glsl: Don't require matching centroid qualifiers
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 /* We still need to enable transform feedback mode even if xfb_stride is
117 * only applied to a global out. Also we don't bother to propagate
118 * xfb_stride to interface block members so this will catch that case also.
119 */
120 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
121 if (sh->TransformFeedback.BufferStride[j]) {
122 has_xfb_qualifiers = true;
123 }
124 }
125
126 foreach_in_list(ir_instruction, node, sh->ir) {
127 ir_variable *var = node->as_variable();
128 if (!var || var->data.mode != ir_var_shader_out)
129 continue;
130
131 /* From the ARB_enhanced_layouts spec:
132 *
133 * "Any shader making any static use (after preprocessing) of any of
134 * these *xfb_* qualifiers will cause the shader to be in a
135 * transform feedback capturing mode and hence responsible for
136 * describing the transform feedback setup. This mode will capture
137 * any output selected by *xfb_offset*, directly or indirectly, to
138 * a transform feedback buffer."
139 */
140 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
141 has_xfb_qualifiers = true;
142 }
143
144 if (var->data.explicit_xfb_offset) {
145 *num_tfeedback_decls += var->type->varying_count();
146 has_xfb_qualifiers = true;
147 }
148 }
149
150 if (*num_tfeedback_decls == 0)
151 return has_xfb_qualifiers;
152
153 unsigned i = 0;
154 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
155 foreach_in_list(ir_instruction, node, sh->ir) {
156 ir_variable *var = node->as_variable();
157 if (!var || var->data.mode != ir_var_shader_out)
158 continue;
159
160 if (var->data.explicit_xfb_offset) {
161 char *name;
162 const glsl_type *type, *member_type;
163
164 if (var->data.from_named_ifc_block) {
165 type = var->get_interface_type();
166 /* Find the member type before it was altered by lowering */
167 member_type =
168 type->fields.structure[type->field_index(var->name)].type;
169 name = ralloc_strdup(NULL, type->without_array()->name);
170 } else {
171 type = var->type;
172 member_type = NULL;
173 name = ralloc_strdup(NULL, var->name);
174 }
175 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
176 var->name, member_type, varying_names);
177 ralloc_free(name);
178 }
179 }
180
181 assert(i == *num_tfeedback_decls);
182 return has_xfb_qualifiers;
183 }
184
185 /**
186 * Validate the types and qualifiers of an output from one stage against the
187 * matching input to another stage.
188 */
189 static void
190 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
191 const ir_variable *input,
192 const ir_variable *output,
193 gl_shader_stage consumer_stage,
194 gl_shader_stage producer_stage)
195 {
196 /* Check that the types match between stages.
197 */
198 const glsl_type *type_to_match = input->type;
199
200 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
201 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
202 consumer_stage != MESA_SHADER_FRAGMENT) ||
203 consumer_stage == MESA_SHADER_GEOMETRY;
204 if (extra_array_level) {
205 assert(type_to_match->is_array());
206 type_to_match = type_to_match->fields.array;
207 }
208
209 if (type_to_match != output->type) {
210 /* There is a bit of a special case for gl_TexCoord. This
211 * built-in is unsized by default. Applications that variable
212 * access it must redeclare it with a size. There is some
213 * language in the GLSL spec that implies the fragment shader
214 * and vertex shader do not have to agree on this size. Other
215 * driver behave this way, and one or two applications seem to
216 * rely on it.
217 *
218 * Neither declaration needs to be modified here because the array
219 * sizes are fixed later when update_array_sizes is called.
220 *
221 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
222 *
223 * "Unlike user-defined varying variables, the built-in
224 * varying variables don't have a strict one-to-one
225 * correspondence between the vertex language and the
226 * fragment language."
227 */
228 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
229 linker_error(prog,
230 "%s shader output `%s' declared as type `%s', "
231 "but %s shader input declared as type `%s'\n",
232 _mesa_shader_stage_to_string(producer_stage),
233 output->name,
234 output->type->name,
235 _mesa_shader_stage_to_string(consumer_stage),
236 input->type->name);
237 return;
238 }
239 }
240
241 /* Check that all of the qualifiers match between stages.
242 */
243
244 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier
245 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0
246 * conformance test suite does not verify that the qualifiers must match.
247 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for
248 * OpenGLES 3.0 drivers, so we relax the checking in all cases.
249 */
250 if (false /* always skip the centroid check */ &&
251 prog->Version < (prog->IsES ? 310 : 430) &&
252 input->data.centroid != output->data.centroid) {
253 linker_error(prog,
254 "%s shader output `%s' %s centroid qualifier, "
255 "but %s shader input %s centroid qualifier\n",
256 _mesa_shader_stage_to_string(producer_stage),
257 output->name,
258 (output->data.centroid) ? "has" : "lacks",
259 _mesa_shader_stage_to_string(consumer_stage),
260 (input->data.centroid) ? "has" : "lacks");
261 return;
262 }
263
264 if (input->data.sample != output->data.sample) {
265 linker_error(prog,
266 "%s shader output `%s' %s sample qualifier, "
267 "but %s shader input %s sample qualifier\n",
268 _mesa_shader_stage_to_string(producer_stage),
269 output->name,
270 (output->data.sample) ? "has" : "lacks",
271 _mesa_shader_stage_to_string(consumer_stage),
272 (input->data.sample) ? "has" : "lacks");
273 return;
274 }
275
276 if (input->data.patch != output->data.patch) {
277 linker_error(prog,
278 "%s shader output `%s' %s patch qualifier, "
279 "but %s shader input %s patch qualifier\n",
280 _mesa_shader_stage_to_string(producer_stage),
281 output->name,
282 (output->data.patch) ? "has" : "lacks",
283 _mesa_shader_stage_to_string(consumer_stage),
284 (input->data.patch) ? "has" : "lacks");
285 return;
286 }
287
288 if (!prog->IsES && input->data.invariant != output->data.invariant) {
289 linker_error(prog,
290 "%s shader output `%s' %s invariant qualifier, "
291 "but %s shader input %s invariant qualifier\n",
292 _mesa_shader_stage_to_string(producer_stage),
293 output->name,
294 (output->data.invariant) ? "has" : "lacks",
295 _mesa_shader_stage_to_string(consumer_stage),
296 (input->data.invariant) ? "has" : "lacks");
297 return;
298 }
299
300 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
301 * to match cross stage, they must only match within the same stage.
302 *
303 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
304 *
305 * "It is a link-time error if, within the same stage, the interpolation
306 * qualifiers of variables of the same name do not match.
307 *
308 */
309 if (input->data.interpolation != output->data.interpolation &&
310 prog->Version < 440) {
311 linker_error(prog,
312 "%s shader output `%s' specifies %s "
313 "interpolation qualifier, "
314 "but %s shader input specifies %s "
315 "interpolation qualifier\n",
316 _mesa_shader_stage_to_string(producer_stage),
317 output->name,
318 interpolation_string(output->data.interpolation),
319 _mesa_shader_stage_to_string(consumer_stage),
320 interpolation_string(input->data.interpolation));
321 return;
322 }
323 }
324
325 /**
326 * Validate front and back color outputs against single color input
327 */
328 static void
329 cross_validate_front_and_back_color(struct gl_shader_program *prog,
330 const ir_variable *input,
331 const ir_variable *front_color,
332 const ir_variable *back_color,
333 gl_shader_stage consumer_stage,
334 gl_shader_stage producer_stage)
335 {
336 if (front_color != NULL && front_color->data.assigned)
337 cross_validate_types_and_qualifiers(prog, input, front_color,
338 consumer_stage, producer_stage);
339
340 if (back_color != NULL && back_color->data.assigned)
341 cross_validate_types_and_qualifiers(prog, input, back_color,
342 consumer_stage, producer_stage);
343 }
344
345 /**
346 * Validate that outputs from one stage match inputs of another
347 */
348 void
349 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
350 gl_shader *producer, gl_shader *consumer)
351 {
352 glsl_symbol_table parameters;
353 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
354
355 /* Find all shader outputs in the "producer" stage.
356 */
357 foreach_in_list(ir_instruction, node, producer->ir) {
358 ir_variable *const var = node->as_variable();
359
360 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
361 continue;
362
363 if (!var->data.explicit_location
364 || var->data.location < VARYING_SLOT_VAR0)
365 parameters.add_variable(var);
366 else {
367 /* User-defined varyings with explicit locations are handled
368 * differently because they do not need to have matching names.
