2116
2117 bool
2118 check_against_output_limit(struct gl_context *ctx,
2119 struct gl_shader_program *prog,
2120 gl_shader *producer)
2121 {
2122 unsigned output_vectors = 0;
2123
2124 foreach_in_list(ir_instruction, node, producer->ir) {
2125 ir_variable *const var = node->as_variable();
2126
2127 if (var && var->data.mode == ir_var_shader_out &&
2128 var_counts_against_varying_limit(producer->Stage, var)) {
2129 /* outputs for fragment shader can't be doubles */
2130 output_vectors += var->type->count_attribute_slots(false);
2131 }
2132 }
2133
2134 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2135 unsigned max_output_components =
2136 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2137
2138 const unsigned output_components = output_vectors * 4;
2139 if (output_components > max_output_components) {
2140 if (ctx->API == API_OPENGLES2 || prog->IsES)
2141 linker_error(prog, "%s shader uses too many output vectors "
2142 "(%u > %u)\n",
2143 _mesa_shader_stage_to_string(producer->Stage),
2144 output_vectors,
2145 max_output_components / 4);
2146 else
2147 linker_error(prog, "%s shader uses too many output components "
2148 "(%u > %u)\n",
2149 _mesa_shader_stage_to_string(producer->Stage),
2150 output_components,
2151 max_output_components);
2152
2153 return false;
2154 }
2155
2156 return true;
2157 }
2158
2159 bool
2160 check_against_input_limit(struct gl_context *ctx,
2161 struct gl_shader_program *prog,
2162 gl_shader *consumer)
2163 {
2164 unsigned input_vectors = 0;
2165
2166 foreach_in_list(ir_instruction, node, consumer->ir) {
2167 ir_variable *const var = node->as_variable();
2168
2169 if (var && var->data.mode == ir_var_shader_in &&
2170 var_counts_against_varying_limit(consumer->Stage, var)) {
2171 /* vertex inputs aren't varying counted */
2172 input_vectors += var->type->count_attribute_slots(false);
2173 }
2174 }
2175
2176 assert(consumer->Stage != MESA_SHADER_VERTEX);
2177 unsigned max_input_components =
2178 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2179
2180 const unsigned input_components = input_vectors * 4;
2181 if (input_components > max_input_components) {
2182 if (ctx->API == API_OPENGLES2 || prog->IsES)
2183 linker_error(prog, "%s shader uses too many input vectors "
2184 "(%u > %u)\n",
2185 _mesa_shader_stage_to_string(consumer->Stage),
2186 input_vectors,
2187 max_input_components / 4);
2188 else
2189 linker_error(prog, "%s shader uses too many input components "
2190 "(%u > %u)\n",
2191 _mesa_shader_stage_to_string(consumer->Stage),
2192 input_components,
2193 max_input_components);
2194
2195 return false;
2196 }
2197
2198 return true;
2199 }