glsl/linker: generalize validate_explicit_variable_location for SSO
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "util/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 static bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh,
111 struct gl_shader_program *prog,
112 unsigned *num_tfeedback_decls,
113 char ***varying_names)
114 {
115 bool has_xfb_qualifiers = false;
116
117 /* We still need to enable transform feedback mode even if xfb_stride is
118 * only applied to a global out. Also we don't bother to propagate
119 * xfb_stride to interface block members so this will catch that case also.
120 */
121 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
122 if (prog->TransformFeedback.BufferStride[j]) {
123 has_xfb_qualifiers = true;
124 break;
125 }
126 }
127
128 foreach_in_list(ir_instruction, node, sh->ir) {
129 ir_variable *var = node->as_variable();
130 if (!var || var->data.mode != ir_var_shader_out)
131 continue;
132
133 /* From the ARB_enhanced_layouts spec:
134 *
135 * "Any shader making any static use (after preprocessing) of any of
136 * these *xfb_* qualifiers will cause the shader to be in a
137 * transform feedback capturing mode and hence responsible for
138 * describing the transform feedback setup. This mode will capture
139 * any output selected by *xfb_offset*, directly or indirectly, to
140 * a transform feedback buffer."
141 */
142 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
143 has_xfb_qualifiers = true;
144 }
145
146 if (var->data.explicit_xfb_offset) {
147 *num_tfeedback_decls += var->type->varying_count();
148 has_xfb_qualifiers = true;
149 }
150 }
151
152 if (*num_tfeedback_decls == 0)
153 return has_xfb_qualifiers;
154
155 unsigned i = 0;
156 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
157 foreach_in_list(ir_instruction, node, sh->ir) {
158 ir_variable *var = node->as_variable();
159 if (!var || var->data.mode != ir_var_shader_out)
160 continue;
161
162 if (var->data.explicit_xfb_offset) {
163 char *name;
164 const glsl_type *type, *member_type;
165
166 if (var->data.from_named_ifc_block) {
167 type = var->get_interface_type();
168 /* Find the member type before it was altered by lowering */
169 member_type =
170 type->fields.structure[type->field_index(var->name)].type;
171 name = ralloc_strdup(NULL, type->without_array()->name);
172 } else {
173 type = var->type;
174 member_type = NULL;
175 name = ralloc_strdup(NULL, var->name);
176 }
177 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
178 var->name, member_type, varying_names);
179 ralloc_free(name);
180 }
181 }
182
183 assert(i == *num_tfeedback_decls);
184 return has_xfb_qualifiers;
185 }
186
187 /**
188 * Validate the types and qualifiers of an output from one stage against the
189 * matching input to another stage.
190 */
191 static void
192 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
193 const ir_variable *input,
194 const ir_variable *output,
195 gl_shader_stage consumer_stage,
196 gl_shader_stage producer_stage)
197 {
198 /* Check that the types match between stages.
199 */
200 const glsl_type *type_to_match = input->type;
201
202 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
203 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
204 consumer_stage != MESA_SHADER_FRAGMENT) ||
205 consumer_stage == MESA_SHADER_GEOMETRY;
206 if (extra_array_level) {
207 assert(type_to_match->is_array());
208 type_to_match = type_to_match->fields.array;
209 }
210
211 if (type_to_match != output->type) {
212 /* There is a bit of a special case for gl_TexCoord. This
213 * built-in is unsized by default. Applications that variable
214 * access it must redeclare it with a size. There is some
215 * language in the GLSL spec that implies the fragment shader
216 * and vertex shader do not have to agree on this size. Other
217 * driver behave this way, and one or two applications seem to
218 * rely on it.
219 *
220 * Neither declaration needs to be modified here because the array
221 * sizes are fixed later when update_array_sizes is called.
222 *
223 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
224 *
225 * "Unlike user-defined varying variables, the built-in
226 * varying variables don't have a strict one-to-one
227 * correspondence between the vertex language and the
228 * fragment language."
229 */
230 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
231 linker_error(prog,
232 "%s shader output `%s' declared as type `%s', "
233 "but %s shader input declared as type `%s'\n",
234 _mesa_shader_stage_to_string(producer_stage),
235 output->name,
236 output->type->name,
237 _mesa_shader_stage_to_string(consumer_stage),
238 input->type->name);
239 return;
240 }
241 }
242
243 /* Check that all of the qualifiers match between stages.
244 */
245
246 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
247 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
248 * conformance test suite does not verify that the qualifiers must match.
249 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
250 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
251 */
252 if (false /* always skip the centroid check */ &&
253 prog->data->Version < (prog->IsES ? 310 : 430) &&
254 input->data.centroid != output->data.centroid) {
255 linker_error(prog,
256 "%s shader output `%s' %s centroid qualifier, "
257 "but %s shader input %s centroid qualifier\n",
258 _mesa_shader_stage_to_string(producer_stage),
259 output->name,
260 (output->data.centroid) ? "has" : "lacks",
261 _mesa_shader_stage_to_string(consumer_stage),
262 (input->data.centroid) ? "has" : "lacks");
263 return;
264 }
265
266 if (input->data.sample != output->data.sample) {
267 linker_error(prog,
268 "%s shader output `%s' %s sample qualifier, "
269 "but %s shader input %s sample qualifier\n",
270 _mesa_shader_stage_to_string(producer_stage),
271 output->name,
272 (output->data.sample) ? "has" : "lacks",
273 _mesa_shader_stage_to_string(consumer_stage),
274 (input->data.sample) ? "has" : "lacks");
275 return;
276 }
277
278 if (input->data.patch != output->data.patch) {
279 linker_error(prog,
280 "%s shader output `%s' %s patch qualifier, "
281 "but %s shader input %s patch qualifier\n",
282 _mesa_shader_stage_to_string(producer_stage),
283 output->name,
284 (output->data.patch) ? "has" : "lacks",
285 _mesa_shader_stage_to_string(consumer_stage),
286 (input->data.patch) ? "has" : "lacks");
287 return;
288 }
289
290 /* The GLSL 4.30 and GLSL ES 3.00 specifications say:
291 *
292 * "As only outputs need be declared with invariant, an output from
293 * one shader stage will still match an input of a subsequent stage
294 * without the input being declared as invariant."
295 *
296 * while GLSL 4.20 says:
297 *
298 * "For variables leaving one shader and coming into another shader,
299 * the invariant keyword has to be used in both shaders, or a link
300 * error will result."
301 *
302 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says:
303 *
304 * "The invariance of varyings that are declared in both the vertex
305 * and fragment shaders must match."
306 */
307 if (input->data.invariant != output->data.invariant &&
308 prog->data->Version < (prog->IsES ? 300 : 430)) {
309 linker_error(prog,
310 "%s shader output `%s' %s invariant qualifier, "
311 "but %s shader input %s invariant qualifier\n",
312 _mesa_shader_stage_to_string(producer_stage),
313 output->name,
314 (output->data.invariant) ? "has" : "lacks",
315 _mesa_shader_stage_to_string(consumer_stage),
316 (input->data.invariant) ? "has" : "lacks");
317 return;
318 }
319
320 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
321 * to match cross stage, they must only match within the same stage.
322 *
323 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
324 *
325 * "It is a link-time error if, within the same stage, the interpolation
326 * qualifiers of variables of the same name do not match.
327 *
328 * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says:
329 *
330 * "When no interpolation qualifier is present, smooth interpolation
331 * is used."
332 *
333 * So we match variables where one is smooth and the other has no explicit
334 * qualifier.
335 */
336 unsigned input_interpolation = input->data.interpolation;
337 unsigned output_interpolation = output->data.interpolation;
338 if (prog->IsES) {
339 if (input_interpolation == INTERP_MODE_NONE)
340 input_interpolation = INTERP_MODE_SMOOTH;
341 if (output_interpolation == INTERP_MODE_NONE)
342 output_interpolation = INTERP_MODE_SMOOTH;
343 }
344 if (input_interpolation != output_interpolation &&
345 prog->data->Version < 440) {
346 linker_error(prog,
347 "%s shader output `%s' specifies %s "
348 "interpolation qualifier, "
349 "but %s shader input specifies %s "
350 "interpolation qualifier\n",
351 _mesa_shader_stage_to_string(producer_stage),
352 output->name,
353 interpolation_string(output->data.interpolation),
354 _mesa_shader_stage_to_string(consumer_stage),
355 interpolation_string(input->data.interpolation));
356 return;
357 }
358 }
359
360 /**
361 * Validate front and back color outputs against single color input
362 */
363 static void
364 cross_validate_front_and_back_color(struct gl_shader_program *prog,
365 const ir_variable *input,
366 const ir_variable *front_color,
367 const ir_variable *back_color,
368 gl_shader_stage consumer_stage,
369 gl_shader_stage producer_stage)
370 {
371 if (front_color != NULL && front_color->data.assigned)
372 cross_validate_types_and_qualifiers(prog, input, front_color,
373 consumer_stage, producer_stage);
374
375 if (back_color != NULL && back_color->data.assigned)
376 cross_validate_types_and_qualifiers(prog, input, back_color,
377 consumer_stage, producer_stage);
378 }
379
380 static unsigned
381 compute_variable_location_slot(ir_variable *var, gl_shader_stage stage)
382 {
383 unsigned location_start = VARYING_SLOT_VAR0;
384
385 switch (stage) {
386 case MESA_SHADER_VERTEX:
387 if (var->data.mode == ir_var_shader_in)
388 location_start = VERT_ATTRIB_GENERIC0;
389 break;
390 case MESA_SHADER_TESS_CTRL:
391 case MESA_SHADER_TESS_EVAL:
392 if (var->data.patch)
393 location_start = VARYING_SLOT_PATCH0;
394 break;
395 case MESA_SHADER_FRAGMENT:
396 if (var->data.mode == ir_var_shader_out)
397 location_start = FRAG_RESULT_DATA0;
398 break;
399 default:
400 break;
401 }
402
403 return var->data.location - location_start;
404 }
405
406 struct explicit_location_info {
407 ir_variable *var;
408 unsigned base_type;
409 unsigned interpolation;
410 bool centroid;
411 bool sample;
412 bool patch;
413 };
414
415 static bool
416 check_location_aliasing(struct explicit_location_info explicit_locations[][4],
417 ir_variable *var,
418 unsigned location,
419 unsigned component,
420 unsigned location_limit,
421 const glsl_type *type,
422 unsigned interpolation,
423 bool centroid,
424 bool sample,
425 bool patch,
426 gl_shader_program *prog,
427 gl_shader_stage stage)
428 {
429 unsigned last_comp;
430 if (type->without_array()->is_record()) {
431 /* The component qualifier can't be used on structs so just treat
432 * all component slots as used.