369 */
370 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
371
372 if (explicit_locations[idx] != NULL) {
373 linker_error(prog,
374 "%s shader has multiple outputs explicitly "
375 "assigned to location %d\n",
376 _mesa_shader_stage_to_string(producer->Stage),
377 idx);
378 return;
379 }
380
381 explicit_locations[idx] = var;
382 }
383 }
384
385
386 /* Find all shader inputs in the "consumer" stage. Any variables that have
387 * matching outputs already in the symbol table must have the same type and
388 * qualifiers.
389 *
390 * Exception: if the consumer is the geometry shader, then the inputs
391 * should be arrays and the type of the array element should match the type
392 * of the corresponding producer output.
393 */
394 foreach_in_list(ir_instruction, node, consumer->ir) {
395 ir_variable *const input = node->as_variable();
396
397 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
398 continue;
399
400 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
401 const ir_variable *const front_color =
402 parameters.get_variable("gl_FrontColor");
403
404 const ir_variable *const back_color =
405 parameters.get_variable("gl_BackColor");
406
407 cross_validate_front_and_back_color(prog, input,
408 front_color, back_color,
409 consumer->Stage, producer->Stage);
410 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
411 const ir_variable *const front_color =
412 parameters.get_variable("gl_FrontSecondaryColor");
413
414 const ir_variable *const back_color =
415 parameters.get_variable("gl_BackSecondaryColor");
416
417 cross_validate_front_and_back_color(prog, input,
418 front_color, back_color,
419 consumer->Stage, producer->Stage);
420 } else {
421 /* The rules for connecting inputs and outputs change in the presence
422 * of explicit locations. In this case, we no longer care about the
423 * names of the variables. Instead, we care only about the
424 * explicitly assigned location.
425 */
426 ir_variable *output = NULL;
427 if (input->data.explicit_location
428 && input->data.location >= VARYING_SLOT_VAR0) {
429 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
430
431 if (output == NULL) {
432 linker_error(prog,
433 "%s shader input `%s' with explicit location "
434 "has no matching output\n",
435 _mesa_shader_stage_to_string(consumer->Stage),
436 input->name);
437 }
438 } else {
439 output = parameters.get_variable(input->name);
440 }
441
442 if (output != NULL) {
443 /* Interface blocks have their own validation elsewhere so don't
444 * try validating them here.
445 */
446 if (!(input->get_interface_type() &&
447 output->get_interface_type()))
448 cross_validate_types_and_qualifiers(prog, input, output,
449 consumer->Stage,
450 producer->Stage);
451 } else {
452 /* Check for input vars with unmatched output vars in prev stage
453 * taking into account that interface blocks could have a matching
454 * output but with different name, so we ignore them.
455 */
456 assert(!input->data.assigned);
457 if (input->data.used && !input->get_interface_type() &&
458 !input->data.explicit_location && !prog->SeparateShader)
459 linker_error(prog,
460 "%s shader input `%s' "
461 "has no matching output in the previous stage\n",
462 _mesa_shader_stage_to_string(consumer->Stage),
463 input->name);
464 }
465 }
466 }
467 }
468
469 /**
470 * Demote shader inputs and outputs that are not used in other stages, and
471 * remove them via dead code elimination.
472 */
473 void
474 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
475 gl_shader *sh,
476 enum ir_variable_mode mode)
477 {
478 if (is_separate_shader_object)
479 return;
480
481 foreach_in_list(ir_instruction, node, sh->ir) {
482 ir_variable *const var = node->as_variable();
483
484 if ((var == NULL) || (var->data.mode != int(mode)))
485 continue;
486
487 /* A shader 'in' or 'out' variable is only really an input or output if
488 * its value is used by other shader stages. This will cause the
489 * variable to have a location assigned.
490 */
491 if (var->data.is_unmatched_generic_inout) {
492 assert(var->data.mode != ir_var_temporary);
493 var->data.mode = ir_var_auto;
494 }
495 }
496
497 /* Eliminate code that is now dead due to unused inputs/outputs being
498 * demoted.
499 */
500 while (do_dead_code(sh->ir, false))
501 ;
502
503 }
504
505 /**
506 * Initialize this object based on a string that was passed to
507 * glTransformFeedbackVaryings.
508 *
509 * If the input is mal-formed, this call still succeeds, but it sets
510 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
511 * will fail to find any matching variable.
512 */
513 void
514 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
515 const char *input)
516 {
517 /* We don't have to be pedantic about what is a valid GLSL variable name,
518 * because any variable with an invalid name can't exist in the IR anyway.
519 */
520
521 this->location = -1;
522 this->orig_name = input;
523 this->lowered_builtin_array_variable = none;
524 this->skip_components = 0;
525 this->next_buffer_separator = false;
526 this->matched_candidate = NULL;
527 this->stream_id = 0;
528 this->buffer = 0;
529 this->offset = 0;
530
531 if (ctx->Extensions.ARB_transform_feedback3) {
532 /* Parse gl_NextBuffer. */
533 if (strcmp(input, "gl_NextBuffer") == 0) {
534 this->next_buffer_separator = true;
535 return;
536 }
537
538 /* Parse gl_SkipComponents. */
539 if (strcmp(input, "gl_SkipComponents1") == 0)
540 this->skip_components = 1;
541 else if (strcmp(input, "gl_SkipComponents2") == 0)
542 this->skip_components = 2;
543 else if (strcmp(input, "gl_SkipComponents3") == 0)
544 this->skip_components = 3;
545 else if (strcmp(input, "gl_SkipComponents4") == 0)
546 this->skip_components = 4;
547
548 if (this->skip_components)
549 return;
550 }
551
552 /* Parse a declaration. */
553 const char *base_name_end;
554 long subscript = parse_program_resource_name(input, &base_name_end);
555 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
556 if (this->var_name == NULL) {
557 _mesa_error_no_memory(__func__);
558 return;
559 }
560
561 if (subscript >= 0) {
562 this->array_subscript = subscript;
563 this->is_subscripted = true;
564 } else {
565 this->is_subscripted = false;
566 }
567
568 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
569 * class must behave specially to account for the fact that gl_ClipDistance
570 * is converted from a float[8] to a vec4[2].
571 */
572 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
573 strcmp(this->var_name, "gl_ClipDistance") == 0) {
574 this->lowered_builtin_array_variable = clip_distance;
575 }
576
577 if (ctx->Const.LowerTessLevel &&
578 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
579 this->lowered_builtin_array_variable = tess_level_outer;
580 if (ctx->Const.LowerTessLevel &&
581 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
582 this->lowered_builtin_array_variable = tess_level_inner;
583 }
584
585
586 /**
587 * Determine whether two tfeedback_decl objects refer to the same variable and
588 * array index (if applicable).
589 */
590 bool
591 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
592 {
593 assert(x.is_varying() && y.is_varying());
594
595 if (strcmp(x.var_name, y.var_name) != 0)
596 return false;
597 if (x.is_subscripted != y.is_subscripted)
598 return false;
599 if (x.is_subscripted && x.array_subscript != y.array_subscript)
600 return false;
601 return true;
602 }
603
604
605 /**
606 * Assign a location and stream ID for this tfeedback_decl object based on the
607 * transform feedback candidate found by find_candidate.
608 *
609 * If an error occurs, the error is reported through linker_error() and false
610 * is returned.
611 */
612 bool
613 tfeedback_decl::assign_location(struct gl_context *ctx,
614 struct gl_shader_program *prog)
615 {
616 assert(this->is_varying());
617
618 unsigned fine_location
619 = this->matched_candidate->toplevel_var->data.location * 4
620 + this->matched_candidate->toplevel_var->data.location_frac
621 + this->matched_candidate->offset;
622 const unsigned dmul =
623 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
624
625 if (this->matched_candidate->type->is_array()) {
626 /* Array variable */
627 const unsigned matrix_cols =
628 this->matched_candidate->type->fields.array->matrix_columns;
629 const unsigned vector_elements =
630 this->matched_candidate->type->fields.array->vector_elements;
631 unsigned actual_array_size;
632 switch (this->lowered_builtin_array_variable) {
633 case clip_distance:
634 actual_array_size = prog->LastClipDistanceArraySize;
635 break;
636 case tess_level_outer:
637 actual_array_size = 4;
638 break;
639 case tess_level_inner:
640 actual_array_size = 2;
641 break;
642 case none:
643 default:
644 actual_array_size = this->matched_candidate->type->array_size();
645 break;
646 }
647
648 if (this->is_subscripted) {
649 /* Check array bounds. */
650 if (this->array_subscript >= actual_array_size) {
651 linker_error(prog, "Transform feedback varying %s has index "
652 "%i, but the array size is %u.",
653 this->orig_name, this->array_subscript,
654 actual_array_size);
655 return false;
656 }
657 unsigned array_elem_size = this->lowered_builtin_array_variable ?
