st/mesa/glsl: move Version to gl_shader_program_data
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "util/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->info.TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 static bool
186 anonymous_struct_type_matches(const glsl_type *output_type,
187 const glsl_type *to_match)
188 {
189 while (output_type->is_array() && to_match->is_array()) {
190 /* if the lengths at each level don't match fail. */
191 if (output_type->length != to_match->length)
192 return false;
193 output_type = output_type->fields.array;
194 to_match = to_match->fields.array;
195 }
196
197 if (output_type->is_array() || to_match->is_array())
198 return false;
199 return output_type->is_anonymous() &&
200 to_match->is_anonymous() &&
201 to_match->record_compare(output_type);
202 }
203
204 /**
205 * Validate the types and qualifiers of an output from one stage against the
206 * matching input to another stage.
207 */
208 static void
209 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
210 const ir_variable *input,
211 const ir_variable *output,
212 gl_shader_stage consumer_stage,
213 gl_shader_stage producer_stage)
214 {
215 /* Check that the types match between stages.
216 */
217 const glsl_type *type_to_match = input->type;
218
219 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
220 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
221 consumer_stage != MESA_SHADER_FRAGMENT) ||
222 consumer_stage == MESA_SHADER_GEOMETRY;
223 if (extra_array_level) {
224 assert(type_to_match->is_array());
225 type_to_match = type_to_match->fields.array;
226 }
227
228 if (type_to_match != output->type) {
229 /* There is a bit of a special case for gl_TexCoord. This
230 * built-in is unsized by default. Applications that variable
231 * access it must redeclare it with a size. There is some
232 * language in the GLSL spec that implies the fragment shader
233 * and vertex shader do not have to agree on this size. Other
234 * driver behave this way, and one or two applications seem to
235 * rely on it.
236 *
237 * Neither declaration needs to be modified here because the array
238 * sizes are fixed later when update_array_sizes is called.
239 *
240 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
241 *
242 * "Unlike user-defined varying variables, the built-in
243 * varying variables don't have a strict one-to-one
244 * correspondence between the vertex language and the
245 * fragment language."
246 */
247 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
248 bool anon_matches = anonymous_struct_type_matches(output->type, type_to_match);
249
250 if (!anon_matches) {
251 linker_error(prog,
252 "%s shader output `%s' declared as type `%s', "
253 "but %s shader input declared as type `%s'\n",
254 _mesa_shader_stage_to_string(producer_stage),
255 output->name,
256 output->type->name,
257 _mesa_shader_stage_to_string(consumer_stage),
258 input->type->name);
259 return;
260 }
261 }
262 }
263
264 /* Check that all of the qualifiers match between stages.
265 */
266
267 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
268 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
269 * conformance test suite does not verify that the qualifiers must match.
270 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
271 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
272 */
273 if (false /* always skip the centroid check */ &&
274 prog->data->Version < (prog->IsES ? 310 : 430) &&
275 input->data.centroid != output->data.centroid) {
276 linker_error(prog,
277 "%s shader output `%s' %s centroid qualifier, "
278 "but %s shader input %s centroid qualifier\n",
279 _mesa_shader_stage_to_string(producer_stage),
280 output->name,
281 (output->data.centroid) ? "has" : "lacks",
282 _mesa_shader_stage_to_string(consumer_stage),
283 (input->data.centroid) ? "has" : "lacks");
284 return;
285 }
286
287 if (input->data.sample != output->data.sample) {
288 linker_error(prog,
289 "%s shader output `%s' %s sample qualifier, "
290 "but %s shader input %s sample qualifier\n",
291 _mesa_shader_stage_to_string(producer_stage),
292 output->name,
293 (output->data.sample) ? "has" : "lacks",
294 _mesa_shader_stage_to_string(consumer_stage),
295 (input->data.sample) ? "has" : "lacks");
296 return;
297 }
298
299 if (input->data.patch != output->data.patch) {
300 linker_error(prog,
301 "%s shader output `%s' %s patch qualifier, "
302 "but %s shader input %s patch qualifier\n",
303 _mesa_shader_stage_to_string(producer_stage),
304 output->name,
305 (output->data.patch) ? "has" : "lacks",
306 _mesa_shader_stage_to_string(consumer_stage),
307 (input->data.patch) ? "has" : "lacks");
308 return;
309 }
310
311 /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
312 *
313 * "As only outputs need be declared with invariant, an output from
314 * one shader stage will still match an input of a subsequent stage
315 * without the input being declared as invariant."
316 *
317 * while GLSL 4.20 says:
318 *
319 * "For variables leaving one shader and coming into another shader,
320 * the invariant keyword has to be used in both shaders, or a link
321 * error will result."
322 *
323 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
324 *
325 * "The invariance of varyings that are declared in both the vertex
326 * and fragment shaders must match."
327 */
328 if (input->data.invariant != output->data.invariant &&
329 prog->data->Version < (prog->IsES ? 300 : 430)) {
330 linker_error(prog,
331 "%s shader output `%s' %s invariant qualifier, "
332 "but %s shader input %s invariant qualifier\n",
333 _mesa_shader_stage_to_string(producer_stage),
334 output->name,
335 (output->data.invariant) ? "has" : "lacks",
336 _mesa_shader_stage_to_string(consumer_stage),
337 (input->data.invariant) ? "has" : "lacks");
338 return;
339 }
340
341 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
342 * to match cross stage, they must only match within the same stage.
343 *
344 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
345 *
346 * "It is a link-time error if, within the same stage, the interpolation
347 * qualifiers of variables of the same name do not match.
348 *
349 */
350 if (input->data.interpolation != output->data.interpolation &&
351 prog->data->Version < 440) {
352 linker_error(prog,
353 "%s shader output `%s' specifies %s "
354 "interpolation qualifier, "
355 "but %s shader input specifies %s "
356 "interpolation qualifier\n",
357 _mesa_shader_stage_to_string(producer_stage),
358 output->name,
359 interpolation_string(output->data.interpolation),
360 _mesa_shader_stage_to_string(consumer_stage),
361 interpolation_string(input->data.interpolation));
362 return;
363 }
364 }
365
366 /**
367 * Validate front and back color outputs against single color input
368 */
369 static void
370 cross_validate_front_and_back_color(struct gl_shader_program *prog,
371 const ir_variable *input,
372 const ir_variable *front_color,
373 const ir_variable *back_color,
374 gl_shader_stage consumer_stage,
375 gl_shader_stage producer_stage)
376 {
377 if (front_color != NULL && front_color->data.assigned)
378 cross_validate_types_and_qualifiers(prog, input, front_color,
379 consumer_stage, producer_stage);
380
381 if (back_color != NULL && back_color->data.assigned)
382 cross_validate_types_and_qualifiers(prog, input, back_color,
383 consumer_stage, producer_stage);
384 }
385
386 /**
387 * Validate that outputs from one stage match inputs of another
388 */
389 void
390 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
391 gl_linked_shader *producer,
392 gl_linked_shader *consumer)
393 {
394 glsl_symbol_table parameters;
395 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
396 { {NULL, NULL} };
397
398 /* Find all shader outputs in the "producer" stage.
399 */
400 foreach_in_list(ir_instruction, node, producer->ir) {
401 ir_variable *const var = node->as_variable();
402
403 if (var == NULL || var->data.mode != ir_var_shader_out)
404 continue;
405
406 if (!var->data.explicit_location
407 || var->data.location < VARYING_SLOT_VAR0)
408 parameters.add_variable(var);
409 else {
410 /* User-defined varyings with explicit locations are handled
411 * differently because they do not need to have matching names.
412 */
413 const glsl_type *type = get_varying_type(var, producer->Stage);
414 unsigned num_elements = type->count_attribute_slots(false);
415 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
416 unsigned slot_limit = idx + num_elements;
417 unsigned last_comp;
418
419 if (type->without_array()->is_record()) {
420 /* The component qualifier can't be used on structs so just treat
421 * all component slots as used.
422 */
423 last_comp = 4;
424 } else {
425 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
426 last_comp = var->data.location_frac +
427 type->without_array()->vector_elements * dmul;
428 }
429
430 while (idx < slot_limit) {
431 unsigned i = var->data.location_frac;
432 while (i < last_comp) {
433 if (explicit_locations[idx][i] != NULL) {
434 linker_error(prog,
435 "%s shader has multiple outputs explicitly "
436 "assigned to location %d and component %d\n",
437 _mesa_shader_stage_to_string(producer->Stage),
438 idx, var->data.location_frac);
439 return;
440 }
441
442 /* Make sure all component at this location have the same type.
