glsl: Use the utility function to copy symbols between symbol tables
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = linking_failure;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 linker_error(prog, "declarations for %s `%s` have "
1125 "mismatching precision qualifiers\n",
1126 mode_string(var), var->name);
1127 return;
1128 }
1129 } else
1130 variables->add_variable(var);
1131 }
1132 }
1133
1134
1135 /**
1136 * Perform validation of uniforms used across multiple shader stages
1137 */
1138 static void
1139 cross_validate_uniforms(struct gl_shader_program *prog)
1140 {
1141 glsl_symbol_table variables;
1142 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1143 if (prog->_LinkedShaders[i] == NULL)
1144 continue;
1145
1146 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1147 true);
1148 }
1149 }
1150
1151 /**
1152 * Accumulates the array of buffer blocks and checks that all definitions of
1153 * blocks agree on their contents.
1154 */
1155 static bool
1156 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1157 bool validate_ssbo)
1158 {
1159 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1160 struct gl_uniform_block *blks = NULL;
1161 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1162 &prog->data->NumUniformBlocks;
1163
1164 unsigned max_num_buffer_blocks = 0;
1165 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1166 if (prog->_LinkedShaders[i]) {
1167 if (validate_ssbo) {
1168 max_num_buffer_blocks +=
1169 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1170 } else {
1171 max_num_buffer_blocks +=
1172 prog->_LinkedShaders[i]->Program->info.num_ubos;
1173 }
1174 }
1175 }
1176
1177 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1178 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1179
1180 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1181 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1182 InterfaceBlockStageIndex[i][j] = -1;
1183
1184 if (sh == NULL)
1185 continue;
1186
1187 unsigned sh_num_blocks;
1188 struct gl_uniform_block **sh_blks;
1189 if (validate_ssbo) {
1190 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1191 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1192 } else {
1193 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1194 sh_blks = sh->Program->sh.UniformBlocks;
1195 }
1196
1197 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1198 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1199 sh_blks[j]);
1200
1201 if (index == -1) {
1202 linker_error(prog, "buffer block `%s' has mismatching "
1203 "definitions\n", sh_blks[j]->Name);
1204
1205 for (unsigned k = 0; k <= i; k++) {
1206 delete[] InterfaceBlockStageIndex[k];
1207 }
1208
1209 /* Reset the block count. This will help avoid various segfaults
1210 * from api calls that assume the array exists due to the count
1211 * being non-zero.
1212 */
1213 *num_blks = 0;
1214 return false;
1215 }
1216
1217 InterfaceBlockStageIndex[i][index] = j;
1218 }
1219 }
1220
1221 /* Update per stage block pointers to point to the program list.
1222 * FIXME: We should be able to free the per stage blocks here.
1223 */
1224 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1225 for (unsigned j = 0; j < *num_blks; j++) {
1226 int stage_index = InterfaceBlockStageIndex[i][j];
1227
1228 if (stage_index != -1) {
1229 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1230
1231 struct gl_uniform_block **sh_blks = validate_ssbo ?
1232 sh->Program->sh.ShaderStorageBlocks :
1233 sh->Program->sh.UniformBlocks;
1234
1235 blks[j].stageref |= sh_blks[stage_index]->stageref;
1236 sh_blks[stage_index] = &blks[j];
1237 }
1238 }
1239 }
1240
1241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1242 delete[] InterfaceBlockStageIndex[i];
1243 }
1244
1245 if (validate_ssbo)
1246 prog->data->ShaderStorageBlocks = blks;
1247 else
1248 prog->data->UniformBlocks = blks;
1249
1250 return true;
1251 }
1252
1253
1254 /**
1255 * Populates a shaders symbol table with all global declarations
1256 */
1257 static void
1258 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1259 {
1260 sh->symbols = new(sh) glsl_symbol_table;
1261
1262 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1263 }
1264
1265
1266 /**
1267 * Remap variables referenced in an instruction tree
1268 *
1269 * This is used when instruction trees are cloned from one shader and placed in
1270 * another. These trees will contain references to \c ir_variable nodes that
1271 * do not exist in the target shader. This function finds these \c ir_variable
1272 * references and replaces the references with matching variables in the target
1273 * shader.
1274 *
1275 * If there is no matching variable in the target shader, a clone of the
1276 * \c ir_variable is made and added to the target shader. The new variable is
1277 * added to \b both the instruction stream and the symbol table.
1278 *
1279 * \param inst IR tree that is to be processed.
1280 * \param symbols Symbol table containing global scope symbols in the
1281 * linked shader.
1282 * \param instructions Instruction stream where new variable declarations
1283 * should be added.
1284 */
1285 static void
1286 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1287 hash_table *temps)
1288 {
1289 class remap_visitor : public ir_hierarchical_visitor {
1290 public:
1291 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1292 {
1293 this->target = target;
1294 this->symbols = target->symbols;
1295 this->instructions = target->ir;
1296 this->temps = temps;
1297 }
1298
1299 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1300 {
1301 if (ir->var->data.mode == ir_var_temporary) {
1302 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1303 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1304
1305 assert(var != NULL);
1306 ir->var = var;
1307 return visit_continue;
1308 }
1309
1310 ir_variable *const existing =
1311 this->symbols->get_variable(ir->var->name);
1312 if (existing != NULL)
1313 ir->var = existing;
1314 else {
1315 ir_variable *copy = ir->var->clone(this->target, NULL);
1316
1317 this->symbols->add_variable(copy);
1318 this->instructions->push_head(copy);
1319 ir->var = copy;
1320 }
1321
1322 return visit_continue;
1323 }
1324
1325 private:
1326 struct gl_linked_shader *target;
1327 glsl_symbol_table *symbols;
1328 exec_list *instructions;
1329 hash_table *temps;
1330 };
1331
1332 remap_visitor v(target, temps);
1333
1334 inst->accept(&v);
1335 }
1336
1337
1338 /**
1339 * Move non-declarations from one instruction stream to another
1340 *
1341 * The intended usage pattern of this function is to pass the pointer to the
1342 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1343 * pointer) for \c last and \c false for \c make_copies on the first
1344 * call. Successive calls pass the return value of the previous call for
1345 * \c last and \c true for \c make_copies.
1346 *
1347 * \param instructions Source instruction stream
1348 * \param last Instruction after which new instructions should be
1349 * inserted in the target instruction stream
1350 * \param make_copies Flag selecting whether instructions in \c instructions
1351 * should be copied (via \c ir_instruction::clone) into the
1352 * target list or moved.
1353 *
1354 * \return
1355 * The new "last" instruction in the target instruction stream. This pointer
1356 * is suitable for use as the \c last parameter of a later call to this
1357 * function.
1358 */
1359 static exec_node *
1360 move_non_declarations(exec_list *instructions, exec_node *last,
1361 bool make_copies, gl_linked_shader *target)
1362 {
1363 hash_table *temps = NULL;
1364
1365 if (make_copies)
1366 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1367 _mesa_key_pointer_equal);
1368
1369 foreach_in_list_safe(ir_instruction, inst, instructions) {
1370 if (inst->as_function())
1371 continue;
1372
1373 ir_variable *var = inst->as_variable();
1374 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1375 continue;
1376
1377 assert(inst->as_assignment()
1378 || inst->as_call()
1379 || inst->as_if() /* for initializers with the ?: operator */
1380 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1381
1382 if (make_copies) {
1383 inst = inst->clone(target, NULL);
1384
1385 if (var != NULL)
1386 _mesa_hash_table_insert(temps, var, inst);
1387 else
1388 remap_variables(inst, target, temps);
1389 } else {
1390 inst->remove();
1391 }
1392
1393 last->insert_after(inst);
1394 last = inst;
1395 }
1396
1397 if (make_copies)
1398 _mesa_hash_table_destroy(temps, NULL);
1399
1400 return last;
1401 }
1402
1403
1404 /**
1405 * This class is only used in link_intrastage_shaders() below but declaring
1406 * it inside that function leads to compiler warnings with some versions of
1407 * gcc.
1408 */
1409 class array_sizing_visitor : public deref_type_updater {
1410 public:
1411 array_sizing_visitor()
1412 : mem_ctx(ralloc_context(NULL)),
1413 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1414 _mesa_key_pointer_equal))
1415 {
1416 }
1417
1418 ~array_sizing_visitor()
1419 {
1420 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1421 ralloc_free(this->mem_ctx);
1422 }
1423
1424 virtual ir_visitor_status visit(ir_variable *var)
1425 {
1426 const glsl_type *type_without_array;
1427 bool implicit_sized_array = var->data.implicit_sized_array;
1428 fixup_type(&var->type, var->data.max_array_access,
1429 var->data.from_ssbo_unsized_array,
1430 &implicit_sized_array);
1431 var->data.implicit_sized_array = implicit_sized_array;
1432 type_without_array = var->type->without_array();
1433 if (var->type->is_interface()) {
1434 if (interface_contains_unsized_arrays(var->type)) {
1435 const glsl_type *new_type =
1436 resize_interface_members(var->type,
1437 var->get_max_ifc_array_access(),
1438 var->is_in_shader_storage_block());
1439 var->type = new_type;
1440 var->change_interface_type(new_type);
1441 }
1442 } else if (type_without_array->is_interface()) {
1443 if (interface_contains_unsized_arrays(type_without_array)) {
1444 const glsl_type *new_type =
1445 resize_interface_members(type_without_array,
1446 var->get_max_ifc_array_access(),
1447 var->is_in_shader_storage_block());
1448 var->change_interface_type(new_type);
1449 var->type = update_interface_members_array(var->type, new_type);
1450 }
1451 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1452 /* Store a pointer to the variable in the unnamed_interfaces
1453 * hashtable.
1454 */
1455 hash_entry *entry =
1456 _mesa_hash_table_search(this->unnamed_interfaces,
1457 ifc_type);
1458
1459 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1460
1461 if (interface_vars == NULL) {
1462 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1463 ifc_type->length);
1464 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1465 interface_vars);
1466 }
1467 unsigned index = ifc_type->field_index(var->name);
1468 assert(index < ifc_type->length);
1469 assert(interface_vars[index] == NULL);
1470 interface_vars[index] = var;
1471 }
1472 return visit_continue;
1473 }
1474
1475 /**
1476 * For each unnamed interface block that was discovered while running the
1477 * visitor, adjust the interface type to reflect the newly assigned array
1478 * sizes, and fix up the ir_variable nodes to point to the new interface
1479 * type.
1480 */
1481 void fixup_unnamed_interface_types()
1482 {
1483 hash_table_call_foreach(this->unnamed_interfaces,
1484 fixup_unnamed_interface_type, NULL);
1485 }
1486
1487 private:
1488 /**
1489 * If the type pointed to by \c type represents an unsized array, replace
1490 * it with a sized array whose size is determined by max_array_access.
1491 */
1492 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1493 bool from_ssbo_unsized_array, bool *implicit_sized)
1494 {
1495 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1496 *type = glsl_type::get_array_instance((*type)->fields.array,
1497 max_array_access + 1);
1498 *implicit_sized = true;
1499 assert(*type != NULL);
1500 }
1501 }
1502
1503 static const glsl_type *
1504 update_interface_members_array(const glsl_type *type,
1505 const glsl_type *new_interface_type)
1506 {
1507 const glsl_type *element_type = type->fields.array;
1508 if (element_type->is_array()) {
1509 const glsl_type *new_array_type =
1510 update_interface_members_array(element_type, new_interface_type);
1511 return glsl_type::get_array_instance(new_array_type, type->length);
1512 } else {
1513 return glsl_type::get_array_instance(new_interface_type,
1514 type->length);
1515 }
1516 }
1517
1518 /**
1519 * Determine whether the given interface type contains unsized arrays (if
1520 * it doesn't, array_sizing_visitor doesn't need to process it).
1521 */
1522 static bool interface_contains_unsized_arrays(const glsl_type *type)
1523 {
1524 for (unsigned i = 0; i < type->length; i++) {
1525 const glsl_type *elem_type = type->fields.structure[i].type;
1526 if (elem_type->is_unsized_array())
1527 return true;
1528 }
1529 return false;
1530 }
1531
1532 /**
1533 * Create a new interface type based on the given type, with unsized arrays
1534 * replaced by sized arrays whose size is determined by
1535 * max_ifc_array_access.
1536 */
1537 static const glsl_type *
1538 resize_interface_members(const glsl_type *type,
1539 const int *max_ifc_array_access,
1540 bool is_ssbo)
1541 {
1542 unsigned num_fields = type->length;
1543 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1544 memcpy(fields, type->fields.structure,
1545 num_fields * sizeof(*fields));
1546 for (unsigned i = 0; i < num_fields; i++) {
1547 bool implicit_sized_array = fields[i].implicit_sized_array;
1548 /* If SSBO last member is unsized array, we don't replace it by a sized
1549 * array.
1550 */
1551 if (is_ssbo && i == (num_fields - 1))
1552 fixup_type(&fields[i].type, max_ifc_array_access[i],
1553 true, &implicit_sized_array);
1554 else
1555 fixup_type(&fields[i].type, max_ifc_array_access[i],
1556 false, &implicit_sized_array);
1557 fields[i].implicit_sized_array = implicit_sized_array;
1558 }
1559 glsl_interface_packing packing =
1560 (glsl_interface_packing) type->interface_packing;
1561 bool row_major = (bool) type->interface_row_major;
1562 const glsl_type *new_ifc_type =
1563 glsl_type::get_interface_instance(fields, num_fields,
1564 packing, row_major, type->name);
1565 delete [] fields;
1566 return new_ifc_type;
1567 }
1568
1569 static void fixup_unnamed_interface_type(const void *key, void *data,
1570 void *)
1571 {
1572 const glsl_type *ifc_type = (const glsl_type *) key;
1573 ir_variable **interface_vars = (ir_variable **) data;
1574 unsigned num_fields = ifc_type->length;
1575 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1576 memcpy(fields, ifc_type->fields.structure,
1577 num_fields * sizeof(*fields));
1578 bool interface_type_changed = false;
1579 for (unsigned i = 0; i < num_fields; i++) {
1580 if (interface_vars[i] != NULL &&
1581 fields[i].type != interface_vars[i]->type) {
1582 fields[i].type = interface_vars[i]->type;
1583 interface_type_changed = true;
1584 }
1585 }
1586 if (!interface_type_changed) {
1587 delete [] fields;
1588 return;
1589 }
1590 glsl_interface_packing packing =
1591 (glsl_interface_packing) ifc_type->interface_packing;
1592 bool row_major = (bool) ifc_type->interface_row_major;
1593 const glsl_type *new_ifc_type =
1594 glsl_type::get_interface_instance(fields, num_fields, packing,
1595 row_major, ifc_type->name);
1596 delete [] fields;
1597 for (unsigned i = 0; i < num_fields; i++) {
1598 if (interface_vars[i] != NULL)
1599 interface_vars[i]->change_interface_type(new_ifc_type);
1600 }
1601 }
1602
1603 /**
1604 * Memory context used to allocate the data in \c unnamed_interfaces.
1605 */
1606 void *mem_ctx;
1607
1608 /**
1609 * Hash table from const glsl_type * to an array of ir_variable *'s
1610 * pointing to the ir_variables constituting each unnamed interface block.
