mesa/program_interface_query: fix transform feedback varyings.
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 bool anon_matches = output->type->is_anonymous() &&
230 type_to_match->is_anonymous() &&
231 type_to_match->record_compare(output->type);
232
233 if (!anon_matches) {
234 linker_error(prog,
235 "%s shader output `%s' declared as type `%s', "
236 "but %s shader input declared as type `%s'\n",
237 _mesa_shader_stage_to_string(producer_stage),
238 output->name,
239 output->type->name,
240 _mesa_shader_stage_to_string(consumer_stage),
241 input->type->name);
242 return;
243 }
244 }
245 }
246
247 /* Check that all of the qualifiers match between stages.
248 */
249
250 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
251 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
252 * conformance test suite does not verify that the qualifiers must match.
253 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
254 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
255 */
256 if (false /* always skip the centroid check */ &&
257 prog->Version < (prog->IsES ? 310 : 430) &&
258 input->data.centroid != output->data.centroid) {
259 linker_error(prog,
260 "%s shader output `%s' %s centroid qualifier, "
261 "but %s shader input %s centroid qualifier\n",
262 _mesa_shader_stage_to_string(producer_stage),
263 output->name,
264 (output->data.centroid) ? "has" : "lacks",
265 _mesa_shader_stage_to_string(consumer_stage),
266 (input->data.centroid) ? "has" : "lacks");
267 return;
268 }
269
270 if (input->data.sample != output->data.sample) {
271 linker_error(prog,
272 "%s shader output `%s' %s sample qualifier, "
273 "but %s shader input %s sample qualifier\n",
274 _mesa_shader_stage_to_string(producer_stage),
275 output->name,
276 (output->data.sample) ? "has" : "lacks",
277 _mesa_shader_stage_to_string(consumer_stage),
278 (input->data.sample) ? "has" : "lacks");
279 return;
280 }
281
282 if (input->data.patch != output->data.patch) {
283 linker_error(prog,
284 "%s shader output `%s' %s patch qualifier, "
285 "but %s shader input %s patch qualifier\n",
286 _mesa_shader_stage_to_string(producer_stage),
287 output->name,
288 (output->data.patch) ? "has" : "lacks",
289 _mesa_shader_stage_to_string(consumer_stage),
290 (input->data.patch) ? "has" : "lacks");
291 return;
292 }
293
294 if (!prog->IsES && input->data.invariant != output->data.invariant) {
295 linker_error(prog,
296 "%s shader output `%s' %s invariant qualifier, "
297 "but %s shader input %s invariant qualifier\n",
298 _mesa_shader_stage_to_string(producer_stage),
299 output->name,
300 (output->data.invariant) ? "has" : "lacks",
301 _mesa_shader_stage_to_string(consumer_stage),
302 (input->data.invariant) ? "has" : "lacks");
303 return;
304 }
305
306 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
307 * to match cross stage, they must only match within the same stage.
308 *
309 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
310 *
311 * "It is a link-time error if, within the same stage, the interpolation
312 * qualifiers of variables of the same name do not match.
313 *
314 */
315 if (input->data.interpolation != output->data.interpolation &&
316 prog->Version < 440) {
317 linker_error(prog,
318 "%s shader output `%s' specifies %s "
319 "interpolation qualifier, "
320 "but %s shader input specifies %s "
321 "interpolation qualifier\n",
322 _mesa_shader_stage_to_string(producer_stage),
323 output->name,
324 interpolation_string(output->data.interpolation),
325 _mesa_shader_stage_to_string(consumer_stage),
326 interpolation_string(input->data.interpolation));
327 return;
328 }
329 }
330
331 /**
332 * Validate front and back color outputs against single color input
333 */
334 static void
335 cross_validate_front_and_back_color(struct gl_shader_program *prog,
336 const ir_variable *input,
337 const ir_variable *front_color,
338 const ir_variable *back_color,
339 gl_shader_stage consumer_stage,
340 gl_shader_stage producer_stage)
341 {
342 if (front_color != NULL && front_color->data.assigned)
343 cross_validate_types_and_qualifiers(prog, input, front_color,
344 consumer_stage, producer_stage);
345
346 if (back_color != NULL && back_color->data.assigned)
347 cross_validate_types_and_qualifiers(prog, input, back_color,
348 consumer_stage, producer_stage);
349 }
350
351 /**
352 * Validate that outputs from one stage match inputs of another
353 */
354 void
355 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
356 gl_shader *producer, gl_shader *consumer)
357 {
358 glsl_symbol_table parameters;
359 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
360 { {NULL, NULL} };
361
362 /* Find all shader outputs in the "producer" stage.
363 */
364 foreach_in_list(ir_instruction, node, producer->ir) {
365 ir_variable *const var = node->as_variable();
366
367 if (var == NULL || var->data.mode != ir_var_shader_out)
368 continue;
369
370 if (!var->data.explicit_location
371 || var->data.location < VARYING_SLOT_VAR0)
372 parameters.add_variable(var);
373 else {
374 /* User-defined varyings with explicit locations are handled
375 * differently because they do not need to have matching names.
376 */
377 const glsl_type *type = get_varying_type(var, producer->Stage);
378 unsigned num_elements = type->count_attribute_slots(false);
379 unsigned idx = var->data.location - VARYING_SLOT_VAR0;
380 unsigned slot_limit = idx + num_elements;
381 unsigned last_comp;
382
383 if (var->type->without_array()->is_record()) {
384 /* The component qualifier can't be used on structs so just treat
385 * all component slots as used.
386 */
387 last_comp = 4;
388 } else {
389 unsigned dmul = var->type->is_double() ? 2 : 1;
390 last_comp = var->data.location_frac +
391 var->type->without_array()->vector_elements * dmul;
392 }
393
394 while (idx < slot_limit) {
395 unsigned i = var->data.location_frac;
396 while (i < last_comp) {
397 if (explicit_locations[idx][i] != NULL) {
398 linker_error(prog,
399 "%s shader has multiple outputs explicitly "
400 "assigned to location %d and component %d\n",
401 _mesa_shader_stage_to_string(producer->Stage),
402 idx, var->data.location_frac);
403 return;
404 }
405
406 /* Make sure all component at this location have the same type.
407 */
408 for (unsigned j = 0; j < 4; j++) {
409 if (explicit_locations[idx][j] &&
410 (explicit_locations[idx][j]->type->without_array()
411 ->base_type != var->type->without_array()->base_type)) {
412 linker_error(prog,
413 "Varyings sharing the same location must "
414 "have the same underlying numerical type. "
415 "Location %u component %u\n", idx,
416 var->data.location_frac);
417 return;
418 }
419 }
420
421 explicit_locations[idx][i] = var;
422 i++;
423
424 /* We need to do some special handling for doubles as dvec3 and
425 * dvec4 consume two consecutive locations. We don't need to
426 * worry about components beginning at anything other than 0 as
427 * the spec does not allow this for dvec3 and dvec4.
428 */
429 if (i == 3 && last_comp > 4) {
430 last_comp = last_comp - 4;
431 /* Bump location index and reset the component index */
432 idx++;
433 i = 0;
434 }
435 }
436 idx++;
437 }
438 }
439 }
440
441
442 /* Find all shader inputs in the "consumer" stage. Any variables that have
443 * matching outputs already in the symbol table must have the same type and
444 * qualifiers.
445 *
446 * Exception: if the consumer is the geometry shader, then the inputs
447 * should be arrays and the type of the array element should match the type
448 * of the corresponding producer output.
449 */
450 foreach_in_list(ir_instruction, node, consumer->ir) {
451 ir_variable *const input = node->as_variable();
452
453 if (input == NULL || input->data.mode != ir_var_shader_in)
454 continue;
455
456 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
457 const ir_variable *const front_color =
458 parameters.get_variable("gl_FrontColor");
459
460 const ir_variable *const back_color =
461 parameters.get_variable("gl_BackColor");
462
463 cross_validate_front_and_back_color(prog, input,
464 front_color, back_color,
465 consumer->Stage, producer->Stage);
466 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
467 const ir_variable *const front_color =
468 parameters.get_variable("gl_FrontSecondaryColor");
469
470 const ir_variable *const back_color =
471 parameters.get_variable("gl_BackSecondaryColor");
472
473 cross_validate_front_and_back_color(prog, input,
474 front_color, back_color,
475 consumer->Stage, producer->Stage);
476 } else {
477 /* The rules for connecting inputs and outputs change in the presence
478 * of explicit locations. In this case, we no longer care about the
479 * names of the variables. Instead, we care only about the
480 * explicitly assigned location.