433 */
434 last_comp = 4;
435 } else {
436 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
437 last_comp = component + type->without_array()->vector_elements * dmul;
438 }
439
440 while (location < location_limit) {
441 unsigned i = component;
442
443 /* If there are other outputs assigned to the same location
444 * they must have the same interpolation
445 */
446 unsigned comp = 0;
447 while (comp < 4) {
448 /* Skip the components used by this output, we only care about
449 * other outputs in the same location
450 */
451 if (comp == i) {
452 comp = last_comp;
453 continue;
454 }
455
456 struct explicit_location_info *info =
457 &explicit_locations[location][comp];
458
459 if (info->var) {
460 if (info->interpolation != interpolation) {
461 linker_error(prog,
462 "%s shader has multiple outputs at explicit "
463 "location %u with different interpolation "
464 "settings\n",
465 _mesa_shader_stage_to_string(stage), location);
466 return false;
467 }
468
469 if (info->centroid != centroid ||
470 info->sample != sample ||
471 info->patch != patch) {
472 linker_error(prog,
473 "%s shader has multiple outputs at explicit "
474 "location %u with different aux storage\n",
475 _mesa_shader_stage_to_string(stage), location);
476 return false;
477 }
478 }
479
480 comp++;
481 }
482
483 /* Component aliasing is not allowed */
484 while (i < last_comp) {
485 if (explicit_locations[location][i].var != NULL) {
486 linker_error(prog,
487 "%s shader has multiple outputs explicitly "
488 "assigned to location %d and component %d\n",
489 _mesa_shader_stage_to_string(stage),
490 location, component);
491 return false;
492 }
493
494 /* Make sure all component at this location have the same type.
495 */
496 for (unsigned j = 0; j < 4; j++) {
497 if (explicit_locations[location][j].var &&
498 explicit_locations[location][j].base_type !=
499 type->without_array()->base_type) {
500 linker_error(prog,
501 "Varyings sharing the same location must "
502 "have the same underlying numerical type. "
503 "Location %u component %u\n", location, component);
504 return false;
505 }
506 }
507
508 explicit_locations[location][i].var = var;
509 explicit_locations[location][i].base_type =
510 type->without_array()->base_type;
511 explicit_locations[location][i].interpolation = interpolation;
512 explicit_locations[location][i].centroid = centroid;
513 explicit_locations[location][i].sample = sample;
514 explicit_locations[location][i].patch = patch;
515 i++;
516
517 /* We need to do some special handling for doubles as dvec3 and
518 * dvec4 consume two consecutive locations. We don't need to
519 * worry about components beginning at anything other than 0 as
520 * the spec does not allow this for dvec3 and dvec4.
521 */
522 if (i == 4 && last_comp > 4) {
523 last_comp = last_comp - 4;
524 /* Bump location index and reset the component index */
525 location++;
526 i = 0;
527 }
528 }
529
530 location++;
531 }
532
533 return true;
534 }
535
536 static bool
537 validate_explicit_variable_location(struct gl_context *ctx,
538 struct explicit_location_info explicit_locations[][4],
539 ir_variable *var,
540 gl_shader_program *prog,
541 gl_linked_shader *sh)
542 {
543 const glsl_type *type = get_varying_type(var, sh->Stage);
544 unsigned num_elements = type->count_attribute_slots(false);
545 unsigned idx = compute_variable_location_slot(var, sh->Stage);
546 unsigned slot_limit = idx + num_elements;
547
548 /* Vertex shader inputs and fragment shader outputs are validated in
549 * assign_attribute_or_color_locations() so we should not attempt to
550 * validate them again here.
551 */
552 unsigned slot_max;
553 if (var->data.mode == ir_var_shader_out) {
554 assert(sh->Stage != MESA_SHADER_FRAGMENT);
555 slot_max =
556 ctx->Const.Program[sh->Stage].MaxOutputComponents / 4;
557 } else {
558 assert(var->data.mode == ir_var_shader_in);
559 assert(sh->Stage != MESA_SHADER_VERTEX);
560 slot_max =
561 ctx->Const.Program[sh->Stage].MaxInputComponents / 4;
562 }
563
564 if (slot_limit > slot_max) {
565 linker_error(prog,
566 "Invalid location %u in %s shader\n",
567 idx, _mesa_shader_stage_to_string(sh->Stage));
568 return false;
569 }
570
571 if (type->without_array()->is_interface()) {
572 for (unsigned i = 0; i < type->without_array()->length; i++) {
573 glsl_struct_field *field = &type->fields.structure[i];
574 unsigned field_location = field->location -
575 (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
576 if (!check_location_aliasing(explicit_locations, var,
577 field_location,
578 0, field_location + 1,
579 field->type,
580 field->interpolation,
581 field->centroid,
582 field->sample,
583 field->patch,
584 prog, sh->Stage)) {
585 return false;
586 }
587 }
588 } else if (!check_location_aliasing(explicit_locations, var,
589 idx, var->data.location_frac,
590 slot_limit, type,
591 var->data.interpolation,
592 var->data.centroid,
593 var->data.sample,
594 var->data.patch,
595 prog, sh->Stage)) {
596 return false;
597 }
598
599 return true;
600 }
601
602 /**
603 * Validate that outputs from one stage match inputs of another
604 */
605 void
606 cross_validate_outputs_to_inputs(struct gl_context *ctx,
607 struct gl_shader_program *prog,
608 gl_linked_shader *producer,
609 gl_linked_shader *consumer)
610 {
611 glsl_symbol_table parameters;
612 struct explicit_location_info explicit_locations[MAX_VARYING][4] = { 0 };
613
614 /* Find all shader outputs in the "producer" stage.
615 */
616 foreach_in_list(ir_instruction, node, producer->ir) {
617 ir_variable *const var = node->as_variable();
618
619 if (var == NULL || var->data.mode != ir_var_shader_out)
620 continue;
621
622 if (!var->data.explicit_location
623 || var->data.location < VARYING_SLOT_VAR0)
624 parameters.add_variable(var);
625 else {
626 /* User-defined varyings with explicit locations are handled
627 * differently because they do not need to have matching names.
628 */
629 if (!validate_explicit_variable_location(ctx,
630 explicit_locations,
631 var, prog, producer)) {
632 return;
633 }
634 }
635 }
636
637
638 /* Find all shader inputs in the "consumer" stage. Any variables that have
639 * matching outputs already in the symbol table must have the same type and
640 * qualifiers.
641 *
642 * Exception: if the consumer is the geometry shader, then the inputs
643 * should be arrays and the type of the array element should match the type
644 * of the corresponding producer output.
645 */
646 foreach_in_list(ir_instruction, node, consumer->ir) {
647 ir_variable *const input = node->as_variable();
648
649 if (input == NULL || input->data.mode != ir_var_shader_in)
650 continue;
651
652 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
653 const ir_variable *const front_color =
654 parameters.get_variable("gl_FrontColor");
655
656 const ir_variable *const back_color =
657 parameters.get_variable("gl_BackColor");
658
659 cross_validate_front_and_back_color(prog, input,
660 front_color, back_color,
661 consumer->Stage, producer->Stage);
662 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
663 const ir_variable *const front_color =
664 parameters.get_variable("gl_FrontSecondaryColor");
665
666 const ir_variable *const back_color =
667 parameters.get_variable("gl_BackSecondaryColor");
668
669 cross_validate_front_and_back_color(prog, input,
670 front_color, back_color,
671 consumer->Stage, producer->Stage);
672 } else {
673 /* The rules for connecting inputs and outputs change in the presence
674 * of explicit locations. In this case, we no longer care about the
675 * names of the variables. Instead, we care only about the
676 * explicitly assigned location.
677 */
678 ir_variable *output = NULL;
679 if (input->data.explicit_location
680 && input->data.location >= VARYING_SLOT_VAR0) {
681
682 const glsl_type *type = get_varying_type(input, consumer->Stage);
683 unsigned num_elements = type->count_attribute_slots(false);
684 unsigned idx =
685 compute_variable_location_slot(input, consumer->Stage);
686 unsigned slot_limit = idx + num_elements;
687
688 while (idx < slot_limit) {
689 if (idx >= MAX_VARYING) {
690 linker_error(prog,
691 "Invalid location %u in %s shader\n", idx,
692 _mesa_shader_stage_to_string(consumer->Stage));
693 return;
694 }
695
696 output = explicit_locations[idx][input->data.location_frac].var;
697
698 if (output == NULL ||
699 input->data.location != output->data.location) {
700 linker_error(prog,
701 "%s shader input `%s' with explicit location "
702 "has no matching output\n",
703 _mesa_shader_stage_to_string(consumer->Stage),
704 input->name);
705 break;
706 }
707 idx++;
708 }
709 } else {
710 output = parameters.get_variable(input->name);
711 }
712
713 if (output != NULL) {
714 /* Interface blocks have their own validation elsewhere so don't
715 * try validating them here.
716 */
717 if (!(input->get_interface_type() &&
718 output->get_interface_type()))
719 cross_validate_types_and_qualifiers(prog, input, output,
720 consumer->Stage,
721 producer->Stage);
722 } else {
723 /* Check for input vars with unmatched output vars in prev stage
724 * taking into account that interface blocks could have a matching
725 * output but with different name, so we ignore them.
726 */
727 assert(!input->data.assigned);
728 if (input->data.used && !input->get_interface_type() &&
729 !input->data.explicit_location && !prog->SeparateShader)
730 linker_error(prog,
731 "%s shader input `%s' "
732 "has no matching output in the previous stage\n",
733 _mesa_shader_stage_to_string(consumer->Stage),
734 input->name);
735 }
736 }
737 }
738 }
739
740 /**
741 * Demote shader inputs and outputs that are not used in other stages, and
742 * remove them via dead code elimination.
743 */
744 static void
745 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
746 gl_linked_shader *sh,
747 enum ir_variable_mode mode)
748 {
749 if (is_separate_shader_object)
750 return;
751
752 foreach_in_list(ir_instruction, node, sh->ir) {
753 ir_variable *const var = node->as_variable();
754
755 if (var == NULL || var->data.mode != int(mode))
756 continue;
757
758 /* A shader 'in' or 'out' variable is only really an input or output if
759 * its value is used by other shader stages. This will cause the
760 * variable to have a location assigned.
761 */
762 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
763 assert(var->data.mode != ir_var_temporary);
764
765 /* Assign zeros to demoted inputs to allow more optimizations. */
766 if (var->data.mode == ir_var_shader_in && !var->constant_value)
767 var->constant_value = ir_constant::zero(var, var->type);
768
769 var->data.mode = ir_var_auto;
770 }
771 }
772
773 /* Eliminate code that is now dead due to unused inputs/outputs being
774 * demoted.
775 */
776 while (do_dead_code(sh->ir, false))
777 ;
778
779 }
780
781 /**
782 * Initialize this object based on a string that was passed to
783 * glTransformFeedbackVaryings.
784 *
785 * If the input is mal-formed, this call still succeeds, but it sets
786 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
787 * will fail to find any matching variable.
788 */
789 void
790 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
791 const char *input)
792 {
793 /* We don't have to be pedantic about what is a valid GLSL variable name,
794 * because any variable with an invalid name can't exist in the IR anyway.
