glsl/linker: Fix trivial typos in comments
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 linker_error(prog,
230 "%s shader output `%s' declared as type `%s', "
231 "but %s shader input declared as type `%s'\n",
232 _mesa_shader_stage_to_string(producer_stage),
233 output->name,
234 output->type->name,
235 _mesa_shader_stage_to_string(consumer_stage),
236 input->type->name);
237 return;
238 }
239 }
240
241 /* Check that all of the qualifiers match between stages.
242 */
243
244 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
245 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
246 * conformance test suite does not verify that the qualifiers must match.
247 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
248 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
249 */
250 if (false /* always skip the centroid check */ &&
251 prog->Version < (prog->IsES ? 310 : 430) &&
252 input->data.centroid != output->data.centroid) {
253 linker_error(prog,
254 "%s shader output `%s' %s centroid qualifier, "
255 "but %s shader input %s centroid qualifier\n",
256 _mesa_shader_stage_to_string(producer_stage),
257 output->name,
258 (output->data.centroid) ? "has" : "lacks",
259 _mesa_shader_stage_to_string(consumer_stage),
260 (input->data.centroid) ? "has" : "lacks");
261 return;
262 }
263
264 if (input->data.sample != output->data.sample) {
265 linker_error(prog,
266 "%s shader output `%s' %s sample qualifier, "
267 "but %s shader input %s sample qualifier\n",
268 _mesa_shader_stage_to_string(producer_stage),
269 output->name,
270 (output->data.sample) ? "has" : "lacks",
271 _mesa_shader_stage_to_string(consumer_stage),
272 (input->data.sample) ? "has" : "lacks");
273 return;
274 }
275
276 if (input->data.patch != output->data.patch) {
277 linker_error(prog,
278 "%s shader output `%s' %s patch qualifier, "
279 "but %s shader input %s patch qualifier\n",
280 _mesa_shader_stage_to_string(producer_stage),
281 output->name,
282 (output->data.patch) ? "has" : "lacks",
283 _mesa_shader_stage_to_string(consumer_stage),
284 (input->data.patch) ? "has" : "lacks");
285 return;
286 }
287
288 if (!prog->IsES && input->data.invariant != output->data.invariant) {
289 linker_error(prog,
290 "%s shader output `%s' %s invariant qualifier, "
291 "but %s shader input %s invariant qualifier\n",
292 _mesa_shader_stage_to_string(producer_stage),
293 output->name,
294 (output->data.invariant) ? "has" : "lacks",
295 _mesa_shader_stage_to_string(consumer_stage),
296 (input->data.invariant) ? "has" : "lacks");
297 return;
298 }
299
300 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
301 * to match cross stage, they must only match within the same stage.
302 *
303 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
304 *
305 * "It is a link-time error if, within the same stage, the interpolation
306 * qualifiers of variables of the same name do not match.
307 *
308 */
309 if (input->data.interpolation != output->data.interpolation &&
310 prog->Version < 440) {
311 linker_error(prog,
312 "%s shader output `%s' specifies %s "
313 "interpolation qualifier, "
314 "but %s shader input specifies %s "
315 "interpolation qualifier\n",
316 _mesa_shader_stage_to_string(producer_stage),
317 output->name,
318 interpolation_string(output->data.interpolation),
319 _mesa_shader_stage_to_string(consumer_stage),
320 interpolation_string(input->data.interpolation));
321 return;
322 }
323 }
324
325 /**
326 * Validate front and back color outputs against single color input
327 */
328 static void
329 cross_validate_front_and_back_color(struct gl_shader_program *prog,
330 const ir_variable *input,
331 const ir_variable *front_color,
332 const ir_variable *back_color,
333 gl_shader_stage consumer_stage,
334 gl_shader_stage producer_stage)
335 {
336 if (front_color != NULL && front_color->data.assigned)
337 cross_validate_types_and_qualifiers(prog, input, front_color,
338 consumer_stage, producer_stage);
339
340 if (back_color != NULL && back_color->data.assigned)
341 cross_validate_types_and_qualifiers(prog, input, back_color,
342 consumer_stage, producer_stage);
343 }
344
345 /**
346 * Validate that outputs from one stage match inputs of another
347 */
348 void
349 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
350 gl_shader *producer, gl_shader *consumer)
351 {
352 glsl_symbol_table parameters;
353 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
354 { {NULL, NULL} };
355
356 /* Find all shader outputs in the "producer" stage.
357 */
358 foreach_in_list(ir_instruction, node, producer->ir) {
359 ir_variable *const var = node->as_variable();
360
361 if (var == NULL || var->data.mode != ir_var_shader_out)
362 continue;
363
364 if (!var->data.explicit_location
365 || var->data.location < VARYING_SLOT_VAR0)
366 parameters.add_variable(var);
367 else {
368 /* User-defined varyings with explicit locations are handled
369 * differently because they do not need to have matching names.
370 */
371 const glsl_type *type = get_varying_type(var, producer->Stage);
372 unsigned num_elements = type->count_attribute_slots(false);
373 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
374 unsigned slot_limit = idx + num_elements;
375 unsigned last_comp;
376
377 if (var->type->without_array()->is_record()) {
378 /* The component qualifier can't be used on structs so just treat
379 * all component slots as used.
380 */
381 last_comp = 4;
382 } else {
383 unsigned dmul = var->type->is_double() ? 2 : 1;
384 last_comp = var->data.location_frac +
385 var->type->without_array()->vector_elements * dmul;
386 }
387
388 while (idx < slot_limit) {
389 for (unsigned i = var->data.location_frac; i < last_comp; i++) {
390 if (explicit_locations[idx][i] != NULL) {
391 linker_error(prog,
392 "%s shader has multiple outputs explicitly "
393 "assigned to location %d and component %d\n",
394 _mesa_shader_stage_to_string(producer->Stage),
395 idx, var->data.location_frac);
396 return;
397 }
398
399 /* Make sure all component at this location have the same type.
400 */
401 for (unsigned j = 0; j < 4; j++) {
402 if (explicit_locations[idx][j] &&
403 (explicit_locations[idx][j]->type->without_array()
404 ->base_type != var->type->without_array()->base_type)) {
405 linker_error(prog,
406 "Varyings sharing the same location must "
407 "have the same underlying numerical type. "
408 "Location %u component %u\n", idx,
409 var->data.location_frac);
410 return;
411 }
412 }
413
414 explicit_locations[idx][i] = var;
415
416 /* We need to do some special handling for doubles as dvec3 and
417 * dvec4 consume two consecutive locations. We don't need to
418 * worry about components beginning at anything other than 0 as
419 * the spec does not allow this for dvec3 and dvec4.
420 */
421 if (i == 3 && last_comp > 4) {
422 last_comp = last_comp - 4;
423 /* Bump location index and reset the component index */
424 idx++;
425 i = 0;
426 }
427 }
428 idx++;
429 }
430 }
431 }
432
433
434 /* Find all shader inputs in the "consumer" stage. Any variables that have
435 * matching outputs already in the symbol table must have the same type and
436 * qualifiers.
437 *
438 * Exception: if the consumer is the geometry shader, then the inputs
439 * should be arrays and the type of the array element should match the type
440 * of the corresponding producer output.
441 */
442 foreach_in_list(ir_instruction, node, consumer->ir) {
443 ir_variable *const input = node->as_variable();
444
445 if (input == NULL || input->data.mode != ir_var_shader_in)
446 continue;
447
448 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
449 const ir_variable *const front_color =
450 parameters.get_variable("gl_FrontColor");
451
452 const ir_variable *const back_color =
453 parameters.get_variable("gl_BackColor");
454
455 cross_validate_front_and_back_color(prog, input,
456 front_color, back_color,
457 consumer->Stage, producer->Stage);
458 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
459 const ir_variable *const front_color =
460 parameters.get_variable("gl_FrontSecondaryColor");
461
462 const ir_variable *const back_color =
463 parameters.get_variable("gl_BackSecondaryColor");
464
465 cross_validate_front_and_back_color(prog, input,
466 front_color, back_color,
467 consumer->Stage, producer->Stage);
468 } else {
469 /* The rules for connecting inputs and outputs change in the presence
470 * of explicit locations. In this case, we no longer care about the
471 * names of the variables. Instead, we care only about the
472 * explicitly assigned location.
