glsl: generate link error when implicit stride is to large
[mesa.git] / src / compiler / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Get the varying type stripped of the outermost array if we're processing
45 * a stage whose varyings are arrays indexed by a vertex number (such as
46 * geometry shader inputs).
47 */
48 static const glsl_type *
49 get_varying_type(const ir_variable *var, gl_shader_stage stage)
50 {
51 const glsl_type *type = var->type;
52
53 if (!var->data.patch &&
54 ((var->data.mode == ir_var_shader_out &&
55 stage == MESA_SHADER_TESS_CTRL) ||
56 (var->data.mode == ir_var_shader_in &&
57 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
58 stage == MESA_SHADER_GEOMETRY)))) {
59 assert(type->is_array());
60 type = type->fields.array;
61 }
62
63 return type;
64 }
65
66 static void
67 create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name,
68 size_t name_length, unsigned *count,
69 const char *ifc_member_name,
70 const glsl_type *ifc_member_t, char ***varying_names)
71 {
72 if (t->is_interface()) {
73 size_t new_length = name_length;
74
75 assert(ifc_member_name && ifc_member_t);
76 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
77
78 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
79 NULL, NULL, varying_names);
80 } else if (t->is_record()) {
81 for (unsigned i = 0; i < t->length; i++) {
82 const char *field = t->fields.structure[i].name;
83 size_t new_length = name_length;
84
85 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
86
87 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name,
88 new_length, count, NULL, NULL,
89 varying_names);
90 }
91 } else if (t->without_array()->is_record() ||
92 t->without_array()->is_interface() ||
93 (t->is_array() && t->fields.array->is_array())) {
94 for (unsigned i = 0; i < t->length; i++) {
95 size_t new_length = name_length;
96
97 /* Append the subscript to the current variable name */
98 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
99
100 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length,
101 count, ifc_member_name, ifc_member_t,
102 varying_names);
103 }
104 } else {
105 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
106 }
107 }
108
109 bool
110 process_xfb_layout_qualifiers(void *mem_ctx, const gl_shader *sh,
111 unsigned *num_tfeedback_decls,
112 char ***varying_names)
113 {
114 bool has_xfb_qualifiers = false;
115
116 foreach_in_list(ir_instruction, node, sh->ir) {
117 ir_variable *var = node->as_variable();
118 if (!var || var->data.mode != ir_var_shader_out)
119 continue;
120
121 /* From the ARB_enhanced_layouts spec:
122 *
123 * "Any shader making any static use (after preprocessing) of any of
124 * these *xfb_* qualifiers will cause the shader to be in a
125 * transform feedback capturing mode and hence responsible for
126 * describing the transform feedback setup. This mode will capture
127 * any output selected by *xfb_offset*, directly or indirectly, to
128 * a transform feedback buffer."
129 */
130 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
131 has_xfb_qualifiers = true;
132 }
133
134 if (var->data.explicit_xfb_offset) {
135 *num_tfeedback_decls += var->type->varying_count();
136 has_xfb_qualifiers = true;
137 }
138 }
139
140 if (*num_tfeedback_decls == 0)
141 return has_xfb_qualifiers;
142
143 unsigned i = 0;
144 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls);
145 foreach_in_list(ir_instruction, node, sh->ir) {
146 ir_variable *var = node->as_variable();
147 if (!var || var->data.mode != ir_var_shader_out)
148 continue;
149
150 if (var->data.explicit_xfb_offset) {
151 char *name;
152 const glsl_type *type, *member_type;
153
154 if (var->data.from_named_ifc_block) {
155 type = var->get_interface_type();
156 /* Find the member type before it was altered by lowering */
157 member_type =
158 type->fields.structure[type->field_index(var->name)].type;
159 name = ralloc_strdup(NULL, type->without_array()->name);
160 } else {
161 type = var->type;
162 member_type = NULL;
163 name = ralloc_strdup(NULL, var->name);
164 }
165 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
166 var->name, member_type, varying_names);
167 ralloc_free(name);
168 }
169 }
170
171 assert(i == *num_tfeedback_decls);
172 return has_xfb_qualifiers;
173 }
174
175 /**
176 * Validate the types and qualifiers of an output from one stage against the
177 * matching input to another stage.
178 */
179 static void
180 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
181 const ir_variable *input,
182 const ir_variable *output,
183 gl_shader_stage consumer_stage,
184 gl_shader_stage producer_stage)
185 {
186 /* Check that the types match between stages.
187 */
188 const glsl_type *type_to_match = input->type;
189
190 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
191 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
192 consumer_stage != MESA_SHADER_FRAGMENT) ||
193 consumer_stage == MESA_SHADER_GEOMETRY;
194 if (extra_array_level) {
195 assert(type_to_match->is_array());
196 type_to_match = type_to_match->fields.array;
197 }
198
199 if (type_to_match != output->type) {
200 /* There is a bit of a special case for gl_TexCoord. This
201 * built-in is unsized by default. Applications that variable
202 * access it must redeclare it with a size. There is some
203 * language in the GLSL spec that implies the fragment shader
204 * and vertex shader do not have to agree on this size. Other
205 * driver behave this way, and one or two applications seem to
206 * rely on it.
207 *
208 * Neither declaration needs to be modified here because the array
209 * sizes are fixed later when update_array_sizes is called.
210 *
211 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
212 *
213 * "Unlike user-defined varying variables, the built-in
214 * varying variables don't have a strict one-to-one
215 * correspondence between the vertex language and the
216 * fragment language."
217 */
218 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
219 linker_error(prog,
220 "%s shader output `%s' declared as type `%s', "
221 "but %s shader input declared as type `%s'\n",
222 _mesa_shader_stage_to_string(producer_stage),
223 output->name,
224 output->type->name,
225 _mesa_shader_stage_to_string(consumer_stage),
226 input->type->name);
227 return;
228 }
229 }
230
231 /* Check that all of the qualifiers match between stages.
232 */
233 if (input->data.centroid != output->data.centroid) {
234 linker_error(prog,
235 "%s shader output `%s' %s centroid qualifier, "
236 "but %s shader input %s centroid qualifier\n",
237 _mesa_shader_stage_to_string(producer_stage),
238 output->name,
239 (output->data.centroid) ? "has" : "lacks",
240 _mesa_shader_stage_to_string(consumer_stage),
241 (input->data.centroid) ? "has" : "lacks");
242 return;
243 }
244
245 if (input->data.sample != output->data.sample) {
246 linker_error(prog,
247 "%s shader output `%s' %s sample qualifier, "
248 "but %s shader input %s sample qualifier\n",
249 _mesa_shader_stage_to_string(producer_stage),
250 output->name,
251 (output->data.sample) ? "has" : "lacks",
252 _mesa_shader_stage_to_string(consumer_stage),
253 (input->data.sample) ? "has" : "lacks");
254 return;
255 }
256
257 if (input->data.patch != output->data.patch) {
258 linker_error(prog,
259 "%s shader output `%s' %s patch qualifier, "
260 "but %s shader input %s patch qualifier\n",
261 _mesa_shader_stage_to_string(producer_stage),
262 output->name,
263 (output->data.patch) ? "has" : "lacks",
264 _mesa_shader_stage_to_string(consumer_stage),
265 (input->data.patch) ? "has" : "lacks");
266 return;
267 }
268
269 if (!prog->IsES && input->data.invariant != output->data.invariant) {
270 linker_error(prog,
271 "%s shader output `%s' %s invariant qualifier, "
272 "but %s shader input %s invariant qualifier\n",
273 _mesa_shader_stage_to_string(producer_stage),
274 output->name,
275 (output->data.invariant) ? "has" : "lacks",
276 _mesa_shader_stage_to_string(consumer_stage),
277 (input->data.invariant) ? "has" : "lacks");
278 return;
279 }
280
281 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
282 * to match cross stage, they must only match within the same stage.
283 *
284 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
285 *
286 * "It is a link-time error if, within the same stage, the interpolation
287 * qualifiers of variables of the same name do not match.
288 *
289 */
290 if (input->data.interpolation != output->data.interpolation &&
291 prog->Version < 440) {
292 linker_error(prog,
293 "%s shader output `%s' specifies %s "
294 "interpolation qualifier, "
295 "but %s shader input specifies %s "
296 "interpolation qualifier\n",
297 _mesa_shader_stage_to_string(producer_stage),
298 output->name,
299 interpolation_string(output->data.interpolation),
300 _mesa_shader_stage_to_string(consumer_stage),
301 interpolation_string(input->data.interpolation));
302 return;
303 }
304 }
305
306 /**
307 * Validate front and back color outputs against single color input
308 */
309 static void
310 cross_validate_front_and_back_color(struct gl_shader_program *prog,
311 const ir_variable *input,
312 const ir_variable *front_color,
313 const ir_variable *back_color,
314 gl_shader_stage consumer_stage,
315 gl_shader_stage producer_stage)
316 {
317 if (front_color != NULL && front_color->data.assigned)
318 cross_validate_types_and_qualifiers(prog, input, front_color,
319 consumer_stage, producer_stage);
320
321 if (back_color != NULL && back_color->data.assigned)
322 cross_validate_types_and_qualifiers(prog, input, back_color,
323 consumer_stage, producer_stage);
324 }
325
326 /**
327 * Validate that outputs from one stage match inputs of another
328 */
329 void
330 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
331 gl_shader *producer, gl_shader *consumer)
332 {
333 glsl_symbol_table parameters;
334 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
335
336 /* Find all shader outputs in the "producer" stage.