795 */
796
797 this->location = -1;
798 this->orig_name = input;
799 this->lowered_builtin_array_variable = none;
800 this->skip_components = 0;
801 this->next_buffer_separator = false;
802 this->matched_candidate = NULL;
803 this->stream_id = 0;
804 this->buffer = 0;
805 this->offset = 0;
806
807 if (ctx->Extensions.ARB_transform_feedback3) {
808 /* Parse gl_NextBuffer. */
809 if (strcmp(input, "gl_NextBuffer") == 0) {
810 this->next_buffer_separator = true;
811 return;
812 }
813
814 /* Parse gl_SkipComponents. */
815 if (strcmp(input, "gl_SkipComponents1") == 0)
816 this->skip_components = 1;
817 else if (strcmp(input, "gl_SkipComponents2") == 0)
818 this->skip_components = 2;
819 else if (strcmp(input, "gl_SkipComponents3") == 0)
820 this->skip_components = 3;
821 else if (strcmp(input, "gl_SkipComponents4") == 0)
822 this->skip_components = 4;
823
824 if (this->skip_components)
825 return;
826 }
827
828 /* Parse a declaration. */
829 const char *base_name_end;
830 long subscript = parse_program_resource_name(input, &base_name_end);
831 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
832 if (this->var_name == NULL) {
833 _mesa_error_no_memory(__func__);
834 return;
835 }
836
837 if (subscript >= 0) {
838 this->array_subscript = subscript;
839 this->is_subscripted = true;
840 } else {
841 this->is_subscripted = false;
842 }
843
844 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
845 * class must behave specially to account for the fact that gl_ClipDistance
846 * is converted from a float[8] to a vec4[2].
847 */
848 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
849 strcmp(this->var_name, "gl_ClipDistance") == 0) {
850 this->lowered_builtin_array_variable = clip_distance;
851 }
852 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
853 strcmp(this->var_name, "gl_CullDistance") == 0) {
854 this->lowered_builtin_array_variable = cull_distance;
855 }
856
857 if (ctx->Const.LowerTessLevel &&
858 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
859 this->lowered_builtin_array_variable = tess_level_outer;
860 if (ctx->Const.LowerTessLevel &&
861 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
862 this->lowered_builtin_array_variable = tess_level_inner;
863 }
864
865
866 /**
867 * Determine whether two tfeedback_decl objects refer to the same variable and
868 * array index (if applicable).
869 */
870 bool
871 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
872 {
873 assert(x.is_varying() && y.is_varying());
874
875 if (strcmp(x.var_name, y.var_name) != 0)
876 return false;
877 if (x.is_subscripted != y.is_subscripted)
878 return false;
879 if (x.is_subscripted && x.array_subscript != y.array_subscript)
880 return false;
881 return true;
882 }
883
884
885 /**
886 * Assign a location and stream ID for this tfeedback_decl object based on the
887 * transform feedback candidate found by find_candidate.
888 *
889 * If an error occurs, the error is reported through linker_error() and false
890 * is returned.
891 */
892 bool
893 tfeedback_decl::assign_location(struct gl_context *ctx,
894 struct gl_shader_program *prog)
895 {
896 assert(this->is_varying());
897
898 unsigned fine_location
899 = this->matched_candidate->toplevel_var->data.location * 4
900 + this->matched_candidate->toplevel_var->data.location_frac
901 + this->matched_candidate->offset;
902 const unsigned dmul =
903 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1;
904
905 if (this->matched_candidate->type->is_array()) {
906 /* Array variable */
907 const unsigned matrix_cols =
908 this->matched_candidate->type->fields.array->matrix_columns;
909 const unsigned vector_elements =
910 this->matched_candidate->type->fields.array->vector_elements;
911 unsigned actual_array_size;
912 switch (this->lowered_builtin_array_variable) {
913 case clip_distance:
914 actual_array_size = prog->last_vert_prog ?
915 prog->last_vert_prog->info.clip_distance_array_size : 0;
916 break;
917 case cull_distance:
918 actual_array_size = prog->last_vert_prog ?
919 prog->last_vert_prog->info.cull_distance_array_size : 0;
920 break;
921 case tess_level_outer:
922 actual_array_size = 4;
923 break;
924 case tess_level_inner:
925 actual_array_size = 2;
926 break;
927 case none:
928 default:
929 actual_array_size = this->matched_candidate->type->array_size();
930 break;
931 }
932
933 if (this->is_subscripted) {
934 /* Check array bounds. */
935 if (this->array_subscript >= actual_array_size) {
936 linker_error(prog, "Transform feedback varying %s has index "
937 "%i, but the array size is %u.",
938 this->orig_name, this->array_subscript,
939 actual_array_size);
940 return false;
941 }
942 unsigned array_elem_size = this->lowered_builtin_array_variable ?
943 1 : vector_elements * matrix_cols * dmul;
944 fine_location += array_elem_size * this->array_subscript;
945 this->size = 1;
946 } else {
947 this->size = actual_array_size;
948 }
949 this->vector_elements = vector_elements;
950 this->matrix_columns = matrix_cols;
951 if (this->lowered_builtin_array_variable)
952 this->type = GL_FLOAT;
953 else
954 this->type = this->matched_candidate->type->fields.array->gl_type;
955 } else {
956 /* Regular variable (scalar, vector, or matrix) */
957 if (this->is_subscripted) {
958 linker_error(prog, "Transform feedback varying %s requested, "
959 "but %s is not an array.",
960 this->orig_name, this->var_name);
961 return false;
962 }
963 this->size = 1;
964 this->vector_elements = this->matched_candidate->type->vector_elements;
965 this->matrix_columns = this->matched_candidate->type->matrix_columns;
966 this->type = this->matched_candidate->type->gl_type;
967 }
968 this->location = fine_location / 4;
969 this->location_frac = fine_location % 4;
970
971 /* From GL_EXT_transform_feedback:
972 * A program will fail to link if:
973 *
974 * * the total number of components to capture in any varying
975 * variable in <varyings> is greater than the constant
976 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
977 * buffer mode is SEPARATE_ATTRIBS_EXT;
978 */
979 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
980 this->num_components() >
981 ctx->Const.MaxTransformFeedbackSeparateComponents) {
982 linker_error(prog, "Transform feedback varying %s exceeds "
983 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
984 this->orig_name);
985 return false;
986 }
987
988 /* Only transform feedback varyings can be assigned to non-zero streams,
989 * so assign the stream id here.
990 */
991 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
992
993 unsigned array_offset = this->array_subscript * 4 * dmul;
994 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
995 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
996 this->offset = this->matched_candidate->toplevel_var->data.offset +
997 array_offset + struct_offset;
998
999 return true;
1000 }
1001
1002
1003 unsigned
1004 tfeedback_decl::get_num_outputs() const
1005 {
1006 if (!this->is_varying()) {
1007 return 0;
1008 }
1009 return (this->num_components() + this->location_frac + 3)/4;
1010 }
1011
1012
1013 /**
1014 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1015 *
1016 * If an error occurs, the error is reported through linker_error() and false
1017 * is returned.
1018 */
1019 bool
1020 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1021 struct gl_transform_feedback_info *info,
1022 unsigned buffer, unsigned buffer_index,
1023 const unsigned max_outputs, bool *explicit_stride,
1024 bool has_xfb_qualifiers) const
1025 {
1026 unsigned xfb_offset = 0;
1027 unsigned size = this->size;
1028 /* Handle gl_SkipComponents. */
1029 if (this->skip_components) {
1030 info->Buffers[buffer].Stride += this->skip_components;
1031 size = this->skip_components;
1032 goto store_varying;
1033 }
1034
1035 if (this->next_buffer_separator) {
1036 size = 0;
1037 goto store_varying;
1038 }
1039
1040 if (has_xfb_qualifiers) {
1041 xfb_offset = this->offset / 4;
1042 } else {
1043 xfb_offset = info->Buffers[buffer].Stride;
1044 }
1045 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
1046
1047 {
1048 unsigned location = this->location;
1049 unsigned location_frac = this->location_frac;
1050 unsigned num_components = this->num_components();
1051 while (num_components > 0) {
1052 unsigned output_size = MIN2(num_components, 4 - location_frac);
1053 assert((info->NumOutputs == 0 && max_outputs == 0) ||
1054 info->NumOutputs < max_outputs);
1055
1056 /* From the ARB_enhanced_layouts spec:
1057 *
1058 * "If such a block member or variable is not written during a shader
1059 * invocation, the buffer contents at the assigned offset will be
1060 * undefined. Even if there are no static writes to a variable or
1061 * member that is assigned a transform feedback offset, the space is
1062 * still allocated in the buffer and still affects the stride."
1063 */
1064 if (this->is_varying_written()) {
1065 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
1066 info->Outputs[info->NumOutputs].OutputRegister = location;
1067 info->Outputs[info->NumOutputs].NumComponents = output_size;
1068 info->Outputs[info->NumOutputs].StreamId = stream_id;
1069 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1070 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
1071 ++info->NumOutputs;
1072 }
1073 info->Buffers[buffer].Stream = this->stream_id;
1074 xfb_offset += output_size;
1075
1076 num_components -= output_size;
1077 location++;
1078 location_frac = 0;
1079 }
1080 }
1081
1082 if (explicit_stride && explicit_stride[buffer]) {
1083 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) {
1084 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1085 "multiple of 8 as its applied to a type that is or "
1086 "contains a double.",
1087 info->Buffers[buffer].Stride * 4);
1088 return false;
1089 }
1090
1091 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
1092 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
1093 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
1094 "buffer (%d)", xfb_offset * 4,
1095 info->Buffers[buffer].Stride * 4, buffer);
1096 return false;
1097 }
1098 } else {
1099 info->Buffers[buffer].Stride = xfb_offset;
1100 }
1101
1102 /* From GL_EXT_transform_feedback:
1103 * A program will fail to link if:
1104 *
1105 * * the total number of components to capture is greater than
1106 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1107 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1108 *
1109 * From GL_ARB_enhanced_layouts:
1110 *
1111 * "The resulting stride (implicit or explicit) must be less than or
1112 * equal to the implementation-dependent constant
1113 * gl_MaxTransformFeedbackInterleavedComponents."
1114 */
1115 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
1116 has_xfb_qualifiers) &&
1117 info->Buffers[buffer].Stride >
1118 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1119 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1120 "limit has been exceeded.");
1121 return false;
1122 }
1123
1124 store_varying:
1125 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
1126 this->orig_name);
1127 info->Varyings[info->NumVarying].Type = this->type;
1128 info->Varyings[info->NumVarying].Size = size;
1129 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
1130 info->NumVarying++;
1131 info->Buffers[buffer].NumVaryings++;
1132
1133 return true;
1134 }
1135
1136
1137 const tfeedback_candidate *
1138 tfeedback_decl::find_candidate(gl_shader_program *prog,
1139 hash_table *tfeedback_candidates)
1140 {
1141 const char *name = this->var_name;
1142 switch (this->lowered_builtin_array_variable) {
1143 case none:
1144 name = this->var_name;
1145 break;
1146 case clip_distance:
1147 name = "gl_ClipDistanceMESA";
1148 break;
1149 case cull_distance:
1150 name = "gl_CullDistanceMESA";
1151 break;
1152 case tess_level_outer:
1153 name = "gl_TessLevelOuterMESA";
1154 break;
1155 case tess_level_inner:
1156 name = "gl_TessLevelInnerMESA";
1157 break;
1158 }
1159 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name);
1160
1161 this->matched_candidate = entry ?