658 1 : vector_elements * matrix_cols * dmul;
659 fine_location += array_elem_size * this->array_subscript;
660 this->size = 1;
661 } else {
662 this->size = actual_array_size;
663 }
664 this->vector_elements = vector_elements;
665 this->matrix_columns = matrix_cols;
666 if (this->lowered_builtin_array_variable)
667 this->type = GL_FLOAT;
668 else
669 this->type = this->matched_candidate->type->fields.array->gl_type;
670 } else {
671 /* Regular variable (scalar, vector, or matrix) */
672 if (this->is_subscripted) {
673 linker_error(prog, "Transform feedback varying %s requested, "
674 "but %s is not an array.",
675 this->orig_name, this->var_name);
676 return false;
677 }
678 this->size = 1;
679 this->vector_elements = this->matched_candidate->type->vector_elements;
680 this->matrix_columns = this->matched_candidate->type->matrix_columns;
681 this->type = this->matched_candidate->type->gl_type;
682 }
683 this->location = fine_location / 4;
684 this->location_frac = fine_location % 4;
685
686 /* From GL_EXT_transform_feedback:
687 * A program will fail to link if:
688 *
689 * * the total number of components to capture in any varying
690 * variable in <varyings> is greater than the constant
691 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
692 * buffer mode is SEPARATE_ATTRIBS_EXT;
693 */
694 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
695 this->num_components() >
696 ctx->Const.MaxTransformFeedbackSeparateComponents) {
697 linker_error(prog, "Transform feedback varying %s exceeds "
698 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
699 this->orig_name);
700 return false;
701 }
702
703 /* Only transform feedback varyings can be assigned to non-zero streams,
704 * so assign the stream id here.
705 */
706 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
707
708 unsigned array_offset = this->array_subscript * 4 * dmul;
709 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
710 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
711 this->offset = this->matched_candidate->toplevel_var->data.offset +
712 array_offset + struct_offset;
713
714 return true;
715 }
716
717
718 unsigned
719 tfeedback_decl::get_num_outputs() const
720 {
721 if (!this->is_varying()) {
722 return 0;
723 }
724 return (this->num_components() + this->location_frac + 3)/4;
725 }
726
727
728 /**
729 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
730 *
731 * If an error occurs, the error is reported through linker_error() and false
732 * is returned.
733 */
734 bool
735 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
736 struct gl_transform_feedback_info *info,
737 unsigned buffer, unsigned buffer_index,
738 const unsigned max_outputs, bool *explicit_stride,
739 bool has_xfb_qualifiers) const
740 {
741 assert(!this->next_buffer_separator);
742
743 /* Handle gl_SkipComponents. */
744 if (this->skip_components) {
745 info->Buffers[buffer].Stride += this->skip_components;
746 return true;
747 }
748
749 unsigned xfb_offset = 0;
750 if (has_xfb_qualifiers) {
751 xfb_offset = this->offset / 4;
752 } else {
753 xfb_offset = info->Buffers[buffer].Stride;
754 }
755 info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
756
757 unsigned location = this->location;
758 unsigned location_frac = this->location_frac;
759 unsigned num_components = this->num_components();
760 while (num_components > 0) {
761 unsigned output_size = MIN2(num_components, 4 - location_frac);
762 assert((info->NumOutputs == 0 && max_outputs == 0) ||
763 info->NumOutputs < max_outputs);
764
765 /* From the ARB_enhanced_layouts spec:
766 *
767 * "If such a block member or variable is not written during a shader
768 * invocation, the buffer contents at the assigned offset will be
769 * undefined. Even if there are no static writes to a variable or
770 * member that is assigned a transform feedback offset, the space is
771 * still allocated in the buffer and still affects the stride."
772 */
773 if (this->is_varying_written()) {
774 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
775 info->Outputs[info->NumOutputs].OutputRegister = location;
776 info->Outputs[info->NumOutputs].NumComponents = output_size;
777 info->Outputs[info->NumOutputs].StreamId = stream_id;
778 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
779 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
780 ++info->NumOutputs;
781 }
782 info->Buffers[buffer].Stream = this->stream_id;
783 xfb_offset += output_size;
784
785 num_components -= output_size;
786 location++;
787 location_frac = 0;
788 }
789
790 if (explicit_stride && explicit_stride[buffer]) {
791 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
792 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
793 "multiple of 8 as its applied to a type that is or "
794 "contains a double.",
795 info->Buffers[buffer].Stride * 4);
796 return false;
797 }
798
799 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
800 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
801 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
802 "buffer (%d)", xfb_offset * 4,
803 info->Buffers[buffer].Stride * 4, buffer);
804 return false;
805 }
806 } else {
807 info->Buffers[buffer].Stride = xfb_offset;
808 }
809
810 /* From GL_EXT_transform_feedback:
811 * A program will fail to link if:
812 *
813 * * the total number of components to capture is greater than
814 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
815 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
816 *
817 * From GL_ARB_enhanced_layouts:
818 *
819 * "The resulting stride (implicit or explicit) must be less than or
820 * equal to the implementation-dependent constant
821 * gl_MaxTransformFeedbackInterleavedComponents."
822 */
823 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
824 has_xfb_qualifiers) &&
825 info->Buffers[buffer].Stride >
826 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
827 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
828 "limit has been exceeded.");
829 return false;
830 }
831
832 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
833 this->orig_name);
834 info->Varyings[info->NumVarying].Type = this->type;
835 info->Varyings[info->NumVarying].Size = this->size;
836 info->Varyings[info->NumVarying].BufferIndex = buffer_index;
837 info->NumVarying++;
838 info->Buffers[buffer].NumVaryings++;
839
840 return true;
841 }
842
843
844 const tfeedback_candidate *
845 tfeedback_decl::find_candidate(gl_shader_program *prog,
846 hash_table *tfeedback_candidates)
847 {
848 const char *name = this->var_name;
849 switch (this->lowered_builtin_array_variable) {
850 case none:
851 name = this->var_name;
852 break;
853 case clip_distance:
854 name = "gl_ClipDistanceMESA";
855 break;
856 case tess_level_outer:
857 name = "gl_TessLevelOuterMESA";
858 break;
859 case tess_level_inner:
860 name = "gl_TessLevelInnerMESA";
861 break;
862 }
863 this->matched_candidate = (const tfeedback_candidate *)
864 hash_table_find(tfeedback_candidates, name);
865 if (!this->matched_candidate) {
866 /* From GL_EXT_transform_feedback:
867 * A program will fail to link if:
868 *
869 * * any variable name specified in the <varyings> array is not
870 * declared as an output in the geometry shader (if present) or
871 * the vertex shader (if no geometry shader is present);
872 */
873 linker_error(prog, "Transform feedback varying %s undeclared.",
874 this->orig_name);
875 }
876 return this->matched_candidate;
877 }
878
879
880 /**
881 * Parse all the transform feedback declarations that were passed to
882 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
883 *
884 * If an error occurs, the error is reported through linker_error() and false
885 * is returned.
886 */
887 bool
888 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
889 const void *mem_ctx, unsigned num_names,
890 char **varying_names, tfeedback_decl *decls)
891 {
892 for (unsigned i = 0; i < num_names; ++i) {
893 decls[i].init(ctx, mem_ctx, varying_names[i]);
894
895 if (!decls[i].is_varying())
896 continue;
897
898 /* From GL_EXT_transform_feedback:
899 * A program will fail to link if:
900 *
901 * * any two entries in the <varyings> array specify the same varying
902 * variable;
903 *
904 * We interpret this to mean "any two entries in the <varyings> array
905 * specify the same varying variable and array index", since transform
906 * feedback of arrays would be useless otherwise.
907 */
908 for (unsigned j = 0; j < i; ++j) {
909 if (!decls[j].is_varying())
910 continue;
911
912 if (tfeedback_decl::is_same(decls[i], decls[j])) {
913 linker_error(prog, "Transform feedback varying %s specified "
914 "more than once.", varying_names[i]);
915 return false;
916 }
917 }
918 }
919 return true;
920 }
921
922
923 static int
924 cmp_xfb_offset(const void * x_generic, const void * y_generic)
925 {
926 tfeedback_decl *x = (tfeedback_decl *) x_generic;
927 tfeedback_decl *y = (tfeedback_decl *) y_generic;
928
929 if (x->get_buffer() != y->get_buffer())
930 return x->get_buffer() - y->get_buffer();
931 return x->get_offset() - y->get_offset();
932 }
933
934 /**
935 * Store transform feedback location assignments into
936 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
937 *
938 * If an error occurs, the error is reported through linker_error() and false
939 * is returned.
