glsl: Add arb_cull_distance support (v3)
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 linker_error(prog,
230 "%s shader output `%s' declared as type `%s', "
231 "but %s shader input declared as type `%s'\n",
232 _mesa_shader_stage_to_string(producer_stage),
233 output->name,
234 output->type->name,
235 _mesa_shader_stage_to_string(consumer_stage),
236 input->type->name);
237 return;
238 }
239 }
240
241 /* Check that all of the qualifiers match between stages.
242 */
243
244 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
245 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
246 * conformance test suite does not verify that the qualifiers must match.
247 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
248 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
249 */
250 if (false /* always skip the centroid check */ &&
251 prog->Version < (prog->IsES ? 310 : 430) &&
252 input->data.centroid != output->data.centroid) {
253 linker_error(prog,
254 "%s shader output `%s' %s centroid qualifier, "
255 "but %s shader input %s centroid qualifier\n",
256 _mesa_shader_stage_to_string(producer_stage),
257 output->name,
258 (output->data.centroid) ? "has" : "lacks",
259 _mesa_shader_stage_to_string(consumer_stage),
260 (input->data.centroid) ? "has" : "lacks");
261 return;
262 }
263
264 if (input->data.sample != output->data.sample) {
265 linker_error(prog,
266 "%s shader output `%s' %s sample qualifier, "
267 "but %s shader input %s sample qualifier\n",
268 _mesa_shader_stage_to_string(producer_stage),
269 output->name,
270 (output->data.sample) ? "has" : "lacks",
271 _mesa_shader_stage_to_string(consumer_stage),
272 (input->data.sample) ? "has" : "lacks");
273 return;
274 }
275
276 if (input->data.patch != output->data.patch) {
277 linker_error(prog,
278 "%s shader output `%s' %s patch qualifier, "
279 "but %s shader input %s patch qualifier\n",
280 _mesa_shader_stage_to_string(producer_stage),
281 output->name,
282 (output->data.patch) ? "has" : "lacks",
283 _mesa_shader_stage_to_string(consumer_stage),
284 (input->data.patch) ? "has" : "lacks");
285 return;
286 }
287
288 if (!prog->IsES && input->data.invariant != output->data.invariant) {
289 linker_error(prog,
290 "%s shader output `%s' %s invariant qualifier, "
291 "but %s shader input %s invariant qualifier\n",
292 _mesa_shader_stage_to_string(producer_stage),
293 output->name,
294 (output->data.invariant) ? "has" : "lacks",
295 _mesa_shader_stage_to_string(consumer_stage),
296 (input->data.invariant) ? "has" : "lacks");
297 return;
298 }
299
300 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
301 * to match cross stage, they must only match within the same stage.
302 *
303 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
304 *
305 * "It is a link-time error if, within the same stage, the interpolation
306 * qualifiers of variables of the same name do not match.
307 *
308 */
309 if (input->data.interpolation != output->data.interpolation &&
310 prog->Version < 440) {
311 linker_error(prog,
312 "%s shader output `%s' specifies %s "
313 "interpolation qualifier, "
314 "but %s shader input specifies %s "
315 "interpolation qualifier\n",
316 _mesa_shader_stage_to_string(producer_stage),
317 output->name,
318 interpolation_string(output->data.interpolation),
319 _mesa_shader_stage_to_string(consumer_stage),
320 interpolation_string(input->data.interpolation));
321 return;
322 }
323 }
324
325 /**
326 * Validate front and back color outputs against single color input
327 */
328 static void
329 cross_validate_front_and_back_color(struct gl_shader_program *prog,
330 const ir_variable *input,
331 const ir_variable *front_color,
332 const ir_variable *back_color,
333 gl_shader_stage consumer_stage,
334 gl_shader_stage producer_stage)
335 {
336 if (front_color != NULL && front_color->data.assigned)
337 cross_validate_types_and_qualifiers(prog, input, front_color,
338 consumer_stage, producer_stage);
339
340 if (back_color != NULL && back_color->data.assigned)
341 cross_validate_types_and_qualifiers(prog, input, back_color,
342 consumer_stage, producer_stage);
343 }
344
345 /**
346 * Validate that outputs from one stage match inputs of another
347 */
348 void
349 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
350 gl_shader *producer, gl_shader *consumer)
351 {
352 glsl_symbol_table parameters;
353 ir_variable *explicit_locations[MAX_VARYING][4] = { {NULL, NULL} };
354
355 /* Find all shader outputs in the "producer" stage.
356 */
357 foreach_in_list(ir_instruction, node, producer->ir) {
358 ir_variable *const var = node->as_variable();
359
360 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
361 continue;
362
363 if (!var->data.explicit_location
364 || var->data.location < VARYING_SLOT_VAR0)
365 parameters.add_variable(var);
366 else {
367 /* User-defined varyings with explicit locations are handled
368 * differently because they do not need to have matching names.
369 */
370 const glsl_type *type = get_varying_type(var, producer->Stage);
371 unsigned num_elements = type->count_attribute_slots(false);
372 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
373 unsigned slot_limit = idx + num_elements;
374 unsigned last_comp;
375
376 if (var->type->without_array()->is_record()) {
377 /* The component qualifier can't be used on structs so just treat
378 * all component slots as used.
379 */
380 last_comp = 4;
381 } else {
382 unsigned dmul = var->type->is_double() ? 2 : 1;
383 last_comp = var->data.location_frac +
384 var->type->without_array()->vector_elements * dmul;
385 }
386
387 while (idx < slot_limit) {
388 for (unsigned i = var->data.location_frac; i < last_comp; i++) {
389 if (explicit_locations[idx][i] != NULL) {
390 linker_error(prog,
391 "%s shader has multiple outputs explicitly "
392 "assigned to location %d and component %d\n",
393 _mesa_shader_stage_to_string(producer->Stage),
394 idx, var->data.location_frac);
395 return;
396 }
397
398 /* Make sure all component at this location have the same type.
399 */
400 for (unsigned j = 0; j < 4; j++) {
401 if (explicit_locations[idx][j] &&
402 (explicit_locations[idx][j]->type->without_array()
403 ->base_type != var->type->without_array()->base_type)) {
404 linker_error(prog,
405 "Varyings sharing the same location must "
406 "have the same underlying numerical type. "
407 "Location %u component %u\n", idx,
408 var->data.location_frac);
409 return;
410 }
411 }
412
413 explicit_locations[idx][i] = var;
414
415 /* We need to do some special handling for doubles as dvec3 and
416 * dvec4 consume two consecutive locations. We don't need to
417 * worry about components beginning at anything other than 0 as
418 * the spec does not allow this for dvec3 and dvec4.
419 */
420 if (i == 3 && last_comp > 4) {
421 last_comp = last_comp - 4;
422 /* Bump location index and reset the component index */
423 idx++;
424 i = 0;
425 }
426 }
427 idx++;
428 }
429 }
430 }
431
432
433 /* Find all shader inputs in the "consumer" stage. Any variables that have
434 * matching outputs already in the symbol table must have the same type and
435 * qualifiers.
436 *
437 * Exception: if the consumer is the geometry shader, then the inputs
438 * should be arrays and the type of the array element should match the type
439 * of the corresponding producer output.
440 */
441 foreach_in_list(ir_instruction, node, consumer->ir) {
442 ir_variable *const input = node->as_variable();
443
444 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
445 continue;
446
447 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
448 const ir_variable *const front_color =
449 parameters.get_variable("gl_FrontColor");
450
451 const ir_variable *const back_color =
452 parameters.get_variable("gl_BackColor");
453
454 cross_validate_front_and_back_color(prog, input,
455 front_color, back_color,
456 consumer->Stage, producer->Stage);
457 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
458 const ir_variable *const front_color =
459 parameters.get_variable("gl_FrontSecondaryColor");
460
461 const ir_variable *const back_color =
462 parameters.get_variable("gl_BackSecondaryColor");
463
464 cross_validate_front_and_back_color(prog, input,
465 front_color, back_color,
466 consumer->Stage, producer->Stage);
467 } else {
468 /* The rules for connecting inputs and outputs change in the presence
469 * of explicit locations. In this case, we no longer care about the
470 * names of the variables. Instead, we care only about the
471 * explicitly assigned location.