1162 (const tfeedback_candidate *) entry->data : NULL;
1163
1164 if (!this->matched_candidate) {
1165 /* From GL_EXT_transform_feedback:
1166 * A program will fail to link if:
1167 *
1168 * * any variable name specified in the <varyings> array is not
1169 * declared as an output in the geometry shader (if present) or
1170 * the vertex shader (if no geometry shader is present);
1171 */
1172 linker_error(prog, "Transform feedback varying %s undeclared.",
1173 this->orig_name);
1174 }
1175
1176 return this->matched_candidate;
1177 }
1178
1179
1180 /**
1181 * Parse all the transform feedback declarations that were passed to
1182 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1183 *
1184 * If an error occurs, the error is reported through linker_error() and false
1185 * is returned.
1186 */
1187 static bool
1188 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1189 const void *mem_ctx, unsigned num_names,
1190 char **varying_names, tfeedback_decl *decls)
1191 {
1192 for (unsigned i = 0; i < num_names; ++i) {
1193 decls[i].init(ctx, mem_ctx, varying_names[i]);
1194
1195 if (!decls[i].is_varying())
1196 continue;
1197
1198 /* From GL_EXT_transform_feedback:
1199 * A program will fail to link if:
1200 *
1201 * * any two entries in the <varyings> array specify the same varying
1202 * variable;
1203 *
1204 * We interpret this to mean "any two entries in the <varyings> array
1205 * specify the same varying variable and array index", since transform
1206 * feedback of arrays would be useless otherwise.
1207 */
1208 for (unsigned j = 0; j < i; ++j) {
1209 if (!decls[j].is_varying())
1210 continue;
1211
1212 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1213 linker_error(prog, "Transform feedback varying %s specified "
1214 "more than once.", varying_names[i]);
1215 return false;
1216 }
1217 }
1218 }
1219 return true;
1220 }
1221
1222
1223 static int
1224 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1225 {
1226 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1227 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1228
1229 if (x->get_buffer() != y->get_buffer())
1230 return x->get_buffer() - y->get_buffer();
1231 return x->get_offset() - y->get_offset();
1232 }
1233
1234 /**
1235 * Store transform feedback location assignments into
1236 * prog->sh.LinkedTransformFeedback based on the data stored in
1237 * tfeedback_decls.
1238 *
1239 * If an error occurs, the error is reported through linker_error() and false
1240 * is returned.
1241 */
1242 static bool
1243 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1244 unsigned num_tfeedback_decls,
1245 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1246 {
1247 if (!prog->last_vert_prog)
1248 return true;
1249
1250 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1251 * tracking the number of buffers doesn't overflow.
1252 */
1253 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1254
1255 bool separate_attribs_mode =
1256 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1257
1258 struct gl_program *xfb_prog = prog->last_vert_prog;
1259 xfb_prog->sh.LinkedTransformFeedback =
1260 rzalloc(xfb_prog, struct gl_transform_feedback_info);
1261
1262 /* The xfb_offset qualifier does not have to be used in increasing order
1263 * however some drivers expect to receive the list of transform feedback
1264 * declarations in order so sort it now for convenience.
1265 */
1266 if (has_xfb_qualifiers)
1267 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1268 cmp_xfb_offset);
1269
1270 xfb_prog->sh.LinkedTransformFeedback->Varyings =
1271 rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
1272 num_tfeedback_decls);
1273
1274 unsigned num_outputs = 0;
1275 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1276 if (tfeedback_decls[i].is_varying_written())
1277 num_outputs += tfeedback_decls[i].get_num_outputs();
1278 }
1279
1280 xfb_prog->sh.LinkedTransformFeedback->Outputs =
1281 rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
1282 num_outputs);
1283
1284 unsigned num_buffers = 0;
1285 unsigned buffers = 0;
1286
1287 if (!has_xfb_qualifiers && separate_attribs_mode) {
1288 /* GL_SEPARATE_ATTRIBS */
1289 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1290 if (!tfeedback_decls[i].store(ctx, prog,
1291 xfb_prog->sh.LinkedTransformFeedback,
1292 num_buffers, num_buffers, num_outputs,
1293 NULL, has_xfb_qualifiers))
1294 return false;
1295
1296 buffers |= 1 << num_buffers;
1297 num_buffers++;
1298 }
1299 }
1300 else {
1301 /* GL_INVERLEAVED_ATTRIBS */
1302 int buffer_stream_id = -1;
1303 unsigned buffer =
1304 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1305 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1306
1307 /* Apply any xfb_stride global qualifiers */
1308 if (has_xfb_qualifiers) {
1309 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1310 if (prog->TransformFeedback.BufferStride[j]) {
1311 buffers |= 1 << j;
1312 explicit_stride[j] = true;
1313 xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
1314 prog->TransformFeedback.BufferStride[j] / 4;
1315 }
1316 }
1317 }
1318
1319 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1320 if (has_xfb_qualifiers &&
1321 buffer != tfeedback_decls[i].get_buffer()) {
1322 /* we have moved to the next buffer so reset stream id */
1323 buffer_stream_id = -1;
1324 num_buffers++;
1325 }
1326
1327 if (tfeedback_decls[i].is_next_buffer_separator()) {
1328 if (!tfeedback_decls[i].store(ctx, prog,
1329 xfb_prog->sh.LinkedTransformFeedback,
1330 buffer, num_buffers, num_outputs,
1331 explicit_stride, has_xfb_qualifiers))
1332 return false;
1333 num_buffers++;
1334 buffer_stream_id = -1;
1335 continue;
1336 } else if (tfeedback_decls[i].is_varying()) {
1337 if (buffer_stream_id == -1) {
1338 /* First varying writing to this buffer: remember its stream */
1339 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1340 } else if (buffer_stream_id !=
1341 (int) tfeedback_decls[i].get_stream_id()) {
1342 /* Varying writes to the same buffer from a different stream */
1343 linker_error(prog,
1344 "Transform feedback can't capture varyings belonging "
1345 "to different vertex streams in a single buffer. "
1346 "Varying %s writes to buffer from stream %u, other "
1347 "varyings in the same buffer write from stream %u.",
1348 tfeedback_decls[i].name(),
1349 tfeedback_decls[i].get_stream_id(),
1350 buffer_stream_id);
1351 return false;
1352 }
1353 }
1354
1355 if (has_xfb_qualifiers) {
1356 buffer = tfeedback_decls[i].get_buffer();
1357 } else {
1358 buffer = num_buffers;
1359 }
1360 buffers |= 1 << buffer;
1361
1362 if (!tfeedback_decls[i].store(ctx, prog,
1363 xfb_prog->sh.LinkedTransformFeedback,
1364 buffer, num_buffers, num_outputs,
1365 explicit_stride, has_xfb_qualifiers))
1366 return false;
1367 }
1368 }
1369
1370 assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
1371
1372 xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
1373 return true;
1374 }
1375
1376 namespace {
1377
1378 /**
1379 * Data structure recording the relationship between outputs of one shader
1380 * stage (the "producer") and inputs of another (the "consumer").
1381 */
1382 class varying_matches
1383 {
1384 public:
1385 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1386 bool enhanced_layouts_enabled,
1387 gl_shader_stage producer_stage,
1388 gl_shader_stage consumer_stage);
1389 ~varying_matches();
1390 void record(ir_variable *producer_var, ir_variable *consumer_var);
1391 unsigned assign_locations(struct gl_shader_program *prog,
1392 uint8_t *components,
1393 uint64_t reserved_slots);
1394 void store_locations() const;
1395
1396 private:
1397 bool is_varying_packing_safe(const glsl_type *type,
1398 const ir_variable *var);
1399
1400 /**
1401 * If true, this driver disables varying packing, so all varyings need to
1402 * be aligned on slot boundaries, and take up a number of slots equal to
1403 * their number of matrix columns times their array size.
1404 *
1405 * Packing may also be disabled because our current packing method is not
1406 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1407 * guaranteed to match across stages.
1408 */
1409 const bool disable_varying_packing;
1410
1411 /**
1412 * If true, this driver has transform feedback enabled. The transform
1413 * feedback code requires at least some packing be done even when varying
1414 * packing is disabled, fortunately where transform feedback requires
1415 * packing it's safe to override the disabled setting. See
1416 * is_varying_packing_safe().
1417 */
1418 const bool xfb_enabled;
1419
1420 const bool enhanced_layouts_enabled;
1421
1422 /**
1423 * Enum representing the order in which varyings are packed within a
1424 * packing class.
1425 *
1426 * Currently we pack vec4's first, then vec2's, then scalar values, then
1427 * vec3's. This order ensures that the only vectors that are at risk of
1428 * having to be "double parked" (split between two adjacent varying slots)
1429 * are the vec3's.
1430 */
1431 enum packing_order_enum {
1432 PACKING_ORDER_VEC4,
1433 PACKING_ORDER_VEC2,
1434 PACKING_ORDER_SCALAR,
1435 PACKING_ORDER_VEC3,
1436 };
1437
1438 static unsigned compute_packing_class(const ir_variable *var);
1439 static packing_order_enum compute_packing_order(const ir_variable *var);
1440 static int match_comparator(const void *x_generic, const void *y_generic);
1441 static int xfb_comparator(const void *x_generic, const void *y_generic);
1442
1443 /**
1444 * Structure recording the relationship between a single producer output
1445 * and a single consumer input.
1446 */
1447 struct match {
1448 /**
1449 * Packing class for this varying, computed by compute_packing_class().
1450 */
1451 unsigned packing_class;
1452
1453 /**
1454 * Packing order for this varying, computed by compute_packing_order().
1455 */
1456 packing_order_enum packing_order;
1457 unsigned num_components;
1458
1459 /**
1460 * The output variable in the producer stage.
1461 */
1462 ir_variable *producer_var;
1463
1464 /**
1465 * The input variable in the consumer stage.
1466 */
1467 ir_variable *consumer_var;
1468
1469 /**
1470 * The location which has been assigned for this varying. This is
1471 * expressed in multiples of a float, with the first generic varying
1472 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1473 * value 0.
1474 */
1475 unsigned generic_location;
1476 } *matches;
1477
1478 /**
1479 * The number of elements in the \c matches array that are currently in
1480 * use.
1481 */
1482 unsigned num_matches;
1483
1484 /**
1485 * The number of elements that were set aside for the \c matches array when
1486 * it was allocated.
