glsl/linker: outputs in the same location must share auxiliary storage
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "util/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 static bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
111 struct gl_shader_program *prog,
112 unsigned *num_tfeedback_decls,
113 char ***varying_names)
114 {
115 bool has_xfb_qualifiers = false;
116
117 /* We still need to enable transform feedback mode even if xfb_stride is
118 * only applied to a global out. Also we don't bother to propagate
119 * xfb_stride to interface block members so this will catch that case also.
120 */
121 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
122 if (prog->TransformFeedback.BufferStride[j]) {
123 has_xfb_qualifiers = true;
124 break;
125 }
126 }
127
128 foreach_in_list(ir_instruction, node, sh->ir) {
129 ir_variable *var = node->as_variable();
130 if (!var || var->data.mode != ir_var_shader_out)
131 continue;
132
133 /* From the ARB_enhanced_layouts spec:
134 *
135 * "Any shader making any static use (after preprocessing) of any of
136 * these *xfb_* qualifiers will cause the shader to be in a
137 * transform feedback capturing mode and hence responsible for
138 * describing the transform feedback setup. This mode will capture
139 * any output selected by *xfb_offset*, directly or indirectly, to
140 * a transform feedback buffer."
141 */
142 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
143 has_xfb_qualifiers = true;
144 }
145
146 if (var->data.explicit_xfb_offset) {
147 *num_tfeedback_decls += var->type->varying_count();
148 has_xfb_qualifiers = true;
149 }
150 }
151
152 if (*num_tfeedback_decls == 0)
153 return has_xfb_qualifiers;
154
155 unsigned i = 0;
156 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
157 foreach_in_list(ir_instruction, node, sh->ir) {
158 ir_variable *var = node->as_variable();
159 if (!var || var->data.mode != ir_var_shader_out)
160 continue;
161
162 if (var->data.explicit_xfb_offset) {
163 char *name;
164 const glsl_type *type, *member_type;
165
166 if (var->data.from_named_ifc_block) {
167 type = var->get_interface_type();
168 /* Find the member type before it was altered by lowering */
169 member_type =
170 type->fields.structure[type->field_index(var->name)].type;
171 name = ralloc_strdup(NULL, type->without_array()->name);
172 } else {
173 type = var->type;
174 member_type = NULL;
175 name = ralloc_strdup(NULL, var->name);
176 }
177 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
178 var->name, member_type, varying_names);
179 ralloc_free(name);
180 }
181 }
182
183 assert(i == *num_tfeedback_decls);
184 return has_xfb_qualifiers;
185 }
186
187 /**
188 * Validate the types and qualifiers of an output from one stage against the
189 * matching input to another stage.
190 */
191 static void
192 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
193 const ir_variable *input,
194 const ir_variable *output,
195 gl_shader_stage consumer_stage,
196 gl_shader_stage producer_stage)
197 {
198 /* Check that the types match between stages.
199 */
200 const glsl_type *type_to_match = input->type;
201
202 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
203 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
204 consumer_stage != MESA_SHADER_FRAGMENT) ||
205 consumer_stage == MESA_SHADER_GEOMETRY;
206 if (extra_array_level) {
207 assert(type_to_match->is_array());
208 type_to_match = type_to_match->fields.array;
209 }
210
211 if (type_to_match != output->type) {
212 /* There is a bit of a special case for gl_TexCoord. This
213 * built-in is unsized by default. Applications that variable
214 * access it must redeclare it with a size. There is some
215 * language in the GLSL spec that implies the fragment shader
216 * and vertex shader do not have to agree on this size. Other
217 * driver behave this way, and one or two applications seem to
218 * rely on it.
219 *
220 * Neither declaration needs to be modified here because the array
221 * sizes are fixed later when update_array_sizes is called.
222 *
223 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
224 *
225 * "Unlike user-defined varying variables, the built-in
226 * varying variables don't have a strict one-to-one
227 * correspondence between the vertex language and the
228 * fragment language."
229 */
230 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
231 linker_error(prog,
232 "%s shader output `%s' declared as type `%s', "
233 "but %s shader input declared as type `%s'\n",
234 _mesa_shader_stage_to_string(producer_stage),
235 output->name,
236 output->type->name,
237 _mesa_shader_stage_to_string(consumer_stage),
238 input->type->name);
239 return;
240 }
241 }
242
243 /* Check that all of the qualifiers match between stages.
244 */
245
246 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
247 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
248 * conformance test suite does not verify that the qualifiers must match.
249 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
250 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
251 */
252 if (false /* always skip the centroid check */ &&
253 prog->data->Version < (prog->IsES ? 310 : 430) &&
254 input->data.centroid != output->data.centroid) {
255 linker_error(prog,
256 "%s shader output `%s' %s centroid qualifier, "
257 "but %s shader input %s centroid qualifier\n",
258 _mesa_shader_stage_to_string(producer_stage),
259 output->name,
260 (output->data.centroid) ? "has" : "lacks",
261 _mesa_shader_stage_to_string(consumer_stage),
262 (input->data.centroid) ? "has" : "lacks");
263 return;
264 }
265
266 if (input->data.sample != output->data.sample) {
267 linker_error(prog,
268 "%s shader output `%s' %s sample qualifier, "
269 "but %s shader input %s sample qualifier\n",
270 _mesa_shader_stage_to_string(producer_stage),
271 output->name,
272 (output->data.sample) ? "has" : "lacks",
273 _mesa_shader_stage_to_string(consumer_stage),
274 (input->data.sample) ? "has" : "lacks");
275 return;
276 }
277
278 if (input->data.patch != output->data.patch) {
279 linker_error(prog,
280 "%s shader output `%s' %s patch qualifier, "
281 "but %s shader input %s patch qualifier\n",
282 _mesa_shader_stage_to_string(producer_stage),
283 output->name,
284 (output->data.patch) ? "has" : "lacks",
285 _mesa_shader_stage_to_string(consumer_stage),
286 (input->data.patch) ? "has" : "lacks");
287 return;
288 }
289
290 /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
291 *
292 * "As only outputs need be declared with invariant, an output from
293 * one shader stage will still match an input of a subsequent stage
294 * without the input being declared as invariant."
295 *
296 * while GLSL 4.20 says:
297 *
298 * "For variables leaving one shader and coming into another shader,
299 * the invariant keyword has to be used in both shaders, or a link
300 * error will result."
301 *
302 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
303 *
304 * "The invariance of varyings that are declared in both the vertex
305 * and fragment shaders must match."
306 */
307 if (input->data.invariant != output->data.invariant &&
308 prog->data->Version < (prog->IsES ? 300 : 430)) {
309 linker_error(prog,
310 "%s shader output `%s' %s invariant qualifier, "
311 "but %s shader input %s invariant qualifier\n",
312 _mesa_shader_stage_to_string(producer_stage),
313 output->name,
314 (output->data.invariant) ? "has" : "lacks",
315 _mesa_shader_stage_to_string(consumer_stage),
316 (input->data.invariant) ? "has" : "lacks");
317 return;
318 }
319
320 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
321 * to match cross stage, they must only match within the same stage.
322 *
323 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
324 *
325 * "It is a link-time error if, within the same stage, the interpolation
326 * qualifiers of variables of the same name do not match.
327 *
328 * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
329 *
330 * "When no interpolation qualifier is present, smooth interpolation
331 * is used."
332 *
333 * So we match variables where one is smooth and the other has no explicit
334 * qualifier.
335 */
336 unsigned input_interpolation = input->data.interpolation;
337 unsigned output_interpolation = output->data.interpolation;
338 if (prog->IsES) {
339 if (input_interpolation == INTERP_MODE_NONE)
340 input_interpolation = INTERP_MODE_SMOOTH;
341 if (output_interpolation == INTERP_MODE_NONE)
342 output_interpolation = INTERP_MODE_SMOOTH;
343 }
344 if (input_interpolation != output_interpolation &&
345 prog->data->Version < 440) {
346 linker_error(prog,
347 "%s shader output `%s' specifies %s "
348 "interpolation qualifier, "
349 "but %s shader input specifies %s "
350 "interpolation qualifier\n",
351 _mesa_shader_stage_to_string(producer_stage),
352 output->name,
353 interpolation_string(output->data.interpolation),
354 _mesa_shader_stage_to_string(consumer_stage),
355 interpolation_string(input->data.interpolation));
356 return;
357 }
358 }
359
360 /**
361 * Validate front and back color outputs against single color input
362 */
363 static void
364 cross_validate_front_and_back_color(struct gl_shader_program *prog,
365 const ir_variable *input,
366 const ir_variable *front_color,
367 const ir_variable *back_color,
368 gl_shader_stage consumer_stage,
369 gl_shader_stage producer_stage)
370 {
371 if (front_color != NULL && front_color->data.assigned)
372 cross_validate_types_and_qualifiers(prog, input, front_color,
373 consumer_stage, producer_stage);
374
375 if (back_color != NULL && back_color->data.assigned)
376 cross_validate_types_and_qualifiers(prog, input, back_color,
377 consumer_stage, producer_stage);
378 }
379
380 static unsigned
381 compute_variable_location_slot(ir_variable *var, gl_shader_stage stage)
382 {
383 unsigned location_start = VARYING_SLOT_VAR0;
384
385 switch (stage) {
386 case MESA_SHADER_VERTEX:
387 if (var->data.mode == ir_var_shader_in)
388 location_start = VERT_ATTRIB_GENERIC0;
389 break;
390 case MESA_SHADER_TESS_CTRL:
391 case MESA_SHADER_TESS_EVAL:
392 if (var->data.patch)
393 location_start = VARYING_SLOT_PATCH0;
394 break;
395 case MESA_SHADER_FRAGMENT:
396 if (var->data.mode == ir_var_shader_out)
397 location_start = FRAG_RESULT_DATA0;
398 break;
399 default:
400 break;
401 }
402
403 return var->data.location - location_start;
404 }
405
406 struct explicit_location_info {
407 ir_variable *var;
408 unsigned base_type;
409 unsigned interpolation;
410 bool centroid;
411 bool sample;
412 bool patch;
413 };
414
415 static bool
416 check_location_aliasing(struct explicit_location_info explicit_locations[][4],
417 ir_variable *var,
418 unsigned location,
419 unsigned component,
420 unsigned location_limit,
421 const glsl_type *type,
422 unsigned interpolation,
423 bool centroid,
424 bool sample,
425 bool patch,
426 gl_shader_program *prog,
427 gl_shader_stage stage)
428 {
429 unsigned last_comp;
430 if (type->without_array()->is_record()) {
431 /* The component qualifier can't be used on structs so just treat
432 * all component slots as used.