337 */
338 foreach_in_list(ir_instruction, node, producer->ir) {
339 ir_variable *const var = node->as_variable();
340
341 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
342 continue;
343
344 if (!var->data.explicit_location
345 || var->data.location < VARYING_SLOT_VAR0)
346 parameters.add_variable(var);
347 else {
348 /* User-defined varyings with explicit locations are handled
349 * differently because they do not need to have matching names.
350 */
351 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
352
353 if (explicit_locations[idx] != NULL) {
354 linker_error(prog,
355 "%s shader has multiple outputs explicitly "
356 "assigned to location %d\n",
357 _mesa_shader_stage_to_string(producer->Stage),
358 idx);
359 return;
360 }
361
362 explicit_locations[idx] = var;
363 }
364 }
365
366
367 /* Find all shader inputs in the "consumer" stage. Any variables that have
368 * matching outputs already in the symbol table must have the same type and
369 * qualifiers.
370 *
371 * Exception: if the consumer is the geometry shader, then the inputs
372 * should be arrays and the type of the array element should match the type
373 * of the corresponding producer output.
374 */
375 foreach_in_list(ir_instruction, node, consumer->ir) {
376 ir_variable *const input = node->as_variable();
377
378 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
379 continue;
380
381 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
382 const ir_variable *const front_color =
383 parameters.get_variable("gl_FrontColor");
384
385 const ir_variable *const back_color =
386 parameters.get_variable("gl_BackColor");
387
388 cross_validate_front_and_back_color(prog, input,
389 front_color, back_color,
390 consumer->Stage, producer->Stage);
391 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
392 const ir_variable *const front_color =
393 parameters.get_variable("gl_FrontSecondaryColor");
394
395 const ir_variable *const back_color =
396 parameters.get_variable("gl_BackSecondaryColor");
397
398 cross_validate_front_and_back_color(prog, input,
399 front_color, back_color,
400 consumer->Stage, producer->Stage);
401 } else {
402 /* The rules for connecting inputs and outputs change in the presence
403 * of explicit locations. In this case, we no longer care about the
404 * names of the variables. Instead, we care only about the
405 * explicitly assigned location.
406 */
407 ir_variable *output = NULL;
408 if (input->data.explicit_location
409 && input->data.location >= VARYING_SLOT_VAR0) {
410 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
411
412 if (output == NULL) {
413 linker_error(prog,
414 "%s shader input `%s' with explicit location "
415 "has no matching output\n",
416 _mesa_shader_stage_to_string(consumer->Stage),
417 input->name);
418 }
419 } else {
420 output = parameters.get_variable(input->name);
421 }
422
423 if (output != NULL) {
424 /* Interface blocks have their own validation elsewhere so don't
425 * try validating them here.
426 */
427 if (!(input->get_interface_type() &&
428 output->get_interface_type()))
429 cross_validate_types_and_qualifiers(prog, input, output,
430 consumer->Stage,
431 producer->Stage);
432 } else {
433 /* Check for input vars with unmatched output vars in prev stage
434 * taking into account that interface blocks could have a matching
435 * output but with different name, so we ignore them.
436 */
437 assert(!input->data.assigned);
438 if (input->data.used && !input->get_interface_type() &&
439 !input->data.explicit_location && !prog->SeparateShader)
440 linker_error(prog,
441 "%s shader input `%s' "
442 "has no matching output in the previous stage\n",
443 _mesa_shader_stage_to_string(consumer->Stage),
444 input->name);
445 }
446 }
447 }
448 }
449
450 /**
451 * Demote shader inputs and outputs that are not used in other stages, and
452 * remove them via dead code elimination.
453 */
454 void
455 remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object,
456 gl_shader *sh,
457 enum ir_variable_mode mode)
458 {
459 if (is_separate_shader_object)
460 return;
461
462 foreach_in_list(ir_instruction, node, sh->ir) {
463 ir_variable *const var = node->as_variable();
464
465 if ((var == NULL) || (var->data.mode != int(mode)))
466 continue;
467
468 /* A shader 'in' or 'out' variable is only really an input or output if
469 * its value is used by other shader stages. This will cause the
470 * variable to have a location assigned.
471 */
472 if (var->data.is_unmatched_generic_inout) {
473 assert(var->data.mode != ir_var_temporary);
474 var->data.mode = ir_var_auto;
475 }
476 }
477
478 /* Eliminate code that is now dead due to unused inputs/outputs being
479 * demoted.
480 */
481 while (do_dead_code(sh->ir, false))
482 ;
483
484 }
485
486 /**
487 * Initialize this object based on a string that was passed to
488 * glTransformFeedbackVaryings.
489 *
490 * If the input is mal-formed, this call still succeeds, but it sets
491 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
492 * will fail to find any matching variable.
493 */
494 void
495 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
496 const char *input)
497 {
498 /* We don't have to be pedantic about what is a valid GLSL variable name,
499 * because any variable with an invalid name can't exist in the IR anyway.
500 */
501
502 this->location = -1;
503 this->orig_name = input;
504 this->lowered_builtin_array_variable = none;
505 this->skip_components = 0;
506 this->next_buffer_separator = false;
507 this->matched_candidate = NULL;
508 this->stream_id = 0;
509 this->buffer = 0;
510 this->offset = 0;
511
512 if (ctx->Extensions.ARB_transform_feedback3) {
513 /* Parse gl_NextBuffer. */
514 if (strcmp(input, "gl_NextBuffer") == 0) {
515 this->next_buffer_separator = true;
516 return;
517 }
518
519 /* Parse gl_SkipComponents. */
520 if (strcmp(input, "gl_SkipComponents1") == 0)
521 this->skip_components = 1;
522 else if (strcmp(input, "gl_SkipComponents2") == 0)
523 this->skip_components = 2;
524 else if (strcmp(input, "gl_SkipComponents3") == 0)
525 this->skip_components = 3;
526 else if (strcmp(input, "gl_SkipComponents4") == 0)
527 this->skip_components = 4;
528
529 if (this->skip_components)
530 return;
531 }
532
533 /* Parse a declaration. */
534 const char *base_name_end;
535 long subscript = parse_program_resource_name(input, &base_name_end);
536 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
537 if (this->var_name == NULL) {
538 _mesa_error_no_memory(__func__);
539 return;
540 }
541
542 if (subscript >= 0) {
543 this->array_subscript = subscript;
544 this->is_subscripted = true;
545 } else {
546 this->is_subscripted = false;
547 }
548
549 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
550 * class must behave specially to account for the fact that gl_ClipDistance
551 * is converted from a float[8] to a vec4[2].
552 */
553 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
554 strcmp(this->var_name, "gl_ClipDistance") == 0) {
555 this->lowered_builtin_array_variable = clip_distance;
556 }
557
558 if (ctx->Const.LowerTessLevel &&
559 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
560 this->lowered_builtin_array_variable = tess_level_outer;
561 if (ctx->Const.LowerTessLevel &&
562 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
563 this->lowered_builtin_array_variable = tess_level_inner;
564 }
565
566
567 /**
568 * Determine whether two tfeedback_decl objects refer to the same variable and
569 * array index (if applicable).
570 */
571 bool
572 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
573 {
574 assert(x.is_varying() && y.is_varying());
575
576 if (strcmp(x.var_name, y.var_name) != 0)
577 return false;
578 if (x.is_subscripted != y.is_subscripted)
579 return false;
580 if (x.is_subscripted && x.array_subscript != y.array_subscript)
581 return false;
582 return true;
583 }
584
585
586 /**
587 * Assign a location and stream ID for this tfeedback_decl object based on the
588 * transform feedback candidate found by find_candidate.
589 *
590 * If an error occurs, the error is reported through linker_error() and false
591 * is returned.