1487 */
1488 unsigned matches_capacity;
1489
1490 gl_shader_stage producer_stage;
1491 gl_shader_stage consumer_stage;
1492 };
1493
1494 } /* anonymous namespace */
1495
1496 varying_matches::varying_matches(bool disable_varying_packing,
1497 bool xfb_enabled,
1498 bool enhanced_layouts_enabled,
1499 gl_shader_stage producer_stage,
1500 gl_shader_stage consumer_stage)
1501 : disable_varying_packing(disable_varying_packing),
1502 xfb_enabled(xfb_enabled),
1503 enhanced_layouts_enabled(enhanced_layouts_enabled),
1504 producer_stage(producer_stage),
1505 consumer_stage(consumer_stage)
1506 {
1507 /* Note: this initial capacity is rather arbitrarily chosen to be large
1508 * enough for many cases without wasting an unreasonable amount of space.
1509 * varying_matches::record() will resize the array if there are more than
1510 * this number of varyings.
1511 */
1512 this->matches_capacity = 8;
1513 this->matches = (match *)
1514 malloc(sizeof(*this->matches) * this->matches_capacity);
1515 this->num_matches = 0;
1516 }
1517
1518
1519 varying_matches::~varying_matches()
1520 {
1521 free(this->matches);
1522 }
1523
1524
1525 /**
1526 * Packing is always safe on individual arrays, structures, and matrices. It
1527 * is also safe if the varying is only used for transform feedback.
1528 */
1529 bool
1530 varying_matches::is_varying_packing_safe(const glsl_type *type,
1531 const ir_variable *var)
1532 {
1533 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1534 consumer_stage == MESA_SHADER_TESS_CTRL ||
1535 producer_stage == MESA_SHADER_TESS_CTRL)
1536 return false;
1537
1538 return xfb_enabled && (type->is_array() || type->is_record() ||
1539 type->is_matrix() || var->data.is_xfb_only);
1540 }
1541
1542
1543 /**
1544 * Record the given producer/consumer variable pair in the list of variables
1545 * that should later be assigned locations.
1546 *
1547 * It is permissible for \c consumer_var to be NULL (this happens if a
1548 * variable is output by the producer and consumed by transform feedback, but
1549 * not consumed by the consumer).
1550 *
1551 * If \c producer_var has already been paired up with a consumer_var, or
1552 * producer_var is part of fixed pipeline functionality (and hence already has
1553 * a location assigned), this function has no effect.
1554 *
1555 * Note: as a side effect this function may change the interpolation type of
1556 * \c producer_var, but only when the change couldn't possibly affect
1557 * rendering.
1558 */
1559 void
1560 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1561 {
1562 assert(producer_var != NULL || consumer_var != NULL);
1563
1564 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1565 producer_var->data.explicit_location)) ||
1566 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1567 consumer_var->data.explicit_location))) {
1568 /* Either a location already exists for this variable (since it is part
1569 * of fixed functionality), or it has already been recorded as part of a
1570 * previous match.
1571 */
1572 return;
1573 }
1574
1575 bool needs_flat_qualifier = consumer_var == NULL &&
1576 (producer_var->type->contains_integer() ||
1577 producer_var->type->contains_double());
1578
1579 if (!disable_varying_packing &&
1580 (needs_flat_qualifier ||
1581 (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) {
1582 /* Since this varying is not being consumed by the fragment shader, its
1583 * interpolation type varying cannot possibly affect rendering.
1584 * Also, this variable is non-flat and is (or contains) an integer
1585 * or a double.
1586 * If the consumer stage is unknown, don't modify the interpolation
1587 * type as it could affect rendering later with separate shaders.
1588 *
1589 * lower_packed_varyings requires all integer varyings to flat,
1590 * regardless of where they appear. We can trivially satisfy that
1591 * requirement by changing the interpolation type to flat here.
1592 */
1593 if (producer_var) {
1594 producer_var->data.centroid = false;
1595 producer_var->data.sample = false;
1596 producer_var->data.interpolation = INTERP_MODE_FLAT;
1597 }
1598
1599 if (consumer_var) {
1600 consumer_var->data.centroid = false;
1601 consumer_var->data.sample = false;
1602 consumer_var->data.interpolation = INTERP_MODE_FLAT;
1603 }
1604 }
1605
1606 if (this->num_matches == this->matches_capacity) {
1607 this->matches_capacity *= 2;
1608 this->matches = (match *)
1609 realloc(this->matches,
1610 sizeof(*this->matches) * this->matches_capacity);
1611 }
1612
1613 /* We must use the consumer to compute the packing class because in GL4.4+
1614 * there is no guarantee interpolation qualifiers will match across stages.
1615 *
1616 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1617 *
1618 * "The type and presence of interpolation qualifiers of variables with
1619 * the same name declared in all linked shaders for the same cross-stage
1620 * interface must match, otherwise the link command will fail.
1621 *
1622 * When comparing an output from one stage to an input of a subsequent
1623 * stage, the input and output don't match if their interpolation
1624 * qualifiers (or lack thereof) are not the same."
1625 *
1626 * This text was also in at least revison 7 of the 4.40 spec but is no
1627 * longer in revision 9 and not in the 4.50 spec.
1628 */
1629 const ir_variable *const var = (consumer_var != NULL)
1630 ? consumer_var : producer_var;
1631 const gl_shader_stage stage = (consumer_var != NULL)
1632 ? consumer_stage : producer_stage;
1633 const glsl_type *type = get_varying_type(var, stage);
1634
1635 if (producer_var && consumer_var &&
1636 consumer_var->data.must_be_shader_input) {
1637 producer_var->data.must_be_shader_input = 1;
1638 }
1639
1640 this->matches[this->num_matches].packing_class
1641 = this->compute_packing_class(var);
1642 this->matches[this->num_matches].packing_order
1643 = this->compute_packing_order(var);
1644 if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) ||
1645 var->data.must_be_shader_input) {
1646 unsigned slots = type->count_attribute_slots(false);
1647 this->matches[this->num_matches].num_components = slots * 4;
1648 } else {
1649 this->matches[this->num_matches].num_components
1650 = type->component_slots();
1651 }
1652
1653 this->matches[this->num_matches].producer_var = producer_var;
1654 this->matches[this->num_matches].consumer_var = consumer_var;
1655 this->num_matches++;
1656 if (producer_var)
1657 producer_var->data.is_unmatched_generic_inout = 0;
1658 if (consumer_var)
1659 consumer_var->data.is_unmatched_generic_inout = 0;
1660 }
1661
1662
1663 /**
1664 * Choose locations for all of the variable matches that were previously
1665 * passed to varying_matches::record().
1666 */
1667 unsigned
1668 varying_matches::assign_locations(struct gl_shader_program *prog,
1669 uint8_t *components,
1670 uint64_t reserved_slots)
1671 {
1672 /* If packing has been disabled then we cannot safely sort the varyings by
1673 * class as it may mean we are using a version of OpenGL where
1674 * interpolation qualifiers are not guaranteed to be matching across
1675 * shaders, sorting in this case could result in mismatching shader
1676 * interfaces.
1677 * When packing is disabled the sort orders varyings used by transform
1678 * feedback first, but also depends on *undefined behaviour* of qsort to
1679 * reverse the order of the varyings. See: xfb_comparator().
1680 */
1681 if (!this->disable_varying_packing) {
1682 /* Sort varying matches into an order that makes them easy to pack. */
1683 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1684 &varying_matches::match_comparator);
1685 } else {
1686 /* Only sort varyings that are only used by transform feedback. */
1687 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1688 &varying_matches::xfb_comparator);
1689 }
1690
1691 unsigned generic_location = 0;
1692 unsigned generic_patch_location = MAX_VARYING*4;
1693 bool previous_var_xfb_only = false;
1694
1695 for (unsigned i = 0; i < this->num_matches; i++) {
1696 unsigned *location = &generic_location;
1697
1698 const ir_variable *var;
1699 const glsl_type *type;
1700 bool is_vertex_input = false;
1701 if (matches[i].consumer_var) {
1702 var = matches[i].consumer_var;
1703 type = get_varying_type(var, consumer_stage);
1704 if (consumer_stage == MESA_SHADER_VERTEX)
1705 is_vertex_input = true;
1706 } else {
1707 var = matches[i].producer_var;
1708 type = get_varying_type(var, producer_stage);
1709 }
1710
1711 if (var->data.patch)
1712 location = &generic_patch_location;
1713
1714 /* Advance to the next slot if this varying has a different packing
1715 * class than the previous one, and we're not already on a slot
1716 * boundary.
1717 *
1718 * Also advance to the next slot if packing is disabled. This makes sure
1719 * we don't assign varyings the same locations which is possible
1720 * because we still pack individual arrays, records and matrices even
1721 * when packing is disabled. Note we don't advance to the next slot if
1722 * we can pack varyings together that are only used for transform
1723 * feedback.
1724 */
1725 if (var->data.must_be_shader_input ||
1726 (this->disable_varying_packing &&
1727 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1728 (i > 0 && this->matches[i - 1].packing_class
1729 != this->matches[i].packing_class )) {
1730 *location = ALIGN(*location, 4);
1731 }
1732
1733 previous_var_xfb_only = var->data.is_xfb_only;
1734
1735 /* The number of components taken up by this variable. For vertex shader
1736 * inputs, we use the number of slots * 4, as they have different
1737 * counting rules.
1738 */
1739 unsigned num_components = is_vertex_input ?
1740 type->count_attribute_slots(is_vertex_input) * 4 :
1741 this->matches[i].num_components;
1742
1743 /* The last slot for this variable, inclusive. */
1744 unsigned slot_end = *location + num_components - 1;
1745
1746 /* FIXME: We could be smarter in the below code and loop back over
1747 * trying to fill any locations that we skipped because we couldn't pack
1748 * the varying between an explicit location. For now just let the user
1749 * hit the linking error if we run out of room and suggest they use
1750 * explicit locations.
1751 */
1752 while (slot_end < MAX_VARYING * 4u) {
1753 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
1754 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
1755
1756 assert(slots > 0);
1757 if (reserved_slots & slot_mask) {
1758 *location = ALIGN(*location + 1, 4);
1759 slot_end = *location + num_components - 1;
1760 continue;
1761 }
1762
1763 break;
1764 }
1765
1766 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
1767 linker_error(prog, "insufficient contiguous locations available for "
1768 "%s it is possible an array or struct could not be "
1769 "packed between varyings with explicit locations. Try "
1770 "using an explicit location for arrays and structs.",
1771 var->name);
1772 }
1773
1774 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
1775 for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
1776 components[j] = 4;
1777 components[slot_end / 4u] = (slot_end & 3) + 1;
1778 }
1779
1780 this->matches[i].generic_location = *location;
1781
1782 *location = slot_end + 1;
1783 }
1784
1785 return (generic_location + 3) / 4;
1786 }
1787
1788
1789 /**
1790 * Update the producer and consumer shaders to reflect the locations
1791 * assignments that were made by varying_matches::assign_locations().
1792 */
1793 void
1794 varying_matches::store_locations() const
1795 {
1796 /* Check is location needs to be packed with lower_packed_varyings() or if
1797 * we can just use ARB_enhanced_layouts packing.