473 */
474 ir_variable *output = NULL;
475 if (input->data.explicit_location
476 && input->data.location >= VARYING_SLOT_VAR0) {
477
478 const glsl_type *type = get_varying_type(input, consumer->Stage);
479 unsigned num_elements = type->count_attribute_slots(false);
480 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
481 unsigned slot_limit = idx + num_elements;
482
483 while (idx < slot_limit) {
484 output = explicit_locations[idx][input->data.location_frac];
485
486 if (output == NULL ||
487 input->data.location != output->data.location) {
488 linker_error(prog,
489 "%s shader input `%s' with explicit location "
490 "has no matching output\n",
491 _mesa_shader_stage_to_string(consumer->Stage),
492 input->name);
493 break;
494 }
495 idx++;
496 }
497 } else {
498 output = parameters.get_variable(input->name);
499 }
500
501 if (output != NULL) {
502 /* Interface blocks have their own validation elsewhere so don't
503 * try validating them here.
504 */
505 if (!(input->get_interface_type() &&
506 output->get_interface_type()))
507 cross_validate_types_and_qualifiers(prog, input, output,
508 consumer->Stage,
509 producer->Stage);
510 } else {
511 /* Check for input vars with unmatched output vars in prev stage
512 * taking into account that interface blocks could have a matching
513 * output but with different name, so we ignore them.
514 */
515 assert(!input->data.assigned);
516 if (input->data.used && !input->get_interface_type() &&
517 !input->data.explicit_location && !prog->SeparateShader)
518 linker_error(prog,
519 "%s shader input `%s' "
520 "has no matching output in the previous stage\n",
521 _mesa_shader_stage_to_string(consumer->Stage),
522 input->name);
523 }
524 }
525 }
526 }
527
528 /**
529 * Demote shader inputs and outputs that are not used in other stages, and
530 * remove them via dead code elimination.
531 */
532 void
533 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
534 gl_shader *sh,
535 enum ir_variable_mode mode)
536 {
537 if (is_separate_shader_object)
538 return;
539
540 foreach_in_list(ir_instruction, node, sh->ir) {
541 ir_variable *const var = node->as_variable();
542
543 if (var == NULL || var->data.mode != int(mode))
544 continue;
545
546 /* A shader 'in' or 'out' variable is only really an input or output if
547 * its value is used by other shader stages. This will cause the
548 * variable to have a location assigned.
549 */
550 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
551 assert(var->data.mode != ir_var_temporary);
552 var->data.mode = ir_var_auto;
553 }
554 }
555
556 /* Eliminate code that is now dead due to unused inputs/outputs being
557 * demoted.
558 */
559 while (do_dead_code(sh->ir, false))
560 ;
561
562 }
563
564 /**
565 * Initialize this object based on a string that was passed to
566 * glTransformFeedbackVaryings.
567 *
568 * If the input is mal-formed, this call still succeeds, but it sets
569 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
570 * will fail to find any matching variable.
571 */
572 void
573 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
574 const char *input)
575 {
576 /* We don't have to be pedantic about what is a valid GLSL variable name,
577 * because any variable with an invalid name can't exist in the IR anyway.
578 */
579
580 this->location = -1;
581 this->orig_name = input;
582 this->lowered_builtin_array_variable = none;
583 this->skip_components = 0;
584 this->next_buffer_separator = false;
585 this->matched_candidate = NULL;
586 this->stream_id = 0;
587 this->buffer = 0;
588 this->offset = 0;
589
590 if (ctx->Extensions.ARB_transform_feedback3) {
591 /* Parse gl_NextBuffer. */
592 if (strcmp(input, "gl_NextBuffer") == 0) {
593 this->next_buffer_separator = true;
594 return;
595 }
596
597 /* Parse gl_SkipComponents. */
598 if (strcmp(input, "gl_SkipComponents1") == 0)
599 this->skip_components = 1;
600 else if (strcmp(input, "gl_SkipComponents2") == 0)
601 this->skip_components = 2;
602 else if (strcmp(input, "gl_SkipComponents3") == 0)
603 this->skip_components = 3;
604 else if (strcmp(input, "gl_SkipComponents4") == 0)
605 this->skip_components = 4;
606
607 if (this->skip_components)
608 return;
609 }
610
611 /* Parse a declaration. */
612 const char *base_name_end;
613 long subscript = parse_program_resource_name(input, &base_name_end);
614 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
615 if (this->var_name == NULL) {
616 _mesa_error_no_memory(__func__);
617 return;
618 }
619
620 if (subscript >= 0) {
621 this->array_subscript = subscript;
622 this->is_subscripted = true;
623 } else {
624 this->is_subscripted = false;
625 }
626
627 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
628 * class must behave specially to account for the fact that gl_ClipDistance
629 * is converted from a float[8] to a vec4[2].
630 */
631 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
632 strcmp(this->var_name, "gl_ClipDistance") == 0) {
633 this->lowered_builtin_array_variable = clip_distance;
634 }
635 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
636 strcmp(this->var_name, "gl_CullDistance") == 0) {
637 this->lowered_builtin_array_variable = cull_distance;
638 }
639
640 if (ctx->Const.LowerTessLevel &&
641 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
642 this->lowered_builtin_array_variable = tess_level_outer;
643 if (ctx->Const.LowerTessLevel &&
644 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
645 this->lowered_builtin_array_variable = tess_level_inner;
646 }
647
648
649 /**
650 * Determine whether two tfeedback_decl objects refer to the same variable and
651 * array index (if applicable).
652 */
653 bool
654 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
655 {
656 assert(x.is_varying() && y.is_varying());
657
658 if (strcmp(x.var_name, y.var_name) != 0)
659 return false;
660 if (x.is_subscripted != y.is_subscripted)
661 return false;
662 if (x.is_subscripted && x.array_subscript != y.array_subscript)
663 return false;
664 return true;
665 }
666
667
668 /**
669 * Assign a location and stream ID for this tfeedback_decl object based on the
670 * transform feedback candidate found by find_candidate.
671 *
672 * If an error occurs, the error is reported through linker_error() and false
673 * is returned.
674 */
675 bool
676 tfeedback_decl::assign_location(struct gl_context *ctx,
677 struct gl_shader_program *prog)
678 {
679 assert(this->is_varying());
680
681 unsigned fine_location
682 = this->matched_candidate->toplevel_var->data.location * 4
683 + this->matched_candidate->toplevel_var->data.location_frac
684 + this->matched_candidate->offset;
685 const unsigned dmul =
686 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
687
688 if (this->matched_candidate->type->is_array()) {
689 /* Array variable */
690 const unsigned matrix_cols =
691 this->matched_candidate->type->fields.array->matrix_columns;
692 const unsigned vector_elements =
693 this->matched_candidate->type->fields.array->vector_elements;
694 unsigned actual_array_size;
695 switch (this->lowered_builtin_array_variable) {
696 case clip_distance:
697 actual_array_size = prog->LastClipDistanceArraySize;
698 break;
699 case cull_distance:
700 actual_array_size = prog->LastCullDistanceArraySize;
701 break;
702 case tess_level_outer:
703 actual_array_size = 4;
704 break;
705 case tess_level_inner:
706 actual_array_size = 2;
707 break;
708 case none:
709 default:
710 actual_array_size = this->matched_candidate->type->array_size();
711 break;
712 }
713
714 if (this->is_subscripted) {
715 /* Check array bounds. */
716 if (this->array_subscript >= actual_array_size) {
717 linker_error(prog, "Transform feedback varying %s has index "
718 "%i, but the array size is %u.",
719 this->orig_name, this->array_subscript,
720 actual_array_size);
721 return false;
722 }
723 unsigned array_elem_size = this->lowered_builtin_array_variable ?
724 1 : vector_elements * matrix_cols * dmul;
725 fine_location += array_elem_size * this->array_subscript;
726 this->size = 1;
727 } else {
728 this->size = actual_array_size;
729 }
730 this->vector_elements = vector_elements;
731 this->matrix_columns = matrix_cols;
732 if (this->lowered_builtin_array_variable)
733 this->type = GL_FLOAT;
734 else
735 this->type = this->matched_candidate->type->fields.array->gl_type;
736 } else {
737 /* Regular variable (scalar, vector, or matrix) */
738 if (this->is_subscripted) {
739 linker_error(prog, "Transform feedback varying %s requested, "
740 "but %s is not an array.",
741 this->orig_name, this->var_name);
742 return false;
743 }
744 this->size = 1;
745 this->vector_elements = this->matched_candidate->type->vector_elements;
746 this->matrix_columns = this->matched_candidate->type->matrix_columns;
747 this->type = this->matched_candidate->type->gl_type;
748 }
749 this->location = fine_location / 4;
750 this->location_frac = fine_location % 4;
751
752 /* From GL_EXT_transform_feedback:
753 * A program will fail to link if:
754 *
755 * * the total number of components to capture in any varying
756 * variable in <varyings> is greater than the constant
757 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
758 * buffer mode is SEPARATE_ATTRIBS_EXT;
759 */
760 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
761 this->num_components() >
762 ctx->Const.MaxTransformFeedbackSeparateComponents) {
763 linker_error(prog, "Transform feedback varying %s exceeds "
764 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
765 this->orig_name);
766 return false;
767 }
768
769 /* Only transform feedback varyings can be assigned to non-zero streams,
770 * so assign the stream id here.