472 */
473 ir_variable *output = NULL;
474 if (input->data.explicit_location
475 && input->data.location >= VARYING_SLOT_VAR0) {
476
477 const glsl_type *type = get_varying_type(input, consumer->Stage);
478 unsigned num_elements = type->count_attribute_slots(false);
479 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
480 unsigned slot_limit = idx + num_elements;
481
482 while (idx < slot_limit) {
483 output = explicit_locations[idx][input->data.location_frac];
484
485 if (output == NULL ||
486 input->data.location != output->data.location) {
487 linker_error(prog,
488 "%s shader input `%s' with explicit location "
489 "has no matching output\n",
490 _mesa_shader_stage_to_string(consumer->Stage),
491 input->name);
492 break;
493 }
494 idx++;
495 }
496 } else {
497 output = parameters.get_variable(input->name);
498 }
499
500 if (output != NULL) {
501 /* Interface blocks have their own validation elsewhere so don't
502 * try validating them here.
503 */
504 if (!(input->get_interface_type() &&
505 output->get_interface_type()))
506 cross_validate_types_and_qualifiers(prog, input, output,
507 consumer->Stage,
508 producer->Stage);
509 } else {
510 /* Check for input vars with unmatched output vars in prev stage
511 * taking into account that interface blocks could have a matching
512 * output but with different name, so we ignore them.
513 */
514 assert(!input->data.assigned);
515 if (input->data.used && !input->get_interface_type() &&
516 !input->data.explicit_location && !prog->SeparateShader)
517 linker_error(prog,
518 "%s shader input `%s' "
519 "has no matching output in the previous stage\n",
520 _mesa_shader_stage_to_string(consumer->Stage),
521 input->name);
522 }
523 }
524 }
525 }
526
527 /**
528 * Demote shader inputs and outputs that are not used in other stages, and
529 * remove them via dead code elimination.
530 */
531 void
532 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
533 gl_shader *sh,
534 enum ir_variable_mode mode)
535 {
536 if (is_separate_shader_object)
537 return;
538
539 foreach_in_list(ir_instruction, node, sh->ir) {
540 ir_variable *const var = node->as_variable();
541
542 if ((var == NULL) || (var->data.mode != int(mode)))
543 continue;
544
545 /* A shader 'in' or 'out' variable is only really an input or output if
546 * its value is used by other shader stages. This will cause the
547 * variable to have a location assigned.
548 */
549 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
550 assert(var->data.mode != ir_var_temporary);
551 var->data.mode = ir_var_auto;
552 }
553 }
554
555 /* Eliminate code that is now dead due to unused inputs/outputs being
556 * demoted.
557 */
558 while (do_dead_code(sh->ir, false))
559 ;
560
561 }
562
563 /**
564 * Initialize this object based on a string that was passed to
565 * glTransformFeedbackVaryings.
566 *
567 * If the input is mal-formed, this call still succeeds, but it sets
568 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
569 * will fail to find any matching variable.
570 */
571 void
572 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
573 const char *input)
574 {
575 /* We don't have to be pedantic about what is a valid GLSL variable name,
576 * because any variable with an invalid name can't exist in the IR anyway.
577 */
578
579 this->location = -1;
580 this->orig_name = input;
581 this->lowered_builtin_array_variable = none;
582 this->skip_components = 0;
583 this->next_buffer_separator = false;
584 this->matched_candidate = NULL;
585 this->stream_id = 0;
586 this->buffer = 0;
587 this->offset = 0;
588
589 if (ctx->Extensions.ARB_transform_feedback3) {
590 /* Parse gl_NextBuffer. */
591 if (strcmp(input, "gl_NextBuffer") == 0) {
592 this->next_buffer_separator = true;
593 return;
594 }
595
596 /* Parse gl_SkipComponents. */
597 if (strcmp(input, "gl_SkipComponents1") == 0)
598 this->skip_components = 1;
599 else if (strcmp(input, "gl_SkipComponents2") == 0)
600 this->skip_components = 2;
601 else if (strcmp(input, "gl_SkipComponents3") == 0)
602 this->skip_components = 3;
603 else if (strcmp(input, "gl_SkipComponents4") == 0)
604 this->skip_components = 4;
605
606 if (this->skip_components)
607 return;
608 }
609
610 /* Parse a declaration. */
611 const char *base_name_end;
612 long subscript = parse_program_resource_name(input, &base_name_end);
613 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
614 if (this->var_name == NULL) {
615 _mesa_error_no_memory(__func__);
616 return;
617 }
618
619 if (subscript >= 0) {
620 this->array_subscript = subscript;
621 this->is_subscripted = true;
622 } else {
623 this->is_subscripted = false;
624 }
625
626 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
627 * class must behave specially to account for the fact that gl_ClipDistance
628 * is converted from a float[8] to a vec4[2].
629 */
630 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
631 strcmp(this->var_name, "gl_ClipDistance") == 0) {
632 this->lowered_builtin_array_variable = clip_distance;
633 }
634 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
635 strcmp(this->var_name, "gl_CullDistance") == 0) {
636 this->lowered_builtin_array_variable = cull_distance;
637 }
638
639 if (ctx->Const.LowerTessLevel &&
640 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
641 this->lowered_builtin_array_variable = tess_level_outer;
642 if (ctx->Const.LowerTessLevel &&
643 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
644 this->lowered_builtin_array_variable = tess_level_inner;
645 }
646
647
648 /**
649 * Determine whether two tfeedback_decl objects refer to the same variable and
650 * array index (if applicable).
651 */
652 bool
653 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
654 {
655 assert(x.is_varying() && y.is_varying());
656
657 if (strcmp(x.var_name, y.var_name) != 0)
658 return false;
659 if (x.is_subscripted != y.is_subscripted)
660 return false;
661 if (x.is_subscripted && x.array_subscript != y.array_subscript)
662 return false;
663 return true;
664 }
665
666
667 /**
668 * Assign a location and stream ID for this tfeedback_decl object based on the
669 * transform feedback candidate found by find_candidate.
670 *
671 * If an error occurs, the error is reported through linker_error() and false
672 * is returned.
673 */
674 bool
675 tfeedback_decl::assign_location(struct gl_context *ctx,
676 struct gl_shader_program *prog)
677 {
678 assert(this->is_varying());
679
680 unsigned fine_location
681 = this->matched_candidate->toplevel_var->data.location * 4
682 + this->matched_candidate->toplevel_var->data.location_frac
683 + this->matched_candidate->offset;
684 const unsigned dmul =
685 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
686
687 if (this->matched_candidate->type->is_array()) {
688 /* Array variable */
689 const unsigned matrix_cols =
690 this->matched_candidate->type->fields.array->matrix_columns;
691 const unsigned vector_elements =
692 this->matched_candidate->type->fields.array->vector_elements;
693 unsigned actual_array_size;
694 switch (this->lowered_builtin_array_variable) {
695 case clip_distance:
696 actual_array_size = prog->LastClipDistanceArraySize;
697 break;
698 case cull_distance:
699 actual_array_size = prog->LastCullDistanceArraySize;
700 break;
701 case tess_level_outer:
702 actual_array_size = 4;
703 break;
704 case tess_level_inner:
705 actual_array_size = 2;
706 break;
707 case none:
708 default:
709 actual_array_size = this->matched_candidate->type->array_size();
710 break;
711 }
712
713 if (this->is_subscripted) {
714 /* Check array bounds. */
715 if (this->array_subscript >= actual_array_size) {
716 linker_error(prog, "Transform feedback varying %s has index "
717 "%i, but the array size is %u.",
718 this->orig_name, this->array_subscript,
719 actual_array_size);
720 return false;
721 }
722 unsigned array_elem_size = this->lowered_builtin_array_variable ?
723 1 : vector_elements * matrix_cols * dmul;
724 fine_location += array_elem_size * this->array_subscript;
725 this->size = 1;
726 } else {
727 this->size = actual_array_size;
728 }
729 this->vector_elements = vector_elements;
730 this->matrix_columns = matrix_cols;
731 if (this->lowered_builtin_array_variable)
732 this->type = GL_FLOAT;
733 else
734 this->type = this->matched_candidate->type->fields.array->gl_type;
735 } else {
736 /* Regular variable (scalar, vector, or matrix) */
737 if (this->is_subscripted) {
738 linker_error(prog, "Transform feedback varying %s requested, "
739 "but %s is not an array.",
740 this->orig_name, this->var_name);
741 return false;
742 }
743 this->size = 1;
744 this->vector_elements = this->matched_candidate->type->vector_elements;
745 this->matrix_columns = this->matched_candidate->type->matrix_columns;
746 this->type = this->matched_candidate->type->gl_type;
747 }
748 this->location = fine_location / 4;
749 this->location_frac = fine_location % 4;
750
751 /* From GL_EXT_transform_feedback:
752 * A program will fail to link if:
753 *
754 * * the total number of components to capture in any varying
755 * variable in <varyings> is greater than the constant
756 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
757 * buffer mode is SEPARATE_ATTRIBS_EXT;
758 */
759 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
760 this->num_components() >
761 ctx->Const.MaxTransformFeedbackSeparateComponents) {
762 linker_error(prog, "Transform feedback varying %s exceeds "
763 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
764 this->orig_name);
765 return false;
766 }
767
768 /* Only transform feedback varyings can be assigned to non-zero streams,
769 * so assign the stream id here.