1798 */
1799 bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 };
1800 const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
1801
1802 for (unsigned i = 0; i < this->num_matches; i++) {
1803 ir_variable *producer_var = this->matches[i].producer_var;
1804 ir_variable *consumer_var = this->matches[i].consumer_var;
1805 unsigned generic_location = this->matches[i].generic_location;
1806 unsigned slot = generic_location / 4;
1807 unsigned offset = generic_location % 4;
1808
1809 if (producer_var) {
1810 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1811 producer_var->data.location_frac = offset;
1812 }
1813
1814 if (consumer_var) {
1815 assert(consumer_var->data.location == -1);
1816 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1817 consumer_var->data.location_frac = offset;
1818 }
1819
1820 /* Find locations suitable for native packing via
1821 * ARB_enhanced_layouts.
1822 */
1823 if (producer_var && consumer_var) {
1824 if (enhanced_layouts_enabled) {
1825 const glsl_type *type =
1826 get_varying_type(producer_var, producer_stage);
1827 if (type->is_array() || type->is_matrix() || type->is_record() ||
1828 type->is_double()) {
1829 unsigned comp_slots = type->component_slots() + offset;
1830 unsigned slots = comp_slots / 4;
1831 if (comp_slots % 4)
1832 slots += 1;
1833
1834 for (unsigned j = 0; j < slots; j++) {
1835 pack_loc[slot + j] = true;
1836 }
1837 } else if (offset + type->vector_elements > 4) {
1838 pack_loc[slot] = true;
1839 pack_loc[slot + 1] = true;
1840 } else {
1841 loc_type[slot][offset] = type;
1842 }
1843 }
1844 }
1845 }
1846
1847 /* Attempt to use ARB_enhanced_layouts for more efficient packing if
1848 * suitable.
1849 */
1850 if (enhanced_layouts_enabled) {
1851 for (unsigned i = 0; i < this->num_matches; i++) {
1852 ir_variable *producer_var = this->matches[i].producer_var;
1853 ir_variable *consumer_var = this->matches[i].consumer_var;
1854 unsigned generic_location = this->matches[i].generic_location;
1855 unsigned slot = generic_location / 4;
1856
1857 if (pack_loc[slot] || !producer_var || !consumer_var)
1858 continue;
1859
1860 const glsl_type *type =
1861 get_varying_type(producer_var, producer_stage);
1862 bool type_match = true;
1863 for (unsigned j = 0; j < 4; j++) {
1864 if (loc_type[slot][j]) {
1865 if (type->base_type != loc_type[slot][j]->base_type)
1866 type_match = false;
1867 }
1868 }
1869
1870 if (type_match) {
1871 producer_var->data.explicit_location = 1;
1872 consumer_var->data.explicit_location = 1;
1873 producer_var->data.explicit_component = 1;
1874 consumer_var->data.explicit_component = 1;
1875 }
1876 }
1877 }
1878 }
1879
1880
1881 /**
1882 * Compute the "packing class" of the given varying. This is an unsigned
1883 * integer with the property that two variables in the same packing class can
1884 * be safely backed into the same vec4.
1885 */
1886 unsigned
1887 varying_matches::compute_packing_class(const ir_variable *var)
1888 {
1889 /* Without help from the back-end, there is no way to pack together
1890 * variables with different interpolation types, because
1891 * lower_packed_varyings must choose exactly one interpolation type for
1892 * each packed varying it creates.
1893 *
1894 * However, we can safely pack together floats, ints, and uints, because:
1895 *
1896 * - varyings of base type "int" and "uint" must use the "flat"
1897 * interpolation type, which can only occur in GLSL 1.30 and above.
1898 *
1899 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1900 * can store flat floats as ints without losing any information (using
1901 * the ir_unop_bitcast_* opcodes).
1902 *
1903 * Therefore, the packing class depends only on the interpolation type.
1904 */
1905 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1906 (var->data.patch << 2) |
1907 (var->data.must_be_shader_input << 3);
1908 packing_class *= 8;
1909 packing_class += var->is_interpolation_flat()
1910 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation;
1911 return packing_class;
1912 }
1913
1914
1915 /**
1916 * Compute the "packing order" of the given varying. This is a sort key we
1917 * use to determine when to attempt to pack the given varying relative to
1918 * other varyings in the same packing class.
1919 */
1920 varying_matches::packing_order_enum
1921 varying_matches::compute_packing_order(const ir_variable *var)
1922 {
1923 const glsl_type *element_type = var->type;
1924
1925 while (element_type->is_array()) {
1926 element_type = element_type->fields.array;
1927 }
1928
1929 switch (element_type->component_slots() % 4) {
1930 case 1: return PACKING_ORDER_SCALAR;
1931 case 2: return PACKING_ORDER_VEC2;
1932 case 3: return PACKING_ORDER_VEC3;
1933 case 0: return PACKING_ORDER_VEC4;
1934 default:
1935 assert(!"Unexpected value of vector_elements");
1936 return PACKING_ORDER_VEC4;
1937 }
1938 }
1939
1940
1941 /**
1942 * Comparison function passed to qsort() to sort varyings by packing_class and
1943 * then by packing_order.
1944 */
1945 int
1946 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1947 {
1948 const match *x = (const match *) x_generic;
1949 const match *y = (const match *) y_generic;
1950
1951 if (x->packing_class != y->packing_class)
1952 return x->packing_class - y->packing_class;
1953 return x->packing_order - y->packing_order;
1954 }
1955
1956
1957 /**
1958 * Comparison function passed to qsort() to sort varyings used only by
1959 * transform feedback when packing of other varyings is disabled.
1960 */
1961 int
1962 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1963 {
1964 const match *x = (const match *) x_generic;
1965
1966 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1967 return match_comparator(x_generic, y_generic);
1968
1969 /* FIXME: When the comparator returns 0 it means the elements being
1970 * compared are equivalent. However the qsort documentation says:
1971 *
1972 * "The order of equivalent elements is undefined."
1973 *
1974 * In practice the sort ends up reversing the order of the varyings which
1975 * means locations are also assigned in this reversed order and happens to
1976 * be what we want. This is also whats happening in
1977 * varying_matches::match_comparator().
1978 */
1979 return 0;
1980 }
1981
1982
1983 /**
1984 * Is the given variable a varying variable to be counted against the
1985 * limit in ctx->Const.MaxVarying?
1986 * This includes variables such as texcoords, colors and generic
1987 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1988 */
1989 static bool
1990 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1991 {
1992 /* Only fragment shaders will take a varying variable as an input */
1993 if (stage == MESA_SHADER_FRAGMENT &&
1994 var->data.mode == ir_var_shader_in) {
1995 switch (var->data.location) {
1996 case VARYING_SLOT_POS:
1997 case VARYING_SLOT_FACE:
1998 case VARYING_SLOT_PNTC:
1999 return false;
2000 default:
2001 return true;
2002 }
2003 }
2004 return false;
2005 }
2006
2007
2008 /**
2009 * Visitor class that generates tfeedback_candidate structs describing all
2010 * possible targets of transform feedback.
2011 *
2012 * tfeedback_candidate structs are stored in the hash table
2013 * tfeedback_candidates, which is passed to the constructor. This hash table
2014 * maps varying names to instances of the tfeedback_candidate struct.
2015 */
2016 class tfeedback_candidate_generator : public program_resource_visitor
2017 {
2018 public:
2019 tfeedback_candidate_generator(void *mem_ctx,
2020 hash_table *tfeedback_candidates)
2021 : mem_ctx(mem_ctx),
2022 tfeedback_candidates(tfeedback_candidates),
2023 toplevel_var(NULL),
2024 varying_floats(0)
2025 {
2026 }
2027
2028 void process(ir_variable *var)
2029 {
2030 /* All named varying interface blocks should be flattened by now */
2031 assert(!var->is_interface_instance());
2032
2033 this->toplevel_var = var;
2034 this->varying_floats = 0;
2035 program_resource_visitor::process(var, false);
2036 }
2037
2038 private:
2039 virtual void visit_field(const glsl_type *type, const char *name,
2040 bool /* row_major */,
2041 const glsl_type * /* record_type */,
2042 const enum glsl_interface_packing,
2043 bool /* last_field */)
2044 {
2045 assert(!type->without_array()->is_record());
2046 assert(!type->without_array()->is_interface());
2047
2048 tfeedback_candidate *candidate
2049 = rzalloc(this->mem_ctx, tfeedback_candidate);
2050 candidate->toplevel_var = this->toplevel_var;
2051 candidate->type = type;
2052 candidate->offset = this->varying_floats;
2053 _mesa_hash_table_insert(this->tfeedback_candidates,
2054 ralloc_strdup(this->mem_ctx, name),
2055 candidate);
2056 this->varying_floats += type->component_slots();
2057 }
2058
2059 /**
2060 * Memory context used to allocate hash table keys and values.
2061 */
2062 void * const mem_ctx;
2063
2064 /**
2065 * Hash table in which tfeedback_candidate objects should be stored.
2066 */
2067 hash_table * const tfeedback_candidates;
2068
2069 /**
2070 * Pointer to the toplevel variable that is being traversed.
2071 */
2072 ir_variable *toplevel_var;
2073
2074 /**
2075 * Total number of varying floats that have been visited so far. This is
2076 * used to determine the offset to each varying within the toplevel
2077 * variable.
2078 */
2079 unsigned varying_floats;
2080 };
2081
2082
2083 namespace linker {
2084
2085 void
2086 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
2087 hash_table *consumer_inputs,
2088 hash_table *consumer_interface_inputs,
2089 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2090 {
2091 memset(consumer_inputs_with_locations,
2092 0,
2093 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
2094
2095 foreach_in_list(ir_instruction, node, ir) {
2096 ir_variable *const input_var = node->as_variable();
2097
2098 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
2099 /* All interface blocks should have been lowered by this point */
2100 assert(!input_var->type->is_interface());
2101
2102 if (input_var->data.explicit_location) {
2103 /* assign_varying_locations only cares about finding the
2104 * ir_variable at the start of a contiguous location block.
2105 *
2106 * - For !producer, consumer_inputs_with_locations isn't used.
2107 *
2108 * - For !consumer, consumer_inputs_with_locations is empty.
2109 *
2110 * For consumer && producer, if you were trying to set some
2111 * ir_variable to the middle of a location block on the other side
2112 * of producer/consumer, cross_validate_outputs_to_inputs() should
2113 * be link-erroring due to either type mismatch or location
2114 * overlaps. If the variables do match up, then they've got a
2115 * matching data.location and you only looked at
2116 * consumer_inputs_with_locations[var->data.location], not any
2117 * following entries for the array/structure.
2118 */
2119 consumer_inputs_with_locations[input_var->data.location] =
2120 input_var;
2121 } else if (input_var->get_interface_type() != NULL) {
2122 char *const iface_field_name =
2123 ralloc_asprintf(mem_ctx, "%s.%s",
2124 input_var->get_interface_type()->without_array()->name,
2125 input_var->name);
2126 _mesa_hash_table_insert(consumer_interface_inputs,
2127 iface_field_name, input_var);
2128 } else {
2129 _mesa_hash_table_insert(consumer_inputs,
2130 ralloc_strdup(mem_ctx, input_var->name),
2131 input_var);
2132 }
2133 }
2134 }
2135 }
2136
2137 /**
2138 * Find a variable from the consumer that "matches" the specified variable
2139 *
2140 * This function only finds inputs with names that match. There is no
2141 * validation (here) that the types, etc. are compatible.