443 */
444 for (unsigned j = 0; j < 4; j++) {
445 if (explicit_locations[idx][j] &&
446 (explicit_locations[idx][j]->type->without_array()
447 ->base_type != type->without_array()->base_type)) {
448 linker_error(prog,
449 "Varyings sharing the same location must "
450 "have the same underlying numerical type. "
451 "Location %u component %u\n", idx,
452 var->data.location_frac);
453 return;
454 }
455 }
456
457 explicit_locations[idx][i] = var;
458 i++;
459
460 /* We need to do some special handling for doubles as dvec3 and
461 * dvec4 consume two consecutive locations. We don't need to
462 * worry about components beginning at anything other than 0 as
463 * the spec does not allow this for dvec3 and dvec4.
464 */
465 if (i == 4 && last_comp > 4) {
466 last_comp = last_comp - 4;
467 /* Bump location index and reset the component index */
468 idx++;
469 i = 0;
470 }
471 }
472 idx++;
473 }
474 }
475 }
476
477
478 /* Find all shader inputs in the "consumer" stage. Any variables that have
479 * matching outputs already in the symbol table must have the same type and
480 * qualifiers.
481 *
482 * Exception: if the consumer is the geometry shader, then the inputs
483 * should be arrays and the type of the array element should match the type
484 * of the corresponding producer output.
485 */
486 foreach_in_list(ir_instruction, node, consumer->ir) {
487 ir_variable *const input = node->as_variable();
488
489 if (input == NULL || input->data.mode != ir_var_shader_in)
490 continue;
491
492 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
493 const ir_variable *const front_color =
494 parameters.get_variable("gl_FrontColor");
495
496 const ir_variable *const back_color =
497 parameters.get_variable("gl_BackColor");
498
499 cross_validate_front_and_back_color(prog, input,
500 front_color, back_color,
501 consumer->Stage, producer->Stage);
502 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
503 const ir_variable *const front_color =
504 parameters.get_variable("gl_FrontSecondaryColor");
505
506 const ir_variable *const back_color =
507 parameters.get_variable("gl_BackSecondaryColor");
508
509 cross_validate_front_and_back_color(prog, input,
510 front_color, back_color,
511 consumer->Stage, producer->Stage);
512 } else {
513 /* The rules for connecting inputs and outputs change in the presence
514 * of explicit locations. In this case, we no longer care about the
515 * names of the variables. Instead, we care only about the
516 * explicitly assigned location.
517 */
518 ir_variable *output = NULL;
519 if (input->data.explicit_location
520 && input->data.location >= VARYING_SLOT_VAR0) {
521
522 const glsl_type *type = get_varying_type(input, consumer->Stage);
523 unsigned num_elements = type->count_attribute_slots(false);
524 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
525 unsigned slot_limit = idx + num_elements;
526
527 while (idx < slot_limit) {
528 output = explicit_locations[idx][input->data.location_frac];
529
530 if (output == NULL ||
531 input->data.location != output->data.location) {
532 linker_error(prog,
533 "%s shader input `%s' with explicit location "
534 "has no matching output\n",
535 _mesa_shader_stage_to_string(consumer->Stage),
536 input->name);
537 break;
538 }
539 idx++;
540 }
541 } else {
542 output = parameters.get_variable(input->name);
543 }
544
545 if (output != NULL) {
546 /* Interface blocks have their own validation elsewhere so don't
547 * try validating them here.
548 */
549 if (!(input->get_interface_type() &&
550 output->get_interface_type()))
551 cross_validate_types_and_qualifiers(prog, input, output,
552 consumer->Stage,
553 producer->Stage);
554 } else {
555 /* Check for input vars with unmatched output vars in prev stage
556 * taking into account that interface blocks could have a matching
557 * output but with different name, so we ignore them.
558 */
559 assert(!input->data.assigned);
560 if (input->data.used && !input->get_interface_type() &&
561 !input->data.explicit_location && !prog->SeparateShader)
562 linker_error(prog,
563 "%s shader input `%s' "
564 "has no matching output in the previous stage\n",
565 _mesa_shader_stage_to_string(consumer->Stage),
566 input->name);
567 }
568 }
569 }
570 }
571
572 /**
573 * Demote shader inputs and outputs that are not used in other stages, and
574 * remove them via dead code elimination.
575 */
576 void
577 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
578 gl_linked_shader *sh,
579 enum ir_variable_mode mode)
580 {
581 if (is_separate_shader_object)
582 return;
583
584 foreach_in_list(ir_instruction, node, sh->ir) {
585 ir_variable *const var = node->as_variable();
586
587 if (var == NULL || var->data.mode != int(mode))
588 continue;
589
590 /* A shader 'in' or 'out' variable is only really an input or output if
591 * its value is used by other shader stages. This will cause the
592 * variable to have a location assigned.
593 */
594 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
595 assert(var->data.mode != ir_var_temporary);
596
597 /* Assign zeros to demoted inputs to allow more optimizations. */
598 if (var->data.mode == ir_var_shader_in && !var->constant_value)
599 var->constant_value = ir_constant::zero(var, var->type);
600
601 var->data.mode = ir_var_auto;
602 }
603 }
604
605 /* Eliminate code that is now dead due to unused inputs/outputs being
606 * demoted.
607 */
608 while (do_dead_code(sh->ir, false))
609 ;
610
611 }
612
613 /**
614 * Initialize this object based on a string that was passed to
615 * glTransformFeedbackVaryings.
616 *
617 * If the input is mal-formed, this call still succeeds, but it sets
618 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
619 * will fail to find any matching variable.
620 */
621 void
622 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
623 const char *input)
624 {
625 /* We don't have to be pedantic about what is a valid GLSL variable name,
626 * because any variable with an invalid name can't exist in the IR anyway.
627 */
628
629 this->location = -1;
630 this->orig_name = input;
631 this->lowered_builtin_array_variable = none;
632 this->skip_components = 0;
633 this->next_buffer_separator = false;
634 this->matched_candidate = NULL;
635 this->stream_id = 0;
636 this->buffer = 0;
637 this->offset = 0;
638
639 if (ctx->Extensions.ARB_transform_feedback3) {
640 /* Parse gl_NextBuffer. */
641 if (strcmp(input, "gl_NextBuffer") == 0) {
642 this->next_buffer_separator = true;
643 return;
644 }
645
646 /* Parse gl_SkipComponents. */
647 if (strcmp(input, "gl_SkipComponents1") == 0)
648 this->skip_components = 1;
649 else if (strcmp(input, "gl_SkipComponents2") == 0)
650 this->skip_components = 2;
651 else if (strcmp(input, "gl_SkipComponents3") == 0)
652 this->skip_components = 3;
653 else if (strcmp(input, "gl_SkipComponents4") == 0)
654 this->skip_components = 4;
655
656 if (this->skip_components)
657 return;
658 }
659
660 /* Parse a declaration. */
661 const char *base_name_end;
662 long subscript = parse_program_resource_name(input, &base_name_end);
663 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
664 if (this->var_name == NULL) {
665 _mesa_error_no_memory(__func__);
666 return;
667 }
668
669 if (subscript >= 0) {
670 this->array_subscript = subscript;
671 this->is_subscripted = true;
672 } else {
673 this->is_subscripted = false;
674 }
675
676 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
677 * class must behave specially to account for the fact that gl_ClipDistance
678 * is converted from a float[8] to a vec4[2].
679 */
680 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
681 strcmp(this->var_name, "gl_ClipDistance") == 0) {
682 this->lowered_builtin_array_variable = clip_distance;
683 }
684 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
685 strcmp(this->var_name, "gl_CullDistance") == 0) {
686 this->lowered_builtin_array_variable = cull_distance;
687 }
688
689 if (ctx->Const.LowerTessLevel &&
690 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
691 this->lowered_builtin_array_variable = tess_level_outer;
692 if (ctx->Const.LowerTessLevel &&
693 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
694 this->lowered_builtin_array_variable = tess_level_inner;
695 }
696
697
698 /**
699 * Determine whether two tfeedback_decl objects refer to the same variable and
700 * array index (if applicable).
701 */
702 bool
703 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
704 {
705 assert(x.is_varying() && y.is_varying());
706
707 if (strcmp(x.var_name, y.var_name) != 0)
708 return false;
709 if (x.is_subscripted != y.is_subscripted)
710 return false;
711 if (x.is_subscripted && x.array_subscript != y.array_subscript)
712 return false;
713 return true;
714 }
715
716
717 /**
718 * Assign a location and stream ID for this tfeedback_decl object based on the
719 * transform feedback candidate found by find_candidate.
720 *
721 * If an error occurs, the error is reported through linker_error() and false
722 * is returned.