771 */
772 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
773
774 unsigned array_offset = this->array_subscript * 4 * dmul;
775 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
776 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
777 this->offset = this->matched_candidate->toplevel_var->data.offset +
778 array_offset + struct_offset;
779
780 return true;
781 }
782
783
784 unsigned
785 tfeedback_decl::get_num_outputs() const
786 {
787 if (!this->is_varying()) {
788 return 0;
789 }
790 return (this->num_components() + this->location_frac + 3)/4;
791 }
792
793
794 /**
795 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
796 *
797 * If an error occurs, the error is reported through linker_error() and false
798 * is returned.
799 */
800 bool
801 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
802 struct gl_transform_feedback_info *info,
803 unsigned buffer, unsigned buffer_index,
804 const unsigned max_outputs, bool *explicit_stride,
805 bool has_xfb_qualifiers) const
806 {
807 assert(!this->next_buffer_separator);
808
809 /* Handle gl_SkipComponents. */
810 if (this->skip_components) {
811 info->Buffers[buffer].Stride += this->skip_components;
812 return true;
813 }
814
815 unsigned xfb_offset = 0;
816 if (has_xfb_qualifiers) {
817 xfb_offset = this->offset / 4;
818 } else {
819 xfb_offset = info->Buffers[buffer].Stride;
820 }
821 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
822
823 unsigned location = this->location;
824 unsigned location_frac = this->location_frac;
825 unsigned num_components = this->num_components();
826 while (num_components > 0) {
827 unsigned output_size = MIN2(num_components, 4 - location_frac);
828 assert((info->NumOutputs == 0 && max_outputs == 0) ||
829 info->NumOutputs < max_outputs);
830
831 /* From the ARB_enhanced_layouts spec:
832 *
833 * "If such a block member or variable is not written during a shader
834 * invocation, the buffer contents at the assigned offset will be
835 * undefined. Even if there are no static writes to a variable or
836 * member that is assigned a transform feedback offset, the space is
837 * still allocated in the buffer and still affects the stride."
838 */
839 if (this->is_varying_written()) {
840 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
841 info->Outputs[info->NumOutputs].OutputRegister = location;
842 info->Outputs[info->NumOutputs].NumComponents = output_size;
843 info->Outputs[info->NumOutputs].StreamId = stream_id;
844 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
845 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
846 ++info->NumOutputs;
847 }
848 info->Buffers[buffer].Stream = this->stream_id;
849 xfb_offset += output_size;
850
851 num_components -= output_size;
852 location++;
853 location_frac = 0;
854 }
855
856 if (explicit_stride && explicit_stride[buffer]) {
857 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
858 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
859 "multiple of 8 as its applied to a type that is or "
860 "contains a double.",
861 info->Buffers[buffer].Stride * 4);
862 return false;
863 }
864
865 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
866 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
867 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
868 "buffer (%d)", xfb_offset * 4,
869 info->Buffers[buffer].Stride * 4, buffer);
870 return false;
871 }
872 } else {
873 info->Buffers[buffer].Stride = xfb_offset;
874 }
875
876 /* From GL_EXT_transform_feedback:
877 * A program will fail to link if:
878 *
879 * * the total number of components to capture is greater than
880 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
881 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
882 *
883 * From GL_ARB_enhanced_layouts:
884 *
885 * "The resulting stride (implicit or explicit) must be less than or
886 * equal to the implementation-dependent constant
887 * gl_MaxTransformFeedbackInterleavedComponents."
888 */
889 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
890 has_xfb_qualifiers) &&
891 info->Buffers[buffer].Stride >
892 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
893 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
894 "limit has been exceeded.");
895 return false;
896 }
897
898 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
899 this->orig_name);
900 info->Varyings[info->NumVarying].Type = this->type;
901 info->Varyings[info->NumVarying].Size = this->size;
902 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
903 info->NumVarying++;
904 info->Buffers[buffer].NumVaryings++;
905
906 return true;
907 }
908
909
910 const tfeedback_candidate *
911 tfeedback_decl::find_candidate(gl_shader_program *prog,
912 hash_table *tfeedback_candidates)
913 {
914 const char *name = this->var_name;
915 switch (this->lowered_builtin_array_variable) {
916 case none:
917 name = this->var_name;
918 break;
919 case clip_distance:
920 name = "gl_ClipDistanceMESA";
921 break;
922 case cull_distance:
923 name = "gl_CullDistanceMESA";
924 break;
925 case tess_level_outer:
926 name = "gl_TessLevelOuterMESA";
927 break;
928 case tess_level_inner:
929 name = "gl_TessLevelInnerMESA";
930 break;
931 }
932 this->matched_candidate = (const tfeedback_candidate *)
933 hash_table_find(tfeedback_candidates, name);
934 if (!this->matched_candidate) {
935 /* From GL_EXT_transform_feedback:
936 * A program will fail to link if:
937 *
938 * * any variable name specified in the <varyings> array is not
939 * declared as an output in the geometry shader (if present) or
940 * the vertex shader (if no geometry shader is present);
941 */
942 linker_error(prog, "Transform feedback varying %s undeclared.",
943 this->orig_name);
944 }
945 return this->matched_candidate;
946 }
947
948
949 /**
950 * Parse all the transform feedback declarations that were passed to
951 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
952 *
953 * If an error occurs, the error is reported through linker_error() and false
954 * is returned.
955 */
956 bool
957 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
958 const void *mem_ctx, unsigned num_names,
959 char **varying_names, tfeedback_decl *decls)
960 {
961 for (unsigned i = 0; i < num_names; ++i) {
962 decls[i].init(ctx, mem_ctx, varying_names[i]);
963
964 if (!decls[i].is_varying())
965 continue;
966
967 /* From GL_EXT_transform_feedback:
968 * A program will fail to link if:
969 *
970 * * any two entries in the <varyings> array specify the same varying
971 * variable;
972 *
973 * We interpret this to mean "any two entries in the <varyings> array
974 * specify the same varying variable and array index", since transform
975 * feedback of arrays would be useless otherwise.
976 */
977 for (unsigned j = 0; j < i; ++j) {
978 if (!decls[j].is_varying())
979 continue;
980
981 if (tfeedback_decl::is_same(decls[i], decls[j])) {
982 linker_error(prog, "Transform feedback varying %s specified "
983 "more than once.", varying_names[i]);
984 return false;
985 }
986 }
987 }
988 return true;
989 }
990
991
992 static int
993 cmp_xfb_offset(const void * x_generic, const void * y_generic)
994 {
995 tfeedback_decl *x = (tfeedback_decl *) x_generic;
996 tfeedback_decl *y = (tfeedback_decl *) y_generic;
997
998 if (x->get_buffer() != y->get_buffer())
999 return x->get_buffer() - y->get_buffer();
1000 return x->get_offset() - y->get_offset();
1001 }
1002
1003 /**
1004 * Store transform feedback location assignments into
1005 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1006 *
1007 * If an error occurs, the error is reported through linker_error() and false
1008 * is returned.
1009 */
1010 bool
1011 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1012 unsigned num_tfeedback_decls,
1013 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1014 {
1015 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1016 * tracking the number of buffers doesn't overflow.
1017 */
1018 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1019
1020 bool separate_attribs_mode =
1021 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1022
1023 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1024 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1025
1026 memset(&prog->LinkedTransformFeedback, 0,
1027 sizeof(prog->LinkedTransformFeedback));
1028
1029 /* The xfb_offset qualifier does not have to be used in increasing order
1030 * however some drivers expect to receive the list of transform feedback
1031 * declarations in order so sort it now for convenience.