940 */
941 bool
942 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
943 unsigned num_tfeedback_decls,
944 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
945 {
946 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
947 * tracking the number of buffers doesn't overflow.
948 */
949 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
950
951 bool separate_attribs_mode =
952 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
953
954 ralloc_free(prog->LinkedTransformFeedback.Varyings);
955 ralloc_free(prog->LinkedTransformFeedback.Outputs);
956
957 memset(&prog->LinkedTransformFeedback, 0,
958 sizeof(prog->LinkedTransformFeedback));
959
960 /* The xfb_offset qualifier does not have to be used in increasing order
961 * however some drivers expect to receive the list of transform feedback
962 * declarations in order so sort it now for convenience.
963 */
964 if (has_xfb_qualifiers)
965 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
966 cmp_xfb_offset);
967
968 prog->LinkedTransformFeedback.Varyings =
969 rzalloc_array(prog,
970 struct gl_transform_feedback_varying_info,
971 num_tfeedback_decls);
972
973 unsigned num_outputs = 0;
974 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
975 if (tfeedback_decls[i].is_varying_written())
976 num_outputs += tfeedback_decls[i].get_num_outputs();
977 }
978
979 prog->LinkedTransformFeedback.Outputs =
980 rzalloc_array(prog,
981 struct gl_transform_feedback_output,
982 num_outputs);
983
984 unsigned num_buffers = 0;
985 unsigned buffers = 0;
986
987 if (!has_xfb_qualifiers && separate_attribs_mode) {
988 /* GL_SEPARATE_ATTRIBS */
989 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
990 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
991 num_buffers, num_buffers, num_outputs,
992 NULL, has_xfb_qualifiers))
993 return false;
994
995 buffers |= 1 << num_buffers;
996 num_buffers++;
997 }
998 }
999 else {
1000 /* GL_INVERLEAVED_ATTRIBS */
1001 int buffer_stream_id = -1;
1002 unsigned buffer =
1003 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
1004 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
1005
1006 /* Apply any xfb_stride global qualifiers */
1007 if (has_xfb_qualifiers) {
1008 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1009 if (prog->TransformFeedback.BufferStride[j]) {
1010 buffers |= 1 << j;
1011 explicit_stride[j] = true;
1012 prog->LinkedTransformFeedback.Buffers[j].Stride =
1013 prog->TransformFeedback.BufferStride[j] / 4;
1014 }
1015 }
1016 }
1017
1018 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1019 if (has_xfb_qualifiers &&
1020 buffer != tfeedback_decls[i].get_buffer()) {
1021 /* we have moved to the next buffer so reset stream id */
1022 buffer_stream_id = -1;
1023 num_buffers++;
1024 }
1025
1026 if (tfeedback_decls[i].is_next_buffer_separator()) {
1027 num_buffers++;
1028 buffer_stream_id = -1;
1029 continue;
1030 } else if (buffer_stream_id == -1) {
1031 /* First varying writing to this buffer: remember its stream */
1032 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
1033 } else if (buffer_stream_id !=
1034 (int) tfeedback_decls[i].get_stream_id()) {
1035 /* Varying writes to the same buffer from a different stream */
1036 linker_error(prog,
1037 "Transform feedback can't capture varyings belonging "
1038 "to different vertex streams in a single buffer. "
1039 "Varying %s writes to buffer from stream %u, other "
1040 "varyings in the same buffer write from stream %u.",
1041 tfeedback_decls[i].name(),
1042 tfeedback_decls[i].get_stream_id(),
1043 buffer_stream_id);
1044 return false;
1045 }
1046
1047 if (has_xfb_qualifiers) {
1048 buffer = tfeedback_decls[i].get_buffer();
1049 } else {
1050 buffer = num_buffers;
1051 }
1052 buffers |= 1 << buffer;
1053
1054 if (!tfeedback_decls[i].store(ctx, prog,
1055 &prog->LinkedTransformFeedback,
1056 buffer, num_buffers, num_outputs,
1057 explicit_stride, has_xfb_qualifiers))
1058 return false;
1059 }
1060 }
1061
1062 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1063
1064 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1065 return true;
1066 }
1067
1068 namespace {
1069
1070 /**
1071 * Data structure recording the relationship between outputs of one shader
1072 * stage (the "producer") and inputs of another (the "consumer").
1073 */
1074 class varying_matches
1075 {
1076 public:
1077 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1078 gl_shader_stage producer_stage,
1079 gl_shader_stage consumer_stage);
1080 ~varying_matches();
1081 void record(ir_variable *producer_var, ir_variable *consumer_var);
1082 unsigned assign_locations(struct gl_shader_program *prog,
1083 uint64_t reserved_slots, bool separate_shader);
1084 void store_locations() const;
1085
1086 private:
1087 bool is_varying_packing_safe(const glsl_type *type,
1088 const ir_variable *var);
1089
1090 /**
1091 * If true, this driver disables varying packing, so all varyings need to
1092 * be aligned on slot boundaries, and take up a number of slots equal to
1093 * their number of matrix columns times their array size.
1094 *
1095 * Packing may also be disabled because our current packing method is not
1096 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1097 * guaranteed to match across stages.
1098 */
1099 const bool disable_varying_packing;
1100
1101 /**
1102 * If true, this driver has transform feedback enabled. The transform
1103 * feedback code requires at least some packing be done even when varying
1104 * packing is disabled, fortunately where transform feedback requires
1105 * packing it's safe to override the disabled setting. See
1106 * is_varying_packing_safe().
1107 */
1108 const bool xfb_enabled;
1109
1110 /**
1111 * Enum representing the order in which varyings are packed within a
1112 * packing class.
1113 *
1114 * Currently we pack vec4's first, then vec2's, then scalar values, then
1115 * vec3's. This order ensures that the only vectors that are at risk of
1116 * having to be "double parked" (split between two adjacent varying slots)
1117 * are the vec3's.
1118 */
1119 enum packing_order_enum {
1120 PACKING_ORDER_VEC4,
1121 PACKING_ORDER_VEC2,
1122 PACKING_ORDER_SCALAR,
1123 PACKING_ORDER_VEC3,
1124 };
1125
1126 static unsigned compute_packing_class(const ir_variable *var);
1127 static packing_order_enum compute_packing_order(const ir_variable *var);
1128 static int match_comparator(const void *x_generic, const void *y_generic);
1129 static int xfb_comparator(const void *x_generic, const void *y_generic);
1130
1131 /**
1132 * Structure recording the relationship between a single producer output
1133 * and a single consumer input.
1134 */
1135 struct match {
1136 /**
1137 * Packing class for this varying, computed by compute_packing_class().
1138 */
1139 unsigned packing_class;
1140
1141 /**
1142 * Packing order for this varying, computed by compute_packing_order().
1143 */
1144 packing_order_enum packing_order;
1145 unsigned num_components;
1146
1147 /**
1148 * The output variable in the producer stage.
1149 */
1150 ir_variable *producer_var;
1151
1152 /**
1153 * The input variable in the consumer stage.
1154 */
1155 ir_variable *consumer_var;
1156
1157 /**
1158 * The location which has been assigned for this varying. This is
1159 * expressed in multiples of a float, with the first generic varying
1160 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1161 * value 0.
1162 */
1163 unsigned generic_location;
1164 } *matches;
1165
1166 /**
1167 * The number of elements in the \c matches array that are currently in
1168 * use.
1169 */
1170 unsigned num_matches;
1171
1172 /**
1173 * The number of elements that were set aside for the \c matches array when
1174 * it was allocated.
1175 */
1176 unsigned matches_capacity;
1177
1178 gl_shader_stage producer_stage;
1179 gl_shader_stage consumer_stage;
1180 };
1181
1182 } /* anonymous namespace */
1183
1184 varying_matches::varying_matches(bool disable_varying_packing,
1185 bool xfb_enabled,
1186 gl_shader_stage producer_stage,
1187 gl_shader_stage consumer_stage)
1188 : disable_varying_packing(disable_varying_packing),
1189 xfb_enabled(xfb_enabled),
1190 producer_stage(producer_stage),
1191 consumer_stage(consumer_stage)
1192 {
1193 /* Note: this initial capacity is rather arbitrarily chosen to be large
1194 * enough for many cases without wasting an unreasonable amount of space.
1195 * varying_matches::record() will resize the array if there are more than
1196 * this number of varyings.
1197 */
1198 this->matches_capacity = 8;
1199 this->matches = (match *)
1200 malloc(sizeof(*this->matches) * this->matches_capacity);
1201 this->num_matches = 0;
1202 }
1203
1204
1205 varying_matches::~varying_matches()
1206 {
1207 free(this->matches);
1208 }
1209
1210
1211 /**
1212 * Packing is always safe on individual arrays, structure and matices. It is
1213 * also safe if the varying is only used for transform feedback.