723 */
724 bool
725 tfeedback_decl::assign_location(struct gl_context *ctx,
726 struct gl_shader_program *prog)
727 {
728 assert(this->is_varying());
729
730 unsigned fine_location
731 = this->matched_candidate->toplevel_var->data.location * 4
732 + this->matched_candidate->toplevel_var->data.location_frac
733 + this->matched_candidate->offset;
734 const unsigned dmul =
735 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
736
737 if (this->matched_candidate->type->is_array()) {
738 /* Array variable */
739 const unsigned matrix_cols =
740 this->matched_candidate->type->fields.array->matrix_columns;
741 const unsigned vector_elements =
742 this->matched_candidate->type->fields.array->vector_elements;
743 unsigned actual_array_size;
744 switch (this->lowered_builtin_array_variable) {
745 case clip_distance:
746 actual_array_size = prog->LastClipDistanceArraySize;
747 break;
748 case cull_distance:
749 actual_array_size = prog->LastCullDistanceArraySize;
750 break;
751 case tess_level_outer:
752 actual_array_size = 4;
753 break;
754 case tess_level_inner:
755 actual_array_size = 2;
756 break;
757 case none:
758 default:
759 actual_array_size = this->matched_candidate->type->array_size();
760 break;
761 }
762
763 if (this->is_subscripted) {
764 /* Check array bounds. */
765 if (this->array_subscript >= actual_array_size) {
766 linker_error(prog, "Transform feedback varying %s has index "
767 "%i, but the array size is %u.",
768 this->orig_name, this->array_subscript,
769 actual_array_size);
770 return false;
771 }
772 unsigned array_elem_size = this->lowered_builtin_array_variable ?
773 1 : vector_elements * matrix_cols * dmul;
774 fine_location += array_elem_size * this->array_subscript;
775 this->size = 1;
776 } else {
777 this->size = actual_array_size;
778 }
779 this->vector_elements = vector_elements;
780 this->matrix_columns = matrix_cols;
781 if (this->lowered_builtin_array_variable)
782 this->type = GL_FLOAT;
783 else
784 this->type = this->matched_candidate->type->fields.array->gl_type;
785 } else {
786 /* Regular variable (scalar, vector, or matrix) */
787 if (this->is_subscripted) {
788 linker_error(prog, "Transform feedback varying %s requested, "
789 "but %s is not an array.",
790 this->orig_name, this->var_name);
791 return false;
792 }
793 this->size = 1;
794 this->vector_elements = this->matched_candidate->type->vector_elements;
795 this->matrix_columns = this->matched_candidate->type->matrix_columns;
796 this->type = this->matched_candidate->type->gl_type;
797 }
798 this->location = fine_location / 4;
799 this->location_frac = fine_location % 4;
800
801 /* From GL_EXT_transform_feedback:
802 * A program will fail to link if:
803 *
804 * * the total number of components to capture in any varying
805 * variable in <varyings> is greater than the constant
806 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
807 * buffer mode is SEPARATE_ATTRIBS_EXT;
808 */
809 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
810 this->num_components() >
811 ctx->Const.MaxTransformFeedbackSeparateComponents) {
812 linker_error(prog, "Transform feedback varying %s exceeds "
813 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
814 this->orig_name);
815 return false;
816 }
817
818 /* Only transform feedback varyings can be assigned to non-zero streams,
819 * so assign the stream id here.
820 */
821 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
822
823 unsigned array_offset = this->array_subscript * 4 * dmul;
824 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
825 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
826 this->offset = this->matched_candidate->toplevel_var->data.offset +
827 array_offset + struct_offset;
828
829 return true;
830 }
831
832
833 unsigned
834 tfeedback_decl::get_num_outputs() const
835 {
836 if (!this->is_varying()) {
837 return 0;
838 }
839 return (this->num_components() + this->location_frac + 3)/4;
840 }
841
842
843 /**
844 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
845 *
846 * If an error occurs, the error is reported through linker_error() and false
847 * is returned.
848 */
849 bool
850 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
851 struct gl_transform_feedback_info *info,
852 unsigned buffer, unsigned buffer_index,
853 const unsigned max_outputs, bool *explicit_stride,
854 bool has_xfb_qualifiers) const
855 {
856 unsigned xfb_offset = 0;
857 unsigned size = this->size;
858 /* Handle gl_SkipComponents. */
859 if (this->skip_components) {
860 info->Buffers[buffer].Stride += this->skip_components;
861 size = this->skip_components;
862 goto store_varying;
863 }
864
865 if (this->next_buffer_separator) {
866 size = 0;
867 goto store_varying;
868 }
869
870 if (has_xfb_qualifiers) {
871 xfb_offset = this->offset / 4;
872 } else {
873 xfb_offset = info->Buffers[buffer].Stride;
874 }
875 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
876
877 {
878 unsigned location = this->location;
879 unsigned location_frac = this->location_frac;
880 unsigned num_components = this->num_components();
881 while (num_components > 0) {
882 unsigned output_size = MIN2(num_components, 4 - location_frac);
883 assert((info->NumOutputs == 0 && max_outputs == 0) ||
884 info->NumOutputs < max_outputs);
885
886 /* From the ARB_enhanced_layouts spec:
887 *
888 * "If such a block member or variable is not written during a shader
889 * invocation, the buffer contents at the assigned offset will be
890 * undefined. Even if there are no static writes to a variable or
891 * member that is assigned a transform feedback offset, the space is
892 * still allocated in the buffer and still affects the stride."
893 */
894 if (this->is_varying_written()) {
895 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
896 info->Outputs[info->NumOutputs].OutputRegister = location;
897 info->Outputs[info->NumOutputs].NumComponents = output_size;
898 info->Outputs[info->NumOutputs].StreamId = stream_id;
899 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
900 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
901 ++info->NumOutputs;
902 }
903 info->Buffers[buffer].Stream = this->stream_id;
904 xfb_offset += output_size;
905
906 num_components -= output_size;
907 location++;
908 location_frac = 0;
909 }
910 }
911
912 if (explicit_stride && explicit_stride[buffer]) {
913 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
914 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
915 "multiple of 8 as its applied to a type that is or "
916 "contains a double.",
917 info->Buffers[buffer].Stride * 4);
918 return false;
919 }
920
921 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
922 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
923 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
924 "buffer (%d)", xfb_offset * 4,
925 info->Buffers[buffer].Stride * 4, buffer);
926 return false;
927 }
928 } else {
929 info->Buffers[buffer].Stride = xfb_offset;
930 }
931
932 /* From GL_EXT_transform_feedback:
933 * A program will fail to link if:
934 *
935 * * the total number of components to capture is greater than
936 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
937 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
938 *
939 * From GL_ARB_enhanced_layouts:
940 *
941 * "The resulting stride (implicit or explicit) must be less than or
942 * equal to the implementation-dependent constant
943 * gl_MaxTransformFeedbackInterleavedComponents."
944 */
945 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
946 has_xfb_qualifiers) &&
947 info->Buffers[buffer].Stride >
948 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
949 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
950 "limit has been exceeded.");
951 return false;
952 }
953
954 store_varying:
955 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
956 this->orig_name);
957 info->Varyings[info->NumVarying].Type = this->type;
958 info->Varyings[info->NumVarying].Size = size;
959 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
960 info->NumVarying++;
961 info->Buffers[buffer].NumVaryings++;
962
963 return true;
964 }
965
966
967 const tfeedback_candidate *
968 tfeedback_decl::find_candidate(gl_shader_program *prog,
969 hash_table *tfeedback_candidates)
970 {
971 const char *name = this->var_name;
972 switch (this->lowered_builtin_array_variable) {
973 case none:
974 name = this->var_name;
975 break;
976 case clip_distance:
977 name = "gl_ClipDistanceMESA";
978 break;
979 case cull_distance:
980 name = "gl_CullDistanceMESA";
981 break;
982 case tess_level_outer:
983 name = "gl_TessLevelOuterMESA";
984 break;
985 case tess_level_inner:
986 name = "gl_TessLevelInnerMESA";
987 break;
988 }
989 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
990
991 this->matched_candidate = entry ?
992 (const tfeedback_candidate *) entry->data : NULL;
993
994 if (!this->matched_candidate) {
995 /* From GL_EXT_transform_feedback:
996 * A program will fail to link if:
997 *
998 * * any variable name specified in the <varyings> array is not
999 * declared as an output in the geometry shader (if present) or
1000 * the vertex shader (if no geometry shader is present);
1001 */
1002 linker_error(prog, "Transform feedback varying %s undeclared.",
1003 this->orig_name);
1004 }
1005
1006 return this->matched_candidate;
1007 }
1008
1009
1010 /**
1011 * Parse all the transform feedback declarations that were passed to
1012 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1013 *
1014 * If an error occurs, the error is reported through linker_error() and false
1015 * is returned.
1016 */
1017 bool
1018 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1019 const void *mem_ctx, unsigned num_names,
1020 char **varying_names, tfeedback_decl *decls)
1021 {
1022 for (unsigned i = 0; i < num_names; ++i) {
1023 decls[i].init(ctx, mem_ctx, varying_names[i]);
1024
1025 if (!decls[i].is_varying())
1026 continue;
1027
1028 /* From GL_EXT_transform_feedback:
1029 * A program will fail to link if:
1030 *
1031 * * any two entries in the <varyings> array specify the same varying
1032 * variable;
1033 *
1034 * We interpret this to mean "any two entries in the <varyings> array
1035 * specify the same varying variable and array index", since transform
1036 * feedback of arrays would be useless otherwise.