1032 */
1033 if (has_xfb_qualifiers)
1034 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1035 cmp_xfb_offset);
1036
1037 prog->LinkedTransformFeedback.Varyings =
1038 rzalloc_array(prog,
1039 struct gl_transform_feedback_varying_info,
1040 num_tfeedback_decls);
1041
1042 unsigned num_outputs = 0;
1043 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1044 if (tfeedback_decls[i].is_varying_written())
1045 num_outputs += tfeedback_decls[i].get_num_outputs();
1046 }
1047
1048 prog->LinkedTransformFeedback.Outputs =
1049 rzalloc_array(prog,
1050 struct gl_transform_feedback_output,
1051 num_outputs);
1052
1053 unsigned num_buffers = 0;
1054 unsigned buffers = 0;
1055
1056 if (!has_xfb_qualifiers && separate_attribs_mode) {
1057 /* GL_SEPARATE_ATTRIBS */
1058 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1059 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1060 num_buffers, num_buffers, num_outputs,
1061 NULL, has_xfb_qualifiers))
1062 return false;
1063
1064 buffers |= 1 << num_buffers;
1065 num_buffers++;
1066 }
1067 }
1068 else {
1069 /* GL_INVERLEAVED_ATTRIBS */
1070 int buffer_stream_id = -1;
1071 unsigned buffer =
1072 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1073 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1074
1075 /* Apply any xfb_stride global qualifiers */
1076 if (has_xfb_qualifiers) {
1077 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1078 if (prog->TransformFeedback.BufferStride[j]) {
1079 buffers |= 1 << j;
1080 explicit_stride[j] = true;
1081 prog->LinkedTransformFeedback.Buffers[j].Stride =
1082 prog->TransformFeedback.BufferStride[j] / 4;
1083 }
1084 }
1085 }
1086
1087 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1088 if (has_xfb_qualifiers &&
1089 buffer != tfeedback_decls[i].get_buffer()) {
1090 /* we have moved to the next buffer so reset stream id */
1091 buffer_stream_id = -1;
1092 num_buffers++;
1093 }
1094
1095 if (tfeedback_decls[i].is_next_buffer_separator()) {
1096 num_buffers++;
1097 buffer_stream_id = -1;
1098 continue;
1099 } else if (buffer_stream_id == -1) {
1100 /* First varying writing to this buffer: remember its stream */
1101 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1102 } else if (buffer_stream_id !=
1103 (int) tfeedback_decls[i].get_stream_id()) {
1104 /* Varying writes to the same buffer from a different stream */
1105 linker_error(prog,
1106 "Transform feedback can't capture varyings belonging "
1107 "to different vertex streams in a single buffer. "
1108 "Varying %s writes to buffer from stream %u, other "
1109 "varyings in the same buffer write from stream %u.",
1110 tfeedback_decls[i].name(),
1111 tfeedback_decls[i].get_stream_id(),
1112 buffer_stream_id);
1113 return false;
1114 }
1115
1116 if (has_xfb_qualifiers) {
1117 buffer = tfeedback_decls[i].get_buffer();
1118 } else {
1119 buffer = num_buffers;
1120 }
1121 buffers |= 1 << buffer;
1122
1123 if (!tfeedback_decls[i].store(ctx, prog,
1124 &prog->LinkedTransformFeedback,
1125 buffer, num_buffers, num_outputs,
1126 explicit_stride, has_xfb_qualifiers))
1127 return false;
1128 }
1129 }
1130
1131 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1132
1133 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1134 return true;
1135 }
1136
1137 namespace {
1138
1139 /**
1140 * Data structure recording the relationship between outputs of one shader
1141 * stage (the "producer") and inputs of another (the "consumer").
1142 */
1143 class varying_matches
1144 {
1145 public:
1146 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1147 gl_shader_stage producer_stage,
1148 gl_shader_stage consumer_stage);
1149 ~varying_matches();
1150 void record(ir_variable *producer_var, ir_variable *consumer_var);
1151 unsigned assign_locations(struct gl_shader_program *prog,
1152 uint64_t reserved_slots);
1153 void store_locations() const;
1154
1155 private:
1156 bool is_varying_packing_safe(const glsl_type *type,
1157 const ir_variable *var);
1158
1159 /**
1160 * If true, this driver disables varying packing, so all varyings need to
1161 * be aligned on slot boundaries, and take up a number of slots equal to
1162 * their number of matrix columns times their array size.
1163 *
1164 * Packing may also be disabled because our current packing method is not
1165 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1166 * guaranteed to match across stages.
1167 */
1168 const bool disable_varying_packing;
1169
1170 /**
1171 * If true, this driver has transform feedback enabled. The transform
1172 * feedback code requires at least some packing be done even when varying
1173 * packing is disabled, fortunately where transform feedback requires
1174 * packing it's safe to override the disabled setting. See
1175 * is_varying_packing_safe().
1176 */
1177 const bool xfb_enabled;
1178
1179 /**
1180 * Enum representing the order in which varyings are packed within a
1181 * packing class.
1182 *
1183 * Currently we pack vec4's first, then vec2's, then scalar values, then
1184 * vec3's. This order ensures that the only vectors that are at risk of
1185 * having to be "double parked" (split between two adjacent varying slots)
1186 * are the vec3's.
1187 */
1188 enum packing_order_enum {
1189 PACKING_ORDER_VEC4,
1190 PACKING_ORDER_VEC2,
1191 PACKING_ORDER_SCALAR,
1192 PACKING_ORDER_VEC3,
1193 };
1194
1195 static unsigned compute_packing_class(const ir_variable *var);
1196 static packing_order_enum compute_packing_order(const ir_variable *var);
1197 static int match_comparator(const void *x_generic, const void *y_generic);
1198 static int xfb_comparator(const void *x_generic, const void *y_generic);
1199
1200 /**
1201 * Structure recording the relationship between a single producer output
1202 * and a single consumer input.
1203 */
1204 struct match {
1205 /**
1206 * Packing class for this varying, computed by compute_packing_class().
1207 */
1208 unsigned packing_class;
1209
1210 /**
1211 * Packing order for this varying, computed by compute_packing_order().
1212 */
1213 packing_order_enum packing_order;
1214 unsigned num_components;
1215
1216 /**
1217 * The output variable in the producer stage.
1218 */
1219 ir_variable *producer_var;
1220
1221 /**
1222 * The input variable in the consumer stage.
1223 */
1224 ir_variable *consumer_var;
1225
1226 /**
1227 * The location which has been assigned for this varying. This is
1228 * expressed in multiples of a float, with the first generic varying
1229 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1230 * value 0.
1231 */
1232 unsigned generic_location;
1233 } *matches;
1234
1235 /**
1236 * The number of elements in the \c matches array that are currently in
1237 * use.
1238 */
1239 unsigned num_matches;
1240
1241 /**
1242 * The number of elements that were set aside for the \c matches array when
1243 * it was allocated.
1244 */
1245 unsigned matches_capacity;
1246
1247 gl_shader_stage producer_stage;
1248 gl_shader_stage consumer_stage;
1249 };
1250
1251 } /* anonymous namespace */
1252
1253 varying_matches::varying_matches(bool disable_varying_packing,
1254 bool xfb_enabled,
1255 gl_shader_stage producer_stage,
1256 gl_shader_stage consumer_stage)
1257 : disable_varying_packing(disable_varying_packing),
1258 xfb_enabled(xfb_enabled),
1259 producer_stage(producer_stage),
1260 consumer_stage(consumer_stage)
1261 {
1262 /* Note: this initial capacity is rather arbitrarily chosen to be large
1263 * enough for many cases without wasting an unreasonable amount of space.
1264 * varying_matches::record() will resize the array if there are more than
1265 * this number of varyings.
1266 */
1267 this->matches_capacity = 8;
1268 this->matches = (match *)
1269 malloc(sizeof(*this->matches) * this->matches_capacity);
1270 this->num_matches = 0;
1271 }
1272
1273
1274 varying_matches::~varying_matches()
1275 {
1276 free(this->matches);
1277 }
1278
1279
1280 /**
1281 * Packing is always safe on individual arrays, structures, and matrices. It
1282 * is also safe if the varying is only used for transform feedback.
1283 */
1284 bool
1285 varying_matches::is_varying_packing_safe(const glsl_type *type,
1286 const ir_variable *var)
1287 {
1288 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1289 consumer_stage == MESA_SHADER_TESS_CTRL ||
1290 producer_stage == MESA_SHADER_TESS_CTRL)
1291 return false;
1292
1293 return xfb_enabled && (type->is_array() || type->is_record() ||
1294 type->is_matrix() || var->data.is_xfb_only);
1295 }
1296
1297
1298 /**
1299 * Record the given producer/consumer variable pair in the list of variables
1300 * that should later be assigned locations.