770 */
771 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
772
773 unsigned array_offset = this->array_subscript * 4 * dmul;
774 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
775 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
776 this->offset = this->matched_candidate->toplevel_var->data.offset +
777 array_offset + struct_offset;
778
779 return true;
780 }
781
782
783 unsigned
784 tfeedback_decl::get_num_outputs() const
785 {
786 if (!this->is_varying()) {
787 return 0;
788 }
789 return (this->num_components() + this->location_frac + 3)/4;
790 }
791
792
793 /**
794 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
795 *
796 * If an error occurs, the error is reported through linker_error() and false
797 * is returned.
798 */
799 bool
800 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
801 struct gl_transform_feedback_info *info,
802 unsigned buffer, unsigned buffer_index,
803 const unsigned max_outputs, bool *explicit_stride,
804 bool has_xfb_qualifiers) const
805 {
806 assert(!this->next_buffer_separator);
807
808 /* Handle gl_SkipComponents. */
809 if (this->skip_components) {
810 info->Buffers[buffer].Stride += this->skip_components;
811 return true;
812 }
813
814 unsigned xfb_offset = 0;
815 if (has_xfb_qualifiers) {
816 xfb_offset = this->offset / 4;
817 } else {
818 xfb_offset = info->Buffers[buffer].Stride;
819 }
820 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
821
822 unsigned location = this->location;
823 unsigned location_frac = this->location_frac;
824 unsigned num_components = this->num_components();
825 while (num_components > 0) {
826 unsigned output_size = MIN2(num_components, 4 - location_frac);
827 assert((info->NumOutputs == 0 && max_outputs == 0) ||
828 info->NumOutputs < max_outputs);
829
830 /* From the ARB_enhanced_layouts spec:
831 *
832 * "If such a block member or variable is not written during a shader
833 * invocation, the buffer contents at the assigned offset will be
834 * undefined. Even if there are no static writes to a variable or
835 * member that is assigned a transform feedback offset, the space is
836 * still allocated in the buffer and still affects the stride."
837 */
838 if (this->is_varying_written()) {
839 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
840 info->Outputs[info->NumOutputs].OutputRegister = location;
841 info->Outputs[info->NumOutputs].NumComponents = output_size;
842 info->Outputs[info->NumOutputs].StreamId = stream_id;
843 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
844 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
845 ++info->NumOutputs;
846 }
847 info->Buffers[buffer].Stream = this->stream_id;
848 xfb_offset += output_size;
849
850 num_components -= output_size;
851 location++;
852 location_frac = 0;
853 }
854
855 if (explicit_stride && explicit_stride[buffer]) {
856 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
857 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
858 "multiple of 8 as its applied to a type that is or "
859 "contains a double.",
860 info->Buffers[buffer].Stride * 4);
861 return false;
862 }
863
864 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
865 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
866 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
867 "buffer (%d)", xfb_offset * 4,
868 info->Buffers[buffer].Stride * 4, buffer);
869 return false;
870 }
871 } else {
872 info->Buffers[buffer].Stride = xfb_offset;
873 }
874
875 /* From GL_EXT_transform_feedback:
876 * A program will fail to link if:
877 *
878 * * the total number of components to capture is greater than
879 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
880 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
881 *
882 * From GL_ARB_enhanced_layouts:
883 *
884 * "The resulting stride (implicit or explicit) must be less than or
885 * equal to the implementation-dependent constant
886 * gl_MaxTransformFeedbackInterleavedComponents."
887 */
888 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
889 has_xfb_qualifiers) &&
890 info->Buffers[buffer].Stride >
891 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
892 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
893 "limit has been exceeded.");
894 return false;
895 }
896
897 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
898 this->orig_name);
899 info->Varyings[info->NumVarying].Type = this->type;
900 info->Varyings[info->NumVarying].Size = this->size;
901 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
902 info->NumVarying++;
903 info->Buffers[buffer].NumVaryings++;
904
905 return true;
906 }
907
908
909 const tfeedback_candidate *
910 tfeedback_decl::find_candidate(gl_shader_program *prog,
911 hash_table *tfeedback_candidates)
912 {
913 const char *name = this->var_name;
914 switch (this->lowered_builtin_array_variable) {
915 case none:
916 name = this->var_name;
917 break;
918 case clip_distance:
919 name = "gl_ClipDistanceMESA";
920 break;
921 case cull_distance:
922 name = "gl_CullDistanceMESA";
923 break;
924 case tess_level_outer:
925 name = "gl_TessLevelOuterMESA";
926 break;
927 case tess_level_inner:
928 name = "gl_TessLevelInnerMESA";
929 break;
930 }
931 this->matched_candidate = (const tfeedback_candidate *)
932 hash_table_find(tfeedback_candidates, name);
933 if (!this->matched_candidate) {
934 /* From GL_EXT_transform_feedback:
935 * A program will fail to link if:
936 *
937 * * any variable name specified in the <varyings> array is not
938 * declared as an output in the geometry shader (if present) or
939 * the vertex shader (if no geometry shader is present);
940 */
941 linker_error(prog, "Transform feedback varying %s undeclared.",
942 this->orig_name);
943 }
944 return this->matched_candidate;
945 }
946
947
948 /**
949 * Parse all the transform feedback declarations that were passed to
950 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
951 *
952 * If an error occurs, the error is reported through linker_error() and false
953 * is returned.
954 */
955 bool
956 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
957 const void *mem_ctx, unsigned num_names,
958 char **varying_names, tfeedback_decl *decls)
959 {
960 for (unsigned i = 0; i < num_names; ++i) {
961 decls[i].init(ctx, mem_ctx, varying_names[i]);
962
963 if (!decls[i].is_varying())
964 continue;
965
966 /* From GL_EXT_transform_feedback:
967 * A program will fail to link if:
968 *
969 * * any two entries in the <varyings> array specify the same varying
970 * variable;
971 *
972 * We interpret this to mean "any two entries in the <varyings> array
973 * specify the same varying variable and array index", since transform
974 * feedback of arrays would be useless otherwise.
975 */
976 for (unsigned j = 0; j < i; ++j) {
977 if (!decls[j].is_varying())
978 continue;
979
980 if (tfeedback_decl::is_same(decls[i], decls[j])) {
981 linker_error(prog, "Transform feedback varying %s specified "
982 "more than once.", varying_names[i]);
983 return false;
984 }
985 }
986 }
987 return true;
988 }
989
990
991 static int
992 cmp_xfb_offset(const void * x_generic, const void * y_generic)
993 {
994 tfeedback_decl *x = (tfeedback_decl *) x_generic;
995 tfeedback_decl *y = (tfeedback_decl *) y_generic;
996
997 if (x->get_buffer() != y->get_buffer())
998 return x->get_buffer() - y->get_buffer();
999 return x->get_offset() - y->get_offset();
1000 }
1001
1002 /**
1003 * Store transform feedback location assignments into
1004 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1005 *
1006 * If an error occurs, the error is reported through linker_error() and false
1007 * is returned.
1008 */
1009 bool
1010 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1011 unsigned num_tfeedback_decls,
1012 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1013 {
1014 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1015 * tracking the number of buffers doesn't overflow.
1016 */
1017 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1018
1019 bool separate_attribs_mode =
1020 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1021
1022 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1023 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1024
1025 memset(&prog->LinkedTransformFeedback, 0,
1026 sizeof(prog->LinkedTransformFeedback));
1027
1028 /* The xfb_offset qualifier does not have to be used in increasing order
1029 * however some drivers expect to receive the list of transform feedback
1030 * declarations in order so sort it now for convenience.