481 */
482 ir_variable *output = NULL;
483 if (input->data.explicit_location
484 && input->data.location >= VARYING_SLOT_VAR0) {
485
486 const glsl_type *type = get_varying_type(input, consumer->Stage);
487 unsigned num_elements = type->count_attribute_slots(false);
488 unsigned idx = input->data.location - VARYING_SLOT_VAR0;
489 unsigned slot_limit = idx + num_elements;
490
491 while (idx < slot_limit) {
492 output = explicit_locations[idx][input->data.location_frac];
493
494 if (output == NULL ||
495 input->data.location != output->data.location) {
496 linker_error(prog,
497 "%s shader input `%s' with explicit location "
498 "has no matching output\n",
499 _mesa_shader_stage_to_string(consumer->Stage),
500 input->name);
501 break;
502 }
503 idx++;
504 }
505 } else {
506 output = parameters.get_variable(input->name);
507 }
508
509 if (output != NULL) {
510 /* Interface blocks have their own validation elsewhere so don't
511 * try validating them here.
512 */
513 if (!(input->get_interface_type() &&
514 output->get_interface_type()))
515 cross_validate_types_and_qualifiers(prog, input, output,
516 consumer->Stage,
517 producer->Stage);
518 } else {
519 /* Check for input vars with unmatched output vars in prev stage
520 * taking into account that interface blocks could have a matching
521 * output but with different name, so we ignore them.
522 */
523 assert(!input->data.assigned);
524 if (input->data.used && !input->get_interface_type() &&
525 !input->data.explicit_location && !prog->SeparateShader)
526 linker_error(prog,
527 "%s shader input `%s' "
528 "has no matching output in the previous stage\n",
529 _mesa_shader_stage_to_string(consumer->Stage),
530 input->name);
531 }
532 }
533 }
534 }
535
536 /**
537 * Demote shader inputs and outputs that are not used in other stages, and
538 * remove them via dead code elimination.
539 */
540 void
541 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
542 gl_shader *sh,
543 enum ir_variable_mode mode)
544 {
545 if (is_separate_shader_object)
546 return;
547
548 foreach_in_list(ir_instruction, node, sh->ir) {
549 ir_variable *const var = node->as_variable();
550
551 if (var == NULL || var->data.mode != int(mode))
552 continue;
553
554 /* A shader 'in' or 'out' variable is only really an input or output if
555 * its value is used by other shader stages. This will cause the
556 * variable to have a location assigned.
557 */
558 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) {
559 assert(var->data.mode != ir_var_temporary);
560 var->data.mode = ir_var_auto;
561 }
562 }
563
564 /* Eliminate code that is now dead due to unused inputs/outputs being
565 * demoted.
566 */
567 while (do_dead_code(sh->ir, false))
568 ;
569
570 }
571
572 /**
573 * Initialize this object based on a string that was passed to
574 * glTransformFeedbackVaryings.
575 *
576 * If the input is mal-formed, this call still succeeds, but it sets
577 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
578 * will fail to find any matching variable.
579 */
580 void
581 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
582 const char *input)
583 {
584 /* We don't have to be pedantic about what is a valid GLSL variable name,
585 * because any variable with an invalid name can't exist in the IR anyway.
586 */
587
588 this->location = -1;
589 this->orig_name = input;
590 this->lowered_builtin_array_variable = none;
591 this->skip_components = 0;
592 this->next_buffer_separator = false;
593 this->matched_candidate = NULL;
594 this->stream_id = 0;
595 this->buffer = 0;
596 this->offset = 0;
597
598 if (ctx->Extensions.ARB_transform_feedback3) {
599 /* Parse gl_NextBuffer. */
600 if (strcmp(input, "gl_NextBuffer") == 0) {
601 this->next_buffer_separator = true;
602 return;
603 }
604
605 /* Parse gl_SkipComponents. */
606 if (strcmp(input, "gl_SkipComponents1") == 0)
607 this->skip_components = 1;
608 else if (strcmp(input, "gl_SkipComponents2") == 0)
609 this->skip_components = 2;
610 else if (strcmp(input, "gl_SkipComponents3") == 0)
611 this->skip_components = 3;
612 else if (strcmp(input, "gl_SkipComponents4") == 0)
613 this->skip_components = 4;
614
615 if (this->skip_components)
616 return;
617 }
618
619 /* Parse a declaration. */
620 const char *base_name_end;
621 long subscript = parse_program_resource_name(input, &base_name_end);
622 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
623 if (this->var_name == NULL) {
624 _mesa_error_no_memory(__func__);
625 return;
626 }
627
628 if (subscript >= 0) {
629 this->array_subscript = subscript;
630 this->is_subscripted = true;
631 } else {
632 this->is_subscripted = false;
633 }
634
635 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
636 * class must behave specially to account for the fact that gl_ClipDistance
637 * is converted from a float[8] to a vec4[2].
638 */
639 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
640 strcmp(this->var_name, "gl_ClipDistance") == 0) {
641 this->lowered_builtin_array_variable = clip_distance;
642 }
643 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
644 strcmp(this->var_name, "gl_CullDistance") == 0) {
645 this->lowered_builtin_array_variable = cull_distance;
646 }
647
648 if (ctx->Const.LowerTessLevel &&
649 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
650 this->lowered_builtin_array_variable = tess_level_outer;
651 if (ctx->Const.LowerTessLevel &&
652 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
653 this->lowered_builtin_array_variable = tess_level_inner;
654 }
655
656
657 /**
658 * Determine whether two tfeedback_decl objects refer to the same variable and
659 * array index (if applicable).
660 */
661 bool
662 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
663 {
664 assert(x.is_varying() && y.is_varying());
665
666 if (strcmp(x.var_name, y.var_name) != 0)
667 return false;
668 if (x.is_subscripted != y.is_subscripted)
669 return false;
670 if (x.is_subscripted && x.array_subscript != y.array_subscript)
671 return false;
672 return true;
673 }
674
675
676 /**
677 * Assign a location and stream ID for this tfeedback_decl object based on the
678 * transform feedback candidate found by find_candidate.
679 *
680 * If an error occurs, the error is reported through linker_error() and false
681 * is returned.
682 */
683 bool
684 tfeedback_decl::assign_location(struct gl_context *ctx,
685 struct gl_shader_program *prog)
686 {
687 assert(this->is_varying());
688
689 unsigned fine_location
690 = this->matched_candidate->toplevel_var->data.location * 4
691 + this->matched_candidate->toplevel_var->data.location_frac
692 + this->matched_candidate->offset;
693 const unsigned dmul =
694 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
695
696 if (this->matched_candidate->type->is_array()) {
697 /* Array variable */
698 const unsigned matrix_cols =
699 this->matched_candidate->type->fields.array->matrix_columns;
700 const unsigned vector_elements =
701 this->matched_candidate->type->fields.array->vector_elements;
702 unsigned actual_array_size;
703 switch (this->lowered_builtin_array_variable) {
704 case clip_distance:
705 actual_array_size = prog->LastClipDistanceArraySize;
706 break;
707 case cull_distance:
708 actual_array_size = prog->LastCullDistanceArraySize;
709 break;
710 case tess_level_outer:
711 actual_array_size = 4;
712 break;
713 case tess_level_inner:
714 actual_array_size = 2;
715 break;
716 case none:
717 default:
718 actual_array_size = this->matched_candidate->type->array_size();
719 break;
720 }
721
722 if (this->is_subscripted) {
723 /* Check array bounds. */
724 if (this->array_subscript >= actual_array_size) {
725 linker_error(prog, "Transform feedback varying %s has index "
726 "%i, but the array size is %u.",
727 this->orig_name, this->array_subscript,
728 actual_array_size);
729 return false;
730 }
731 unsigned array_elem_size = this->lowered_builtin_array_variable ?
732 1 : vector_elements * matrix_cols * dmul;
733 fine_location += array_elem_size * this->array_subscript;
734 this->size = 1;
735 } else {
736 this->size = actual_array_size;
737 }
738 this->vector_elements = vector_elements;
739 this->matrix_columns = matrix_cols;
740 if (this->lowered_builtin_array_variable)
741 this->type = GL_FLOAT;
742 else
743 this->type = this->matched_candidate->type->fields.array->gl_type;
744 } else {
745 /* Regular variable (scalar, vector, or matrix) */
746 if (this->is_subscripted) {
747 linker_error(prog, "Transform feedback varying %s requested, "
748 "but %s is not an array.",
749 this->orig_name, this->var_name);
750 return false;
751 }
752 this->size = 1;
753 this->vector_elements = this->matched_candidate->type->vector_elements;
754 this->matrix_columns = this->matched_candidate->type->matrix_columns;
755 this->type = this->matched_candidate->type->gl_type;
756 }
757 this->location = fine_location / 4;
758 this->location_frac = fine_location % 4;
759
760 /* From GL_EXT_transform_feedback:
761 * A program will fail to link if:
762 *
763 * * the total number of components to capture in any varying
764 * variable in <varyings> is greater than the constant
765 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
766 * buffer mode is SEPARATE_ATTRIBS_EXT;
767 */
768 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
769 this->num_components() >
770 ctx->Const.MaxTransformFeedbackSeparateComponents) {
771 linker_error(prog, "Transform feedback varying %s exceeds "
772 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
773 this->orig_name);
774 return false;
775 }
776
777 /* Only transform feedback varyings can be assigned to non-zero streams,
778 * so assign the stream id here.