1214 */
1215 bool
1216 varying_matches::is_varying_packing_safe(const glsl_type *type,
1217 const ir_variable *var)
1218 {
1219 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1220 consumer_stage == MESA_SHADER_TESS_CTRL ||
1221 producer_stage == MESA_SHADER_TESS_CTRL)
1222 return false;
1223
1224 return xfb_enabled && (type->is_array() || type->is_record() ||
1225 type->is_matrix() || var->data.is_xfb_only);
1226 }
1227
1228
1229 /**
1230 * Record the given producer/consumer variable pair in the list of variables
1231 * that should later be assigned locations.
1232 *
1233 * It is permissible for \c consumer_var to be NULL (this happens if a
1234 * variable is output by the producer and consumed by transform feedback, but
1235 * not consumed by the consumer).
1236 *
1237 * If \c producer_var has already been paired up with a consumer_var, or
1238 * producer_var is part of fixed pipeline functionality (and hence already has
1239 * a location assigned), this function has no effect.
1240 *
1241 * Note: as a side effect this function may change the interpolation type of
1242 * \c producer_var, but only when the change couldn't possibly affect
1243 * rendering.
1244 */
1245 void
1246 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1247 {
1248 assert(producer_var != NULL || consumer_var != NULL);
1249
1250 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1251 producer_var->data.explicit_location)) ||
1252 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1253 consumer_var->data.explicit_location))) {
1254 /* Either a location already exists for this variable (since it is part
1255 * of fixed functionality), or it has already been recorded as part of a
1256 * previous match.
1257 */
1258 return;
1259 }
1260
1261 bool needs_flat_qualifier = consumer_var == NULL &&
1262 (producer_var->type->contains_integer() ||
1263 producer_var->type->contains_double());
1264
1265 if (needs_flat_qualifier ||
1266 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1267 /* Since this varying is not being consumed by the fragment shader, its
1268 * interpolation type varying cannot possibly affect rendering.
1269 * Also, this variable is non-flat and is (or contains) an integer
1270 * or a double.
1271 * If the consumer stage is unknown, don't modify the interpolation
1272 * type as it could affect rendering later with separate shaders.
1273 *
1274 * lower_packed_varyings requires all integer varyings to flat,
1275 * regardless of where they appear. We can trivially satisfy that
1276 * requirement by changing the interpolation type to flat here.
1277 */
1278 if (producer_var) {
1279 producer_var->data.centroid = false;
1280 producer_var->data.sample = false;
1281 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1282 }
1283
1284 if (consumer_var) {
1285 consumer_var->data.centroid = false;
1286 consumer_var->data.sample = false;
1287 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1288 }
1289 }
1290
1291 if (this->num_matches == this->matches_capacity) {
1292 this->matches_capacity *= 2;
1293 this->matches = (match *)
1294 realloc(this->matches,
1295 sizeof(*this->matches) * this->matches_capacity);
1296 }
1297
1298 const ir_variable *const var = (producer_var != NULL)
1299 ? producer_var : consumer_var;
1300 const gl_shader_stage stage = (producer_var != NULL)
1301 ? producer_stage : consumer_stage;
1302 const glsl_type *type = get_varying_type(var, stage);
1303
1304 this->matches[this->num_matches].packing_class
1305 = this->compute_packing_class(var);
1306 this->matches[this->num_matches].packing_order
1307 = this->compute_packing_order(var);
1308 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1309 unsigned slots = type->count_attribute_slots(false);
1310 this->matches[this->num_matches].num_components = slots * 4;
1311 } else {
1312 this->matches[this->num_matches].num_components
1313 = type->component_slots();
1314 }
1315 this->matches[this->num_matches].producer_var = producer_var;
1316 this->matches[this->num_matches].consumer_var = consumer_var;
1317 this->num_matches++;
1318 if (producer_var)
1319 producer_var->data.is_unmatched_generic_inout = 0;
1320 if (consumer_var)
1321 consumer_var->data.is_unmatched_generic_inout = 0;
1322 }
1323
1324
1325 /**
1326 * Choose locations for all of the variable matches that were previously
1327 * passed to varying_matches::record().
1328 */
1329 unsigned
1330 varying_matches::assign_locations(struct gl_shader_program *prog,
1331 uint64_t reserved_slots,
1332 bool separate_shader)
1333 {
1334 /* If packing has been disabled then we cannot safely sort the varyings by
1335 * class as it may mean we are using a version of OpenGL where
1336 * interpolation qualifiers are not guaranteed to be matching across
1337 * shaders, sorting in this case could result in mismatching shader
1338 * interfaces.
1339 * When packing is disabled the sort orders varyings used by transform
1340 * feedback first, but also depends on *undefined behaviour* of qsort to
1341 * reverse the order of the varyings. See: xfb_comparator().
1342 */
1343 if (!this->disable_varying_packing) {
1344 /* Sort varying matches into an order that makes them easy to pack. */
1345 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1346 &varying_matches::match_comparator);
1347 } else {
1348 /* Only sort varyings that are only used by transform feedback. */
1349 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1350 &varying_matches::xfb_comparator);
1351 }
1352
1353 unsigned generic_location = 0;
1354 unsigned generic_patch_location = MAX_VARYING*4;
1355 bool previous_var_xfb_only = false;
1356
1357 for (unsigned i = 0; i < this->num_matches; i++) {
1358 unsigned *location = &generic_location;
1359
1360 const ir_variable *var;
1361 const glsl_type *type;
1362 bool is_vertex_input = false;
1363 if (matches[i].consumer_var) {
1364 var = matches[i].consumer_var;
1365 type = get_varying_type(var, consumer_stage);
1366 if (consumer_stage == MESA_SHADER_VERTEX)
1367 is_vertex_input = true;
1368 } else {
1369 var = matches[i].producer_var;
1370 type = get_varying_type(var, producer_stage);
1371 }
1372
1373 if (var->data.patch)
1374 location = &generic_patch_location;
1375
1376 /* Advance to the next slot if this varying has a different packing
1377 * class than the previous one, and we're not already on a slot
1378 * boundary.
1379 *
1380 * Also advance to the next slot if packing is disabled. This makes sure
1381 * we don't assign varyings the same locations which is possible
1382 * because we still pack individual arrays, records and matrices even
1383 * when packing is disabled. Note we don't advance to the next slot if
1384 * we can pack varyings together that are only used for transform
1385 * feedback.
1386 */
1387 if ((this->disable_varying_packing &&
1388 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1389 (i > 0 && this->matches[i - 1].packing_class
1390 != this->matches[i].packing_class )) {
1391 *location = ALIGN(*location, 4);
1392 }
1393
1394 previous_var_xfb_only = var->data.is_xfb_only;
1395
1396 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1397 unsigned slot_end;
1398 if (this->disable_varying_packing &&
1399 !is_varying_packing_safe(type, var))
1400 slot_end = 4;
1401 else
1402 slot_end = type->without_array()->vector_elements;
1403 slot_end += *location - 1;
1404
1405 /* FIXME: We could be smarter in the below code and loop back over
1406 * trying to fill any locations that we skipped because we couldn't pack
1407 * the varying between an explicit location. For now just let the user
1408 * hit the linking error if we run out of room and suggest they use
1409 * explicit locations.
1410 */
1411 for (unsigned j = 0; j < num_elements; j++) {
1412 while ((slot_end < MAX_VARYING * 4u) &&
1413 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1414 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1415
1416 *location = ALIGN(*location + 1, 4);
1417 slot_end = *location;
1418
1419 /* reset the counter and try again */
1420 j = 0;
1421 }
1422
1423 /* Increase the slot to make sure there is enough room for next
1424 * array element.
1425 */
1426 if (this->disable_varying_packing &&
1427 !is_varying_packing_safe(type, var))
1428 slot_end += 4;
1429 else
1430 slot_end += type->without_array()->vector_elements;
1431 }
1432
1433 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1434 linker_error(prog, "insufficient contiguous locations available for "
1435 "%s it is possible an array or struct could not be "
1436 "packed between varyings with explicit locations. Try "
1437 "using an explicit location for arrays and structs.",
1438 var->name);
1439 }
1440
1441 this->matches[i].generic_location = *location;
1442
1443 *location += this->matches[i].num_components;
1444 }
1445
1446 return (generic_location + 3) / 4;
1447 }
1448
1449
1450 /**
1451 * Update the producer and consumer shaders to reflect the locations
1452 * assignments that were made by varying_matches::assign_locations().