1037 */
1038 for (unsigned j = 0; j < i; ++j) {
1039 if (!decls[j].is_varying())
1040 continue;
1041
1042 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1043 linker_error(prog, "Transform feedback varying %s specified "
1044 "more than once.", varying_names[i]);
1045 return false;
1046 }
1047 }
1048 }
1049 return true;
1050 }
1051
1052
1053 static int
1054 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1055 {
1056 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1057 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1058
1059 if (x->get_buffer() != y->get_buffer())
1060 return x->get_buffer() - y->get_buffer();
1061 return x->get_offset() - y->get_offset();
1062 }
1063
1064 /**
1065 * Store transform feedback location assignments into
1066 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1067 *
1068 * If an error occurs, the error is reported through linker_error() and false
1069 * is returned.
1070 */
1071 bool
1072 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1073 unsigned num_tfeedback_decls,
1074 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1075 {
1076 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1077 * tracking the number of buffers doesn't overflow.
1078 */
1079 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1080
1081 bool separate_attribs_mode =
1082 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1083
1084 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1085 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1086
1087 memset(&prog->LinkedTransformFeedback, 0,
1088 sizeof(prog->LinkedTransformFeedback));
1089
1090 /* The xfb_offset qualifier does not have to be used in increasing order
1091 * however some drivers expect to receive the list of transform feedback
1092 * declarations in order so sort it now for convenience.
1093 */
1094 if (has_xfb_qualifiers)
1095 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1096 cmp_xfb_offset);
1097
1098 prog->LinkedTransformFeedback.Varyings =
1099 rzalloc_array(prog,
1100 struct gl_transform_feedback_varying_info,
1101 num_tfeedback_decls);
1102
1103 unsigned num_outputs = 0;
1104 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1105 if (tfeedback_decls[i].is_varying_written())
1106 num_outputs += tfeedback_decls[i].get_num_outputs();
1107 }
1108
1109 prog->LinkedTransformFeedback.Outputs =
1110 rzalloc_array(prog,
1111 struct gl_transform_feedback_output,
1112 num_outputs);
1113
1114 unsigned num_buffers = 0;
1115 unsigned buffers = 0;
1116
1117 if (!has_xfb_qualifiers && separate_attribs_mode) {
1118 /* GL_SEPARATE_ATTRIBS */
1119 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1120 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1121 num_buffers, num_buffers, num_outputs,
1122 NULL, has_xfb_qualifiers))
1123 return false;
1124
1125 buffers |= 1 << num_buffers;
1126 num_buffers++;
1127 }
1128 }
1129 else {
1130 /* GL_INVERLEAVED_ATTRIBS */
1131 int buffer_stream_id = -1;
1132 unsigned buffer =
1133 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1134 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1135
1136 /* Apply any xfb_stride global qualifiers */
1137 if (has_xfb_qualifiers) {
1138 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1139 if (prog->TransformFeedback.BufferStride[j]) {
1140 buffers |= 1 << j;
1141 explicit_stride[j] = true;
1142 prog->LinkedTransformFeedback.Buffers[j].Stride =
1143 prog->TransformFeedback.BufferStride[j] / 4;
1144 }
1145 }
1146 }
1147
1148 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1149 if (has_xfb_qualifiers &&
1150 buffer != tfeedback_decls[i].get_buffer()) {
1151 /* we have moved to the next buffer so reset stream id */
1152 buffer_stream_id = -1;
1153 num_buffers++;
1154 }
1155
1156 if (tfeedback_decls[i].is_next_buffer_separator()) {
1157 if (!tfeedback_decls[i].store(ctx, prog,
1158 &prog->LinkedTransformFeedback,
1159 buffer, num_buffers, num_outputs,
1160 explicit_stride, has_xfb_qualifiers))
1161 return false;
1162 num_buffers++;
1163 buffer_stream_id = -1;
1164 continue;
1165 } else if (tfeedback_decls[i].is_varying()) {
1166 if (buffer_stream_id == -1) {
1167 /* First varying writing to this buffer: remember its stream */
1168 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1169 } else if (buffer_stream_id !=
1170 (int) tfeedback_decls[i].get_stream_id()) {
1171 /* Varying writes to the same buffer from a different stream */
1172 linker_error(prog,
1173 "Transform feedback can't capture varyings belonging "
1174 "to different vertex streams in a single buffer. "
1175 "Varying %s writes to buffer from stream %u, other "
1176 "varyings in the same buffer write from stream %u.",
1177 tfeedback_decls[i].name(),
1178 tfeedback_decls[i].get_stream_id(),
1179 buffer_stream_id);
1180 return false;
1181 }
1182 }
1183
1184 if (has_xfb_qualifiers) {
1185 buffer = tfeedback_decls[i].get_buffer();
1186 } else {
1187 buffer = num_buffers;
1188 }
1189 buffers |= 1 << buffer;
1190
1191 if (!tfeedback_decls[i].store(ctx, prog,
1192 &prog->LinkedTransformFeedback,
1193 buffer, num_buffers, num_outputs,
1194 explicit_stride, has_xfb_qualifiers))
1195 return false;
1196 }
1197 }
1198
1199 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1200
1201 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1202 return true;
1203 }
1204
1205 namespace {
1206
1207 /**
1208 * Data structure recording the relationship between outputs of one shader
1209 * stage (the "producer") and inputs of another (the "consumer").
1210 */
1211 class varying_matches
1212 {
1213 public:
1214 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1215 gl_shader_stage producer_stage,
1216 gl_shader_stage consumer_stage);
1217 ~varying_matches();
1218 void record(ir_variable *producer_var, ir_variable *consumer_var);
1219 unsigned assign_locations(struct gl_shader_program *prog,
1220 uint8_t *components,
1221 uint64_t reserved_slots);
1222 void store_locations() const;
1223
1224 private:
1225 bool is_varying_packing_safe(const glsl_type *type,
1226 const ir_variable *var);
1227
1228 /**
1229 * If true, this driver disables varying packing, so all varyings need to
1230 * be aligned on slot boundaries, and take up a number of slots equal to
1231 * their number of matrix columns times their array size.
1232 *
1233 * Packing may also be disabled because our current packing method is not
1234 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1235 * guaranteed to match across stages.
1236 */
1237 const bool disable_varying_packing;
1238
1239 /**
1240 * If true, this driver has transform feedback enabled. The transform
1241 * feedback code requires at least some packing be done even when varying
1242 * packing is disabled, fortunately where transform feedback requires
1243 * packing it's safe to override the disabled setting. See
1244 * is_varying_packing_safe().
1245 */
1246 const bool xfb_enabled;
1247
1248 /**
1249 * Enum representing the order in which varyings are packed within a
1250 * packing class.
1251 *
1252 * Currently we pack vec4's first, then vec2's, then scalar values, then
1253 * vec3's. This order ensures that the only vectors that are at risk of
1254 * having to be "double parked" (split between two adjacent varying slots)
1255 * are the vec3's.
1256 */
1257 enum packing_order_enum {
1258 PACKING_ORDER_VEC4,
1259 PACKING_ORDER_VEC2,
1260 PACKING_ORDER_SCALAR,
1261 PACKING_ORDER_VEC3,
1262 };
1263
1264 static unsigned compute_packing_class(const ir_variable *var);
1265 static packing_order_enum compute_packing_order(const ir_variable *var);
1266 static int match_comparator(const void *x_generic, const void *y_generic);
1267 static int xfb_comparator(const void *x_generic, const void *y_generic);
1268
1269 /**
1270 * Structure recording the relationship between a single producer output
1271 * and a single consumer input.
1272 */
1273 struct match {
1274 /**
1275 * Packing class for this varying, computed by compute_packing_class().
1276 */
1277 unsigned packing_class;
1278
1279 /**
1280 * Packing order for this varying, computed by compute_packing_order().
1281 */
1282 packing_order_enum packing_order;
1283 unsigned num_components;
1284
1285 /**
1286 * The output variable in the producer stage.
1287 */
1288 ir_variable *producer_var;
1289
1290 /**
1291 * The input variable in the consumer stage.
1292 */
1293 ir_variable *consumer_var;
1294
1295 /**
1296 * The location which has been assigned for this varying. This is
1297 * expressed in multiples of a float, with the first generic varying
1298 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1299 * value 0.
1300 */
1301 unsigned generic_location;
1302 } *matches;
1303
1304 /**
1305 * The number of elements in the \c matches array that are currently in
1306 * use.
1307 */
1308 unsigned num_matches;
1309
1310 /**
1311 * The number of elements that were set aside for the \c matches array when
1312 * it was allocated.