779 */
780 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
781
782 unsigned array_offset = this->array_subscript * 4 * dmul;
783 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
784 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
785 this->offset = this->matched_candidate->toplevel_var->data.offset +
786 array_offset + struct_offset;
787
788 return true;
789 }
790
791
792 unsigned
793 tfeedback_decl::get_num_outputs() const
794 {
795 if (!this->is_varying()) {
796 return 0;
797 }
798 return (this->num_components() + this->location_frac + 3)/4;
799 }
800
801
802 /**
803 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
804 *
805 * If an error occurs, the error is reported through linker_error() and false
806 * is returned.
807 */
808 bool
809 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
810 struct gl_transform_feedback_info *info,
811 unsigned buffer, unsigned buffer_index,
812 const unsigned max_outputs, bool *explicit_stride,
813 bool has_xfb_qualifiers) const
814 {
815 unsigned xfb_offset = 0;
816 unsigned size = this->size;
817 /* Handle gl_SkipComponents. */
818 if (this->skip_components) {
819 info->Buffers[buffer].Stride += this->skip_components;
820 size = this->skip_components;
821 goto store_varying;
822 }
823
824 if (this->next_buffer_separator) {
825 size = 0;
826 goto store_varying;
827 }
828
829 if (has_xfb_qualifiers) {
830 xfb_offset = this->offset / 4;
831 } else {
832 xfb_offset = info->Buffers[buffer].Stride;
833 }
834 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
835
836 {
837 unsigned location = this->location;
838 unsigned location_frac = this->location_frac;
839 unsigned num_components = this->num_components();
840 while (num_components > 0) {
841 unsigned output_size = MIN2(num_components, 4 - location_frac);
842 assert((info->NumOutputs == 0 && max_outputs == 0) ||
843 info->NumOutputs < max_outputs);
844
845 /* From the ARB_enhanced_layouts spec:
846 *
847 * "If such a block member or variable is not written during a shader
848 * invocation, the buffer contents at the assigned offset will be
849 * undefined. Even if there are no static writes to a variable or
850 * member that is assigned a transform feedback offset, the space is
851 * still allocated in the buffer and still affects the stride."
852 */
853 if (this->is_varying_written()) {
854 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
855 info->Outputs[info->NumOutputs].OutputRegister = location;
856 info->Outputs[info->NumOutputs].NumComponents = output_size;
857 info->Outputs[info->NumOutputs].StreamId = stream_id;
858 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
859 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
860 ++info->NumOutputs;
861 }
862 info->Buffers[buffer].Stream = this->stream_id;
863 xfb_offset += output_size;
864
865 num_components -= output_size;
866 location++;
867 location_frac = 0;
868 }
869 }
870
871 if (explicit_stride && explicit_stride[buffer]) {
872 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
873 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
874 "multiple of 8 as its applied to a type that is or "
875 "contains a double.",
876 info->Buffers[buffer].Stride * 4);
877 return false;
878 }
879
880 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
881 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
882 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
883 "buffer (%d)", xfb_offset * 4,
884 info->Buffers[buffer].Stride * 4, buffer);
885 return false;
886 }
887 } else {
888 info->Buffers[buffer].Stride = xfb_offset;
889 }
890
891 /* From GL_EXT_transform_feedback:
892 * A program will fail to link if:
893 *
894 * * the total number of components to capture is greater than
895 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
896 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
897 *
898 * From GL_ARB_enhanced_layouts:
899 *
900 * "The resulting stride (implicit or explicit) must be less than or
901 * equal to the implementation-dependent constant
902 * gl_MaxTransformFeedbackInterleavedComponents."
903 */
904 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
905 has_xfb_qualifiers) &&
906 info->Buffers[buffer].Stride >
907 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
908 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
909 "limit has been exceeded.");
910 return false;
911 }
912
913 store_varying:
914 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
915 this->orig_name);
916 info->Varyings[info->NumVarying].Type = this->type;
917 info->Varyings[info->NumVarying].Size = size;
918 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
919 info->NumVarying++;
920 info->Buffers[buffer].NumVaryings++;
921
922 return true;
923 }
924
925
926 const tfeedback_candidate *
927 tfeedback_decl::find_candidate(gl_shader_program *prog,
928 hash_table *tfeedback_candidates)
929 {
930 const char *name = this->var_name;
931 switch (this->lowered_builtin_array_variable) {
932 case none:
933 name = this->var_name;
934 break;
935 case clip_distance:
936 name = "gl_ClipDistanceMESA";
937 break;
938 case cull_distance:
939 name = "gl_CullDistanceMESA";
940 break;
941 case tess_level_outer:
942 name = "gl_TessLevelOuterMESA";
943 break;
944 case tess_level_inner:
945 name = "gl_TessLevelInnerMESA";
946 break;
947 }
948 this->matched_candidate = (const tfeedback_candidate *)
949 hash_table_find(tfeedback_candidates, name);
950 if (!this->matched_candidate) {
951 /* From GL_EXT_transform_feedback:
952 * A program will fail to link if:
953 *
954 * * any variable name specified in the <varyings> array is not
955 * declared as an output in the geometry shader (if present) or
956 * the vertex shader (if no geometry shader is present);
957 */
958 linker_error(prog, "Transform feedback varying %s undeclared.",
959 this->orig_name);
960 }
961 return this->matched_candidate;
962 }
963
964
965 /**
966 * Parse all the transform feedback declarations that were passed to
967 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
968 *
969 * If an error occurs, the error is reported through linker_error() and false
970 * is returned.
971 */
972 bool
973 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
974 const void *mem_ctx, unsigned num_names,
975 char **varying_names, tfeedback_decl *decls)
976 {
977 for (unsigned i = 0; i < num_names; ++i) {
978 decls[i].init(ctx, mem_ctx, varying_names[i]);
979
980 if (!decls[i].is_varying())
981 continue;
982
983 /* From GL_EXT_transform_feedback:
984 * A program will fail to link if:
985 *
986 * * any two entries in the <varyings> array specify the same varying
987 * variable;
988 *
989 * We interpret this to mean "any two entries in the <varyings> array
990 * specify the same varying variable and array index", since transform
991 * feedback of arrays would be useless otherwise.
992 */
993 for (unsigned j = 0; j < i; ++j) {
994 if (!decls[j].is_varying())
995 continue;
996
997 if (tfeedback_decl::is_same(decls[i], decls[j])) {
998 linker_error(prog, "Transform feedback varying %s specified "
999 "more than once.", varying_names[i]);
1000 return false;
1001 }
1002 }
1003 }
1004 return true;
1005 }
1006
1007
1008 static int
1009 cmp_xfb_offset(const void * x_generic, const void * y_generic)
1010 {
1011 tfeedback_decl *x = (tfeedback_decl *) x_generic;
1012 tfeedback_decl *y = (tfeedback_decl *) y_generic;
1013
1014 if (x->get_buffer() != y->get_buffer())
1015 return x->get_buffer() - y->get_buffer();
1016 return x->get_offset() - y->get_offset();
1017 }
1018
1019 /**
1020 * Store transform feedback location assignments into
1021 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1022 *
1023 * If an error occurs, the error is reported through linker_error() and false
1024 * is returned.
1025 */
1026 bool
1027 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1028 unsigned num_tfeedback_decls,
1029 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
1030 {
1031 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
1032 * tracking the number of buffers doesn't overflow.
1033 */
1034 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
1035
1036 bool separate_attribs_mode =
1037 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1038
1039 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1040 ralloc_free(prog->LinkedTransformFeedback.Outputs);
1041
1042 memset(&prog->LinkedTransformFeedback, 0,
1043 sizeof(prog->LinkedTransformFeedback));
1044
1045 /* The xfb_offset qualifier does not have to be used in increasing order
1046 * however some drivers expect to receive the list of transform feedback
1047 * declarations in order so sort it now for convenience.
