0268b748a10dd6af5fad2abe6273da3ca27f1da9
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "linker.h"
76 #include "link_varyings.h"
77 #include "ir_optimization.h"
78 #include "ir_rvalue_visitor.h"
79 #include "ir_uniform.h"
80
81 #include "main/shaderobj.h"
82 #include "main/enums.h"
83
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->fields.array,
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->fields.array;
248 return visit_continue;
249 }
250 };
251
252 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
253 public:
254 unsigned num_vertices;
255 gl_shader_program *prog;
256
257 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
258 {
259 this->num_vertices = num_vertices;
260 this->prog = prog;
261 }
262
263 virtual ~tess_eval_array_resize_visitor()
264 {
265 /* empty */
266 }
267
268 virtual ir_visitor_status visit(ir_variable *var)
269 {
270 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
271 return visit_continue;
272
273 var->type = glsl_type::get_array_instance(var->type->fields.array,
274 this->num_vertices);
275 var->data.max_array_access = this->num_vertices - 1;
276
277 return visit_continue;
278 }
279
280 /* Dereferences of input variables need to be updated so that their type
281 * matches the newly assigned type of the variable they are accessing. */
282 virtual ir_visitor_status visit(ir_dereference_variable *ir)
283 {
284 ir->type = ir->var->type;
285 return visit_continue;
286 }
287
288 /* Dereferences of 2D input arrays need to be updated so that their type
289 * matches the newly assigned type of the array they are accessing. */
290 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
291 {
292 const glsl_type *const vt = ir->array->type;
293 if (vt->is_array())
294 ir->type = vt->fields.array;
295 return visit_continue;
296 }
297 };
298
299 class barrier_use_visitor : public ir_hierarchical_visitor {
300 public:
301 barrier_use_visitor(gl_shader_program *prog)
302 : prog(prog), in_main(false), after_return(false), control_flow(0)
303 {
304 }
305
306 virtual ~barrier_use_visitor()
307 {
308 /* empty */
309 }
310
311 virtual ir_visitor_status visit_enter(ir_function *ir)
312 {
313 if (strcmp(ir->name, "main") == 0)
314 in_main = true;
315
316 return visit_continue;
317 }
318
319 virtual ir_visitor_status visit_leave(ir_function *)
320 {
321 in_main = false;
322 after_return = false;
323 return visit_continue;
324 }
325
326 virtual ir_visitor_status visit_leave(ir_return *)
327 {
328 after_return = true;
329 return visit_continue;
330 }
331
332 virtual ir_visitor_status visit_enter(ir_if *)
333 {
334 ++control_flow;
335 return visit_continue;
336 }
337
338 virtual ir_visitor_status visit_leave(ir_if *)
339 {
340 --control_flow;
341 return visit_continue;
342 }
343
344 virtual ir_visitor_status visit_enter(ir_loop *)
345 {
346 ++control_flow;
347 return visit_continue;
348 }
349
350 virtual ir_visitor_status visit_leave(ir_loop *)
351 {
352 --control_flow;
353 return visit_continue;
354 }
355
356 /* FINISHME: `switch` is not expressed at the IR level -- it's already
357 * been lowered to a mess of `if`s. We'll correctly disallow any use of
358 * barrier() in a conditional path within the switch, but not in a path
359 * which is always hit.
360 */
361
362 virtual ir_visitor_status visit_enter(ir_call *ir)
363 {
364 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
365 /* Use of barrier(); determine if it is legal: */
366 if (!in_main) {
367 linker_error(prog, "Builtin barrier() may only be used in main");
368 return visit_stop;
369 }
370
371 if (after_return) {
372 linker_error(prog, "Builtin barrier() may not be used after return");
373 return visit_stop;
374 }
375
376 if (control_flow != 0) {
377 linker_error(prog, "Builtin barrier() may not be used inside control flow");
378 return visit_stop;
379 }
380 }
381 return visit_continue;
382 }
383
384 private:
385 gl_shader_program *prog;
386 bool in_main, after_return;
387 int control_flow;
388 };
389
390 /**
391 * Visitor that determines the highest stream id to which a (geometry) shader
392 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
393 */
394 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
395 public:
396 find_emit_vertex_visitor(int max_allowed)
397 : max_stream_allowed(max_allowed),
398 invalid_stream_id(0),
399 invalid_stream_id_from_emit_vertex(false),
400 end_primitive_found(false),
401 uses_non_zero_stream(false)
402 {
403 /* empty */
404 }
405
406 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
407 {
408 int stream_id = ir->stream_id();
409
410 if (stream_id < 0) {
411 invalid_stream_id = stream_id;
412 invalid_stream_id_from_emit_vertex = true;
413 return visit_stop;
414 }
415
416 if (stream_id > max_stream_allowed) {
417 invalid_stream_id = stream_id;
418 invalid_stream_id_from_emit_vertex = true;
419 return visit_stop;
420 }
421
422 if (stream_id != 0)
423 uses_non_zero_stream = true;
424
425 return visit_continue;
426 }
427
428 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
429 {
430 end_primitive_found = true;
431
432 int stream_id = ir->stream_id();
433
434 if (stream_id < 0) {
435 invalid_stream_id = stream_id;
436 invalid_stream_id_from_emit_vertex = false;
437 return visit_stop;
438 }
439
440 if (stream_id > max_stream_allowed) {
441 invalid_stream_id = stream_id;
442 invalid_stream_id_from_emit_vertex = false;
443 return visit_stop;
444 }
445
446 if (stream_id != 0)
447 uses_non_zero_stream = true;
448
449 return visit_continue;
450 }
451
452 bool error()
453 {
454 return invalid_stream_id != 0;
455 }
456
457 const char *error_func()
458 {
459 return invalid_stream_id_from_emit_vertex ?
460 "EmitStreamVertex" : "EndStreamPrimitive";
461 }
462
463 int error_stream()
464 {
465 return invalid_stream_id;
466 }
467
468 bool uses_streams()
469 {
470 return uses_non_zero_stream;
471 }
472
473 bool uses_end_primitive()
474 {
475 return end_primitive_found;
476 }
477
478 private:
479 int max_stream_allowed;
480 int invalid_stream_id;
481 bool invalid_stream_id_from_emit_vertex;
482 bool end_primitive_found;
483 bool uses_non_zero_stream;
484 };
485
486 /* Class that finds array derefs and check if indexes are dynamic. */
487 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
488 {
489 public:
490 dynamic_sampler_array_indexing_visitor() :
491 dynamic_sampler_array_indexing(false)
492 {
493 }
494
495 ir_visitor_status visit_enter(ir_dereference_array *ir)
496 {
497 if (!ir->variable_referenced())
498 return visit_continue;
499
500 if (!ir->variable_referenced()->type->contains_sampler())
501 return visit_continue;
502
503 if (!ir->array_index->constant_expression_value()) {
504 dynamic_sampler_array_indexing = true;
505 return visit_stop;
506 }
507 return visit_continue;
508 }
509
510 bool uses_dynamic_sampler_array_indexing()
511 {
512 return dynamic_sampler_array_indexing;
513 }
514
515 private:
516 bool dynamic_sampler_array_indexing;
517 };
518
519 } /* anonymous namespace */
520
521 void
522 linker_error(gl_shader_program *prog, const char *fmt, ...)
523 {
524 va_list ap;
525
526 ralloc_strcat(&prog->InfoLog, "error: ");
527 va_start(ap, fmt);
528 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
529 va_end(ap);
530
531 prog->LinkStatus = false;
532 }
533
534
535 void
536 linker_warning(gl_shader_program *prog, const char *fmt, ...)
537 {
538 va_list ap;
539
540 ralloc_strcat(&prog->InfoLog, "warning: ");
541 va_start(ap, fmt);
542 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
543 va_end(ap);
544
545 }
546
547
548 /**
549 * Given a string identifying a program resource, break it into a base name
550 * and an optional array index in square brackets.
551 *
552 * If an array index is present, \c out_base_name_end is set to point to the
553 * "[" that precedes the array index, and the array index itself is returned
554 * as a long.
555 *
556 * If no array index is present (or if the array index is negative or
557 * mal-formed), \c out_base_name_end, is set to point to the null terminator
558 * at the end of the input string, and -1 is returned.
559 *
560 * Only the final array index is parsed; if the string contains other array
561 * indices (or structure field accesses), they are left in the base name.
562 *
563 * No attempt is made to check that the base name is properly formed;
564 * typically the caller will look up the base name in a hash table, so
565 * ill-formed base names simply turn into hash table lookup failures.
566 */
567 long
568 parse_program_resource_name(const GLchar *name,
569 const GLchar **out_base_name_end)
570 {
571 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
572 *
573 * "When an integer array element or block instance number is part of
574 * the name string, it will be specified in decimal form without a "+"
575 * or "-" sign or any extra leading zeroes. Additionally, the name
576 * string will not include white space anywhere in the string."
577 */
578
579 const size_t len = strlen(name);
580 *out_base_name_end = name + len;
581
582 if (len == 0 || name[len-1] != ']')
583 return -1;
584
585 /* Walk backwards over the string looking for a non-digit character. This
586 * had better be the opening bracket for an array index.
587 *
588 * Initially, i specifies the location of the ']'. Since the string may
589 * contain only the ']' charcater, walk backwards very carefully.
590 */
591 unsigned i;
592 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
593 /* empty */ ;
594
595 if ((i == 0) || name[i-1] != '[')
596 return -1;
597
598 long array_index = strtol(&name[i], NULL, 10);
599 if (array_index < 0)
600 return -1;
601
602 /* Check for leading zero */
603 if (name[i] == '0' && name[i+1] != ']')
604 return -1;
605
606 *out_base_name_end = name + (i - 1);
607 return array_index;
608 }
609
610
611 void
612 link_invalidate_variable_locations(exec_list *ir)
613 {
614 foreach_in_list(ir_instruction, node, ir) {
615 ir_variable *const var = node->as_variable();
616
617 if (var == NULL)
618 continue;
619
620 /* Only assign locations for variables that lack an explicit location.
621 * Explicit locations are set for all built-in variables, generic vertex
622 * shader inputs (via layout(location=...)), and generic fragment shader
623 * outputs (also via layout(location=...)).
624 */
625 if (!var->data.explicit_location) {
626 var->data.location = -1;
627 var->data.location_frac = 0;
628 }
629
630 /* ir_variable::is_unmatched_generic_inout is used by the linker while
631 * connecting outputs from one stage to inputs of the next stage.
632 */
633 if (var->data.explicit_location &&
634 var->data.location < VARYING_SLOT_VAR0) {
635 var->data.is_unmatched_generic_inout = 0;
636 } else {
637 var->data.is_unmatched_generic_inout = 1;
638 }
639 }
640 }
641
642
643 /**
644 * Set clip_distance_array_size based on the given shader.
645 *
646 * Also check for errors based on incorrect usage of gl_ClipVertex and
647 * gl_ClipDistance.
648 *
649 * Return false if an error was reported.
650 */
651 static void
652 analyze_clip_usage(struct gl_shader_program *prog,
653 struct gl_shader *shader,
654 GLuint *clip_distance_array_size)
655 {
656 *clip_distance_array_size = 0;
657
658 if (!prog->IsES && prog->Version >= 130) {
659 /* From section 7.1 (Vertex Shader Special Variables) of the
660 * GLSL 1.30 spec:
661 *
662 * "It is an error for a shader to statically write both
663 * gl_ClipVertex and gl_ClipDistance."
664 *
665 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
666 * gl_ClipVertex nor gl_ClipDistance.
667 */
668 find_assignment_visitor clip_vertex("gl_ClipVertex");
669 find_assignment_visitor clip_distance("gl_ClipDistance");
670
671 clip_vertex.run(shader->ir);
672 clip_distance.run(shader->ir);
673 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
674 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
675 "and `gl_ClipDistance'\n",
676 _mesa_shader_stage_to_string(shader->Stage));
677 return;
678 }
679
680 if (clip_distance.variable_found()) {
681 ir_variable *clip_distance_var =
682 shader->symbols->get_variable("gl_ClipDistance");
683
684 assert(clip_distance_var);
685 *clip_distance_array_size = clip_distance_var->type->length;
686 }
687 }
688 }
689
690
691 /**
692 * Verify that a vertex shader executable meets all semantic requirements.