1313 */
1314 unsigned matches_capacity;
1315
1316 gl_shader_stage producer_stage;
1317 gl_shader_stage consumer_stage;
1318 };
1319
1320 } /* anonymous namespace */
1321
1322 varying_matches::varying_matches(bool disable_varying_packing,
1323 bool xfb_enabled,
1324 gl_shader_stage producer_stage,
1325 gl_shader_stage consumer_stage)
1326 : disable_varying_packing(disable_varying_packing),
1327 xfb_enabled(xfb_enabled),
1328 producer_stage(producer_stage),
1329 consumer_stage(consumer_stage)
1330 {
1331 /* Note: this initial capacity is rather arbitrarily chosen to be large
1332 * enough for many cases without wasting an unreasonable amount of space.
1333 * varying_matches::record() will resize the array if there are more than
1334 * this number of varyings.
1335 */
1336 this->matches_capacity = 8;
1337 this->matches = (match *)
1338 malloc(sizeof(*this->matches) * this->matches_capacity);
1339 this->num_matches = 0;
1340 }
1341
1342
1343 varying_matches::~varying_matches()
1344 {
1345 free(this->matches);
1346 }
1347
1348
1349 /**
1350 * Packing is always safe on individual arrays, structures, and matrices. It
1351 * is also safe if the varying is only used for transform feedback.
1352 */
1353 bool
1354 varying_matches::is_varying_packing_safe(const glsl_type *type,
1355 const ir_variable *var)
1356 {
1357 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1358 consumer_stage == MESA_SHADER_TESS_CTRL ||
1359 producer_stage == MESA_SHADER_TESS_CTRL)
1360 return false;
1361
1362 return xfb_enabled && (type->is_array() || type->is_record() ||
1363 type->is_matrix() || var->data.is_xfb_only);
1364 }
1365
1366
1367 /**
1368 * Record the given producer/consumer variable pair in the list of variables
1369 * that should later be assigned locations.
1370 *
1371 * It is permissible for \c consumer_var to be NULL (this happens if a
1372 * variable is output by the producer and consumed by transform feedback, but
1373 * not consumed by the consumer).
1374 *
1375 * If \c producer_var has already been paired up with a consumer_var, or
1376 * producer_var is part of fixed pipeline functionality (and hence already has
1377 * a location assigned), this function has no effect.
1378 *
1379 * Note: as a side effect this function may change the interpolation type of
1380 * \c producer_var, but only when the change couldn't possibly affect
1381 * rendering.
1382 */
1383 void
1384 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1385 {
1386 assert(producer_var != NULL || consumer_var != NULL);
1387
1388 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1389 producer_var->data.explicit_location)) ||
1390 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1391 consumer_var->data.explicit_location))) {
1392 /* Either a location already exists for this variable (since it is part
1393 * of fixed functionality), or it has already been recorded as part of a
1394 * previous match.
1395 */
1396 return;
1397 }
1398
1399 bool needs_flat_qualifier = consumer_var == NULL &&
1400 (producer_var->type->contains_integer() ||
1401 producer_var->type->contains_double());
1402
1403 if (!disable_varying_packing &&
1404 (needs_flat_qualifier ||
1405 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT))) {
1406 /* Since this varying is not being consumed by the fragment shader, its
1407 * interpolation type varying cannot possibly affect rendering.
1408 * Also, this variable is non-flat and is (or contains) an integer
1409 * or a double.
1410 * If the consumer stage is unknown, don't modify the interpolation
1411 * type as it could affect rendering later with separate shaders.
1412 *
1413 * lower_packed_varyings requires all integer varyings to flat,
1414 * regardless of where they appear. We can trivially satisfy that
1415 * requirement by changing the interpolation type to flat here.
1416 */
1417 if (producer_var) {
1418 producer_var->data.centroid = false;
1419 producer_var->data.sample = false;
1420 producer_var->data.interpolation = INTERP_MODE_FLAT;
1421 }
1422
1423 if (consumer_var) {
1424 consumer_var->data.centroid = false;
1425 consumer_var->data.sample = false;
1426 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1427 }
1428 }
1429
1430 if (this->num_matches == this->matches_capacity) {
1431 this->matches_capacity *= 2;
1432 this->matches = (match *)
1433 realloc(this->matches,
1434 sizeof(*this->matches) * this->matches_capacity);
1435 }
1436
1437 /* We must use the consumer to compute the packing class because in GL4.4+
1438 * there is no guarantee interpolation qualifiers will match across stages.
1439 *
1440 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1441 *
1442 * "The type and presence of interpolation qualifiers of variables with
1443 * the same name declared in all linked shaders for the same cross-stage
1444 * interface must match, otherwise the link command will fail.
1445 *
1446 * When comparing an output from one stage to an input of a subsequent
1447 * stage, the input and output don't match if their interpolation
1448 * qualifiers (or lack thereof) are not the same."
1449 *
1450 * This text was also in at least revison 7 of the 4.40 spec but is no
1451 * longer in revision 9 and not in the 4.50 spec.
1452 */
1453 const ir_variable *const var = (consumer_var != NULL)
1454 ? consumer_var : producer_var;
1455 const gl_shader_stage stage = (consumer_var != NULL)
1456 ? consumer_stage : producer_stage;
1457 const glsl_type *type = get_varying_type(var, stage);
1458
1459 this->matches[this->num_matches].packing_class
1460 = this->compute_packing_class(var);
1461 this->matches[this->num_matches].packing_order
1462 = this->compute_packing_order(var);
1463 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1464 unsigned slots = type->count_attribute_slots(false);
1465 this->matches[this->num_matches].num_components = slots * 4;
1466 } else {
1467 this->matches[this->num_matches].num_components
1468 = type->component_slots();
1469 }
1470 this->matches[this->num_matches].producer_var = producer_var;
1471 this->matches[this->num_matches].consumer_var = consumer_var;
1472 this->num_matches++;
1473 if (producer_var)
1474 producer_var->data.is_unmatched_generic_inout = 0;
1475 if (consumer_var)
1476 consumer_var->data.is_unmatched_generic_inout = 0;
1477 }
1478
1479
1480 /**
1481 * Choose locations for all of the variable matches that were previously
1482 * passed to varying_matches::record().
1483 */
1484 unsigned
1485 varying_matches::assign_locations(struct gl_shader_program *prog,
1486 uint8_t *components,
1487 uint64_t reserved_slots)
1488 {
1489 /* If packing has been disabled then we cannot safely sort the varyings by
1490 * class as it may mean we are using a version of OpenGL where
1491 * interpolation qualifiers are not guaranteed to be matching across
1492 * shaders, sorting in this case could result in mismatching shader
1493 * interfaces.
1494 * When packing is disabled the sort orders varyings used by transform
1495 * feedback first, but also depends on *undefined behaviour* of qsort to
1496 * reverse the order of the varyings. See: xfb_comparator().
1497 */
1498 if (!this->disable_varying_packing) {
1499 /* Sort varying matches into an order that makes them easy to pack. */
1500 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1501 &varying_matches::match_comparator);
1502 } else {
1503 /* Only sort varyings that are only used by transform feedback. */
1504 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1505 &varying_matches::xfb_comparator);
1506 }
1507
1508 unsigned generic_location = 0;
1509 unsigned generic_patch_location = MAX_VARYING*4;
1510 bool previous_var_xfb_only = false;
1511
1512 for (unsigned i = 0; i < this->num_matches; i++) {
1513 unsigned *location = &generic_location;
1514
1515 const ir_variable *var;
1516 const glsl_type *type;
1517 bool is_vertex_input = false;
1518 if (matches[i].consumer_var) {
1519 var = matches[i].consumer_var;
1520 type = get_varying_type(var, consumer_stage);
1521 if (consumer_stage == MESA_SHADER_VERTEX)
1522 is_vertex_input = true;
1523 } else {
1524 var = matches[i].producer_var;
1525 type = get_varying_type(var, producer_stage);
1526 }
1527
1528 if (var->data.patch)
1529 location = &generic_patch_location;
1530
1531 /* Advance to the next slot if this varying has a different packing
1532 * class than the previous one, and we're not already on a slot
1533 * boundary.
1534 *
1535 * Also advance to the next slot if packing is disabled. This makes sure
1536 * we don't assign varyings the same locations which is possible
1537 * because we still pack individual arrays, records and matrices even
1538 * when packing is disabled. Note we don't advance to the next slot if
1539 * we can pack varyings together that are only used for transform
1540 * feedback.
1541 */
1542 if ((this->disable_varying_packing &&
1543 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1544 (i > 0 && this->matches[i - 1].packing_class
1545 != this->matches[i].packing_class )) {
1546 *location = ALIGN(*location, 4);
1547 }
1548
1549 previous_var_xfb_only = var->data.is_xfb_only;
1550
1551 /* The number of components taken up by this variable. For vertex shader
1552 * inputs, we use the number of slots * 4, as they have different
1553 * counting rules.
1554 */
1555 unsigned num_components = is_vertex_input ?