1301 *
1302 * It is permissible for \c consumer_var to be NULL (this happens if a
1303 * variable is output by the producer and consumed by transform feedback, but
1304 * not consumed by the consumer).
1305 *
1306 * If \c producer_var has already been paired up with a consumer_var, or
1307 * producer_var is part of fixed pipeline functionality (and hence already has
1308 * a location assigned), this function has no effect.
1309 *
1310 * Note: as a side effect this function may change the interpolation type of
1311 * \c producer_var, but only when the change couldn't possibly affect
1312 * rendering.
1313 */
1314 void
1315 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1316 {
1317 assert(producer_var != NULL || consumer_var != NULL);
1318
1319 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1320 producer_var->data.explicit_location)) ||
1321 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1322 consumer_var->data.explicit_location))) {
1323 /* Either a location already exists for this variable (since it is part
1324 * of fixed functionality), or it has already been recorded as part of a
1325 * previous match.
1326 */
1327 return;
1328 }
1329
1330 bool needs_flat_qualifier = consumer_var == NULL &&
1331 (producer_var->type->contains_integer() ||
1332 producer_var->type->contains_double());
1333
1334 if (needs_flat_qualifier ||
1335 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1336 /* Since this varying is not being consumed by the fragment shader, its
1337 * interpolation type varying cannot possibly affect rendering.
1338 * Also, this variable is non-flat and is (or contains) an integer
1339 * or a double.
1340 * If the consumer stage is unknown, don't modify the interpolation
1341 * type as it could affect rendering later with separate shaders.
1342 *
1343 * lower_packed_varyings requires all integer varyings to flat,
1344 * regardless of where they appear. We can trivially satisfy that
1345 * requirement by changing the interpolation type to flat here.
1346 */
1347 if (producer_var) {
1348 producer_var->data.centroid = false;
1349 producer_var->data.sample = false;
1350 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1351 }
1352
1353 if (consumer_var) {
1354 consumer_var->data.centroid = false;
1355 consumer_var->data.sample = false;
1356 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1357 }
1358 }
1359
1360 if (this->num_matches == this->matches_capacity) {
1361 this->matches_capacity *= 2;
1362 this->matches = (match *)
1363 realloc(this->matches,
1364 sizeof(*this->matches) * this->matches_capacity);
1365 }
1366
1367 const ir_variable *const var = (producer_var != NULL)
1368 ? producer_var : consumer_var;
1369 const gl_shader_stage stage = (producer_var != NULL)
1370 ? producer_stage : consumer_stage;
1371 const glsl_type *type = get_varying_type(var, stage);
1372
1373 this->matches[this->num_matches].packing_class
1374 = this->compute_packing_class(var);
1375 this->matches[this->num_matches].packing_order
1376 = this->compute_packing_order(var);
1377 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1378 unsigned slots = type->count_attribute_slots(false);
1379 this->matches[this->num_matches].num_components = slots * 4;
1380 } else {
1381 this->matches[this->num_matches].num_components
1382 = type->component_slots();
1383 }
1384 this->matches[this->num_matches].producer_var = producer_var;
1385 this->matches[this->num_matches].consumer_var = consumer_var;
1386 this->num_matches++;
1387 if (producer_var)
1388 producer_var->data.is_unmatched_generic_inout = 0;
1389 if (consumer_var)
1390 consumer_var->data.is_unmatched_generic_inout = 0;
1391 }
1392
1393
1394 /**
1395 * Choose locations for all of the variable matches that were previously
1396 * passed to varying_matches::record().
1397 */
1398 unsigned
1399 varying_matches::assign_locations(struct gl_shader_program *prog,
1400 uint64_t reserved_slots)
1401 {
1402 /* If packing has been disabled then we cannot safely sort the varyings by
1403 * class as it may mean we are using a version of OpenGL where
1404 * interpolation qualifiers are not guaranteed to be matching across
1405 * shaders, sorting in this case could result in mismatching shader
1406 * interfaces.
1407 * When packing is disabled the sort orders varyings used by transform
1408 * feedback first, but also depends on *undefined behaviour* of qsort to
1409 * reverse the order of the varyings. See: xfb_comparator().
1410 */
1411 if (!this->disable_varying_packing) {
1412 /* Sort varying matches into an order that makes them easy to pack. */
1413 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1414 &varying_matches::match_comparator);
1415 } else {
1416 /* Only sort varyings that are only used by transform feedback. */
1417 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1418 &varying_matches::xfb_comparator);
1419 }
1420
1421 unsigned generic_location = 0;
1422 unsigned generic_patch_location = MAX_VARYING*4;
1423 bool previous_var_xfb_only = false;
1424
1425 for (unsigned i = 0; i < this->num_matches; i++) {
1426 unsigned *location = &generic_location;
1427
1428 const ir_variable *var;
1429 const glsl_type *type;
1430 bool is_vertex_input = false;
1431 if (matches[i].consumer_var) {
1432 var = matches[i].consumer_var;
1433 type = get_varying_type(var, consumer_stage);
1434 if (consumer_stage == MESA_SHADER_VERTEX)
1435 is_vertex_input = true;
1436 } else {
1437 var = matches[i].producer_var;
1438 type = get_varying_type(var, producer_stage);
1439 }
1440
1441 if (var->data.patch)
1442 location = &generic_patch_location;
1443
1444 /* Advance to the next slot if this varying has a different packing
1445 * class than the previous one, and we're not already on a slot
1446 * boundary.
1447 *
1448 * Also advance to the next slot if packing is disabled. This makes sure
1449 * we don't assign varyings the same locations which is possible
1450 * because we still pack individual arrays, records and matrices even
1451 * when packing is disabled. Note we don't advance to the next slot if
1452 * we can pack varyings together that are only used for transform
1453 * feedback.
1454 */
1455 if ((this->disable_varying_packing &&
1456 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1457 (i > 0 && this->matches[i - 1].packing_class
1458 != this->matches[i].packing_class )) {
1459 *location = ALIGN(*location, 4);
1460 }
1461
1462 previous_var_xfb_only = var->data.is_xfb_only;
1463
1464 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1465 unsigned slot_end;
1466 if (this->disable_varying_packing &&
1467 !is_varying_packing_safe(type, var))
1468 slot_end = 4;
1469 else
1470 slot_end = type->without_array()->vector_elements;
1471 slot_end += *location - 1;
1472
1473 /* FIXME: We could be smarter in the below code and loop back over
1474 * trying to fill any locations that we skipped because we couldn't pack
1475 * the varying between an explicit location. For now just let the user
1476 * hit the linking error if we run out of room and suggest they use
1477 * explicit locations.
1478 */
1479 for (unsigned j = 0; j < num_elements; j++) {
1480 while ((slot_end < MAX_VARYING * 4u) &&
1481 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1482 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1483
1484 *location = ALIGN(*location + 1, 4);
1485 slot_end = *location;
1486
1487 /* reset the counter and try again */
1488 j = 0;
1489 }
1490
1491 /* Increase the slot to make sure there is enough room for next
1492 * array element.
1493 */
1494 if (this->disable_varying_packing &&
1495 !is_varying_packing_safe(type, var))
1496 slot_end += 4;
1497 else
1498 slot_end += type->without_array()->vector_elements;
1499 }
1500
1501 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1502 linker_error(prog, "insufficient contiguous locations available for "
1503 "%s it is possible an array or struct could not be "
1504 "packed between varyings with explicit locations. Try "
1505 "using an explicit location for arrays and structs.",
1506 var->name);
1507 }
1508
1509 this->matches[i].generic_location = *location;
1510
1511 *location += this->matches[i].num_components;
1512 }
1513
1514 return (generic_location + 3) / 4;
1515 }
1516
1517
1518 /**
1519 * Update the producer and consumer shaders to reflect the locations
1520 * assignments that were made by varying_matches::assign_locations().
1521 */
1522 void
1523 varying_matches::store_locations() const
1524 {
1525 for (unsigned i = 0; i < this->num_matches; i++) {
1526 ir_variable *producer_var = this->matches[i].producer_var;
1527 ir_variable *consumer_var = this->matches[i].consumer_var;
1528 unsigned generic_location = this->matches[i].generic_location;
1529 unsigned slot = generic_location / 4;
1530 unsigned offset = generic_location % 4;
1531
1532 if (producer_var) {
1533 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1534 producer_var->data.location_frac = offset;
1535 }
1536
1537 if (consumer_var) {
1538 assert(consumer_var->data.location == -1);
1539 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1540 consumer_var->data.location_frac = offset;
1541 }
1542 }
1543 }
1544
1545
1546 /**
1547 * Compute the "packing class" of the given varying. This is an unsigned
1548 * integer with the property that two variables in the same packing class can
1549 * be safely backed into the same vec4.