592 */
593 bool
594 tfeedback_decl::assign_location(struct gl_context *ctx,
595 struct gl_shader_program *prog)
596 {
597 assert(this->is_varying());
598
599 unsigned fine_location
600 = this->matched_candidate->toplevel_var->data.location * 4
601 + this->matched_candidate->toplevel_var->data.location_frac
602 + this->matched_candidate->offset;
603 const unsigned dmul =
604 this->matched_candidate->type->without_array()->is_double() ? 2 : 1;
605
606 if (this->matched_candidate->type->is_array()) {
607 /* Array variable */
608 const unsigned matrix_cols =
609 this->matched_candidate->type->fields.array->matrix_columns;
610 const unsigned vector_elements =
611 this->matched_candidate->type->fields.array->vector_elements;
612 unsigned actual_array_size;
613 switch (this->lowered_builtin_array_variable) {
614 case clip_distance:
615 actual_array_size = prog->LastClipDistanceArraySize;
616 break;
617 case tess_level_outer:
618 actual_array_size = 4;
619 break;
620 case tess_level_inner:
621 actual_array_size = 2;
622 break;
623 case none:
624 default:
625 actual_array_size = this->matched_candidate->type->array_size();
626 break;
627 }
628
629 if (this->is_subscripted) {
630 /* Check array bounds. */
631 if (this->array_subscript >= actual_array_size) {
632 linker_error(prog, "Transform feedback varying %s has index "
633 "%i, but the array size is %u.",
634 this->orig_name, this->array_subscript,
635 actual_array_size);
636 return false;
637 }
638 unsigned array_elem_size = this->lowered_builtin_array_variable ?
639 1 : vector_elements * matrix_cols * dmul;
640 fine_location += array_elem_size * this->array_subscript;
641 this->size = 1;
642 } else {
643 this->size = actual_array_size;
644 }
645 this->vector_elements = vector_elements;
646 this->matrix_columns = matrix_cols;
647 if (this->lowered_builtin_array_variable)
648 this->type = GL_FLOAT;
649 else
650 this->type = this->matched_candidate->type->fields.array->gl_type;
651 } else {
652 /* Regular variable (scalar, vector, or matrix) */
653 if (this->is_subscripted) {
654 linker_error(prog, "Transform feedback varying %s requested, "
655 "but %s is not an array.",
656 this->orig_name, this->var_name);
657 return false;
658 }
659 this->size = 1;
660 this->vector_elements = this->matched_candidate->type->vector_elements;
661 this->matrix_columns = this->matched_candidate->type->matrix_columns;
662 this->type = this->matched_candidate->type->gl_type;
663 }
664 this->location = fine_location / 4;
665 this->location_frac = fine_location % 4;
666
667 /* From GL_EXT_transform_feedback:
668 * A program will fail to link if:
669 *
670 * * the total number of components to capture in any varying
671 * variable in <varyings> is greater than the constant
672 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
673 * buffer mode is SEPARATE_ATTRIBS_EXT;
674 */
675 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
676 this->num_components() >
677 ctx->Const.MaxTransformFeedbackSeparateComponents) {
678 linker_error(prog, "Transform feedback varying %s exceeds "
679 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
680 this->orig_name);
681 return false;
682 }
683
684 /* Only transform feedback varyings can be assigned to non-zero streams,
685 * so assign the stream id here.
686 */
687 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
688
689 unsigned array_offset = this->array_subscript * 4 * dmul;
690 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul;
691 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer;
692 this->offset = this->matched_candidate->toplevel_var->data.offset +
693 array_offset + struct_offset;
694
695 return true;
696 }
697
698
699 unsigned
700 tfeedback_decl::get_num_outputs() const
701 {
702 if (!this->is_varying()) {
703 return 0;
704 }
705 return (this->num_components() + this->location_frac + 3)/4;
706 }
707
708
709 /**
710 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
711 *
712 * If an error occurs, the error is reported through linker_error() and false
713 * is returned.
714 */
715 bool
716 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
717 struct gl_transform_feedback_info *info,
718 unsigned buffer, const unsigned max_outputs,
719 bool *explicit_stride, bool has_xfb_qualifiers) const
720 {
721 assert(!this->next_buffer_separator);
722
723 /* Handle gl_SkipComponents. */
724 if (this->skip_components) {
725 info->Buffers[buffer].Stride += this->skip_components;
726 return true;
727 }
728
729 unsigned xfb_offset = 0;
730 if (has_xfb_qualifiers) {
731 xfb_offset = this->offset / 4;
732 } else {
733 xfb_offset = info->Buffers[buffer].Stride;
734 }
735
736 unsigned location = this->location;
737 unsigned location_frac = this->location_frac;
738 unsigned num_components = this->num_components();
739 while (num_components > 0) {
740 unsigned output_size = MIN2(num_components, 4 - location_frac);
741 assert(info->NumOutputs < max_outputs);
742 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
743 info->Outputs[info->NumOutputs].OutputRegister = location;
744 info->Outputs[info->NumOutputs].NumComponents = output_size;
745 info->Outputs[info->NumOutputs].StreamId = stream_id;
746 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
747 info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
748 ++info->NumOutputs;
749 info->Buffers[buffer].Stream = this->stream_id;
750 xfb_offset += output_size;
751
752 num_components -= output_size;
753 location++;
754 location_frac = 0;
755 }
756
757 if (explicit_stride && explicit_stride[buffer]) {
758 if (this->is_double() && info->Buffers[buffer].Stride % 2) {
759 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
760 "multiple of 8 as its applied to a type that is or "
761 "contains a double.",
762 info->Buffers[buffer].Stride * 4);
763 return false;
764 }
765
766 if ((this->offset / 4) / info->Buffers[buffer].Stride !=
767 (xfb_offset - 1) / info->Buffers[buffer].Stride) {
768 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
769 "buffer (%d)", xfb_offset * 4,
770 info->Buffers[buffer].Stride * 4, buffer);
771 return false;
772 }
773 } else {
774 info->Buffers[buffer].Stride = xfb_offset;
775 }
776
777 /* From GL_EXT_transform_feedback:
778 * A program will fail to link if:
779 *
780 * * the total number of components to capture is greater than
781 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
782 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
783 *
784 * From GL_ARB_enhanced_layouts:
785 *
786 * "The resulting stride (implicit or explicit) must be less than or
787 * equal to the implementation-dependent constant
788 * gl_MaxTransformFeedbackInterleavedComponents."
789 */
790 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
791 has_xfb_qualifiers) &&
792 info->Buffers[buffer].Stride >
793 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
794 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
795 "limit has been exceeded.");
796 return false;
797 }
798
799 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog,
800 this->orig_name);
801 info->Varyings[info->NumVarying].Type = this->type;
802 info->Varyings[info->NumVarying].Size = this->size;
803 info->NumVarying++;
804
805 return true;
806 }
807
808
809 const tfeedback_candidate *
810 tfeedback_decl::find_candidate(gl_shader_program *prog,
811 hash_table *tfeedback_candidates)
812 {
813 const char *name = this->var_name;
814 switch (this->lowered_builtin_array_variable) {
815 case none:
816 name = this->var_name;
817 break;
818 case clip_distance:
819 name = "gl_ClipDistanceMESA";
820 break;
821 case tess_level_outer:
822 name = "gl_TessLevelOuterMESA";
823 break;
824 case tess_level_inner:
825 name = "gl_TessLevelInnerMESA";
826 break;
827 }
828 this->matched_candidate = (const tfeedback_candidate *)
829 hash_table_find(tfeedback_candidates, name);
830 if (!this->matched_candidate) {
831 /* From GL_EXT_transform_feedback:
832 * A program will fail to link if:
833 *
834 * * any variable name specified in the <varyings> array is not
835 * declared as an output in the geometry shader (if present) or
836 * the vertex shader (if no geometry shader is present);
837 */
838 linker_error(prog, "Transform feedback varying %s undeclared.",
839 this->orig_name);
840 }
841 return this->matched_candidate;
842 }
843
844
845 /**
846 * Parse all the transform feedback declarations that were passed to
847 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
848 *
849 * If an error occurs, the error is reported through linker_error() and false
850 * is returned.
851 */
852 bool
853 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
854 const void *mem_ctx, unsigned num_names,
855 char **varying_names, tfeedback_decl *decls)
856 {
857 for (unsigned i = 0; i < num_names; ++i) {
858 decls[i].init(ctx, mem_ctx, varying_names[i]);
859
860 if (!decls[i].is_varying())
861 continue;
862
863 /* From GL_EXT_transform_feedback:
864 * A program will fail to link if:
865 *
866 * * any two entries in the <varyings> array specify the same varying
867 * variable;
868 *
869 * We interpret this to mean "any two entries in the <varyings> array
870 * specify the same varying variable and array index", since transform
871 * feedback of arrays would be useless otherwise.
872 */
873 for (unsigned j = 0; j < i; ++j) {
874 if (!decls[j].is_varying())
875 continue;
876
877 if (tfeedback_decl::is_same(decls[i], decls[j])) {
878 linker_error(prog, "Transform feedback varying %s specified "
879 "more than once.", varying_names[i]);
880 return false;
881 }
882 }
883 }
884 return true;
885 }
886
887
888 static int
889 cmp_xfb_offset(const void * x_generic, const void * y_generic)
890 {
891 tfeedback_decl *x = (tfeedback_decl *) x_generic;
892 tfeedback_decl *y = (tfeedback_decl *) y_generic;
893
894 if (x->get_buffer() != y->get_buffer())
895 return x->get_buffer() - y->get_buffer();
896 return x->get_offset() - y->get_offset();
897 }
898
899 /**
900 * Store transform feedback location assignments into
901 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
902 *
903 * If an error occurs, the error is reported through linker_error() and false
904 * is returned.