1556 type->count_attribute_slots(is_vertex_input) * 4 :
1557 this->matches[i].num_components;
1558
1559 /* The last slot for this variable, inclusive. */
1560 unsigned slot_end = *location + num_components - 1;
1561
1562 /* FIXME: We could be smarter in the below code and loop back over
1563 * trying to fill any locations that we skipped because we couldn't pack
1564 * the varying between an explicit location. For now just let the user
1565 * hit the linking error if we run out of room and suggest they use
1566 * explicit locations.
1567 */
1568 while (slot_end < MAX_VARYING * 4u) {
1569 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
1570 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
1571
1572 assert(slots > 0);
1573 if (reserved_slots & slot_mask) {
1574 *location = ALIGN(*location + 1, 4);
1575 slot_end = *location + num_components - 1;
1576 continue;
1577 }
1578
1579 break;
1580 }
1581
1582 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
1583 linker_error(prog, "insufficient contiguous locations available for "
1584 "%s it is possible an array or struct could not be "
1585 "packed between varyings with explicit locations. Try "
1586 "using an explicit location for arrays and structs.",
1587 var->name);
1588 }
1589
1590 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
1591 for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
1592 components[j] = 4;
1593 components[slot_end / 4u] = (slot_end & 3) + 1;
1594 }
1595
1596 this->matches[i].generic_location = *location;
1597
1598 *location = slot_end + 1;
1599 }
1600
1601 return (generic_location + 3) / 4;
1602 }
1603
1604
1605 /**
1606 * Update the producer and consumer shaders to reflect the locations
1607 * assignments that were made by varying_matches::assign_locations().
1608 */
1609 void
1610 varying_matches::store_locations() const
1611 {
1612 for (unsigned i = 0; i < this->num_matches; i++) {
1613 ir_variable *producer_var = this->matches[i].producer_var;
1614 ir_variable *consumer_var = this->matches[i].consumer_var;
1615 unsigned generic_location = this->matches[i].generic_location;
1616 unsigned slot = generic_location / 4;
1617 unsigned offset = generic_location % 4;
1618
1619 if (producer_var) {
1620 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1621 producer_var->data.location_frac = offset;
1622 }
1623
1624 if (consumer_var) {
1625 assert(consumer_var->data.location == -1);
1626 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1627 consumer_var->data.location_frac = offset;
1628 }
1629 }
1630 }
1631
1632
1633 /**
1634 * Compute the "packing class" of the given varying. This is an unsigned
1635 * integer with the property that two variables in the same packing class can
1636 * be safely backed into the same vec4.
1637 */
1638 unsigned
1639 varying_matches::compute_packing_class(const ir_variable *var)
1640 {
1641 /* Without help from the back-end, there is no way to pack together
1642 * variables with different interpolation types, because
1643 * lower_packed_varyings must choose exactly one interpolation type for
1644 * each packed varying it creates.
1645 *
1646 * However, we can safely pack together floats, ints, and uints, because:
1647 *
1648 * - varyings of base type "int" and "uint" must use the "flat"
1649 * interpolation type, which can only occur in GLSL 1.30 and above.
1650 *
1651 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1652 * can store flat floats as ints without losing any information (using
1653 * the ir_unop_bitcast_* opcodes).
1654 *
1655 * Therefore, the packing class depends only on the interpolation type.
1656 */
1657 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1658 (var->data.patch << 2);
1659 packing_class *= 4;
1660 packing_class += var->is_interpolation_flat()
1661 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
1662 return packing_class;
1663 }
1664
1665
1666 /**
1667 * Compute the "packing order" of the given varying. This is a sort key we
1668 * use to determine when to attempt to pack the given varying relative to
1669 * other varyings in the same packing class.
1670 */
1671 varying_matches::packing_order_enum
1672 varying_matches::compute_packing_order(const ir_variable *var)
1673 {
1674 const glsl_type *element_type = var->type;
1675
1676 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1677 element_type = element_type->fields.array;
1678 }
1679
1680 switch (element_type->component_slots() % 4) {
1681 case 1: return PACKING_ORDER_SCALAR;
1682 case 2: return PACKING_ORDER_VEC2;
1683 case 3: return PACKING_ORDER_VEC3;
1684 case 0: return PACKING_ORDER_VEC4;
1685 default:
1686 assert(!"Unexpected value of vector_elements");
1687 return PACKING_ORDER_VEC4;
1688 }
1689 }
1690
1691
1692 /**
1693 * Comparison function passed to qsort() to sort varyings by packing_class and
1694 * then by packing_order.
1695 */
1696 int
1697 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1698 {
1699 const match *x = (const match *) x_generic;
1700 const match *y = (const match *) y_generic;
1701
1702 if (x->packing_class != y->packing_class)
1703 return x->packing_class - y->packing_class;
1704 return x->packing_order - y->packing_order;
1705 }
1706
1707
1708 /**
1709 * Comparison function passed to qsort() to sort varyings used only by
1710 * transform feedback when packing of other varyings is disabled.
1711 */
1712 int
1713 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1714 {
1715 const match *x = (const match *) x_generic;
1716
1717 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1718 return match_comparator(x_generic, y_generic);
1719
1720 /* FIXME: When the comparator returns 0 it means the elements being
1721 * compared are equivalent. However the qsort documentation says:
1722 *
1723 * "The order of equivalent elements is undefined."
1724 *
1725 * In practice the sort ends up reversing the order of the varyings which
1726 * means locations are also assigned in this reversed order and happens to
1727 * be what we want. This is also whats happening in
1728 * varying_matches::match_comparator().
1729 */
1730 return 0;
1731 }
1732
1733
1734 /**
1735 * Is the given variable a varying variable to be counted against the
1736 * limit in ctx->Const.MaxVarying?
1737 * This includes variables such as texcoords, colors and generic
1738 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1739 */
1740 static bool
1741 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1742 {
1743 /* Only fragment shaders will take a varying variable as an input */
1744 if (stage == MESA_SHADER_FRAGMENT &&
1745 var->data.mode == ir_var_shader_in) {
1746 switch (var->data.location) {
1747 case VARYING_SLOT_POS:
1748 case VARYING_SLOT_FACE:
1749 case VARYING_SLOT_PNTC:
1750 return false;
1751 default:
1752 return true;
1753 }
1754 }
1755 return false;
1756 }
1757
1758
1759 /**
1760 * Visitor class that generates tfeedback_candidate structs describing all
1761 * possible targets of transform feedback.
1762 *
1763 * tfeedback_candidate structs are stored in the hash table
1764 * tfeedback_candidates, which is passed to the constructor. This hash table
1765 * maps varying names to instances of the tfeedback_candidate struct.
1766 */
1767 class tfeedback_candidate_generator : public program_resource_visitor
1768 {
1769 public:
1770 tfeedback_candidate_generator(void *mem_ctx,
1771 hash_table *tfeedback_candidates)
1772 : mem_ctx(mem_ctx),
1773 tfeedback_candidates(tfeedback_candidates),
1774 toplevel_var(NULL),
1775 varying_floats(0)
1776 {
1777 }
1778
1779 void process(ir_variable *var)
1780 {
1781 /* All named varying interface blocks should be flattened by now */
1782 assert(!var->is_interface_instance());
1783
1784 this->toplevel_var = var;
1785 this->varying_floats = 0;
1786 program_resource_visitor::process(var);
1787 }
1788
1789 private:
1790 virtual void visit_field(const glsl_type *type, const char *name,
1791 bool /* row_major */,
1792 const glsl_type * /* record_type */,
1793 const enum glsl_interface_packing,
1794 bool /* last_field */)
1795 {
1796 assert(!type->without_array()->is_record());
1797 assert(!type->without_array()->is_interface());
1798
1799 tfeedback_candidate *candidate
1800 = rzalloc(this->mem_ctx, tfeedback_candidate);
1801 candidate->toplevel_var = this->toplevel_var;
1802 candidate->type = type;
1803 candidate->offset = this->varying_floats;
1804 _mesa_hash_table_insert(this->tfeedback_candidates,
1805 ralloc_strdup(this->mem_ctx, name),
1806 candidate);
1807 this->varying_floats += type->component_slots();
1808 }
1809
1810 /**
1811 * Memory context used to allocate hash table keys and values.
1812 */
1813 void * const mem_ctx;
1814
1815 /**
1816 * Hash table in which tfeedback_candidate objects should be stored.
1817 */
1818 hash_table * const tfeedback_candidates;
1819
1820 /**
1821 * Pointer to the toplevel variable that is being traversed.
1822 */
1823 ir_variable *toplevel_var;
1824
1825 /**
1826 * Total number of varying floats that have been visited so far. This is
1827 * used to determine the offset to each varying within the toplevel
1828 * variable.