1031 */
1032 if (has_xfb_qualifiers)
1033 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1034 cmp_xfb_offset);
1035
1036 prog->LinkedTransformFeedback.Varyings =
1037 rzalloc_array(prog,
1038 struct gl_transform_feedback_varying_info,
1039 num_tfeedback_decls);
1040
1041 unsigned num_outputs = 0;
1042 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1043 if (tfeedback_decls[i].is_varying_written())
1044 num_outputs += tfeedback_decls[i].get_num_outputs();
1045 }
1046
1047 prog->LinkedTransformFeedback.Outputs =
1048 rzalloc_array(prog,
1049 struct gl_transform_feedback_output,
1050 num_outputs);
1051
1052 unsigned num_buffers = 0;
1053 unsigned buffers = 0;
1054
1055 if (!has_xfb_qualifiers && separate_attribs_mode) {
1056 /* GL_SEPARATE_ATTRIBS */
1057 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1058 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1059 num_buffers, num_buffers, num_outputs,
1060 NULL, has_xfb_qualifiers))
1061 return false;
1062
1063 buffers |= 1 << num_buffers;
1064 num_buffers++;
1065 }
1066 }
1067 else {
1068 /* GL_INVERLEAVED_ATTRIBS */
1069 int buffer_stream_id = -1;
1070 unsigned buffer =
1071 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1072 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1073
1074 /* Apply any xfb_stride global qualifiers */
1075 if (has_xfb_qualifiers) {
1076 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1077 if (prog->TransformFeedback.BufferStride[j]) {
1078 buffers |= 1 << j;
1079 explicit_stride[j] = true;
1080 prog->LinkedTransformFeedback.Buffers[j].Stride =
1081 prog->TransformFeedback.BufferStride[j] / 4;
1082 }
1083 }
1084 }
1085
1086 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1087 if (has_xfb_qualifiers &&
1088 buffer != tfeedback_decls[i].get_buffer()) {
1089 /* we have moved to the next buffer so reset stream id */
1090 buffer_stream_id = -1;
1091 num_buffers++;
1092 }
1093
1094 if (tfeedback_decls[i].is_next_buffer_separator()) {
1095 num_buffers++;
1096 buffer_stream_id = -1;
1097 continue;
1098 } else if (buffer_stream_id == -1) {
1099 /* First varying writing to this buffer: remember its stream */
1100 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1101 } else if (buffer_stream_id !=
1102 (int) tfeedback_decls[i].get_stream_id()) {
1103 /* Varying writes to the same buffer from a different stream */
1104 linker_error(prog,
1105 "Transform feedback can't capture varyings belonging "
1106 "to different vertex streams in a single buffer. "
1107 "Varying %s writes to buffer from stream %u, other "
1108 "varyings in the same buffer write from stream %u.",
1109 tfeedback_decls[i].name(),
1110 tfeedback_decls[i].get_stream_id(),
1111 buffer_stream_id);
1112 return false;
1113 }
1114
1115 if (has_xfb_qualifiers) {
1116 buffer = tfeedback_decls[i].get_buffer();
1117 } else {
1118 buffer = num_buffers;
1119 }
1120 buffers |= 1 << buffer;
1121
1122 if (!tfeedback_decls[i].store(ctx, prog,
1123 &prog->LinkedTransformFeedback,
1124 buffer, num_buffers, num_outputs,
1125 explicit_stride, has_xfb_qualifiers))
1126 return false;
1127 }
1128 }
1129
1130 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1131
1132 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1133 return true;
1134 }
1135
1136 namespace {
1137
1138 /**
1139 * Data structure recording the relationship between outputs of one shader
1140 * stage (the "producer") and inputs of another (the "consumer").
1141 */
1142 class varying_matches
1143 {
1144 public:
1145 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1146 gl_shader_stage producer_stage,
1147 gl_shader_stage consumer_stage);
1148 ~varying_matches();
1149 void record(ir_variable *producer_var, ir_variable *consumer_var);
1150 unsigned assign_locations(struct gl_shader_program *prog,
1151 uint64_t reserved_slots, bool separate_shader);
1152 void store_locations() const;
1153
1154 private:
1155 bool is_varying_packing_safe(const glsl_type *type,
1156 const ir_variable *var);
1157
1158 /**
1159 * If true, this driver disables varying packing, so all varyings need to
1160 * be aligned on slot boundaries, and take up a number of slots equal to
1161 * their number of matrix columns times their array size.
1162 *
1163 * Packing may also be disabled because our current packing method is not
1164 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1165 * guaranteed to match across stages.
1166 */
1167 const bool disable_varying_packing;
1168
1169 /**
1170 * If true, this driver has transform feedback enabled. The transform
1171 * feedback code requires at least some packing be done even when varying
1172 * packing is disabled, fortunately where transform feedback requires
1173 * packing it's safe to override the disabled setting. See
1174 * is_varying_packing_safe().
1175 */
1176 const bool xfb_enabled;
1177
1178 /**
1179 * Enum representing the order in which varyings are packed within a
1180 * packing class.
1181 *
1182 * Currently we pack vec4's first, then vec2's, then scalar values, then
1183 * vec3's. This order ensures that the only vectors that are at risk of
1184 * having to be "double parked" (split between two adjacent varying slots)
1185 * are the vec3's.
1186 */
1187 enum packing_order_enum {
1188 PACKING_ORDER_VEC4,
1189 PACKING_ORDER_VEC2,
1190 PACKING_ORDER_SCALAR,
1191 PACKING_ORDER_VEC3,
1192 };
1193
1194 static unsigned compute_packing_class(const ir_variable *var);
1195 static packing_order_enum compute_packing_order(const ir_variable *var);
1196 static int match_comparator(const void *x_generic, const void *y_generic);
1197 static int xfb_comparator(const void *x_generic, const void *y_generic);
1198
1199 /**
1200 * Structure recording the relationship between a single producer output
1201 * and a single consumer input.
1202 */
1203 struct match {
1204 /**
1205 * Packing class for this varying, computed by compute_packing_class().
1206 */
1207 unsigned packing_class;
1208
1209 /**
1210 * Packing order for this varying, computed by compute_packing_order().
1211 */
1212 packing_order_enum packing_order;
1213 unsigned num_components;
1214
1215 /**
1216 * The output variable in the producer stage.
1217 */
1218 ir_variable *producer_var;
1219
1220 /**
1221 * The input variable in the consumer stage.
1222 */
1223 ir_variable *consumer_var;
1224
1225 /**
1226 * The location which has been assigned for this varying. This is
1227 * expressed in multiples of a float, with the first generic varying
1228 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1229 * value 0.
1230 */
1231 unsigned generic_location;
1232 } *matches;
1233
1234 /**
1235 * The number of elements in the \c matches array that are currently in
1236 * use.
1237 */
1238 unsigned num_matches;
1239
1240 /**
1241 * The number of elements that were set aside for the \c matches array when
1242 * it was allocated.
1243 */
1244 unsigned matches_capacity;
1245
1246 gl_shader_stage producer_stage;
1247 gl_shader_stage consumer_stage;
1248 };
1249
1250 } /* anonymous namespace */
1251
1252 varying_matches::varying_matches(bool disable_varying_packing,
1253 bool xfb_enabled,
1254 gl_shader_stage producer_stage,
1255 gl_shader_stage consumer_stage)
1256 : disable_varying_packing(disable_varying_packing),
1257 xfb_enabled(xfb_enabled),
1258 producer_stage(producer_stage),
1259 consumer_stage(consumer_stage)
1260 {
1261 /* Note: this initial capacity is rather arbitrarily chosen to be large
1262 * enough for many cases without wasting an unreasonable amount of space.
1263 * varying_matches::record() will resize the array if there are more than
1264 * this number of varyings.
1265 */
1266 this->matches_capacity = 8;
1267 this->matches = (match *)
1268 malloc(sizeof(*this->matches) * this->matches_capacity);
1269 this->num_matches = 0;
1270 }
1271
1272
1273 varying_matches::~varying_matches()
1274 {
1275 free(this->matches);
1276 }
1277
1278
1279 /**
1280 * Packing is always safe on individual arrays, structure and matices. It is
1281 * also safe if the varying is only used for transform feedback.
1282 */
1283 bool
1284 varying_matches::is_varying_packing_safe(const glsl_type *type,
1285 const ir_variable *var)
1286 {
1287 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1288 consumer_stage == MESA_SHADER_TESS_CTRL ||
1289 producer_stage == MESA_SHADER_TESS_CTRL)
1290 return false;
1291
1292 return xfb_enabled && (type->is_array() || type->is_record() ||
1293 type->is_matrix() || var->data.is_xfb_only);
1294 }
1295
1296
1297 /**
1298 * Record the given producer/consumer variable pair in the list of variables
1299 * that should later be assigned locations.