905 */
906 bool
907 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
908 unsigned num_tfeedback_decls,
909 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers)
910 {
911 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
912 * tracking the number of buffers doesn't overflow.
913 */
914 assert(ctx->Const.MaxTransformFeedbackBuffers < 32);
915
916 bool separate_attribs_mode =
917 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
918
919 ralloc_free(prog->LinkedTransformFeedback.Varyings);
920 ralloc_free(prog->LinkedTransformFeedback.Outputs);
921
922 memset(&prog->LinkedTransformFeedback, 0,
923 sizeof(prog->LinkedTransformFeedback));
924
925 /* The xfb_offset qualifier does not have to be used in increasing order
926 * however some drivers expect to receive the list of transform feedback
927 * declarations in order so sort it now for convenience.
928 */
929 if (has_xfb_qualifiers)
930 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls),
931 cmp_xfb_offset);
932
933 prog->LinkedTransformFeedback.Varyings =
934 rzalloc_array(prog,
935 struct gl_transform_feedback_varying_info,
936 num_tfeedback_decls);
937
938 unsigned num_outputs = 0;
939 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
940 num_outputs += tfeedback_decls[i].get_num_outputs();
941
942 prog->LinkedTransformFeedback.Outputs =
943 rzalloc_array(prog,
944 struct gl_transform_feedback_output,
945 num_outputs);
946
947 unsigned num_buffers = 0;
948 unsigned buffers = 0;
949
950 if (!has_xfb_qualifiers && separate_attribs_mode) {
951 /* GL_SEPARATE_ATTRIBS */
952 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
953 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
954 num_buffers, num_outputs, NULL,
955 has_xfb_qualifiers))
956 return false;
957
958 buffers |= 1 << num_buffers;
959 num_buffers++;
960 }
961 }
962 else {
963 /* GL_INVERLEAVED_ATTRIBS */
964 int buffer_stream_id = -1;
965 unsigned buffer =
966 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0;
967 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
968
969 /* Apply any xfb_stride global qualifiers */
970 if (has_xfb_qualifiers) {
971 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
972 if (prog->TransformFeedback.BufferStride[j]) {
973 buffers |= 1 << j;
974 explicit_stride[j] = true;
975 prog->LinkedTransformFeedback.Buffers[j].Stride =
976 prog->TransformFeedback.BufferStride[j] / 4;
977 }
978 }
979 }
980
981 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
982 if (tfeedback_decls[i].is_next_buffer_separator()) {
983 num_buffers++;
984 buffer_stream_id = -1;
985 continue;
986 } else if (buffer_stream_id == -1) {
987 /* First varying writing to this buffer: remember its stream */
988 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
989 } else if (buffer_stream_id !=
990 (int) tfeedback_decls[i].get_stream_id()) {
991 /* Varying writes to the same buffer from a different stream */
992 linker_error(prog,
993 "Transform feedback can't capture varyings belonging "
994 "to different vertex streams in a single buffer. "
995 "Varying %s writes to buffer from stream %u, other "
996 "varyings in the same buffer write from stream %u.",
997 tfeedback_decls[i].name(),
998 tfeedback_decls[i].get_stream_id(),
999 buffer_stream_id);
1000 return false;
1001 }
1002
1003 if (has_xfb_qualifiers) {
1004 buffer = tfeedback_decls[i].get_buffer();
1005 } else {
1006 buffer = num_buffers;
1007 }
1008 buffers |= 1 << num_buffers;
1009
1010 if (!tfeedback_decls[i].store(ctx, prog,
1011 &prog->LinkedTransformFeedback,
1012 num_buffers, num_outputs,
1013 explicit_stride, has_xfb_qualifiers))
1014 return false;
1015 }
1016 }
1017
1018 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
1019
1020 prog->LinkedTransformFeedback.ActiveBuffers = buffers;
1021 return true;
1022 }
1023
1024 namespace {
1025
1026 /**
1027 * Data structure recording the relationship between outputs of one shader
1028 * stage (the "producer") and inputs of another (the "consumer").
1029 */
1030 class varying_matches
1031 {
1032 public:
1033 varying_matches(bool disable_varying_packing, bool xfb_enabled,
1034 gl_shader_stage producer_stage,
1035 gl_shader_stage consumer_stage);
1036 ~varying_matches();
1037 void record(ir_variable *producer_var, ir_variable *consumer_var);
1038 unsigned assign_locations(struct gl_shader_program *prog,
1039 uint64_t reserved_slots, bool separate_shader);
1040 void store_locations() const;
1041
1042 private:
1043 bool is_varying_packing_safe(const glsl_type *type,
1044 const ir_variable *var);
1045
1046 /**
1047 * If true, this driver disables varying packing, so all varyings need to
1048 * be aligned on slot boundaries, and take up a number of slots equal to
1049 * their number of matrix columns times their array size.
1050 *
1051 * Packing may also be disabled because our current packing method is not
1052 * safe in SSO or versions of OpenGL where interpolation qualifiers are not
1053 * guaranteed to match across stages.
1054 */
1055 const bool disable_varying_packing;
1056
1057 /**
1058 * If true, this driver has transform feedback enabled. The transform
1059 * feedback code requires at least some packing be done even when varying
1060 * packing is disabled, fortunately where transform feedback requires
1061 * packing it's safe to override the disabled setting. See
1062 * is_varying_packing_safe().
1063 */
1064 const bool xfb_enabled;
1065
1066 /**
1067 * Enum representing the order in which varyings are packed within a
1068 * packing class.
1069 *
1070 * Currently we pack vec4's first, then vec2's, then scalar values, then
1071 * vec3's. This order ensures that the only vectors that are at risk of
1072 * having to be "double parked" (split between two adjacent varying slots)
1073 * are the vec3's.
1074 */
1075 enum packing_order_enum {
1076 PACKING_ORDER_VEC4,
1077 PACKING_ORDER_VEC2,
1078 PACKING_ORDER_SCALAR,
1079 PACKING_ORDER_VEC3,
1080 };
1081
1082 static unsigned compute_packing_class(const ir_variable *var);
1083 static packing_order_enum compute_packing_order(const ir_variable *var);
1084 static int match_comparator(const void *x_generic, const void *y_generic);
1085 static int xfb_comparator(const void *x_generic, const void *y_generic);
1086
1087 /**
1088 * Structure recording the relationship between a single producer output
1089 * and a single consumer input.
1090 */
1091 struct match {
1092 /**
1093 * Packing class for this varying, computed by compute_packing_class().
1094 */
1095 unsigned packing_class;
1096
1097 /**
1098 * Packing order for this varying, computed by compute_packing_order().
1099 */
1100 packing_order_enum packing_order;
1101 unsigned num_components;
1102
1103 /**
1104 * The output variable in the producer stage.
1105 */
1106 ir_variable *producer_var;
1107
1108 /**
1109 * The input variable in the consumer stage.
1110 */
1111 ir_variable *consumer_var;
1112
1113 /**
1114 * The location which has been assigned for this varying. This is
1115 * expressed in multiples of a float, with the first generic varying
1116 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
1117 * value 0.
1118 */
1119 unsigned generic_location;
1120 } *matches;
1121
1122 /**
1123 * The number of elements in the \c matches array that are currently in
1124 * use.
1125 */
1126 unsigned num_matches;
1127
1128 /**
1129 * The number of elements that were set aside for the \c matches array when
1130 * it was allocated.
1131 */
1132 unsigned matches_capacity;
1133
1134 gl_shader_stage producer_stage;
1135 gl_shader_stage consumer_stage;
1136 };
1137
1138 } /* anonymous namespace */
1139
1140 varying_matches::varying_matches(bool disable_varying_packing,
1141 bool xfb_enabled,
1142 gl_shader_stage producer_stage,
1143 gl_shader_stage consumer_stage)
1144 : disable_varying_packing(disable_varying_packing),
1145 xfb_enabled(xfb_enabled),
1146 producer_stage(producer_stage),
1147 consumer_stage(consumer_stage)
1148 {
1149 /* Note: this initial capacity is rather arbitrarily chosen to be large
1150 * enough for many cases without wasting an unreasonable amount of space.
1151 * varying_matches::record() will resize the array if there are more than
1152 * this number of varyings.
1153 */
1154 this->matches_capacity = 8;
1155 this->matches = (match *)
1156 malloc(sizeof(*this->matches) * this->matches_capacity);
1157 this->num_matches = 0;
1158 }
1159
1160
1161 varying_matches::~varying_matches()
1162 {
1163 free(this->matches);
1164 }
1165
1166
1167 /**
1168 * Packing is always safe on individual arrays, structure and matices. It is
1169 * also safe if the varying is only used for transform feedback.