1550 */
1551 unsigned
1552 varying_matches::compute_packing_class(const ir_variable *var)
1553 {
1554 /* Without help from the back-end, there is no way to pack together
1555 * variables with different interpolation types, because
1556 * lower_packed_varyings must choose exactly one interpolation type for
1557 * each packed varying it creates.
1558 *
1559 * However, we can safely pack together floats, ints, and uints, because:
1560 *
1561 * - varyings of base type "int" and "uint" must use the "flat"
1562 * interpolation type, which can only occur in GLSL 1.30 and above.
1563 *
1564 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1565 * can store flat floats as ints without losing any information (using
1566 * the ir_unop_bitcast_* opcodes).
1567 *
1568 * Therefore, the packing class depends only on the interpolation type.
1569 */
1570 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1571 (var->data.patch << 2);
1572 packing_class *= 4;
1573 packing_class += var->data.interpolation;
1574 return packing_class;
1575 }
1576
1577
1578 /**
1579 * Compute the "packing order" of the given varying. This is a sort key we
1580 * use to determine when to attempt to pack the given varying relative to
1581 * other varyings in the same packing class.
1582 */
1583 varying_matches::packing_order_enum
1584 varying_matches::compute_packing_order(const ir_variable *var)
1585 {
1586 const glsl_type *element_type = var->type;
1587
1588 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1589 element_type = element_type->fields.array;
1590 }
1591
1592 switch (element_type->component_slots() % 4) {
1593 case 1: return PACKING_ORDER_SCALAR;
1594 case 2: return PACKING_ORDER_VEC2;
1595 case 3: return PACKING_ORDER_VEC3;
1596 case 0: return PACKING_ORDER_VEC4;
1597 default:
1598 assert(!"Unexpected value of vector_elements");
1599 return PACKING_ORDER_VEC4;
1600 }
1601 }
1602
1603
1604 /**
1605 * Comparison function passed to qsort() to sort varyings by packing_class and
1606 * then by packing_order.
1607 */
1608 int
1609 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1610 {
1611 const match *x = (const match *) x_generic;
1612 const match *y = (const match *) y_generic;
1613
1614 if (x->packing_class != y->packing_class)
1615 return x->packing_class - y->packing_class;
1616 return x->packing_order - y->packing_order;
1617 }
1618
1619
1620 /**
1621 * Comparison function passed to qsort() to sort varyings used only by
1622 * transform feedback when packing of other varyings is disabled.
1623 */
1624 int
1625 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1626 {
1627 const match *x = (const match *) x_generic;
1628
1629 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1630 return match_comparator(x_generic, y_generic);
1631
1632 /* FIXME: When the comparator returns 0 it means the elements being
1633 * compared are equivalent. However the qsort documentation says:
1634 *
1635 * "The order of equivalent elements is undefined."
1636 *
1637 * In practice the sort ends up reversing the order of the varyings which
1638 * means locations are also assigned in this reversed order and happens to
1639 * be what we want. This is also whats happening in
1640 * varying_matches::match_comparator().
1641 */
1642 return 0;
1643 }
1644
1645
1646 /**
1647 * Is the given variable a varying variable to be counted against the
1648 * limit in ctx->Const.MaxVarying?
1649 * This includes variables such as texcoords, colors and generic
1650 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1651 */
1652 static bool
1653 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1654 {
1655 /* Only fragment shaders will take a varying variable as an input */
1656 if (stage == MESA_SHADER_FRAGMENT &&
1657 var->data.mode == ir_var_shader_in) {
1658 switch (var->data.location) {
1659 case VARYING_SLOT_POS:
1660 case VARYING_SLOT_FACE:
1661 case VARYING_SLOT_PNTC:
1662 return false;
1663 default:
1664 return true;
1665 }
1666 }
1667 return false;
1668 }
1669
1670
1671 /**
1672 * Visitor class that generates tfeedback_candidate structs describing all
1673 * possible targets of transform feedback.
1674 *
1675 * tfeedback_candidate structs are stored in the hash table
1676 * tfeedback_candidates, which is passed to the constructor. This hash table
1677 * maps varying names to instances of the tfeedback_candidate struct.
1678 */
1679 class tfeedback_candidate_generator : public program_resource_visitor
1680 {
1681 public:
1682 tfeedback_candidate_generator(void *mem_ctx,
1683 hash_table *tfeedback_candidates)
1684 : mem_ctx(mem_ctx),
1685 tfeedback_candidates(tfeedback_candidates),
1686 toplevel_var(NULL),
1687 varying_floats(0)
1688 {
1689 }
1690
1691 void process(ir_variable *var)
1692 {
1693 /* All named varying interface blocks should be flattened by now */
1694 assert(!var->is_interface_instance());
1695
1696 this->toplevel_var = var;
1697 this->varying_floats = 0;
1698 program_resource_visitor::process(var);
1699 }
1700
1701 private:
1702 virtual void visit_field(const glsl_type *type, const char *name,
1703 bool row_major)
1704 {
1705 assert(!type->without_array()->is_record());
1706 assert(!type->without_array()->is_interface());
1707
1708 (void) row_major;
1709
1710 tfeedback_candidate *candidate
1711 = rzalloc(this->mem_ctx, tfeedback_candidate);
1712 candidate->toplevel_var = this->toplevel_var;
1713 candidate->type = type;
1714 candidate->offset = this->varying_floats;
1715 hash_table_insert(this->tfeedback_candidates, candidate,
1716 ralloc_strdup(this->mem_ctx, name));
1717 this->varying_floats += type->component_slots();
1718 }
1719
1720 /**
1721 * Memory context used to allocate hash table keys and values.
1722 */
1723 void * const mem_ctx;
1724
1725 /**
1726 * Hash table in which tfeedback_candidate objects should be stored.
1727 */
1728 hash_table * const tfeedback_candidates;
1729
1730 /**
1731 * Pointer to the toplevel variable that is being traversed.
1732 */
1733 ir_variable *toplevel_var;
1734
1735 /**
1736 * Total number of varying floats that have been visited so far. This is
1737 * used to determine the offset to each varying within the toplevel
1738 * variable.
1739 */
1740 unsigned varying_floats;
1741 };
1742
1743
1744 namespace linker {
1745
1746 void
1747 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1748 hash_table *consumer_inputs,
1749 hash_table *consumer_interface_inputs,
1750 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1751 {
1752 memset(consumer_inputs_with_locations,
1753 0,
1754 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1755
1756 foreach_in_list(ir_instruction, node, ir) {
1757 ir_variable *const input_var = node->as_variable();
1758
1759 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
1760 /* All interface blocks should have been lowered by this point */
1761 assert(!input_var->type->is_interface());
1762
1763 if (input_var->data.explicit_location) {
1764 /* assign_varying_locations only cares about finding the
1765 * ir_variable at the start of a contiguous location block.
1766 *
1767 * - For !producer, consumer_inputs_with_locations isn't used.
1768 *
1769 * - For !consumer, consumer_inputs_with_locations is empty.
1770 *
1771 * For consumer && producer, if you were trying to set some
1772 * ir_variable to the middle of a location block on the other side
1773 * of producer/consumer, cross_validate_outputs_to_inputs() should
1774 * be link-erroring due to either type mismatch or location
1775 * overlaps. If the variables do match up, then they've got a
1776 * matching data.location and you only looked at
1777 * consumer_inputs_with_locations[var->data.location], not any
1778 * following entries for the array/structure.
1779 */
1780 consumer_inputs_with_locations[input_var->data.location] =
1781 input_var;
1782 } else if (input_var->get_interface_type() != NULL) {
1783 char *const iface_field_name =
1784 ralloc_asprintf(mem_ctx, "%s.%s",
1785 input_var->get_interface_type()->without_array()->name,
1786 input_var->name);
1787 hash_table_insert(consumer_interface_inputs, input_var,
1788 iface_field_name);
1789 } else {
1790 hash_table_insert(consumer_inputs, input_var,
1791 ralloc_strdup(mem_ctx, input_var->name));
1792 }
1793 }
1794 }
1795 }
1796
1797 /**
1798 * Find a variable from the consumer that "matches" the specified variable
1799 *
1800 * This function only finds inputs with names that match. There is no
1801 * validation (here) that the types, etc. are compatible.