1300 *
1301 * It is permissible for \c consumer_var to be NULL (this happens if a
1302 * variable is output by the producer and consumed by transform feedback, but
1303 * not consumed by the consumer).
1304 *
1305 * If \c producer_var has already been paired up with a consumer_var, or
1306 * producer_var is part of fixed pipeline functionality (and hence already has
1307 * a location assigned), this function has no effect.
1308 *
1309 * Note: as a side effect this function may change the interpolation type of
1310 * \c producer_var, but only when the change couldn't possibly affect
1311 * rendering.
1312 */
1313 void
1314 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1315 {
1316 assert(producer_var != NULL || consumer_var != NULL);
1317
1318 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1319 producer_var->data.explicit_location)) ||
1320 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1321 consumer_var->data.explicit_location))) {
1322 /* Either a location already exists for this variable (since it is part
1323 * of fixed functionality), or it has already been recorded as part of a
1324 * previous match.
1325 */
1326 return;
1327 }
1328
1329 bool needs_flat_qualifier = consumer_var == NULL &&
1330 (producer_var->type->contains_integer() ||
1331 producer_var->type->contains_double());
1332
1333 if (needs_flat_qualifier ||
1334 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1335 /* Since this varying is not being consumed by the fragment shader, its
1336 * interpolation type varying cannot possibly affect rendering.
1337 * Also, this variable is non-flat and is (or contains) an integer
1338 * or a double.
1339 * If the consumer stage is unknown, don't modify the interpolation
1340 * type as it could affect rendering later with separate shaders.
1341 *
1342 * lower_packed_varyings requires all integer varyings to flat,
1343 * regardless of where they appear. We can trivially satisfy that
1344 * requirement by changing the interpolation type to flat here.
1345 */
1346 if (producer_var) {
1347 producer_var->data.centroid = false;
1348 producer_var->data.sample = false;
1349 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1350 }
1351
1352 if (consumer_var) {
1353 consumer_var->data.centroid = false;
1354 consumer_var->data.sample = false;
1355 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1356 }
1357 }
1358
1359 if (this->num_matches == this->matches_capacity) {
1360 this->matches_capacity *= 2;
1361 this->matches = (match *)
1362 realloc(this->matches,
1363 sizeof(*this->matches) * this->matches_capacity);
1364 }
1365
1366 const ir_variable *const var = (producer_var != NULL)
1367 ? producer_var : consumer_var;
1368 const gl_shader_stage stage = (producer_var != NULL)
1369 ? producer_stage : consumer_stage;
1370 const glsl_type *type = get_varying_type(var, stage);
1371
1372 this->matches[this->num_matches].packing_class
1373 = this->compute_packing_class(var);
1374 this->matches[this->num_matches].packing_order
1375 = this->compute_packing_order(var);
1376 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1377 unsigned slots = type->count_attribute_slots(false);
1378 this->matches[this->num_matches].num_components = slots * 4;
1379 } else {
1380 this->matches[this->num_matches].num_components
1381 = type->component_slots();
1382 }
1383 this->matches[this->num_matches].producer_var = producer_var;
1384 this->matches[this->num_matches].consumer_var = consumer_var;
1385 this->num_matches++;
1386 if (producer_var)
1387 producer_var->data.is_unmatched_generic_inout = 0;
1388 if (consumer_var)
1389 consumer_var->data.is_unmatched_generic_inout = 0;
1390 }
1391
1392
1393 /**
1394 * Choose locations for all of the variable matches that were previously
1395 * passed to varying_matches::record().
1396 */
1397 unsigned
1398 varying_matches::assign_locations(struct gl_shader_program *prog,
1399 uint64_t reserved_slots,
1400 bool separate_shader)
1401 {
1402 /* If packing has been disabled then we cannot safely sort the varyings by
1403 * class as it may mean we are using a version of OpenGL where
1404 * interpolation qualifiers are not guaranteed to be matching across
1405 * shaders, sorting in this case could result in mismatching shader
1406 * interfaces.
1407 * When packing is disabled the sort orders varyings used by transform
1408 * feedback first, but also depends on *undefined behaviour* of qsort to
1409 * reverse the order of the varyings. See: xfb_comparator().
1410 */
1411 if (!this->disable_varying_packing) {
1412 /* Sort varying matches into an order that makes them easy to pack. */
1413 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1414 &varying_matches::match_comparator);
1415 } else {
1416 /* Only sort varyings that are only used by transform feedback. */
1417 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1418 &varying_matches::xfb_comparator);
1419 }
1420
1421 unsigned generic_location = 0;
1422 unsigned generic_patch_location = MAX_VARYING*4;
1423 bool previous_var_xfb_only = false;
1424
1425 for (unsigned i = 0; i < this->num_matches; i++) {
1426 unsigned *location = &generic_location;
1427
1428 const ir_variable *var;
1429 const glsl_type *type;
1430 bool is_vertex_input = false;
1431 if (matches[i].consumer_var) {
1432 var = matches[i].consumer_var;
1433 type = get_varying_type(var, consumer_stage);
1434 if (consumer_stage == MESA_SHADER_VERTEX)
1435 is_vertex_input = true;
1436 } else {
1437 var = matches[i].producer_var;
1438 type = get_varying_type(var, producer_stage);
1439 }
1440
1441 if (var->data.patch)
1442 location = &generic_patch_location;
1443
1444 /* Advance to the next slot if this varying has a different packing
1445 * class than the previous one, and we're not already on a slot
1446 * boundary.
1447 *
1448 * Also advance to the next slot if packing is disabled. This makes sure
1449 * we don't assign varyings the same locations which is possible
1450 * because we still pack individual arrays, records and matrices even
1451 * when packing is disabled. Note we don't advance to the next slot if
1452 * we can pack varyings together that are only used for transform
1453 * feedback.
1454 */
1455 if ((this->disable_varying_packing &&
1456 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1457 (i > 0 && this->matches[i - 1].packing_class
1458 != this->matches[i].packing_class )) {
1459 *location = ALIGN(*location, 4);
1460 }
1461
1462 previous_var_xfb_only = var->data.is_xfb_only;
1463
1464 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1465 unsigned slot_end;
1466 if (this->disable_varying_packing &&
1467 !is_varying_packing_safe(type, var))
1468 slot_end = 4;
1469 else
1470 slot_end = type->without_array()->vector_elements;
1471 slot_end += *location - 1;
1472
1473 /* FIXME: We could be smarter in the below code and loop back over
1474 * trying to fill any locations that we skipped because we couldn't pack
1475 * the varying between an explicit location. For now just let the user
1476 * hit the linking error if we run out of room and suggest they use
1477 * explicit locations.
1478 */
1479 for (unsigned j = 0; j < num_elements; j++) {
1480 while ((slot_end < MAX_VARYING * 4u) &&
1481 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1482 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1483
1484 *location = ALIGN(*location + 1, 4);
1485 slot_end = *location;
1486
1487 /* reset the counter and try again */
1488 j = 0;
1489 }
1490
1491 /* Increase the slot to make sure there is enough room for next
1492 * array element.
1493 */
1494 if (this->disable_varying_packing &&
1495 !is_varying_packing_safe(type, var))
1496 slot_end += 4;
1497 else
1498 slot_end += type->without_array()->vector_elements;
1499 }
1500
1501 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1502 linker_error(prog, "insufficient contiguous locations available for "
1503 "%s it is possible an array or struct could not be "
1504 "packed between varyings with explicit locations. Try "
1505 "using an explicit location for arrays and structs.",
1506 var->name);
1507 }
1508
1509 this->matches[i].generic_location = *location;
1510
1511 *location += this->matches[i].num_components;
1512 }
1513
1514 return (generic_location + 3) / 4;
1515 }
1516
1517
1518 /**
1519 * Update the producer and consumer shaders to reflect the locations
1520 * assignments that were made by varying_matches::assign_locations().