693 *
694 * Also sets prog->Vert.ClipDistanceArraySize as a side effect.
695 *
696 * \param shader Vertex shader executable to be verified
697 */
698 void
699 validate_vertex_shader_executable(struct gl_shader_program *prog,
700 struct gl_shader *shader)
701 {
702 if (shader == NULL)
703 return;
704
705 /* From the GLSL 1.10 spec, page 48:
706 *
707 * "The variable gl_Position is available only in the vertex
708 * language and is intended for writing the homogeneous vertex
709 * position. All executions of a well-formed vertex shader
710 * executable must write a value into this variable. [...] The
711 * variable gl_Position is available only in the vertex
712 * language and is intended for writing the homogeneous vertex
713 * position. All executions of a well-formed vertex shader
714 * executable must write a value into this variable."
715 *
716 * while in GLSL 1.40 this text is changed to:
717 *
718 * "The variable gl_Position is available only in the vertex
719 * language and is intended for writing the homogeneous vertex
720 * position. It can be written at any time during shader
721 * execution. It may also be read back by a vertex shader
722 * after being written. This value will be used by primitive
723 * assembly, clipping, culling, and other fixed functionality
724 * operations, if present, that operate on primitives after
725 * vertex processing has occurred. Its value is undefined if
726 * the vertex shader executable does not write gl_Position."
727 *
728 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
729 * gl_Position is not an error.
730 */
731 if (prog->Version < (prog->IsES ? 300 : 140)) {
732 find_assignment_visitor find("gl_Position");
733 find.run(shader->ir);
734 if (!find.variable_found()) {
735 if (prog->IsES) {
736 linker_warning(prog,
737 "vertex shader does not write to `gl_Position'."
738 "It's value is undefined. \n");
739 } else {
740 linker_error(prog,
741 "vertex shader does not write to `gl_Position'. \n");
742 }
743 return;
744 }
745 }
746
747 analyze_clip_usage(prog, shader, &prog->Vert.ClipDistanceArraySize);
748 }
749
750 void
751 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
752 struct gl_shader *shader)
753 {
754 if (shader == NULL)
755 return;
756
757 analyze_clip_usage(prog, shader, &prog->TessEval.ClipDistanceArraySize);
758 }
759
760
761 /**
762 * Verify that a fragment shader executable meets all semantic requirements
763 *
764 * \param shader Fragment shader executable to be verified
765 */
766 void
767 validate_fragment_shader_executable(struct gl_shader_program *prog,
768 struct gl_shader *shader)
769 {
770 if (shader == NULL)
771 return;
772
773 find_assignment_visitor frag_color("gl_FragColor");
774 find_assignment_visitor frag_data("gl_FragData");
775
776 frag_color.run(shader->ir);
777 frag_data.run(shader->ir);
778
779 if (frag_color.variable_found() && frag_data.variable_found()) {
780 linker_error(prog, "fragment shader writes to both "
781 "`gl_FragColor' and `gl_FragData'\n");
782 }
783 }
784
785 /**
786 * Verify that a geometry shader executable meets all semantic requirements
787 *
788 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize as
789 * a side effect.
790 *
791 * \param shader Geometry shader executable to be verified
792 */
793 void
794 validate_geometry_shader_executable(struct gl_shader_program *prog,
795 struct gl_shader *shader)
796 {
797 if (shader == NULL)
798 return;
799
800 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
801 prog->Geom.VerticesIn = num_vertices;
802
803 analyze_clip_usage(prog, shader, &prog->Geom.ClipDistanceArraySize);
804 }
805
806 /**
807 * Check if geometry shaders emit to non-zero streams and do corresponding
808 * validations.
809 */
810 static void
811 validate_geometry_shader_emissions(struct gl_context *ctx,
812 struct gl_shader_program *prog)
813 {
814 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
815 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
816 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
817 if (emit_vertex.error()) {
818 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
819 "stream parameter are in the range [0, %d].\n",
820 emit_vertex.error_func(),
821 emit_vertex.error_stream(),
822 ctx->Const.MaxVertexStreams - 1);
823 }
824 prog->Geom.UsesStreams = emit_vertex.uses_streams();
825 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
826
827 /* From the ARB_gpu_shader5 spec:
828 *
829 * "Multiple vertex streams are supported only if the output primitive
830 * type is declared to be "points". A program will fail to link if it
831 * contains a geometry shader calling EmitStreamVertex() or
832 * EndStreamPrimitive() if its output primitive type is not "points".
833 *
834 * However, in the same spec:
835 *
836 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
837 * with <stream> set to zero."
838 *
839 * And:
840 *
841 * "The function EndPrimitive() is equivalent to calling
842 * EndStreamPrimitive() with <stream> set to zero."
843 *
844 * Since we can call EmitVertex() and EndPrimitive() when we output
845 * primitives other than points, calling EmitStreamVertex(0) or
846 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
847 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
848 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
849 * stream.
850 */
851 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
852 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
853 "with n>0 requires point output\n");
854 }
855 }
856 }
857
858 bool
859 validate_intrastage_arrays(struct gl_shader_program *prog,
860 ir_variable *const var,
861 ir_variable *const existing)
862 {
863 /* Consider the types to be "the same" if both types are arrays
864 * of the same type and one of the arrays is implicitly sized.
865 * In addition, set the type of the linked variable to the
866 * explicitly sized array.
867 */
868 if (var->type->is_array() && existing->type->is_array()) {
869 if ((var->type->fields.array == existing->type->fields.array) &&
870 ((var->type->length == 0)|| (existing->type->length == 0))) {
871 if (var->type->length != 0) {
872 if (var->type->length <= existing->data.max_array_access) {
873 linker_error(prog, "%s `%s' declared as type "
874 "`%s' but outermost dimension has an index"
875 " of `%i'\n",
876 mode_string(var),
877 var->name, var->type->name,
878 existing->data.max_array_access);
879 }
880 existing->type = var->type;
881 return true;
882 } else if (existing->type->length != 0) {
883 if(existing->type->length <= var->data.max_array_access &&
884 !existing->data.from_ssbo_unsized_array) {
885 linker_error(prog, "%s `%s' declared as type "
886 "`%s' but outermost dimension has an index"
887 " of `%i'\n",
888 mode_string(var),
889 var->name, existing->type->name,
890 var->data.max_array_access);
891 }
892 return true;
893 }
894 } else {
895 /* The arrays of structs could have different glsl_type pointers but
896 * they are actually the same type. Use record_compare() to check that.
897 */
898 if (existing->type->fields.array->is_record() &&
899 var->type->fields.array->is_record() &&
900 existing->type->fields.array->record_compare(var->type->fields.array))
901 return true;
902 }
903 }
904 return false;
905 }
906
907
908 /**
909 * Perform validation of global variables used across multiple shaders
910 */
911 void
912 cross_validate_globals(struct gl_shader_program *prog,
913 struct gl_shader **shader_list,
914 unsigned num_shaders,
915 bool uniforms_only)
916 {
917 /* Examine all of the uniforms in all of the shaders and cross validate
918 * them.
919 */
920 glsl_symbol_table variables;
921 for (unsigned i = 0; i < num_shaders; i++) {
922 if (shader_list[i] == NULL)
923 continue;
924
925 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
926 ir_variable *const var = node->as_variable();
927
928 if (var == NULL)
929 continue;
930
931 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
932 continue;
933
934 /* don't cross validate subroutine uniforms */
935 if (var->type->contains_subroutine())
936 continue;
937
938 /* Don't cross validate temporaries that are at global scope. These
939 * will eventually get pulled into the shaders 'main'.
940 */
941 if (var->data.mode == ir_var_temporary)
942 continue;
943
944 /* If a global with this name has already been seen, verify that the
945 * new instance has the same type. In addition, if the globals have
946 * initializers, the values of the initializers must be the same.
947 */
948 ir_variable *const existing = variables.get_variable(var->name);
949 if (existing != NULL) {
950 /* Check if types match. Interface blocks have some special
951 * rules so we handle those elsewhere.
952 */
953 if (var->type != existing->type &&
954 !var->is_interface_instance()) {
955 if (!validate_intrastage_arrays(prog, var, existing)) {
956 if (var->type->is_record() && existing->type->is_record()
957 && existing->type->record_compare(var->type)) {
958 existing->type = var->type;
959 } else {
960 /* If it is an unsized array in a Shader Storage Block,
961 * two different shaders can access to different elements.
962 * Because of that, they might be converted to different
963 * sized arrays, then check that they are compatible but
964 * ignore the array size.
965 */
966 if (!(var->data.mode == ir_var_shader_storage &&
967 var->data.from_ssbo_unsized_array &&
968 existing->data.mode == ir_var_shader_storage &&
969 existing->data.from_ssbo_unsized_array &&
970 var->type->gl_type == existing->type->gl_type)) {
971 linker_error(prog, "%s `%s' declared as type "
972 "`%s' and type `%s'\n",
973 mode_string(var),
974 var->name, var->type->name,
975 existing->type->name);
976 return;
977 }
978 }
979 }
980 }
981
982 if (var->data.explicit_location) {
983 if (existing->data.explicit_location
984 && (var->data.location != existing->data.location)) {
985 linker_error(prog, "explicit locations for %s "
986 "`%s' have differing values\n",
987 mode_string(var), var->name);
988 return;
989 }
990
991 if (var->data.location_frac != existing->data.location_frac) {
992 linker_error(prog, "explicit components for %s "
993 "`%s' have differing values\n",
994 mode_string(var), var->name);
995 return;
996 }
997
998 existing->data.location = var->data.location;
999 existing->data.explicit_location = true;
1000 } else {
1001 /* Check if uniform with implicit location was marked explicit
1002 * by earlier shader stage. If so, mark it explicit in this stage
1003 * too to make sure later processing does not treat it as
1004 * implicit one.
1005 */
1006 if (existing->data.explicit_location) {
1007 var->data.location = existing->data.location;
1008 var->data.explicit_location = true;
1009 }
1010 }
1011
1012 /* From the GLSL 4.20 specification:
1013 * "A link error will result if two compilation units in a program
1014 * specify different integer-constant bindings for the same
1015 * opaque-uniform name. However, it is not an error to specify a
1016 * binding on some but not all declarations for the same name"
1017 */
1018 if (var->data.explicit_binding) {
1019 if (existing->data.explicit_binding &&
1020 var->data.binding != existing->data.binding) {
1021 linker_error(prog, "explicit bindings for %s "
1022 "`%s' have differing values\n",
1023 mode_string(var), var->name);
1024 return;
1025 }
1026
1027 existing->data.binding = var->data.binding;
1028 existing->data.explicit_binding = true;
1029 }
1030
1031 if (var->type->contains_atomic() &&
1032 var->data.offset != existing->data.offset) {
1033 linker_error(prog, "offset specifications for %s "
1034 "`%s' have differing values\n",
1035 mode_string(var), var->name);
1036 return;
1037 }
1038
1039 /* Validate layout qualifiers for gl_FragDepth.
1040 *
1041 * From the AMD/ARB_conservative_depth specs:
1042 *
1043 * "If gl_FragDepth is redeclared in any fragment shader in a
1044 * program, it must be redeclared in all fragment shaders in
1045 * that program that have static assignments to
1046 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1047 * fragment shaders in a single program must have the same set
1048 * of qualifiers."
1049 */
1050 if (strcmp(var->name, "gl_FragDepth") == 0) {
1051 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1052 bool layout_differs =
1053 var->data.depth_layout != existing->data.depth_layout;
1054
1055 if (layout_declared && layout_differs) {
1056 linker_error(prog,
1057 "All redeclarations of gl_FragDepth in all "
1058 "fragment shaders in a single program must have "
1059 "the same set of qualifiers.\n");
1060 }
1061
1062 if (var->data.used && layout_differs) {
1063 linker_error(prog,
1064 "If gl_FragDepth is redeclared with a layout "
1065 "qualifier in any fragment shader, it must be "
1066 "redeclared with the same layout qualifier in "
1067 "all fragment shaders that have assignments to "
1068 "gl_FragDepth\n");
1069 }
1070 }
1071
1072 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1073 *
1074 * "If a shared global has multiple initializers, the
1075 * initializers must all be constant expressions, and they
1076 * must all have the same value. Otherwise, a link error will
1077 * result. (A shared global having only one initializer does
1078 * not require that initializer to be a constant expression.)"