1802 */
1803 ir_variable *
1804 get_matching_input(void *mem_ctx,
1805 const ir_variable *output_var,
1806 hash_table *consumer_inputs,
1807 hash_table *consumer_interface_inputs,
1808 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1809 {
1810 ir_variable *input_var;
1811
1812 if (output_var->data.explicit_location) {
1813 input_var = consumer_inputs_with_locations[output_var->data.location];
1814 } else if (output_var->get_interface_type() != NULL) {
1815 char *const iface_field_name =
1816 ralloc_asprintf(mem_ctx, "%s.%s",
1817 output_var->get_interface_type()->without_array()->name,
1818 output_var->name);
1819 input_var =
1820 (ir_variable *) hash_table_find(consumer_interface_inputs,
1821 iface_field_name);
1822 } else {
1823 input_var =
1824 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1825 }
1826
1827 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1828 ? NULL : input_var;
1829 }
1830
1831 }
1832
1833 static int
1834 io_variable_cmp(const void *_a, const void *_b)
1835 {
1836 const ir_variable *const a = *(const ir_variable **) _a;
1837 const ir_variable *const b = *(const ir_variable **) _b;
1838
1839 if (a->data.explicit_location && b->data.explicit_location)
1840 return b->data.location - a->data.location;
1841
1842 if (a->data.explicit_location && !b->data.explicit_location)
1843 return 1;
1844
1845 if (!a->data.explicit_location && b->data.explicit_location)
1846 return -1;
1847
1848 return -strcmp(a->name, b->name);
1849 }
1850
1851 /**
1852 * Sort the shader IO variables into canonical order
1853 */
1854 static void
1855 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1856 {
1857 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1858 unsigned num_variables = 0;
1859
1860 foreach_in_list(ir_instruction, node, ir) {
1861 ir_variable *const var = node->as_variable();
1862
1863 if (var == NULL || var->data.mode != io_mode)
1864 continue;
1865
1866 /* If we have already encountered more I/O variables that could
1867 * successfully link, bail.
1868 */
1869 if (num_variables == ARRAY_SIZE(var_table))
1870 return;
1871
1872 var_table[num_variables++] = var;
1873 }
1874
1875 if (num_variables == 0)
1876 return;
1877
1878 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1879 * we're going to push the variables on to the IR list as a stack, so we
1880 * want the last variable (in canonical order) to be first in the list.
1881 */
1882 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1883
1884 /* Remove the variable from it's current location in the IR, and put it at
1885 * the front.
1886 */
1887 for (unsigned i = 0; i < num_variables; i++) {
1888 var_table[i]->remove();
1889 ir->push_head(var_table[i]);
1890 }
1891 }
1892
1893 /**
1894 * Generate a bitfield map of the explicit locations for shader varyings.
1895 *
1896 * Note: For Tessellation shaders we are sitting right on the limits of the
1897 * 64 bit map. Per-vertex and per-patch both have separate location domains
1898 * with a max of MAX_VARYING.
1899 */
1900 static uint64_t
1901 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1902 {
1903 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1904 /* Avoid an overflow of the returned value */
1905 assert(MAX_VARYINGS_INCL_PATCH <= 64);
1906
1907 uint64_t slots = 0;
1908 int var_slot;
1909
1910 if (!stage)
1911 return slots;
1912
1913 foreach_in_list(ir_instruction, node, stage->ir) {
1914 ir_variable *const var = node->as_variable();
1915
1916 if (var == NULL || var->data.mode != io_mode ||
1917 !var->data.explicit_location ||
1918 var->data.location < VARYING_SLOT_VAR0)
1919 continue;
1920
1921 var_slot = var->data.location - VARYING_SLOT_VAR0;
1922
1923 unsigned num_elements = get_varying_type(var, stage->Stage)
1924 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1925 for (unsigned i = 0; i < num_elements; i++) {
1926 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
1927 slots |= UINT64_C(1) << var_slot;
1928 var_slot += 1;
1929 }
1930 }
1931
1932 return slots;
1933 }
1934
1935
1936 /**
1937 * Assign locations for all variables that are produced in one pipeline stage
1938 * (the "producer") and consumed in the next stage (the "consumer").
1939 *
1940 * Variables produced by the producer may also be consumed by transform
1941 * feedback.
1942 *
1943 * \param num_tfeedback_decls is the number of declarations indicating
1944 * variables that may be consumed by transform feedback.
1945 *
1946 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1947 * representing the result of parsing the strings passed to
1948 * glTransformFeedbackVaryings(). assign_location() will be called for
1949 * each of these objects that matches one of the outputs of the
1950 * producer.
1951 *
1952 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1953 * be NULL. In this case, varying locations are assigned solely based on the
1954 * requirements of transform feedback.
1955 */
1956 bool
1957 assign_varying_locations(struct gl_context *ctx,
1958 void *mem_ctx,
1959 struct gl_shader_program *prog,
1960 gl_shader *producer, gl_shader *consumer,
1961 unsigned num_tfeedback_decls,
1962 tfeedback_decl *tfeedback_decls)
1963 {
1964 /* Tessellation shaders treat inputs and outputs as shared memory and can
1965 * access inputs and outputs of other invocations.
1966 * Therefore, they can't be lowered to temps easily (and definitely not
1967 * efficiently).
1968 */
1969 bool unpackable_tess =
1970 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1971 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1972 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1973
1974 /* Transform feedback code assumes varying arrays are packed, so if the
1975 * driver has disabled varying packing, make sure to at least enable
1976 * packing required by transform feedback.
1977 */
1978 bool xfb_enabled =
1979 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1980
1981 /* Disable varying packing for GL 4.4+ as there is no guarantee
1982 * that interpolation qualifiers will match between shaders in these
1983 * versions. We also disable packing on outward facing interfaces for
1984 * SSO because in ES we need to retain the unpacked varying information
1985 * for draw time validation. For desktop GL we could allow packing for
1986 * versions < 4.4 but it's just safer not to do packing.
1987 *
1988 * Packing is still enabled on individual arrays, structs, and matrices as
1989 * these are required by the transform feedback code and it is still safe
1990 * to do so. We also enable packing when a varying is only used for
1991 * transform feedback and its not a SSO.
1992 *
1993 * Varying packing currently only packs together varyings with matching
1994 * interpolation qualifiers as the backends assume all packed components
1995 * are to be processed in the same way. Therefore we cannot do packing in
1996 * these versions of GL without the risk of mismatching interfaces.
1997 *
1998 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1999 *
2000 * "The type and presence of interpolation qualifiers of variables with
2001 * the same name declared in all linked shaders for the same cross-stage
2002 * interface must match, otherwise the link command will fail.
2003 *
2004 * When comparing an output from one stage to an input of a subsequent
2005 * stage, the input and output don't match if their interpolation
2006 * qualifiers (or lack thereof) are not the same."
2007 *
2008 * This text was also in at least revison 7 of the 4.40 spec but is no
2009 * longer in revision 9 and not in the 4.50 spec.
2010 */
2011 bool disable_varying_packing =
2012 ctx->Const.DisableVaryingPacking || unpackable_tess;
2013 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
2014 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
2015 disable_varying_packing = true;
2016
2017 varying_matches matches(disable_varying_packing, xfb_enabled,
2018 producer ? producer->Stage : (gl_shader_stage)-1,
2019 consumer ? consumer->Stage : (gl_shader_stage)-1);
2020 hash_table *tfeedback_candidates
2021 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2022 hash_table *consumer_inputs
2023 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2024 hash_table *consumer_interface_inputs
2025 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2026 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2027 NULL,
2028 };
2029
2030 unsigned consumer_vertices = 0;
2031 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2032 consumer_vertices = prog->Geom.VerticesIn;
2033
2034 /* Operate in a total of four passes.
2035 *
2036 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2037 * that inputs / outputs of separable shaders will be assigned
2038 * predictable locations regardless of the order in which declarations
2039 * appeared in the shader source.
2040 *
2041 * 2. Assign locations for any matching inputs and outputs.
2042 *
2043 * 3. Mark output variables in the producer that do not have locations as
2044 * not being outputs. This lets the optimizer eliminate them.
2045 *
2046 * 4. Mark input variables in the consumer that do not have locations as
2047 * not being inputs. This lets the optimizer eliminate them.