433 */
434 last_comp = 4;
435 } else {
436 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
437 last_comp = component + type->without_array()->vector_elements * dmul;
438 }
439
440 while (location < location_limit) {
441 unsigned i = component;
442
443 /* If there are other outputs assigned to the same location
444 * they must have the same interpolation
445 */
446 unsigned comp = 0;
447 while (comp < 4) {
448 /* Skip the components used by this output, we only care about
449 * other outputs in the same location
450 */
451 if (comp == i) {
452 comp = last_comp;
453 continue;
454 }
455
456 struct explicit_location_info *info =
457 &explicit_locations[location][comp];
458
459 if (info->var) {
460 if (info->interpolation != interpolation) {
461 linker_error(prog,
462 "%s shader has multiple outputs at explicit "
463 "location %u with different interpolation "
464 "settings\n",
465 _mesa_shader_stage_to_string(stage), location);
466 return false;
467 }
468
469 if (info->centroid != centroid ||
470 info->sample != sample ||
471 info->patch != patch) {
472 linker_error(prog,
473 "%s shader has multiple outputs at explicit "
474 "location %u with different aux storage\n",
475 _mesa_shader_stage_to_string(stage), location);
476 return false;
477 }
478 }
479
480 comp++;
481 }
482
483 /* Component aliasing is not allowed */
484 while (i < last_comp) {
485 if (explicit_locations[location][i].var != NULL) {
486 linker_error(prog,
487 "%s shader has multiple outputs explicitly "
488 "assigned to location %d and component %d\n",
489 _mesa_shader_stage_to_string(stage),
490 location, component);
491 return false;
492 }
493
494 /* Make sure all component at this location have the same type.
495 */
496 for (unsigned j = 0; j < 4; j++) {
497 if (explicit_locations[location][j].var &&
498 explicit_locations[location][j].base_type !=
499 type->without_array()->base_type) {
500 linker_error(prog,
501 "Varyings sharing the same location must "
502 "have the same underlying numerical type. "
503 "Location %u component %u\n", location, component);
504 return false;
505 }
506 }
507
508 explicit_locations[location][i].var = var;
509 explicit_locations[location][i].base_type =
510 type->without_array()->base_type;
511 explicit_locations[location][i].interpolation = interpolation;
512 explicit_locations[location][i].centroid = centroid;
513 explicit_locations[location][i].sample = sample;
514 explicit_locations[location][i].patch = patch;
515 i++;
516
517 /* We need to do some special handling for doubles as dvec3 and
518 * dvec4 consume two consecutive locations. We don't need to
519 * worry about components beginning at anything other than 0 as
520 * the spec does not allow this for dvec3 and dvec4.
521 */
522 if (i == 4 && last_comp > 4) {
523 last_comp = last_comp - 4;
524 /* Bump location index and reset the component index */
525 location++;
526 i = 0;
527 }
528 }
529
530 location++;
531 }
532
533 return true;
534 }
535
536 /**
537 * Validate that outputs from one stage match inputs of another
538 */
539 void
540 cross_validate_outputs_to_inputs(struct gl_context *ctx,
541 struct gl_shader_program *prog,
542 gl_linked_shader *producer,
543 gl_linked_shader *consumer)
544 {
545 glsl_symbol_table parameters;
546 struct explicit_location_info explicit_locations[MAX_VARYING][4] = { 0 };
547
548 /* Find all shader outputs in the "producer" stage.
549 */
550 foreach_in_list(ir_instruction, node, producer->ir) {
551 ir_variable *const var = node->as_variable();
552
553 if (var == NULL || var->data.mode != ir_var_shader_out)
554 continue;
555
556 if (!var->data.explicit_location
557 || var->data.location < VARYING_SLOT_VAR0)
558 parameters.add_variable(var);
559 else {
560 /* User-defined varyings with explicit locations are handled
561 * differently because they do not need to have matching names.
562 */
563 const glsl_type *type = get_varying_type(var, producer->Stage);
564 unsigned num_elements = type->count_attribute_slots(false);
565 unsigned idx = compute_variable_location_slot(var, producer->Stage);
566 unsigned slot_limit = idx + num_elements;
567
568 unsigned slot_max =
569 ctx->Const.Program[producer->Stage].MaxOutputComponents / 4;
570 if (slot_limit > slot_max) {
571 linker_error(prog,
572 "Invalid location %u in %s shader\n",
573 idx, _mesa_shader_stage_to_string(producer->Stage));
574 return;
575 }
576
577 if (type->without_array()->is_interface()) {
578 for (unsigned i = 0; i < type->without_array()->length; i++) {
579 glsl_struct_field *field = &type->fields.structure[i];
580 unsigned field_location = field->location -
581 (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
582 if (!check_location_aliasing(explicit_locations, var,
583 field_location,
584 0, field_location + 1,
585 field->type,
586 field->interpolation,
587 field->centroid,
588 field->sample,
589 field->patch,
590 prog, producer->Stage)) {
591 return;
592 }
593 }
594 } else if (!check_location_aliasing(explicit_locations, var,
595 idx, var->data.location_frac,
596 slot_limit, type,
597 var->data.interpolation,
598 var->data.centroid,
599 var->data.sample,
600 var->data.patch,
601 prog, producer->Stage)) {
602 return;
603 }
604 }
605 }
606
607
608 /* Find all shader inputs in the "consumer" stage. Any variables that have
609 * matching outputs already in the symbol table must have the same type and
610 * qualifiers.
611 *
612 * Exception: if the consumer is the geometry shader, then the inputs
613 * should be arrays and the type of the array element should match the type
614 * of the corresponding producer output.
615 */
616 foreach_in_list(ir_instruction, node, consumer->ir) {
617 ir_variable *const input = node->as_variable();
618
619 if (input == NULL || input->data.mode != ir_var_shader_in)
620 continue;
621
622 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
623 const ir_variable *const front_color =
624 parameters.get_variable("gl_FrontColor");
625
626 const ir_variable *const back_color =
627 parameters.get_variable("gl_BackColor");
628
629 cross_validate_front_and_back_color(prog, input,
630 front_color, back_color,
631 consumer->Stage, producer->Stage);
632 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
633 const ir_variable *const front_color =
634 parameters.get_variable("gl_FrontSecondaryColor");
635
636 const ir_variable *const back_color =
637 parameters.get_variable("gl_BackSecondaryColor");
638
639 cross_validate_front_and_back_color(prog, input,
640 front_color, back_color,
641 consumer->Stage, producer->Stage);
642 } else {
643 /* The rules for connecting inputs and outputs change in the presence
644 * of explicit locations. In this case, we no longer care about the
645 * names of the variables. Instead, we care only about the
646 * explicitly assigned location.
647 */
648 ir_variable *output = NULL;
649 if (input->data.explicit_location
650 && input->data.location >= VARYING_SLOT_VAR0) {
651
652 const glsl_type *type = get_varying_type(input, consumer->Stage);
653 unsigned num_elements = type->count_attribute_slots(false);
654 unsigned idx =
655 compute_variable_location_slot(input, consumer->Stage);
656 unsigned slot_limit = idx + num_elements;
657
658 while (idx < slot_limit) {
659 if (idx >= MAX_VARYING) {
660 linker_error(prog,
661 "Invalid location %u in %s shader\n", idx,
662 _mesa_shader_stage_to_string(consumer->Stage));
663 return;
664 }
665
666 output = explicit_locations[idx][input->data.location_frac].var;
667
668 if (output == NULL ||
669 input->data.location != output->data.location) {
670 linker_error(prog,
671 "%s shader input `%s' with explicit location "
672 "has no matching output\n",
673 _mesa_shader_stage_to_string(consumer->Stage),
674 input->name);
675 break;
676 }
677 idx++;
678 }
679 } else {
680 output = parameters.get_variable(input->name);
681 }
682
683 if (output != NULL) {
684 /* Interface blocks have their own validation elsewhere so don't
685 * try validating them here.
686 */
687 if (!(input->get_interface_type() &&
688 output->get_interface_type()))
689 cross_validate_types_and_qualifiers(prog, input, output,
690 consumer->Stage,
691 producer->Stage);
692 } else {
693 /* Check for input vars with unmatched output vars in prev stage
694 * taking into account that interface blocks could have a matching
695 * output but with different name, so we ignore them.
696 */
697 assert(!input->data.assigned);
698 if (input->data.used && !input->get_interface_type() &&
699 !input->data.explicit_location && !prog->SeparateShader)
700 linker_error(prog,
701 "%s shader input `%s' "
702 "has no matching output in the previous stage\n",
703 _mesa_shader_stage_to_string(consumer->Stage),
704 input->name);
705 }
706 }
707 }
708 }
709
710 /**
711 * Demote shader inputs and outputs that are not used in other stages, and
712 * remove them via dead code elimination.
713 */
714 static void
715 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
716 gl_linked_shader *sh,
717 enum ir_variable_mode mode)
718 {
719 if (is_separate_shader_object)
720 return;
721
722 foreach_in_list(ir_instruction, node, sh->ir) {
723 ir_variable *const var = node->as_variable();
724
725 if (var == NULL || var->data.mode != int(mode))
726 continue;
727
728 /* A shader 'in' or 'out' variable is only really an input or output if
729 * its value is used by other shader stages. This will cause the
730 * variable to have a location assigned.
731 */
732 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
733 assert(var->data.mode != ir_var_temporary);
734
735 /* Assign zeros to demoted inputs to allow more optimizations. */
736 if (var->data.mode == ir_var_shader_in && !var->constant_value)
737 var->constant_value = ir_constant::zero(var, var->type);
738
739 var->data.mode = ir_var_auto;
740 }
741 }
742
743 /* Eliminate code that is now dead due to unused inputs/outputs being
744 * demoted.
745 */
746 while (do_dead_code(sh->ir, false))
747 ;
748
749 }
750
751 /**
752 * Initialize this object based on a string that was passed to
753 * glTransformFeedbackVaryings.
754 *
755 * If the input is mal-formed, this call still succeeds, but it sets
756 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
757 * will fail to find any matching variable.
758 */
759 void
760 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
761 const char *input)
762 {
763 /* We don't have to be pedantic about what is a valid GLSL variable name,
764 * because any variable with an invalid name can't exist in the IR anyway.
765 */
766
767 this->location = -1;
768 this->orig_name = input;
769 this->lowered_builtin_array_variable = none;
770 this->skip_components = 0;
771 this->next_buffer_separator = false;
772 this->matched_candidate = NULL;
773 this->stream_id = 0;
774 this->buffer = 0;
775 this->offset = 0;
776
777 if (ctx->Extensions.ARB_transform_feedback3) {
778 /* Parse gl_NextBuffer. */
779 if (strcmp(input, "gl_NextBuffer") == 0) {
780 this->next_buffer_separator = true;
781 return;
782 }
783
784 /* Parse gl_SkipComponents. */
785 if (strcmp(input, "gl_SkipComponents1") == 0)
786 this->skip_components = 1;
787 else if (strcmp(input, "gl_SkipComponents2") == 0)
788 this->skip_components = 2;
789 else if (strcmp(input, "gl_SkipComponents3") == 0)
790 this->skip_components = 3;
791 else if (strcmp(input, "gl_SkipComponents4") == 0)
792 this->skip_components = 4;
793
794 if (this->skip_components)
795 return;
796 }
797
798 /* Parse a declaration. */
799 const char *base_name_end;
800 long subscript = parse_program_resource_name(input, &base_name_end);
801 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
802 if (this->var_name == NULL) {
803 _mesa_error_no_memory(__func__);
804 return;
805 }
806
807 if (subscript >= 0) {
808 this->array_subscript = subscript;
809 this->is_subscripted = true;
810 } else {
811 this->is_subscripted = false;
812 }
813
814 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
815 * class must behave specially to account for the fact that gl_ClipDistance
816 * is converted from a float[8] to a vec4[2].