1611 */
1612 hash_table *unnamed_interfaces;
1613 };
1614
1615 static bool
1616 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1617 struct gl_shader_program *prog)
1618 {
1619 /* We will validate doubles at a later stage */
1620 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1621 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1622 "multiple of 4 or if its applied to a type that is "
1623 "or contains a double a multiple of 8.",
1624 prog->TransformFeedback.BufferStride[idx]);
1625 return false;
1626 }
1627
1628 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1629 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1630 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1631 "limit has been exceeded.");
1632 return false;
1633 }
1634
1635 return true;
1636 }
1637
1638 /**
1639 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1640 * for later use.
1641 */
1642 static void
1643 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1644 struct gl_shader_program *prog,
1645 struct gl_shader **shader_list,
1646 unsigned num_shaders)
1647 {
1648 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1649 prog->TransformFeedback.BufferStride[i] = 0;
1650 }
1651
1652 for (unsigned i = 0; i < num_shaders; i++) {
1653 struct gl_shader *shader = shader_list[i];
1654
1655 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1656 if (shader->TransformFeedbackBufferStride[j]) {
1657 if (prog->TransformFeedback.BufferStride[j] == 0) {
1658 prog->TransformFeedback.BufferStride[j] =
1659 shader->TransformFeedbackBufferStride[j];
1660 if (!validate_xfb_buffer_stride(ctx, j, prog))
1661 return;
1662 } else if (prog->TransformFeedback.BufferStride[j] !=
1663 shader->TransformFeedbackBufferStride[j]){
1664 linker_error(prog,
1665 "intrastage shaders defined with conflicting "
1666 "xfb_stride for buffer %d (%d and %d)\n", j,
1667 prog->TransformFeedback.BufferStride[j],
1668 shader->TransformFeedbackBufferStride[j]);
1669 return;
1670 }
1671 }
1672 }
1673 }
1674 }
1675
1676 /**
1677 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1678 * global scope.
1679 */
1680 static void
1681 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1682 struct gl_shader **shader_list,
1683 unsigned num_shaders)
1684 {
1685 bool bindless_sampler, bindless_image;
1686 bool bound_sampler, bound_image;
1687
1688 bindless_sampler = bindless_image = false;
1689 bound_sampler = bound_image = false;
1690
1691 for (unsigned i = 0; i < num_shaders; i++) {
1692 struct gl_shader *shader = shader_list[i];
1693
1694 if (shader->bindless_sampler)
1695 bindless_sampler = true;
1696 if (shader->bindless_image)
1697 bindless_image = true;
1698 if (shader->bound_sampler)
1699 bound_sampler = true;
1700 if (shader->bound_image)
1701 bound_image = true;
1702
1703 if ((bindless_sampler && bound_sampler) ||
1704 (bindless_image && bound_image)) {
1705 /* From section 4.4.6 of the ARB_bindless_texture spec:
1706 *
1707 * "If both bindless_sampler and bound_sampler, or bindless_image
1708 * and bound_image, are declared at global scope in any
1709 * compilation unit, a link- time error will be generated."
1710 */
1711 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1712 "bindless_image and bound_image, can't be declared at "
1713 "global scope");
1714 }
1715 }
1716 }
1717
1718 /**
1719 * Performs the cross-validation of tessellation control shader vertices and
1720 * layout qualifiers for the attached tessellation control shaders,
1721 * and propagates them to the linked TCS and linked shader program.
1722 */
1723 static void
1724 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1725 struct gl_program *gl_prog,
1726 struct gl_shader **shader_list,
1727 unsigned num_shaders)
1728 {
1729 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1730 return;
1731
1732 gl_prog->info.tess.tcs_vertices_out = 0;
1733
1734 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1735 *
1736 * "All tessellation control shader layout declarations in a program
1737 * must specify the same output patch vertex count. There must be at
1738 * least one layout qualifier specifying an output patch vertex count
1739 * in any program containing tessellation control shaders; however,
1740 * such a declaration is not required in all tessellation control
1741 * shaders."
1742 */
1743
1744 for (unsigned i = 0; i < num_shaders; i++) {
1745 struct gl_shader *shader = shader_list[i];
1746
1747 if (shader->info.TessCtrl.VerticesOut != 0) {
1748 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1749 gl_prog->info.tess.tcs_vertices_out !=
1750 (unsigned) shader->info.TessCtrl.VerticesOut) {
1751 linker_error(prog, "tessellation control shader defined with "
1752 "conflicting output vertex count (%d and %d)\n",
1753 gl_prog->info.tess.tcs_vertices_out,
1754 shader->info.TessCtrl.VerticesOut);
1755 return;
1756 }
1757 gl_prog->info.tess.tcs_vertices_out =
1758 shader->info.TessCtrl.VerticesOut;
1759 }
1760 }
1761
1762 /* Just do the intrastage -> interstage propagation right now,
1763 * since we already know we're in the right type of shader program
1764 * for doing it.
1765 */
1766 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1767 linker_error(prog, "tessellation control shader didn't declare "
1768 "vertices out layout qualifier\n");
1769 return;
1770 }
1771 }
1772
1773
1774 /**
1775 * Performs the cross-validation of tessellation evaluation shader
1776 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1777 * for the attached tessellation evaluation shaders, and propagates them
1778 * to the linked TES and linked shader program.
1779 */
1780 static void
1781 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1782 struct gl_program *gl_prog,
1783 struct gl_shader **shader_list,
1784 unsigned num_shaders)
1785 {
1786 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1787 return;
1788
1789 int point_mode = -1;
1790 unsigned vertex_order = 0;
1791
1792 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1793 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1794
1795 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1796 *
1797 * "At least one tessellation evaluation shader (compilation unit) in
1798 * a program must declare a primitive mode in its input layout.
1799 * Declaration vertex spacing, ordering, and point mode identifiers is
1800 * optional. It is not required that all tessellation evaluation
1801 * shaders in a program declare a primitive mode. If spacing or
1802 * vertex ordering declarations are omitted, the tessellation
1803 * primitive generator will use equal spacing or counter-clockwise
1804 * vertex ordering, respectively. If a point mode declaration is
1805 * omitted, the tessellation primitive generator will produce lines or
1806 * triangles according to the primitive mode."
1807 */
1808
1809 for (unsigned i = 0; i < num_shaders; i++) {
1810 struct gl_shader *shader = shader_list[i];
1811
1812 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1813 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1814 gl_prog->info.tess.primitive_mode !=
1815 shader->info.TessEval.PrimitiveMode) {
1816 linker_error(prog, "tessellation evaluation shader defined with "
1817 "conflicting input primitive modes.\n");
1818 return;
1819 }
1820 gl_prog->info.tess.primitive_mode =
1821 shader->info.TessEval.PrimitiveMode;
1822 }
1823
1824 if (shader->info.TessEval.Spacing != 0) {
1825 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1826 shader->info.TessEval.Spacing) {
1827 linker_error(prog, "tessellation evaluation shader defined with "
1828 "conflicting vertex spacing.\n");
1829 return;
1830 }
1831 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1832 }
1833
1834 if (shader->info.TessEval.VertexOrder != 0) {
1835 if (vertex_order != 0 &&
1836 vertex_order != shader->info.TessEval.VertexOrder) {
1837 linker_error(prog, "tessellation evaluation shader defined with "
1838 "conflicting ordering.\n");
1839 return;
1840 }
1841 vertex_order = shader->info.TessEval.VertexOrder;
1842 }
1843
1844 if (shader->info.TessEval.PointMode != -1) {
1845 if (point_mode != -1 &&
1846 point_mode != shader->info.TessEval.PointMode) {
1847 linker_error(prog, "tessellation evaluation shader defined with "
1848 "conflicting point modes.\n");
1849 return;
1850 }
1851 point_mode = shader->info.TessEval.PointMode;
1852 }
1853
1854 }
1855
1856 /* Just do the intrastage -> interstage propagation right now,
1857 * since we already know we're in the right type of shader program
1858 * for doing it.
1859 */
1860 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1861 linker_error(prog,
1862 "tessellation evaluation shader didn't declare input "
1863 "primitive modes.\n");
1864 return;
1865 }
1866
1867 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1868 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1869
1870 if (vertex_order == 0 || vertex_order == GL_CCW)
1871 gl_prog->info.tess.ccw = true;
1872 else
1873 gl_prog->info.tess.ccw = false;
1874
1875
1876 if (point_mode == -1 || point_mode == GL_FALSE)
1877 gl_prog->info.tess.point_mode = false;
1878 else
1879 gl_prog->info.tess.point_mode = true;
1880 }
1881
1882
1883 /**
1884 * Performs the cross-validation of layout qualifiers specified in
1885 * redeclaration of gl_FragCoord for the attached fragment shaders,
1886 * and propagates them to the linked FS and linked shader program.
1887 */
1888 static void
1889 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1890 struct gl_linked_shader *linked_shader,
1891 struct gl_shader **shader_list,
1892 unsigned num_shaders)
1893 {
1894 bool redeclares_gl_fragcoord = false;
1895 bool uses_gl_fragcoord = false;
1896 bool origin_upper_left = false;
1897 bool pixel_center_integer = false;
1898
1899 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1900 (prog->data->Version < 150 &&
1901 !prog->ARB_fragment_coord_conventions_enable))
1902 return;
1903
1904 for (unsigned i = 0; i < num_shaders; i++) {
1905 struct gl_shader *shader = shader_list[i];
1906 /* From the GLSL 1.50 spec, page 39:
1907 *
1908 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1909 * it must be redeclared in all the fragment shaders in that program
1910 * that have a static use gl_FragCoord."
1911 */
1912 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1913 shader->uses_gl_fragcoord)
1914 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1915 uses_gl_fragcoord)) {
1916 linker_error(prog, "fragment shader defined with conflicting "
1917 "layout qualifiers for gl_FragCoord\n");
1918 }
1919
1920 /* From the GLSL 1.50 spec, page 39:
1921 *
1922 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1923 * single program must have the same set of qualifiers."
1924 */
1925 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1926 (shader->origin_upper_left != origin_upper_left ||
1927 shader->pixel_center_integer != pixel_center_integer)) {
1928 linker_error(prog, "fragment shader defined with conflicting "
1929 "layout qualifiers for gl_FragCoord\n");
1930 }
1931
1932 /* Update the linked shader state. Note that uses_gl_fragcoord should
1933 * accumulate the results. The other values should replace. If there
1934 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1935 * are already known to be the same.
1936 */
1937 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1938 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1939 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1940 origin_upper_left = shader->origin_upper_left;
1941 pixel_center_integer = shader->pixel_center_integer;
1942 }
1943
1944 linked_shader->Program->info.fs.early_fragment_tests |=
1945 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1946 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1947 linked_shader->Program->info.fs.post_depth_coverage |=
1948 shader->PostDepthCoverage;
1949
1950 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1951 }
1952 }
1953
1954 /**
1955 * Performs the cross-validation of geometry shader max_vertices and
1956 * primitive type layout qualifiers for the attached geometry shaders,
1957 * and propagates them to the linked GS and linked shader program.
1958 */
1959 static void
1960 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1961 struct gl_program *gl_prog,
1962 struct gl_shader **shader_list,
1963 unsigned num_shaders)
1964 {
1965 /* No in/out qualifiers defined for anything but GLSL 1.50+
1966 * geometry shaders so far.
1967 */
1968 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1969 prog->data->Version < 150)
1970 return;
1971
1972 int vertices_out = -1;
1973
1974 gl_prog->info.gs.invocations = 0;
1975 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1976 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1977
1978 /* From the GLSL 1.50 spec, page 46:
1979 *
1980 * "All geometry shader output layout declarations in a program
1981 * must declare the same layout and same value for
1982 * max_vertices. There must be at least one geometry output
1983 * layout declaration somewhere in a program, but not all
1984 * geometry shaders (compilation units) are required to
1985 * declare it."
1986 */
1987
1988 for (unsigned i = 0; i < num_shaders; i++) {
1989 struct gl_shader *shader = shader_list[i];
1990
1991 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1992 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1993 gl_prog->info.gs.input_primitive !=
1994 shader->info.Geom.InputType) {
1995 linker_error(prog, "geometry shader defined with conflicting "
1996 "input types\n");
1997 return;
1998 }
1999 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2000 }
2001
2002 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2003 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2004 gl_prog->info.gs.output_primitive !=
2005 shader->info.Geom.OutputType) {
2006 linker_error(prog, "geometry shader defined with conflicting "
2007 "output types\n");
2008 return;
2009 }
2010 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2011 }
2012
2013 if (shader->info.Geom.VerticesOut != -1) {
2014 if (vertices_out != -1 &&
2015 vertices_out != shader->info.Geom.VerticesOut) {
2016 linker_error(prog, "geometry shader defined with conflicting "
2017 "output vertex count (%d and %d)\n",
2018 vertices_out, shader->info.Geom.VerticesOut);
2019 return;
2020 }
2021 vertices_out = shader->info.Geom.VerticesOut;
2022 }
2023
2024 if (shader->info.Geom.Invocations != 0) {
2025 if (gl_prog->info.gs.invocations != 0 &&
2026 gl_prog->info.gs.invocations !=
2027 (unsigned) shader->info.Geom.Invocations) {
2028 linker_error(prog, "geometry shader defined with conflicting "
2029 "invocation count (%d and %d)\n",
2030 gl_prog->info.gs.invocations,
2031 shader->info.Geom.Invocations);
2032 return;
2033 }
2034 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2035 }
2036 }
2037
2038 /* Just do the intrastage -> interstage propagation right now,
2039 * since we already know we're in the right type of shader program
2040 * for doing it.
2041 */
2042 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2043 linker_error(prog,
2044 "geometry shader didn't declare primitive input type\n");
2045 return;
2046 }
2047
2048 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2049 linker_error(prog,
2050 "geometry shader didn't declare primitive output type\n");
2051 return;
2052 }
2053
2054 if (vertices_out == -1) {
2055 linker_error(prog,
2056 "geometry shader didn't declare max_vertices\n");
2057 return;
2058 } else {
2059 gl_prog->info.gs.vertices_out = vertices_out;
2060 }
2061
2062 if (gl_prog->info.gs.invocations == 0)
2063 gl_prog->info.gs.invocations = 1;
2064 }
2065
2066
2067 /**
2068 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2069 * qualifiers for the attached compute shaders, and propagate them to the
2070 * linked CS and linked shader program.
2071 */
2072 static void
2073 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2074 struct gl_program *gl_prog,
2075 struct gl_shader **shader_list,
2076 unsigned num_shaders)
2077 {
2078 /* This function is called for all shader stages, but it only has an effect
2079 * for compute shaders.
2080 */
2081 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2082 return;
2083
2084 for (int i = 0; i < 3; i++)
2085 gl_prog->info.cs.local_size[i] = 0;
2086
2087 gl_prog->info.cs.local_size_variable = false;
2088
2089 /* From the ARB_compute_shader spec, in the section describing local size
2090 * declarations:
2091 *
2092 * If multiple compute shaders attached to a single program object
2093 * declare local work-group size, the declarations must be identical;
2094 * otherwise a link-time error results. Furthermore, if a program
2095 * object contains any compute shaders, at least one must contain an
2096 * input layout qualifier specifying the local work sizes of the
2097 * program, or a link-time error will occur.