2048 */
2049 if (consumer)
2050 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2051
2052 if (producer)
2053 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2054
2055 if (consumer)
2056 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2057 consumer_inputs,
2058 consumer_interface_inputs,
2059 consumer_inputs_with_locations);
2060
2061 if (producer) {
2062 foreach_in_list(ir_instruction, node, producer->ir) {
2063 ir_variable *const output_var = node->as_variable();
2064
2065 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2066 continue;
2067
2068 /* Only geometry shaders can use non-zero streams */
2069 assert(output_var->data.stream == 0 ||
2070 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2071 producer->Stage == MESA_SHADER_GEOMETRY));
2072
2073 if (num_tfeedback_decls > 0) {
2074 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2075 g.process(output_var);
2076 }
2077
2078 ir_variable *const input_var =
2079 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2080 consumer_interface_inputs,
2081 consumer_inputs_with_locations);
2082
2083 /* If a matching input variable was found, add this output (and the
2084 * input) to the set. If this is a separable program and there is no
2085 * consumer stage, add the output.
2086 *
2087 * Always add TCS outputs. They are shared by all invocations
2088 * within a patch and can be used as shared memory.
2089 */
2090 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2091 producer->Type == GL_TESS_CONTROL_SHADER) {
2092 matches.record(output_var, input_var);
2093 }
2094
2095 /* Only stream 0 outputs can be consumed in the next stage */
2096 if (input_var && output_var->data.stream != 0) {
2097 linker_error(prog, "output %s is assigned to stream=%d but "
2098 "is linked to an input, which requires stream=0",
2099 output_var->name, output_var->data.stream);
2100 return false;
2101 }
2102 }
2103 } else {
2104 /* If there's no producer stage, then this must be a separable program.
2105 * For example, we may have a program that has just a fragment shader.
2106 * Later this program will be used with some arbitrary vertex (or
2107 * geometry) shader program. This means that locations must be assigned
2108 * for all the inputs.
2109 */
2110 foreach_in_list(ir_instruction, node, consumer->ir) {
2111 ir_variable *const input_var = node->as_variable();
2112
2113 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2114 continue;
2115
2116 matches.record(NULL, input_var);
2117 }
2118 }
2119
2120 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2121 if (!tfeedback_decls[i].is_varying())
2122 continue;
2123
2124 const tfeedback_candidate *matched_candidate
2125 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2126
2127 if (matched_candidate == NULL) {
2128 hash_table_dtor(tfeedback_candidates);
2129 hash_table_dtor(consumer_inputs);
2130 hash_table_dtor(consumer_interface_inputs);
2131 return false;
2132 }
2133
2134 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2135 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2136 matches.record(matched_candidate->toplevel_var, NULL);
2137 }
2138 }
2139
2140 const uint64_t reserved_slots =
2141 reserved_varying_slot(producer, ir_var_shader_out) |
2142 reserved_varying_slot(consumer, ir_var_shader_in);
2143
2144 const unsigned slots_used = matches.assign_locations(prog, reserved_slots);
2145 matches.store_locations();
2146
2147 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2148 if (!tfeedback_decls[i].is_varying())
2149 continue;
2150
2151 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2152 hash_table_dtor(tfeedback_candidates);
2153 hash_table_dtor(consumer_inputs);
2154 hash_table_dtor(consumer_interface_inputs);
2155 return false;
2156 }
2157 }
2158
2159 hash_table_dtor(tfeedback_candidates);
2160 hash_table_dtor(consumer_inputs);
2161 hash_table_dtor(consumer_interface_inputs);
2162
2163 if (consumer && producer) {
2164 foreach_in_list(ir_instruction, node, consumer->ir) {
2165 ir_variable *const var = node->as_variable();
2166
2167 if (var && var->data.mode == ir_var_shader_in &&
2168 var->data.is_unmatched_generic_inout) {
2169 if (!prog->IsES && prog->Version <= 120) {
2170 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2171 *
2172 * Only those varying variables used (i.e. read) in
2173 * the fragment shader executable must be written to
2174 * by the vertex shader executable; declaring
2175 * superfluous varying variables in a vertex shader is
2176 * permissible.
2177 *
2178 * We interpret this text as meaning that the VS must
2179 * write the variable for the FS to read it. See
2180 * "glsl1-varying read but not written" in piglit.
2181 */
2182 linker_error(prog, "%s shader varying %s not written "
2183 "by %s shader\n.",
2184 _mesa_shader_stage_to_string(consumer->Stage),
2185 var->name,
2186 _mesa_shader_stage_to_string(producer->Stage));
2187 } else {
2188 linker_warning(prog, "%s shader varying %s not written "
2189 "by %s shader\n.",
2190 _mesa_shader_stage_to_string(consumer->Stage),
2191 var->name,
2192 _mesa_shader_stage_to_string(producer->Stage));
2193 }
2194 }
2195 }
2196
2197 /* Now that validation is done its safe to remove unused varyings. As
2198 * we have both a producer and consumer its safe to remove unused
2199 * varyings even if the program is a SSO because the stages are being
2200 * linked together i.e. we have a multi-stage SSO.
2201 */
2202 remove_unused_shader_inputs_and_outputs(false, producer,
2203 ir_var_shader_out);
2204 remove_unused_shader_inputs_and_outputs(false, consumer,
2205 ir_var_shader_in);
2206 }
2207
2208 if (producer) {
2209 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2210 0, producer, disable_varying_packing,
2211 xfb_enabled);
2212 }
2213
2214 if (consumer) {
2215 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2216 consumer_vertices, consumer,
2217 disable_varying_packing, xfb_enabled);
2218 }
2219
2220 return true;
2221 }
2222
2223 bool
2224 check_against_output_limit(struct gl_context *ctx,
2225 struct gl_shader_program *prog,
2226 gl_shader *producer)
2227 {
2228 unsigned output_vectors = 0;
2229
2230 foreach_in_list(ir_instruction, node, producer->ir) {
2231 ir_variable *const var = node->as_variable();
2232
2233 if (var && var->data.mode == ir_var_shader_out &&
2234 var_counts_against_varying_limit(producer->Stage, var)) {
2235 /* outputs for fragment shader can't be doubles */
2236 output_vectors += var->type->count_attribute_slots(false);
2237 }
2238 }
2239
2240 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2241 unsigned max_output_components =
2242 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2243
2244 const unsigned output_components = output_vectors * 4;
2245 if (output_components > max_output_components) {
2246 if (ctx->API == API_OPENGLES2 || prog->IsES)
2247 linker_error(prog, "%s shader uses too many output vectors "
2248 "(%u > %u)\n",
2249 _mesa_shader_stage_to_string(producer->Stage),
2250 output_vectors,
2251 max_output_components / 4);
2252 else
2253 linker_error(prog, "%s shader uses too many output components "
2254 "(%u > %u)\n",
2255 _mesa_shader_stage_to_string(producer->Stage),
2256 output_components,
2257 max_output_components);
2258
2259 return false;
2260 }
2261
2262 return true;
2263 }
2264
2265 bool
2266 check_against_input_limit(struct gl_context *ctx,
2267 struct gl_shader_program *prog,
2268 gl_shader *consumer)
2269 {
2270 unsigned input_vectors = 0;
2271
2272 foreach_in_list(ir_instruction, node, consumer->ir) {
2273 ir_variable *const var = node->as_variable();
2274
2275 if (var && var->data.mode == ir_var_shader_in &&
2276 var_counts_against_varying_limit(consumer->Stage, var)) {
2277 /* vertex inputs aren't varying counted */
2278 input_vectors += var->type->count_attribute_slots(false);
2279 }
2280 }
2281
2282 assert(consumer->Stage != MESA_SHADER_VERTEX);
2283 unsigned max_input_components =
2284 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2285
2286 const unsigned input_components = input_vectors * 4;
2287 if (input_components > max_input_components) {
2288 if (ctx->API == API_OPENGLES2 || prog->IsES)
2289 linker_error(prog, "%s shader uses too many input vectors "
2290 "(%u > %u)\n",
2291 _mesa_shader_stage_to_string(consumer->Stage),
2292 input_vectors,
2293 max_input_components / 4);
2294 else
2295 linker_error(prog, "%s shader uses too many input components "
2296 "(%u > %u)\n",
2297 _mesa_shader_stage_to_string(consumer->Stage),
2298 input_components,
2299 max_input_components);
2300
2301 return false;
2302 }
2303
2304 return true;
2305 }