1048 */
1049 if (has_xfb_qualifiers)
1050 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
1051 cmp_xfb_offset);
1052
1053 prog->LinkedTransformFeedback.Varyings =
1054 rzalloc_array(prog,
1055 struct gl_transform_feedback_varying_info,
1056 num_tfeedback_decls);
1057
1058 unsigned num_outputs = 0;
1059 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1060 if (tfeedback_decls[i].is_varying_written())
1061 num_outputs += tfeedback_decls[i].get_num_outputs();
1062 }
1063
1064 prog->LinkedTransformFeedback.Outputs =
1065 rzalloc_array(prog,
1066 struct gl_transform_feedback_output,
1067 num_outputs);
1068
1069 unsigned num_buffers = 0;
1070 unsigned buffers = 0;
1071
1072 if (!has_xfb_qualifiers && separate_attribs_mode) {
1073 /* GL_SEPARATE_ATTRIBS */
1074 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1075 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1076 num_buffers, num_buffers, num_outputs,
1077 NULL, has_xfb_qualifiers))
1078 return false;
1079
1080 buffers |= 1 << num_buffers;
1081 num_buffers++;
1082 }
1083 }
1084 else {
1085 /* GL_INVERLEAVED_ATTRIBS */
1086 int buffer_stream_id = -1;
1087 unsigned buffer =
1088 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1089 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1090
1091 /* Apply any xfb_stride global qualifiers */
1092 if (has_xfb_qualifiers) {
1093 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1094 if (prog->TransformFeedback.BufferStride[j]) {
1095 buffers |= 1 << j;
1096 explicit_stride[j] = true;
1097 prog->LinkedTransformFeedback.Buffers[j].Stride =
1098 prog->TransformFeedback.BufferStride[j] / 4;
1099 }
1100 }
1101 }
1102
1103 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1104 if (has_xfb_qualifiers &&
1105 buffer != tfeedback_decls[i].get_buffer()) {
1106 /* we have moved to the next buffer so reset stream id */
1107 buffer_stream_id = -1;
1108 num_buffers++;
1109 }
1110
1111 if (tfeedback_decls[i].is_next_buffer_separator()) {
1112 if (!tfeedback_decls[i].store(ctx, prog,
1113 &prog->LinkedTransformFeedback,
1114 buffer, num_buffers, num_outputs,
1115 explicit_stride, has_xfb_qualifiers))
1116 return false;
1117 num_buffers++;
1118 buffer_stream_id = -1;
1119 continue;
1120 } else if (buffer_stream_id == -1) {
1121 /* First varying writing to this buffer: remember its stream */
1122 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1123 } else if (buffer_stream_id !=
1124 (int) tfeedback_decls[i].get_stream_id()) {
1125 /* Varying writes to the same buffer from a different stream */
1126 linker_error(prog,
1127 "Transform feedback can't capture varyings belonging "
1128 "to different vertex streams in a single buffer. "
1129 "Varying %s writes to buffer from stream %u, other "
1130 "varyings in the same buffer write from stream %u.",
1131 tfeedback_decls[i].name(),
1132 tfeedback_decls[i].get_stream_id(),
1133 buffer_stream_id);
1134 return false;
1135 }
1136
1137 if (has_xfb_qualifiers) {
1138 buffer = tfeedback_decls[i].get_buffer();
1139 } else {
1140 buffer = num_buffers;
1141 }
1142 buffers |= 1 << buffer;
1143
1144 if (!tfeedback_decls[i].store(ctx, prog,
1145 &prog->LinkedTransformFeedback,
1146 buffer, num_buffers, num_outputs,
1147 explicit_stride, has_xfb_qualifiers))
1148 return false;
1149 }
1150 }
1151
1152 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1153
1154 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1155 return true;
1156 }
1157
1158 namespace {
1159
1160 /**
1161 * Data structure recording the relationship between outputs of one shader
1162 * stage (the "producer") and inputs of another (the "consumer").
1163 */
1164 class varying_matches
1165 {
1166 public:
1167 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1168 gl_shader_stage producer_stage,
1169 gl_shader_stage consumer_stage);
1170 ~varying_matches();
1171 void record(ir_variable *producer_var, ir_variable *consumer_var);
1172 unsigned assign_locations(struct gl_shader_program *prog,
1173 uint64_t reserved_slots);
1174 void store_locations() const;
1175
1176 private:
1177 bool is_varying_packing_safe(const glsl_type *type,
1178 const ir_variable *var);
1179
1180 /**
1181 * If true, this driver disables varying packing, so all varyings need to
1182 * be aligned on slot boundaries, and take up a number of slots equal to
1183 * their number of matrix columns times their array size.
1184 *
1185 * Packing may also be disabled because our current packing method is not
1186 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1187 * guaranteed to match across stages.
1188 */
1189 const bool disable_varying_packing;
1190
1191 /**
1192 * If true, this driver has transform feedback enabled. The transform
1193 * feedback code requires at least some packing be done even when varying
1194 * packing is disabled, fortunately where transform feedback requires
1195 * packing it's safe to override the disabled setting. See
1196 * is_varying_packing_safe().
1197 */
1198 const bool xfb_enabled;
1199
1200 /**
1201 * Enum representing the order in which varyings are packed within a
1202 * packing class.
1203 *
1204 * Currently we pack vec4's first, then vec2's, then scalar values, then
1205 * vec3's. This order ensures that the only vectors that are at risk of
1206 * having to be "double parked" (split between two adjacent varying slots)
1207 * are the vec3's.
1208 */
1209 enum packing_order_enum {
1210 PACKING_ORDER_VEC4,
1211 PACKING_ORDER_VEC2,
1212 PACKING_ORDER_SCALAR,
1213 PACKING_ORDER_VEC3,
1214 };
1215
1216 static unsigned compute_packing_class(const ir_variable *var);
1217 static packing_order_enum compute_packing_order(const ir_variable *var);
1218 static int match_comparator(const void *x_generic, const void *y_generic);
1219 static int xfb_comparator(const void *x_generic, const void *y_generic);
1220
1221 /**
1222 * Structure recording the relationship between a single producer output
1223 * and a single consumer input.
1224 */
1225 struct match {
1226 /**
1227 * Packing class for this varying, computed by compute_packing_class().
1228 */
1229 unsigned packing_class;
1230
1231 /**
1232 * Packing order for this varying, computed by compute_packing_order().
1233 */
1234 packing_order_enum packing_order;
1235 unsigned num_components;
1236
1237 /**
1238 * The output variable in the producer stage.
1239 */
1240 ir_variable *producer_var;
1241
1242 /**
1243 * The input variable in the consumer stage.
1244 */
1245 ir_variable *consumer_var;
1246
1247 /**
1248 * The location which has been assigned for this varying. This is
1249 * expressed in multiples of a float, with the first generic varying
1250 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1251 * value 0.
1252 */
1253 unsigned generic_location;
1254 } *matches;
1255
1256 /**
1257 * The number of elements in the \c matches array that are currently in
1258 * use.
1259 */
1260 unsigned num_matches;
1261
1262 /**
1263 * The number of elements that were set aside for the \c matches array when
1264 * it was allocated.
1265 */
1266 unsigned matches_capacity;
1267
1268 gl_shader_stage producer_stage;
1269 gl_shader_stage consumer_stage;
1270 };
1271
1272 } /* anonymous namespace */
1273
1274 varying_matches::varying_matches(bool disable_varying_packing,
1275 bool xfb_enabled,
1276 gl_shader_stage producer_stage,
1277 gl_shader_stage consumer_stage)
1278 : disable_varying_packing(disable_varying_packing),
1279 xfb_enabled(xfb_enabled),
1280 producer_stage(producer_stage),
1281 consumer_stage(consumer_stage)
1282 {
1283 /* Note: this initial capacity is rather arbitrarily chosen to be large
1284 * enough for many cases without wasting an unreasonable amount of space.
1285 * varying_matches::record() will resize the array if there are more than
1286 * this number of varyings.
1287 */
1288 this->matches_capacity = 8;
1289 this->matches = (match *)
1290 malloc(sizeof(*this->matches) * this->matches_capacity);
1291 this->num_matches = 0;
1292 }
1293
1294
1295 varying_matches::~varying_matches()
1296 {
1297 free(this->matches);
1298 }
1299
1300
1301 /**
1302 * Packing is always safe on individual arrays, structures, and matrices. It
1303 * is also safe if the varying is only used for transform feedback.