2098 */
2099 for (unsigned sh = 0; sh < num_shaders; sh++) {
2100 struct gl_shader *shader = shader_list[sh];
2101
2102 if (shader->info.Comp.LocalSize[0] != 0) {
2103 if (gl_prog->info.cs.local_size[0] != 0) {
2104 for (int i = 0; i < 3; i++) {
2105 if (gl_prog->info.cs.local_size[i] !=
2106 shader->info.Comp.LocalSize[i]) {
2107 linker_error(prog, "compute shader defined with conflicting "
2108 "local sizes\n");
2109 return;
2110 }
2111 }
2112 }
2113 for (int i = 0; i < 3; i++) {
2114 gl_prog->info.cs.local_size[i] =
2115 shader->info.Comp.LocalSize[i];
2116 }
2117 } else if (shader->info.Comp.LocalSizeVariable) {
2118 if (gl_prog->info.cs.local_size[0] != 0) {
2119 /* The ARB_compute_variable_group_size spec says:
2120 *
2121 * If one compute shader attached to a program declares a
2122 * variable local group size and a second compute shader
2123 * attached to the same program declares a fixed local group
2124 * size, a link-time error results.
2125 */
2126 linker_error(prog, "compute shader defined with both fixed and "
2127 "variable local group size\n");
2128 return;
2129 }
2130 gl_prog->info.cs.local_size_variable = true;
2131 }
2132 }
2133
2134 /* Just do the intrastage -> interstage propagation right now,
2135 * since we already know we're in the right type of shader program
2136 * for doing it.
2137 */
2138 if (gl_prog->info.cs.local_size[0] == 0 &&
2139 !gl_prog->info.cs.local_size_variable) {
2140 linker_error(prog, "compute shader must contain a fixed or a variable "
2141 "local group size\n");
2142 return;
2143 }
2144 }
2145
2146
2147 /**
2148 * Combine a group of shaders for a single stage to generate a linked shader
2149 *
2150 * \note
2151 * If this function is supplied a single shader, it is cloned, and the new
2152 * shader is returned.
2153 */
2154 struct gl_linked_shader *
2155 link_intrastage_shaders(void *mem_ctx,
2156 struct gl_context *ctx,
2157 struct gl_shader_program *prog,
2158 struct gl_shader **shader_list,
2159 unsigned num_shaders,
2160 bool allow_missing_main)
2161 {
2162 struct gl_uniform_block *ubo_blocks = NULL;
2163 struct gl_uniform_block *ssbo_blocks = NULL;
2164 unsigned num_ubo_blocks = 0;
2165 unsigned num_ssbo_blocks = 0;
2166
2167 /* Check that global variables defined in multiple shaders are consistent.
2168 */
2169 glsl_symbol_table variables;
2170 for (unsigned i = 0; i < num_shaders; i++) {
2171 if (shader_list[i] == NULL)
2172 continue;
2173 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2174 }
2175
2176 if (!prog->data->LinkStatus)
2177 return NULL;
2178
2179 /* Check that interface blocks defined in multiple shaders are consistent.
2180 */
2181 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2182 num_shaders);
2183 if (!prog->data->LinkStatus)
2184 return NULL;
2185
2186 /* Check that there is only a single definition of each function signature
2187 * across all shaders.
2188 */
2189 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2190 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2191 ir_function *const f = node->as_function();
2192
2193 if (f == NULL)
2194 continue;
2195
2196 for (unsigned j = i + 1; j < num_shaders; j++) {
2197 ir_function *const other =
2198 shader_list[j]->symbols->get_function(f->name);
2199
2200 /* If the other shader has no function (and therefore no function
2201 * signatures) with the same name, skip to the next shader.
2202 */
2203 if (other == NULL)
2204 continue;
2205
2206 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2207 if (!sig->is_defined)
2208 continue;
2209
2210 ir_function_signature *other_sig =
2211 other->exact_matching_signature(NULL, &sig->parameters);
2212
2213 if (other_sig != NULL && other_sig->is_defined) {
2214 linker_error(prog, "function `%s' is multiply defined\n",
2215 f->name);
2216 return NULL;
2217 }
2218 }
2219 }
2220 }
2221 }
2222
2223 /* Find the shader that defines main, and make a clone of it.
2224 *
2225 * Starting with the clone, search for undefined references. If one is
2226 * found, find the shader that defines it. Clone the reference and add
2227 * it to the shader. Repeat until there are no undefined references or
2228 * until a reference cannot be resolved.
2229 */
2230 gl_shader *main = NULL;
2231 for (unsigned i = 0; i < num_shaders; i++) {
2232 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2233 main = shader_list[i];
2234 break;
2235 }
2236 }
2237
2238 if (main == NULL && allow_missing_main)
2239 main = shader_list[0];
2240
2241 if (main == NULL) {
2242 linker_error(prog, "%s shader lacks `main'\n",
2243 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2244 return NULL;
2245 }
2246
2247 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2248 linked->Stage = shader_list[0]->Stage;
2249
2250 /* Create program and attach it to the linked shader */
2251 struct gl_program *gl_prog =
2252 ctx->Driver.NewProgram(ctx,
2253 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2254 prog->Name, false);
2255 if (!gl_prog) {
2256 prog->data->LinkStatus = linking_failure;
2257 _mesa_delete_linked_shader(ctx, linked);
2258 return NULL;
2259 }
2260
2261 if (!prog->data->cache_fallback)
2262 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2263
2264 /* Don't use _mesa_reference_program() just take ownership */
2265 linked->Program = gl_prog;
2266
2267 linked->ir = new(linked) exec_list;
2268 clone_ir_list(mem_ctx, linked->ir, main->ir);
2269
2270 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2271 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2272 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2273 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2274 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2275
2276 if (linked->Stage != MESA_SHADER_FRAGMENT)
2277 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2278
2279 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2280
2281 populate_symbol_table(linked, shader_list[0]->symbols);
2282
2283 /* The pointer to the main function in the final linked shader (i.e., the
2284 * copy of the original shader that contained the main function).
2285 */
2286 ir_function_signature *const main_sig =
2287 _mesa_get_main_function_signature(linked->symbols);
2288
2289 /* Move any instructions other than variable declarations or function
2290 * declarations into main.
2291 */
2292 if (main_sig != NULL) {
2293 exec_node *insertion_point =
2294 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2295 linked);
2296
2297 for (unsigned i = 0; i < num_shaders; i++) {
2298 if (shader_list[i] == main)
2299 continue;
2300
2301 insertion_point = move_non_declarations(shader_list[i]->ir,
2302 insertion_point, true, linked);
2303 }
2304 }
2305
2306 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2307 _mesa_delete_linked_shader(ctx, linked);
2308 return NULL;
2309 }
2310
2311 /* Make a pass over all variable declarations to ensure that arrays with
2312 * unspecified sizes have a size specified. The size is inferred from the
2313 * max_array_access field.
2314 */
2315 array_sizing_visitor v;
2316 v.run(linked->ir);
2317 v.fixup_unnamed_interface_types();
2318
2319 if (!prog->data->cache_fallback) {
2320 /* Link up uniform blocks defined within this stage. */
2321 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2322 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2323
2324 if (!prog->data->LinkStatus) {
2325 _mesa_delete_linked_shader(ctx, linked);
2326 return NULL;
2327 }
2328
2329 /* Copy ubo blocks to linked shader list */
2330 linked->Program->sh.UniformBlocks =
2331 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2332 ralloc_steal(linked, ubo_blocks);
2333 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2334 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2335 }
2336 linked->Program->info.num_ubos = num_ubo_blocks;
2337
2338 /* Copy ssbo blocks to linked shader list */
2339 linked->Program->sh.ShaderStorageBlocks =
2340 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2341 ralloc_steal(linked, ssbo_blocks);
2342 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2343 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2344 }
2345 linked->Program->info.num_ssbos = num_ssbo_blocks;
2346 }
2347
2348 /* At this point linked should contain all of the linked IR, so
2349 * validate it to make sure nothing went wrong.
2350 */
2351 validate_ir_tree(linked->ir);
2352
2353 /* Set the size of geometry shader input arrays */
2354 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2355 unsigned num_vertices =
2356 vertices_per_prim(gl_prog->info.gs.input_primitive);
2357 array_resize_visitor input_resize_visitor(num_vertices, prog,
2358 MESA_SHADER_GEOMETRY);
2359 foreach_in_list(ir_instruction, ir, linked->ir) {
2360 ir->accept(&input_resize_visitor);
2361 }
2362 }
2363
2364 if (ctx->Const.VertexID_is_zero_based)
2365 lower_vertex_id(linked);
2366
2367 if (ctx->Const.LowerCsDerivedVariables)
2368 lower_cs_derived(linked);
2369
2370 #ifdef DEBUG
2371 /* Compute the source checksum. */
2372 linked->SourceChecksum = 0;
2373 for (unsigned i = 0; i < num_shaders; i++) {
2374 if (shader_list[i] == NULL)
2375 continue;
2376 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2377 }
2378 #endif
2379
2380 return linked;
2381 }
2382
2383 /**
2384 * Update the sizes of linked shader uniform arrays to the maximum
2385 * array index used.
2386 *
2387 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2388 *
2389 * If one or more elements of an array are active,
2390 * GetActiveUniform will return the name of the array in name,
2391 * subject to the restrictions listed above. The type of the array
2392 * is returned in type. The size parameter contains the highest
2393 * array element index used, plus one. The compiler or linker
2394 * determines the highest index used. There will be only one
2395 * active uniform reported by the GL per uniform array.
2396
2397 */
2398 static void
2399 update_array_sizes(struct gl_shader_program *prog)
2400 {
2401 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2402 if (prog->_LinkedShaders[i] == NULL)
2403 continue;
2404
2405 bool types_were_updated = false;
2406
2407 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2408 ir_variable *const var = node->as_variable();
2409
2410 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2411 !var->type->is_array())
2412 continue;
2413
2414 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2415 * will not be eliminated. Since we always do std140, just
2416 * don't resize arrays in UBOs.
2417 *
2418 * Atomic counters are supposed to get deterministic
2419 * locations assigned based on the declaration ordering and
2420 * sizes, array compaction would mess that up.
2421 *
2422 * Subroutine uniforms are not removed.
2423 */
2424 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2425 var->type->contains_subroutine() || var->constant_initializer)
2426 continue;
2427
2428 int size = var->data.max_array_access;
2429 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2430 if (prog->_LinkedShaders[j] == NULL)
2431 continue;
2432
2433 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2434 ir_variable *other_var = node2->as_variable();
2435 if (!other_var)
2436 continue;
2437
2438 if (strcmp(var->name, other_var->name) == 0 &&
2439 other_var->data.max_array_access > size) {
2440 size = other_var->data.max_array_access;
2441 }
2442 }
2443 }
2444
2445 if (size + 1 != (int)var->type->length) {
2446 /* If this is a built-in uniform (i.e., it's backed by some
2447 * fixed-function state), adjust the number of state slots to
2448 * match the new array size. The number of slots per array entry
2449 * is not known. It seems safe to assume that the total number of
2450 * slots is an integer multiple of the number of array elements.
2451 * Determine the number of slots per array element by dividing by
2452 * the old (total) size.
2453 */
2454 const unsigned num_slots = var->get_num_state_slots();
2455 if (num_slots > 0) {
2456 var->set_num_state_slots((size + 1)
2457 * (num_slots / var->type->length));
2458 }
2459
2460 var->type = glsl_type::get_array_instance(var->type->fields.array,
2461 size + 1);
2462 types_were_updated = true;
2463 }
2464 }
2465
2466 /* Update the types of dereferences in case we changed any. */
2467 if (types_were_updated) {
2468 deref_type_updater v;
2469 v.run(prog->_LinkedShaders[i]->ir);
2470 }
2471 }
2472 }
2473
2474 /**
2475 * Resize tessellation evaluation per-vertex inputs to the size of
2476 * tessellation control per-vertex outputs.
2477 */
2478 static void
2479 resize_tes_inputs(struct gl_context *ctx,
2480 struct gl_shader_program *prog)
2481 {
2482 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2483 return;
2484
2485 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2486 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2487
2488 /* If no control shader is present, then the TES inputs are statically
2489 * sized to MaxPatchVertices; the actual size of the arrays won't be
2490 * known until draw time.
2491 */
2492 const int num_vertices = tcs
2493 ? tcs->Program->info.tess.tcs_vertices_out
2494 : ctx->Const.MaxPatchVertices;
2495
2496 array_resize_visitor input_resize_visitor(num_vertices, prog,
2497 MESA_SHADER_TESS_EVAL);
2498 foreach_in_list(ir_instruction, ir, tes->ir) {
2499 ir->accept(&input_resize_visitor);
2500 }
2501
2502 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2503 /* Convert the gl_PatchVerticesIn system value into a constant, since
2504 * the value is known at this point.
2505 */
2506 foreach_in_list(ir_instruction, ir, tes->ir) {
2507 ir_variable *var = ir->as_variable();
2508 if (var && var->data.mode == ir_var_system_value &&
2509 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2510 void *mem_ctx = ralloc_parent(var);
2511 var->data.location = 0;
2512 var->data.explicit_location = false;
2513 if (tcs) {
2514 var->data.mode = ir_var_auto;
2515 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2516 } else {
2517 var->data.mode = ir_var_uniform;
2518 var->data.how_declared = ir_var_hidden;
2519 var->allocate_state_slots(1);
2520 ir_state_slot *slot0 = &var->get_state_slots()[0];
2521 slot0->swizzle = SWIZZLE_XXXX;
2522 slot0->tokens[0] = STATE_INTERNAL;
2523 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2524 for (int i = 2; i < STATE_LENGTH; i++)
2525 slot0->tokens[i] = 0;
2526 }
2527 }
2528 }
2529 }
2530 }
2531
2532 /**
2533 * Find a contiguous set of available bits in a bitmask.
2534 *
2535 * \param used_mask Bits representing used (1) and unused (0) locations
2536 * \param needed_count Number of contiguous bits needed.
2537 *
2538 * \return
2539 * Base location of the available bits on success or -1 on failure.
2540 */
2541 static int
2542 find_available_slots(unsigned used_mask, unsigned needed_count)
2543 {
2544 unsigned needed_mask = (1 << needed_count) - 1;
2545 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2546
2547 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2548 * cannot optimize possibly infinite loops" for the loop below.
2549 */
2550 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2551 return -1;
2552
2553 for (int i = 0; i <= max_bit_to_test; i++) {
2554 if ((needed_mask & ~used_mask) == needed_mask)
2555 return i;
2556
2557 needed_mask <<= 1;
2558 }
2559
2560 return -1;
2561 }
2562
2563
2564 /**
2565 * Assign locations for either VS inputs or FS outputs
2566 *
2567 * \param mem_ctx Temporary ralloc context used for linking
2568 * \param prog Shader program whose variables need locations assigned
2569 * \param constants Driver specific constant values for the program.
2570 * \param target_index Selector for the program target to receive location
2571 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2572 * \c MESA_SHADER_FRAGMENT.
2573 *
2574 * \return
2575 * If locations are successfully assigned, true is returned. Otherwise an
2576 * error is emitted to the shader link log and false is returned.
2577 */
2578 static bool
2579 assign_attribute_or_color_locations(void *mem_ctx,
2580 gl_shader_program *prog,
2581 struct gl_constants *constants,
2582 unsigned target_index)
2583 {
2584 /* Maximum number of generic locations. This corresponds to either the
2585 * maximum number of draw buffers or the maximum number of generic
2586 * attributes.
2587 */
2588 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2589 constants->Program[target_index].MaxAttribs :
2590 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2591
2592 /* Mark invalid locations as being used.