1079 *
1080 * Previous to 4.20 the GLSL spec simply said that initializers
1081 * must have the same value. In this case of non-constant
1082 * initializers, this was impossible to determine. As a result,
1083 * no vendor actually implemented that behavior. The 4.20
1084 * behavior matches the implemented behavior of at least one other
1085 * vendor, so we'll implement that for all GLSL versions.
1086 */
1087 if (var->constant_initializer != NULL) {
1088 if (existing->constant_initializer != NULL) {
1089 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1090 linker_error(prog, "initializers for %s "
1091 "`%s' have differing values\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 } else {
1096 /* If the first-seen instance of a particular uniform did
1097 * not have an initializer but a later instance does,
1098 * replace the former with the later.
1099 */
1100 variables.replace_variable(existing->name, var);
1101 }
1102 }
1103
1104 if (var->data.has_initializer) {
1105 if (existing->data.has_initializer
1106 && (var->constant_initializer == NULL
1107 || existing->constant_initializer == NULL)) {
1108 linker_error(prog,
1109 "shared global variable `%s' has multiple "
1110 "non-constant initializers.\n",
1111 var->name);
1112 return;
1113 }
1114 }
1115
1116 if (existing->data.invariant != var->data.invariant) {
1117 linker_error(prog, "declarations for %s `%s' have "
1118 "mismatching invariant qualifiers\n",
1119 mode_string(var), var->name);
1120 return;
1121 }
1122 if (existing->data.centroid != var->data.centroid) {
1123 linker_error(prog, "declarations for %s `%s' have "
1124 "mismatching centroid qualifiers\n",
1125 mode_string(var), var->name);
1126 return;
1127 }
1128 if (existing->data.sample != var->data.sample) {
1129 linker_error(prog, "declarations for %s `%s` have "
1130 "mismatching sample qualifiers\n",
1131 mode_string(var), var->name);
1132 return;
1133 }
1134 if (existing->data.image_format != var->data.image_format) {
1135 linker_error(prog, "declarations for %s `%s` have "
1136 "mismatching image format qualifiers\n",
1137 mode_string(var), var->name);
1138 return;
1139 }
1140 } else
1141 variables.add_variable(var);
1142 }
1143 }
1144 }
1145
1146
1147 /**
1148 * Perform validation of uniforms used across multiple shader stages
1149 */
1150 void
1151 cross_validate_uniforms(struct gl_shader_program *prog)
1152 {
1153 cross_validate_globals(prog, prog->_LinkedShaders,
1154 MESA_SHADER_STAGES, true);
1155 }
1156
1157 /**
1158 * Accumulates the array of buffer blocks and checks that all definitions of
1159 * blocks agree on their contents.
1160 */
1161 static bool
1162 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1163 bool validate_ssbo)
1164 {
1165 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1166 struct gl_uniform_block *blks = NULL;
1167 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1168 &prog->NumUniformBlocks;
1169
1170 unsigned max_num_buffer_blocks = 0;
1171 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1172 if (prog->_LinkedShaders[i]) {
1173 if (validate_ssbo) {
1174 max_num_buffer_blocks +=
1175 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1176 } else {
1177 max_num_buffer_blocks +=
1178 prog->_LinkedShaders[i]->NumUniformBlocks;
1179 }
1180 }
1181 }
1182
1183 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1184 struct gl_shader *sh = prog->_LinkedShaders[i];
1185
1186 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1187 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1188 InterfaceBlockStageIndex[i][j] = -1;
1189
1190 if (sh == NULL)
1191 continue;
1192
1193 unsigned sh_num_blocks;
1194 struct gl_uniform_block **sh_blks;
1195 if (validate_ssbo) {
1196 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1197 sh_blks = sh->ShaderStorageBlocks;
1198 } else {
1199 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1200 sh_blks = sh->UniformBlocks;
1201 }
1202
1203 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1204 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1205 sh_blks[j]);
1206
1207 if (index == -1) {
1208 linker_error(prog, "buffer block `%s' has mismatching "
1209 "definitions\n", sh_blks[j]->Name);
1210
1211 for (unsigned k = 0; k <= i; k++) {
1212 delete[] InterfaceBlockStageIndex[k];
1213 }
1214 return false;
1215 }
1216
1217 InterfaceBlockStageIndex[i][index] = j;
1218 }
1219 }
1220
1221 /* Update per stage block pointers to point to the program list.
1222 * FIXME: We should be able to free the per stage blocks here.
1223 */
1224 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1225 for (unsigned j = 0; j < *num_blks; j++) {
1226 int stage_index = InterfaceBlockStageIndex[i][j];
1227
1228 if (stage_index != -1) {
1229 struct gl_shader *sh = prog->_LinkedShaders[i];
1230
1231 blks[j].stageref |= (1 << i);
1232
1233 struct gl_uniform_block **sh_blks = validate_ssbo ?
1234 sh->ShaderStorageBlocks : sh->UniformBlocks;
1235
1236 sh_blks[stage_index] = &blks[j];
1237 }
1238 }
1239 }
1240
1241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1242 delete[] InterfaceBlockStageIndex[i];
1243 }
1244
1245 if (validate_ssbo)
1246 prog->ShaderStorageBlocks = blks;
1247 else
1248 prog->UniformBlocks = blks;
1249
1250 return true;
1251 }
1252
1253
1254 /**
1255 * Populates a shaders symbol table with all global declarations
1256 */
1257 static void
1258 populate_symbol_table(gl_shader *sh)
1259 {
1260 sh->symbols = new(sh) glsl_symbol_table;
1261
1262 foreach_in_list(ir_instruction, inst, sh->ir) {
1263 ir_variable *var;
1264 ir_function *func;
1265
1266 if ((func = inst->as_function()) != NULL) {
1267 sh->symbols->add_function(func);
1268 } else if ((var = inst->as_variable()) != NULL) {
1269 if (var->data.mode != ir_var_temporary)
1270 sh->symbols->add_variable(var);
1271 }
1272 }
1273 }
1274
1275
1276 /**
1277 * Remap variables referenced in an instruction tree
1278 *
1279 * This is used when instruction trees are cloned from one shader and placed in
1280 * another. These trees will contain references to \c ir_variable nodes that
1281 * do not exist in the target shader. This function finds these \c ir_variable
1282 * references and replaces the references with matching variables in the target
1283 * shader.
1284 *
1285 * If there is no matching variable in the target shader, a clone of the
1286 * \c ir_variable is made and added to the target shader. The new variable is
1287 * added to \b both the instruction stream and the symbol table.
1288 *
1289 * \param inst IR tree that is to be processed.
1290 * \param symbols Symbol table containing global scope symbols in the
1291 * linked shader.
1292 * \param instructions Instruction stream where new variable declarations
1293 * should be added.
1294 */
1295 void
1296 remap_variables(ir_instruction *inst, struct gl_shader *target,
1297 hash_table *temps)
1298 {
1299 class remap_visitor : public ir_hierarchical_visitor {
1300 public:
1301 remap_visitor(struct gl_shader *target,
1302 hash_table *temps)
1303 {
1304 this->target = target;
1305 this->symbols = target->symbols;
1306 this->instructions = target->ir;
1307 this->temps = temps;
1308 }
1309
1310 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1311 {
1312 if (ir->var->data.mode == ir_var_temporary) {
1313 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1314
1315 assert(var != NULL);
1316 ir->var = var;
1317 return visit_continue;
1318 }
1319
1320 ir_variable *const existing =
1321 this->symbols->get_variable(ir->var->name);
1322 if (existing != NULL)
1323 ir->var = existing;
1324 else {
1325 ir_variable *copy = ir->var->clone(this->target, NULL);
1326
1327 this->symbols->add_variable(copy);
1328 this->instructions->push_head(copy);
1329 ir->var = copy;
1330 }
1331
1332 return visit_continue;
1333 }
1334
1335 private:
1336 struct gl_shader *target;
1337 glsl_symbol_table *symbols;
1338 exec_list *instructions;
1339 hash_table *temps;
1340 };
1341
1342 remap_visitor v(target, temps);
1343
1344 inst->accept(&v);
1345 }
1346
1347
1348 /**
1349 * Move non-declarations from one instruction stream to another
1350 *
1351 * The intended usage pattern of this function is to pass the pointer to the
1352 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1353 * pointer) for \c last and \c false for \c make_copies on the first
1354 * call. Successive calls pass the return value of the previous call for
1355 * \c last and \c true for \c make_copies.
1356 *
1357 * \param instructions Source instruction stream
1358 * \param last Instruction after which new instructions should be
1359 * inserted in the target instruction stream
1360 * \param make_copies Flag selecting whether instructions in \c instructions
1361 * should be copied (via \c ir_instruction::clone) into the
1362 * target list or moved.
1363 *
1364 * \return
1365 * The new "last" instruction in the target instruction stream. This pointer
1366 * is suitable for use as the \c last parameter of a later call to this
1367 * function.
1368 */
1369 exec_node *
1370 move_non_declarations(exec_list *instructions, exec_node *last,
1371 bool make_copies, gl_shader *target)
1372 {
1373 hash_table *temps = NULL;
1374
1375 if (make_copies)
1376 temps = hash_table_ctor(0, hash_table_pointer_hash,
1377 hash_table_pointer_compare);
1378
1379 foreach_in_list_safe(ir_instruction, inst, instructions) {
1380 if (inst->as_function())
1381 continue;
1382
1383 ir_variable *var = inst->as_variable();
1384 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1385 continue;
1386
1387 assert(inst->as_assignment()
1388 || inst->as_call()
1389 || inst->as_if() /* for initializers with the ?: operator */
1390 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1391
1392 if (make_copies) {
1393 inst = inst->clone(target, NULL);
1394
1395 if (var != NULL)
1396 hash_table_insert(temps, inst, var);
1397 else
1398 remap_variables(inst, target, temps);
1399 } else {
1400 inst->remove();
1401 }
1402
1403 last->insert_after(inst);
1404 last = inst;
1405 }
1406
1407 if (make_copies)
1408 hash_table_dtor(temps);
1409
1410 return last;
1411 }
1412
1413
1414 /**
1415 * This class is only used in link_intrastage_shaders() below but declaring
1416 * it inside that function leads to compiler warnings with some versions of
1417 * gcc.
1418 */
1419 class array_sizing_visitor : public ir_hierarchical_visitor {
1420 public:
1421 array_sizing_visitor()
1422 : mem_ctx(ralloc_context(NULL)),
1423 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1424 hash_table_pointer_compare))
1425 {
1426 }
1427
1428 ~array_sizing_visitor()
1429 {
1430 hash_table_dtor(this->unnamed_interfaces);
1431 ralloc_free(this->mem_ctx);
1432 }
1433
1434 virtual ir_visitor_status visit(ir_variable *var)
1435 {
1436 const glsl_type *type_without_array;
1437 fixup_type(&var->type, var->data.max_array_access,
1438 var->data.from_ssbo_unsized_array);
1439 type_without_array = var->type->without_array();
1440 if (var->type->is_interface()) {
1441 if (interface_contains_unsized_arrays(var->type)) {
1442 const glsl_type *new_type =
1443 resize_interface_members(var->type,
1444 var->get_max_ifc_array_access(),
1445 var->is_in_shader_storage_block());
1446 var->type = new_type;
1447 var->change_interface_type(new_type);
1448 }
1449 } else if (type_without_array->is_interface()) {
1450 if (interface_contains_unsized_arrays(type_without_array)) {
1451 const glsl_type *new_type =
1452 resize_interface_members(type_without_array,
1453 var->get_max_ifc_array_access(),
1454 var->is_in_shader_storage_block());
1455 var->change_interface_type(new_type);
1456 var->type = update_interface_members_array(var->type, new_type);
1457 }
1458 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1459 /* Store a pointer to the variable in the unnamed_interfaces
1460 * hashtable.