1304 */
1305 bool
1306 varying_matches::is_varying_packing_safe(const glsl_type *type,
1307 const ir_variable *var)
1308 {
1309 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1310 consumer_stage == MESA_SHADER_TESS_CTRL ||
1311 producer_stage == MESA_SHADER_TESS_CTRL)
1312 return false;
1313
1314 return xfb_enabled && (type->is_array() || type->is_record() ||
1315 type->is_matrix() || var->data.is_xfb_only);
1316 }
1317
1318
1319 /**
1320 * Record the given producer/consumer variable pair in the list of variables
1321 * that should later be assigned locations.
1322 *
1323 * It is permissible for \c consumer_var to be NULL (this happens if a
1324 * variable is output by the producer and consumed by transform feedback, but
1325 * not consumed by the consumer).
1326 *
1327 * If \c producer_var has already been paired up with a consumer_var, or
1328 * producer_var is part of fixed pipeline functionality (and hence already has
1329 * a location assigned), this function has no effect.
1330 *
1331 * Note: as a side effect this function may change the interpolation type of
1332 * \c producer_var, but only when the change couldn't possibly affect
1333 * rendering.
1334 */
1335 void
1336 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1337 {
1338 assert(producer_var != NULL || consumer_var != NULL);
1339
1340 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1341 producer_var->data.explicit_location)) ||
1342 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1343 consumer_var->data.explicit_location))) {
1344 /* Either a location already exists for this variable (since it is part
1345 * of fixed functionality), or it has already been recorded as part of a
1346 * previous match.
1347 */
1348 return;
1349 }
1350
1351 bool needs_flat_qualifier = consumer_var == NULL &&
1352 (producer_var->type->contains_integer() ||
1353 producer_var->type->contains_double());
1354
1355 if (needs_flat_qualifier ||
1356 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1357 /* Since this varying is not being consumed by the fragment shader, its
1358 * interpolation type varying cannot possibly affect rendering.
1359 * Also, this variable is non-flat and is (or contains) an integer
1360 * or a double.
1361 * If the consumer stage is unknown, don't modify the interpolation
1362 * type as it could affect rendering later with separate shaders.
1363 *
1364 * lower_packed_varyings requires all integer varyings to flat,
1365 * regardless of where they appear. We can trivially satisfy that
1366 * requirement by changing the interpolation type to flat here.
1367 */
1368 if (producer_var) {
1369 producer_var->data.centroid = false;
1370 producer_var->data.sample = false;
1371 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1372 }
1373
1374 if (consumer_var) {
1375 consumer_var->data.centroid = false;
1376 consumer_var->data.sample = false;
1377 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1378 }
1379 }
1380
1381 if (this->num_matches == this->matches_capacity) {
1382 this->matches_capacity *= 2;
1383 this->matches = (match *)
1384 realloc(this->matches,
1385 sizeof(*this->matches) * this->matches_capacity);
1386 }
1387
1388 const ir_variable *const var = (producer_var != NULL)
1389 ? producer_var : consumer_var;
1390 const gl_shader_stage stage = (producer_var != NULL)
1391 ? producer_stage : consumer_stage;
1392 const glsl_type *type = get_varying_type(var, stage);
1393
1394 this->matches[this->num_matches].packing_class
1395 = this->compute_packing_class(var);
1396 this->matches[this->num_matches].packing_order
1397 = this->compute_packing_order(var);
1398 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1399 unsigned slots = type->count_attribute_slots(false);
1400 this->matches[this->num_matches].num_components = slots * 4;
1401 } else {
1402 this->matches[this->num_matches].num_components
1403 = type->component_slots();
1404 }
1405 this->matches[this->num_matches].producer_var = producer_var;
1406 this->matches[this->num_matches].consumer_var = consumer_var;
1407 this->num_matches++;
1408 if (producer_var)
1409 producer_var->data.is_unmatched_generic_inout = 0;
1410 if (consumer_var)
1411 consumer_var->data.is_unmatched_generic_inout = 0;
1412 }
1413
1414
1415 /**
1416 * Choose locations for all of the variable matches that were previously
1417 * passed to varying_matches::record().
1418 */
1419 unsigned
1420 varying_matches::assign_locations(struct gl_shader_program *prog,
1421 uint64_t reserved_slots)
1422 {
1423 /* If packing has been disabled then we cannot safely sort the varyings by
1424 * class as it may mean we are using a version of OpenGL where
1425 * interpolation qualifiers are not guaranteed to be matching across
1426 * shaders, sorting in this case could result in mismatching shader
1427 * interfaces.
1428 * When packing is disabled the sort orders varyings used by transform
1429 * feedback first, but also depends on *undefined behaviour* of qsort to
1430 * reverse the order of the varyings. See: xfb_comparator().
1431 */
1432 if (!this->disable_varying_packing) {
1433 /* Sort varying matches into an order that makes them easy to pack. */
1434 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1435 &varying_matches::match_comparator);
1436 } else {
1437 /* Only sort varyings that are only used by transform feedback. */
1438 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1439 &varying_matches::xfb_comparator);
1440 }
1441
1442 unsigned generic_location = 0;
1443 unsigned generic_patch_location = MAX_VARYING*4;
1444 bool previous_var_xfb_only = false;
1445
1446 for (unsigned i = 0; i < this->num_matches; i++) {
1447 unsigned *location = &generic_location;
1448
1449 const ir_variable *var;
1450 const glsl_type *type;
1451 bool is_vertex_input = false;
1452 if (matches[i].consumer_var) {
1453 var = matches[i].consumer_var;
1454 type = get_varying_type(var, consumer_stage);
1455 if (consumer_stage == MESA_SHADER_VERTEX)
1456 is_vertex_input = true;
1457 } else {
1458 var = matches[i].producer_var;
1459 type = get_varying_type(var, producer_stage);
1460 }
1461
1462 if (var->data.patch)
1463 location = &generic_patch_location;
1464
1465 /* Advance to the next slot if this varying has a different packing
1466 * class than the previous one, and we're not already on a slot
1467 * boundary.
1468 *
1469 * Also advance to the next slot if packing is disabled. This makes sure
1470 * we don't assign varyings the same locations which is possible
1471 * because we still pack individual arrays, records and matrices even
1472 * when packing is disabled. Note we don't advance to the next slot if
1473 * we can pack varyings together that are only used for transform
1474 * feedback.
1475 */
1476 if ((this->disable_varying_packing &&
1477 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1478 (i > 0 && this->matches[i - 1].packing_class
1479 != this->matches[i].packing_class )) {
1480 *location = ALIGN(*location, 4);
1481 }
1482
1483 previous_var_xfb_only = var->data.is_xfb_only;
1484
1485 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1486 unsigned slot_end;
1487 if (this->disable_varying_packing &&
1488 !is_varying_packing_safe(type, var))
1489 slot_end = 4;
1490 else
1491 slot_end = type->without_array()->vector_elements;
1492 slot_end += *location - 1;
1493
1494 /* FIXME: We could be smarter in the below code and loop back over
1495 * trying to fill any locations that we skipped because we couldn't pack
1496 * the varying between an explicit location. For now just let the user
1497 * hit the linking error if we run out of room and suggest they use
1498 * explicit locations.
1499 */
1500 for (unsigned j = 0; j < num_elements; j++) {
1501 while ((slot_end < MAX_VARYING * 4u) &&
1502 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1503 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1504
1505 *location = ALIGN(*location + 1, 4);
1506 slot_end = *location;
1507
1508 /* reset the counter and try again */
1509 j = 0;
1510 }
1511
1512 /* Increase the slot to make sure there is enough room for next
1513 * array element.
1514 */
1515 if (this->disable_varying_packing &&
1516 !is_varying_packing_safe(type, var))
1517 slot_end += 4;
1518 else
1519 slot_end += type->without_array()->vector_elements;
1520 }
1521
1522 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1523 linker_error(prog, "insufficient contiguous locations available for "
1524 "%s it is possible an array or struct could not be "
1525 "packed between varyings with explicit locations. Try "
1526 "using an explicit location for arrays and structs.",
1527 var->name);
1528 }
1529
1530 this->matches[i].generic_location = *location;
1531
1532 *location += this->matches[i].num_components;
1533 }
1534
1535 return (generic_location + 3) / 4;
1536 }
1537
1538
1539 /**
1540 * Update the producer and consumer shaders to reflect the locations
1541 * assignments that were made by varying_matches::assign_locations().