1170 */
1171 bool
1172 varying_matches::is_varying_packing_safe(const glsl_type *type,
1173 const ir_variable *var)
1174 {
1175 if (consumer_stage == MESA_SHADER_TESS_EVAL ||
1176 consumer_stage == MESA_SHADER_TESS_CTRL ||
1177 producer_stage == MESA_SHADER_TESS_CTRL)
1178 return false;
1179
1180 return xfb_enabled && (type->is_array() || type->is_record() ||
1181 type->is_matrix() || var->data.is_xfb_only);
1182 }
1183
1184
1185 /**
1186 * Record the given producer/consumer variable pair in the list of variables
1187 * that should later be assigned locations.
1188 *
1189 * It is permissible for \c consumer_var to be NULL (this happens if a
1190 * variable is output by the producer and consumed by transform feedback, but
1191 * not consumed by the consumer).
1192 *
1193 * If \c producer_var has already been paired up with a consumer_var, or
1194 * producer_var is part of fixed pipeline functionality (and hence already has
1195 * a location assigned), this function has no effect.
1196 *
1197 * Note: as a side effect this function may change the interpolation type of
1198 * \c producer_var, but only when the change couldn't possibly affect
1199 * rendering.
1200 */
1201 void
1202 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
1203 {
1204 assert(producer_var != NULL || consumer_var != NULL);
1205
1206 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout ||
1207 producer_var->data.explicit_location)) ||
1208 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout ||
1209 consumer_var->data.explicit_location))) {
1210 /* Either a location already exists for this variable (since it is part
1211 * of fixed functionality), or it has already been recorded as part of a
1212 * previous match.
1213 */
1214 return;
1215 }
1216
1217 bool needs_flat_qualifier = consumer_var == NULL &&
1218 (producer_var->type->contains_integer() ||
1219 producer_var->type->contains_double());
1220
1221 if (needs_flat_qualifier ||
1222 (consumer_stage != -1 && consumer_stage != MESA_SHADER_FRAGMENT)) {
1223 /* Since this varying is not being consumed by the fragment shader, its
1224 * interpolation type varying cannot possibly affect rendering.
1225 * Also, this variable is non-flat and is (or contains) an integer
1226 * or a double.
1227 * If the consumer stage is unknown, don't modify the interpolation
1228 * type as it could affect rendering later with separate shaders.
1229 *
1230 * lower_packed_varyings requires all integer varyings to flat,
1231 * regardless of where they appear. We can trivially satisfy that
1232 * requirement by changing the interpolation type to flat here.
1233 */
1234 if (producer_var) {
1235 producer_var->data.centroid = false;
1236 producer_var->data.sample = false;
1237 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1238 }
1239
1240 if (consumer_var) {
1241 consumer_var->data.centroid = false;
1242 consumer_var->data.sample = false;
1243 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
1244 }
1245 }
1246
1247 if (this->num_matches == this->matches_capacity) {
1248 this->matches_capacity *= 2;
1249 this->matches = (match *)
1250 realloc(this->matches,
1251 sizeof(*this->matches) * this->matches_capacity);
1252 }
1253
1254 const ir_variable *const var = (producer_var != NULL)
1255 ? producer_var : consumer_var;
1256 const gl_shader_stage stage = (producer_var != NULL)
1257 ? producer_stage : consumer_stage;
1258 const glsl_type *type = get_varying_type(var, stage);
1259
1260 this->matches[this->num_matches].packing_class
1261 = this->compute_packing_class(var);
1262 this->matches[this->num_matches].packing_order
1263 = this->compute_packing_order(var);
1264 if (this->disable_varying_packing && !is_varying_packing_safe(type, var)) {
1265 unsigned slots = type->count_attribute_slots(false);
1266 this->matches[this->num_matches].num_components = slots * 4;
1267 } else {
1268 this->matches[this->num_matches].num_components
1269 = type->component_slots();
1270 }
1271 this->matches[this->num_matches].producer_var = producer_var;
1272 this->matches[this->num_matches].consumer_var = consumer_var;
1273 this->num_matches++;
1274 if (producer_var)
1275 producer_var->data.is_unmatched_generic_inout = 0;
1276 if (consumer_var)
1277 consumer_var->data.is_unmatched_generic_inout = 0;
1278 }
1279
1280
1281 /**
1282 * Choose locations for all of the variable matches that were previously
1283 * passed to varying_matches::record().
1284 */
1285 unsigned
1286 varying_matches::assign_locations(struct gl_shader_program *prog,
1287 uint64_t reserved_slots,
1288 bool separate_shader)
1289 {
1290 /* If packing has been disabled then we cannot safely sort the varyings by
1291 * class as it may mean we are using a version of OpenGL where
1292 * interpolation qualifiers are not guaranteed to be matching across
1293 * shaders, sorting in this case could result in mismatching shader
1294 * interfaces.
1295 * When packing is disabled the sort orders varyings used by transform
1296 * feedback first, but also depends on *undefined behaviour* of qsort to
1297 * reverse the order of the varyings. See: xfb_comparator().
1298 */
1299 if (!this->disable_varying_packing) {
1300 /* Sort varying matches into an order that makes them easy to pack. */
1301 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1302 &varying_matches::match_comparator);
1303 } else {
1304 /* Only sort varyings that are only used by transform feedback. */
1305 qsort(this->matches, this->num_matches, sizeof(*this->matches),
1306 &varying_matches::xfb_comparator);
1307 }
1308
1309 unsigned generic_location = 0;
1310 unsigned generic_patch_location = MAX_VARYING*4;
1311 bool previous_var_xfb_only = false;
1312
1313 for (unsigned i = 0; i < this->num_matches; i++) {
1314 unsigned *location = &generic_location;
1315
1316 const ir_variable *var;
1317 const glsl_type *type;
1318 bool is_vertex_input = false;
1319 if (matches[i].consumer_var) {
1320 var = matches[i].consumer_var;
1321 type = get_varying_type(var, consumer_stage);
1322 if (consumer_stage == MESA_SHADER_VERTEX)
1323 is_vertex_input = true;
1324 } else {
1325 var = matches[i].producer_var;
1326 type = get_varying_type(var, producer_stage);
1327 }
1328
1329 if (var->data.patch)
1330 location = &generic_patch_location;
1331
1332 /* Advance to the next slot if this varying has a different packing
1333 * class than the previous one, and we're not already on a slot
1334 * boundary.
1335 *
1336 * Also advance to the next slot if packing is disabled. This makes sure
1337 * we don't assign varyings the same locations which is possible
1338 * because we still pack individual arrays, records and matrices even
1339 * when packing is disabled. Note we don't advance to the next slot if
1340 * we can pack varyings together that are only used for transform
1341 * feedback.
1342 */
1343 if ((this->disable_varying_packing &&
1344 !(previous_var_xfb_only && var->data.is_xfb_only)) ||
1345 (i > 0 && this->matches[i - 1].packing_class
1346 != this->matches[i].packing_class )) {
1347 *location = ALIGN(*location, 4);
1348 }
1349
1350 previous_var_xfb_only = var->data.is_xfb_only;
1351
1352 unsigned num_elements = type->count_attribute_slots(is_vertex_input);
1353 unsigned slot_end;
1354 if (this->disable_varying_packing &&
1355 !is_varying_packing_safe(type, var))
1356 slot_end = 4;
1357 else
1358 slot_end = type->without_array()->vector_elements;
1359 slot_end += *location - 1;
1360
1361 /* FIXME: We could be smarter in the below code and loop back over
1362 * trying to fill any locations that we skipped because we couldn't pack
1363 * the varying between an explicit location. For now just let the user
1364 * hit the linking error if we run out of room and suggest they use
1365 * explicit locations.
1366 */
1367 for (unsigned j = 0; j < num_elements; j++) {
1368 while ((slot_end < MAX_VARYING * 4u) &&
1369 ((reserved_slots & (UINT64_C(1) << *location / 4u) ||
1370 (reserved_slots & (UINT64_C(1) << slot_end / 4u))))) {
1371
1372 *location = ALIGN(*location + 1, 4);
1373 slot_end = *location;
1374
1375 /* reset the counter and try again */
1376 j = 0;
1377 }
1378
1379 /* Increase the slot to make sure there is enough room for next
1380 * array element.
1381 */
1382 if (this->disable_varying_packing &&
1383 !is_varying_packing_safe(type, var))
1384 slot_end += 4;
1385 else
1386 slot_end += type->without_array()->vector_elements;
1387 }
1388
1389 if (!var->data.patch && *location >= MAX_VARYING * 4u) {
1390 linker_error(prog, "insufficient contiguous locations available for "
1391 "%s it is possible an array or struct could not be "
1392 "packed between varyings with explicit locations. Try "
1393 "using an explicit location for arrays and structs.",
1394 var->name);
1395 }
1396
1397 this->matches[i].generic_location = *location;
1398
1399 *location += this->matches[i].num_components;
1400 }
1401
1402 return (generic_location + 3) / 4;
1403 }
1404
1405
1406 /**
1407 * Update the producer and consumer shaders to reflect the locations
1408 * assignments that were made by varying_matches::assign_locations().