1453 */
1454 void
1455 varying_matches::store_locations() const
1456 {
1457 for (unsigned i = 0; i < this->num_matches; i++) {
1458 ir_variable *producer_var = this->matches[i].producer_var;
1459 ir_variable *consumer_var = this->matches[i].consumer_var;
1460 unsigned generic_location = this->matches[i].generic_location;
1461 unsigned slot = generic_location / 4;
1462 unsigned offset = generic_location % 4;
1463
1464 if (producer_var) {
1465 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1466 producer_var->data.location_frac = offset;
1467 }
1468
1469 if (consumer_var) {
1470 assert(consumer_var->data.location == -1);
1471 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1472 consumer_var->data.location_frac = offset;
1473 }
1474 }
1475 }
1476
1477
1478 /**
1479 * Compute the "packing class" of the given varying. This is an unsigned
1480 * integer with the property that two variables in the same packing class can
1481 * be safely backed into the same vec4.
1482 */
1483 unsigned
1484 varying_matches::compute_packing_class(const ir_variable *var)
1485 {
1486 /* Without help from the back-end, there is no way to pack together
1487 * variables with different interpolation types, because
1488 * lower_packed_varyings must choose exactly one interpolation type for
1489 * each packed varying it creates.
1490 *
1491 * However, we can safely pack together floats, ints, and uints, because:
1492 *
1493 * - varyings of base type "int" and "uint" must use the "flat"
1494 * interpolation type, which can only occur in GLSL 1.30 and above.
1495 *
1496 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1497 * can store flat floats as ints without losing any information (using
1498 * the ir_unop_bitcast_* opcodes).
1499 *
1500 * Therefore, the packing class depends only on the interpolation type.
1501 */
1502 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1503 (var->data.patch << 2);
1504 packing_class *= 4;
1505 packing_class += var->data.interpolation;
1506 return packing_class;
1507 }
1508
1509
1510 /**
1511 * Compute the "packing order" of the given varying. This is a sort key we
1512 * use to determine when to attempt to pack the given varying relative to
1513 * other varyings in the same packing class.
1514 */
1515 varying_matches::packing_order_enum
1516 varying_matches::compute_packing_order(const ir_variable *var)
1517 {
1518 const glsl_type *element_type = var->type;
1519
1520 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1521 element_type = element_type->fields.array;
1522 }
1523
1524 switch (element_type->component_slots() % 4) {
1525 case 1: return PACKING_ORDER_SCALAR;
1526 case 2: return PACKING_ORDER_VEC2;
1527 case 3: return PACKING_ORDER_VEC3;
1528 case 0: return PACKING_ORDER_VEC4;
1529 default:
1530 assert(!"Unexpected value of vector_elements");
1531 return PACKING_ORDER_VEC4;
1532 }
1533 }
1534
1535
1536 /**
1537 * Comparison function passed to qsort() to sort varyings by packing_class and
1538 * then by packing_order.
1539 */
1540 int
1541 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1542 {
1543 const match *x = (const match *) x_generic;
1544 const match *y = (const match *) y_generic;
1545
1546 if (x->packing_class != y->packing_class)
1547 return x->packing_class - y->packing_class;
1548 return x->packing_order - y->packing_order;
1549 }
1550
1551
1552 /**
1553 * Comparison function passed to qsort() to sort varyings used only by
1554 * transform feedback when packing of other varyings is disabled.
1555 */
1556 int
1557 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1558 {
1559 const match *x = (const match *) x_generic;
1560
1561 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1562 return match_comparator(x_generic, y_generic);
1563
1564 /* FIXME: When the comparator returns 0 it means the elements being
1565 * compared are equivalent. However the qsort documentation says:
1566 *
1567 * "The order of equivalent elements is undefined."
1568 *
1569 * In practice the sort ends up reversing the order of the varyings which
1570 * means locations are also assigned in this reversed order and happens to
1571 * be what we want. This is also whats happening in
1572 * varying_matches::match_comparator().
1573 */
1574 return 0;
1575 }
1576
1577
1578 /**
1579 * Is the given variable a varying variable to be counted against the
1580 * limit in ctx->Const.MaxVarying?
1581 * This includes variables such as texcoords, colors and generic
1582 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1583 */
1584 static bool
1585 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1586 {
1587 /* Only fragment shaders will take a varying variable as an input */
1588 if (stage == MESA_SHADER_FRAGMENT &&
1589 var->data.mode == ir_var_shader_in) {
1590 switch (var->data.location) {
1591 case VARYING_SLOT_POS:
1592 case VARYING_SLOT_FACE:
1593 case VARYING_SLOT_PNTC:
1594 return false;
1595 default:
1596 return true;
1597 }
1598 }
1599 return false;
1600 }
1601
1602
1603 /**
1604 * Visitor class that generates tfeedback_candidate structs describing all
1605 * possible targets of transform feedback.
1606 *
1607 * tfeedback_candidate structs are stored in the hash table
1608 * tfeedback_candidates, which is passed to the constructor. This hash table
1609 * maps varying names to instances of the tfeedback_candidate struct.
1610 */
1611 class tfeedback_candidate_generator : public program_resource_visitor
1612 {
1613 public:
1614 tfeedback_candidate_generator(void *mem_ctx,
1615 hash_table *tfeedback_candidates)
1616 : mem_ctx(mem_ctx),
1617 tfeedback_candidates(tfeedback_candidates),
1618 toplevel_var(NULL),
1619 varying_floats(0)
1620 {
1621 }
1622
1623 void process(ir_variable *var)
1624 {
1625 /* All named varying interface blocks should be flattened by now */
1626 assert(!var->is_interface_instance());
1627
1628 this->toplevel_var = var;
1629 this->varying_floats = 0;
1630 program_resource_visitor::process(var);
1631 }
1632
1633 private:
1634 virtual void visit_field(const glsl_type *type, const char *name,
1635 bool row_major)
1636 {
1637 assert(!type->without_array()->is_record());
1638 assert(!type->without_array()->is_interface());
1639
1640 (void) row_major;
1641
1642 tfeedback_candidate *candidate
1643 = rzalloc(this->mem_ctx, tfeedback_candidate);
1644 candidate->toplevel_var = this->toplevel_var;
1645 candidate->type = type;
1646 candidate->offset = this->varying_floats;
1647 hash_table_insert(this->tfeedback_candidates, candidate,
1648 ralloc_strdup(this->mem_ctx, name));
1649 this->varying_floats += type->component_slots();
1650 }
1651
1652 /**
1653 * Memory context used to allocate hash table keys and values.
1654 */
1655 void * const mem_ctx;
1656
1657 /**
1658 * Hash table in which tfeedback_candidate objects should be stored.
1659 */
1660 hash_table * const tfeedback_candidates;
1661
1662 /**
1663 * Pointer to the toplevel variable that is being traversed.
1664 */
1665 ir_variable *toplevel_var;
1666
1667 /**
1668 * Total number of varying floats that have been visited so far. This is
1669 * used to determine the offset to each varying within the toplevel
1670 * variable.
1671 */
1672 unsigned varying_floats;
1673 };
1674
1675
1676 namespace linker {
1677
1678 void
1679 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1680 hash_table *consumer_inputs,
1681 hash_table *consumer_interface_inputs,
1682 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1683 {
1684 memset(consumer_inputs_with_locations,
1685 0,
1686 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1687
1688 foreach_in_list(ir_instruction, node, ir) {
1689 ir_variable *const input_var = node->as_variable();
1690
1691 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1692 /* All interface blocks should have been lowered by this point */
1693 assert(!input_var->type->is_interface());
1694
1695 if (input_var->data.explicit_location) {
1696 /* assign_varying_locations only cares about finding the
1697 * ir_variable at the start of a contiguous location block.
1698 *
1699 * - For !producer, consumer_inputs_with_locations isn't used.
1700 *
1701 * - For !consumer, consumer_inputs_with_locations is empty.
1702 *
1703 * For consumer && producer, if you were trying to set some
1704 * ir_variable to the middle of a location block on the other side
1705 * of producer/consumer, cross_validate_outputs_to_inputs() should
1706 * be link-erroring due to either type mismatch or location
1707 * overlaps. If the variables do match up, then they've got a
1708 * matching data.location and you only looked at
1709 * consumer_inputs_with_locations[var->data.location], not any
1710 * following entries for the array/structure.