2142 */
2143 ir_variable *
2144 get_matching_input(void *mem_ctx,
2145 const ir_variable *output_var,
2146 hash_table *consumer_inputs,
2147 hash_table *consumer_interface_inputs,
2148 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
2149 {
2150 ir_variable *input_var;
2151
2152 if (output_var->data.explicit_location) {
2153 input_var = consumer_inputs_with_locations[output_var->data.location];
2154 } else if (output_var->get_interface_type() != NULL) {
2155 char *const iface_field_name =
2156 ralloc_asprintf(mem_ctx, "%s.%s",
2157 output_var->get_interface_type()->without_array()->name,
2158 output_var->name);
2159 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
2160 input_var = entry ? (ir_variable *) entry->data : NULL;
2161 } else {
2162 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name);
2163 input_var = entry ? (ir_variable *) entry->data : NULL;
2164 }
2165
2166 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2167 ? NULL : input_var;
2168 }
2169
2170 }
2171
2172 static int
2173 io_variable_cmp(const void *_a, const void *_b)
2174 {
2175 const ir_variable *const a = *(const ir_variable **) _a;
2176 const ir_variable *const b = *(const ir_variable **) _b;
2177
2178 if (a->data.explicit_location && b->data.explicit_location)
2179 return b->data.location - a->data.location;
2180
2181 if (a->data.explicit_location && !b->data.explicit_location)
2182 return 1;
2183
2184 if (!a->data.explicit_location && b->data.explicit_location)
2185 return -1;
2186
2187 return -strcmp(a->name, b->name);
2188 }
2189
2190 /**
2191 * Sort the shader IO variables into canonical order
2192 */
2193 static void
2194 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
2195 {
2196 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
2197 unsigned num_variables = 0;
2198
2199 foreach_in_list(ir_instruction, node, ir) {
2200 ir_variable *const var = node->as_variable();
2201
2202 if (var == NULL || var->data.mode != io_mode)
2203 continue;
2204
2205 /* If we have already encountered more I/O variables that could
2206 * successfully link, bail.
2207 */
2208 if (num_variables == ARRAY_SIZE(var_table))
2209 return;
2210
2211 var_table[num_variables++] = var;
2212 }
2213
2214 if (num_variables == 0)
2215 return;
2216
2217 /* Sort the list in reverse order (io_variable_cmp handles this). Later
2218 * we're going to push the variables on to the IR list as a stack, so we
2219 * want the last variable (in canonical order) to be first in the list.
2220 */
2221 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
2222
2223 /* Remove the variable from it's current location in the IR, and put it at
2224 * the front.
2225 */
2226 for (unsigned i = 0; i < num_variables; i++) {
2227 var_table[i]->remove();
2228 ir->push_head(var_table[i]);
2229 }
2230 }
2231
2232 /**
2233 * Generate a bitfield map of the explicit locations for shader varyings.
2234 *
2235 * Note: For Tessellation shaders we are sitting right on the limits of the
2236 * 64 bit map. Per-vertex and per-patch both have separate location domains
2237 * with a max of MAX_VARYING.
2238 */
2239 static uint64_t
2240 reserved_varying_slot(struct gl_linked_shader *stage,
2241 ir_variable_mode io_mode)
2242 {
2243 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
2244 /* Avoid an overflow of the returned value */
2245 assert(MAX_VARYINGS_INCL_PATCH <= 64);
2246
2247 uint64_t slots = 0;
2248 int var_slot;
2249
2250 if (!stage)
2251 return slots;
2252
2253 foreach_in_list(ir_instruction, node, stage->ir) {
2254 ir_variable *const var = node->as_variable();
2255
2256 if (var == NULL || var->data.mode != io_mode ||
2257 !var->data.explicit_location ||
2258 var->data.location < VARYING_SLOT_VAR0)
2259 continue;
2260
2261 var_slot = var->data.location - VARYING_SLOT_VAR0;
2262
2263 unsigned num_elements = get_varying_type(var, stage->Stage)
2264 ->count_attribute_slots(io_mode == ir_var_shader_in &&
2265 stage->Stage == MESA_SHADER_VERTEX);
2266 for (unsigned i = 0; i < num_elements; i++) {
2267 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
2268 slots |= UINT64_C(1) << var_slot;
2269 var_slot += 1;
2270 }
2271 }
2272
2273 return slots;
2274 }
2275
2276
2277 /**
2278 * Assign locations for all variables that are produced in one pipeline stage
2279 * (the "producer") and consumed in the next stage (the "consumer").
2280 *
2281 * Variables produced by the producer may also be consumed by transform
2282 * feedback.
2283 *
2284 * \param num_tfeedback_decls is the number of declarations indicating
2285 * variables that may be consumed by transform feedback.
2286 *
2287 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2288 * representing the result of parsing the strings passed to
2289 * glTransformFeedbackVaryings(). assign_location() will be called for
2290 * each of these objects that matches one of the outputs of the
2291 * producer.
2292 *
2293 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2294 * be NULL. In this case, varying locations are assigned solely based on the
2295 * requirements of transform feedback.
2296 */
2297 static bool
2298 assign_varying_locations(struct gl_context *ctx,
2299 void *mem_ctx,
2300 struct gl_shader_program *prog,
2301 gl_linked_shader *producer,
2302 gl_linked_shader *consumer,
2303 unsigned num_tfeedback_decls,
2304 tfeedback_decl *tfeedback_decls,
2305 const uint64_t reserved_slots)
2306 {
2307 /* Tessellation shaders treat inputs and outputs as shared memory and can
2308 * access inputs and outputs of other invocations.
2309 * Therefore, they can't be lowered to temps easily (and definitely not
2310 * efficiently).
2311 */
2312 bool unpackable_tess =
2313 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
2314 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
2315 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
2316
2317 /* Transform feedback code assumes varying arrays are packed, so if the
2318 * driver has disabled varying packing, make sure to at least enable
2319 * packing required by transform feedback.
2320 */
2321 bool xfb_enabled =
2322 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2323
2324 /* Disable packing on outward facing interfaces for SSO because in ES we
2325 * need to retain the unpacked varying information for draw time
2326 * validation.
2327 *
2328 * Packing is still enabled on individual arrays, structs, and matrices as
2329 * these are required by the transform feedback code and it is still safe
2330 * to do so. We also enable packing when a varying is only used for
2331 * transform feedback and its not a SSO.
2332 */
2333 bool disable_varying_packing =
2334 ctx->Const.DisableVaryingPacking || unpackable_tess;
2335 if (prog->SeparateShader && (producer == NULL || consumer == NULL))
2336 disable_varying_packing = true;
2337
2338 varying_matches matches(disable_varying_packing, xfb_enabled,
2339 ctx->Extensions.ARB_enhanced_layouts,
2340 producer ? producer->Stage : MESA_SHADER_NONE,
2341 consumer ? consumer->Stage : MESA_SHADER_NONE);
2342 hash_table *tfeedback_candidates =
2343 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2344 _mesa_key_string_equal);
2345 hash_table *consumer_inputs =
2346 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2347 _mesa_key_string_equal);
2348 hash_table *consumer_interface_inputs =
2349 _mesa_hash_table_create(NULL, _mesa_key_hash_string,
2350 _mesa_key_string_equal);
2351 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2352 NULL,
2353 };
2354
2355 unsigned consumer_vertices = 0;
2356 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2357 consumer_vertices = prog->Geom.VerticesIn;
2358
2359 /* Operate in a total of four passes.
2360 *
2361 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2362 * that inputs / outputs of separable shaders will be assigned
2363 * predictable locations regardless of the order in which declarations
2364 * appeared in the shader source.
2365 *
2366 * 2. Assign locations for any matching inputs and outputs.
2367 *
2368 * 3. Mark output variables in the producer that do not have locations as
2369 * not being outputs. This lets the optimizer eliminate them.
2370 *
2371 * 4. Mark input variables in the consumer that do not have locations as
2372 * not being inputs. This lets the optimizer eliminate them.
2373 */
2374 if (consumer)
2375 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2376
2377 if (producer)
2378 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2379
2380 if (consumer)
2381 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2382 consumer_inputs,
2383 consumer_interface_inputs,
2384 consumer_inputs_with_locations);
2385
2386 if (producer) {
2387 foreach_in_list(ir_instruction, node, producer->ir) {
2388 ir_variable *const output_var = node->as_variable();
2389
2390 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2391 continue;
2392
2393 /* Only geometry shaders can use non-zero streams */
2394 assert(output_var->data.stream == 0 ||
2395 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2396 producer->Stage == MESA_SHADER_GEOMETRY));
2397
2398 if (num_tfeedback_decls > 0) {
2399 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2400 g.process(output_var);
2401 }
2402
2403 ir_variable *const input_var =
2404 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2405 consumer_interface_inputs,
2406 consumer_inputs_with_locations);
2407
2408 /* If a matching input variable was found, add this output (and the
2409 * input) to the set. If this is a separable program and there is no
2410 * consumer stage, add the output.
2411 *
2412 * Always add TCS outputs. They are shared by all invocations
2413 * within a patch and can be used as shared memory.
2414 */
2415 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2416 producer->Stage == MESA_SHADER_TESS_CTRL) {
2417 matches.record(output_var, input_var);
2418 }
2419
2420 /* Only stream 0 outputs can be consumed in the next stage */
2421 if (input_var && output_var->data.stream != 0) {
2422 linker_error(prog, "output %s is assigned to stream=%d but "
2423 "is linked to an input, which requires stream=0",
2424 output_var->name, output_var->data.stream);
2425 return false;
2426 }
2427 }
2428 } else {
2429 /* If there's no producer stage, then this must be a separable program.
2430 * For example, we may have a program that has just a fragment shader.
2431 * Later this program will be used with some arbitrary vertex (or
2432 * geometry) shader program. This means that locations must be assigned
2433 * for all the inputs.
2434 */
2435 foreach_in_list(ir_instruction, node, consumer->ir) {
2436 ir_variable *const input_var = node->as_variable();
2437
2438 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2439 continue;
2440
2441 matches.record(NULL, input_var);
2442 }
2443 }
2444
2445 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2446 if (!tfeedback_decls[i].is_varying())
2447 continue;
2448
2449 const tfeedback_candidate *matched_candidate
2450 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2451
2452 if (matched_candidate == NULL) {
2453 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2454 return false;
2455 }
2456
2457 /* Mark xfb varyings as always active */
2458 matched_candidate->toplevel_var->data.always_active_io = 1;
2459
2460 /* Mark any corresponding inputs as always active also. We must do this
2461 * because we have a NIR pass that lowers vectors to scalars and another
2462 * that removes unused varyings.