2593 */
2594 unsigned used_locations = (max_index >= 32)
2595 ? ~0 : ~((1 << max_index) - 1);
2596 unsigned double_storage_locations = 0;
2597
2598 assert((target_index == MESA_SHADER_VERTEX)
2599 || (target_index == MESA_SHADER_FRAGMENT));
2600
2601 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2602 if (sh == NULL)
2603 return true;
2604
2605 /* Operate in a total of four passes.
2606 *
2607 * 1. Invalidate the location assignments for all vertex shader inputs.
2608 *
2609 * 2. Assign locations for inputs that have user-defined (via
2610 * glBindVertexAttribLocation) locations and outputs that have
2611 * user-defined locations (via glBindFragDataLocation).
2612 *
2613 * 3. Sort the attributes without assigned locations by number of slots
2614 * required in decreasing order. Fragmentation caused by attribute
2615 * locations assigned by the application may prevent large attributes
2616 * from having enough contiguous space.
2617 *
2618 * 4. Assign locations to any inputs without assigned locations.
2619 */
2620
2621 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2622 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2623
2624 const enum ir_variable_mode direction =
2625 (target_index == MESA_SHADER_VERTEX)
2626 ? ir_var_shader_in : ir_var_shader_out;
2627
2628
2629 /* Temporary storage for the set of attributes that need locations assigned.
2630 */
2631 struct temp_attr {
2632 unsigned slots;
2633 ir_variable *var;
2634
2635 /* Used below in the call to qsort. */
2636 static int compare(const void *a, const void *b)
2637 {
2638 const temp_attr *const l = (const temp_attr *) a;
2639 const temp_attr *const r = (const temp_attr *) b;
2640
2641 /* Reversed because we want a descending order sort below. */
2642 return r->slots - l->slots;
2643 }
2644 } to_assign[32];
2645 assert(max_index <= 32);
2646
2647 /* Temporary array for the set of attributes that have locations assigned,
2648 * for the purpose of checking overlapping slots/components of (non-ES)
2649 * fragment shader outputs.
2650 */
2651 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2652 unsigned assigned_attr = 0;
2653
2654 unsigned num_attr = 0;
2655
2656 foreach_in_list(ir_instruction, node, sh->ir) {
2657 ir_variable *const var = node->as_variable();
2658
2659 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2660 continue;
2661
2662 if (var->data.explicit_location) {
2663 var->data.is_unmatched_generic_inout = 0;
2664 if ((var->data.location >= (int)(max_index + generic_base))
2665 || (var->data.location < 0)) {
2666 linker_error(prog,
2667 "invalid explicit location %d specified for `%s'\n",
2668 (var->data.location < 0)
2669 ? var->data.location
2670 : var->data.location - generic_base,
2671 var->name);
2672 return false;
2673 }
2674 } else if (target_index == MESA_SHADER_VERTEX) {
2675 unsigned binding;
2676
2677 if (prog->AttributeBindings->get(binding, var->name)) {
2678 assert(binding >= VERT_ATTRIB_GENERIC0);
2679 var->data.location = binding;
2680 var->data.is_unmatched_generic_inout = 0;
2681 }
2682 } else if (target_index == MESA_SHADER_FRAGMENT) {
2683 unsigned binding;
2684 unsigned index;
2685 const char *name = var->name;
2686 const glsl_type *type = var->type;
2687
2688 while (type) {
2689 /* Check if there's a binding for the variable name */
2690 if (prog->FragDataBindings->get(binding, name)) {
2691 assert(binding >= FRAG_RESULT_DATA0);
2692 var->data.location = binding;
2693 var->data.is_unmatched_generic_inout = 0;
2694
2695 if (prog->FragDataIndexBindings->get(index, name)) {
2696 var->data.index = index;
2697 }
2698 break;
2699 }
2700
2701 /* If not, but it's an array type, look for name[0] */
2702 if (type->is_array()) {
2703 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2704 type = type->fields.array;
2705 continue;
2706 }
2707
2708 break;
2709 }
2710 }
2711
2712 if (strcmp(var->name, "gl_LastFragData") == 0)
2713 continue;
2714
2715 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2716 *
2717 * "Output binding assignments will cause LinkProgram to fail:
2718 * ...
2719 * If the program has an active output assigned to a location greater
2720 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2721 * an active output assigned an index greater than or equal to one;"
2722 */
2723 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2724 var->data.location - generic_base >=
2725 (int) constants->MaxDualSourceDrawBuffers) {
2726 linker_error(prog,
2727 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2728 "with index %u for %s\n",
2729 var->data.location - generic_base, var->data.index,
2730 var->name);
2731 return false;
2732 }
2733
2734 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2735
2736 /* If the variable is not a built-in and has a location statically
2737 * assigned in the shader (presumably via a layout qualifier), make sure
2738 * that it doesn't collide with other assigned locations. Otherwise,
2739 * add it to the list of variables that need linker-assigned locations.
2740 */
2741 if (var->data.location != -1) {
2742 if (var->data.location >= generic_base && var->data.index < 1) {
2743 /* From page 61 of the OpenGL 4.0 spec:
2744 *
2745 * "LinkProgram will fail if the attribute bindings assigned
2746 * by BindAttribLocation do not leave not enough space to
2747 * assign a location for an active matrix attribute or an
2748 * active attribute array, both of which require multiple
2749 * contiguous generic attributes."
2750 *
2751 * I think above text prohibits the aliasing of explicit and
2752 * automatic assignments. But, aliasing is allowed in manual
2753 * assignments of attribute locations. See below comments for
2754 * the details.
2755 *
2756 * From OpenGL 4.0 spec, page 61:
2757 *
2758 * "It is possible for an application to bind more than one
2759 * attribute name to the same location. This is referred to as
2760 * aliasing. This will only work if only one of the aliased
2761 * attributes is active in the executable program, or if no
2762 * path through the shader consumes more than one attribute of
2763 * a set of attributes aliased to the same location. A link
2764 * error can occur if the linker determines that every path
2765 * through the shader consumes multiple aliased attributes,
2766 * but implementations are not required to generate an error
2767 * in this case."
2768 *
2769 * From GLSL 4.30 spec, page 54:
2770 *
2771 * "A program will fail to link if any two non-vertex shader
2772 * input variables are assigned to the same location. For
2773 * vertex shaders, multiple input variables may be assigned
2774 * to the same location using either layout qualifiers or via
2775 * the OpenGL API. However, such aliasing is intended only to
2776 * support vertex shaders where each execution path accesses
2777 * at most one input per each location. Implementations are
2778 * permitted, but not required, to generate link-time errors
2779 * if they detect that every path through the vertex shader
2780 * executable accesses multiple inputs assigned to any single
2781 * location. For all shader types, a program will fail to link
2782 * if explicit location assignments leave the linker unable
2783 * to find space for other variables without explicit
2784 * assignments."
2785 *
2786 * From OpenGL ES 3.0 spec, page 56:
2787 *
2788 * "Binding more than one attribute name to the same location
2789 * is referred to as aliasing, and is not permitted in OpenGL
2790 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2791 * fail when this condition exists. However, aliasing is
2792 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2793 * This will only work if only one of the aliased attributes
2794 * is active in the executable program, or if no path through
2795 * the shader consumes more than one attribute of a set of
2796 * attributes aliased to the same location. A link error can
2797 * occur if the linker determines that every path through the
2798 * shader consumes multiple aliased attributes, but implemen-
2799 * tations are not required to generate an error in this case."
2800 *
2801 * After looking at above references from OpenGL, OpenGL ES and
2802 * GLSL specifications, we allow aliasing of vertex input variables
2803 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2804 *
2805 * NOTE: This is not required by the spec but its worth mentioning
2806 * here that we're not doing anything to make sure that no path
2807 * through the vertex shader executable accesses multiple inputs
2808 * assigned to any single location.
2809 */
2810
2811 /* Mask representing the contiguous slots that will be used by
2812 * this attribute.
2813 */
2814 const unsigned attr = var->data.location - generic_base;
2815 const unsigned use_mask = (1 << slots) - 1;
2816 const char *const string = (target_index == MESA_SHADER_VERTEX)
2817 ? "vertex shader input" : "fragment shader output";
2818
2819 /* Generate a link error if the requested locations for this
2820 * attribute exceed the maximum allowed attribute location.
2821 */
2822 if (attr + slots > max_index) {
2823 linker_error(prog,
2824 "insufficient contiguous locations "
2825 "available for %s `%s' %d %d %d\n", string,
2826 var->name, used_locations, use_mask, attr);
2827 return false;
2828 }
2829
2830 /* Generate a link error if the set of bits requested for this
2831 * attribute overlaps any previously allocated bits.
2832 */
2833 if ((~(use_mask << attr) & used_locations) != used_locations) {
2834 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2835 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2836 * 4.40 spec:
2837 *
2838 * "Additionally, for fragment shader outputs, if two
2839 * variables are placed within the same location, they
2840 * must have the same underlying type (floating-point or
2841 * integer). No component aliasing of output variables or
2842 * members is allowed.
2843 */
2844 for (unsigned i = 0; i < assigned_attr; i++) {
2845 unsigned assigned_slots =
2846 assigned[i]->type->count_attribute_slots(false);
2847 unsigned assig_attr =
2848 assigned[i]->data.location - generic_base;
2849 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2850
2851 if ((assigned_use_mask << assig_attr) &
2852 (use_mask << attr)) {
2853
2854 const glsl_type *assigned_type =
2855 assigned[i]->type->without_array();
2856 const glsl_type *type = var->type->without_array();
2857 if (assigned_type->base_type != type->base_type) {
2858 linker_error(prog, "types do not match for aliased"
2859 " %ss %s and %s\n", string,
2860 assigned[i]->name, var->name);
2861 return false;
2862 }
2863
2864 unsigned assigned_component_mask =
2865 ((1 << assigned_type->vector_elements) - 1) <<
2866 assigned[i]->data.location_frac;
2867 unsigned component_mask =
2868 ((1 << type->vector_elements) - 1) <<
2869 var->data.location_frac;
2870 if (assigned_component_mask & component_mask) {
2871 linker_error(prog, "overlapping component is "
2872 "assigned to %ss %s and %s "
2873 "(component=%d)\n",
2874 string, assigned[i]->name, var->name,
2875 var->data.location_frac);
2876 return false;
2877 }
2878 }
2879 }
2880 } else if (target_index == MESA_SHADER_FRAGMENT ||
2881 (prog->IsES && prog->data->Version >= 300)) {
2882 linker_error(prog, "overlapping location is assigned "
2883 "to %s `%s' %d %d %d\n", string, var->name,
2884 used_locations, use_mask, attr);
2885 return false;
2886 } else {
2887 linker_warning(prog, "overlapping location is assigned "
2888 "to %s `%s' %d %d %d\n", string, var->name,
2889 used_locations, use_mask, attr);
2890 }
2891 }
2892
2893 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2894 /* Only track assigned variables for non-ES fragment shaders
2895 * to avoid overflowing the array.
2896 *
2897 * At most one variable per fragment output component should
2898 * reach this.
2899 */
2900 assert(assigned_attr < ARRAY_SIZE(assigned));
2901 assigned[assigned_attr] = var;
2902 assigned_attr++;
2903 }
2904
2905 used_locations |= (use_mask << attr);
2906
2907 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2908 *
2909 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2910 * active attribute variables may fail to link, unless
2911 * device-dependent optimizations are able to make the program
2912 * fit within available hardware resources. For the purposes
2913 * of this test, attribute variables of the type dvec3, dvec4,
2914 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2915 * count as consuming twice as many attributes as equivalent
2916 * single-precision types. While these types use the same number
2917 * of generic attributes as their single-precision equivalents,
2918 * implementations are permitted to consume two single-precision
2919 * vectors of internal storage for each three- or four-component
2920 * double-precision vector."
2921 *
2922 * Mark this attribute slot as taking up twice as much space
2923 * so we can count it properly against limits. According to
2924 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2925 * is optional behavior, but it seems preferable.
2926 */
2927 if (var->type->without_array()->is_dual_slot())
2928 double_storage_locations |= (use_mask << attr);
2929 }
2930
2931 continue;
2932 }
2933
2934 if (num_attr >= max_index) {
2935 linker_error(prog, "too many %s (max %u)",
2936 target_index == MESA_SHADER_VERTEX ?
2937 "vertex shader inputs" : "fragment shader outputs",
2938 max_index);
2939 return false;
2940 }
2941 to_assign[num_attr].slots = slots;
2942 to_assign[num_attr].var = var;
2943 num_attr++;
2944 }
2945
2946 if (target_index == MESA_SHADER_VERTEX) {
2947 unsigned total_attribs_size =
2948 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2949 _mesa_bitcount(double_storage_locations);
2950 if (total_attribs_size > max_index) {
2951 linker_error(prog,
2952 "attempt to use %d vertex attribute slots only %d available ",
2953 total_attribs_size, max_index);
2954 return false;
2955 }
2956 }
2957
2958 /* If all of the attributes were assigned locations by the application (or
2959 * are built-in attributes with fixed locations), return early. This should
2960 * be the common case.
2961 */
2962 if (num_attr == 0)
2963 return true;
2964
2965 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2966
2967 if (target_index == MESA_SHADER_VERTEX) {
2968 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2969 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2970 * reserved to prevent it from being automatically allocated below.
2971 */
2972 find_deref_visitor find("gl_Vertex");
2973 find.run(sh->ir);
2974 if (find.variable_found())
2975 used_locations |= (1 << 0);
2976 }
2977
2978 for (unsigned i = 0; i < num_attr; i++) {
2979 /* Mask representing the contiguous slots that will be used by this
2980 * attribute.
2981 */
2982 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2983
2984 int location = find_available_slots(used_locations, to_assign[i].slots);
2985
2986 if (location < 0) {
2987 const char *const string = (target_index == MESA_SHADER_VERTEX)
2988 ? "vertex shader input" : "fragment shader output";
2989
2990 linker_error(prog,
2991 "insufficient contiguous locations "
2992 "available for %s `%s'\n",
2993 string, to_assign[i].var->name);
2994 return false;
2995 }
2996
2997 to_assign[i].var->data.location = generic_base + location;
2998 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2999 used_locations |= (use_mask << location);
3000
3001 if (to_assign[i].var->type->without_array()->is_dual_slot())
3002 double_storage_locations |= (use_mask << location);
3003 }
3004
3005 /* Now that we have all the locations, from the GL 4.5 core spec, section
3006 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3007 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3008 * as equivalent single-precision types.
3009 */
3010 if (target_index == MESA_SHADER_VERTEX) {
3011 unsigned total_attribs_size =
3012 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3013 _mesa_bitcount(double_storage_locations);
3014 if (total_attribs_size > max_index) {
3015 linker_error(prog,
3016 "attempt to use %d vertex attribute slots only %d available ",
3017 total_attribs_size, max_index);
3018 return false;
3019 }
3020 }
3021
3022 return true;
3023 }
3024
3025 /**
3026 * Match explicit locations of outputs to inputs and deactivate the
3027 * unmatch flag if found so we don't optimise them away.
3028 */
3029 static void
3030 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3031 gl_linked_shader *consumer)
3032 {
3033 glsl_symbol_table parameters;
3034 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3035 { {NULL, NULL} };
3036
3037 /* Find all shader outputs in the "producer" stage.