1461 */
1462 ir_variable **interface_vars = (ir_variable **)
1463 hash_table_find(this->unnamed_interfaces, ifc_type);
1464 if (interface_vars == NULL) {
1465 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1466 ifc_type->length);
1467 hash_table_insert(this->unnamed_interfaces, interface_vars,
1468 ifc_type);
1469 }
1470 unsigned index = ifc_type->field_index(var->name);
1471 assert(index < ifc_type->length);
1472 assert(interface_vars[index] == NULL);
1473 interface_vars[index] = var;
1474 }
1475 return visit_continue;
1476 }
1477
1478 /**
1479 * For each unnamed interface block that was discovered while running the
1480 * visitor, adjust the interface type to reflect the newly assigned array
1481 * sizes, and fix up the ir_variable nodes to point to the new interface
1482 * type.
1483 */
1484 void fixup_unnamed_interface_types()
1485 {
1486 hash_table_call_foreach(this->unnamed_interfaces,
1487 fixup_unnamed_interface_type, NULL);
1488 }
1489
1490 private:
1491 /**
1492 * If the type pointed to by \c type represents an unsized array, replace
1493 * it with a sized array whose size is determined by max_array_access.
1494 */
1495 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1496 bool from_ssbo_unsized_array)
1497 {
1498 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1499 *type = glsl_type::get_array_instance((*type)->fields.array,
1500 max_array_access + 1);
1501 assert(*type != NULL);
1502 }
1503 }
1504
1505 static const glsl_type *
1506 update_interface_members_array(const glsl_type *type,
1507 const glsl_type *new_interface_type)
1508 {
1509 const glsl_type *element_type = type->fields.array;
1510 if (element_type->is_array()) {
1511 const glsl_type *new_array_type =
1512 update_interface_members_array(element_type, new_interface_type);
1513 return glsl_type::get_array_instance(new_array_type, type->length);
1514 } else {
1515 return glsl_type::get_array_instance(new_interface_type,
1516 type->length);
1517 }
1518 }
1519
1520 /**
1521 * Determine whether the given interface type contains unsized arrays (if
1522 * it doesn't, array_sizing_visitor doesn't need to process it).
1523 */
1524 static bool interface_contains_unsized_arrays(const glsl_type *type)
1525 {
1526 for (unsigned i = 0; i < type->length; i++) {
1527 const glsl_type *elem_type = type->fields.structure[i].type;
1528 if (elem_type->is_unsized_array())
1529 return true;
1530 }
1531 return false;
1532 }
1533
1534 /**
1535 * Create a new interface type based on the given type, with unsized arrays
1536 * replaced by sized arrays whose size is determined by
1537 * max_ifc_array_access.
1538 */
1539 static const glsl_type *
1540 resize_interface_members(const glsl_type *type,
1541 const unsigned *max_ifc_array_access,
1542 bool is_ssbo)
1543 {
1544 unsigned num_fields = type->length;
1545 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1546 memcpy(fields, type->fields.structure,
1547 num_fields * sizeof(*fields));
1548 for (unsigned i = 0; i < num_fields; i++) {
1549 /* If SSBO last member is unsized array, we don't replace it by a sized
1550 * array.
1551 */
1552 if (is_ssbo && i == (num_fields - 1))
1553 fixup_type(&fields[i].type, max_ifc_array_access[i],
1554 true);
1555 else
1556 fixup_type(&fields[i].type, max_ifc_array_access[i],
1557 false);
1558 }
1559 glsl_interface_packing packing =
1560 (glsl_interface_packing) type->interface_packing;
1561 const glsl_type *new_ifc_type =
1562 glsl_type::get_interface_instance(fields, num_fields,
1563 packing, type->name);
1564 delete [] fields;
1565 return new_ifc_type;
1566 }
1567
1568 static void fixup_unnamed_interface_type(const void *key, void *data,
1569 void *)
1570 {
1571 const glsl_type *ifc_type = (const glsl_type *) key;
1572 ir_variable **interface_vars = (ir_variable **) data;
1573 unsigned num_fields = ifc_type->length;
1574 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1575 memcpy(fields, ifc_type->fields.structure,
1576 num_fields * sizeof(*fields));
1577 bool interface_type_changed = false;
1578 for (unsigned i = 0; i < num_fields; i++) {
1579 if (interface_vars[i] != NULL &&
1580 fields[i].type != interface_vars[i]->type) {
1581 fields[i].type = interface_vars[i]->type;
1582 interface_type_changed = true;
1583 }
1584 }
1585 if (!interface_type_changed) {
1586 delete [] fields;
1587 return;
1588 }
1589 glsl_interface_packing packing =
1590 (glsl_interface_packing) ifc_type->interface_packing;
1591 const glsl_type *new_ifc_type =
1592 glsl_type::get_interface_instance(fields, num_fields, packing,
1593 ifc_type->name);
1594 delete [] fields;
1595 for (unsigned i = 0; i < num_fields; i++) {
1596 if (interface_vars[i] != NULL)
1597 interface_vars[i]->change_interface_type(new_ifc_type);
1598 }
1599 }
1600
1601 /**
1602 * Memory context used to allocate the data in \c unnamed_interfaces.
1603 */
1604 void *mem_ctx;
1605
1606 /**
1607 * Hash table from const glsl_type * to an array of ir_variable *'s
1608 * pointing to the ir_variables constituting each unnamed interface block.
1609 */
1610 hash_table *unnamed_interfaces;
1611 };
1612
1613 /**
1614 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1615 * for later use.
1616 */
1617 static void
1618 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1619 struct gl_shader_program *prog,
1620 struct gl_shader *linked_shader,
1621 struct gl_shader **shader_list,
1622 unsigned num_shaders)
1623 {
1624 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1625 linked_shader->TransformFeedback.BufferStride[i] = 0;
1626 }
1627
1628 for (unsigned i = 0; i < num_shaders; i++) {
1629 struct gl_shader *shader = shader_list[i];
1630
1631 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1632 if (shader->TransformFeedback.BufferStride[j]) {
1633 if (linked_shader->TransformFeedback.BufferStride[j] != 0 &&
1634 shader->TransformFeedback.BufferStride[j] != 0 &&
1635 linked_shader->TransformFeedback.BufferStride[j] !=
1636 shader->TransformFeedback.BufferStride[j]) {
1637 linker_error(prog,
1638 "intrastage shaders defined with conflicting "
1639 "xfb_stride for buffer %d (%d and %d)\n", j,
1640 linked_shader->TransformFeedback.BufferStride[j],
1641 shader->TransformFeedback.BufferStride[j]);
1642 return;
1643 }
1644
1645 if (shader->TransformFeedback.BufferStride[j])
1646 linked_shader->TransformFeedback.BufferStride[j] =
1647 shader->TransformFeedback.BufferStride[j];
1648 }
1649 }
1650 }
1651
1652 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1653 if (linked_shader->TransformFeedback.BufferStride[j]) {
1654 prog->TransformFeedback.BufferStride[j] =
1655 linked_shader->TransformFeedback.BufferStride[j];
1656
1657 /* We will validate doubles at a later stage */
1658 if (prog->TransformFeedback.BufferStride[j] % 4) {
1659 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1660 "multiple of 4 or if its applied to a type that is "
1661 "or contains a double a multiple of 8.",
1662 prog->TransformFeedback.BufferStride[j]);
1663 return;
1664 }
1665
1666 if (prog->TransformFeedback.BufferStride[j] / 4 >
1667 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1668 linker_error(prog,
1669 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1670 "limit has been exceeded.");
1671 return;
1672 }
1673 }
1674 }
1675 }
1676
1677 /**
1678 * Performs the cross-validation of tessellation control shader vertices and
1679 * layout qualifiers for the attached tessellation control shaders,
1680 * and propagates them to the linked TCS and linked shader program.
1681 */
1682 static void
1683 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1684 struct gl_shader *linked_shader,
1685 struct gl_shader **shader_list,
1686 unsigned num_shaders)
1687 {
1688 linked_shader->TessCtrl.VerticesOut = 0;
1689
1690 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1691 return;
1692
1693 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1694 *
1695 * "All tessellation control shader layout declarations in a program
1696 * must specify the same output patch vertex count. There must be at
1697 * least one layout qualifier specifying an output patch vertex count
1698 * in any program containing tessellation control shaders; however,
1699 * such a declaration is not required in all tessellation control
1700 * shaders."
1701 */
1702
1703 for (unsigned i = 0; i < num_shaders; i++) {
1704 struct gl_shader *shader = shader_list[i];
1705
1706 if (shader->TessCtrl.VerticesOut != 0) {
1707 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1708 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1709 linker_error(prog, "tessellation control shader defined with "
1710 "conflicting output vertex count (%d and %d)\n",
1711 linked_shader->TessCtrl.VerticesOut,
1712 shader->TessCtrl.VerticesOut);
1713 return;
1714 }
1715 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1716 }
1717 }
1718
1719 /* Just do the intrastage -> interstage propagation right now,
1720 * since we already know we're in the right type of shader program
1721 * for doing it.
1722 */
1723 if (linked_shader->TessCtrl.VerticesOut == 0) {
1724 linker_error(prog, "tessellation control shader didn't declare "
1725 "vertices out layout qualifier\n");
1726 return;
1727 }
1728 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1729 }
1730
1731
1732 /**
1733 * Performs the cross-validation of tessellation evaluation shader
1734 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1735 * for the attached tessellation evaluation shaders, and propagates them
1736 * to the linked TES and linked shader program.
1737 */
1738 static void
1739 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1740 struct gl_shader *linked_shader,
1741 struct gl_shader **shader_list,
1742 unsigned num_shaders)
1743 {
1744 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1745 linked_shader->TessEval.Spacing = 0;
1746 linked_shader->TessEval.VertexOrder = 0;
1747 linked_shader->TessEval.PointMode = -1;
1748
1749 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1750 return;
1751
1752 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1753 *
1754 * "At least one tessellation evaluation shader (compilation unit) in
1755 * a program must declare a primitive mode in its input layout.
1756 * Declaration vertex spacing, ordering, and point mode identifiers is
1757 * optional. It is not required that all tessellation evaluation
1758 * shaders in a program declare a primitive mode. If spacing or
1759 * vertex ordering declarations are omitted, the tessellation
1760 * primitive generator will use equal spacing or counter-clockwise
1761 * vertex ordering, respectively. If a point mode declaration is
1762 * omitted, the tessellation primitive generator will produce lines or
1763 * triangles according to the primitive mode."
1764 */
1765
1766 for (unsigned i = 0; i < num_shaders; i++) {
1767 struct gl_shader *shader = shader_list[i];
1768
1769 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1770 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1771 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1772 linker_error(prog, "tessellation evaluation shader defined with "
1773 "conflicting input primitive modes.\n");
1774 return;
1775 }
1776 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1777 }
1778
1779 if (shader->TessEval.Spacing != 0) {
1780 if (linked_shader->TessEval.Spacing != 0 &&
1781 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1782 linker_error(prog, "tessellation evaluation shader defined with "
1783 "conflicting vertex spacing.\n");
1784 return;
1785 }
1786 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1787 }
1788
1789 if (shader->TessEval.VertexOrder != 0) {
1790 if (linked_shader->TessEval.VertexOrder != 0 &&
1791 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1792 linker_error(prog, "tessellation evaluation shader defined with "
1793 "conflicting ordering.\n");
1794 return;
1795 }
1796 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1797 }
1798
1799 if (shader->TessEval.PointMode != -1) {
1800 if (linked_shader->TessEval.PointMode != -1 &&
1801 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1802 linker_error(prog, "tessellation evaluation shader defined with "
1803 "conflicting point modes.\n");
1804 return;
1805 }
1806 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1807 }
1808
1809 }
1810
1811 /* Just do the intrastage -> interstage propagation right now,
1812 * since we already know we're in the right type of shader program
1813 * for doing it.
1814 */
1815 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1816 linker_error(prog,
1817 "tessellation evaluation shader didn't declare input "
1818 "primitive modes.\n");
1819 return;
1820 }
1821 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1822
1823 if (linked_shader->TessEval.Spacing == 0)
1824 linked_shader->TessEval.Spacing = GL_EQUAL;
1825 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1826
1827 if (linked_shader->TessEval.VertexOrder == 0)
1828 linked_shader->TessEval.VertexOrder = GL_CCW;
1829 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1830
1831 if (linked_shader->TessEval.PointMode == -1)
1832 linked_shader->TessEval.PointMode = GL_FALSE;
1833 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1834 }
1835
1836
1837 /**
1838 * Performs the cross-validation of layout qualifiers specified in
1839 * redeclaration of gl_FragCoord for the attached fragment shaders,
1840 * and propagates them to the linked FS and linked shader program.