1829 */
1830 unsigned varying_floats;
1831 };
1832
1833
1834 namespace linker {
1835
1836 void
1837 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1838 hash_table *consumer_inputs,
1839 hash_table *consumer_interface_inputs,
1840 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1841 {
1842 memset(consumer_inputs_with_locations,
1843 0,
1844 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1845
1846 foreach_in_list(ir_instruction, node, ir) {
1847 ir_variable *const input_var = node->as_variable();
1848
1849 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
1850 /* All interface blocks should have been lowered by this point */
1851 assert(!input_var->type->is_interface());
1852
1853 if (input_var->data.explicit_location) {
1854 /* assign_varying_locations only cares about finding the
1855 * ir_variable at the start of a contiguous location block.
1856 *
1857 * - For !producer, consumer_inputs_with_locations isn't used.
1858 *
1859 * - For !consumer, consumer_inputs_with_locations is empty.
1860 *
1861 * For consumer && producer, if you were trying to set some
1862 * ir_variable to the middle of a location block on the other side
1863 * of producer/consumer, cross_validate_outputs_to_inputs() should
1864 * be link-erroring due to either type mismatch or location
1865 * overlaps. If the variables do match up, then they've got a
1866 * matching data.location and you only looked at
1867 * consumer_inputs_with_locations[var->data.location], not any
1868 * following entries for the array/structure.
1869 */
1870 consumer_inputs_with_locations[input_var->data.location] =
1871 input_var;
1872 } else if (input_var->get_interface_type() != NULL) {
1873 char *const iface_field_name =
1874 ralloc_asprintf(mem_ctx, "%s.%s",
1875 input_var->get_interface_type()->without_array()->name,
1876 input_var->name);
1877 _mesa_hash_table_insert(consumer_interface_inputs,
1878 iface_field_name, input_var);
1879 } else {
1880 _mesa_hash_table_insert(consumer_inputs,
1881 ralloc_strdup(mem_ctx, input_var->name),
1882 input_var);
1883 }
1884 }
1885 }
1886 }
1887
1888 /**
1889 * Find a variable from the consumer that "matches" the specified variable
1890 *
1891 * This function only finds inputs with names that match. There is no
1892 * validation (here) that the types, etc. are compatible.
1893 */
1894 ir_variable *
1895 get_matching_input(void *mem_ctx,
1896 const ir_variable *output_var,
1897 hash_table *consumer_inputs,
1898 hash_table *consumer_interface_inputs,
1899 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1900 {
1901 ir_variable *input_var;
1902
1903 if (output_var->data.explicit_location) {
1904 input_var = consumer_inputs_with_locations[output_var->data.location];
1905 } else if (output_var->get_interface_type() != NULL) {
1906 char *const iface_field_name =
1907 ralloc_asprintf(mem_ctx, "%s.%s",
1908 output_var->get_interface_type()->without_array()->name,
1909 output_var->name);
1910 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
1911 input_var = entry ? (ir_variable *) entry->data : NULL;
1912 } else {
1913 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
1914 input_var = entry ? (ir_variable *) entry->data : NULL;
1915 }
1916
1917 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1918 ? NULL : input_var;
1919 }
1920
1921 }
1922
1923 static int
1924 io_variable_cmp(const void *_a, const void *_b)
1925 {
1926 const ir_variable *const a = *(const ir_variable **) _a;
1927 const ir_variable *const b = *(const ir_variable **) _b;
1928
1929 if (a->data.explicit_location && b->data.explicit_location)
1930 return b->data.location - a->data.location;
1931
1932 if (a->data.explicit_location && !b->data.explicit_location)
1933 return 1;
1934
1935 if (!a->data.explicit_location && b->data.explicit_location)
1936 return -1;
1937
1938 return -strcmp(a->name, b->name);
1939 }
1940
1941 /**
1942 * Sort the shader IO variables into canonical order
1943 */
1944 static void
1945 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1946 {
1947 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1948 unsigned num_variables = 0;
1949
1950 foreach_in_list(ir_instruction, node, ir) {
1951 ir_variable *const var = node->as_variable();
1952
1953 if (var == NULL || var->data.mode != io_mode)
1954 continue;
1955
1956 /* If we have already encountered more I/O variables that could
1957 * successfully link, bail.
1958 */
1959 if (num_variables == ARRAY_SIZE(var_table))
1960 return;
1961
1962 var_table[num_variables++] = var;
1963 }
1964
1965 if (num_variables == 0)
1966 return;
1967
1968 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1969 * we're going to push the variables on to the IR list as a stack, so we
1970 * want the last variable (in canonical order) to be first in the list.
1971 */
1972 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1973
1974 /* Remove the variable from it's current location in the IR, and put it at
1975 * the front.
1976 */
1977 for (unsigned i = 0; i < num_variables; i++) {
1978 var_table[i]->remove();
1979 ir->push_head(var_table[i]);
1980 }
1981 }
1982
1983 /**
1984 * Generate a bitfield map of the explicit locations for shader varyings.
1985 *
1986 * Note: For Tessellation shaders we are sitting right on the limits of the
1987 * 64 bit map. Per-vertex and per-patch both have separate location domains
1988 * with a max of MAX_VARYING.
1989 */
1990 uint64_t
1991 reserved_varying_slot(struct gl_linked_shader *stage,
1992 ir_variable_mode io_mode)
1993 {
1994 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1995 /* Avoid an overflow of the returned value */
1996 assert(MAX_VARYINGS_INCL_PATCH <= 64);
1997
1998 uint64_t slots = 0;
1999 int var_slot;
2000
2001 if (!stage)
2002 return slots;
2003
2004 foreach_in_list(ir_instruction, node, stage->ir) {
2005 ir_variable *const var = node->as_variable();
2006
2007 if (var == NULL || var->data.mode != io_mode ||
2008 !var->data.explicit_location ||
2009 var->data.location < VARYING_SLOT_VAR0)
2010 continue;
2011
2012 var_slot = var->data.location - VARYING_SLOT_VAR0;
2013
2014 unsigned num_elements = get_varying_type(var, stage->Stage)
2015 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
2016 for (unsigned i = 0; i < num_elements; i++) {
2017 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
2018 slots |= UINT64_C(1) << var_slot;
2019 var_slot += 1;
2020 }
2021 }
2022
2023 return slots;
2024 }
2025
2026
2027 /**
2028 * Assign locations for all variables that are produced in one pipeline stage
2029 * (the "producer") and consumed in the next stage (the "consumer").
2030 *
2031 * Variables produced by the producer may also be consumed by transform
2032 * feedback.
2033 *
2034 * \param num_tfeedback_decls is the number of declarations indicating
2035 * variables that may be consumed by transform feedback.
2036 *
2037 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2038 * representing the result of parsing the strings passed to
2039 * glTransformFeedbackVaryings(). assign_location() will be called for
2040 * each of these objects that matches one of the outputs of the
2041 * producer.
2042 *
2043 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2044 * be NULL. In this case, varying locations are assigned solely based on the
2045 * requirements of transform feedback.
2046 */
2047 bool
2048 assign_varying_locations(struct gl_context *ctx,
2049 void *mem_ctx,
2050 struct gl_shader_program *prog,
2051 gl_linked_shader *producer,
2052 gl_linked_shader *consumer,
2053 unsigned num_tfeedback_decls,
2054 tfeedback_decl *tfeedback_decls,
2055 const uint64_t reserved_slots)
2056 {
2057 /* Tessellation shaders treat inputs and outputs as shared memory and can
2058 * access inputs and outputs of other invocations.
2059 * Therefore, they can't be lowered to temps easily (and definitely not
2060 * efficiently).
2061 */
2062 bool unpackable_tess =
2063 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2064 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2065 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2066
2067 /* Transform feedback code assumes varying arrays are packed, so if the
2068 * driver has disabled varying packing, make sure to at least enable
2069 * packing required by transform feedback.
2070 */
2071 bool xfb_enabled =
2072 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2073
2074 /* Disable packing on outward facing interfaces for SSO because in ES we
2075 * need to retain the unpacked varying information for draw time
2076 * validation.
2077 *
2078 * Packing is still enabled on individual arrays, structs, and matrices as
2079 * these are required by the transform feedback code and it is still safe
2080 * to do so. We also enable packing when a varying is only used for
2081 * transform feedback and its not a SSO.
2082 */
2083 bool disable_varying_packing =
2084 ctx->Const.DisableVaryingPacking || unpackable_tess;
2085 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2086 disable_varying_packing = true;
2087
2088 varying_matches matches(disable_varying_packing, xfb_enabled,
2089 producer ? producer->Stage : (gl_shader_stage)-1,
2090 consumer ? consumer->Stage : (gl_shader_stage)-1);
2091 hash_table *tfeedback_candidates =
2092 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2093 _mesa_key_string_equal);
2094 hash_table *consumer_inputs =
2095 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2096 _mesa_key_string_equal);
2097 hash_table *consumer_interface_inputs =
2098 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2099 _mesa_key_string_equal);
2100 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2101 NULL,
2102 };
2103
2104 unsigned consumer_vertices = 0;
2105 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2106 consumer_vertices = prog->Geom.VerticesIn;
2107
2108 /* Operate in a total of four passes.