3038 */
3039 foreach_in_list(ir_instruction, node, producer->ir) {
3040 ir_variable *const var = node->as_variable();
3041
3042 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3043 continue;
3044
3045 if (var->data.explicit_location &&
3046 var->data.location >= VARYING_SLOT_VAR0) {
3047 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3048 if (explicit_locations[idx][var->data.location_frac] == NULL)
3049 explicit_locations[idx][var->data.location_frac] = var;
3050 }
3051 }
3052
3053 /* Match inputs to outputs */
3054 foreach_in_list(ir_instruction, node, consumer->ir) {
3055 ir_variable *const input = node->as_variable();
3056
3057 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3058 continue;
3059
3060 ir_variable *output = NULL;
3061 if (input->data.explicit_location
3062 && input->data.location >= VARYING_SLOT_VAR0) {
3063 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3064 [input->data.location_frac];
3065
3066 if (output != NULL){
3067 input->data.is_unmatched_generic_inout = 0;
3068 output->data.is_unmatched_generic_inout = 0;
3069 }
3070 }
3071 }
3072 }
3073
3074 /**
3075 * Store the gl_FragDepth layout in the gl_shader_program struct.
3076 */
3077 static void
3078 store_fragdepth_layout(struct gl_shader_program *prog)
3079 {
3080 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3081 return;
3082 }
3083
3084 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3085
3086 /* We don't look up the gl_FragDepth symbol directly because if
3087 * gl_FragDepth is not used in the shader, it's removed from the IR.
3088 * However, the symbol won't be removed from the symbol table.
3089 *
3090 * We're only interested in the cases where the variable is NOT removed
3091 * from the IR.
3092 */
3093 foreach_in_list(ir_instruction, node, ir) {
3094 ir_variable *const var = node->as_variable();
3095
3096 if (var == NULL || var->data.mode != ir_var_shader_out) {
3097 continue;
3098 }
3099
3100 if (strcmp(var->name, "gl_FragDepth") == 0) {
3101 switch (var->data.depth_layout) {
3102 case ir_depth_layout_none:
3103 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3104 return;
3105 case ir_depth_layout_any:
3106 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3107 return;
3108 case ir_depth_layout_greater:
3109 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3110 return;
3111 case ir_depth_layout_less:
3112 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3113 return;
3114 case ir_depth_layout_unchanged:
3115 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3116 return;
3117 default:
3118 assert(0);
3119 return;
3120 }
3121 }
3122 }
3123 }
3124
3125 /**
3126 * Validate the resources used by a program versus the implementation limits
3127 */
3128 static void
3129 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3130 {
3131 unsigned total_uniform_blocks = 0;
3132 unsigned total_shader_storage_blocks = 0;
3133
3134 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3135 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3136
3137 if (sh == NULL)
3138 continue;
3139
3140 if (sh->Program->info.num_textures >
3141 ctx->Const.Program[i].MaxTextureImageUnits) {
3142 linker_error(prog, "Too many %s shader texture samplers\n",
3143 _mesa_shader_stage_to_string(i));
3144 }
3145
3146 if (sh->num_uniform_components >
3147 ctx->Const.Program[i].MaxUniformComponents) {
3148 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3149 linker_warning(prog, "Too many %s shader default uniform block "
3150 "components, but the driver will try to optimize "
3151 "them out; this is non-portable out-of-spec "
3152 "behavior\n",
3153 _mesa_shader_stage_to_string(i));
3154 } else {
3155 linker_error(prog, "Too many %s shader default uniform block "
3156 "components\n",
3157 _mesa_shader_stage_to_string(i));
3158 }
3159 }
3160
3161 if (sh->num_combined_uniform_components >
3162 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3163 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3164 linker_warning(prog, "Too many %s shader uniform components, "
3165 "but the driver will try to optimize them out; "
3166 "this is non-portable out-of-spec behavior\n",
3167 _mesa_shader_stage_to_string(i));
3168 } else {
3169 linker_error(prog, "Too many %s shader uniform components\n",
3170 _mesa_shader_stage_to_string(i));
3171 }
3172 }
3173
3174 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3175 total_uniform_blocks += sh->Program->info.num_ubos;
3176
3177 const unsigned max_uniform_blocks =
3178 ctx->Const.Program[i].MaxUniformBlocks;
3179 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3180 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3181 _mesa_shader_stage_to_string(i),
3182 sh->Program->info.num_ubos, max_uniform_blocks);
3183 }
3184
3185 const unsigned max_shader_storage_blocks =
3186 ctx->Const.Program[i].MaxShaderStorageBlocks;
3187 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3188 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3189 _mesa_shader_stage_to_string(i),
3190 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3191 }
3192 }
3193
3194 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3195 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3196 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3197 }
3198
3199 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3200 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3201 total_shader_storage_blocks,
3202 ctx->Const.MaxCombinedShaderStorageBlocks);
3203 }
3204
3205 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3206 if (prog->data->UniformBlocks[i].UniformBufferSize >
3207 ctx->Const.MaxUniformBlockSize) {
3208 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3209 prog->data->UniformBlocks[i].Name,
3210 prog->data->UniformBlocks[i].UniformBufferSize,
3211 ctx->Const.MaxUniformBlockSize);
3212 }
3213 }
3214
3215 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3216 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3217 ctx->Const.MaxShaderStorageBlockSize) {
3218 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3219 prog->data->ShaderStorageBlocks[i].Name,
3220 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3221 ctx->Const.MaxShaderStorageBlockSize);
3222 }
3223 }
3224 }
3225
3226 static void
3227 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3228 {
3229 unsigned mask = prog->data->linked_stages;
3230 while (mask) {
3231 const int i = u_bit_scan(&mask);
3232 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3233
3234 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3235 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3236 continue;
3237
3238 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3239
3240 if (!uni)
3241 continue;
3242
3243 int count = 0;
3244 if (p->sh.NumSubroutineFunctions == 0) {
3245 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3246 continue;
3247 }
3248 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3249 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3250 for (int k = 0; k < fn->num_compat_types; k++) {
3251 if (fn->types[k] == uni->type) {
3252 count++;
3253 break;
3254 }
3255 }
3256 }
3257 uni->num_compatible_subroutines = count;
3258 }
3259 }
3260 }
3261
3262 static void
3263 check_subroutine_resources(struct gl_shader_program *prog)
3264 {
3265 unsigned mask = prog->data->linked_stages;
3266 while (mask) {
3267 const int i = u_bit_scan(&mask);
3268 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3269
3270 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3271 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3272 _mesa_shader_stage_to_string(i));
3273 }
3274 }
3275 }
3276 /**
3277 * Validate shader image resources.
3278 */
3279 static void
3280 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3281 {
3282 unsigned total_image_units = 0;
3283 unsigned fragment_outputs = 0;
3284 unsigned total_shader_storage_blocks = 0;
3285
3286 if (!ctx->Extensions.ARB_shader_image_load_store)
3287 return;
3288
3289 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3290 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3291
3292 if (sh) {
3293 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3294 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3295 _mesa_shader_stage_to_string(i),
3296 sh->Program->info.num_images,
3297 ctx->Const.Program[i].MaxImageUniforms);
3298
3299 total_image_units += sh->Program->info.num_images;
3300 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3301
3302 if (i == MESA_SHADER_FRAGMENT) {
3303 foreach_in_list(ir_instruction, node, sh->ir) {
3304 ir_variable *var = node->as_variable();
3305 if (var && var->data.mode == ir_var_shader_out)
3306 /* since there are no double fs outputs - pass false */
3307 fragment_outputs += var->type->count_attribute_slots(false);
3308 }
3309 }
3310 }
3311 }
3312
3313 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3314 linker_error(prog, "Too many combined image uniforms\n");
3315
3316 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3317 ctx->Const.MaxCombinedShaderOutputResources)
3318 linker_error(prog, "Too many combined image uniforms, shader storage "
3319 " buffers and fragment outputs\n");
3320 }
3321
3322
3323 /**
3324 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3325 * for a variable, checks for overlaps between other uniforms using explicit
3326 * locations.
3327 */
3328 static int
3329 reserve_explicit_locations(struct gl_shader_program *prog,
3330 string_to_uint_map *map, ir_variable *var)
3331 {
3332 unsigned slots = var->type->uniform_locations();
3333 unsigned max_loc = var->data.location + slots - 1;
3334 unsigned return_value = slots;
3335
3336 /* Resize remap table if locations do not fit in the current one. */
3337 if (max_loc + 1 > prog->NumUniformRemapTable) {
3338 prog->UniformRemapTable =
3339 reralloc(prog, prog->UniformRemapTable,
3340 gl_uniform_storage *,
3341 max_loc + 1);
3342
3343 if (!prog->UniformRemapTable) {
3344 linker_error(prog, "Out of memory during linking.\n");
3345 return -1;
3346 }
3347
3348 /* Initialize allocated space. */
3349 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3350 prog->UniformRemapTable[i] = NULL;
3351
3352 prog->NumUniformRemapTable = max_loc + 1;
3353 }
3354
3355 for (unsigned i = 0; i < slots; i++) {
3356 unsigned loc = var->data.location + i;
3357
3358 /* Check if location is already used. */
3359 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3360
3361 /* Possibly same uniform from a different stage, this is ok. */
3362 unsigned hash_loc;
3363 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3364 return_value = 0;
3365 continue;
3366 }
3367
3368 /* ARB_explicit_uniform_location specification states:
3369 *
3370 * "No two default-block uniform variables in the program can have
3371 * the same location, even if they are unused, otherwise a compiler
3372 * or linker error will be generated."
3373 */
3374 linker_error(prog,
3375 "location qualifier for uniform %s overlaps "
3376 "previously used location\n",
3377 var->name);
3378 return -1;
3379 }
3380
3381 /* Initialize location as inactive before optimization
3382 * rounds and location assignment.
3383 */
3384 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3385 }
3386
3387 /* Note, base location used for arrays. */
3388 map->put(var->data.location, var->name);
3389
3390 return return_value;
3391 }
3392
3393 static bool
3394 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3395 struct gl_program *p,
3396 ir_variable *var)
3397 {
3398 unsigned slots = var->type->uniform_locations();
3399 unsigned max_loc = var->data.location + slots - 1;
3400
3401 /* Resize remap table if locations do not fit in the current one. */
3402 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3403 p->sh.SubroutineUniformRemapTable =
3404 reralloc(p, p->sh.SubroutineUniformRemapTable,
3405 gl_uniform_storage *,
3406 max_loc + 1);
3407
3408 if (!p->sh.SubroutineUniformRemapTable) {
3409 linker_error(prog, "Out of memory during linking.\n");
3410 return false;
3411 }
3412
3413 /* Initialize allocated space. */
3414 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3415 p->sh.SubroutineUniformRemapTable[i] = NULL;
3416
3417 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3418 }
3419
3420 for (unsigned i = 0; i < slots; i++) {
3421 unsigned loc = var->data.location + i;
3422
3423 /* Check if location is already used. */
3424 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3425
3426 /* ARB_explicit_uniform_location specification states:
3427 * "No two subroutine uniform variables can have the same location
3428 * in the same shader stage, otherwise a compiler or linker error
3429 * will be generated."
3430 */
3431 linker_error(prog,
3432 "location qualifier for uniform %s overlaps "
3433 "previously used location\n",
3434 var->name);
3435 return false;
3436 }
3437
3438 /* Initialize location as inactive before optimization
3439 * rounds and location assignment.
3440 */
3441 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3442 }
3443
3444 return true;
3445 }
3446 /**
3447 * Check and reserve all explicit uniform locations, called before
3448 * any optimizations happen to handle also inactive uniforms and
3449 * inactive array elements that may get trimmed away.
3450 */
3451 static void
3452 check_explicit_uniform_locations(struct gl_context *ctx,
3453 struct gl_shader_program *prog)
3454 {
3455 prog->NumExplicitUniformLocations = 0;
3456
3457 if (!ctx->Extensions.ARB_explicit_uniform_location)
3458 return;
3459
3460 /* This map is used to detect if overlapping explicit locations
3461 * occur with the same uniform (from different stage) or a different one.
3462 */
3463 string_to_uint_map *uniform_map = new string_to_uint_map;
3464
3465 if (!uniform_map) {
3466 linker_error(prog, "Out of memory during linking.\n");
3467 return;
3468 }
3469
3470 unsigned entries_total = 0;
3471 unsigned mask = prog->data->linked_stages;
3472 while (mask) {
3473 const int i = u_bit_scan(&mask);
3474 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3475
3476 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3477 ir_variable *var = node->as_variable();
3478 if (!var || var->data.mode != ir_var_uniform)
3479 continue;
3480
3481 if (var->data.explicit_location) {
3482 bool ret = false;
3483 if (var->type->without_array()->is_subroutine())
3484 ret = reserve_subroutine_explicit_locations(prog, p, var);
3485 else {
3486 int slots = reserve_explicit_locations(prog, uniform_map,
3487 var);
3488 if (slots != -1) {
3489 ret = true;
3490 entries_total += slots;
3491 }
3492 }
3493 if (!ret) {
3494 delete uniform_map;
3495 return;
3496 }
3497 }
3498 }
3499 }
3500
3501 struct empty_uniform_block *current_block = NULL;
3502
3503 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3504 /* We found empty space in UniformRemapTable. */
3505 if (prog->UniformRemapTable[i] == NULL) {
3506 /* We've found the beginning of a new continous block of empty slots */
3507 if (!current_block || current_block->start + current_block->slots != i) {
3508 current_block = rzalloc(prog, struct empty_uniform_block);
3509 current_block->start = i;
3510 exec_list_push_tail(&prog->EmptyUniformLocations,
3511 &current_block->link);
3512 }
3513
3514 /* The current block continues, so we simply increment its slots */
3515 current_block->slots++;
3516 }
3517 }
3518
3519 delete uniform_map;
3520 prog->NumExplicitUniformLocations = entries_total;
3521 }
3522
3523 static bool
3524 should_add_buffer_variable(struct gl_shader_program *shProg,
3525 GLenum type, const char *name)
3526 {
3527 bool found_interface = false;
3528 unsigned block_name_len = 0;
3529 const char *block_name_dot = strchr(name, '.');
3530
3531 /* These rules only apply to buffer variables. So we return
3532 * true for the rest of types.
3533 */
3534 if (type != GL_BUFFER_VARIABLE)
3535 return true;
3536
3537 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3538 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3539 block_name_len = strlen(block_name);
3540
3541 const char *block_square_bracket = strchr(block_name, '[');
3542 if (block_square_bracket) {
3543 /* The block is part of an array of named interfaces,
3544 * for the name comparison we ignore the "[x]" part.
3545 */
3546 block_name_len -= strlen(block_square_bracket);
3547 }
3548
3549 if (block_name_dot) {
3550 /* Check if the variable name starts with the interface
3551 * name. The interface name (if present) should have the
3552 * length than the interface block name we are comparing to.
3553 */
3554 unsigned len = strlen(name) - strlen(block_name_dot);
3555 if (len != block_name_len)
3556 continue;
3557 }
3558
3559 if (strncmp(block_name, name, block_name_len) == 0) {
3560 found_interface = true;
3561 break;
3562 }
3563 }
3564
3565 /* We remove the interface name from the buffer variable name,
3566 * including the dot that follows it.