1841 */
1842 static void
1843 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1844 struct gl_shader *linked_shader,
1845 struct gl_shader **shader_list,
1846 unsigned num_shaders)
1847 {
1848 linked_shader->redeclares_gl_fragcoord = false;
1849 linked_shader->uses_gl_fragcoord = false;
1850 linked_shader->origin_upper_left = false;
1851 linked_shader->pixel_center_integer = false;
1852
1853 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1854 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1855 return;
1856
1857 for (unsigned i = 0; i < num_shaders; i++) {
1858 struct gl_shader *shader = shader_list[i];
1859 /* From the GLSL 1.50 spec, page 39:
1860 *
1861 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1862 * it must be redeclared in all the fragment shaders in that program
1863 * that have a static use gl_FragCoord."
1864 */
1865 if ((linked_shader->redeclares_gl_fragcoord
1866 && !shader->redeclares_gl_fragcoord
1867 && shader->uses_gl_fragcoord)
1868 || (shader->redeclares_gl_fragcoord
1869 && !linked_shader->redeclares_gl_fragcoord
1870 && linked_shader->uses_gl_fragcoord)) {
1871 linker_error(prog, "fragment shader defined with conflicting "
1872 "layout qualifiers for gl_FragCoord\n");
1873 }
1874
1875 /* From the GLSL 1.50 spec, page 39:
1876 *
1877 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1878 * single program must have the same set of qualifiers."
1879 */
1880 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1881 && (shader->origin_upper_left != linked_shader->origin_upper_left
1882 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1883 linker_error(prog, "fragment shader defined with conflicting "
1884 "layout qualifiers for gl_FragCoord\n");
1885 }
1886
1887 /* Update the linked shader state. Note that uses_gl_fragcoord should
1888 * accumulate the results. The other values should replace. If there
1889 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1890 * are already known to be the same.
1891 */
1892 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1893 linked_shader->redeclares_gl_fragcoord =
1894 shader->redeclares_gl_fragcoord;
1895 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1896 || shader->uses_gl_fragcoord;
1897 linked_shader->origin_upper_left = shader->origin_upper_left;
1898 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1899 }
1900
1901 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1902 }
1903 }
1904
1905 /**
1906 * Performs the cross-validation of geometry shader max_vertices and
1907 * primitive type layout qualifiers for the attached geometry shaders,
1908 * and propagates them to the linked GS and linked shader program.
1909 */
1910 static void
1911 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1912 struct gl_shader *linked_shader,
1913 struct gl_shader **shader_list,
1914 unsigned num_shaders)
1915 {
1916 linked_shader->Geom.VerticesOut = 0;
1917 linked_shader->Geom.Invocations = 0;
1918 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1919 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1920
1921 /* No in/out qualifiers defined for anything but GLSL 1.50+
1922 * geometry shaders so far.
1923 */
1924 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1925 return;
1926
1927 /* From the GLSL 1.50 spec, page 46:
1928 *
1929 * "All geometry shader output layout declarations in a program
1930 * must declare the same layout and same value for
1931 * max_vertices. There must be at least one geometry output
1932 * layout declaration somewhere in a program, but not all
1933 * geometry shaders (compilation units) are required to
1934 * declare it."
1935 */
1936
1937 for (unsigned i = 0; i < num_shaders; i++) {
1938 struct gl_shader *shader = shader_list[i];
1939
1940 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1941 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1942 linked_shader->Geom.InputType != shader->Geom.InputType) {
1943 linker_error(prog, "geometry shader defined with conflicting "
1944 "input types\n");
1945 return;
1946 }
1947 linked_shader->Geom.InputType = shader->Geom.InputType;
1948 }
1949
1950 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1951 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1952 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1953 linker_error(prog, "geometry shader defined with conflicting "
1954 "output types\n");
1955 return;
1956 }
1957 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1958 }
1959
1960 if (shader->Geom.VerticesOut != 0) {
1961 if (linked_shader->Geom.VerticesOut != 0 &&
1962 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1963 linker_error(prog, "geometry shader defined with conflicting "
1964 "output vertex count (%d and %d)\n",
1965 linked_shader->Geom.VerticesOut,
1966 shader->Geom.VerticesOut);
1967 return;
1968 }
1969 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1970 }
1971
1972 if (shader->Geom.Invocations != 0) {
1973 if (linked_shader->Geom.Invocations != 0 &&
1974 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1975 linker_error(prog, "geometry shader defined with conflicting "
1976 "invocation count (%d and %d)\n",
1977 linked_shader->Geom.Invocations,
1978 shader->Geom.Invocations);
1979 return;
1980 }
1981 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1982 }
1983 }
1984
1985 /* Just do the intrastage -> interstage propagation right now,
1986 * since we already know we're in the right type of shader program
1987 * for doing it.
1988 */
1989 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1990 linker_error(prog,
1991 "geometry shader didn't declare primitive input type\n");
1992 return;
1993 }
1994 prog->Geom.InputType = linked_shader->Geom.InputType;
1995
1996 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1997 linker_error(prog,
1998 "geometry shader didn't declare primitive output type\n");
1999 return;
2000 }
2001 prog->Geom.OutputType = linked_shader->Geom.OutputType;
2002
2003 if (linked_shader->Geom.VerticesOut == 0) {
2004 linker_error(prog,
2005 "geometry shader didn't declare max_vertices\n");
2006 return;
2007 }
2008 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
2009
2010 if (linked_shader->Geom.Invocations == 0)
2011 linked_shader->Geom.Invocations = 1;
2012
2013 prog->Geom.Invocations = linked_shader->Geom.Invocations;
2014 }
2015
2016
2017 /**
2018 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2019 * qualifiers for the attached compute shaders, and propagate them to the
2020 * linked CS and linked shader program.
2021 */
2022 static void
2023 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2024 struct gl_shader *linked_shader,
2025 struct gl_shader **shader_list,
2026 unsigned num_shaders)
2027 {
2028 for (int i = 0; i < 3; i++)
2029 linked_shader->Comp.LocalSize[i] = 0;
2030
2031 /* This function is called for all shader stages, but it only has an effect
2032 * for compute shaders.
2033 */
2034 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2035 return;
2036
2037 /* From the ARB_compute_shader spec, in the section describing local size
2038 * declarations:
2039 *
2040 * If multiple compute shaders attached to a single program object
2041 * declare local work-group size, the declarations must be identical;
2042 * otherwise a link-time error results. Furthermore, if a program
2043 * object contains any compute shaders, at least one must contain an
2044 * input layout qualifier specifying the local work sizes of the
2045 * program, or a link-time error will occur.
2046 */
2047 for (unsigned sh = 0; sh < num_shaders; sh++) {
2048 struct gl_shader *shader = shader_list[sh];
2049
2050 if (shader->Comp.LocalSize[0] != 0) {
2051 if (linked_shader->Comp.LocalSize[0] != 0) {
2052 for (int i = 0; i < 3; i++) {
2053 if (linked_shader->Comp.LocalSize[i] !=
2054 shader->Comp.LocalSize[i]) {
2055 linker_error(prog, "compute shader defined with conflicting "
2056 "local sizes\n");
2057 return;
2058 }
2059 }
2060 }
2061 for (int i = 0; i < 3; i++)
2062 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
2063 }
2064 }
2065
2066 /* Just do the intrastage -> interstage propagation right now,
2067 * since we already know we're in the right type of shader program
2068 * for doing it.
2069 */
2070 if (linked_shader->Comp.LocalSize[0] == 0) {
2071 linker_error(prog, "compute shader didn't declare local size\n");
2072 return;
2073 }
2074 for (int i = 0; i < 3; i++)
2075 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
2076 }
2077
2078
2079 /**
2080 * Combine a group of shaders for a single stage to generate a linked shader
2081 *
2082 * \note
2083 * If this function is supplied a single shader, it is cloned, and the new
2084 * shader is returned.
2085 */
2086 static struct gl_shader *
2087 link_intrastage_shaders(void *mem_ctx,
2088 struct gl_context *ctx,
2089 struct gl_shader_program *prog,
2090 struct gl_shader **shader_list,
2091 unsigned num_shaders)
2092 {
2093 struct gl_uniform_block *ubo_blocks = NULL;
2094 struct gl_uniform_block *ssbo_blocks = NULL;
2095 unsigned num_ubo_blocks = 0;
2096 unsigned num_ssbo_blocks = 0;
2097
2098 /* Check that global variables defined in multiple shaders are consistent.
2099 */
2100 cross_validate_globals(prog, shader_list, num_shaders, false);
2101 if (!prog->LinkStatus)
2102 return NULL;
2103
2104 /* Check that interface blocks defined in multiple shaders are consistent.
2105 */
2106 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2107 num_shaders);
2108 if (!prog->LinkStatus)
2109 return NULL;
2110
2111 /* Link up uniform blocks defined within this stage. */
2112 link_uniform_blocks(mem_ctx, ctx, prog, shader_list, num_shaders,
2113 &ubo_blocks, &num_ubo_blocks, &ssbo_blocks,
2114 &num_ssbo_blocks);
2115
2116 if (!prog->LinkStatus)
2117 return NULL;
2118
2119 /* Check that there is only a single definition of each function signature
2120 * across all shaders.
2121 */
2122 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2123 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2124 ir_function *const f = node->as_function();
2125
2126 if (f == NULL)
2127 continue;
2128
2129 for (unsigned j = i + 1; j < num_shaders; j++) {
2130 ir_function *const other =
2131 shader_list[j]->symbols->get_function(f->name);
2132
2133 /* If the other shader has no function (and therefore no function
2134 * signatures) with the same name, skip to the next shader.
2135 */
2136 if (other == NULL)
2137 continue;
2138
2139 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2140 if (!sig->is_defined || sig->is_builtin())
2141 continue;
2142
2143 ir_function_signature *other_sig =
2144 other->exact_matching_signature(NULL, &sig->parameters);
2145
2146 if ((other_sig != NULL) && other_sig->is_defined
2147 && !other_sig->is_builtin()) {
2148 linker_error(prog, "function `%s' is multiply defined\n",
2149 f->name);
2150 return NULL;
2151 }
2152 }
2153 }
2154 }
2155 }
2156
2157 /* Find the shader that defines main, and make a clone of it.
2158 *
2159 * Starting with the clone, search for undefined references. If one is
2160 * found, find the shader that defines it. Clone the reference and add
2161 * it to the shader. Repeat until there are no undefined references or
2162 * until a reference cannot be resolved.
2163 */
2164 gl_shader *main = NULL;
2165 for (unsigned i = 0; i < num_shaders; i++) {
2166 if (_mesa_get_main_function_signature(shader_list[i]) != NULL) {
2167 main = shader_list[i];
2168 break;
2169 }
2170 }
2171
2172 if (main == NULL) {
2173 linker_error(prog, "%s shader lacks `main'\n",
2174 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2175 return NULL;
2176 }
2177
2178 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2179 linked->ir = new(linked) exec_list;
2180 clone_ir_list(mem_ctx, linked->ir, main->ir);
2181
2182 /* Copy ubo blocks to linked shader list */
2183 linked->UniformBlocks =
2184 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2185 ralloc_steal(linked, ubo_blocks);
2186 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2187 linked->UniformBlocks[i] = &ubo_blocks[i];
2188 }
2189 linked->NumUniformBlocks = num_ubo_blocks;
2190
2191 /* Copy ssbo blocks to linked shader list */
2192 linked->ShaderStorageBlocks =
2193 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2194 ralloc_steal(linked, ssbo_blocks);
2195 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2196 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2197 }
2198 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2199
2200 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2201 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2202 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2203 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2204 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2205 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2206 num_shaders);
2207
2208 populate_symbol_table(linked);
2209
2210 /* The pointer to the main function in the final linked shader (i.e., the
2211 * copy of the original shader that contained the main function).