1711 */
1712 consumer_inputs_with_locations[input_var->data.location] =
1713 input_var;
1714 } else if (input_var->get_interface_type() != NULL) {
1715 char *const iface_field_name =
1716 ralloc_asprintf(mem_ctx, "%s.%s",
1717 input_var->get_interface_type()->without_array()->name,
1718 input_var->name);
1719 hash_table_insert(consumer_interface_inputs, input_var,
1720 iface_field_name);
1721 } else {
1722 hash_table_insert(consumer_inputs, input_var,
1723 ralloc_strdup(mem_ctx, input_var->name));
1724 }
1725 }
1726 }
1727 }
1728
1729 /**
1730 * Find a variable from the consumer that "matches" the specified variable
1731 *
1732 * This function only finds inputs with names that match. There is no
1733 * validation (here) that the types, etc. are compatible.
1734 */
1735 ir_variable *
1736 get_matching_input(void *mem_ctx,
1737 const ir_variable *output_var,
1738 hash_table *consumer_inputs,
1739 hash_table *consumer_interface_inputs,
1740 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1741 {
1742 ir_variable *input_var;
1743
1744 if (output_var->data.explicit_location) {
1745 input_var = consumer_inputs_with_locations[output_var->data.location];
1746 } else if (output_var->get_interface_type() != NULL) {
1747 char *const iface_field_name =
1748 ralloc_asprintf(mem_ctx, "%s.%s",
1749 output_var->get_interface_type()->without_array()->name,
1750 output_var->name);
1751 input_var =
1752 (ir_variable *) hash_table_find(consumer_interface_inputs,
1753 iface_field_name);
1754 } else {
1755 input_var =
1756 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1757 }
1758
1759 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1760 ? NULL : input_var;
1761 }
1762
1763 }
1764
1765 static int
1766 io_variable_cmp(const void *_a, const void *_b)
1767 {
1768 const ir_variable *const a = *(const ir_variable **) _a;
1769 const ir_variable *const b = *(const ir_variable **) _b;
1770
1771 if (a->data.explicit_location && b->data.explicit_location)
1772 return b->data.location - a->data.location;
1773
1774 if (a->data.explicit_location && !b->data.explicit_location)
1775 return 1;
1776
1777 if (!a->data.explicit_location && b->data.explicit_location)
1778 return -1;
1779
1780 return -strcmp(a->name, b->name);
1781 }
1782
1783 /**
1784 * Sort the shader IO variables into canonical order
1785 */
1786 static void
1787 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1788 {
1789 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1790 unsigned num_variables = 0;
1791
1792 foreach_in_list(ir_instruction, node, ir) {
1793 ir_variable *const var = node->as_variable();
1794
1795 if (var == NULL || var->data.mode != io_mode)
1796 continue;
1797
1798 /* If we have already encountered more I/O variables that could
1799 * successfully link, bail.
1800 */
1801 if (num_variables == ARRAY_SIZE(var_table))
1802 return;
1803
1804 var_table[num_variables++] = var;
1805 }
1806
1807 if (num_variables == 0)
1808 return;
1809
1810 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1811 * we're going to push the variables on to the IR list as a stack, so we
1812 * want the last variable (in canonical order) to be first in the list.
1813 */
1814 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1815
1816 /* Remove the variable from it's current location in the IR, and put it at
1817 * the front.
1818 */
1819 for (unsigned i = 0; i < num_variables; i++) {
1820 var_table[i]->remove();
1821 ir->push_head(var_table[i]);
1822 }
1823 }
1824
1825 /**
1826 * Generate a bitfield map of the explicit locations for shader varyings.
1827 *
1828 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1829 */
1830 uint64_t
1831 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1832 {
1833 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1834 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1835
1836 uint64_t slots = 0;
1837 int var_slot;
1838
1839 if (!stage)
1840 return slots;
1841
1842 foreach_in_list(ir_instruction, node, stage->ir) {
1843 ir_variable *const var = node->as_variable();
1844
1845 if (var == NULL || var->data.mode != io_mode ||
1846 !var->data.explicit_location ||
1847 var->data.location < VARYING_SLOT_VAR0)
1848 continue;
1849
1850 var_slot = var->data.location - VARYING_SLOT_VAR0;
1851
1852 unsigned num_elements = get_varying_type(var, stage->Stage)
1853 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1854 for (unsigned i = 0; i < num_elements; i++) {
1855 if (var_slot >= 0 && var_slot < MAX_VARYING)
1856 slots |= UINT64_C(1) << var_slot;
1857 var_slot += 1;
1858 }
1859 }
1860
1861 return slots;
1862 }
1863
1864
1865 /**
1866 * Assign locations for all variables that are produced in one pipeline stage
1867 * (the "producer") and consumed in the next stage (the "consumer").
1868 *
1869 * Variables produced by the producer may also be consumed by transform
1870 * feedback.
1871 *
1872 * \param num_tfeedback_decls is the number of declarations indicating
1873 * variables that may be consumed by transform feedback.
1874 *
1875 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1876 * representing the result of parsing the strings passed to
1877 * glTransformFeedbackVaryings(). assign_location() will be called for
1878 * each of these objects that matches one of the outputs of the
1879 * producer.
1880 *
1881 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1882 * be NULL. In this case, varying locations are assigned solely based on the
1883 * requirements of transform feedback.
1884 */
1885 bool
1886 assign_varying_locations(struct gl_context *ctx,
1887 void *mem_ctx,
1888 struct gl_shader_program *prog,
1889 gl_shader *producer, gl_shader *consumer,
1890 unsigned num_tfeedback_decls,
1891 tfeedback_decl *tfeedback_decls)
1892 {
1893 /* Tessellation shaders treat inputs and outputs as shared memory and can
1894 * access inputs and outputs of other invocations.
1895 * Therefore, they can't be lowered to temps easily (and definitely not
1896 * efficiently).
1897 */
1898 bool unpackable_tess =
1899 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1900 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1901 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1902
1903 /* Transform feedback code assumes varying arrays are packed, so if the
1904 * driver has disabled varying packing, make sure to at least enable
1905 * packing required by transform feedback.
1906 */
1907 bool xfb_enabled =
1908 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1909
1910 /* Disable varying packing for GL 4.4+ as there is no guarantee
1911 * that interpolation qualifiers will match between shaders in these
1912 * versions. We also disable packing on outerward facing interfaces for
1913 * SSO because in ES we need to retain the unpacked varying information
1914 * for draw time validation. For desktop GL we could allow packing for
1915 * versions < 4.4 but its just safer not to do packing.
1916 *
1917 * Packing is still enabled on individual arrays, structs, and matrices as
1918 * these are required by the transform feedback code and it is still safe
1919 * to do so. We also enable packing when a varying is only used for
1920 * transform feedback and its not a SSO.
1921 *
1922 * Varying packing currently only packs together varyings with matching
1923 * interpolation qualifiers as the backends assume all packed components
1924 * are to be processed in the same way. Therefore we cannot do packing in
1925 * these versions of GL without the risk of mismatching interfaces.
1926 *
1927 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1928 *
1929 * "The type and presence of interpolation qualifiers of variables with
1930 * the same name declared in all linked shaders for the same cross-stage
1931 * interface must match, otherwise the link command will fail.
1932 *
1933 * When comparing an output from one stage to an input of a subsequent
1934 * stage, the input and output don't match if their interpolation
1935 * qualifiers (or lack thereof) are not the same."
1936 *
1937 * This text was also in at least revison 7 of the 4.40 spec but is no
1938 * longer in revision 9 and not in the 4.50 spec.
1939 */
1940 bool disable_varying_packing =
1941 ctx->Const.DisableVaryingPacking || unpackable_tess;
1942 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
1943 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
1944 disable_varying_packing = true;
1945
1946 varying_matches matches(disable_varying_packing, xfb_enabled,
1947 producer ? producer->Stage : (gl_shader_stage)-1,
1948 consumer ? consumer->Stage : (gl_shader_stage)-1);
1949 hash_table *tfeedback_candidates
1950 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1951 hash_table *consumer_inputs
1952 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1953 hash_table *consumer_interface_inputs
1954 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1955 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
1956 NULL,
1957 };
1958
1959 unsigned consumer_vertices = 0;
1960 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1961 consumer_vertices = prog->Geom.VerticesIn;
1962
1963 /* Operate in a total of four passes.
1964 *
1965 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1966 * that inputs / outputs of separable shaders will be assigned
1967 * predictable locations regardless of the order in which declarations
1968 * appeared in the shader source.
1969 *
1970 * 2. Assign locations for any matching inputs and outputs.
1971 *
1972 * 3. Mark output variables in the producer that do not have locations as
1973 * not being outputs. This lets the optimizer eliminate them.
1974 *
1975 * 4. Mark input variables in the consumer that do not have locations as
1976 * not being inputs. This lets the optimizer eliminate them.