3567 */
3568 if (found_interface)
3569 name = name + block_name_len + 1;
3570
3571 /* The ARB_program_interface_query spec says:
3572 *
3573 * "For an active shader storage block member declared as an array, an
3574 * entry will be generated only for the first array element, regardless
3575 * of its type. For arrays of aggregate types, the enumeration rules
3576 * are applied recursively for the single enumerated array element."
3577 */
3578 const char *struct_first_dot = strchr(name, '.');
3579 const char *first_square_bracket = strchr(name, '[');
3580
3581 /* The buffer variable is on top level and it is not an array */
3582 if (!first_square_bracket) {
3583 return true;
3584 /* The shader storage block member is a struct, then generate the entry */
3585 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3586 return true;
3587 } else {
3588 /* Shader storage block member is an array, only generate an entry for the
3589 * first array element.
3590 */
3591 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 static bool
3599 add_program_resource(struct gl_shader_program *prog,
3600 struct set *resource_set,
3601 GLenum type, const void *data, uint8_t stages)
3602 {
3603 assert(data);
3604
3605 /* If resource already exists, do not add it again. */
3606 if (_mesa_set_search(resource_set, data))
3607 return true;
3608
3609 prog->data->ProgramResourceList =
3610 reralloc(prog,
3611 prog->data->ProgramResourceList,
3612 gl_program_resource,
3613 prog->data->NumProgramResourceList + 1);
3614
3615 if (!prog->data->ProgramResourceList) {
3616 linker_error(prog, "Out of memory during linking.\n");
3617 return false;
3618 }
3619
3620 struct gl_program_resource *res =
3621 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3622
3623 res->Type = type;
3624 res->Data = data;
3625 res->StageReferences = stages;
3626
3627 prog->data->NumProgramResourceList++;
3628
3629 _mesa_set_add(resource_set, data);
3630
3631 return true;
3632 }
3633
3634 /* Function checks if a variable var is a packed varying and
3635 * if given name is part of packed varying's list.
3636 *
3637 * If a variable is a packed varying, it has a name like
3638 * 'packed:a,b,c' where a, b and c are separate variables.
3639 */
3640 static bool
3641 included_in_packed_varying(ir_variable *var, const char *name)
3642 {
3643 if (strncmp(var->name, "packed:", 7) != 0)
3644 return false;
3645
3646 char *list = strdup(var->name + 7);
3647 assert(list);
3648
3649 bool found = false;
3650 char *saveptr;
3651 char *token = strtok_r(list, ",", &saveptr);
3652 while (token) {
3653 if (strcmp(token, name) == 0) {
3654 found = true;
3655 break;
3656 }
3657 token = strtok_r(NULL, ",", &saveptr);
3658 }
3659 free(list);
3660 return found;
3661 }
3662
3663 /**
3664 * Function builds a stage reference bitmask from variable name.
3665 */
3666 static uint8_t
3667 build_stageref(struct gl_shader_program *shProg, const char *name,
3668 unsigned mode)
3669 {
3670 uint8_t stages = 0;
3671
3672 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3673 * used for reference mask in gl_program_resource will need to be changed.
3674 */
3675 assert(MESA_SHADER_STAGES < 8);
3676
3677 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3678 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3679 if (!sh)
3680 continue;
3681
3682 /* Shader symbol table may contain variables that have
3683 * been optimized away. Search IR for the variable instead.
3684 */
3685 foreach_in_list(ir_instruction, node, sh->ir) {
3686 ir_variable *var = node->as_variable();
3687 if (var) {
3688 unsigned baselen = strlen(var->name);
3689
3690 if (included_in_packed_varying(var, name)) {
3691 stages |= (1 << i);
3692 break;
3693 }
3694
3695 /* Type needs to match if specified, otherwise we might
3696 * pick a variable with same name but different interface.
3697 */
3698 if (var->data.mode != mode)
3699 continue;
3700
3701 if (strncmp(var->name, name, baselen) == 0) {
3702 /* Check for exact name matches but also check for arrays and
3703 * structs.
3704 */
3705 if (name[baselen] == '\0' ||
3706 name[baselen] == '[' ||
3707 name[baselen] == '.') {
3708 stages |= (1 << i);
3709 break;
3710 }
3711 }
3712 }
3713 }
3714 }
3715 return stages;
3716 }
3717
3718 /**
3719 * Create gl_shader_variable from ir_variable class.
3720 */
3721 static gl_shader_variable *
3722 create_shader_variable(struct gl_shader_program *shProg,
3723 const ir_variable *in,
3724 const char *name, const glsl_type *type,
3725 const glsl_type *interface_type,
3726 bool use_implicit_location, int location,
3727 const glsl_type *outermost_struct_type)
3728 {
3729 /* Allocate zero-initialized memory to ensure that bitfield padding
3730 * is zero.
3731 */
3732 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3733 if (!out)
3734 return NULL;
3735
3736 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3737 * expect to see gl_VertexID in the program resource list. Pretend.
3738 */
3739 if (in->data.mode == ir_var_system_value &&
3740 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3741 out->name = ralloc_strdup(shProg, "gl_VertexID");
3742 } else if ((in->data.mode == ir_var_shader_out &&
3743 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3744 (in->data.mode == ir_var_system_value &&
3745 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3746 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3747 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3748 } else if ((in->data.mode == ir_var_shader_out &&
3749 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3750 (in->data.mode == ir_var_system_value &&
3751 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3752 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3753 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3754 } else {
3755 out->name = ralloc_strdup(shProg, name);
3756 }
3757
3758 if (!out->name)
3759 return NULL;
3760
3761 /* The ARB_program_interface_query spec says:
3762 *
3763 * "Not all active variables are assigned valid locations; the
3764 * following variables will have an effective location of -1:
3765 *
3766 * * uniforms declared as atomic counters;
3767 *
3768 * * members of a uniform block;
3769 *
3770 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3771 *
3772 * * inputs or outputs not declared with a "location" layout
3773 * qualifier, except for vertex shader inputs and fragment shader
3774 * outputs."
3775 */
3776 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3777 !(in->data.explicit_location || use_implicit_location)) {
3778 out->location = -1;
3779 } else {
3780 out->location = location;
3781 }
3782
3783 out->type = type;
3784 out->outermost_struct_type = outermost_struct_type;
3785 out->interface_type = interface_type;
3786 out->component = in->data.location_frac;
3787 out->index = in->data.index;
3788 out->patch = in->data.patch;
3789 out->mode = in->data.mode;
3790 out->interpolation = in->data.interpolation;
3791 out->explicit_location = in->data.explicit_location;
3792 out->precision = in->data.precision;
3793
3794 return out;
3795 }
3796
3797 static bool
3798 add_shader_variable(const struct gl_context *ctx,
3799 struct gl_shader_program *shProg,
3800 struct set *resource_set,
3801 unsigned stage_mask,
3802 GLenum programInterface, ir_variable *var,
3803 const char *name, const glsl_type *type,
3804 bool use_implicit_location, int location,
3805 const glsl_type *outermost_struct_type = NULL)
3806 {
3807 const glsl_type *interface_type = var->get_interface_type();
3808
3809 if (outermost_struct_type == NULL) {
3810 if (var->data.from_named_ifc_block) {
3811 const char *interface_name = interface_type->name;
3812
3813 if (interface_type->is_array()) {
3814 /* Issue #16 of the ARB_program_interface_query spec says:
3815 *
3816 * "* If a variable is a member of an interface block without an
3817 * instance name, it is enumerated using just the variable name.
3818 *
3819 * * If a variable is a member of an interface block with an
3820 * instance name, it is enumerated as "BlockName.Member", where
3821 * "BlockName" is the name of the interface block (not the
3822 * instance name) and "Member" is the name of the variable."
3823 *
3824 * In particular, it indicates that it should be "BlockName",
3825 * not "BlockName[array length]". The conformance suite and
3826 * dEQP both require this behavior.
3827 *
3828 * Here, we unwrap the extra array level added by named interface
3829 * block array lowering so we have the correct variable type. We
3830 * also unwrap the interface type when constructing the name.
3831 *
3832 * We leave interface_type the same so that ES 3.x SSO pipeline
3833 * validation can enforce the rules requiring array length to
3834 * match on interface blocks.
3835 */
3836 type = type->fields.array;
3837
3838 interface_name = interface_type->fields.array->name;
3839 }
3840
3841 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3842 }
3843 }
3844
3845 switch (type->base_type) {
3846 case GLSL_TYPE_STRUCT: {
3847 /* The ARB_program_interface_query spec says:
3848 *
3849 * "For an active variable declared as a structure, a separate entry
3850 * will be generated for each active structure member. The name of
3851 * each entry is formed by concatenating the name of the structure,
3852 * the "." character, and the name of the structure member. If a
3853 * structure member to enumerate is itself a structure or array,
3854 * these enumeration rules are applied recursively."
3855 */
3856 if (outermost_struct_type == NULL)
3857 outermost_struct_type = type;
3858
3859 unsigned field_location = location;
3860 for (unsigned i = 0; i < type->length; i++) {
3861 const struct glsl_struct_field *field = &type->fields.structure[i];
3862 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3863 if (!add_shader_variable(ctx, shProg, resource_set,
3864 stage_mask, programInterface,
3865 var, field_name, field->type,
3866 use_implicit_location, field_location,
3867 outermost_struct_type))
3868 return false;
3869
3870 field_location += field->type->count_attribute_slots(false);
3871 }
3872 return true;
3873 }
3874
3875 default: {
3876 /* The ARB_program_interface_query spec says:
3877 *
3878 * "For an active variable declared as a single instance of a basic
3879 * type, a single entry will be generated, using the variable name
3880 * from the shader source."
3881 */
3882 gl_shader_variable *sha_v =
3883 create_shader_variable(shProg, var, name, type, interface_type,
3884 use_implicit_location, location,
3885 outermost_struct_type);
3886 if (!sha_v)
3887 return false;
3888
3889 return add_program_resource(shProg, resource_set,
3890 programInterface, sha_v, stage_mask);
3891 }
3892 }
3893 }
3894
3895 static bool
3896 add_interface_variables(const struct gl_context *ctx,
3897 struct gl_shader_program *shProg,
3898 struct set *resource_set,
3899 unsigned stage, GLenum programInterface)
3900 {
3901 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3902
3903 foreach_in_list(ir_instruction, node, ir) {
3904 ir_variable *var = node->as_variable();
3905
3906 if (!var || var->data.how_declared == ir_var_hidden)
3907 continue;
3908
3909 int loc_bias;
3910
3911 switch (var->data.mode) {
3912 case ir_var_system_value:
3913 case ir_var_shader_in:
3914 if (programInterface != GL_PROGRAM_INPUT)
3915 continue;
3916 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3917 : int(VARYING_SLOT_VAR0);
3918 break;
3919 case ir_var_shader_out:
3920 if (programInterface != GL_PROGRAM_OUTPUT)
3921 continue;
3922 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3923 : int(VARYING_SLOT_VAR0);
3924 break;
3925 default:
3926 continue;
3927 };
3928
3929 if (var->data.patch)
3930 loc_bias = int(VARYING_SLOT_PATCH0);
3931
3932 /* Skip packed varyings, packed varyings are handled separately
3933 * by add_packed_varyings.
3934 */
3935 if (strncmp(var->name, "packed:", 7) == 0)
3936 continue;
3937
3938 /* Skip fragdata arrays, these are handled separately
3939 * by add_fragdata_arrays.
3940 */
3941 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3942 continue;
3943
3944 const bool vs_input_or_fs_output =
3945 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3946 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3947
3948 if (!add_shader_variable(ctx, shProg, resource_set,
3949 1 << stage, programInterface,
3950 var, var->name, var->type, vs_input_or_fs_output,
3951 var->data.location - loc_bias))
3952 return false;
3953 }
3954 return true;
3955 }
3956
3957 static bool
3958 add_packed_varyings(const struct gl_context *ctx,
3959 struct gl_shader_program *shProg,
3960 struct set *resource_set,
3961 int stage, GLenum type)
3962 {
3963 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3964 GLenum iface;
3965
3966 if (!sh || !sh->packed_varyings)
3967 return true;
3968
3969 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3970 ir_variable *var = node->as_variable();
3971 if (var) {
3972 switch (var->data.mode) {
3973 case ir_var_shader_in:
3974 iface = GL_PROGRAM_INPUT;
3975 break;
3976 case ir_var_shader_out:
3977 iface = GL_PROGRAM_OUTPUT;
3978 break;
3979 default:
3980 unreachable("unexpected type");
3981 }
3982
3983 if (type == iface) {
3984 const int stage_mask =
3985 build_stageref(shProg, var->name, var->data.mode);
3986 if (!add_shader_variable(ctx, shProg, resource_set,
3987 stage_mask,
3988 iface, var, var->name, var->type, false,
3989 var->data.location - VARYING_SLOT_VAR0))
3990 return false;
3991 }
3992 }
3993 }
3994 return true;
3995 }
3996
3997 static bool
3998 add_fragdata_arrays(const struct gl_context *ctx,
3999 struct gl_shader_program *shProg,
4000 struct set *resource_set)
4001 {
4002 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4003
4004 if (!sh || !sh->fragdata_arrays)
4005 return true;
4006
4007 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4008 ir_variable *var = node->as_variable();
4009 if (var) {
4010 assert(var->data.mode == ir_var_shader_out);
4011
4012 if (!add_shader_variable(ctx, shProg, resource_set,
4013 1 << MESA_SHADER_FRAGMENT,
4014 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4015 true, var->data.location - FRAG_RESULT_DATA0))
4016 return false;
4017 }
4018 }
4019 return true;
4020 }
4021
4022 static char*
4023 get_top_level_name(const char *name)
4024 {
4025 const char *first_dot = strchr(name, '.');
4026 const char *first_square_bracket = strchr(name, '[');
4027 int name_size = 0;
4028
4029 /* The ARB_program_interface_query spec says:
4030 *
4031 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4032 * the number of active array elements of the top-level shader storage
4033 * block member containing to the active variable is written to
4034 * <params>. If the top-level block member is not declared as an
4035 * array, the value one is written to <params>. If the top-level block
4036 * member is an array with no declared size, the value zero is written
4037 * to <params>."
4038 */
4039
4040 /* The buffer variable is on top level.*/
4041 if (!first_square_bracket && !first_dot)
4042 name_size = strlen(name);
4043 else if ((!first_square_bracket ||
4044 (first_dot && first_dot < first_square_bracket)))
4045 name_size = first_dot - name;
4046 else
4047 name_size = first_square_bracket - name;
4048
4049 return strndup(name, name_size);
4050 }
4051
4052 static char*
4053 get_var_name(const char *name)
4054 {
4055 const char *first_dot = strchr(name, '.');
4056
4057 if (!first_dot)
4058 return strdup(name);
4059
4060 return strndup(first_dot+1, strlen(first_dot) - 1);
4061 }
4062
4063 static bool
4064 is_top_level_shader_storage_block_member(const char* name,
4065 const char* interface_name,
4066 const char* field_name)
4067 {
4068 bool result = false;
4069
4070 /* If the given variable is already a top-level shader storage
4071 * block member, then return array_size = 1.
4072 * We could have two possibilities: if we have an instanced
4073 * shader storage block or not instanced.
4074 *
4075 * For the first, we check create a name as it was in top level and
4076 * compare it with the real name. If they are the same, then
4077 * the variable is already at top-level.