2212 */
2213 ir_function_signature *const main_sig =
2214 _mesa_get_main_function_signature(linked);
2215
2216 /* Move any instructions other than variable declarations or function
2217 * declarations into main.
2218 */
2219 exec_node *insertion_point =
2220 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2221 linked);
2222
2223 for (unsigned i = 0; i < num_shaders; i++) {
2224 if (shader_list[i] == main)
2225 continue;
2226
2227 insertion_point = move_non_declarations(shader_list[i]->ir,
2228 insertion_point, true, linked);
2229 }
2230
2231 /* Check if any shader needs built-in functions. */
2232 bool need_builtins = false;
2233 for (unsigned i = 0; i < num_shaders; i++) {
2234 if (shader_list[i]->uses_builtin_functions) {
2235 need_builtins = true;
2236 break;
2237 }
2238 }
2239
2240 bool ok;
2241 if (need_builtins) {
2242 /* Make a temporary array one larger than shader_list, which will hold
2243 * the built-in function shader as well.
2244 */
2245 gl_shader **linking_shaders = (gl_shader **)
2246 calloc(num_shaders + 1, sizeof(gl_shader *));
2247
2248 ok = linking_shaders != NULL;
2249
2250 if (ok) {
2251 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2252 _mesa_glsl_initialize_builtin_functions();
2253 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2254
2255 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2256
2257 free(linking_shaders);
2258 } else {
2259 _mesa_error_no_memory(__func__);
2260 }
2261 } else {
2262 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2263 }
2264
2265
2266 if (!ok) {
2267 _mesa_delete_shader(ctx, linked);
2268 return NULL;
2269 }
2270
2271 /* At this point linked should contain all of the linked IR, so
2272 * validate it to make sure nothing went wrong.
2273 */
2274 validate_ir_tree(linked->ir);
2275
2276 /* Set the size of geometry shader input arrays */
2277 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2278 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2279 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2280 foreach_in_list(ir_instruction, ir, linked->ir) {
2281 ir->accept(&input_resize_visitor);
2282 }
2283 }
2284
2285 if (ctx->Const.VertexID_is_zero_based)
2286 lower_vertex_id(linked);
2287
2288 /* Validate correct usage of barrier() in the tess control shader */
2289 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2290 barrier_use_visitor visitor(prog);
2291 foreach_in_list(ir_instruction, ir, linked->ir) {
2292 ir->accept(&visitor);
2293 }
2294 }
2295
2296 /* Make a pass over all variable declarations to ensure that arrays with
2297 * unspecified sizes have a size specified. The size is inferred from the
2298 * max_array_access field.
2299 */
2300 array_sizing_visitor v;
2301 v.run(linked->ir);
2302 v.fixup_unnamed_interface_types();
2303
2304 return linked;
2305 }
2306
2307 /**
2308 * Update the sizes of linked shader uniform arrays to the maximum
2309 * array index used.
2310 *
2311 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2312 *
2313 * If one or more elements of an array are active,
2314 * GetActiveUniform will return the name of the array in name,
2315 * subject to the restrictions listed above. The type of the array
2316 * is returned in type. The size parameter contains the highest
2317 * array element index used, plus one. The compiler or linker
2318 * determines the highest index used. There will be only one
2319 * active uniform reported by the GL per uniform array.
2320
2321 */
2322 static void
2323 update_array_sizes(struct gl_shader_program *prog)
2324 {
2325 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2326 if (prog->_LinkedShaders[i] == NULL)
2327 continue;
2328
2329 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2330 ir_variable *const var = node->as_variable();
2331
2332 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2333 !var->type->is_array())
2334 continue;
2335
2336 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2337 * will not be eliminated. Since we always do std140, just
2338 * don't resize arrays in UBOs.
2339 *
2340 * Atomic counters are supposed to get deterministic
2341 * locations assigned based on the declaration ordering and
2342 * sizes, array compaction would mess that up.
2343 *
2344 * Subroutine uniforms are not removed.
2345 */
2346 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2347 var->type->contains_subroutine())
2348 continue;
2349
2350 unsigned int size = var->data.max_array_access;
2351 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2352 if (prog->_LinkedShaders[j] == NULL)
2353 continue;
2354
2355 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2356 ir_variable *other_var = node2->as_variable();
2357 if (!other_var)
2358 continue;
2359
2360 if (strcmp(var->name, other_var->name) == 0 &&
2361 other_var->data.max_array_access > size) {
2362 size = other_var->data.max_array_access;
2363 }
2364 }
2365 }
2366
2367 if (size + 1 != var->type->length) {
2368 /* If this is a built-in uniform (i.e., it's backed by some
2369 * fixed-function state), adjust the number of state slots to
2370 * match the new array size. The number of slots per array entry
2371 * is not known. It seems safe to assume that the total number of
2372 * slots is an integer multiple of the number of array elements.
2373 * Determine the number of slots per array element by dividing by
2374 * the old (total) size.
2375 */
2376 const unsigned num_slots = var->get_num_state_slots();
2377 if (num_slots > 0) {
2378 var->set_num_state_slots((size + 1)
2379 * (num_slots / var->type->length));
2380 }
2381
2382 var->type = glsl_type::get_array_instance(var->type->fields.array,
2383 size + 1);
2384 /* FINISHME: We should update the types of array
2385 * dereferences of this variable now.
2386 */
2387 }
2388 }
2389 }
2390 }
2391
2392 /**
2393 * Resize tessellation evaluation per-vertex inputs to the size of
2394 * tessellation control per-vertex outputs.
2395 */
2396 static void
2397 resize_tes_inputs(struct gl_context *ctx,
2398 struct gl_shader_program *prog)
2399 {
2400 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2401 return;
2402
2403 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2404 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2405
2406 /* If no control shader is present, then the TES inputs are statically
2407 * sized to MaxPatchVertices; the actual size of the arrays won't be
2408 * known until draw time.
2409 */
2410 const int num_vertices = tcs
2411 ? tcs->TessCtrl.VerticesOut
2412 : ctx->Const.MaxPatchVertices;
2413
2414 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2415 foreach_in_list(ir_instruction, ir, tes->ir) {
2416 ir->accept(&input_resize_visitor);
2417 }
2418
2419 if (tcs) {
2420 /* Convert the gl_PatchVerticesIn system value into a constant, since
2421 * the value is known at this point.
2422 */
2423 foreach_in_list(ir_instruction, ir, tes->ir) {
2424 ir_variable *var = ir->as_variable();
2425 if (var && var->data.mode == ir_var_system_value &&
2426 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2427 void *mem_ctx = ralloc_parent(var);
2428 var->data.mode = ir_var_auto;
2429 var->data.location = 0;
2430 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2431 }
2432 }
2433 }
2434 }
2435
2436 /**
2437 * Find a contiguous set of available bits in a bitmask.
2438 *
2439 * \param used_mask Bits representing used (1) and unused (0) locations
2440 * \param needed_count Number of contiguous bits needed.
2441 *
2442 * \return
2443 * Base location of the available bits on success or -1 on failure.
2444 */
2445 int
2446 find_available_slots(unsigned used_mask, unsigned needed_count)
2447 {
2448 unsigned needed_mask = (1 << needed_count) - 1;
2449 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2450
2451 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2452 * cannot optimize possibly infinite loops" for the loop below.
2453 */
2454 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2455 return -1;
2456
2457 for (int i = 0; i <= max_bit_to_test; i++) {
2458 if ((needed_mask & ~used_mask) == needed_mask)
2459 return i;
2460
2461 needed_mask <<= 1;
2462 }
2463
2464 return -1;
2465 }
2466
2467
2468 /**
2469 * Assign locations for either VS inputs or FS outputs
2470 *
2471 * \param prog Shader program whose variables need locations assigned
2472 * \param constants Driver specific constant values for the program.
2473 * \param target_index Selector for the program target to receive location
2474 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2475 * \c MESA_SHADER_FRAGMENT.
2476 *
2477 * \return
2478 * If locations are successfully assigned, true is returned. Otherwise an
2479 * error is emitted to the shader link log and false is returned.
2480 */
2481 bool
2482 assign_attribute_or_color_locations(gl_shader_program *prog,
2483 struct gl_constants *constants,
2484 unsigned target_index)
2485 {
2486 /* Maximum number of generic locations. This corresponds to either the
2487 * maximum number of draw buffers or the maximum number of generic
2488 * attributes.
2489 */
2490 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2491 constants->Program[target_index].MaxAttribs :
2492 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2493
2494 /* Mark invalid locations as being used.
2495 */
2496 unsigned used_locations = (max_index >= 32)
2497 ? ~0 : ~((1 << max_index) - 1);
2498 unsigned double_storage_locations = 0;
2499
2500 assert((target_index == MESA_SHADER_VERTEX)
2501 || (target_index == MESA_SHADER_FRAGMENT));
2502
2503 gl_shader *const sh = prog->_LinkedShaders[target_index];
2504 if (sh == NULL)
2505 return true;
2506
2507 /* Operate in a total of four passes.
2508 *
2509 * 1. Invalidate the location assignments for all vertex shader inputs.
2510 *
2511 * 2. Assign locations for inputs that have user-defined (via
2512 * glBindVertexAttribLocation) locations and outputs that have
2513 * user-defined locations (via glBindFragDataLocation).
2514 *
2515 * 3. Sort the attributes without assigned locations by number of slots
2516 * required in decreasing order. Fragmentation caused by attribute
2517 * locations assigned by the application may prevent large attributes
2518 * from having enough contiguous space.
2519 *
2520 * 4. Assign locations to any inputs without assigned locations.
2521 */
2522
2523 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2524 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2525
2526 const enum ir_variable_mode direction =
2527 (target_index == MESA_SHADER_VERTEX)
2528 ? ir_var_shader_in : ir_var_shader_out;
2529
2530
2531 /* Temporary storage for the set of attributes that need locations assigned.
2532 */
2533 struct temp_attr {
2534 unsigned slots;
2535 ir_variable *var;
2536
2537 /* Used below in the call to qsort. */
2538 static int compare(const void *a, const void *b)
2539 {
2540 const temp_attr *const l = (const temp_attr *) a;
2541 const temp_attr *const r = (const temp_attr *) b;
2542
2543 /* Reversed because we want a descending order sort below. */
2544 return r->slots - l->slots;
2545 }
2546 } to_assign[32];
2547 assert(max_index <= 32);
2548
2549 unsigned num_attr = 0;
2550
2551 foreach_in_list(ir_instruction, node, sh->ir) {
2552 ir_variable *const var = node->as_variable();
2553
2554 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2555 continue;
2556
2557 if (var->data.explicit_location) {
2558 var->data.is_unmatched_generic_inout = 0;
2559 if ((var->data.location >= (int)(max_index + generic_base))
2560 || (var->data.location < 0)) {
2561 linker_error(prog,
2562 "invalid explicit location %d specified for `%s'\n",
2563 (var->data.location < 0)
2564 ? var->data.location
2565 : var->data.location - generic_base,
2566 var->name);
2567 return false;
2568 }
2569 } else if (target_index == MESA_SHADER_VERTEX) {
2570 unsigned binding;
2571
2572 if (prog->AttributeBindings->get(binding, var->name)) {
2573 assert(binding >= VERT_ATTRIB_GENERIC0);
2574 var->data.location = binding;
2575 var->data.is_unmatched_generic_inout = 0;
2576 }
2577 } else if (target_index == MESA_SHADER_FRAGMENT) {
2578 unsigned binding;
2579 unsigned index;
2580
2581 if (prog->FragDataBindings->get(binding, var->name)) {
2582 assert(binding >= FRAG_RESULT_DATA0);
2583 var->data.location = binding;
2584 var->data.is_unmatched_generic_inout = 0;
2585
2586 if (prog->FragDataIndexBindings->get(index, var->name)) {
2587 var->data.index = index;
2588 }
2589 }
2590 }
2591
2592 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2593 *
2594 * "Output binding assignments will cause LinkProgram to fail:
2595 * ...