1521 */
1522 void
1523 varying_matches::store_locations() const
1524 {
1525 for (unsigned i = 0; i < this->num_matches; i++) {
1526 ir_variable *producer_var = this->matches[i].producer_var;
1527 ir_variable *consumer_var = this->matches[i].consumer_var;
1528 unsigned generic_location = this->matches[i].generic_location;
1529 unsigned slot = generic_location / 4;
1530 unsigned offset = generic_location % 4;
1531
1532 if (producer_var) {
1533 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1534 producer_var->data.location_frac = offset;
1535 }
1536
1537 if (consumer_var) {
1538 assert(consumer_var->data.location == -1);
1539 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1540 consumer_var->data.location_frac = offset;
1541 }
1542 }
1543 }
1544
1545
1546 /**
1547 * Compute the "packing class" of the given varying. This is an unsigned
1548 * integer with the property that two variables in the same packing class can
1549 * be safely backed into the same vec4.
1550 */
1551 unsigned
1552 varying_matches::compute_packing_class(const ir_variable *var)
1553 {
1554 /* Without help from the back-end, there is no way to pack together
1555 * variables with different interpolation types, because
1556 * lower_packed_varyings must choose exactly one interpolation type for
1557 * each packed varying it creates.
1558 *
1559 * However, we can safely pack together floats, ints, and uints, because:
1560 *
1561 * - varyings of base type "int" and "uint" must use the "flat"
1562 * interpolation type, which can only occur in GLSL 1.30 and above.
1563 *
1564 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1565 * can store flat floats as ints without losing any information (using
1566 * the ir_unop_bitcast_* opcodes).
1567 *
1568 * Therefore, the packing class depends only on the interpolation type.
1569 */
1570 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1571 (var->data.patch << 2);
1572 packing_class *= 4;
1573 packing_class += var->data.interpolation;
1574 return packing_class;
1575 }
1576
1577
1578 /**
1579 * Compute the "packing order" of the given varying. This is a sort key we
1580 * use to determine when to attempt to pack the given varying relative to
1581 * other varyings in the same packing class.
1582 */
1583 varying_matches::packing_order_enum
1584 varying_matches::compute_packing_order(const ir_variable *var)
1585 {
1586 const glsl_type *element_type = var->type;
1587
1588 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1589 element_type = element_type->fields.array;
1590 }
1591
1592 switch (element_type->component_slots() % 4) {
1593 case 1: return PACKING_ORDER_SCALAR;
1594 case 2: return PACKING_ORDER_VEC2;
1595 case 3: return PACKING_ORDER_VEC3;
1596 case 0: return PACKING_ORDER_VEC4;
1597 default:
1598 assert(!"Unexpected value of vector_elements");
1599 return PACKING_ORDER_VEC4;
1600 }
1601 }
1602
1603
1604 /**
1605 * Comparison function passed to qsort() to sort varyings by packing_class and
1606 * then by packing_order.
1607 */
1608 int
1609 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1610 {
1611 const match *x = (const match *) x_generic;
1612 const match *y = (const match *) y_generic;
1613
1614 if (x->packing_class != y->packing_class)
1615 return x->packing_class - y->packing_class;
1616 return x->packing_order - y->packing_order;
1617 }
1618
1619
1620 /**
1621 * Comparison function passed to qsort() to sort varyings used only by
1622 * transform feedback when packing of other varyings is disabled.
1623 */
1624 int
1625 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1626 {
1627 const match *x = (const match *) x_generic;
1628
1629 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1630 return match_comparator(x_generic, y_generic);
1631
1632 /* FIXME: When the comparator returns 0 it means the elements being
1633 * compared are equivalent. However the qsort documentation says:
1634 *
1635 * "The order of equivalent elements is undefined."
1636 *
1637 * In practice the sort ends up reversing the order of the varyings which
1638 * means locations are also assigned in this reversed order and happens to
1639 * be what we want. This is also whats happening in
1640 * varying_matches::match_comparator().
1641 */
1642 return 0;
1643 }
1644
1645
1646 /**
1647 * Is the given variable a varying variable to be counted against the
1648 * limit in ctx->Const.MaxVarying?
1649 * This includes variables such as texcoords, colors and generic
1650 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1651 */
1652 static bool
1653 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1654 {
1655 /* Only fragment shaders will take a varying variable as an input */
1656 if (stage == MESA_SHADER_FRAGMENT &&
1657 var->data.mode == ir_var_shader_in) {
1658 switch (var->data.location) {
1659 case VARYING_SLOT_POS:
1660 case VARYING_SLOT_FACE:
1661 case VARYING_SLOT_PNTC:
1662 return false;
1663 default:
1664 return true;
1665 }
1666 }
1667 return false;
1668 }
1669
1670
1671 /**
1672 * Visitor class that generates tfeedback_candidate structs describing all
1673 * possible targets of transform feedback.
1674 *
1675 * tfeedback_candidate structs are stored in the hash table
1676 * tfeedback_candidates, which is passed to the constructor. This hash table
1677 * maps varying names to instances of the tfeedback_candidate struct.
1678 */
1679 class tfeedback_candidate_generator : public program_resource_visitor
1680 {
1681 public:
1682 tfeedback_candidate_generator(void *mem_ctx,
1683 hash_table *tfeedback_candidates)
1684 : mem_ctx(mem_ctx),
1685 tfeedback_candidates(tfeedback_candidates),
1686 toplevel_var(NULL),
1687 varying_floats(0)
1688 {
1689 }
1690
1691 void process(ir_variable *var)
1692 {
1693 /* All named varying interface blocks should be flattened by now */
1694 assert(!var->is_interface_instance());
1695
1696 this->toplevel_var = var;
1697 this->varying_floats = 0;
1698 program_resource_visitor::process(var);
1699 }
1700
1701 private:
1702 virtual void visit_field(const glsl_type *type, const char *name,
1703 bool row_major)
1704 {
1705 assert(!type->without_array()->is_record());
1706 assert(!type->without_array()->is_interface());
1707
1708 (void) row_major;
1709
1710 tfeedback_candidate *candidate
1711 = rzalloc(this->mem_ctx, tfeedback_candidate);
1712 candidate->toplevel_var = this->toplevel_var;
1713 candidate->type = type;
1714 candidate->offset = this->varying_floats;
1715 hash_table_insert(this->tfeedback_candidates, candidate,
1716 ralloc_strdup(this->mem_ctx, name));
1717 this->varying_floats += type->component_slots();
1718 }
1719
1720 /**
1721 * Memory context used to allocate hash table keys and values.
1722 */
1723 void * const mem_ctx;
1724
1725 /**
1726 * Hash table in which tfeedback_candidate objects should be stored.
1727 */
1728 hash_table * const tfeedback_candidates;
1729
1730 /**
1731 * Pointer to the toplevel variable that is being traversed.
1732 */
1733 ir_variable *toplevel_var;
1734
1735 /**
1736 * Total number of varying floats that have been visited so far. This is
1737 * used to determine the offset to each varying within the toplevel
1738 * variable.
1739 */
1740 unsigned varying_floats;
1741 };
1742
1743
1744 namespace linker {
1745
1746 void
1747 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1748 hash_table *consumer_inputs,
1749 hash_table *consumer_interface_inputs,
1750 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1751 {
1752 memset(consumer_inputs_with_locations,
1753 0,
1754 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1755
1756 foreach_in_list(ir_instruction, node, ir) {
1757 ir_variable *const input_var = node->as_variable();
1758
1759 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1760 /* All interface blocks should have been lowered by this point */
1761 assert(!input_var->type->is_interface());
1762
1763 if (input_var->data.explicit_location) {
1764 /* assign_varying_locations only cares about finding the
1765 * ir_variable at the start of a contiguous location block.
1766 *
1767 * - For !producer, consumer_inputs_with_locations isn't used.
1768 *
1769 * - For !consumer, consumer_inputs_with_locations is empty.
1770 *
1771 * For consumer && producer, if you were trying to set some
1772 * ir_variable to the middle of a location block on the other side
1773 * of producer/consumer, cross_validate_outputs_to_inputs() should
1774 * be link-erroring due to either type mismatch or location
1775 * overlaps. If the variables do match up, then they've got a
1776 * matching data.location and you only looked at
1777 * consumer_inputs_with_locations[var->data.location], not any
1778 * following entries for the array/structure.
1779 */
1780 consumer_inputs_with_locations[input_var->data.location] =
1781 input_var;
1782 } else if (input_var->get_interface_type() != NULL) {
1783 char *const iface_field_name =
1784 ralloc_asprintf(mem_ctx, "%s.%s",
1785 input_var->get_interface_type()->without_array()->name,
1786 input_var->name);
1787 hash_table_insert(consumer_interface_inputs, input_var,
1788 iface_field_name);
1789 } else {
1790 hash_table_insert(consumer_inputs, input_var,
1791 ralloc_strdup(mem_ctx, input_var->name));
1792 }
1793 }
1794 }
1795 }
1796
1797 /**
1798 * Find a variable from the consumer that "matches" the specified variable
1799 *
1800 * This function only finds inputs with names that match. There is no
1801 * validation (here) that the types, etc. are compatible.