4078 *
4079 * Full instanced name is: interface name + '.' + var name +
4080 * NULL character
4081 */
4082 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4083 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4084 if (!full_instanced_name) {
4085 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4086 return false;
4087 }
4088
4089 snprintf(full_instanced_name, name_length, "%s.%s",
4090 interface_name, field_name);
4091
4092 /* Check if its top-level shader storage block member of an
4093 * instanced interface block, or of a unnamed interface block.
4094 */
4095 if (strcmp(name, full_instanced_name) == 0 ||
4096 strcmp(name, field_name) == 0)
4097 result = true;
4098
4099 free(full_instanced_name);
4100 return result;
4101 }
4102
4103 static int
4104 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4105 char *interface_name, char *var_name)
4106 {
4107 /* The ARB_program_interface_query spec says:
4108 *
4109 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4110 * the number of active array elements of the top-level shader storage
4111 * block member containing to the active variable is written to
4112 * <params>. If the top-level block member is not declared as an
4113 * array, the value one is written to <params>. If the top-level block
4114 * member is an array with no declared size, the value zero is written
4115 * to <params>."
4116 */
4117 if (is_top_level_shader_storage_block_member(uni->name,
4118 interface_name,
4119 var_name))
4120 return 1;
4121 else if (field->type->is_unsized_array())
4122 return 0;
4123 else if (field->type->is_array())
4124 return field->type->length;
4125
4126 return 1;
4127 }
4128
4129 static int
4130 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4131 const glsl_type *interface, const glsl_struct_field *field,
4132 char *interface_name, char *var_name)
4133 {
4134 /* The ARB_program_interface_query spec says:
4135 *
4136 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4137 * identifying the stride between array elements of the top-level
4138 * shader storage block member containing the active variable is
4139 * written to <params>. For top-level block members declared as
4140 * arrays, the value written is the difference, in basic machine units,
4141 * between the offsets of the active variable for consecutive elements
4142 * in the top-level array. For top-level block members not declared as
4143 * an array, zero is written to <params>."
4144 */
4145 if (field->type->is_array()) {
4146 const enum glsl_matrix_layout matrix_layout =
4147 glsl_matrix_layout(field->matrix_layout);
4148 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4149 const glsl_type *array_type = field->type->fields.array;
4150
4151 if (is_top_level_shader_storage_block_member(uni->name,
4152 interface_name,
4153 var_name))
4154 return 0;
4155
4156 if (GLSL_INTERFACE_PACKING_STD140 ==
4157 interface->
4158 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4159 if (array_type->is_record() || array_type->is_array())
4160 return glsl_align(array_type->std140_size(row_major), 16);
4161 else
4162 return MAX2(array_type->std140_base_alignment(row_major), 16);
4163 } else {
4164 return array_type->std430_array_stride(row_major);
4165 }
4166 }
4167 return 0;
4168 }
4169
4170 static void
4171 calculate_array_size_and_stride(struct gl_context *ctx,
4172 struct gl_shader_program *shProg,
4173 struct gl_uniform_storage *uni)
4174 {
4175 int block_index = uni->block_index;
4176 int array_size = -1;
4177 int array_stride = -1;
4178 char *var_name = get_top_level_name(uni->name);
4179 char *interface_name =
4180 get_top_level_name(uni->is_shader_storage ?
4181 shProg->data->ShaderStorageBlocks[block_index].Name :
4182 shProg->data->UniformBlocks[block_index].Name);
4183
4184 if (strcmp(var_name, interface_name) == 0) {
4185 /* Deal with instanced array of SSBOs */
4186 char *temp_name = get_var_name(uni->name);
4187 if (!temp_name) {
4188 linker_error(shProg, "Out of memory during linking.\n");
4189 goto write_top_level_array_size_and_stride;
4190 }
4191 free(var_name);
4192 var_name = get_top_level_name(temp_name);
4193 free(temp_name);
4194 if (!var_name) {
4195 linker_error(shProg, "Out of memory during linking.\n");
4196 goto write_top_level_array_size_and_stride;
4197 }
4198 }
4199
4200 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4201 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4202 if (sh == NULL)
4203 continue;
4204
4205 foreach_in_list(ir_instruction, node, sh->ir) {
4206 ir_variable *var = node->as_variable();
4207 if (!var || !var->get_interface_type() ||
4208 var->data.mode != ir_var_shader_storage)
4209 continue;
4210
4211 const glsl_type *interface = var->get_interface_type();
4212
4213 if (strcmp(interface_name, interface->name) != 0)
4214 continue;
4215
4216 for (unsigned i = 0; i < interface->length; i++) {
4217 const glsl_struct_field *field = &interface->fields.structure[i];
4218 if (strcmp(field->name, var_name) != 0)
4219 continue;
4220
4221 array_stride = get_array_stride(ctx, uni, interface, field,
4222 interface_name, var_name);
4223 array_size = get_array_size(uni, field, interface_name, var_name);
4224 goto write_top_level_array_size_and_stride;
4225 }
4226 }
4227 }
4228 write_top_level_array_size_and_stride:
4229 free(interface_name);
4230 free(var_name);
4231 uni->top_level_array_stride = array_stride;
4232 uni->top_level_array_size = array_size;
4233 }
4234
4235 /**
4236 * Builds up a list of program resources that point to existing
4237 * resource data.
4238 */
4239 void
4240 build_program_resource_list(struct gl_context *ctx,
4241 struct gl_shader_program *shProg)
4242 {
4243 /* Rebuild resource list. */
4244 if (shProg->data->ProgramResourceList) {
4245 ralloc_free(shProg->data->ProgramResourceList);
4246 shProg->data->ProgramResourceList = NULL;
4247 shProg->data->NumProgramResourceList = 0;
4248 }
4249
4250 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4251
4252 /* Determine first input and final output stage. These are used to
4253 * detect which variables should be enumerated in the resource list
4254 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4255 */
4256 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4257 if (!shProg->_LinkedShaders[i])
4258 continue;
4259 if (input_stage == MESA_SHADER_STAGES)
4260 input_stage = i;
4261 output_stage = i;
4262 }
4263
4264 /* Empty shader, no resources. */
4265 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4266 return;
4267
4268 struct set *resource_set = _mesa_set_create(NULL,
4269 _mesa_hash_pointer,
4270 _mesa_key_pointer_equal);
4271
4272 /* Program interface needs to expose varyings in case of SSO. */
4273 if (shProg->SeparateShader) {
4274 if (!add_packed_varyings(ctx, shProg, resource_set,
4275 input_stage, GL_PROGRAM_INPUT))
4276 return;
4277
4278 if (!add_packed_varyings(ctx, shProg, resource_set,
4279 output_stage, GL_PROGRAM_OUTPUT))
4280 return;
4281 }
4282
4283 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4284 return;
4285
4286 /* Add inputs and outputs to the resource list. */
4287 if (!add_interface_variables(ctx, shProg, resource_set,
4288 input_stage, GL_PROGRAM_INPUT))
4289 return;
4290
4291 if (!add_interface_variables(ctx, shProg, resource_set,
4292 output_stage, GL_PROGRAM_OUTPUT))
4293 return;
4294
4295 if (shProg->last_vert_prog) {
4296 struct gl_transform_feedback_info *linked_xfb =
4297 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4298
4299 /* Add transform feedback varyings. */
4300 if (linked_xfb->NumVarying > 0) {
4301 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4302 if (!add_program_resource(shProg, resource_set,
4303 GL_TRANSFORM_FEEDBACK_VARYING,
4304 &linked_xfb->Varyings[i], 0))
4305 return;
4306 }
4307 }
4308
4309 /* Add transform feedback buffers. */
4310 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4311 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4312 linked_xfb->Buffers[i].Binding = i;
4313 if (!add_program_resource(shProg, resource_set,
4314 GL_TRANSFORM_FEEDBACK_BUFFER,
4315 &linked_xfb->Buffers[i], 0))
4316 return;
4317 }
4318 }
4319 }
4320
4321 /* Add uniforms from uniform storage. */
4322 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4323 /* Do not add uniforms internally used by Mesa. */
4324 if (shProg->data->UniformStorage[i].hidden)
4325 continue;
4326
4327 uint8_t stageref =
4328 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4329 ir_var_uniform);
4330
4331 /* Add stagereferences for uniforms in a uniform block. */
4332 bool is_shader_storage =
4333 shProg->data->UniformStorage[i].is_shader_storage;
4334 int block_index = shProg->data->UniformStorage[i].block_index;
4335 if (block_index != -1) {
4336 stageref |= is_shader_storage ?
4337 shProg->data->ShaderStorageBlocks[block_index].stageref :
4338 shProg->data->UniformBlocks[block_index].stageref;
4339 }
4340
4341 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4342 if (!should_add_buffer_variable(shProg, type,
4343 shProg->data->UniformStorage[i].name))
4344 continue;
4345
4346 if (is_shader_storage) {
4347 calculate_array_size_and_stride(ctx, shProg,
4348 &shProg->data->UniformStorage[i]);
4349 }
4350
4351 if (!add_program_resource(shProg, resource_set, type,
4352 &shProg->data->UniformStorage[i], stageref))
4353 return;
4354 }
4355
4356 /* Add program uniform blocks. */
4357 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4358 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4359 &shProg->data->UniformBlocks[i], 0))
4360 return;
4361 }
4362
4363 /* Add program shader storage blocks. */
4364 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4365 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4366 &shProg->data->ShaderStorageBlocks[i], 0))
4367 return;
4368 }
4369
4370 /* Add atomic counter buffers. */
4371 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4372 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4373 &shProg->data->AtomicBuffers[i], 0))
4374 return;
4375 }
4376
4377 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4378 GLenum type;
4379 if (!shProg->data->UniformStorage[i].hidden)
4380 continue;
4381
4382 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4383 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4384 !shProg->data->UniformStorage[i].type->is_subroutine())
4385 continue;
4386
4387 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4388 /* add shader subroutines */
4389 if (!add_program_resource(shProg, resource_set,
4390 type, &shProg->data->UniformStorage[i], 0))
4391 return;
4392 }
4393 }
4394
4395 unsigned mask = shProg->data->linked_stages;
4396 while (mask) {
4397 const int i = u_bit_scan(&mask);
4398 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4399
4400 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4401 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4402 if (!add_program_resource(shProg, resource_set,
4403 type, &p->sh.SubroutineFunctions[j], 0))
4404 return;
4405 }
4406 }
4407
4408 _mesa_set_destroy(resource_set, NULL);
4409 }
4410
4411 /**
4412 * This check is done to make sure we allow only constant expression
4413 * indexing and "constant-index-expression" (indexing with an expression
4414 * that includes loop induction variable).
4415 */
4416 static bool
4417 validate_sampler_array_indexing(struct gl_context *ctx,
4418 struct gl_shader_program *prog)
4419 {
4420 dynamic_sampler_array_indexing_visitor v;
4421 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4422 if (prog->_LinkedShaders[i] == NULL)
4423 continue;
4424
4425 bool no_dynamic_indexing =
4426 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4427
4428 /* Search for array derefs in shader. */
4429 v.run(prog->_LinkedShaders[i]->ir);
4430 if (v.uses_dynamic_sampler_array_indexing()) {
4431 const char *msg = "sampler arrays indexed with non-constant "
4432 "expressions is forbidden in GLSL %s %u";
4433 /* Backend has indicated that it has no dynamic indexing support. */
4434 if (no_dynamic_indexing) {
4435 linker_error(prog, msg, prog->IsES ? "ES" : "",
4436 prog->data->Version);
4437 return false;
4438 } else {
4439 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4440 prog->data->Version);
4441 }
4442 }
4443 }
4444 return true;
4445 }
4446
4447 static void
4448 link_assign_subroutine_types(struct gl_shader_program *prog)
4449 {
4450 unsigned mask = prog->data->linked_stages;
4451 while (mask) {
4452 const int i = u_bit_scan(&mask);
4453 gl_program *p = prog->_LinkedShaders[i]->Program;
4454
4455 p->sh.MaxSubroutineFunctionIndex = 0;
4456 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4457 ir_function *fn = node->as_function();
4458 if (!fn)
4459 continue;
4460
4461 if (fn->is_subroutine)
4462 p->sh.NumSubroutineUniformTypes++;
4463
4464 if (!fn->num_subroutine_types)
4465 continue;
4466
4467 /* these should have been calculated earlier. */
4468 assert(fn->subroutine_index != -1);
4469 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4470 linker_error(prog, "Too many subroutine functions declared.\n");
4471 return;
4472 }
4473 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4474 struct gl_subroutine_function,
4475 p->sh.NumSubroutineFunctions + 1);
4476 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4477 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4478 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4479 ralloc_array(p, const struct glsl_type *,
4480 fn->num_subroutine_types);
4481
4482 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4483 * GLSL 4.5 spec:
4484 *
4485 * "Each subroutine with an index qualifier in the shader must be
4486 * given a unique index, otherwise a compile or link error will be
4487 * generated."
4488 */
4489 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4490 if (p->sh.SubroutineFunctions[j].index != -1 &&
4491 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4492 linker_error(prog, "each subroutine index qualifier in the "
4493 "shader must be unique\n");
4494 return;
4495 }
4496 }
4497 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4498 fn->subroutine_index;
4499
4500 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4501 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4502
4503 for (int j = 0; j < fn->num_subroutine_types; j++)
4504 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4505 p->sh.NumSubroutineFunctions++;
4506 }
4507 }
4508 }
4509
4510 static void
4511 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4512 {
4513 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4514
4515 foreach_in_list(ir_instruction, node, ir) {
4516 ir_variable *const var = node->as_variable();
4517
4518 if (var == NULL || var->data.mode != io_mode)
4519 continue;
4520
4521 /* Don't set always active on builtins that haven't been redeclared */
4522 if (var->data.how_declared == ir_var_declared_implicitly)
4523 continue;
4524
4525 var->data.always_active_io = true;
4526 }
4527 }
4528
4529 /**
4530 * When separate shader programs are enabled, only input/outputs between
4531 * the stages of a multi-stage separate program can be safely removed
4532 * from the shader interface. Other inputs/outputs must remain active.
4533 */
4534 static void
4535 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4536 {
4537 unsigned first, last;
4538 assert(prog->SeparateShader);
4539
4540 first = MESA_SHADER_STAGES;
4541 last = 0;
4542
4543 /* Determine first and last stage. Excluding the compute stage */
4544 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4545 if (!prog->_LinkedShaders[i])
4546 continue;
4547 if (first == MESA_SHADER_STAGES)
4548 first = i;
4549 last = i;
4550 }
4551
4552 if (first == MESA_SHADER_STAGES)
4553 return;
4554
4555 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4556 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4557 if (!sh)
4558 continue;
4559
4560 /* Prevent the removal of inputs to the first and outputs from the last
4561 * stage, unless they are the initial pipeline inputs or final pipeline
4562 * outputs, respectively.
4563 *
4564 * The removal of IO between shaders in the same program is always
4565 * allowed.