1542 */
1543 void
1544 varying_matches::store_locations() const
1545 {
1546 for (unsigned i = 0; i < this->num_matches; i++) {
1547 ir_variable *producer_var = this->matches[i].producer_var;
1548 ir_variable *consumer_var = this->matches[i].consumer_var;
1549 unsigned generic_location = this->matches[i].generic_location;
1550 unsigned slot = generic_location / 4;
1551 unsigned offset = generic_location % 4;
1552
1553 if (producer_var) {
1554 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1555 producer_var->data.location_frac = offset;
1556 }
1557
1558 if (consumer_var) {
1559 assert(consumer_var->data.location == -1);
1560 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1561 consumer_var->data.location_frac = offset;
1562 }
1563 }
1564 }
1565
1566
1567 /**
1568 * Compute the "packing class" of the given varying. This is an unsigned
1569 * integer with the property that two variables in the same packing class can
1570 * be safely backed into the same vec4.
1571 */
1572 unsigned
1573 varying_matches::compute_packing_class(const ir_variable *var)
1574 {
1575 /* Without help from the back-end, there is no way to pack together
1576 * variables with different interpolation types, because
1577 * lower_packed_varyings must choose exactly one interpolation type for
1578 * each packed varying it creates.
1579 *
1580 * However, we can safely pack together floats, ints, and uints, because:
1581 *
1582 * - varyings of base type "int" and "uint" must use the "flat"
1583 * interpolation type, which can only occur in GLSL 1.30 and above.
1584 *
1585 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1586 * can store flat floats as ints without losing any information (using
1587 * the ir_unop_bitcast_* opcodes).
1588 *
1589 * Therefore, the packing class depends only on the interpolation type.
1590 */
1591 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1592 (var->data.patch << 2);
1593 packing_class *= 4;
1594 packing_class += var->data.interpolation;
1595 return packing_class;
1596 }
1597
1598
1599 /**
1600 * Compute the "packing order" of the given varying. This is a sort key we
1601 * use to determine when to attempt to pack the given varying relative to
1602 * other varyings in the same packing class.
1603 */
1604 varying_matches::packing_order_enum
1605 varying_matches::compute_packing_order(const ir_variable *var)
1606 {
1607 const glsl_type *element_type = var->type;
1608
1609 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1610 element_type = element_type->fields.array;
1611 }
1612
1613 switch (element_type->component_slots() % 4) {
1614 case 1: return PACKING_ORDER_SCALAR;
1615 case 2: return PACKING_ORDER_VEC2;
1616 case 3: return PACKING_ORDER_VEC3;
1617 case 0: return PACKING_ORDER_VEC4;
1618 default:
1619 assert(!"Unexpected value of vector_elements");
1620 return PACKING_ORDER_VEC4;
1621 }
1622 }
1623
1624
1625 /**
1626 * Comparison function passed to qsort() to sort varyings by packing_class and
1627 * then by packing_order.
1628 */
1629 int
1630 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1631 {
1632 const match *x = (const match *) x_generic;
1633 const match *y = (const match *) y_generic;
1634
1635 if (x->packing_class != y->packing_class)
1636 return x->packing_class - y->packing_class;
1637 return x->packing_order - y->packing_order;
1638 }
1639
1640
1641 /**
1642 * Comparison function passed to qsort() to sort varyings used only by
1643 * transform feedback when packing of other varyings is disabled.
1644 */
1645 int
1646 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1647 {
1648 const match *x = (const match *) x_generic;
1649
1650 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1651 return match_comparator(x_generic, y_generic);
1652
1653 /* FIXME: When the comparator returns 0 it means the elements being
1654 * compared are equivalent. However the qsort documentation says:
1655 *
1656 * "The order of equivalent elements is undefined."
1657 *
1658 * In practice the sort ends up reversing the order of the varyings which
1659 * means locations are also assigned in this reversed order and happens to
1660 * be what we want. This is also whats happening in
1661 * varying_matches::match_comparator().
1662 */
1663 return 0;
1664 }
1665
1666
1667 /**
1668 * Is the given variable a varying variable to be counted against the
1669 * limit in ctx->Const.MaxVarying?
1670 * This includes variables such as texcoords, colors and generic
1671 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1672 */
1673 static bool
1674 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1675 {
1676 /* Only fragment shaders will take a varying variable as an input */
1677 if (stage == MESA_SHADER_FRAGMENT &&
1678 var->data.mode == ir_var_shader_in) {
1679 switch (var->data.location) {
1680 case VARYING_SLOT_POS:
1681 case VARYING_SLOT_FACE:
1682 case VARYING_SLOT_PNTC:
1683 return false;
1684 default:
1685 return true;
1686 }
1687 }
1688 return false;
1689 }
1690
1691
1692 /**
1693 * Visitor class that generates tfeedback_candidate structs describing all
1694 * possible targets of transform feedback.
1695 *
1696 * tfeedback_candidate structs are stored in the hash table
1697 * tfeedback_candidates, which is passed to the constructor. This hash table
1698 * maps varying names to instances of the tfeedback_candidate struct.
1699 */
1700 class tfeedback_candidate_generator : public program_resource_visitor
1701 {
1702 public:
1703 tfeedback_candidate_generator(void *mem_ctx,
1704 hash_table *tfeedback_candidates)
1705 : mem_ctx(mem_ctx),
1706 tfeedback_candidates(tfeedback_candidates),
1707 toplevel_var(NULL),
1708 varying_floats(0)
1709 {
1710 }
1711
1712 void process(ir_variable *var)
1713 {
1714 /* All named varying interface blocks should be flattened by now */
1715 assert(!var->is_interface_instance());
1716
1717 this->toplevel_var = var;
1718 this->varying_floats = 0;
1719 program_resource_visitor::process(var);
1720 }
1721
1722 private:
1723 virtual void visit_field(const glsl_type *type, const char *name,
1724 bool row_major)
1725 {
1726 assert(!type->without_array()->is_record());
1727 assert(!type->without_array()->is_interface());
1728
1729 (void) row_major;
1730
1731 tfeedback_candidate *candidate
1732 = rzalloc(this->mem_ctx, tfeedback_candidate);
1733 candidate->toplevel_var = this->toplevel_var;
1734 candidate->type = type;
1735 candidate->offset = this->varying_floats;
1736 hash_table_insert(this->tfeedback_candidates, candidate,
1737 ralloc_strdup(this->mem_ctx, name));
1738 this->varying_floats += type->component_slots();
1739 }
1740
1741 /**
1742 * Memory context used to allocate hash table keys and values.
1743 */
1744 void * const mem_ctx;
1745
1746 /**
1747 * Hash table in which tfeedback_candidate objects should be stored.
1748 */
1749 hash_table * const tfeedback_candidates;
1750
1751 /**
1752 * Pointer to the toplevel variable that is being traversed.
1753 */
1754 ir_variable *toplevel_var;
1755
1756 /**
1757 * Total number of varying floats that have been visited so far. This is
1758 * used to determine the offset to each varying within the toplevel
1759 * variable.
1760 */
1761 unsigned varying_floats;
1762 };
1763
1764
1765 namespace linker {
1766
1767 void
1768 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1769 hash_table *consumer_inputs,
1770 hash_table *consumer_interface_inputs,
1771 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1772 {
1773 memset(consumer_inputs_with_locations,
1774 0,
1775 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1776
1777 foreach_in_list(ir_instruction, node, ir) {
1778 ir_variable *const input_var = node->as_variable();
1779
1780 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) {
1781 /* All interface blocks should have been lowered by this point */
1782 assert(!input_var->type->is_interface());
1783
1784 if (input_var->data.explicit_location) {
1785 /* assign_varying_locations only cares about finding the
1786 * ir_variable at the start of a contiguous location block.
1787 *
1788 * - For !producer, consumer_inputs_with_locations isn't used.
1789 *
1790 * - For !consumer, consumer_inputs_with_locations is empty.
1791 *
1792 * For consumer && producer, if you were trying to set some
1793 * ir_variable to the middle of a location block on the other side
1794 * of producer/consumer, cross_validate_outputs_to_inputs() should
1795 * be link-erroring due to either type mismatch or location
1796 * overlaps. If the variables do match up, then they've got a
1797 * matching data.location and you only looked at
1798 * consumer_inputs_with_locations[var->data.location], not any
1799 * following entries for the array/structure.
1800 */
1801 consumer_inputs_with_locations[input_var->data.location] =
1802 input_var;
1803 } else if (input_var->get_interface_type() != NULL) {
1804 char *const iface_field_name =
1805 ralloc_asprintf(mem_ctx, "%s.%s",
1806 input_var->get_interface_type()->without_array()->name,
1807 input_var->name);
1808 hash_table_insert(consumer_interface_inputs, input_var,
1809 iface_field_name);
1810 } else {
1811 hash_table_insert(consumer_inputs, input_var,
1812 ralloc_strdup(mem_ctx, input_var->name));
1813 }
1814 }
1815 }
1816 }
1817
1818 /**
1819 * Find a variable from the consumer that "matches" the specified variable
1820 *
1821 * This function only finds inputs with names that match. There is no
1822 * validation (here) that the types, etc. are compatible.