2596 * If the program has an active output assigned to a location greater
2597 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2598 * an active output assigned an index greater than or equal to one;"
2599 */
2600 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2601 var->data.location - generic_base >=
2602 (int) constants->MaxDualSourceDrawBuffers) {
2603 linker_error(prog,
2604 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2605 "with index %u for %s\n",
2606 var->data.location - generic_base, var->data.index,
2607 var->name);
2608 return false;
2609 }
2610
2611 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2612
2613 /* If the variable is not a built-in and has a location statically
2614 * assigned in the shader (presumably via a layout qualifier), make sure
2615 * that it doesn't collide with other assigned locations. Otherwise,
2616 * add it to the list of variables that need linker-assigned locations.
2617 */
2618 if (var->data.location != -1) {
2619 if (var->data.location >= generic_base && var->data.index < 1) {
2620 /* From page 61 of the OpenGL 4.0 spec:
2621 *
2622 * "LinkProgram will fail if the attribute bindings assigned
2623 * by BindAttribLocation do not leave not enough space to
2624 * assign a location for an active matrix attribute or an
2625 * active attribute array, both of which require multiple
2626 * contiguous generic attributes."
2627 *
2628 * I think above text prohibits the aliasing of explicit and
2629 * automatic assignments. But, aliasing is allowed in manual
2630 * assignments of attribute locations. See below comments for
2631 * the details.
2632 *
2633 * From OpenGL 4.0 spec, page 61:
2634 *
2635 * "It is possible for an application to bind more than one
2636 * attribute name to the same location. This is referred to as
2637 * aliasing. This will only work if only one of the aliased
2638 * attributes is active in the executable program, or if no
2639 * path through the shader consumes more than one attribute of
2640 * a set of attributes aliased to the same location. A link
2641 * error can occur if the linker determines that every path
2642 * through the shader consumes multiple aliased attributes,
2643 * but implementations are not required to generate an error
2644 * in this case."
2645 *
2646 * From GLSL 4.30 spec, page 54:
2647 *
2648 * "A program will fail to link if any two non-vertex shader
2649 * input variables are assigned to the same location. For
2650 * vertex shaders, multiple input variables may be assigned
2651 * to the same location using either layout qualifiers or via
2652 * the OpenGL API. However, such aliasing is intended only to
2653 * support vertex shaders where each execution path accesses
2654 * at most one input per each location. Implementations are
2655 * permitted, but not required, to generate link-time errors
2656 * if they detect that every path through the vertex shader
2657 * executable accesses multiple inputs assigned to any single
2658 * location. For all shader types, a program will fail to link
2659 * if explicit location assignments leave the linker unable
2660 * to find space for other variables without explicit
2661 * assignments."
2662 *
2663 * From OpenGL ES 3.0 spec, page 56:
2664 *
2665 * "Binding more than one attribute name to the same location
2666 * is referred to as aliasing, and is not permitted in OpenGL
2667 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2668 * fail when this condition exists. However, aliasing is
2669 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2670 * This will only work if only one of the aliased attributes
2671 * is active in the executable program, or if no path through
2672 * the shader consumes more than one attribute of a set of
2673 * attributes aliased to the same location. A link error can
2674 * occur if the linker determines that every path through the
2675 * shader consumes multiple aliased attributes, but implemen-
2676 * tations are not required to generate an error in this case."
2677 *
2678 * After looking at above references from OpenGL, OpenGL ES and
2679 * GLSL specifications, we allow aliasing of vertex input variables
2680 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2681 *
2682 * NOTE: This is not required by the spec but its worth mentioning
2683 * here that we're not doing anything to make sure that no path
2684 * through the vertex shader executable accesses multiple inputs
2685 * assigned to any single location.
2686 */
2687
2688 /* Mask representing the contiguous slots that will be used by
2689 * this attribute.
2690 */
2691 const unsigned attr = var->data.location - generic_base;
2692 const unsigned use_mask = (1 << slots) - 1;
2693 const char *const string = (target_index == MESA_SHADER_VERTEX)
2694 ? "vertex shader input" : "fragment shader output";
2695
2696 /* Generate a link error if the requested locations for this
2697 * attribute exceed the maximum allowed attribute location.
2698 */
2699 if (attr + slots > max_index) {
2700 linker_error(prog,
2701 "insufficient contiguous locations "
2702 "available for %s `%s' %d %d %d\n", string,
2703 var->name, used_locations, use_mask, attr);
2704 return false;
2705 }
2706
2707 /* Generate a link error if the set of bits requested for this
2708 * attribute overlaps any previously allocated bits.
2709 */
2710 if ((~(use_mask << attr) & used_locations) != used_locations) {
2711 if (target_index == MESA_SHADER_FRAGMENT ||
2712 (prog->IsES && prog->Version >= 300)) {
2713 linker_error(prog,
2714 "overlapping location is assigned "
2715 "to %s `%s' %d %d %d\n", string,
2716 var->name, used_locations, use_mask, attr);
2717 return false;
2718 } else {
2719 linker_warning(prog,
2720 "overlapping location is assigned "
2721 "to %s `%s' %d %d %d\n", string,
2722 var->name, used_locations, use_mask, attr);
2723 }
2724 }
2725
2726 used_locations |= (use_mask << attr);
2727
2728 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2729 *
2730 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2731 * active attribute variables may fail to link, unless
2732 * device-dependent optimizations are able to make the program
2733 * fit within available hardware resources. For the purposes
2734 * of this test, attribute variables of the type dvec3, dvec4,
2735 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2736 * count as consuming twice as many attributes as equivalent
2737 * single-precision types. While these types use the same number
2738 * of generic attributes as their single-precision equivalents,
2739 * implementations are permitted to consume two single-precision
2740 * vectors of internal storage for each three- or four-component
2741 * double-precision vector."
2742 *
2743 * Mark this attribute slot as taking up twice as much space
2744 * so we can count it properly against limits. According to
2745 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2746 * is optional behavior, but it seems preferable.
2747 */
2748 if (var->type->without_array()->is_dual_slot_double())
2749 double_storage_locations |= (use_mask << attr);
2750 }
2751
2752 continue;
2753 }
2754
2755 if (num_attr >= max_index) {
2756 linker_error(prog, "too many %s (max %u)",
2757 target_index == MESA_SHADER_VERTEX ?
2758 "vertex shader inputs" : "fragment shader outputs",
2759 max_index);
2760 return false;
2761 }
2762 to_assign[num_attr].slots = slots;
2763 to_assign[num_attr].var = var;
2764 num_attr++;
2765 }
2766
2767 if (target_index == MESA_SHADER_VERTEX) {
2768 unsigned total_attribs_size =
2769 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2770 _mesa_bitcount(double_storage_locations);
2771 if (total_attribs_size > max_index) {
2772 linker_error(prog,
2773 "attempt to use %d vertex attribute slots only %d available ",
2774 total_attribs_size, max_index);
2775 return false;
2776 }
2777 }
2778
2779 /* If all of the attributes were assigned locations by the application (or
2780 * are built-in attributes with fixed locations), return early. This should
2781 * be the common case.
2782 */
2783 if (num_attr == 0)
2784 return true;
2785
2786 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2787
2788 if (target_index == MESA_SHADER_VERTEX) {
2789 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2790 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2791 * reserved to prevent it from being automatically allocated below.
2792 */
2793 find_deref_visitor find("gl_Vertex");
2794 find.run(sh->ir);
2795 if (find.variable_found())
2796 used_locations |= (1 << 0);
2797 }
2798
2799 for (unsigned i = 0; i < num_attr; i++) {
2800 /* Mask representing the contiguous slots that will be used by this
2801 * attribute.
2802 */
2803 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2804
2805 int location = find_available_slots(used_locations, to_assign[i].slots);
2806
2807 if (location < 0) {
2808 const char *const string = (target_index == MESA_SHADER_VERTEX)
2809 ? "vertex shader input" : "fragment shader output";
2810
2811 linker_error(prog,
2812 "insufficient contiguous locations "
2813 "available for %s `%s'\n",
2814 string, to_assign[i].var->name);
2815 return false;
2816 }
2817
2818 to_assign[i].var->data.location = generic_base + location;
2819 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2820 used_locations |= (use_mask << location);
2821 }
2822
2823 return true;
2824 }
2825
2826 /**
2827 * Match explicit locations of outputs to inputs and deactivate the
2828 * unmatch flag if found so we don't optimise them away.
2829 */
2830 static void
2831 match_explicit_outputs_to_inputs(struct gl_shader_program *prog,
2832 gl_shader *producer,
2833 gl_shader *consumer)
2834 {
2835 glsl_symbol_table parameters;
2836 ir_variable *explicit_locations[MAX_VARYING][4] = { {NULL, NULL} };
2837
2838 /* Find all shader outputs in the "producer" stage.
2839 */
2840 foreach_in_list(ir_instruction, node, producer->ir) {
2841 ir_variable *const var = node->as_variable();
2842
2843 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2844 continue;
2845
2846 if (var->data.explicit_location &&
2847 var->data.location >= VARYING_SLOT_VAR0) {
2848 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2849 if (explicit_locations[idx][var->data.location_frac] == NULL)
2850 explicit_locations[idx][var->data.location_frac] = var;
2851 }
2852 }
2853
2854 /* Match inputs to outputs */
2855 foreach_in_list(ir_instruction, node, consumer->ir) {
2856 ir_variable *const input = node->as_variable();
2857
2858 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2859 continue;
2860
2861 ir_variable *output = NULL;
2862 if (input->data.explicit_location
2863 && input->data.location >= VARYING_SLOT_VAR0) {
2864 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2865 [input->data.location_frac];
2866
2867 if (output != NULL){
2868 input->data.is_unmatched_generic_inout = 0;
2869 output->data.is_unmatched_generic_inout = 0;
2870 }
2871 }
2872 }
2873 }
2874
2875 /**
2876 * Store the gl_FragDepth layout in the gl_shader_program struct.
2877 */
2878 static void
2879 store_fragdepth_layout(struct gl_shader_program *prog)
2880 {
2881 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2882 return;
2883 }
2884
2885 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2886
2887 /* We don't look up the gl_FragDepth symbol directly because if
2888 * gl_FragDepth is not used in the shader, it's removed from the IR.
2889 * However, the symbol won't be removed from the symbol table.
2890 *
2891 * We're only interested in the cases where the variable is NOT removed
2892 * from the IR.