817 */
818 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
819 strcmp(this->var_name, "gl_ClipDistance") == 0) {
820 this->lowered_builtin_array_variable = clip_distance;
821 }
822 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
823 strcmp(this->var_name, "gl_CullDistance") == 0) {
824 this->lowered_builtin_array_variable = cull_distance;
825 }
826
827 if (ctx->Const.LowerTessLevel &&
828 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
829 this->lowered_builtin_array_variable = tess_level_outer;
830 if (ctx->Const.LowerTessLevel &&
831 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
832 this->lowered_builtin_array_variable = tess_level_inner;
833 }
834
835
836 /**
837 * Determine whether two tfeedback_decl objects refer to the same variable and
838 * array index (if applicable).
839 */
840 bool
841 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
842 {
843 assert(x.is_varying() && y.is_varying());
844
845 if (strcmp(x.var_name, y.var_name) != 0)
846 return false;
847 if (x.is_subscripted != y.is_subscripted)
848 return false;
849 if (x.is_subscripted && x.array_subscript != y.array_subscript)
850 return false;
851 return true;
852 }
853
854
855 /**
856 * Assign a location and stream ID for this tfeedback_decl object based on the
857 * transform feedback candidate found by find_candidate.
858 *
859 * If an error occurs, the error is reported through linker_error() and false
860 * is returned.
861 */
862 bool
863 tfeedback_decl::assign_location(struct gl_context *ctx,
864 struct gl_shader_program *prog)
865 {
866 assert(this->is_varying());
867
868 unsigned fine_location
869 = this->matched_candidate->toplevel_var->data.location * 4
870 + this->matched_candidate->toplevel_var->data.location_frac
871 + this->matched_candidate->offset;
872 const unsigned dmul =
873 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
874
875 if (this->matched_candidate->type->is_array()) {
876 /* Array variable */
877 const unsigned matrix_cols =
878 this->matched_candidate->type->fields.array->matrix_columns;
879 const unsigned vector_elements =
880 this->matched_candidate->type->fields.array->vector_elements;
881 unsigned actual_array_size;
882 switch (this->lowered_builtin_array_variable) {
883 case clip_distance:
884 actual_array_size = prog->last_vert_prog ?
885 prog->last_vert_prog->info.clip_distance_array_size : 0;
886 break;
887 case cull_distance:
888 actual_array_size = prog->last_vert_prog ?
889 prog->last_vert_prog->info.cull_distance_array_size : 0;
890 break;
891 case tess_level_outer:
892 actual_array_size = 4;
893 break;
894 case tess_level_inner:
895 actual_array_size = 2;
896 break;
897 case none:
898 default:
899 actual_array_size = this->matched_candidate->type->array_size();
900 break;
901 }
902
903 if (this->is_subscripted) {
904 /* Check array bounds. */
905 if (this->array_subscript >= actual_array_size) {
906 linker_error(prog, "Transform feedback varying %s has index "
907 "%i, but the array size is %u.",
908 this->orig_name, this->array_subscript,
909 actual_array_size);
910 return false;
911 }
912 unsigned array_elem_size = this->lowered_builtin_array_variable ?
913 1 : vector_elements * matrix_cols * dmul;
914 fine_location += array_elem_size * this->array_subscript;
915 this->size = 1;
916 } else {
917 this->size = actual_array_size;
918 }
919 this->vector_elements = vector_elements;
920 this->matrix_columns = matrix_cols;
921 if (this->lowered_builtin_array_variable)
922 this->type = GL_FLOAT;
923 else
924 this->type = this->matched_candidate->type->fields.array->gl_type;
925 } else {
926 /* Regular variable (scalar, vector, or matrix) */
927 if (this->is_subscripted) {
928 linker_error(prog, "Transform feedback varying %s requested, "
929 "but %s is not an array.",
930 this->orig_name, this->var_name);
931 return false;
932 }
933 this->size = 1;
934 this->vector_elements = this->matched_candidate->type->vector_elements;
935 this->matrix_columns = this->matched_candidate->type->matrix_columns;
936 this->type = this->matched_candidate->type->gl_type;
937 }
938 this->location = fine_location / 4;
939 this->location_frac = fine_location % 4;
940
941 /* From GL_EXT_transform_feedback:
942 * A program will fail to link if:
943 *
944 * * the total number of components to capture in any varying
945 * variable in <varyings> is greater than the constant
946 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
947 * buffer mode is SEPARATE_ATTRIBS_EXT;
948 */
949 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
950 this->num_components() >
951 ctx->Const.MaxTransformFeedbackSeparateComponents) {
952 linker_error(prog, "Transform feedback varying %s exceeds "
953 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
954 this->orig_name);
955 return false;
956 }
957
958 /* Only transform feedback varyings can be assigned to non-zero streams,
959 * so assign the stream id here.
960 */
961 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
962
963 unsigned array_offset = this->array_subscript * 4 * dmul;
964 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
965 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
966 this->offset = this->matched_candidate->toplevel_var->data.offset +
967 array_offset + struct_offset;
968
969 return true;
970 }
971
972
973 unsigned
974 tfeedback_decl::get_num_outputs() const
975 {
976 if (!this->is_varying()) {
977 return 0;
978 }
979 return (this->num_components() + this->location_frac + 3)/4;
980 }
981
982
983 /**
984 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
985 *
986 * If an error occurs, the error is reported through linker_error() and false
987 * is returned.
988 */
989 bool
990 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
991 struct gl_transform_feedback_info *info,
992 unsigned buffer, unsigned buffer_index,
993 const unsigned max_outputs, bool *explicit_stride,
994 bool has_xfb_qualifiers) const
995 {
996 unsigned xfb_offset = 0;
997 unsigned size = this->size;
998 /* Handle gl_SkipComponents. */
999 if (this->skip_components) {
1000 info->Buffers[buffer].Stride += this->skip_components;
1001 size = this->skip_components;
1002 goto store_varying;
1003 }
1004
1005 if (this->next_buffer_separator) {
1006 size = 0;
1007 goto store_varying;
1008 }
1009
1010 if (has_xfb_qualifiers) {
1011 xfb_offset = this->offset / 4;
1012 } else {
1013 xfb_offset = info->Buffers[buffer].Stride;
1014 }
1015 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
1016
1017 {
1018 unsigned location = this->location;
1019 unsigned location_frac = this->location_frac;
1020 unsigned num_components = this->num_components();
1021 while (num_components > 0) {
1022 unsigned output_size = MIN2(num_components, 4 - location_frac);
1023 assert((info->NumOutputs == 0 && max_outputs == 0) ||
1024 info->NumOutputs < max_outputs);
1025
1026 /* From the ARB_enhanced_layouts spec:
1027 *
1028 * "If such a block member or variable is not written during a shader
1029 * invocation, the buffer contents at the assigned offset will be
1030 * undefined. Even if there are no static writes to a variable or
1031 * member that is assigned a transform feedback offset, the space is
1032 * still allocated in the buffer and still affects the stride."
1033 */
1034 if (this->is_varying_written()) {
1035 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
1036 info->Outputs[info->NumOutputs].OutputRegister = location;
1037 info->Outputs[info->NumOutputs].NumComponents = output_size;
1038 info->Outputs[info->NumOutputs].StreamId = stream_id;
1039 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1040 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
1041 ++info->NumOutputs;
1042 }
1043 info->Buffers[buffer].Stream = this->stream_id;
1044 xfb_offset += output_size;
1045
1046 num_components -= output_size;
1047 location++;
1048 location_frac = 0;
1049 }
1050 }
1051
1052 if (explicit_stride && explicit_stride[buffer]) {
1053 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
1054 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1055 "multiple of 8 as its applied to a type that is or "
1056 "contains a double.",
1057 info->Buffers[buffer].Stride * 4);
1058 return false;
1059 }
1060
1061 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
1062 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
1063 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
1064 "buffer (%d)", xfb_offset * 4,
1065 info->Buffers[buffer].Stride * 4, buffer);
1066 return false;
1067 }
1068 } else {
1069 info->Buffers[buffer].Stride = xfb_offset;
1070 }
1071
1072 /* From GL_EXT_transform_feedback:
1073 * A program will fail to link if:
1074 *
1075 * * the total number of components to capture is greater than
1076 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1077 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1078 *
1079 * From GL_ARB_enhanced_layouts:
1080 *
1081 * "The resulting stride (implicit or explicit) must be less than or
1082 * equal to the implementation-dependent constant
1083 * gl_MaxTransformFeedbackInterleavedComponents."
1084 */
1085 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
1086 has_xfb_qualifiers) &&
1087 info->Buffers[buffer].Stride >
1088 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1089 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1090 "limit has been exceeded.");
1091 return false;
1092 }
1093
1094 store_varying:
1095 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
1096 this->orig_name);
1097 info->Varyings[info->NumVarying].Type = this->type;
1098 info->Varyings[info->NumVarying].Size = size;
1099 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
1100 info->NumVarying++;
1101 info->Buffers[buffer].NumVaryings++;
1102
1103 return true;
1104 }
1105
1106
1107 const tfeedback_candidate *
1108 tfeedback_decl::find_candidate(gl_shader_program *prog,
1109 hash_table *tfeedback_candidates)
1110 {
1111 const char *name = this->var_name;
1112 switch (this->lowered_builtin_array_variable) {
1113 case none:
1114 name = this->var_name;
1115 break;
1116 case clip_distance:
1117 name = "gl_ClipDistanceMESA";
1118 break;
1119 case cull_distance:
1120 name = "gl_CullDistanceMESA";
1121 break;
1122 case tess_level_outer:
1123 name = "gl_TessLevelOuterMESA";
1124 break;
1125 case tess_level_inner:
1126 name = "gl_TessLevelInnerMESA";
1127 break;
1128 }
1129 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
1130
1131 this->matched_candidate = entry ?