1823 */
1824 ir_variable *
1825 get_matching_input(void *mem_ctx,
1826 const ir_variable *output_var,
1827 hash_table *consumer_inputs,
1828 hash_table *consumer_interface_inputs,
1829 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1830 {
1831 ir_variable *input_var;
1832
1833 if (output_var->data.explicit_location) {
1834 input_var = consumer_inputs_with_locations[output_var->data.location];
1835 } else if (output_var->get_interface_type() != NULL) {
1836 char *const iface_field_name =
1837 ralloc_asprintf(mem_ctx, "%s.%s",
1838 output_var->get_interface_type()->without_array()->name,
1839 output_var->name);
1840 input_var =
1841 (ir_variable *) hash_table_find(consumer_interface_inputs,
1842 iface_field_name);
1843 } else {
1844 input_var =
1845 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1846 }
1847
1848 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1849 ? NULL : input_var;
1850 }
1851
1852 }
1853
1854 static int
1855 io_variable_cmp(const void *_a, const void *_b)
1856 {
1857 const ir_variable *const a = *(const ir_variable **) _a;
1858 const ir_variable *const b = *(const ir_variable **) _b;
1859
1860 if (a->data.explicit_location && b->data.explicit_location)
1861 return b->data.location - a->data.location;
1862
1863 if (a->data.explicit_location && !b->data.explicit_location)
1864 return 1;
1865
1866 if (!a->data.explicit_location && b->data.explicit_location)
1867 return -1;
1868
1869 return -strcmp(a->name, b->name);
1870 }
1871
1872 /**
1873 * Sort the shader IO variables into canonical order
1874 */
1875 static void
1876 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1877 {
1878 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1879 unsigned num_variables = 0;
1880
1881 foreach_in_list(ir_instruction, node, ir) {
1882 ir_variable *const var = node->as_variable();
1883
1884 if (var == NULL || var->data.mode != io_mode)
1885 continue;
1886
1887 /* If we have already encountered more I/O variables that could
1888 * successfully link, bail.
1889 */
1890 if (num_variables == ARRAY_SIZE(var_table))
1891 return;
1892
1893 var_table[num_variables++] = var;
1894 }
1895
1896 if (num_variables == 0)
1897 return;
1898
1899 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1900 * we're going to push the variables on to the IR list as a stack, so we
1901 * want the last variable (in canonical order) to be first in the list.
1902 */
1903 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1904
1905 /* Remove the variable from it's current location in the IR, and put it at
1906 * the front.
1907 */
1908 for (unsigned i = 0; i < num_variables; i++) {
1909 var_table[i]->remove();
1910 ir->push_head(var_table[i]);
1911 }
1912 }
1913
1914 /**
1915 * Generate a bitfield map of the explicit locations for shader varyings.
1916 *
1917 * Note: For Tessellation shaders we are sitting right on the limits of the
1918 * 64 bit map. Per-vertex and per-patch both have separate location domains
1919 * with a max of MAX_VARYING.
1920 */
1921 static uint64_t
1922 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1923 {
1924 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1925 /* Avoid an overflow of the returned value */
1926 assert(MAX_VARYINGS_INCL_PATCH <= 64);
1927
1928 uint64_t slots = 0;
1929 int var_slot;
1930
1931 if (!stage)
1932 return slots;
1933
1934 foreach_in_list(ir_instruction, node, stage->ir) {
1935 ir_variable *const var = node->as_variable();
1936
1937 if (var == NULL || var->data.mode != io_mode ||
1938 !var->data.explicit_location ||
1939 var->data.location < VARYING_SLOT_VAR0)
1940 continue;
1941
1942 var_slot = var->data.location - VARYING_SLOT_VAR0;
1943
1944 unsigned num_elements = get_varying_type(var, stage->Stage)
1945 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1946 for (unsigned i = 0; i < num_elements; i++) {
1947 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
1948 slots |= UINT64_C(1) << var_slot;
1949 var_slot += 1;
1950 }
1951 }
1952
1953 return slots;
1954 }
1955
1956
1957 /**
1958 * Assign locations for all variables that are produced in one pipeline stage
1959 * (the "producer") and consumed in the next stage (the "consumer").
1960 *
1961 * Variables produced by the producer may also be consumed by transform
1962 * feedback.
1963 *
1964 * \param num_tfeedback_decls is the number of declarations indicating
1965 * variables that may be consumed by transform feedback.
1966 *
1967 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1968 * representing the result of parsing the strings passed to
1969 * glTransformFeedbackVaryings(). assign_location() will be called for
1970 * each of these objects that matches one of the outputs of the
1971 * producer.
1972 *
1973 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1974 * be NULL. In this case, varying locations are assigned solely based on the
1975 * requirements of transform feedback.
1976 */
1977 bool
1978 assign_varying_locations(struct gl_context *ctx,
1979 void *mem_ctx,
1980 struct gl_shader_program *prog,
1981 gl_shader *producer, gl_shader *consumer,
1982 unsigned num_tfeedback_decls,
1983 tfeedback_decl *tfeedback_decls)
1984 {
1985 /* Tessellation shaders treat inputs and outputs as shared memory and can
1986 * access inputs and outputs of other invocations.
1987 * Therefore, they can't be lowered to temps easily (and definitely not
1988 * efficiently).
1989 */
1990 bool unpackable_tess =
1991 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1992 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1993 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1994
1995 /* Transform feedback code assumes varying arrays are packed, so if the
1996 * driver has disabled varying packing, make sure to at least enable
1997 * packing required by transform feedback.
1998 */
1999 bool xfb_enabled =
2000 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
2001
2002 /* Disable varying packing for GL 4.4+ as there is no guarantee
2003 * that interpolation qualifiers will match between shaders in these
2004 * versions. We also disable packing on outward facing interfaces for
2005 * SSO because in ES we need to retain the unpacked varying information
2006 * for draw time validation. For desktop GL we could allow packing for
2007 * versions < 4.4 but it's just safer not to do packing.
2008 *
2009 * Packing is still enabled on individual arrays, structs, and matrices as
2010 * these are required by the transform feedback code and it is still safe
2011 * to do so. We also enable packing when a varying is only used for
2012 * transform feedback and its not a SSO.
2013 *
2014 * Varying packing currently only packs together varyings with matching
2015 * interpolation qualifiers as the backends assume all packed components
2016 * are to be processed in the same way. Therefore we cannot do packing in
2017 * these versions of GL without the risk of mismatching interfaces.
2018 *
2019 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
2020 *
2021 * "The type and presence of interpolation qualifiers of variables with
2022 * the same name declared in all linked shaders for the same cross-stage
2023 * interface must match, otherwise the link command will fail.
2024 *
2025 * When comparing an output from one stage to an input of a subsequent
2026 * stage, the input and output don't match if their interpolation
2027 * qualifiers (or lack thereof) are not the same."
2028 *
2029 * This text was also in at least revison 7 of the 4.40 spec but is no
2030 * longer in revision 9 and not in the 4.50 spec.
2031 */
2032 bool disable_varying_packing =
2033 ctx->Const.DisableVaryingPacking || unpackable_tess;
2034 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
2035 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
2036 disable_varying_packing = true;
2037
2038 varying_matches matches(disable_varying_packing, xfb_enabled,
2039 producer ? producer->Stage : (gl_shader_stage)-1,
2040 consumer ? consumer->Stage : (gl_shader_stage)-1);
2041 hash_table *tfeedback_candidates
2042 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2043 hash_table *consumer_inputs
2044 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2045 hash_table *consumer_interface_inputs
2046 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
2047 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
2048 NULL,
2049 };
2050
2051 unsigned consumer_vertices = 0;
2052 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
2053 consumer_vertices = prog->Geom.VerticesIn;
2054
2055 /* Operate in a total of four passes.
2056 *
2057 * 1. Sort inputs / outputs into a canonical order. This is necessary so
2058 * that inputs / outputs of separable shaders will be assigned
2059 * predictable locations regardless of the order in which declarations
2060 * appeared in the shader source.
2061 *
2062 * 2. Assign locations for any matching inputs and outputs.
2063 *
2064 * 3. Mark output variables in the producer that do not have locations as
2065 * not being outputs. This lets the optimizer eliminate them.
2066 *
2067 * 4. Mark input variables in the consumer that do not have locations as
2068 * not being inputs. This lets the optimizer eliminate them.