1802 */
1803 ir_variable *
1804 get_matching_input(void *mem_ctx,
1805 const ir_variable *output_var,
1806 hash_table *consumer_inputs,
1807 hash_table *consumer_interface_inputs,
1808 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1809 {
1810 ir_variable *input_var;
1811
1812 if (output_var->data.explicit_location) {
1813 input_var = consumer_inputs_with_locations[output_var->data.location];
1814 } else if (output_var->get_interface_type() != NULL) {
1815 char *const iface_field_name =
1816 ralloc_asprintf(mem_ctx, "%s.%s",
1817 output_var->get_interface_type()->without_array()->name,
1818 output_var->name);
1819 input_var =
1820 (ir_variable *) hash_table_find(consumer_interface_inputs,
1821 iface_field_name);
1822 } else {
1823 input_var =
1824 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1825 }
1826
1827 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1828 ? NULL : input_var;
1829 }
1830
1831 }
1832
1833 static int
1834 io_variable_cmp(const void *_a, const void *_b)
1835 {
1836 const ir_variable *const a = *(const ir_variable **) _a;
1837 const ir_variable *const b = *(const ir_variable **) _b;
1838
1839 if (a->data.explicit_location && b->data.explicit_location)
1840 return b->data.location - a->data.location;
1841
1842 if (a->data.explicit_location && !b->data.explicit_location)
1843 return 1;
1844
1845 if (!a->data.explicit_location && b->data.explicit_location)
1846 return -1;
1847
1848 return -strcmp(a->name, b->name);
1849 }
1850
1851 /**
1852 * Sort the shader IO variables into canonical order
1853 */
1854 static void
1855 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1856 {
1857 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1858 unsigned num_variables = 0;
1859
1860 foreach_in_list(ir_instruction, node, ir) {
1861 ir_variable *const var = node->as_variable();
1862
1863 if (var == NULL || var->data.mode != io_mode)
1864 continue;
1865
1866 /* If we have already encountered more I/O variables that could
1867 * successfully link, bail.
1868 */
1869 if (num_variables == ARRAY_SIZE(var_table))
1870 return;
1871
1872 var_table[num_variables++] = var;
1873 }
1874
1875 if (num_variables == 0)
1876 return;
1877
1878 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1879 * we're going to push the variables on to the IR list as a stack, so we
1880 * want the last variable (in canonical order) to be first in the list.
1881 */
1882 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1883
1884 /* Remove the variable from it's current location in the IR, and put it at
1885 * the front.
1886 */
1887 for (unsigned i = 0; i < num_variables; i++) {
1888 var_table[i]->remove();
1889 ir->push_head(var_table[i]);
1890 }
1891 }
1892
1893 /**
1894 * Generate a bitfield map of the explicit locations for shader varyings.
1895 *
1896 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1897 */
1898 uint64_t
1899 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1900 {
1901 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1902 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1903
1904 uint64_t slots = 0;
1905 int var_slot;
1906
1907 if (!stage)
1908 return slots;
1909
1910 foreach_in_list(ir_instruction, node, stage->ir) {
1911 ir_variable *const var = node->as_variable();
1912
1913 if (var == NULL || var->data.mode != io_mode ||
1914 !var->data.explicit_location ||
1915 var->data.location < VARYING_SLOT_VAR0)
1916 continue;
1917
1918 var_slot = var->data.location - VARYING_SLOT_VAR0;
1919
1920 unsigned num_elements = get_varying_type(var, stage->Stage)
1921 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1922 for (unsigned i = 0; i < num_elements; i++) {
1923 if (var_slot >= 0 && var_slot < MAX_VARYING)
1924 slots |= UINT64_C(1) << var_slot;
1925 var_slot += 1;
1926 }
1927 }
1928
1929 return slots;
1930 }
1931
1932
1933 /**
1934 * Assign locations for all variables that are produced in one pipeline stage
1935 * (the "producer") and consumed in the next stage (the "consumer").
1936 *
1937 * Variables produced by the producer may also be consumed by transform
1938 * feedback.
1939 *
1940 * \param num_tfeedback_decls is the number of declarations indicating
1941 * variables that may be consumed by transform feedback.
1942 *
1943 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1944 * representing the result of parsing the strings passed to
1945 * glTransformFeedbackVaryings(). assign_location() will be called for
1946 * each of these objects that matches one of the outputs of the
1947 * producer.
1948 *
1949 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1950 * be NULL. In this case, varying locations are assigned solely based on the
1951 * requirements of transform feedback.
1952 */
1953 bool
1954 assign_varying_locations(struct gl_context *ctx,
1955 void *mem_ctx,
1956 struct gl_shader_program *prog,
1957 gl_shader *producer, gl_shader *consumer,
1958 unsigned num_tfeedback_decls,
1959 tfeedback_decl *tfeedback_decls)
1960 {
1961 /* Tessellation shaders treat inputs and outputs as shared memory and can
1962 * access inputs and outputs of other invocations.
1963 * Therefore, they can't be lowered to temps easily (and definitely not
1964 * efficiently).
1965 */
1966 bool unpackable_tess =
1967 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1968 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1969 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1970
1971 /* Transform feedback code assumes varying arrays are packed, so if the
1972 * driver has disabled varying packing, make sure to at least enable
1973 * packing required by transform feedback.
1974 */
1975 bool xfb_enabled =
1976 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1977
1978 /* Disable varying packing for GL 4.4+ as there is no guarantee
1979 * that interpolation qualifiers will match between shaders in these
1980 * versions. We also disable packing on outerward facing interfaces for
1981 * SSO because in ES we need to retain the unpacked varying information
1982 * for draw time validation. For desktop GL we could allow packing for
1983 * versions < 4.4 but its just safer not to do packing.
1984 *
1985 * Packing is still enabled on individual arrays, structs, and matrices as
1986 * these are required by the transform feedback code and it is still safe
1987 * to do so. We also enable packing when a varying is only used for
1988 * transform feedback and its not a SSO.
1989 *
1990 * Varying packing currently only packs together varyings with matching
1991 * interpolation qualifiers as the backends assume all packed components
1992 * are to be processed in the same way. Therefore we cannot do packing in
1993 * these versions of GL without the risk of mismatching interfaces.
1994 *
1995 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1996 *
1997 * "The type and presence of interpolation qualifiers of variables with
1998 * the same name declared in all linked shaders for the same cross-stage
1999 * interface must match, otherwise the link command will fail.
2000 *
2001 * When comparing an output from one stage to an input of a subsequent
2002 * stage, the input and output don't match if their interpolation
2003 * qualifiers (or lack thereof) are not the same."
2004 *
2005 * This text was also in at least revison 7 of the 4.40 spec but is no
2006 * longer in revision 9 and not in the 4.50 spec.
2007 */
2008 bool disable_varying_packing =
2009 ctx->Const.DisableVaryingPacking || unpackable_tess;
2010 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
2011 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
2012 disable_varying_packing = true;
2013
2014 varying_matches matches(disable_varying_packing, xfb_enabled,
2015 producer ? producer->Stage : (gl_shader_stage)-1,
2016 consumer ? consumer->Stage : (gl_shader_stage)-1);
2017 hash_table *tfeedback_candidates
2018 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2019 hash_table *consumer_inputs
2020 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2021 hash_table *consumer_interface_inputs
2022 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2023 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2024 NULL,
2025 };
2026
2027 unsigned consumer_vertices = 0;
2028 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2029 consumer_vertices = prog->Geom.VerticesIn;
2030
2031 /* Operate in a total of four passes.
2032 *
2033 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2034 * that inputs / outputs of separable shaders will be assigned
2035 * predictable locations regardless of the order in which declarations
2036 * appeared in the shader source.
2037 *
2038 * 2. Assign locations for any matching inputs and outputs.
2039 *
2040 * 3. Mark output variables in the producer that do not have locations as
2041 * not being outputs. This lets the optimizer eliminate them.
2042 *
2043 * 4. Mark input variables in the consumer that do not have locations as
2044 * not being inputs. This lets the optimizer eliminate them.