4566 */
4567 if (stage == first && stage != MESA_SHADER_VERTEX)
4568 set_always_active_io(sh->ir, ir_var_shader_in);
4569 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4570 set_always_active_io(sh->ir, ir_var_shader_out);
4571 }
4572 }
4573
4574 static void
4575 link_and_validate_uniforms(struct gl_context *ctx,
4576 struct gl_shader_program *prog)
4577 {
4578 update_array_sizes(prog);
4579 link_assign_uniform_locations(prog, ctx);
4580
4581 if (!prog->data->cache_fallback) {
4582 link_assign_atomic_counter_resources(ctx, prog);
4583 link_calculate_subroutine_compat(prog);
4584 check_resources(ctx, prog);
4585 check_subroutine_resources(prog);
4586 check_image_resources(ctx, prog);
4587 link_check_atomic_counter_resources(ctx, prog);
4588 }
4589 }
4590
4591 static bool
4592 link_varyings_and_uniforms(unsigned first, unsigned last,
4593 struct gl_context *ctx,
4594 struct gl_shader_program *prog, void *mem_ctx)
4595 {
4596 /* Mark all generic shader inputs and outputs as unpaired. */
4597 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4598 if (prog->_LinkedShaders[i] != NULL) {
4599 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4600 }
4601 }
4602
4603 unsigned prev = first;
4604 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4605 if (prog->_LinkedShaders[i] == NULL)
4606 continue;
4607
4608 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4609 prog->_LinkedShaders[i]);
4610 prev = i;
4611 }
4612
4613 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4614 MESA_SHADER_VERTEX)) {
4615 return false;
4616 }
4617
4618 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4619 MESA_SHADER_FRAGMENT)) {
4620 return false;
4621 }
4622
4623 prog->last_vert_prog = NULL;
4624 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4625 if (prog->_LinkedShaders[i] == NULL)
4626 continue;
4627
4628 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4629 break;
4630 }
4631
4632 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4633 return false;
4634
4635 link_and_validate_uniforms(ctx, prog);
4636
4637 if (!prog->data->LinkStatus)
4638 return false;
4639
4640 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4641 if (prog->_LinkedShaders[i] == NULL)
4642 continue;
4643
4644 const struct gl_shader_compiler_options *options =
4645 &ctx->Const.ShaderCompilerOptions[i];
4646
4647 if (options->LowerBufferInterfaceBlocks)
4648 lower_ubo_reference(prog->_LinkedShaders[i],
4649 options->ClampBlockIndicesToArrayBounds,
4650 ctx->Const.UseSTD430AsDefaultPacking);
4651
4652 if (i == MESA_SHADER_COMPUTE)
4653 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4654
4655 lower_vector_derefs(prog->_LinkedShaders[i]);
4656 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4657 }
4658
4659 return true;
4660 }
4661
4662 static void
4663 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4664 unsigned stage)
4665 {
4666 if (ctx->Const.GLSLOptimizeConservatively) {
4667 /* Run it just once. */
4668 do_common_optimization(ir, true, false,
4669 &ctx->Const.ShaderCompilerOptions[stage],
4670 ctx->Const.NativeIntegers);
4671 } else {
4672 /* Repeat it until it stops making changes. */
4673 while (do_common_optimization(ir, true, false,
4674 &ctx->Const.ShaderCompilerOptions[stage],
4675 ctx->Const.NativeIntegers))
4676 ;
4677 }
4678 }
4679
4680 void
4681 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4682 {
4683 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4684 prog->data->Validated = false;
4685
4686 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4687 *
4688 * "Linking can fail for a variety of reasons as specified in the
4689 * OpenGL Shading Language Specification, as well as any of the
4690 * following reasons:
4691 *
4692 * - No shader objects are attached to program."
4693 *
4694 * The Compatibility Profile specification does not list the error. In
4695 * Compatibility Profile missing shader stages are replaced by
4696 * fixed-function. This applies to the case where all stages are
4697 * missing.
4698 */
4699 if (prog->NumShaders == 0) {
4700 if (ctx->API != API_OPENGL_COMPAT)
4701 linker_error(prog, "no shaders attached to the program\n");
4702 return;
4703 }
4704
4705 #ifdef ENABLE_SHADER_CACHE
4706 /* If transform feedback used on the program then compile all shaders. */
4707 bool skip_cache = false;
4708 if (prog->TransformFeedback.NumVarying > 0) {
4709 for (unsigned i = 0; i < prog->NumShaders; i++) {
4710 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4711 }
4712 skip_cache = true;
4713 }
4714
4715 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4716 return;
4717 #endif
4718
4719 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4720
4721 prog->ARB_fragment_coord_conventions_enable = false;
4722
4723 /* Separate the shaders into groups based on their type.
4724 */
4725 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4726 unsigned num_shaders[MESA_SHADER_STAGES];
4727
4728 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4729 shader_list[i] = (struct gl_shader **)
4730 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4731 num_shaders[i] = 0;
4732 }
4733
4734 unsigned min_version = UINT_MAX;
4735 unsigned max_version = 0;
4736 for (unsigned i = 0; i < prog->NumShaders; i++) {
4737 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4738 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4739
4740 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4741 linker_error(prog, "all shaders must use same shading "
4742 "language version\n");
4743 goto done;
4744 }
4745
4746 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4747 prog->ARB_fragment_coord_conventions_enable = true;
4748 }
4749
4750 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4751 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4752 num_shaders[shader_type]++;
4753 }
4754
4755 /* In desktop GLSL, different shader versions may be linked together. In
4756 * GLSL ES, all shader versions must be the same.
4757 */
4758 if (prog->Shaders[0]->IsES && min_version != max_version) {
4759 linker_error(prog, "all shaders must use same shading "
4760 "language version\n");
4761 goto done;
4762 }
4763
4764 prog->data->Version = max_version;
4765 prog->IsES = prog->Shaders[0]->IsES;
4766
4767 /* Some shaders have to be linked with some other shaders present.
4768 */
4769 if (!prog->SeparateShader) {
4770 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4771 num_shaders[MESA_SHADER_VERTEX] == 0) {
4772 linker_error(prog, "Geometry shader must be linked with "
4773 "vertex shader\n");
4774 goto done;
4775 }
4776 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4777 num_shaders[MESA_SHADER_VERTEX] == 0) {
4778 linker_error(prog, "Tessellation evaluation shader must be linked "
4779 "with vertex shader\n");
4780 goto done;
4781 }
4782 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4783 num_shaders[MESA_SHADER_VERTEX] == 0) {
4784 linker_error(prog, "Tessellation control shader must be linked with "
4785 "vertex shader\n");
4786 goto done;
4787 }
4788
4789 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4790 *
4791 * "Linking can fail for [...] any of the following reasons:
4792 *
4793 * * program contains an object to form a tessellation control
4794 * shader [...] and [...] the program is not separable and
4795 * contains no object to form a tessellation evaluation shader"
4796 *
4797 * The OpenGL spec is contradictory. It allows linking without a tess
4798 * eval shader, but that can only be used with transform feedback and
4799 * rasterization disabled. However, transform feedback isn't allowed
4800 * with GL_PATCHES, so it can't be used.
4801 *
4802 * More investigation showed that the idea of transform feedback after
4803 * a tess control shader was dropped, because some hw vendors couldn't
4804 * support tessellation without a tess eval shader, but the linker
4805 * section wasn't updated to reflect that.
4806 *
4807 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4808 * spec bug.
4809 *
4810 * Do what's reasonable and always require a tess eval shader if a tess
4811 * control shader is present.
4812 */
4813 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4814 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4815 linker_error(prog, "Tessellation control shader must be linked with "
4816 "tessellation evaluation shader\n");
4817 goto done;
4818 }
4819
4820 if (prog->IsES) {
4821 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4822 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4823 linker_error(prog, "GLSL ES requires non-separable programs "
4824 "containing a tessellation evaluation shader to also "
4825 "be linked with a tessellation control shader\n");
4826 goto done;
4827 }
4828 }
4829 }
4830
4831 /* Compute shaders have additional restrictions. */
4832 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4833 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4834 linker_error(prog, "Compute shaders may not be linked with any other "
4835 "type of shader\n");
4836 }
4837
4838 /* Link all shaders for a particular stage and validate the result.
4839 */
4840 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4841 if (num_shaders[stage] > 0) {
4842 gl_linked_shader *const sh =
4843 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4844 num_shaders[stage], false);
4845
4846 if (!prog->data->LinkStatus) {
4847 if (sh)
4848 _mesa_delete_linked_shader(ctx, sh);
4849 goto done;
4850 }
4851
4852 switch (stage) {
4853 case MESA_SHADER_VERTEX:
4854 validate_vertex_shader_executable(prog, sh, ctx);
4855 break;
4856 case MESA_SHADER_TESS_CTRL:
4857 /* nothing to be done */
4858 break;
4859 case MESA_SHADER_TESS_EVAL:
4860 validate_tess_eval_shader_executable(prog, sh, ctx);
4861 break;
4862 case MESA_SHADER_GEOMETRY:
4863 validate_geometry_shader_executable(prog, sh, ctx);
4864 break;
4865 case MESA_SHADER_FRAGMENT:
4866 validate_fragment_shader_executable(prog, sh);
4867 break;
4868 }
4869 if (!prog->data->LinkStatus) {
4870 if (sh)
4871 _mesa_delete_linked_shader(ctx, sh);
4872 goto done;
4873 }
4874
4875 prog->_LinkedShaders[stage] = sh;
4876 prog->data->linked_stages |= 1 << stage;
4877 }
4878 }
4879
4880 /* Here begins the inter-stage linking phase. Some initial validation is
4881 * performed, then locations are assigned for uniforms, attributes, and
4882 * varyings.
4883 */
4884 cross_validate_uniforms(prog);
4885 if (!prog->data->LinkStatus)
4886 goto done;
4887
4888 unsigned first, last, prev;
4889
4890 first = MESA_SHADER_STAGES;
4891 last = 0;
4892
4893 /* Determine first and last stage. */
4894 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4895 if (!prog->_LinkedShaders[i])
4896 continue;
4897 if (first == MESA_SHADER_STAGES)
4898 first = i;
4899 last = i;
4900 }
4901
4902 if (!prog->data->cache_fallback) {
4903 check_explicit_uniform_locations(ctx, prog);
4904 link_assign_subroutine_types(prog);
4905 }
4906
4907 if (!prog->data->LinkStatus)
4908 goto done;
4909
4910 resize_tes_inputs(ctx, prog);
4911
4912 /* Validate the inputs of each stage with the output of the preceding
4913 * stage.
4914 */
4915 prev = first;
4916 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4917 if (prog->_LinkedShaders[i] == NULL)
4918 continue;
4919
4920 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4921 prog->_LinkedShaders[i]);
4922 if (!prog->data->LinkStatus)
4923 goto done;
4924
4925 cross_validate_outputs_to_inputs(ctx, prog,
4926 prog->_LinkedShaders[prev],
4927 prog->_LinkedShaders[i]);
4928 if (!prog->data->LinkStatus)
4929 goto done;
4930
4931 prev = i;
4932 }
4933
4934 /* The cross validation of outputs/inputs above validates explicit locations
4935 * but for SSO programs we need to do this also for the inputs in the
4936 * first stage and outputs of the last stage included in the program, since
4937 * there is no cross validation for these.
4938 */
4939 if (prog->SeparateShader)
4940 validate_sso_explicit_locations(ctx, prog,
4941 (gl_shader_stage) first,
4942 (gl_shader_stage) last);
4943
4944 /* Cross-validate uniform blocks between shader stages */
4945 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4946 if (!prog->data->LinkStatus)
4947 goto done;
4948
4949 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4950 if (prog->_LinkedShaders[i] != NULL)
4951 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4952 }
4953
4954 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4955 * it before optimization because we want most of the checks to get
4956 * dropped thanks to constant propagation.
4957 *
4958 * This rule also applies to GLSL ES 3.00.
4959 */
4960 if (max_version >= (prog->IsES ? 300 : 130)) {
4961 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4962 if (sh) {
4963 lower_discard_flow(sh->ir);
4964 }
4965 }
4966
4967 if (prog->SeparateShader)
4968 disable_varying_optimizations_for_sso(prog);
4969
4970 if (!prog->data->cache_fallback) {
4971 /* Process UBOs */
4972 if (!interstage_cross_validate_uniform_blocks(prog, false))
4973 goto done;
4974
4975 /* Process SSBOs */
4976 if (!interstage_cross_validate_uniform_blocks(prog, true))
4977 goto done;
4978 }
4979
4980 /* Do common optimization before assigning storage for attributes,
4981 * uniforms, and varyings. Later optimization could possibly make
4982 * some of that unused.
4983 */
4984 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4985 if (prog->_LinkedShaders[i] == NULL)
4986 continue;
4987
4988 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4989 if (!prog->data->LinkStatus)
4990 goto done;
4991
4992 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4993 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4994 }
4995
4996 if (ctx->Const.LowerTessLevel) {
4997 lower_tess_level(prog->_LinkedShaders[i]);
4998 }
4999
5000 /* Call opts before lowering const arrays to uniforms so we can const
5001 * propagate any elements accessed directly.
5002 */
5003 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5004
5005 /* Call opts after lowering const arrays to copy propagate things. */
5006 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5007 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5008
5009 propagate_invariance(prog->_LinkedShaders[i]->ir);
5010 }
5011
5012 /* Validation for special cases where we allow sampler array indexing
5013 * with loop induction variable. This check emits a warning or error
5014 * depending if backend can handle dynamic indexing.
5015 */
5016 if ((!prog->IsES && prog->data->Version < 130) ||
5017 (prog->IsES && prog->data->Version < 300)) {
5018 if (!validate_sampler_array_indexing(ctx, prog))
5019 goto done;
5020 }
5021
5022 /* Check and validate stream emissions in geometry shaders */
5023 validate_geometry_shader_emissions(ctx, prog);
5024
5025 store_fragdepth_layout(prog);
5026
5027 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5028 goto done;
5029
5030 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5031 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5032 * anything about shader linking when one of the shaders (vertex or
5033 * fragment shader) is absent. So, the extension shouldn't change the
5034 * behavior specified in GLSL specification.
5035 *
5036 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5037 * "Linking can fail for a variety of reasons as specified in the
5038 * OpenGL ES Shading Language Specification, as well as any of the
5039 * following reasons:
5040 *
5041 * ...
5042 *
5043 * * program contains objects to form either a vertex shader or
5044 * fragment shader, and program is not separable, and does not
5045 * contain objects to form both a vertex shader and fragment
5046 * shader."
5047 *
5048 * However, the only scenario in 3.1+ where we don't require them both is
5049 * when we have a compute shader. For example:
5050 *
5051 * - No shaders is a link error.
5052 * - Geom or Tess without a Vertex shader is a link error which means we
5053 * always require a Vertex shader and hence a Fragment shader.
5054 * - Finally a Compute shader linked with any other stage is a link error.
5055 */
5056 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5057 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5058 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5059 linker_error(prog, "program lacks a vertex shader\n");
5060 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5061 linker_error(prog, "program lacks a fragment shader\n");
5062 }
5063 }
5064
5065 done:
5066 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5067 free(shader_list[i]);
5068 if (prog->_LinkedShaders[i] == NULL)
5069 continue;
5070
5071 /* Do a final validation step to make sure that the IR wasn't
5072 * invalidated by any modifications performed after intrastage linking.
5073 */
5074 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5075
5076 /* Retain any live IR, but trash the rest. */
5077 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5078
5079 /* The symbol table in the linked shaders may contain references to
5080 * variables that were removed (e.g., unused uniforms). Since it may
5081 * contain junk, there is no possible valid use. Delete it and set the
5082 * pointer to NULL.
5083 */
5084 delete prog->_LinkedShaders[i]->symbols;
5085 prog->_LinkedShaders[i]->symbols = NULL;
5086 }
5087
5088 ralloc_free(mem_ctx);
5089 }