1132 (const tfeedback_candidate *) entry->data : NULL;
1133
1134 if (!this->matched_candidate) {
1135 /* From GL_EXT_transform_feedback:
1136 * A program will fail to link if:
1137 *
1138 * * any variable name specified in the <varyings> array is not
1139 * declared as an output in the geometry shader (if present) or
1140 * the vertex shader (if no geometry shader is present);
1141 */
1142 linker_error(prog, "Transform feedback varying %s undeclared.",
1143 this->orig_name);
1144 }
1145
1146 return this->matched_candidate;
1147 }
1148
1149
1150 /**
1151 * Parse all the transform feedback declarations that were passed to
1152 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1153 *
1154 * If an error occurs, the error is reported through linker_error() and false
1155 * is returned.
1156 */
1157 static bool
1158 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1159 const void *mem_ctx, unsigned num_names,
1160 char **varying_names, tfeedback_decl *decls)
1161 {
1162 for (unsigned i = 0; i < num_names; ++i) {
1163 decls[i].init(ctx, mem_ctx, varying_names[i]);
1164
1165 if (!decls[i].is_varying())
1166 continue;
1167
1168 /* From GL_EXT_transform_feedback:
1169 * A program will fail to link if:
1170 *
1171 * * any two entries in the <varyings> array specify the same varying
1172 * variable;
1173 *
1174 * We interpret this to mean "any two entries in the <varyings> array
1175 * specify the same varying variable and array index", since transform
1176 * feedback of arrays would be useless otherwise.
1177 */
1178 for (unsigned j = 0; j < i; ++j) {
1179 if (!decls[j].is_varying())
1180 continue;
1181
1182 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1183 linker_error(prog, "Transform feedback varying %s specified "
1184 "more than once.", varying_names[i]);
1185 return false;
1186 }
1187 }
1188 }
1189 return true;
1190 }
1191
1192
1193 static int
1194 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1195 {
1196 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1197 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1198
1199 if (x->get_buffer() != y->get_buffer())
1200 return x->get_buffer() - y->get_buffer();
1201 return x->get_offset() - y->get_offset();
1202 }
1203
1204 /**
1205 * Store transform feedback location assignments into
1206 * prog->sh.LinkedTransformFeedback based on the data stored in
1207 * tfeedback_decls.
1208 *
1209 * If an error occurs, the error is reported through linker_error() and false
1210 * is returned.
1211 */
1212 static bool
1213 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1214 unsigned num_tfeedback_decls,
1215 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1216 {
1217 if (!prog->last_vert_prog)
1218 return true;
1219
1220 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1221 * tracking the number of buffers doesn't overflow.
1222 */
1223 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1224
1225 bool separate_attribs_mode =
1226 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1227
1228 struct gl_program *xfb_prog = prog->last_vert_prog;
1229 xfb_prog->sh.LinkedTransformFeedback =
1230 rzalloc(xfb_prog, struct gl_transform_feedback_info);
1231
1232 /* The xfb_offset qualifier does not have to be used in increasing order
1233 * however some drivers expect to receive the list of transform feedback
1234 * declarations in order so sort it now for convenience.
1235 */
1236 if (has_xfb_qualifiers)
1237 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1238 cmp_xfb_offset);
1239
1240 xfb_prog->sh.LinkedTransformFeedback->Varyings =
1241 rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
1242 num_tfeedback_decls);
1243
1244 unsigned num_outputs = 0;
1245 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1246 if (tfeedback_decls[i].is_varying_written())
1247 num_outputs += tfeedback_decls[i].get_num_outputs();
1248 }
1249
1250 xfb_prog->sh.LinkedTransformFeedback->Outputs =
1251 rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
1252 num_outputs);
1253
1254 unsigned num_buffers = 0;
1255 unsigned buffers = 0;
1256
1257 if (!has_xfb_qualifiers && separate_attribs_mode) {
1258 /* GL_SEPARATE_ATTRIBS */
1259 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1260 if (!tfeedback_decls[i].store(ctx, prog,
1261 xfb_prog->sh.LinkedTransformFeedback,
1262 num_buffers, num_buffers, num_outputs,
1263 NULL, has_xfb_qualifiers))
1264 return false;
1265
1266 buffers |= 1 << num_buffers;
1267 num_buffers++;
1268 }
1269 }
1270 else {
1271 /* GL_INVERLEAVED_ATTRIBS */
1272 int buffer_stream_id = -1;
1273 unsigned buffer =
1274 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1275 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1276
1277 /* Apply any xfb_stride global qualifiers */
1278 if (has_xfb_qualifiers) {
1279 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1280 if (prog->TransformFeedback.BufferStride[j]) {
1281 buffers |= 1 << j;
1282 explicit_stride[j] = true;
1283 xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
1284 prog->TransformFeedback.BufferStride[j] / 4;
1285 }
1286 }
1287 }
1288
1289 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1290 if (has_xfb_qualifiers &&
1291 buffer != tfeedback_decls[i].get_buffer()) {
1292 /* we have moved to the next buffer so reset stream id */
1293 buffer_stream_id = -1;
1294 num_buffers++;
1295 }
1296
1297 if (tfeedback_decls[i].is_next_buffer_separator()) {
1298 if (!tfeedback_decls[i].store(ctx, prog,
1299 xfb_prog->sh.LinkedTransformFeedback,
1300 buffer, num_buffers, num_outputs,
1301 explicit_stride, has_xfb_qualifiers))
1302 return false;
1303 num_buffers++;
1304 buffer_stream_id = -1;
1305 continue;
1306 } else if (tfeedback_decls[i].is_varying()) {
1307 if (buffer_stream_id == -1) {
1308 /* First varying writing to this buffer: remember its stream */
1309 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1310 } else if (buffer_stream_id !=
1311 (int) tfeedback_decls[i].get_stream_id()) {
1312 /* Varying writes to the same buffer from a different stream */
1313 linker_error(prog,
1314 "Transform feedback can't capture varyings belonging "
1315 "to different vertex streams in a single buffer. "
1316 "Varying %s writes to buffer from stream %u, other "
1317 "varyings in the same buffer write from stream %u.",
1318 tfeedback_decls[i].name(),
1319 tfeedback_decls[i].get_stream_id(),
1320 buffer_stream_id);
1321 return false;
1322 }
1323 }
1324
1325 if (has_xfb_qualifiers) {
1326 buffer = tfeedback_decls[i].get_buffer();
1327 } else {
1328 buffer = num_buffers;
1329 }
1330 buffers |= 1 << buffer;
1331
1332 if (!tfeedback_decls[i].store(ctx, prog,
1333 xfb_prog->sh.LinkedTransformFeedback,
1334 buffer, num_buffers, num_outputs,
1335 explicit_stride, has_xfb_qualifiers))
1336 return false;
1337 }
1338 }
1339
1340 assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
1341
1342 xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
1343 return true;
1344 }
1345
1346 namespace {
1347
1348 /**
1349 * Data structure recording the relationship between outputs of one shader
1350 * stage (the "producer") and inputs of another (the "consumer").
1351 */
1352 class varying_matches
1353 {
1354 public:
1355 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1356 bool enhanced_layouts_enabled,
1357 gl_shader_stage producer_stage,
1358 gl_shader_stage consumer_stage);
1359 ~varying_matches();
1360 void record(ir_variable *producer_var, ir_variable *consumer_var);
1361 unsigned assign_locations(struct gl_shader_program *prog,
1362 uint8_t *components,
1363 uint64_t reserved_slots);
1364 void store_locations() const;
1365
1366 private:
1367 bool is_varying_packing_safe(const glsl_type *type,
1368 const ir_variable *var);
1369
1370 /**
1371 * If true, this driver disables varying packing, so all varyings need to
1372 * be aligned on slot boundaries, and take up a number of slots equal to
1373 * their number of matrix columns times their array size.
1374 *
1375 * Packing may also be disabled because our current packing method is not
1376 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1377 * guaranteed to match across stages.
1378 */
1379 const bool disable_varying_packing;
1380
1381 /**
1382 * If true, this driver has transform feedback enabled. The transform
1383 * feedback code requires at least some packing be done even when varying
1384 * packing is disabled, fortunately where transform feedback requires
1385 * packing it's safe to override the disabled setting. See
1386 * is_varying_packing_safe().
1387 */
1388 const bool xfb_enabled;
1389
1390 const bool enhanced_layouts_enabled;
1391
1392 /**
1393 * Enum representing the order in which varyings are packed within a
1394 * packing class.
1395 *
1396 * Currently we pack vec4's first, then vec2's, then scalar values, then
1397 * vec3's. This order ensures that the only vectors that are at risk of
1398 * having to be "double parked" (split between two adjacent varying slots)
1399 * are the vec3's.
1400 */
1401 enum packing_order_enum {
1402 PACKING_ORDER_VEC4,
1403 PACKING_ORDER_VEC2,
1404 PACKING_ORDER_SCALAR,
1405 PACKING_ORDER_VEC3,
1406 };
1407
1408 static unsigned compute_packing_class(const ir_variable *var);
1409 static packing_order_enum compute_packing_order(const ir_variable *var);
1410 static int match_comparator(const void *x_generic, const void *y_generic);
1411 static int xfb_comparator(const void *x_generic, const void *y_generic);
1412
1413 /**
1414 * Structure recording the relationship between a single producer output
1415 * and a single consumer input.
1416 */
1417 struct match {
1418 /**
1419 * Packing class for this varying, computed by compute_packing_class().
1420 */
1421 unsigned packing_class;
1422
1423 /**
1424 * Packing order for this varying, computed by compute_packing_order().
1425 */
1426 packing_order_enum packing_order;
1427 unsigned num_components;
1428
1429 /**
1430 * The output variable in the producer stage.
1431 */
1432 ir_variable *producer_var;
1433
1434 /**
1435 * The input variable in the consumer stage.
1436 */
1437 ir_variable *consumer_var;
1438
1439 /**
1440 * The location which has been assigned for this varying. This is
1441 * expressed in multiples of a float, with the first generic varying
1442 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1443 * value 0.
1444 */
1445 unsigned generic_location;
1446 } *matches;
1447
1448 /**
1449 * The number of elements in the \c matches array that are currently in
1450 * use.
1451 */
1452 unsigned num_matches;
1453
1454 /**
1455 * The number of elements that were set aside for the \c matches array when
1456 * it was allocated.
1457 */
1458 unsigned matches_capacity;
1459
1460 gl_shader_stage producer_stage;
1461 gl_shader_stage consumer_stage;
1462 };
1463
1464 } /* anonymous namespace */
1465
1466 varying_matches::varying_matches(bool disable_varying_packing,
1467 bool xfb_enabled,
1468 bool enhanced_layouts_enabled,
1469 gl_shader_stage producer_stage,
1470 gl_shader_stage consumer_stage)
1471 : disable_varying_packing(disable_varying_packing),
1472 xfb_enabled(xfb_enabled),
1473 enhanced_layouts_enabled(enhanced_layouts_enabled),
1474 producer_stage(producer_stage),
1475 consumer_stage(consumer_stage)
1476 {
1477 /* Note: this initial capacity is rather arbitrarily chosen to be large
1478 * enough for many cases without wasting an unreasonable amount of space.