2045 */
2046 if (consumer)
2047 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2048
2049 if (producer)
2050 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2051
2052 if (consumer)
2053 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2054 consumer_inputs,
2055 consumer_interface_inputs,
2056 consumer_inputs_with_locations);
2057
2058 if (producer) {
2059 foreach_in_list(ir_instruction, node, producer->ir) {
2060 ir_variable *const output_var = node->as_variable();
2061
2062 if ((output_var == NULL) ||
2063 (output_var->data.mode != ir_var_shader_out))
2064 continue;
2065
2066 /* Only geometry shaders can use non-zero streams */
2067 assert(output_var->data.stream == 0 ||
2068 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2069 producer->Stage == MESA_SHADER_GEOMETRY));
2070
2071 if (num_tfeedback_decls > 0) {
2072 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2073 g.process(output_var);
2074 }
2075
2076 ir_variable *const input_var =
2077 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2078 consumer_interface_inputs,
2079 consumer_inputs_with_locations);
2080
2081 /* If a matching input variable was found, add this ouptut (and the
2082 * input) to the set. If this is a separable program and there is no
2083 * consumer stage, add the output.
2084 *
2085 * Always add TCS outputs. They are shared by all invocations
2086 * within a patch and can be used as shared memory.
2087 */
2088 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2089 producer->Type == GL_TESS_CONTROL_SHADER) {
2090 matches.record(output_var, input_var);
2091 }
2092
2093 /* Only stream 0 outputs can be consumed in the next stage */
2094 if (input_var && output_var->data.stream != 0) {
2095 linker_error(prog, "output %s is assigned to stream=%d but "
2096 "is linked to an input, which requires stream=0",
2097 output_var->name, output_var->data.stream);
2098 return false;
2099 }
2100 }
2101 } else {
2102 /* If there's no producer stage, then this must be a separable program.
2103 * For example, we may have a program that has just a fragment shader.
2104 * Later this program will be used with some arbitrary vertex (or
2105 * geometry) shader program. This means that locations must be assigned
2106 * for all the inputs.
2107 */
2108 foreach_in_list(ir_instruction, node, consumer->ir) {
2109 ir_variable *const input_var = node->as_variable();
2110
2111 if ((input_var == NULL) ||
2112 (input_var->data.mode != ir_var_shader_in))
2113 continue;
2114
2115 matches.record(NULL, input_var);
2116 }
2117 }
2118
2119 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2120 if (!tfeedback_decls[i].is_varying())
2121 continue;
2122
2123 const tfeedback_candidate *matched_candidate
2124 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2125
2126 if (matched_candidate == NULL) {
2127 hash_table_dtor(tfeedback_candidates);
2128 hash_table_dtor(consumer_inputs);
2129 hash_table_dtor(consumer_interface_inputs);
2130 return false;
2131 }
2132
2133 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2134 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2135 matches.record(matched_candidate->toplevel_var, NULL);
2136 }
2137 }
2138
2139 const uint64_t reserved_slots =
2140 reserved_varying_slot(producer, ir_var_shader_out) |
2141 reserved_varying_slot(consumer, ir_var_shader_in);
2142
2143 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2144 prog->SeparateShader);
2145 matches.store_locations();
2146
2147 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2148 if (!tfeedback_decls[i].is_varying())
2149 continue;
2150
2151 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2152 hash_table_dtor(tfeedback_candidates);
2153 hash_table_dtor(consumer_inputs);
2154 hash_table_dtor(consumer_interface_inputs);
2155 return false;
2156 }
2157 }
2158
2159 hash_table_dtor(tfeedback_candidates);
2160 hash_table_dtor(consumer_inputs);
2161 hash_table_dtor(consumer_interface_inputs);
2162
2163 if (consumer && producer) {
2164 foreach_in_list(ir_instruction, node, consumer->ir) {
2165 ir_variable *const var = node->as_variable();
2166
2167 if (var && var->data.mode == ir_var_shader_in &&
2168 var->data.is_unmatched_generic_inout) {
2169 if (!prog->IsES && prog->Version <= 120) {
2170 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2171 *
2172 * Only those varying variables used (i.e. read) in
2173 * the fragment shader executable must be written to
2174 * by the vertex shader executable; declaring
2175 * superfluous varying variables in a vertex shader is
2176 * permissible.
2177 *
2178 * We interpret this text as meaning that the VS must
2179 * write the variable for the FS to read it. See
2180 * "glsl1-varying read but not written" in piglit.
2181 */
2182 linker_error(prog, "%s shader varying %s not written "
2183 "by %s shader\n.",
2184 _mesa_shader_stage_to_string(consumer->Stage),
2185 var->name,
2186 _mesa_shader_stage_to_string(producer->Stage));
2187 } else {
2188 linker_warning(prog, "%s shader varying %s not written "
2189 "by %s shader\n.",
2190 _mesa_shader_stage_to_string(consumer->Stage),
2191 var->name,
2192 _mesa_shader_stage_to_string(producer->Stage));
2193 }
2194 }
2195 }
2196
2197 /* Now that validation is done its safe to remove unused varyings. As
2198 * we have both a producer and consumer its safe to remove unused
2199 * varyings even if the program is a SSO because the stages are being
2200 * linked together i.e. we have a multi-stage SSO.
2201 */
2202 remove_unused_shader_inputs_and_outputs(false, producer,
2203 ir_var_shader_out);
2204 remove_unused_shader_inputs_and_outputs(false, consumer,
2205 ir_var_shader_in);
2206 }
2207
2208 if (producer) {
2209 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2210 0, producer, disable_varying_packing,
2211 xfb_enabled);
2212 }
2213
2214 if (consumer) {
2215 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2216 consumer_vertices, consumer,
2217 disable_varying_packing, xfb_enabled);
2218 }
2219
2220 return true;
2221 }
2222
2223 bool
2224 check_against_output_limit(struct gl_context *ctx,
2225 struct gl_shader_program *prog,
2226 gl_shader *producer)
2227 {
2228 unsigned output_vectors = 0;
2229
2230 foreach_in_list(ir_instruction, node, producer->ir) {
2231 ir_variable *const var = node->as_variable();
2232
2233 if (var && var->data.mode == ir_var_shader_out &&
2234 var_counts_against_varying_limit(producer->Stage, var)) {
2235 /* outputs for fragment shader can't be doubles */
2236 output_vectors += var->type->count_attribute_slots(false);
2237 }
2238 }
2239
2240 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2241 unsigned max_output_components =
2242 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2243
2244 const unsigned output_components = output_vectors * 4;
2245 if (output_components > max_output_components) {
2246 if (ctx->API == API_OPENGLES2 || prog->IsES)
2247 linker_error(prog, "%s shader uses too many output vectors "
2248 "(%u > %u)\n",
2249 _mesa_shader_stage_to_string(producer->Stage),
2250 output_vectors,
2251 max_output_components / 4);
2252 else
2253 linker_error(prog, "%s shader uses too many output components "
2254 "(%u > %u)\n",
2255 _mesa_shader_stage_to_string(producer->Stage),
2256 output_components,
2257 max_output_components);
2258
2259 return false;
2260 }
2261
2262 return true;
2263 }
2264
2265 bool
2266 check_against_input_limit(struct gl_context *ctx,
2267 struct gl_shader_program *prog,
2268 gl_shader *consumer)
2269 {
2270 unsigned input_vectors = 0;
2271
2272 foreach_in_list(ir_instruction, node, consumer->ir) {
2273 ir_variable *const var = node->as_variable();
2274
2275 if (var && var->data.mode == ir_var_shader_in &&
2276 var_counts_against_varying_limit(consumer->Stage, var)) {
2277 /* vertex inputs aren't varying counted */
2278 input_vectors += var->type->count_attribute_slots(false);
2279 }
2280 }
2281
2282 assert(consumer->Stage != MESA_SHADER_VERTEX);
2283 unsigned max_input_components =
2284 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2285
2286 const unsigned input_components = input_vectors * 4;
2287 if (input_components > max_input_components) {
2288 if (ctx->API == API_OPENGLES2 || prog->IsES)
2289 linker_error(prog, "%s shader uses too many input vectors "
2290 "(%u > %u)\n",
2291 _mesa_shader_stage_to_string(consumer->Stage),
2292 input_vectors,
2293 max_input_components / 4);
2294 else
2295 linker_error(prog, "%s shader uses too many input components "
2296 "(%u > %u)\n",
2297 _mesa_shader_stage_to_string(consumer->Stage),
2298 input_components,
2299 max_input_components);
2300
2301 return false;
2302 }
2303
2304 return true;
2305 }