1409 */
1410 void
1411 varying_matches::store_locations() const
1412 {
1413 for (unsigned i = 0; i < this->num_matches; i++) {
1414 ir_variable *producer_var = this->matches[i].producer_var;
1415 ir_variable *consumer_var = this->matches[i].consumer_var;
1416 unsigned generic_location = this->matches[i].generic_location;
1417 unsigned slot = generic_location / 4;
1418 unsigned offset = generic_location % 4;
1419
1420 if (producer_var) {
1421 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1422 producer_var->data.location_frac = offset;
1423 }
1424
1425 if (consumer_var) {
1426 assert(consumer_var->data.location == -1);
1427 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1428 consumer_var->data.location_frac = offset;
1429 }
1430 }
1431 }
1432
1433
1434 /**
1435 * Compute the "packing class" of the given varying. This is an unsigned
1436 * integer with the property that two variables in the same packing class can
1437 * be safely backed into the same vec4.
1438 */
1439 unsigned
1440 varying_matches::compute_packing_class(const ir_variable *var)
1441 {
1442 /* Without help from the back-end, there is no way to pack together
1443 * variables with different interpolation types, because
1444 * lower_packed_varyings must choose exactly one interpolation type for
1445 * each packed varying it creates.
1446 *
1447 * However, we can safely pack together floats, ints, and uints, because:
1448 *
1449 * - varyings of base type "int" and "uint" must use the "flat"
1450 * interpolation type, which can only occur in GLSL 1.30 and above.
1451 *
1452 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1453 * can store flat floats as ints without losing any information (using
1454 * the ir_unop_bitcast_* opcodes).
1455 *
1456 * Therefore, the packing class depends only on the interpolation type.
1457 */
1458 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1459 (var->data.patch << 2);
1460 packing_class *= 4;
1461 packing_class += var->data.interpolation;
1462 return packing_class;
1463 }
1464
1465
1466 /**
1467 * Compute the "packing order" of the given varying. This is a sort key we
1468 * use to determine when to attempt to pack the given varying relative to
1469 * other varyings in the same packing class.
1470 */
1471 varying_matches::packing_order_enum
1472 varying_matches::compute_packing_order(const ir_variable *var)
1473 {
1474 const glsl_type *element_type = var->type;
1475
1476 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1477 element_type = element_type->fields.array;
1478 }
1479
1480 switch (element_type->component_slots() % 4) {
1481 case 1: return PACKING_ORDER_SCALAR;
1482 case 2: return PACKING_ORDER_VEC2;
1483 case 3: return PACKING_ORDER_VEC3;
1484 case 0: return PACKING_ORDER_VEC4;
1485 default:
1486 assert(!"Unexpected value of vector_elements");
1487 return PACKING_ORDER_VEC4;
1488 }
1489 }
1490
1491
1492 /**
1493 * Comparison function passed to qsort() to sort varyings by packing_class and
1494 * then by packing_order.
1495 */
1496 int
1497 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1498 {
1499 const match *x = (const match *) x_generic;
1500 const match *y = (const match *) y_generic;
1501
1502 if (x->packing_class != y->packing_class)
1503 return x->packing_class - y->packing_class;
1504 return x->packing_order - y->packing_order;
1505 }
1506
1507
1508 /**
1509 * Comparison function passed to qsort() to sort varyings used only by
1510 * transform feedback when packing of other varyings is disabled.
1511 */
1512 int
1513 varying_matches::xfb_comparator(const void *x_generic, const void *y_generic)
1514 {
1515 const match *x = (const match *) x_generic;
1516
1517 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
1518 return match_comparator(x_generic, y_generic);
1519
1520 /* FIXME: When the comparator returns 0 it means the elements being
1521 * compared are equivalent. However the qsort documentation says:
1522 *
1523 * "The order of equivalent elements is undefined."
1524 *
1525 * In practice the sort ends up reversing the order of the varyings which
1526 * means locations are also assigned in this reversed order and happens to
1527 * be what we want. This is also whats happening in
1528 * varying_matches::match_comparator().
1529 */
1530 return 0;
1531 }
1532
1533
1534 /**
1535 * Is the given variable a varying variable to be counted against the
1536 * limit in ctx->Const.MaxVarying?
1537 * This includes variables such as texcoords, colors and generic
1538 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1539 */
1540 static bool
1541 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1542 {
1543 /* Only fragment shaders will take a varying variable as an input */
1544 if (stage == MESA_SHADER_FRAGMENT &&
1545 var->data.mode == ir_var_shader_in) {
1546 switch (var->data.location) {
1547 case VARYING_SLOT_POS:
1548 case VARYING_SLOT_FACE:
1549 case VARYING_SLOT_PNTC:
1550 return false;
1551 default:
1552 return true;
1553 }
1554 }
1555 return false;
1556 }
1557
1558
1559 /**
1560 * Visitor class that generates tfeedback_candidate structs describing all
1561 * possible targets of transform feedback.
1562 *
1563 * tfeedback_candidate structs are stored in the hash table
1564 * tfeedback_candidates, which is passed to the constructor. This hash table
1565 * maps varying names to instances of the tfeedback_candidate struct.
1566 */
1567 class tfeedback_candidate_generator : public program_resource_visitor
1568 {
1569 public:
1570 tfeedback_candidate_generator(void *mem_ctx,
1571 hash_table *tfeedback_candidates)
1572 : mem_ctx(mem_ctx),
1573 tfeedback_candidates(tfeedback_candidates),
1574 toplevel_var(NULL),
1575 varying_floats(0)
1576 {
1577 }
1578
1579 void process(ir_variable *var)
1580 {
1581 /* All named varying interface blocks should be flattened by now */
1582 assert(!var->is_interface_instance());
1583
1584 this->toplevel_var = var;
1585 this->varying_floats = 0;
1586 program_resource_visitor::process(var);
1587 }
1588
1589 private:
1590 virtual void visit_field(const glsl_type *type, const char *name,
1591 bool row_major)
1592 {
1593 assert(!type->without_array()->is_record());
1594 assert(!type->without_array()->is_interface());
1595
1596 (void) row_major;
1597
1598 tfeedback_candidate *candidate
1599 = rzalloc(this->mem_ctx, tfeedback_candidate);
1600 candidate->toplevel_var = this->toplevel_var;
1601 candidate->type = type;
1602 candidate->offset = this->varying_floats;
1603 hash_table_insert(this->tfeedback_candidates, candidate,
1604 ralloc_strdup(this->mem_ctx, name));
1605 this->varying_floats += type->component_slots();
1606 }
1607
1608 /**
1609 * Memory context used to allocate hash table keys and values.
1610 */
1611 void * const mem_ctx;
1612
1613 /**
1614 * Hash table in which tfeedback_candidate objects should be stored.
1615 */
1616 hash_table * const tfeedback_candidates;
1617
1618 /**
1619 * Pointer to the toplevel variable that is being traversed.
1620 */
1621 ir_variable *toplevel_var;
1622
1623 /**
1624 * Total number of varying floats that have been visited so far. This is
1625 * used to determine the offset to each varying within the toplevel
1626 * variable.
1627 */
1628 unsigned varying_floats;
1629 };
1630
1631
1632 namespace linker {
1633
1634 void
1635 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1636 hash_table *consumer_inputs,
1637 hash_table *consumer_interface_inputs,
1638 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1639 {
1640 memset(consumer_inputs_with_locations,
1641 0,
1642 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
1643
1644 foreach_in_list(ir_instruction, node, ir) {
1645 ir_variable *const input_var = node->as_variable();
1646
1647 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1648 /* All interface blocks should have been lowered by this point */
1649 assert(!input_var->type->is_interface());
1650
1651 if (input_var->data.explicit_location) {
1652 /* assign_varying_locations only cares about finding the
1653 * ir_variable at the start of a contiguous location block.
1654 *
1655 * - For !producer, consumer_inputs_with_locations isn't used.
1656 *
1657 * - For !consumer, consumer_inputs_with_locations is empty.
1658 *
1659 * For consumer && producer, if you were trying to set some
1660 * ir_variable to the middle of a location block on the other side
1661 * of producer/consumer, cross_validate_outputs_to_inputs() should
1662 * be link-erroring due to either type mismatch or location
1663 * overlaps. If the variables do match up, then they've got a
1664 * matching data.location and you only looked at
1665 * consumer_inputs_with_locations[var->data.location], not any
1666 * following entries for the array/structure.
1667 */
1668 consumer_inputs_with_locations[input_var->data.location] =
1669 input_var;
1670 } else if (input_var->get_interface_type() != NULL) {
1671 char *const iface_field_name =
1672 ralloc_asprintf(mem_ctx, "%s.%s",
1673 input_var->get_interface_type()->without_array()->name,
1674 input_var->name);
1675 hash_table_insert(consumer_interface_inputs, input_var,
1676 iface_field_name);
1677 } else {
1678 hash_table_insert(consumer_inputs, input_var,
1679 ralloc_strdup(mem_ctx, input_var->name));
1680 }
1681 }
1682 }
1683 }
1684
1685 /**
1686 * Find a variable from the consumer that "matches" the specified variable
1687 *
1688 * This function only finds inputs with names that match. There is no
1689 * validation (here) that the types, etc. are compatible.