1479 * varying_matches::record() will resize the array if there are more than
1480 * this number of varyings.
1481 */
1482 this->matches_capacity = 8;
1483 this->matches = (match *)
1484 malloc(sizeof(*this->matches) * this->matches_capacity);
1485 this->num_matches = 0;
1486 }
1487
1488
1489 varying_matches::~varying_matches()
1490 {
1491 free(this->matches);
1492 }
1493
1494
1495 /**
1496 * Packing is always safe on individual arrays, structures, and matrices. It
1497 * is also safe if the varying is only used for transform feedback.
1498 */
1499 bool
1500 varying_matches::is_varying_packing_safe(const glsl_type *type,
1501 const ir_variable *var)
1502 {
1503 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1504 consumer_stage == MESA_SHADER_TESS_CTRL ||
1505 producer_stage == MESA_SHADER_TESS_CTRL)
1506 return false;
1507
1508 return xfb_enabled && (type->is_array() || type->is_record() ||
1509 type->is_matrix() || var->data.is_xfb_only);
1510 }
1511
1512
1513 /**
1514 * Record the given producer/consumer variable pair in the list of variables
1515 * that should later be assigned locations.
1516 *
1517 * It is permissible for \c consumer_var to be NULL (this happens if a
1518 * variable is output by the producer and consumed by transform feedback, but
1519 * not consumed by the consumer).
1520 *
1521 * If \c producer_var has already been paired up with a consumer_var, or
1522 * producer_var is part of fixed pipeline functionality (and hence already has
1523 * a location assigned), this function has no effect.
1524 *
1525 * Note: as a side effect this function may change the interpolation type of
1526 * \c producer_var, but only when the change couldn't possibly affect
1527 * rendering.
1528 */
1529 void
1530 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1531 {
1532 assert(producer_var != NULL || consumer_var != NULL);
1533
1534 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1535 producer_var->data.explicit_location)) ||
1536 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1537 consumer_var->data.explicit_location))) {
1538 /* Either a location already exists for this variable (since it is part
1539 * of fixed functionality), or it has already been recorded as part of a
1540 * previous match.
1541 */
1542 return;
1543 }
1544
1545 bool needs_flat_qualifier = consumer_var == NULL &&
1546 (producer_var->type->contains_integer() ||
1547 producer_var->type->contains_double());
1548
1549 if (!disable_varying_packing &&
1550 (needs_flat_qualifier ||
1551 (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) {
1552 /* Since this varying is not being consumed by the fragment shader, its
1553 * interpolation type varying cannot possibly affect rendering.
1554 * Also, this variable is non-flat and is (or contains) an integer
1555 * or a double.
1556 * If the consumer stage is unknown, don't modify the interpolation
1557 * type as it could affect rendering later with separate shaders.
1558 *
1559 * lower_packed_varyings requires all integer varyings to flat,
1560 * regardless of where they appear. We can trivially satisfy that
1561 * requirement by changing the interpolation type to flat here.
1562 */
1563 if (producer_var) {
1564 producer_var->data.centroid = false;
1565 producer_var->data.sample = false;
1566 producer_var->data.interpolation = INTERP_MODE_FLAT;
1567 }
1568
1569 if (consumer_var) {
1570 consumer_var->data.centroid = false;
1571 consumer_var->data.sample = false;
1572 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1573 }
1574 }
1575
1576 if (this->num_matches == this->matches_capacity) {
1577 this->matches_capacity *= 2;
1578 this->matches = (match *)
1579 realloc(this->matches,
1580 sizeof(*this->matches) * this->matches_capacity);
1581 }
1582
1583 /* We must use the consumer to compute the packing class because in GL4.4+
1584 * there is no guarantee interpolation qualifiers will match across stages.
1585 *
1586 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1587 *
1588 * "The type and presence of interpolation qualifiers of variables with
1589 * the same name declared in all linked shaders for the same cross-stage
1590 * interface must match, otherwise the link command will fail.
1591 *
1592 * When comparing an output from one stage to an input of a subsequent
1593 * stage, the input and output don't match if their interpolation
1594 * qualifiers (or lack thereof) are not the same."
1595 *
1596 * This text was also in at least revison 7 of the 4.40 spec but is no
1597 * longer in revision 9 and not in the 4.50 spec.
1598 */
1599 const ir_variable *const var = (consumer_var != NULL)
1600 ? consumer_var : producer_var;
1601 const gl_shader_stage stage = (consumer_var != NULL)
1602 ? consumer_stage : producer_stage;
1603 const glsl_type *type = get_varying_type(var, stage);
1604
1605 if (producer_var && consumer_var &&
1606 consumer_var->data.must_be_shader_input) {
1607 producer_var->data.must_be_shader_input = 1;
1608 }
1609
1610 this->matches[this->num_matches].packing_class
1611 = this->compute_packing_class(var);
1612 this->matches[this->num_matches].packing_order
1613 = this->compute_packing_order(var);
1614 if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) ||
1615 var->data.must_be_shader_input) {
1616 unsigned slots = type->count_attribute_slots(false);
1617 this->matches[this->num_matches].num_components = slots * 4;
1618 } else {
1619 this->matches[this->num_matches].num_components
1620 = type->component_slots();
1621 }
1622
1623 this->matches[this->num_matches].producer_var = producer_var;
1624 this->matches[this->num_matches].consumer_var = consumer_var;
1625 this->num_matches++;
1626 if (producer_var)
1627 producer_var->data.is_unmatched_generic_inout = 0;
1628 if (consumer_var)
1629 consumer_var->data.is_unmatched_generic_inout = 0;
1630 }
1631
1632
1633 /**
1634 * Choose locations for all of the variable matches that were previously
1635 * passed to varying_matches::record().
1636 */
1637 unsigned
1638 varying_matches::assign_locations(struct gl_shader_program *prog,
1639 uint8_t *components,
1640 uint64_t reserved_slots)
1641 {
1642 /* If packing has been disabled then we cannot safely sort the varyings by
1643 * class as it may mean we are using a version of OpenGL where
1644 * interpolation qualifiers are not guaranteed to be matching across
1645 * shaders, sorting in this case could result in mismatching shader
1646 * interfaces.
1647 * When packing is disabled the sort orders varyings used by transform
1648 * feedback first, but also depends on *undefined behaviour* of qsort to
1649 * reverse the order of the varyings. See: xfb_comparator().
1650 */
1651 if (!this->disable_varying_packing) {
1652 /* Sort varying matches into an order that makes them easy to pack. */
1653 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1654 &varying_matches::match_comparator);
1655 } else {
1656 /* Only sort varyings that are only used by transform feedback. */
1657 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1658 &varying_matches::xfb_comparator);
1659 }
1660
1661 unsigned generic_location = 0;
1662 unsigned generic_patch_location = MAX_VARYING*4;
1663 bool previous_var_xfb_only = false;
1664
1665 for (unsigned i = 0; i < this->num_matches; i++) {
1666 unsigned *location = &generic_location;
1667
1668 const ir_variable *var;
1669 const glsl_type *type;
1670 bool is_vertex_input = false;
1671 if (matches[i].consumer_var) {
1672 var = matches[i].consumer_var;
1673 type = get_varying_type(var, consumer_stage);
1674 if (consumer_stage == MESA_SHADER_VERTEX)
1675 is_vertex_input = true;
1676 } else {
1677 var = matches[i].producer_var;
1678 type = get_varying_type(var, producer_stage);
1679 }
1680
1681 if (var->data.patch)
1682 location = &generic_patch_location;
1683
1684 /* Advance to the next slot if this varying has a different packing
1685 * class than the previous one, and we're not already on a slot
1686 * boundary.
1687 *
1688 * Also advance to the next slot if packing is disabled. This makes sure
1689 * we don't assign varyings the same locations which is possible
1690 * because we still pack individual arrays, records and matrices even
1691 * when packing is disabled. Note we don't advance to the next slot if
1692 * we can pack varyings together that are only used for transform
1693 * feedback.
1694 */
1695 if (var->data.must_be_shader_input ||
1696 (this->disable_varying_packing &&
1697 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1698 (i > 0 && this->matches[i - 1].packing_class
1699 != this->matches[i].packing_class )) {
1700 *location = ALIGN(*location, 4);
1701 }
1702
1703 previous_var_xfb_only = var->data.is_xfb_only;
1704
1705 /* The number of components taken up by this variable. For vertex shader
1706 * inputs, we use the number of slots * 4, as they have different
1707 * counting rules.
1708 */
1709 unsigned num_components = is_vertex_input ?
1710 type->count_attribute_slots(is_vertex_input) * 4 :
1711 this->matches[i].num_components;
1712
1713 /* The last slot for this variable, inclusive. */
1714 unsigned slot_end = *location + num_components - 1;
1715
1716 /* FIXME: We could be smarter in the below code and loop back over
1717 * trying to fill any locations that we skipped because we couldn't pack
1718 * the varying between an explicit location. For now just let the user
1719 * hit the linking error if we run out of room and suggest they use
1720 * explicit locations.
1721 */
1722 while (slot_end < MAX_VARYING * 4u) {
1723 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
1724 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
1725
1726 assert(slots > 0);
1727 if (reserved_slots & slot_mask) {
1728 *location = ALIGN(*location + 1, 4);
1729 slot_end = *location + num_components - 1;
1730 continue;
1731 }
1732
1733 break;
1734 }
1735
1736 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
1737 linker_error(prog, "insufficient contiguous locations available for "
1738 "%s it is possible an array or struct could not be "
1739 "packed between varyings with explicit locations. Try "
1740 "using an explicit location for arrays and structs.",
1741 var->name);
1742 }
1743
1744 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
1745 for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
1746 components[j] = 4;
1747 components[slot_end / 4u] = (slot_end & 3) + 1;
1748 }
1749
1750 this->matches[i].generic_location = *location;
1751
1752 *location = slot_end + 1;
1753 }
1754
1755 return (generic_location + 3) / 4;
1756 }
1757
1758
1759 /**
1760 * Update the producer and consumer shaders to reflect the locations
1761 * assignments that were made by varying_matches::assign_locations().
1762 */
1763 void
1764 varying_matches::store_locations() const
1765 {
1766 /* Check is location needs to be packed with lower_packed_varyings() or if
1767 * we can just use ARB_enhanced_layouts packing.
1768 */
1769 bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 };
1770 const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
1771
1772 for (unsigned i = 0; i < this->num_matches; i++) {
1773 ir_variable *producer_var = this->matches[i].producer_var;
1774 ir_variable *consumer_var = this->matches[i].consumer_var;
1775 unsigned generic_location = this->matches[i].generic_location;
1776 unsigned slot = generic_location / 4;
1777 unsigned offset = generic_location % 4;
1778
1779 if (producer_var) {
1780 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1781 producer_var->data.location_frac = offset;
1782 }
1783
1784 if (consumer_var) {
1785 assert(consumer_var->data.location == -1);
1786 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1787 consumer_var->data.location_frac = offset;
1788 }
1789
1790 /* Find locations suitable for native packing via
1791 * ARB_enhanced_layouts.