2069 */
2070 if (consumer)
2071 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
2072
2073 if (producer)
2074 canonicalize_shader_io(producer->ir, ir_var_shader_out);
2075
2076 if (consumer)
2077 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
2078 consumer_inputs,
2079 consumer_interface_inputs,
2080 consumer_inputs_with_locations);
2081
2082 if (producer) {
2083 foreach_in_list(ir_instruction, node, producer->ir) {
2084 ir_variable *const output_var = node->as_variable();
2085
2086 if (output_var == NULL || output_var->data.mode != ir_var_shader_out)
2087 continue;
2088
2089 /* Only geometry shaders can use non-zero streams */
2090 assert(output_var->data.stream == 0 ||
2091 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2092 producer->Stage == MESA_SHADER_GEOMETRY));
2093
2094 if (num_tfeedback_decls > 0) {
2095 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2096 g.process(output_var);
2097 }
2098
2099 ir_variable *const input_var =
2100 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2101 consumer_interface_inputs,
2102 consumer_inputs_with_locations);
2103
2104 /* If a matching input variable was found, add this output (and the
2105 * input) to the set. If this is a separable program and there is no
2106 * consumer stage, add the output.
2107 *
2108 * Always add TCS outputs. They are shared by all invocations
2109 * within a patch and can be used as shared memory.
2110 */
2111 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2112 producer->Type == GL_TESS_CONTROL_SHADER) {
2113 matches.record(output_var, input_var);
2114 }
2115
2116 /* Only stream 0 outputs can be consumed in the next stage */
2117 if (input_var && output_var->data.stream != 0) {
2118 linker_error(prog, "output %s is assigned to stream=%d but "
2119 "is linked to an input, which requires stream=0",
2120 output_var->name, output_var->data.stream);
2121 return false;
2122 }
2123 }
2124 } else {
2125 /* If there's no producer stage, then this must be a separable program.
2126 * For example, we may have a program that has just a fragment shader.
2127 * Later this program will be used with some arbitrary vertex (or
2128 * geometry) shader program. This means that locations must be assigned
2129 * for all the inputs.
2130 */
2131 foreach_in_list(ir_instruction, node, consumer->ir) {
2132 ir_variable *const input_var = node->as_variable();
2133
2134 if (input_var == NULL || input_var->data.mode != ir_var_shader_in)
2135 continue;
2136
2137 matches.record(NULL, input_var);
2138 }
2139 }
2140
2141 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2142 if (!tfeedback_decls[i].is_varying())
2143 continue;
2144
2145 const tfeedback_candidate *matched_candidate
2146 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2147
2148 if (matched_candidate == NULL) {
2149 hash_table_dtor(tfeedback_candidates);
2150 hash_table_dtor(consumer_inputs);
2151 hash_table_dtor(consumer_interface_inputs);
2152 return false;
2153 }
2154
2155 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2156 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2157 matches.record(matched_candidate->toplevel_var, NULL);
2158 }
2159 }
2160
2161 const uint64_t reserved_slots =
2162 reserved_varying_slot(producer, ir_var_shader_out) |
2163 reserved_varying_slot(consumer, ir_var_shader_in);
2164
2165 const unsigned slots_used = matches.assign_locations(prog, reserved_slots);
2166 matches.store_locations();
2167
2168 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2169 if (!tfeedback_decls[i].is_varying())
2170 continue;
2171
2172 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2173 hash_table_dtor(tfeedback_candidates);
2174 hash_table_dtor(consumer_inputs);
2175 hash_table_dtor(consumer_interface_inputs);
2176 return false;
2177 }
2178 }
2179
2180 hash_table_dtor(tfeedback_candidates);
2181 hash_table_dtor(consumer_inputs);
2182 hash_table_dtor(consumer_interface_inputs);
2183
2184 if (consumer && producer) {
2185 foreach_in_list(ir_instruction, node, consumer->ir) {
2186 ir_variable *const var = node->as_variable();
2187
2188 if (var && var->data.mode == ir_var_shader_in &&
2189 var->data.is_unmatched_generic_inout) {
2190 if (!prog->IsES && prog->Version <= 120) {
2191 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2192 *
2193 * Only those varying variables used (i.e. read) in
2194 * the fragment shader executable must be written to
2195 * by the vertex shader executable; declaring
2196 * superfluous varying variables in a vertex shader is
2197 * permissible.
2198 *
2199 * We interpret this text as meaning that the VS must
2200 * write the variable for the FS to read it. See
2201 * "glsl1-varying read but not written" in piglit.
2202 */
2203 linker_error(prog, "%s shader varying %s not written "
2204 "by %s shader\n.",
2205 _mesa_shader_stage_to_string(consumer->Stage),
2206 var->name,
2207 _mesa_shader_stage_to_string(producer->Stage));
2208 } else {
2209 linker_warning(prog, "%s shader varying %s not written "
2210 "by %s shader\n.",
2211 _mesa_shader_stage_to_string(consumer->Stage),
2212 var->name,
2213 _mesa_shader_stage_to_string(producer->Stage));
2214 }
2215 }
2216 }
2217
2218 /* Now that validation is done its safe to remove unused varyings. As
2219 * we have both a producer and consumer its safe to remove unused
2220 * varyings even if the program is a SSO because the stages are being
2221 * linked together i.e. we have a multi-stage SSO.
2222 */
2223 remove_unused_shader_inputs_and_outputs(false, producer,
2224 ir_var_shader_out);
2225 remove_unused_shader_inputs_and_outputs(false, consumer,
2226 ir_var_shader_in);
2227 }
2228
2229 if (producer) {
2230 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2231 0, producer, disable_varying_packing,
2232 xfb_enabled);
2233 }
2234
2235 if (consumer) {
2236 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2237 consumer_vertices, consumer,
2238 disable_varying_packing, xfb_enabled);
2239 }
2240
2241 return true;
2242 }
2243
2244 bool
2245 check_against_output_limit(struct gl_context *ctx,
2246 struct gl_shader_program *prog,
2247 gl_shader *producer)
2248 {
2249 unsigned output_vectors = 0;
2250
2251 foreach_in_list(ir_instruction, node, producer->ir) {
2252 ir_variable *const var = node->as_variable();
2253
2254 if (var && var->data.mode == ir_var_shader_out &&
2255 var_counts_against_varying_limit(producer->Stage, var)) {
2256 /* outputs for fragment shader can't be doubles */
2257 output_vectors += var->type->count_attribute_slots(false);
2258 }
2259 }
2260
2261 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2262 unsigned max_output_components =
2263 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2264
2265 const unsigned output_components = output_vectors * 4;
2266 if (output_components > max_output_components) {
2267 if (ctx->API == API_OPENGLES2 || prog->IsES)
2268 linker_error(prog, "%s shader uses too many output vectors "
2269 "(%u > %u)\n",
2270 _mesa_shader_stage_to_string(producer->Stage),
2271 output_vectors,
2272 max_output_components / 4);
2273 else
2274 linker_error(prog, "%s shader uses too many output components "
2275 "(%u > %u)\n",
2276 _mesa_shader_stage_to_string(producer->Stage),
2277 output_components,
2278 max_output_components);
2279
2280 return false;
2281 }
2282
2283 return true;
2284 }
2285
2286 bool
2287 check_against_input_limit(struct gl_context *ctx,
2288 struct gl_shader_program *prog,
2289 gl_shader *consumer)
2290 {
2291 unsigned input_vectors = 0;
2292
2293 foreach_in_list(ir_instruction, node, consumer->ir) {
2294 ir_variable *const var = node->as_variable();
2295
2296 if (var && var->data.mode == ir_var_shader_in &&
2297 var_counts_against_varying_limit(consumer->Stage, var)) {
2298 /* vertex inputs aren't varying counted */
2299 input_vectors += var->type->count_attribute_slots(false);
2300 }
2301 }
2302
2303 assert(consumer->Stage != MESA_SHADER_VERTEX);
2304 unsigned max_input_components =
2305 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2306
2307 const unsigned input_components = input_vectors * 4;
2308 if (input_components > max_input_components) {
2309 if (ctx->API == API_OPENGLES2 || prog->IsES)
2310 linker_error(prog, "%s shader uses too many input vectors "
2311 "(%u > %u)\n",
2312 _mesa_shader_stage_to_string(consumer->Stage),
2313 input_vectors,
2314 max_input_components / 4);
2315 else
2316 linker_error(prog, "%s shader uses too many input components "
2317 "(%u > %u)\n",
2318 _mesa_shader_stage_to_string(consumer->Stage),
2319 input_components,
2320 max_input_components);
2321
2322 return false;
2323 }
2324
2325 return true;
2326 }