1690 */
1691 ir_variable *
1692 get_matching_input(void *mem_ctx,
1693 const ir_variable *output_var,
1694 hash_table *consumer_inputs,
1695 hash_table *consumer_interface_inputs,
1696 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
1697 {
1698 ir_variable *input_var;
1699
1700 if (output_var->data.explicit_location) {
1701 input_var = consumer_inputs_with_locations[output_var->data.location];
1702 } else if (output_var->get_interface_type() != NULL) {
1703 char *const iface_field_name =
1704 ralloc_asprintf(mem_ctx, "%s.%s",
1705 output_var->get_interface_type()->without_array()->name,
1706 output_var->name);
1707 input_var =
1708 (ir_variable *) hash_table_find(consumer_interface_inputs,
1709 iface_field_name);
1710 } else {
1711 input_var =
1712 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1713 }
1714
1715 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1716 ? NULL : input_var;
1717 }
1718
1719 }
1720
1721 static int
1722 io_variable_cmp(const void *_a, const void *_b)
1723 {
1724 const ir_variable *const a = *(const ir_variable **) _a;
1725 const ir_variable *const b = *(const ir_variable **) _b;
1726
1727 if (a->data.explicit_location && b->data.explicit_location)
1728 return b->data.location - a->data.location;
1729
1730 if (a->data.explicit_location && !b->data.explicit_location)
1731 return 1;
1732
1733 if (!a->data.explicit_location && b->data.explicit_location)
1734 return -1;
1735
1736 return -strcmp(a->name, b->name);
1737 }
1738
1739 /**
1740 * Sort the shader IO variables into canonical order
1741 */
1742 static void
1743 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1744 {
1745 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1746 unsigned num_variables = 0;
1747
1748 foreach_in_list(ir_instruction, node, ir) {
1749 ir_variable *const var = node->as_variable();
1750
1751 if (var == NULL || var->data.mode != io_mode)
1752 continue;
1753
1754 /* If we have already encountered more I/O variables that could
1755 * successfully link, bail.
1756 */
1757 if (num_variables == ARRAY_SIZE(var_table))
1758 return;
1759
1760 var_table[num_variables++] = var;
1761 }
1762
1763 if (num_variables == 0)
1764 return;
1765
1766 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1767 * we're going to push the variables on to the IR list as a stack, so we
1768 * want the last variable (in canonical order) to be first in the list.
1769 */
1770 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1771
1772 /* Remove the variable from it's current location in the IR, and put it at
1773 * the front.
1774 */
1775 for (unsigned i = 0; i < num_variables; i++) {
1776 var_table[i]->remove();
1777 ir->push_head(var_table[i]);
1778 }
1779 }
1780
1781 /**
1782 * Generate a bitfield map of the explicit locations for shader varyings.
1783 *
1784 * In theory a 32 bits value will be enough but a 64 bits value is future proof.
1785 */
1786 uint64_t
1787 reserved_varying_slot(struct gl_shader *stage, ir_variable_mode io_mode)
1788 {
1789 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
1790 assert(MAX_VARYING <= 64); /* avoid an overflow of the returned value */
1791
1792 uint64_t slots = 0;
1793 int var_slot;
1794
1795 if (!stage)
1796 return slots;
1797
1798 foreach_in_list(ir_instruction, node, stage->ir) {
1799 ir_variable *const var = node->as_variable();
1800
1801 if (var == NULL || var->data.mode != io_mode ||
1802 !var->data.explicit_location ||
1803 var->data.location < VARYING_SLOT_VAR0)
1804 continue;
1805
1806 var_slot = var->data.location - VARYING_SLOT_VAR0;
1807
1808 unsigned num_elements = get_varying_type(var, stage->Stage)
1809 ->count_attribute_slots(stage->Stage == MESA_SHADER_VERTEX);
1810 for (unsigned i = 0; i < num_elements; i++) {
1811 if (var_slot >= 0 && var_slot < MAX_VARYING)
1812 slots |= UINT64_C(1) << var_slot;
1813 var_slot += 1;
1814 }
1815 }
1816
1817 return slots;
1818 }
1819
1820
1821 /**
1822 * Assign locations for all variables that are produced in one pipeline stage
1823 * (the "producer") and consumed in the next stage (the "consumer").
1824 *
1825 * Variables produced by the producer may also be consumed by transform
1826 * feedback.
1827 *
1828 * \param num_tfeedback_decls is the number of declarations indicating
1829 * variables that may be consumed by transform feedback.
1830 *
1831 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1832 * representing the result of parsing the strings passed to
1833 * glTransformFeedbackVaryings(). assign_location() will be called for
1834 * each of these objects that matches one of the outputs of the
1835 * producer.
1836 *
1837 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1838 * be NULL. In this case, varying locations are assigned solely based on the
1839 * requirements of transform feedback.
1840 */
1841 bool
1842 assign_varying_locations(struct gl_context *ctx,
1843 void *mem_ctx,
1844 struct gl_shader_program *prog,
1845 gl_shader *producer, gl_shader *consumer,
1846 unsigned num_tfeedback_decls,
1847 tfeedback_decl *tfeedback_decls)
1848 {
1849 /* Tessellation shaders treat inputs and outputs as shared memory and can
1850 * access inputs and outputs of other invocations.
1851 * Therefore, they can't be lowered to temps easily (and definitely not
1852 * efficiently).
1853 */
1854 bool unpackable_tess =
1855 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1856 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1857 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1858
1859 /* Transform feedback code assumes varying arrays are packed, so if the
1860 * driver has disabled varying packing, make sure to at least enable
1861 * packing required by transform feedback.
1862 */
1863 bool xfb_enabled =
1864 ctx->Extensions.EXT_transform_feedback && !unpackable_tess;
1865
1866 /* Disable varying packing for GL 4.4+ as there is no guarantee
1867 * that interpolation qualifiers will match between shaders in these
1868 * versions. We also disable packing on outerward facing interfaces for
1869 * SSO because in ES we need to retain the unpacked varying information
1870 * for draw time validation. For desktop GL we could allow packing for
1871 * versions < 4.4 but its just safer not to do packing.
1872 *
1873 * Packing is still enabled on individual arrays, structs, and matrices as
1874 * these are required by the transform feedback code and it is still safe
1875 * to do so. We also enable packing when a varying is only used for
1876 * transform feedback and its not a SSO.
1877 *
1878 * Varying packing currently only packs together varyings with matching
1879 * interpolation qualifiers as the backends assume all packed components
1880 * are to be processed in the same way. Therefore we cannot do packing in
1881 * these versions of GL without the risk of mismatching interfaces.
1882 *
1883 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
1884 *
1885 * "The type and presence of interpolation qualifiers of variables with
1886 * the same name declared in all linked shaders for the same cross-stage
1887 * interface must match, otherwise the link command will fail.
1888 *
1889 * When comparing an output from one stage to an input of a subsequent
1890 * stage, the input and output don't match if their interpolation
1891 * qualifiers (or lack thereof) are not the same."
1892 *
1893 * This text was also in at least revison 7 of the 4.40 spec but is no
1894 * longer in revision 9 and not in the 4.50 spec.
1895 */
1896 bool disable_varying_packing =
1897 ctx->Const.DisableVaryingPacking || unpackable_tess;
1898 if ((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) ||
1899 (prog->SeparateShader && (producer == NULL || consumer == NULL)))
1900 disable_varying_packing = true;
1901
1902 varying_matches matches(disable_varying_packing, xfb_enabled,
1903 producer ? producer->Stage : (gl_shader_stage)-1,
1904 consumer ? consumer->Stage : (gl_shader_stage)-1);
1905 hash_table *tfeedback_candidates
1906 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1907 hash_table *consumer_inputs
1908 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1909 hash_table *consumer_interface_inputs
1910 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1911 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
1912 NULL,
1913 };
1914
1915 unsigned consumer_vertices = 0;
1916 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1917 consumer_vertices = prog->Geom.VerticesIn;
1918
1919 /* Operate in a total of four passes.
1920 *
1921 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1922 * that inputs / outputs of separable shaders will be assigned
1923 * predictable locations regardless of the order in which declarations
1924 * appeared in the shader source.
1925 *
1926 * 2. Assign locations for any matching inputs and outputs.
1927 *
1928 * 3. Mark output variables in the producer that do not have locations as
1929 * not being outputs. This lets the optimizer eliminate them.
1930 *
1931 * 4. Mark input variables in the consumer that do not have locations as
1932 * not being inputs. This lets the optimizer eliminate them.