1792 */
1793 if (producer_var && consumer_var) {
1794 if (enhanced_layouts_enabled) {
1795 const glsl_type *type =
1796 get_varying_type(producer_var, producer_stage);
1797 if (type->is_array() || type->is_matrix() || type->is_record() ||
1798 type->is_double()) {
1799 unsigned comp_slots = type->component_slots() + offset;
1800 unsigned slots = comp_slots / 4;
1801 if (comp_slots % 4)
1802 slots += 1;
1803
1804 for (unsigned j = 0; j < slots; j++) {
1805 pack_loc[slot + j] = true;
1806 }
1807 } else if (offset + type->vector_elements > 4) {
1808 pack_loc[slot] = true;
1809 pack_loc[slot + 1] = true;
1810 } else {
1811 loc_type[slot][offset] = type;
1812 }
1813 }
1814 }
1815 }
1816
1817 /* Attempt to use ARB_enhanced_layouts for more efficient packing if
1818 * suitable.
1819 */
1820 if (enhanced_layouts_enabled) {
1821 for (unsigned i = 0; i < this->num_matches; i++) {
1822 ir_variable *producer_var = this->matches[i].producer_var;
1823 ir_variable *consumer_var = this->matches[i].consumer_var;
1824 unsigned generic_location = this->matches[i].generic_location;
1825 unsigned slot = generic_location / 4;
1826
1827 if (pack_loc[slot] || !producer_var || !consumer_var)
1828 continue;
1829
1830 const glsl_type *type =
1831 get_varying_type(producer_var, producer_stage);
1832 bool type_match = true;
1833 for (unsigned j = 0; j < 4; j++) {
1834 if (loc_type[slot][j]) {
1835 if (type->base_type != loc_type[slot][j]->base_type)
1836 type_match = false;
1837 }
1838 }
1839
1840 if (type_match) {
1841 producer_var->data.explicit_location = 1;
1842 consumer_var->data.explicit_location = 1;
1843 producer_var->data.explicit_component = 1;
1844 consumer_var->data.explicit_component = 1;
1845 }
1846 }
1847 }
1848 }
1849
1850
1851 /**
1852 * Compute the "packing class" of the given varying. This is an unsigned
1853 * integer with the property that two variables in the same packing class can
1854 * be safely backed into the same vec4.
1855 */
1856 unsigned
1857 varying_matches::compute_packing_class(const ir_variable *var)
1858 {
1859 /* Without help from the back-end, there is no way to pack together
1860 * variables with different interpolation types, because
1861 * lower_packed_varyings must choose exactly one interpolation type for
1862 * each packed varying it creates.
1863 *
1864 * However, we can safely pack together floats, ints, and uints, because:
1865 *
1866 * - varyings of base type "int" and "uint" must use the "flat"
1867 * interpolation type, which can only occur in GLSL 1.30 and above.
1868 *
1869 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1870 * can store flat floats as ints without losing any information (using
1871 * the ir_unop_bitcast_* opcodes).
1872 *
1873 * Therefore, the packing class depends only on the interpolation type.
1874 */
1875 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1876 (var->data.patch << 2) |
1877 (var->data.must_be_shader_input << 3);
1878 packing_class *= 8;
1879 packing_class += var->is_interpolation_flat()
1880 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
1881 return packing_class;
1882 }
1883
1884
1885 /**
1886 * Compute the "packing order" of the given varying. This is a sort key we
1887 * use to determine when to attempt to pack the given varying relative to
1888 * other varyings in the same packing class.
1889 */
1890 varying_matches::packing_order_enum
1891 varying_matches::compute_packing_order(const ir_variable *var)
1892 {
1893 const glsl_type *element_type = var->type;
1894
1895 while (element_type->is_array()) {
1896 element_type = element_type->fields.array;
1897 }
1898
1899 switch (element_type->component_slots() % 4) {
1900 case 1: return PACKING_ORDER_SCALAR;
1901 case 2: return PACKING_ORDER_VEC2;
1902 case 3: return PACKING_ORDER_VEC3;
1903 case 0: return PACKING_ORDER_VEC4;
1904 default:
1905 assert(!"Unexpected value of vector_elements");
1906 return PACKING_ORDER_VEC4;
1907 }
1908 }
1909
1910
1911 /**
1912 * Comparison function passed to qsort() to sort varyings by packing_class and
1913 * then by packing_order.
1914 */
1915 int
1916 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1917 {
1918 const match *x = (const match *) x_generic;
1919 const match *y = (const match *) y_generic;
1920
1921 if (x->packing_class != y->packing_class)
1922 return x->packing_class - y->packing_class;
1923 return x->packing_order - y->packing_order;
1924 }
1925
1926
1927 /**
1928 * Comparison function passed to qsort() to sort varyings used only by
1929 * transform feedback when packing of other varyings is disabled.
1930 */
1931 int
1932 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1933 {
1934 const match *x = (const match *) x_generic;
1935
1936 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1937 return match_comparator(x_generic, y_generic);
1938
1939 /* FIXME: When the comparator returns 0 it means the elements being
1940 * compared are equivalent. However the qsort documentation says:
1941 *
1942 * "The order of equivalent elements is undefined."
1943 *
1944 * In practice the sort ends up reversing the order of the varyings which
1945 * means locations are also assigned in this reversed order and happens to
1946 * be what we want. This is also whats happening in
1947 * varying_matches::match_comparator().
1948 */
1949 return 0;
1950 }
1951
1952
1953 /**
1954 * Is the given variable a varying variable to be counted against the
1955 * limit in ctx->Const.MaxVarying?
1956 * This includes variables such as texcoords, colors and generic
1957 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1958 */
1959 static bool
1960 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1961 {
1962 /* Only fragment shaders will take a varying variable as an input */
1963 if (stage == MESA_SHADER_FRAGMENT &&
1964 var->data.mode == ir_var_shader_in) {
1965 switch (var->data.location) {
1966 case VARYING_SLOT_POS:
1967 case VARYING_SLOT_FACE:
1968 case VARYING_SLOT_PNTC:
1969 return false;
1970 default:
1971 return true;
1972 }
1973 }
1974 return false;
1975 }
1976
1977
1978 /**
1979 * Visitor class that generates tfeedback_candidate structs describing all
1980 * possible targets of transform feedback.
1981 *
1982 * tfeedback_candidate structs are stored in the hash table
1983 * tfeedback_candidates, which is passed to the constructor. This hash table
1984 * maps varying names to instances of the tfeedback_candidate struct.
1985 */
1986 class tfeedback_candidate_generator : public program_resource_visitor
1987 {
1988 public:
1989 tfeedback_candidate_generator(void *mem_ctx,
1990 hash_table *tfeedback_candidates)
1991 : mem_ctx(mem_ctx),
1992 tfeedback_candidates(tfeedback_candidates),
1993 toplevel_var(NULL),
1994 varying_floats(0)
1995 {
1996 }
1997
1998 void process(ir_variable *var)
1999 {
2000 /* All named varying interface blocks should be flattened by now */
2001 assert(!var->is_interface_instance());
2002
2003 this->toplevel_var = var;
2004 this->varying_floats = 0;
2005 program_resource_visitor::process(var, false);
2006 }
2007
2008 private:
2009 virtual void visit_field(const glsl_type *type, const char *name,
2010 bool /* row_major */,
2011 const glsl_type * /* record_type */,
2012 const enum glsl_interface_packing,
2013 bool /* last_field */)
2014 {
2015 assert(!type->without_array()->is_record());
2016 assert(!type->without_array()->is_interface());
2017
2018 tfeedback_candidate *candidate
2019 = rzalloc(this->mem_ctx, tfeedback_candidate);
2020 candidate->toplevel_var = this->toplevel_var;
2021 candidate->type = type;
2022 candidate->offset = this->varying_floats;
2023 _mesa_hash_table_insert(this->tfeedback_candidates,
2024 ralloc_strdup(this->mem_ctx, name),
2025 candidate);
2026 this->varying_floats += type->component_slots();
2027 }
2028
2029 /**
2030 * Memory context used to allocate hash table keys and values.
2031 */
2032 void * const mem_ctx;
2033
2034 /**
2035 * Hash table in which tfeedback_candidate objects should be stored.
2036 */
2037 hash_table * const tfeedback_candidates;
2038
2039 /**
2040 * Pointer to the toplevel variable that is being traversed.
2041 */
2042 ir_variable *toplevel_var;
2043
2044 /**
2045 * Total number of varying floats that have been visited so far. This is
2046 * used to determine the offset to each varying within the toplevel
2047 * variable.
2048 */
2049 unsigned varying_floats;
2050 };
2051
2052
2053 namespace linker {
2054
2055 void
2056 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
2057 hash_table *consumer_inputs,
2058 hash_table *consumer_interface_inputs,
2059 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2060 {
2061 memset(consumer_inputs_with_locations,
2062 0,
2063 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
2064
2065 foreach_in_list(ir_instruction, node, ir) {
2066 ir_variable *const input_var = node->as_variable();
2067
2068 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
2069 /* All interface blocks should have been lowered by this point */
2070 assert(!input_var->type->is_interface());
2071
2072 if (input_var->data.explicit_location) {
2073 /* assign_varying_locations only cares about finding the
2074 * ir_variable at the start of a contiguous location block.
2075 *
2076 * - For !producer, consumer_inputs_with_locations isn't used.
2077 *
2078 * - For !consumer, consumer_inputs_with_locations is empty.
2079 *
2080 * For consumer && producer, if you were trying to set some
2081 * ir_variable to the middle of a location block on the other side
2082 * of producer/consumer, cross_validate_outputs_to_inputs() should
2083 * be link-erroring due to either type mismatch or location
2084 * overlaps. If the variables do match up, then they've got a
2085 * matching data.location and you only looked at
2086 * consumer_inputs_with_locations[var->data.location], not any
2087 * following entries for the array/structure.
2088 */
2089 consumer_inputs_with_locations[input_var->data.location] =
2090 input_var;
2091 } else if (input_var->get_interface_type() != NULL) {
2092 char *const iface_field_name =
2093 ralloc_asprintf(mem_ctx, "%s.%s",
2094 input_var->get_interface_type()->without_array()->name,
2095 input_var->name);
2096 _mesa_hash_table_insert(consumer_interface_inputs,
2097 iface_field_name, input_var);
2098 } else {
2099 _mesa_hash_table_insert(consumer_inputs,
2100 ralloc_strdup(mem_ctx, input_var->name),
2101 input_var);
2102 }
2103 }
2104 }
2105 }
2106
2107 /**
2108 * Find a variable from the consumer that "matches" the specified variable
2109 *
2110 * This function only finds inputs with names that match. There is no
2111 * validation (here) that the types, etc. are compatible.