2109 *
2110 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2111 * that inputs / outputs of separable shaders will be assigned
2112 * predictable locations regardless of the order in which declarations
2113 * appeared in the shader source.
2114 *
2115 * 2. Assign locations for any matching inputs and outputs.
2116 *
2117 * 3. Mark output variables in the producer that do not have locations as
2118 * not being outputs. This lets the optimizer eliminate them.
2119 *
2120 * 4. Mark input variables in the consumer that do not have locations as
2121 * not being inputs. This lets the optimizer eliminate them.
2122 */
2123 if (consumer)
2124 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2125
2126 if (producer)
2127 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2128
2129 if (consumer)
2130 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2131 consumer_inputs,
2132 consumer_interface_inputs,
2133 consumer_inputs_with_locations);
2134
2135 if (producer) {
2136 foreach_in_list(ir_instruction, node, producer->ir) {
2137 ir_variable *const output_var = node->as_variable();
2138
2139 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2140 continue;
2141
2142 /* Only geometry shaders can use non-zero streams */
2143 assert(output_var->data.stream == 0 ||
2144 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2145 producer->Stage == MESA_SHADER_GEOMETRY));
2146
2147 if (num_tfeedback_decls > 0) {
2148 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2149 g.process(output_var);
2150 }
2151
2152 ir_variable *const input_var =
2153 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2154 consumer_interface_inputs,
2155 consumer_inputs_with_locations);
2156
2157 /* If a matching input variable was found, add this output (and the
2158 * input) to the set. If this is a separable program and there is no
2159 * consumer stage, add the output.
2160 *
2161 * Always add TCS outputs. They are shared by all invocations
2162 * within a patch and can be used as shared memory.
2163 */
2164 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2165 producer->Stage == MESA_SHADER_TESS_CTRL) {
2166 matches.record(output_var, input_var);
2167 }
2168
2169 /* Only stream 0 outputs can be consumed in the next stage */
2170 if (input_var && output_var->data.stream != 0) {
2171 linker_error(prog, "output %s is assigned to stream=%d but "
2172 "is linked to an input, which requires stream=0",
2173 output_var->name, output_var->data.stream);
2174 return false;
2175 }
2176 }
2177 } else {
2178 /* If there's no producer stage, then this must be a separable program.
2179 * For example, we may have a program that has just a fragment shader.
2180 * Later this program will be used with some arbitrary vertex (or
2181 * geometry) shader program. This means that locations must be assigned
2182 * for all the inputs.
2183 */
2184 foreach_in_list(ir_instruction, node, consumer->ir) {
2185 ir_variable *const input_var = node->as_variable();
2186
2187 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2188 continue;
2189
2190 matches.record(NULL, input_var);
2191 }
2192 }
2193
2194 _mesa_hash_table_destroy(consumer_inputs, NULL);
2195 _mesa_hash_table_destroy(consumer_interface_inputs, NULL);
2196
2197 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2198 if (!tfeedback_decls[i].is_varying())
2199 continue;
2200
2201 const tfeedback_candidate *matched_candidate
2202 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2203
2204 if (matched_candidate == NULL) {
2205 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2206 return false;
2207 }
2208
2209 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2210 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2211 matches.record(matched_candidate->toplevel_var, NULL);
2212 }
2213 }
2214
2215 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
2216 const unsigned slots_used = matches.assign_locations(
2217 prog, components, reserved_slots);
2218 matches.store_locations();
2219
2220 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2221 if (!tfeedback_decls[i].is_varying())
2222 continue;
2223
2224 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2225 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2226 return false;
2227 }
2228 }
2229 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2230
2231 if (consumer && producer) {
2232 foreach_in_list(ir_instruction, node, consumer->ir) {
2233 ir_variable *const var = node->as_variable();
2234
2235 if (var && var->data.mode == ir_var_shader_in &&
2236 var->data.is_unmatched_generic_inout) {
2237 if (!prog->IsES && prog->data->Version <= 120) {
2238 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2239 *
2240 * Only those varying variables used (i.e. read) in
2241 * the fragment shader executable must be written to
2242 * by the vertex shader executable; declaring
2243 * superfluous varying variables in a vertex shader is
2244 * permissible.
2245 *
2246 * We interpret this text as meaning that the VS must
2247 * write the variable for the FS to read it. See
2248 * "glsl1-varying read but not written" in piglit.
2249 */
2250 linker_error(prog, "%s shader varying %s not written "
2251 "by %s shader\n.",
2252 _mesa_shader_stage_to_string(consumer->Stage),
2253 var->name,
2254 _mesa_shader_stage_to_string(producer->Stage));
2255 } else {
2256 linker_warning(prog, "%s shader varying %s not written "
2257 "by %s shader\n.",
2258 _mesa_shader_stage_to_string(consumer->Stage),
2259 var->name,
2260 _mesa_shader_stage_to_string(producer->Stage));
2261 }
2262 }
2263 }
2264
2265 /* Now that validation is done its safe to remove unused varyings. As
2266 * we have both a producer and consumer its safe to remove unused
2267 * varyings even if the program is a SSO because the stages are being
2268 * linked together i.e. we have a multi-stage SSO.
2269 */
2270 remove_unused_shader_inputs_and_outputs(false, producer,
2271 ir_var_shader_out);
2272 remove_unused_shader_inputs_and_outputs(false, consumer,
2273 ir_var_shader_in);
2274 }
2275
2276 if (producer) {
2277 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
2278 0, producer, disable_varying_packing,
2279 xfb_enabled);
2280 }
2281
2282 if (consumer) {
2283 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
2284 consumer_vertices, consumer,
2285 disable_varying_packing, xfb_enabled);
2286 }
2287
2288 return true;
2289 }
2290
2291 bool
2292 check_against_output_limit(struct gl_context *ctx,
2293 struct gl_shader_program *prog,
2294 gl_linked_shader *producer,
2295 unsigned num_explicit_locations)
2296 {
2297 unsigned output_vectors = num_explicit_locations;
2298
2299 foreach_in_list(ir_instruction, node, producer->ir) {
2300 ir_variable *const var = node->as_variable();
2301
2302 if (var && !var->data.explicit_location &&
2303 var->data.mode == ir_var_shader_out &&
2304 var_counts_against_varying_limit(producer->Stage, var)) {
2305 /* outputs for fragment shader can't be doubles */
2306 output_vectors += var->type->count_attribute_slots(false);
2307 }
2308 }
2309
2310 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2311 unsigned max_output_components =
2312 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2313
2314 const unsigned output_components = output_vectors * 4;
2315 if (output_components > max_output_components) {
2316 if (ctx->API == API_OPENGLES2 || prog->IsES)
2317 linker_error(prog, "%s shader uses too many output vectors "
2318 "(%u > %u)\n",
2319 _mesa_shader_stage_to_string(producer->Stage),
2320 output_vectors,
2321 max_output_components / 4);
2322 else
2323 linker_error(prog, "%s shader uses too many output components "
2324 "(%u > %u)\n",
2325 _mesa_shader_stage_to_string(producer->Stage),
2326 output_components,
2327 max_output_components);
2328
2329 return false;
2330 }
2331
2332 return true;
2333 }
2334
2335 bool
2336 check_against_input_limit(struct gl_context *ctx,
2337 struct gl_shader_program *prog,
2338 gl_linked_shader *consumer,
2339 unsigned num_explicit_locations)
2340 {
2341 unsigned input_vectors = num_explicit_locations;
2342
2343 foreach_in_list(ir_instruction, node, consumer->ir) {
2344 ir_variable *const var = node->as_variable();
2345
2346 if (var && !var->data.explicit_location &&
2347 var->data.mode == ir_var_shader_in &&
2348 var_counts_against_varying_limit(consumer->Stage, var)) {
2349 /* vertex inputs aren't varying counted */
2350 input_vectors += var->type->count_attribute_slots(false);
2351 }
2352 }
2353
2354 assert(consumer->Stage != MESA_SHADER_VERTEX);
2355 unsigned max_input_components =
2356 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2357
2358 const unsigned input_components = input_vectors * 4;
2359 if (input_components > max_input_components) {
2360 if (ctx->API == API_OPENGLES2 || prog->IsES)
2361 linker_error(prog, "%s shader uses too many input vectors "
2362 "(%u > %u)\n",
2363 _mesa_shader_stage_to_string(consumer->Stage),
2364 input_vectors,
2365 max_input_components / 4);
2366 else
2367 linker_error(prog, "%s shader uses too many input components "
2368 "(%u > %u)\n",
2369 _mesa_shader_stage_to_string(consumer->Stage),
2370 input_components,
2371 max_input_components);
2372
2373 return false;
2374 }
2375
2376 return true;
2377 }