1933 */
1934 if (consumer)
1935 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1936
1937 if (producer)
1938 canonicalize_shader_io(producer->ir, ir_var_shader_out);
1939
1940 if (consumer)
1941 linker::populate_consumer_input_sets(mem_ctx, consumer->ir,
1942 consumer_inputs,
1943 consumer_interface_inputs,
1944 consumer_inputs_with_locations);
1945
1946 if (producer) {
1947 foreach_in_list(ir_instruction, node, producer->ir) {
1948 ir_variable *const output_var = node->as_variable();
1949
1950 if ((output_var == NULL) ||
1951 (output_var->data.mode != ir_var_shader_out))
1952 continue;
1953
1954 /* Only geometry shaders can use non-zero streams */
1955 assert(output_var->data.stream == 0 ||
1956 (output_var->data.stream < MAX_VERTEX_STREAMS &&
1957 producer->Stage == MESA_SHADER_GEOMETRY));
1958
1959 if (num_tfeedback_decls > 0) {
1960 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
1961 g.process(output_var);
1962 }
1963
1964 ir_variable *const input_var =
1965 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
1966 consumer_interface_inputs,
1967 consumer_inputs_with_locations);
1968
1969 /* If a matching input variable was found, add this ouptut (and the
1970 * input) to the set. If this is a separable program and there is no
1971 * consumer stage, add the output.
1972 *
1973 * Always add TCS outputs. They are shared by all invocations
1974 * within a patch and can be used as shared memory.
1975 */
1976 if (input_var || (prog->SeparateShader && consumer == NULL) ||
1977 producer->Type == GL_TESS_CONTROL_SHADER) {
1978 matches.record(output_var, input_var);
1979 }
1980
1981 /* Only stream 0 outputs can be consumed in the next stage */
1982 if (input_var && output_var->data.stream != 0) {
1983 linker_error(prog, "output %s is assigned to stream=%d but "
1984 "is linked to an input, which requires stream=0",
1985 output_var->name, output_var->data.stream);
1986 return false;
1987 }
1988 }
1989 } else {
1990 /* If there's no producer stage, then this must be a separable program.
1991 * For example, we may have a program that has just a fragment shader.
1992 * Later this program will be used with some arbitrary vertex (or
1993 * geometry) shader program. This means that locations must be assigned
1994 * for all the inputs.
1995 */
1996 foreach_in_list(ir_instruction, node, consumer->ir) {
1997 ir_variable *const input_var = node->as_variable();
1998
1999 if ((input_var == NULL) ||
2000 (input_var->data.mode != ir_var_shader_in))
2001 continue;
2002
2003 matches.record(NULL, input_var);
2004 }
2005 }
2006
2007 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2008 if (!tfeedback_decls[i].is_varying())
2009 continue;
2010
2011 const tfeedback_candidate *matched_candidate
2012 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
2013
2014 if (matched_candidate == NULL) {
2015 hash_table_dtor(tfeedback_candidates);
2016 hash_table_dtor(consumer_inputs);
2017 hash_table_dtor(consumer_interface_inputs);
2018 return false;
2019 }
2020
2021 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) {
2022 matched_candidate->toplevel_var->data.is_xfb_only = 1;
2023 matches.record(matched_candidate->toplevel_var, NULL);
2024 }
2025 }
2026
2027 const uint64_t reserved_slots =
2028 reserved_varying_slot(producer, ir_var_shader_out) |
2029 reserved_varying_slot(consumer, ir_var_shader_in);
2030
2031 const unsigned slots_used = matches.assign_locations(prog, reserved_slots,
2032 prog->SeparateShader);
2033 matches.store_locations();
2034
2035 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2036 if (!tfeedback_decls[i].is_varying())
2037 continue;
2038
2039 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
2040 hash_table_dtor(tfeedback_candidates);
2041 hash_table_dtor(consumer_inputs);
2042 hash_table_dtor(consumer_interface_inputs);
2043 return false;
2044 }
2045 }
2046
2047 hash_table_dtor(tfeedback_candidates);
2048 hash_table_dtor(consumer_inputs);
2049 hash_table_dtor(consumer_interface_inputs);
2050
2051 if (consumer && producer) {
2052 foreach_in_list(ir_instruction, node, consumer->ir) {
2053 ir_variable *const var = node->as_variable();
2054
2055 if (var && var->data.mode == ir_var_shader_in &&
2056 var->data.is_unmatched_generic_inout) {
2057 if (!prog->IsES && prog->Version <= 120) {
2058 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2059 *
2060 * Only those varying variables used (i.e. read) in
2061 * the fragment shader executable must be written to
2062 * by the vertex shader executable; declaring
2063 * superfluous varying variables in a vertex shader is
2064 * permissible.
2065 *
2066 * We interpret this text as meaning that the VS must
2067 * write the variable for the FS to read it. See
2068 * "glsl1-varying read but not written" in piglit.
2069 */
2070 linker_error(prog, "%s shader varying %s not written "
2071 "by %s shader\n.",
2072 _mesa_shader_stage_to_string(consumer->Stage),
2073 var->name,
2074 _mesa_shader_stage_to_string(producer->Stage));
2075 } else {
2076 linker_warning(prog, "%s shader varying %s not written "
2077 "by %s shader\n.",
2078 _mesa_shader_stage_to_string(consumer->Stage),
2079 var->name,
2080 _mesa_shader_stage_to_string(producer->Stage));
2081 }
2082 }
2083 }
2084
2085 /* Now that validation is done its safe to remove unused varyings. As
2086 * we have both a producer and consumer its safe to remove unused
2087 * varyings even if the program is a SSO because the stages are being
2088 * linked together i.e. we have a multi-stage SSO.
2089 */
2090 remove_unused_shader_inputs_and_outputs(false, producer,
2091 ir_var_shader_out);
2092 remove_unused_shader_inputs_and_outputs(false, consumer,
2093 ir_var_shader_in);
2094 }
2095
2096 if (producer) {
2097 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
2098 0, producer, disable_varying_packing,
2099 xfb_enabled);
2100 }
2101
2102 if (consumer) {
2103 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
2104 consumer_vertices, consumer,
2105 disable_varying_packing, xfb_enabled);
2106 }
2107
2108 return true;
2109 }
2110
2111 bool
2112 check_against_output_limit(struct gl_context *ctx,
2113 struct gl_shader_program *prog,
2114 gl_shader *producer)
2115 {
2116 unsigned output_vectors = 0;
2117
2118 foreach_in_list(ir_instruction, node, producer->ir) {
2119 ir_variable *const var = node->as_variable();
2120
2121 if (var && var->data.mode == ir_var_shader_out &&
2122 var_counts_against_varying_limit(producer->Stage, var)) {
2123 /* outputs for fragment shader can't be doubles */
2124 output_vectors += var->type->count_attribute_slots(false);
2125 }
2126 }
2127
2128 assert(producer->Stage != MESA_SHADER_FRAGMENT);
2129 unsigned max_output_components =
2130 ctx->Const.Program[producer->Stage].MaxOutputComponents;
2131
2132 const unsigned output_components = output_vectors * 4;
2133 if (output_components > max_output_components) {
2134 if (ctx->API == API_OPENGLES2 || prog->IsES)
2135 linker_error(prog, "%s shader uses too many output vectors "
2136 "(%u > %u)\n",
2137 _mesa_shader_stage_to_string(producer->Stage),
2138 output_vectors,
2139 max_output_components / 4);
2140 else
2141 linker_error(prog, "%s shader uses too many output components "
2142 "(%u > %u)\n",
2143 _mesa_shader_stage_to_string(producer->Stage),
2144 output_components,
2145 max_output_components);
2146
2147 return false;
2148 }
2149
2150 return true;
2151 }
2152
2153 bool
2154 check_against_input_limit(struct gl_context *ctx,
2155 struct gl_shader_program *prog,
2156 gl_shader *consumer)
2157 {
2158 unsigned input_vectors = 0;
2159
2160 foreach_in_list(ir_instruction, node, consumer->ir) {
2161 ir_variable *const var = node->as_variable();
2162
2163 if (var && var->data.mode == ir_var_shader_in &&
2164 var_counts_against_varying_limit(consumer->Stage, var)) {
2165 /* vertex inputs aren't varying counted */
2166 input_vectors += var->type->count_attribute_slots(false);
2167 }
2168 }
2169
2170 assert(consumer->Stage != MESA_SHADER_VERTEX);
2171 unsigned max_input_components =
2172 ctx->Const.Program[consumer->Stage].MaxInputComponents;
2173
2174 const unsigned input_components = input_vectors * 4;
2175 if (input_components > max_input_components) {
2176 if (ctx->API == API_OPENGLES2 || prog->IsES)
2177 linker_error(prog, "%s shader uses too many input vectors "
2178 "(%u > %u)\n",
2179 _mesa_shader_stage_to_string(consumer->Stage),
2180 input_vectors,
2181 max_input_components / 4);
2182 else
2183 linker_error(prog, "%s shader uses too many input components "
2184 "(%u > %u)\n",
2185 _mesa_shader_stage_to_string(consumer->Stage),
2186 input_components,
2187 max_input_components);
2188
2189 return false;
2190 }
2191
2192 return true;
2193 }