2112 */
2113 ir_variable *
2114 get_matching_input(void *mem_ctx,
2115 const ir_variable *output_var,
2116 hash_table *consumer_inputs,
2117 hash_table *consumer_interface_inputs,
2118 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2119 {
2120 ir_variable *input_var;
2121
2122 if (output_var->data.explicit_location) {
2123 input_var = consumer_inputs_with_locations[output_var->data.location];
2124 } else if (output_var->get_interface_type() != NULL) {
2125 char *const iface_field_name =
2126 ralloc_asprintf(mem_ctx, "%s.%s",
2127 output_var->get_interface_type()->without_array()->name,
2128 output_var->name);
2129 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
2130 input_var = entry ? (ir_variable *) entry->data : NULL;
2131 } else {
2132 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
2133 input_var = entry ? (ir_variable *) entry->data : NULL;
2134 }
2135
2136 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2137 ? NULL : input_var;
2138 }
2139
2140 }
2141
2142 static int
2143 io_variable_cmp(const void *_a, const void *_b)
2144 {
2145 const ir_variable *const a = *(const ir_variable **) _a;
2146 const ir_variable *const b = *(const ir_variable **) _b;
2147
2148 if (a->data.explicit_location && b->data.explicit_location)
2149 return b->data.location - a->data.location;
2150
2151 if (a->data.explicit_location && !b->data.explicit_location)
2152 return 1;
2153
2154 if (!a->data.explicit_location && b->data.explicit_location)
2155 return -1;
2156
2157 return -strcmp(a->name, b->name);
2158 }
2159
2160 /**
2161 * Sort the shader IO variables into canonical order
2162 */
2163 static void
2164 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
2165 {
2166 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
2167 unsigned num_variables = 0;
2168
2169 foreach_in_list(ir_instruction, node, ir) {
2170 ir_variable *const var = node->as_variable();
2171
2172 if (var == NULL || var->data.mode != io_mode)
2173 continue;
2174
2175 /* If we have already encountered more I/O variables that could
2176 * successfully link, bail.
2177 */
2178 if (num_variables == ARRAY_SIZE(var_table))
2179 return;
2180
2181 var_table[num_variables++] = var;
2182 }
2183
2184 if (num_variables == 0)
2185 return;
2186
2187 /* Sort the list in reverse order (io_variable_cmp handles this). Later
2188 * we're going to push the variables on to the IR list as a stack, so we
2189 * want the last variable (in canonical order) to be first in the list.
2190 */
2191 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
2192
2193 /* Remove the variable from it's current location in the IR, and put it at
2194 * the front.
2195 */
2196 for (unsigned i = 0; i < num_variables; i++) {
2197 var_table[i]->remove();
2198 ir->push_head(var_table[i]);
2199 }
2200 }
2201
2202 /**
2203 * Generate a bitfield map of the explicit locations for shader varyings.
2204 *
2205 * Note: For Tessellation shaders we are sitting right on the limits of the
2206 * 64 bit map. Per-vertex and per-patch both have separate location domains
2207 * with a max of MAX_VARYING.
2208 */
2209 static uint64_t
2210 reserved_varying_slot(struct gl_linked_shader *stage,
2211 ir_variable_mode io_mode)
2212 {
2213 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
2214 /* Avoid an overflow of the returned value */
2215 assert(MAX_VARYINGS_INCL_PATCH <= 64);
2216
2217 uint64_t slots = 0;
2218 int var_slot;
2219
2220 if (!stage)
2221 return slots;
2222
2223 foreach_in_list(ir_instruction, node, stage->ir) {
2224 ir_variable *const var = node->as_variable();
2225
2226 if (var == NULL || var->data.mode != io_mode ||
2227 !var->data.explicit_location ||
2228 var->data.location < VARYING_SLOT_VAR0)
2229 continue;
2230
2231 var_slot = var->data.location - VARYING_SLOT_VAR0;
2232
2233 unsigned num_elements = get_varying_type(var, stage->Stage)
2234 ->count_attribute_slots(io_mode == ir_var_shader_in &&
2235 stage->Stage == MESA_SHADER_VERTEX);
2236 for (unsigned i = 0; i < num_elements; i++) {
2237 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
2238 slots |= UINT64_C(1) << var_slot;
2239 var_slot += 1;
2240 }
2241 }
2242
2243 return slots;
2244 }
2245
2246
2247 /**
2248 * Assign locations for all variables that are produced in one pipeline stage
2249 * (the "producer") and consumed in the next stage (the "consumer").
2250 *
2251 * Variables produced by the producer may also be consumed by transform
2252 * feedback.
2253 *
2254 * \param num_tfeedback_decls is the number of declarations indicating
2255 * variables that may be consumed by transform feedback.
2256 *
2257 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2258 * representing the result of parsing the strings passed to
2259 * glTransformFeedbackVaryings(). assign_location() will be called for
2260 * each of these objects that matches one of the outputs of the
2261 * producer.
2262 *
2263 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2264 * be NULL. In this case, varying locations are assigned solely based on the
2265 * requirements of transform feedback.
2266 */
2267 static bool
2268 assign_varying_locations(struct gl_context *ctx,
2269 void *mem_ctx,
2270 struct gl_shader_program *prog,
2271 gl_linked_shader *producer,
2272 gl_linked_shader *consumer,
2273 unsigned num_tfeedback_decls,
2274 tfeedback_decl *tfeedback_decls,
2275 const uint64_t reserved_slots)
2276 {
2277 /* Tessellation shaders treat inputs and outputs as shared memory and can
2278 * access inputs and outputs of other invocations.
2279 * Therefore, they can't be lowered to temps easily (and definitely not
2280 * efficiently).
2281 */
2282 bool unpackable_tess =
2283 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2284 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2285 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2286
2287 /* Transform feedback code assumes varying arrays are packed, so if the
2288 * driver has disabled varying packing, make sure to at least enable
2289 * packing required by transform feedback.
2290 */
2291 bool xfb_enabled =
2292 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2293
2294 /* Disable packing on outward facing interfaces for SSO because in ES we
2295 * need to retain the unpacked varying information for draw time
2296 * validation.
2297 *
2298 * Packing is still enabled on individual arrays, structs, and matrices as
2299 * these are required by the transform feedback code and it is still safe
2300 * to do so. We also enable packing when a varying is only used for
2301 * transform feedback and its not a SSO.
2302 */
2303 bool disable_varying_packing =
2304 ctx->Const.DisableVaryingPacking || unpackable_tess;
2305 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2306 disable_varying_packing = true;
2307
2308 varying_matches matches(disable_varying_packing, xfb_enabled,
2309 ctx->Extensions.ARB_enhanced_layouts,
2310 producer ? producer->Stage : MESA_SHADER_NONE,
2311 consumer ? consumer->Stage : MESA_SHADER_NONE);
2312 hash_table *tfeedback_candidates =
2313 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2314 _mesa_key_string_equal);
2315 hash_table *consumer_inputs =
2316 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2317 _mesa_key_string_equal);
2318 hash_table *consumer_interface_inputs =
2319 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2320 _mesa_key_string_equal);
2321 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2322 NULL,
2323 };
2324
2325 unsigned consumer_vertices = 0;
2326 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2327 consumer_vertices = prog->Geom.VerticesIn;
2328
2329 /* Operate in a total of four passes.
2330 *
2331 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2332 * that inputs / outputs of separable shaders will be assigned
2333 * predictable locations regardless of the order in which declarations
2334 * appeared in the shader source.
2335 *
2336 * 2. Assign locations for any matching inputs and outputs.
2337 *
2338 * 3. Mark output variables in the producer that do not have locations as
2339 * not being outputs. This lets the optimizer eliminate them.
2340 *
2341 * 4. Mark input variables in the consumer that do not have locations as
2342 * not being inputs. This lets the optimizer eliminate them.
2343 */
2344 if (consumer)
2345 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2346
2347 if (producer)
2348 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2349
2350 if (consumer)
2351 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2352 consumer_inputs,
2353 consumer_interface_inputs,
2354 consumer_inputs_with_locations);
2355
2356 if (producer) {
2357 foreach_in_list(ir_instruction, node, producer->ir) {
2358 ir_variable *const output_var = node->as_variable();
2359
2360 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2361 continue;
2362
2363 /* Only geometry shaders can use non-zero streams */
2364 assert(output_var->data.stream == 0 ||
2365 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2366 producer->Stage == MESA_SHADER_GEOMETRY));
2367
2368 if (num_tfeedback_decls > 0) {
2369 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2370 g.process(output_var);
2371 }
2372
2373 ir_variable *const input_var =
2374 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2375 consumer_interface_inputs,
2376 consumer_inputs_with_locations);
2377
2378 /* If a matching input variable was found, add this output (and the
2379 * input) to the set. If this is a separable program and there is no
2380 * consumer stage, add the output.
2381 *
2382 * Always add TCS outputs. They are shared by all invocations
2383 * within a patch and can be used as shared memory.
2384 */
2385 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2386 producer->Stage == MESA_SHADER_TESS_CTRL) {
2387 matches.record(output_var, input_var);
2388 }
2389
2390 /* Only stream 0 outputs can be consumed in the next stage */
2391 if (input_var && output_var->data.stream != 0) {
2392 linker_error(prog, "output %s is assigned to stream=%d but "
2393 "is linked to an input, which requires stream=0",
2394 output_var->name, output_var->data.stream);
2395 return false;
2396 }
2397 }
2398 } else {
2399 /* If there's no producer stage, then this must be a separable program.
2400 * For example, we may have a program that has just a fragment shader.
2401 * Later this program will be used with some arbitrary vertex (or
2402 * geometry) shader program. This means that locations must be assigned
2403 * for all the inputs.
2404 */
2405 foreach_in_list(ir_instruction, node, consumer->ir) {
2406 ir_variable *const input_var = node->as_variable();
2407
2408 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2409 continue;
2410
2411 matches.record(NULL, input_var);
2412 }
2413 }
2414
2415 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2416 if (!tfeedback_decls[i].is_varying())
2417 continue;
2418
2419 const tfeedback_candidate *matched_candidate
2420 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2421
2422 if (matched_candidate == NULL) {
2423 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2424 return false;
2425 }
2426
2427 /* Mark xfb varyings as always active */
2428 matched_candidate->toplevel_var->data.always_active_io = 1;
2429
2430 /* Mark any corresponding inputs as always active also. We must do this
2431 * because we have a NIR pass that lowers vectors to scalars and another
2432 * that removes unused varyings.
2433 * We don't split varyings marked as always active because there is no
2434 * point in doing so. This means we need to mark both sides of the
2435 * interface as always active otherwise we will have a mismatch and
2436 * start removing things we shouldn't.