2463 * We don't split varyings marked as always active because there is no
2464 * point in doing so. This means we need to mark both sides of the
2465 * interface as always active otherwise we will have a mismatch and
2466 * start removing things we shouldn't.
2467 */
2468 ir_variable *const input_var =
2469 linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var,
2470 consumer_inputs,
2471 consumer_interface_inputs,
2472 consumer_inputs_with_locations);
2473 if (input_var)
2474 input_var->data.always_active_io = 1;
2475
2476 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2477 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2478 matches.record(matched_candidate->toplevel_var, NULL);
2479 }
2480 }
2481
2482 _mesa_hash_table_destroy(consumer_inputs, NULL);
2483 _mesa_hash_table_destroy(consumer_interface_inputs, NULL);
2484
2485 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
2486 const unsigned slots_used = matches.assign_locations(
2487 prog, components, reserved_slots);
2488 matches.store_locations();
2489
2490 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2491 if (!tfeedback_decls[i].is_varying())
2492 continue;
2493
2494 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2495 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2496 return false;
2497 }
2498 }
2499 _mesa_hash_table_destroy(tfeedback_candidates, NULL);
2500
2501 if (consumer && producer) {
2502 foreach_in_list(ir_instruction, node, consumer->ir) {
2503 ir_variable *const var = node->as_variable();
2504
2505 if (var && var->data.mode == ir_var_shader_in &&
2506 var->data.is_unmatched_generic_inout) {
2507 if (!prog->IsES && prog->data->Version <= 120) {
2508 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2509 *
2510 * Only those varying variables used (i.e. read) in
2511 * the fragment shader executable must be written to
2512 * by the vertex shader executable; declaring
2513 * superfluous varying variables in a vertex shader is
2514 * permissible.
2515 *
2516 * We interpret this text as meaning that the VS must
2517 * write the variable for the FS to read it. See
2518 * "glsl1-varying read but not written" in piglit.
2519 */
2520 linker_error(prog, "%s shader varying %s not written "
2521 "by %s shader\n.",
2522 _mesa_shader_stage_to_string(consumer->Stage),
2523 var->name,
2524 _mesa_shader_stage_to_string(producer->Stage));
2525 } else {
2526 linker_warning(prog, "%s shader varying %s not written "
2527 "by %s shader\n.",
2528 _mesa_shader_stage_to_string(consumer->Stage),
2529 var->name,
2530 _mesa_shader_stage_to_string(producer->Stage));
2531 }
2532 }
2533 }
2534
2535 /* Now that validation is done its safe to remove unused varyings. As
2536 * we have both a producer and consumer its safe to remove unused
2537 * varyings even if the program is a SSO because the stages are being
2538 * linked together i.e. we have a multi-stage SSO.
2539 */
2540 remove_unused_shader_inputs_and_outputs(false, producer,
2541 ir_var_shader_out);
2542 remove_unused_shader_inputs_and_outputs(false, consumer,
2543 ir_var_shader_in);
2544 }
2545
2546 if (producer) {
2547 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out,
2548 0, producer, disable_varying_packing,
2549 xfb_enabled);
2550 }
2551
2552 if (consumer) {
2553 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in,
2554 consumer_vertices, consumer,
2555 disable_varying_packing, xfb_enabled);
2556 }
2557
2558 return true;
2559 }
2560
2561 static bool
2562 check_against_output_limit(struct gl_context *ctx,
2563 struct gl_shader_program *prog,
2564 gl_linked_shader *producer,
2565 unsigned num_explicit_locations)
2566 {
2567 unsigned output_vectors = num_explicit_locations;
2568
2569 foreach_in_list(ir_instruction, node, producer->ir) {
2570 ir_variable *const var = node->as_variable();
2571
2572 if (var && !var->data.explicit_location &&
2573 var->data.mode == ir_var_shader_out &&
2574 var_counts_against_varying_limit(producer->Stage, var)) {
2575 /* outputs for fragment shader can't be doubles */
2576 output_vectors += var->type->count_attribute_slots(false);
2577 }
2578 }
2579
2580 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2581 unsigned max_output_components =
2582 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2583
2584 const unsigned output_components = output_vectors * 4;
2585 if (output_components > max_output_components) {
2586 if (ctx->API == API_OPENGLES2 || prog->IsES)
2587 linker_error(prog, "%s shader uses too many output vectors "
2588 "(%u > %u)\n",
2589 _mesa_shader_stage_to_string(producer->Stage),
2590 output_vectors,
2591 max_output_components / 4);
2592 else
2593 linker_error(prog, "%s shader uses too many output components "
2594 "(%u > %u)\n",
2595 _mesa_shader_stage_to_string(producer->Stage),
2596 output_components,
2597 max_output_components);
2598
2599 return false;
2600 }
2601
2602 return true;
2603 }
2604
2605 static bool
2606 check_against_input_limit(struct gl_context *ctx,
2607 struct gl_shader_program *prog,
2608 gl_linked_shader *consumer,
2609 unsigned num_explicit_locations)
2610 {
2611 unsigned input_vectors = num_explicit_locations;
2612
2613 foreach_in_list(ir_instruction, node, consumer->ir) {
2614 ir_variable *const var = node->as_variable();
2615
2616 if (var && !var->data.explicit_location &&
2617 var->data.mode == ir_var_shader_in &&
2618 var_counts_against_varying_limit(consumer->Stage, var)) {
2619 /* vertex inputs aren't varying counted */
2620 input_vectors += var->type->count_attribute_slots(false);
2621 }
2622 }
2623
2624 assert(consumer->Stage != MESA_SHADER_VERTEX);
2625 unsigned max_input_components =
2626 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2627
2628 const unsigned input_components = input_vectors * 4;
2629 if (input_components > max_input_components) {
2630 if (ctx->API == API_OPENGLES2 || prog->IsES)
2631 linker_error(prog, "%s shader uses too many input vectors "
2632 "(%u > %u)\n",
2633 _mesa_shader_stage_to_string(consumer->Stage),
2634 input_vectors,
2635 max_input_components / 4);
2636 else
2637 linker_error(prog, "%s shader uses too many input components "
2638 "(%u > %u)\n",
2639 _mesa_shader_stage_to_string(consumer->Stage),
2640 input_components,
2641 max_input_components);
2642
2643 return false;
2644 }
2645
2646 return true;
2647 }
2648
2649 bool
2650 link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last,
2651 struct gl_context *ctx, void *mem_ctx)
2652 {
2653 bool has_xfb_qualifiers = false;
2654 unsigned num_tfeedback_decls = 0;
2655 char **varying_names = NULL;
2656 tfeedback_decl *tfeedback_decls = NULL;
2657
2658 /* From the ARB_enhanced_layouts spec:
2659 *
2660 * "If the shader used to record output variables for transform feedback
2661 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
2662 * qualifiers, the values specified by TransformFeedbackVaryings are
2663 * ignored, and the set of variables captured for transform feedback is
2664 * instead derived from the specified layout qualifiers."
2665 */
2666 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
2667 /* Find last stage before fragment shader */
2668 if (prog->_LinkedShaders[i]) {
2669 has_xfb_qualifiers =
2670 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
2671 prog, &num_tfeedback_decls,
2672 &varying_names);
2673 break;
2674 }
2675 }
2676
2677 if (!has_xfb_qualifiers) {
2678 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2679 varying_names = prog->TransformFeedback.VaryingNames;
2680 }
2681
2682 if (num_tfeedback_decls != 0) {
2683 /* From GL_EXT_transform_feedback:
2684 * A program will fail to link if:
2685 *
2686 * * the <count> specified by TransformFeedbackVaryingsEXT is
2687 * non-zero, but the program object has no vertex or geometry
2688 * shader;
2689 */
2690 if (first >= MESA_SHADER_FRAGMENT) {
2691 linker_error(prog, "Transform feedback varyings specified, but "
2692 "no vertex, tessellation, or geometry shader is "
2693 "present.\n");
2694 return false;
2695 }
2696
2697 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
2698 num_tfeedback_decls);
2699 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2700 varying_names, tfeedback_decls))
2701 return false;
2702 }
2703
2704 /* If there is no fragment shader we need to set transform feedback.
2705 *
2706 * For SSO we also need to assign output locations. We assign them here
2707 * because we need to do it for both single stage programs and multi stage
2708 * programs.
2709 */
2710 if (last < MESA_SHADER_FRAGMENT &&
2711 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
2712 const uint64_t reserved_out_slots =
2713 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
2714 if (!assign_varying_locations(ctx, mem_ctx, prog,
2715 prog->_LinkedShaders[last], NULL,
2716 num_tfeedback_decls, tfeedback_decls,
2717 reserved_out_slots))
2718 return false;
2719 }
2720
2721 if (last <= MESA_SHADER_FRAGMENT) {
2722 /* Remove unused varyings from the first/last stage unless SSO */
2723 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2724 prog->_LinkedShaders[first],
2725 ir_var_shader_in);
2726 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
2727 prog->_LinkedShaders[last],
2728 ir_var_shader_out);
2729
2730 /* If the program is made up of only a single stage */
2731 if (first == last) {
2732 gl_linked_shader *const sh = prog->_LinkedShaders[last];
2733
2734 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
2735 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
2736 tfeedback_decls);
2737
2738 if (prog->SeparateShader) {
2739 const uint64_t reserved_slots =
2740 reserved_varying_slot(sh, ir_var_shader_in);
2741
2742 /* Assign input locations for SSO, output locations are already
2743 * assigned.
2744 */
2745 if (!assign_varying_locations(ctx, mem_ctx, prog,
2746 NULL /* producer */,
2747 sh /* consumer */,
2748 0 /* num_tfeedback_decls */,
2749 NULL /* tfeedback_decls */,
2750 reserved_slots))
2751 return false;
2752 }
2753 } else {
2754 /* Linking the stages in the opposite order (from fragment to vertex)
2755 * ensures that inter-shader outputs written to in an earlier stage
2756 * are eliminated if they are (transitively) not used in a later
2757 * stage.
2758 */
2759 int next = last;
2760 for (int i = next - 1; i >= 0; i--) {
2761 if (prog->_LinkedShaders[i] == NULL && i != 0)
2762 continue;
2763
2764 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
2765 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
2766
2767 const uint64_t reserved_out_slots =
2768 reserved_varying_slot(sh_i, ir_var_shader_out);
2769 const uint64_t reserved_in_slots =
2770 reserved_varying_slot(sh_next, ir_var_shader_in);
2771
2772 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2773 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2774 tfeedback_decls);
2775
2776 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2777 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2778 tfeedback_decls,
2779 reserved_out_slots | reserved_in_slots))
2780 return false;
2781
2782 /* This must be done after all dead varyings are eliminated. */
2783 if (sh_i != NULL) {
2784 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
2785 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
2786 return false;
2787 }
2788 }
2789
2790 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
2791 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
2792 return false;
2793
2794 next = i;
2795 }
2796 }
2797 }
2798
2799 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
2800 has_xfb_qualifiers))
2801 return false;
2802
2803 return true;
2804 }