1977 */
1978 if (consumer)
1979 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1980
1981 if (producer)
1982 canonicalize_shader_io(producer->ir, ir_var_shader_out);
1983
1984 if (consumer)
1985 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
1986 consumer_inputs,
1987 consumer_interface_inputs,
1988 consumer_inputs_with_locations);
1989
1990 if (producer) {
1991 foreach_in_list(ir_instruction, node, producer->ir) {
1992 ir_variable *const output_var = node->as_variable();
1993
1994 if ((output_var == NULL) ||
1995 (output_var->data.mode != ir_var_shader_out))
1996 continue;
1997
1998 /* Only geometry shaders can use non-zero streams */
1999 assert(output_var->data.stream == 0 ||
2000 (output_var->data.stream < MAX_VERTEX_STREAMS &&
2001 producer->Stage == MESA_SHADER_GEOMETRY));
2002
2003 if (num_tfeedback_decls > 0) {
2004 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
2005 g.process(output_var);
2006 }
2007
2008 ir_variable *const input_var =
2009 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
2010 consumer_interface_inputs,
2011 consumer_inputs_with_locations);
2012
2013 /* If a matching input variable was found, add this ouptut (and the
2014 * input) to the set. If this is a separable program and there is no
2015 * consumer stage, add the output.
2016 *
2017 * Always add TCS outputs. They are shared by all invocations
2018 * within a patch and can be used as shared memory.
2019 */
2020 if (input_var || (prog->SeparateShader && consumer == NULL) ||
2021 producer->Type == GL_TESS_CONTROL_SHADER) {
2022 matches.record(output_var, input_var);
2023 }
2024
2025 /* Only stream 0 outputs can be consumed in the next stage */
2026 if (input_var && output_var->data.stream != 0) {
2027 linker_error(prog, "output %s is assigned to stream=%d but "
2028 "is linked to an input, which requires stream=0",
2029 output_var->name, output_var->data.stream);
2030 return false;
2031 }
2032 }
2033 } else {
2034 /* If there's no producer stage, then this must be a separable program.
2035 * For example, we may have a program that has just a fragment shader.
2036 * Later this program will be used with some arbitrary vertex (or
2037 * geometry) shader program. This means that locations must be assigned
2038 * for all the inputs.
2039 */
2040 foreach_in_list(ir_instruction, node, consumer->ir) {
2041 ir_variable *const input_var = node->as_variable();
2042
2043 if ((input_var == NULL) ||
2044 (input_var->data.mode != ir_var_shader_in))
2045 continue;
2046
2047 matches.record(NULL, input_var);
2048 }
2049 }
2050
2051 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2052 if (!tfeedback_decls[i].is_varying())
2053 continue;
2054
2055 const tfeedback_candidate *matched_candidate
2056 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2057
2058 if (matched_candidate == NULL) {
2059 hash_table_dtor(tfeedback_candidates);
2060 hash_table_dtor(consumer_inputs);
2061 hash_table_dtor(consumer_interface_inputs);
2062 return false;
2063 }
2064
2065 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2066 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2067 matches.record(matched_candidate->toplevel_var, NULL);
2068 }
2069 }
2070
2071 const uint64_t reserved_slots =
2072 reserved_varying_slot(producer, ir_var_shader_out) |
2073 reserved_varying_slot(consumer, ir_var_shader_in);
2074
2075 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2076 prog->SeparateShader);
2077 matches.store_locations();
2078
2079 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2080 if (!tfeedback_decls[i].is_varying())
2081 continue;
2082
2083 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2084 hash_table_dtor(tfeedback_candidates);
2085 hash_table_dtor(consumer_inputs);
2086 hash_table_dtor(consumer_interface_inputs);
2087 return false;
2088 }
2089 }
2090
2091 hash_table_dtor(tfeedback_candidates);
2092 hash_table_dtor(consumer_inputs);
2093 hash_table_dtor(consumer_interface_inputs);
2094
2095 if (consumer && producer) {
2096 foreach_in_list(ir_instruction, node, consumer->ir) {
2097 ir_variable *const var = node->as_variable();
2098
2099 if (var && var->data.mode == ir_var_shader_in &&
2100 var->data.is_unmatched_generic_inout) {
2101 if (!prog->IsES && prog->Version <= 120) {
2102 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2103 *
2104 * Only those varying variables used (i.e. read) in
2105 * the fragment shader executable must be written to
2106 * by the vertex shader executable; declaring
2107 * superfluous varying variables in a vertex shader is
2108 * permissible.
2109 *
2110 * We interpret this text as meaning that the VS must
2111 * write the variable for the FS to read it. See
2112 * "glsl1-varying read but not written" in piglit.
2113 */
2114 linker_error(prog, "%s shader varying %s not written "
2115 "by %s shader\n.",
2116 _mesa_shader_stage_to_string(consumer->Stage),
2117 var->name,
2118 _mesa_shader_stage_to_string(producer->Stage));
2119 } else {
2120 linker_warning(prog, "%s shader varying %s not written "
2121 "by %s shader\n.",
2122 _mesa_shader_stage_to_string(consumer->Stage),
2123 var->name,
2124 _mesa_shader_stage_to_string(producer->Stage));
2125 }
2126 }
2127 }
2128
2129 /* Now that validation is done its safe to remove unused varyings. As
2130 * we have both a producer and consumer its safe to remove unused
2131 * varyings even if the program is a SSO because the stages are being
2132 * linked together i.e. we have a multi-stage SSO.
2133 */
2134 remove_unused_shader_inputs_and_outputs(false, producer,
2135 ir_var_shader_out);
2136 remove_unused_shader_inputs_and_outputs(false, consumer,
2137 ir_var_shader_in);
2138 }
2139
2140 if (producer) {
2141 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2142 0, producer, disable_varying_packing,
2143 xfb_enabled);
2144 }
2145
2146 if (consumer) {
2147 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2148 consumer_vertices, consumer,
2149 disable_varying_packing, xfb_enabled);
2150 }
2151
2152 return true;
2153 }
2154
2155 bool
2156 check_against_output_limit(struct gl_context *ctx,
2157 struct gl_shader_program *prog,
2158 gl_shader *producer)
2159 {
2160 unsigned output_vectors = 0;
2161
2162 foreach_in_list(ir_instruction, node, producer->ir) {
2163 ir_variable *const var = node->as_variable();
2164
2165 if (var && var->data.mode == ir_var_shader_out &&
2166 var_counts_against_varying_limit(producer->Stage, var)) {
2167 /* outputs for fragment shader can't be doubles */
2168 output_vectors += var->type->count_attribute_slots(false);
2169 }
2170 }
2171
2172 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2173 unsigned max_output_components =
2174 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2175
2176 const unsigned output_components = output_vectors * 4;
2177 if (output_components > max_output_components) {
2178 if (ctx->API == API_OPENGLES2 || prog->IsES)
2179 linker_error(prog, "%s shader uses too many output vectors "
2180 "(%u > %u)\n",
2181 _mesa_shader_stage_to_string(producer->Stage),
2182 output_vectors,
2183 max_output_components / 4);
2184 else
2185 linker_error(prog, "%s shader uses too many output components "
2186 "(%u > %u)\n",
2187 _mesa_shader_stage_to_string(producer->Stage),
2188 output_components,
2189 max_output_components);
2190
2191 return false;
2192 }
2193
2194 return true;
2195 }
2196
2197 bool
2198 check_against_input_limit(struct gl_context *ctx,
2199 struct gl_shader_program *prog,
2200 gl_shader *consumer)
2201 {
2202 unsigned input_vectors = 0;
2203
2204 foreach_in_list(ir_instruction, node, consumer->ir) {
2205 ir_variable *const var = node->as_variable();
2206
2207 if (var && var->data.mode == ir_var_shader_in &&
2208 var_counts_against_varying_limit(consumer->Stage, var)) {
2209 /* vertex inputs aren't varying counted */
2210 input_vectors += var->type->count_attribute_slots(false);
2211 }
2212 }
2213
2214 assert(consumer->Stage != MESA_SHADER_VERTEX);
2215 unsigned max_input_components =
2216 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2217
2218 const unsigned input_components = input_vectors * 4;
2219 if (input_components > max_input_components) {
2220 if (ctx->API == API_OPENGLES2 || prog->IsES)
2221 linker_error(prog, "%s shader uses too many input vectors "
2222 "(%u > %u)\n",
2223 _mesa_shader_stage_to_string(consumer->Stage),
2224 input_vectors,
2225 max_input_components / 4);
2226 else
2227 linker_error(prog, "%s shader uses too many input components "
2228 "(%u > %u)\n",
2229 _mesa_shader_stage_to_string(consumer->Stage),
2230 input_components,
2231 max_input_components);
2232
2233 return false;
2234 }
2235
2236 return true;
2237 }