2437 */
2438 ir_variable *const input_var =
2439 linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var,
2440 consumer_inputs,
2441 consumer_interface_inputs,
2442 consumer_inputs_with_locations);
2443 if (input_var)
2444 input_var->data.always_active_io = 1;
2445
2446 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2447 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2448 matches.record(matched_candidate->toplevel_var, NULL);
2449 }
2450 }
2451
2452 _mesa_hash_table_destroy(consumer_inputs, NULL);
2453 _mesa_hash_table_destroy(consumer_interface_inputs, NULL);
2454
2455 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
2456 const unsigned slots_used = matches.assign_locations(
2457 prog, components, reserved_slots);
2458 matches.store_locations();
2459
2460 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2461 if (!tfeedback_decls[i].is_varying())
2462 continue;
2463
2464 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2465 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2466 return false;
2467 }
2468 }
2469 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2470
2471 if (consumer && producer) {
2472 foreach_in_list(ir_instruction, node, consumer->ir) {
2473 ir_variable *const var = node->as_variable();
2474
2475 if (var && var->data.mode == ir_var_shader_in &&
2476 var->data.is_unmatched_generic_inout) {
2477 if (!prog->IsES && prog->data->Version <= 120) {
2478 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2479 *
2480 * Only those varying variables used (i.e. read) in
2481 * the fragment shader executable must be written to
2482 * by the vertex shader executable; declaring
2483 * superfluous varying variables in a vertex shader is
2484 * permissible.
2485 *
2486 * We interpret this text as meaning that the VS must
2487 * write the variable for the FS to read it. See
2488 * "glsl1-varying read but not written" in piglit.
2489 */
2490 linker_error(prog, "%s shader varying %s not written "
2491 "by %s shader\n.",
2492 _mesa_shader_stage_to_string(consumer->Stage),
2493 var->name,
2494 _mesa_shader_stage_to_string(producer->Stage));
2495 } else {
2496 linker_warning(prog, "%s shader varying %s not written "
2497 "by %s shader\n.",
2498 _mesa_shader_stage_to_string(consumer->Stage),
2499 var->name,
2500 _mesa_shader_stage_to_string(producer->Stage));
2501 }
2502 }
2503 }
2504
2505 /* Now that validation is done its safe to remove unused varyings. As
2506 * we have both a producer and consumer its safe to remove unused
2507 * varyings even if the program is a SSO because the stages are being
2508 * linked together i.e. we have a multi-stage SSO.
2509 */
2510 remove_unused_shader_inputs_and_outputs(false, producer,
2511 ir_var_shader_out);
2512 remove_unused_shader_inputs_and_outputs(false, consumer,
2513 ir_var_shader_in);
2514 }
2515
2516 if (producer) {
2517 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
2518 0, producer, disable_varying_packing,
2519 xfb_enabled);
2520 }
2521
2522 if (consumer) {
2523 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
2524 consumer_vertices, consumer,
2525 disable_varying_packing, xfb_enabled);
2526 }
2527
2528 return true;
2529 }
2530
2531 static bool
2532 check_against_output_limit(struct gl_context *ctx,
2533 struct gl_shader_program *prog,
2534 gl_linked_shader *producer,
2535 unsigned num_explicit_locations)
2536 {
2537 unsigned output_vectors = num_explicit_locations;
2538
2539 foreach_in_list(ir_instruction, node, producer->ir) {
2540 ir_variable *const var = node->as_variable();
2541
2542 if (var && !var->data.explicit_location &&
2543 var->data.mode == ir_var_shader_out &&
2544 var_counts_against_varying_limit(producer->Stage, var)) {
2545 /* outputs for fragment shader can't be doubles */
2546 output_vectors += var->type->count_attribute_slots(false);
2547 }
2548 }
2549
2550 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2551 unsigned max_output_components =
2552 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2553
2554 const unsigned output_components = output_vectors * 4;
2555 if (output_components > max_output_components) {
2556 if (ctx->API == API_OPENGLES2 || prog->IsES)
2557 linker_error(prog, "%s shader uses too many output vectors "
2558 "(%u > %u)\n",
2559 _mesa_shader_stage_to_string(producer->Stage),
2560 output_vectors,
2561 max_output_components / 4);
2562 else
2563 linker_error(prog, "%s shader uses too many output components "
2564 "(%u > %u)\n",
2565 _mesa_shader_stage_to_string(producer->Stage),
2566 output_components,
2567 max_output_components);
2568
2569 return false;
2570 }
2571
2572 return true;
2573 }
2574
2575 static bool
2576 check_against_input_limit(struct gl_context *ctx,
2577 struct gl_shader_program *prog,
2578 gl_linked_shader *consumer,
2579 unsigned num_explicit_locations)
2580 {
2581 unsigned input_vectors = num_explicit_locations;
2582
2583 foreach_in_list(ir_instruction, node, consumer->ir) {
2584 ir_variable *const var = node->as_variable();
2585
2586 if (var && !var->data.explicit_location &&
2587 var->data.mode == ir_var_shader_in &&
2588 var_counts_against_varying_limit(consumer->Stage, var)) {
2589 /* vertex inputs aren't varying counted */
2590 input_vectors += var->type->count_attribute_slots(false);
2591 }
2592 }
2593
2594 assert(consumer->Stage != MESA_SHADER_VERTEX);
2595 unsigned max_input_components =
2596 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2597
2598 const unsigned input_components = input_vectors * 4;
2599 if (input_components > max_input_components) {
2600 if (ctx->API == API_OPENGLES2 || prog->IsES)
2601 linker_error(prog, "%s shader uses too many input vectors "
2602 "(%u > %u)\n",
2603 _mesa_shader_stage_to_string(consumer->Stage),
2604 input_vectors,
2605 max_input_components / 4);
2606 else
2607 linker_error(prog, "%s shader uses too many input components "
2608 "(%u > %u)\n",
2609 _mesa_shader_stage_to_string(consumer->Stage),
2610 input_components,
2611 max_input_components);
2612
2613 return false;
2614 }
2615
2616 return true;
2617 }
2618
2619 bool
2620 link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last,
2621 struct gl_context *ctx, void *mem_ctx)
2622 {
2623 bool has_xfb_qualifiers = false;
2624 unsigned num_tfeedback_decls = 0;
2625 char **varying_names = NULL;
2626 tfeedback_decl *tfeedback_decls = NULL;
2627
2628 /* From the ARB_enhanced_layouts spec:
2629 *
2630 * "If the shader used to record output variables for transform feedback
2631 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
2632 * qualifiers, the values specified by TransformFeedbackVaryings are
2633 * ignored, and the set of variables captured for transform feedback is
2634 * instead derived from the specified layout qualifiers."
2635 */
2636 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
2637 /* Find last stage before fragment shader */
2638 if (prog->_LinkedShaders[i]) {
2639 has_xfb_qualifiers =
2640 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
2641 prog, &num_tfeedback_decls,
2642 &varying_names);
2643 break;
2644 }
2645 }
2646
2647 if (!has_xfb_qualifiers) {
2648 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2649 varying_names = prog->TransformFeedback.VaryingNames;
2650 }
2651
2652 if (num_tfeedback_decls != 0) {
2653 /* From GL_EXT_transform_feedback:
2654 * A program will fail to link if:
2655 *
2656 * * the <count> specified by TransformFeedbackVaryingsEXT is
2657 * non-zero, but the program object has no vertex or geometry
2658 * shader;
2659 */
2660 if (first >= MESA_SHADER_FRAGMENT) {
2661 linker_error(prog, "Transform feedback varyings specified, but "
2662 "no vertex, tessellation, or geometry shader is "
2663 "present.\n");
2664 return false;
2665 }
2666
2667 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
2668 num_tfeedback_decls);
2669 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2670 varying_names, tfeedback_decls))
2671 return false;
2672 }
2673
2674 /* If there is no fragment shader we need to set transform feedback.
2675 *
2676 * For SSO we also need to assign output locations. We assign them here
2677 * because we need to do it for both single stage programs and multi stage
2678 * programs.
2679 */
2680 if (last < MESA_SHADER_FRAGMENT &&
2681 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
2682 const uint64_t reserved_out_slots =
2683 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
2684 if (!assign_varying_locations(ctx, mem_ctx, prog,
2685 prog->_LinkedShaders[last], NULL,
2686 num_tfeedback_decls, tfeedback_decls,
2687 reserved_out_slots))
2688 return false;
2689 }
2690
2691 if (last <= MESA_SHADER_FRAGMENT) {
2692 /* Remove unused varyings from the first/last stage unless SSO */
2693 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2694 prog->_LinkedShaders[first],
2695 ir_var_shader_in);
2696 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2697 prog->_LinkedShaders[last],
2698 ir_var_shader_out);
2699
2700 /* If the program is made up of only a single stage */
2701 if (first == last) {
2702 gl_linked_shader *const sh = prog->_LinkedShaders[last];
2703
2704 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
2705 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
2706 tfeedback_decls);
2707
2708 if (prog->SeparateShader) {
2709 const uint64_t reserved_slots =
2710 reserved_varying_slot(sh, ir_var_shader_in);
2711
2712 /* Assign input locations for SSO, output locations are already
2713 * assigned.
2714 */
2715 if (!assign_varying_locations(ctx, mem_ctx, prog,
2716 NULL /* producer */,
2717 sh /* consumer */,
2718 0 /* num_tfeedback_decls */,
2719 NULL /* tfeedback_decls */,
2720 reserved_slots))
2721 return false;
2722 }
2723 } else {
2724 /* Linking the stages in the opposite order (from fragment to vertex)
2725 * ensures that inter-shader outputs written to in an earlier stage
2726 * are eliminated if they are (transitively) not used in a later
2727 * stage.
2728 */
2729 int next = last;
2730 for (int i = next - 1; i >= 0; i--) {
2731 if (prog->_LinkedShaders[i] == NULL && i != 0)
2732 continue;
2733
2734 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
2735 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
2736
2737 const uint64_t reserved_out_slots =
2738 reserved_varying_slot(sh_i, ir_var_shader_out);
2739 const uint64_t reserved_in_slots =
2740 reserved_varying_slot(sh_next, ir_var_shader_in);
2741
2742 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2743 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2744 tfeedback_decls);
2745
2746 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2747 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2748 tfeedback_decls,
2749 reserved_out_slots | reserved_in_slots))
2750 return false;
2751
2752 /* This must be done after all dead varyings are eliminated. */
2753 if (sh_i != NULL) {
2754 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
2755 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
2756 return false;
2757 }
2758 }
2759
2760 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
2761 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
2762 return false;
2763
2764 next = i;
2765 }
2766 }
2767 }
2768
2769 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
2770 has_xfb_qualifiers))
2771 return false;
2772
2773 return true;
2774 }