2893 */
2894 foreach_in_list(ir_instruction, node, ir) {
2895 ir_variable *const var = node->as_variable();
2896
2897 if (var == NULL || var->data.mode != ir_var_shader_out) {
2898 continue;
2899 }
2900
2901 if (strcmp(var->name, "gl_FragDepth") == 0) {
2902 switch (var->data.depth_layout) {
2903 case ir_depth_layout_none:
2904 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2905 return;
2906 case ir_depth_layout_any:
2907 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2908 return;
2909 case ir_depth_layout_greater:
2910 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2911 return;
2912 case ir_depth_layout_less:
2913 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2914 return;
2915 case ir_depth_layout_unchanged:
2916 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2917 return;
2918 default:
2919 assert(0);
2920 return;
2921 }
2922 }
2923 }
2924 }
2925
2926 /**
2927 * Validate the resources used by a program versus the implementation limits
2928 */
2929 static void
2930 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2931 {
2932 unsigned total_uniform_blocks = 0;
2933 unsigned total_shader_storage_blocks = 0;
2934
2935 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2936 struct gl_shader *sh = prog->_LinkedShaders[i];
2937
2938 if (sh == NULL)
2939 continue;
2940
2941 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2942 linker_error(prog, "Too many %s shader texture samplers\n",
2943 _mesa_shader_stage_to_string(i));
2944 }
2945
2946 if (sh->num_uniform_components >
2947 ctx->Const.Program[i].MaxUniformComponents) {
2948 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2949 linker_warning(prog, "Too many %s shader default uniform block "
2950 "components, but the driver will try to optimize "
2951 "them out; this is non-portable out-of-spec "
2952 "behavior\n",
2953 _mesa_shader_stage_to_string(i));
2954 } else {
2955 linker_error(prog, "Too many %s shader default uniform block "
2956 "components\n",
2957 _mesa_shader_stage_to_string(i));
2958 }
2959 }
2960
2961 if (sh->num_combined_uniform_components >
2962 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2963 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2964 linker_warning(prog, "Too many %s shader uniform components, "
2965 "but the driver will try to optimize them out; "
2966 "this is non-portable out-of-spec behavior\n",
2967 _mesa_shader_stage_to_string(i));
2968 } else {
2969 linker_error(prog, "Too many %s shader uniform components\n",
2970 _mesa_shader_stage_to_string(i));
2971 }
2972 }
2973
2974 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
2975 total_uniform_blocks += sh->NumUniformBlocks;
2976
2977 const unsigned max_uniform_blocks =
2978 ctx->Const.Program[i].MaxUniformBlocks;
2979 if (max_uniform_blocks < sh->NumUniformBlocks) {
2980 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2981 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
2982 max_uniform_blocks);
2983 }
2984
2985 const unsigned max_shader_storage_blocks =
2986 ctx->Const.Program[i].MaxShaderStorageBlocks;
2987 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
2988 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
2989 _mesa_shader_stage_to_string(i),
2990 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
2991 }
2992 }
2993
2994 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2995 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2996 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
2997 }
2998
2999 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3000 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3001 total_shader_storage_blocks,
3002 ctx->Const.MaxCombinedShaderStorageBlocks);
3003 }
3004
3005 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3006 if (prog->UniformBlocks[i].UniformBufferSize >
3007 ctx->Const.MaxUniformBlockSize) {
3008 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3009 prog->UniformBlocks[i].Name,
3010 prog->UniformBlocks[i].UniformBufferSize,
3011 ctx->Const.MaxUniformBlockSize);
3012 }
3013 }
3014
3015 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3016 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3017 ctx->Const.MaxShaderStorageBlockSize) {
3018 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3019 prog->ShaderStorageBlocks[i].Name,
3020 prog->ShaderStorageBlocks[i].UniformBufferSize,
3021 ctx->Const.MaxShaderStorageBlockSize);
3022 }
3023 }
3024 }
3025
3026 static void
3027 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3028 {
3029 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3030 struct gl_shader *sh = prog->_LinkedShaders[i];
3031 int count;
3032 if (!sh)
3033 continue;
3034
3035 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3036 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3037
3038 if (!uni)
3039 continue;
3040
3041 count = 0;
3042 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3043 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3044 for (int k = 0; k < fn->num_compat_types; k++) {
3045 if (fn->types[k] == uni->type) {
3046 count++;
3047 break;
3048 }
3049 }
3050 }
3051 uni->num_compatible_subroutines = count;
3052 }
3053 }
3054 }
3055
3056 static void
3057 check_subroutine_resources(struct gl_shader_program *prog)
3058 {
3059 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3060 struct gl_shader *sh = prog->_LinkedShaders[i];
3061
3062 if (sh) {
3063 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3064 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3065 _mesa_shader_stage_to_string(i));
3066 }
3067 }
3068 }
3069 /**
3070 * Validate shader image resources.
3071 */
3072 static void
3073 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3074 {
3075 unsigned total_image_units = 0;
3076 unsigned fragment_outputs = 0;
3077 unsigned total_shader_storage_blocks = 0;
3078
3079 if (!ctx->Extensions.ARB_shader_image_load_store)
3080 return;
3081
3082 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3083 struct gl_shader *sh = prog->_LinkedShaders[i];
3084
3085 if (sh) {
3086 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3087 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3088 _mesa_shader_stage_to_string(i), sh->NumImages,
3089 ctx->Const.Program[i].MaxImageUniforms);
3090
3091 total_image_units += sh->NumImages;
3092 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3093
3094 if (i == MESA_SHADER_FRAGMENT) {
3095 foreach_in_list(ir_instruction, node, sh->ir) {
3096 ir_variable *var = node->as_variable();
3097 if (var && var->data.mode == ir_var_shader_out)
3098 /* since there are no double fs outputs - pass false */
3099 fragment_outputs += var->type->count_attribute_slots(false);
3100 }
3101 }
3102 }
3103 }
3104
3105 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3106 linker_error(prog, "Too many combined image uniforms\n");
3107
3108 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3109 ctx->Const.MaxCombinedShaderOutputResources)
3110 linker_error(prog, "Too many combined image uniforms, shader storage "
3111 " buffers and fragment outputs\n");
3112 }
3113
3114
3115 /**
3116 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3117 * for a variable, checks for overlaps between other uniforms using explicit
3118 * locations.
3119 */
3120 static int
3121 reserve_explicit_locations(struct gl_shader_program *prog,
3122 string_to_uint_map *map, ir_variable *var)
3123 {
3124 unsigned slots = var->type->uniform_locations();
3125 unsigned max_loc = var->data.location + slots - 1;
3126 unsigned return_value = slots;
3127
3128 /* Resize remap table if locations do not fit in the current one. */
3129 if (max_loc + 1 > prog->NumUniformRemapTable) {
3130 prog->UniformRemapTable =
3131 reralloc(prog, prog->UniformRemapTable,
3132 gl_uniform_storage *,
3133 max_loc + 1);
3134
3135 if (!prog->UniformRemapTable) {
3136 linker_error(prog, "Out of memory during linking.\n");
3137 return -1;
3138 }
3139
3140 /* Initialize allocated space. */
3141 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3142 prog->UniformRemapTable[i] = NULL;
3143
3144 prog->NumUniformRemapTable = max_loc + 1;
3145 }
3146
3147 for (unsigned i = 0; i < slots; i++) {
3148 unsigned loc = var->data.location + i;
3149
3150 /* Check if location is already used. */
3151 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3152
3153 /* Possibly same uniform from a different stage, this is ok. */
3154 unsigned hash_loc;
3155 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3156 return_value = 0;
3157 continue;
3158 }
3159
3160 /* ARB_explicit_uniform_location specification states:
3161 *
3162 * "No two default-block uniform variables in the program can have
3163 * the same location, even if they are unused, otherwise a compiler
3164 * or linker error will be generated."
3165 */
3166 linker_error(prog,
3167 "location qualifier for uniform %s overlaps "
3168 "previously used location\n",
3169 var->name);
3170 return -1;
3171 }
3172
3173 /* Initialize location as inactive before optimization
3174 * rounds and location assignment.
3175 */
3176 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3177 }
3178
3179 /* Note, base location used for arrays. */
3180 map->put(var->data.location, var->name);
3181
3182 return return_value;
3183 }
3184
3185 static bool
3186 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3187 struct gl_shader *sh,
3188 ir_variable *var)
3189 {
3190 unsigned slots = var->type->uniform_locations();
3191 unsigned max_loc = var->data.location + slots - 1;
3192
3193 /* Resize remap table if locations do not fit in the current one. */
3194 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3195 sh->SubroutineUniformRemapTable =
3196 reralloc(sh, sh->SubroutineUniformRemapTable,
3197 gl_uniform_storage *,
3198 max_loc + 1);
3199
3200 if (!sh->SubroutineUniformRemapTable) {
3201 linker_error(prog, "Out of memory during linking.\n");
3202 return false;
3203 }
3204
3205 /* Initialize allocated space. */
3206 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3207 sh->SubroutineUniformRemapTable[i] = NULL;
3208
3209 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3210 }
3211
3212 for (unsigned i = 0; i < slots; i++) {
3213 unsigned loc = var->data.location + i;
3214
3215 /* Check if location is already used. */
3216 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3217
3218 /* ARB_explicit_uniform_location specification states:
3219 * "No two subroutine uniform variables can have the same location
3220 * in the same shader stage, otherwise a compiler or linker error
3221 * will be generated."
3222 */
3223 linker_error(prog,
3224 "location qualifier for uniform %s overlaps "
3225 "previously used location\n",
3226 var->name);
3227 return false;
3228 }
3229
3230 /* Initialize location as inactive before optimization
3231 * rounds and location assignment.
3232 */
3233 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3234 }
3235
3236 return true;
3237 }
3238 /**
3239 * Check and reserve all explicit uniform locations, called before
3240 * any optimizations happen to handle also inactive uniforms and
3241 * inactive array elements that may get trimmed away.
3242 */
3243 static unsigned
3244 check_explicit_uniform_locations(struct gl_context *ctx,
3245 struct gl_shader_program *prog)
3246 {
3247 if (!ctx->Extensions.ARB_explicit_uniform_location)
3248 return 0;
3249
3250 /* This map is used to detect if overlapping explicit locations
3251 * occur with the same uniform (from different stage) or a different one.
3252 */
3253 string_to_uint_map *uniform_map = new string_to_uint_map;
3254
3255 if (!uniform_map) {
3256 linker_error(prog, "Out of memory during linking.\n");
3257 return 0;
3258 }
3259
3260 unsigned entries_total = 0;
3261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3262 struct gl_shader *sh = prog->_LinkedShaders[i];
3263
3264 if (!sh)
3265 continue;
3266
3267 foreach_in_list(ir_instruction, node, sh->ir) {
3268 ir_variable *var = node->as_variable();
3269 if (!var || var->data.mode != ir_var_uniform)
3270 continue;
3271
3272 if (var->data.explicit_location) {
3273 bool ret = false;
3274 if (var->type->without_array()->is_subroutine())
3275 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3276 else {
3277 int slots = reserve_explicit_locations(prog, uniform_map,
3278 var);
3279 if (slots != -1) {
3280 ret = true;
3281 entries_total += slots;
3282 }
3283 }
3284 if (!ret) {
3285 delete uniform_map;
3286 return 0;
3287 }
3288 }
3289 }
3290 }
3291
3292 struct empty_uniform_block *current_block = NULL;
3293
3294 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3295 /* We found empty space in UniformRemapTable. */
3296 if (prog->UniformRemapTable[i] == NULL) {
3297 /* We've found the beginning of a new continous block of empty slots */
3298 if (!current_block || current_block->start + current_block->slots != i) {
3299 current_block = rzalloc(prog, struct empty_uniform_block);
3300 current_block->start = i;
3301 exec_list_push_tail(&prog->EmptyUniformLocations,
3302 &current_block->link);
3303 }
3304
3305 /* The current block continues, so we simply increment its slots */
3306 current_block->slots++;
3307 }
3308 }
3309
3310 delete uniform_map;
3311 return entries_total;
3312 }
3313
3314 static bool
3315 should_add_buffer_variable(struct gl_shader_program *shProg,
3316 GLenum type, const char *name)
3317 {
3318 bool found_interface = false;
3319 unsigned block_name_len = 0;
3320 const char *block_name_dot = strchr(name, '.');
3321
3322 /* These rules only apply to buffer variables. So we return
3323 * true for the rest of types.
3324 */
3325 if (type != GL_BUFFER_VARIABLE)
3326 return true;
3327
3328 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3329 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3330 block_name_len = strlen(block_name);
3331
3332 const char *block_square_bracket = strchr(block_name, '[');
3333 if (block_square_bracket) {
3334 /* The block is part of an array of named interfaces,
3335 * for the name comparison we ignore the "[x]" part.
3336 */
3337 block_name_len -= strlen(block_square_bracket);
3338 }
3339
3340 if (block_name_dot) {
3341 /* Check if the variable name starts with the interface
3342 * name. The interface name (if present) should have the
3343 * length than the interface block name we are comparing to.
3344 */
3345 unsigned len = strlen(name) - strlen(block_name_dot);
3346 if (len != block_name_len)
3347 continue;
3348 }
3349
3350 if (strncmp(block_name, name, block_name_len) == 0) {
3351 found_interface = true;
3352 break;
3353 }
3354 }
3355
3356 /* We remove the interface name from the buffer variable name,
3357 * including the dot that follows it.
3358 */
3359 if (found_interface)
3360 name = name + block_name_len + 1;
3361
3362 /* From: ARB_program_interface_query extension:
3363 *
3364 * "For an active shader storage block member declared as an array, an
3365 * entry will be generated only for the first array element, regardless
3366 * of its type. For arrays of aggregate types, the enumeration rules are
3367 * applied recursively for the single enumerated array element.
3368 */
3369 const char *struct_first_dot = strchr(name, '.');
3370 const char *first_square_bracket = strchr(name, '[');
3371
3372 /* The buffer variable is on top level and it is not an array */
3373 if (!first_square_bracket) {
3374 return true;
3375 /* The shader storage block member is a struct, then generate the entry */
3376 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3377 return true;
3378 } else {
3379 /* Shader storage block member is an array, only generate an entry for the
3380 * first array element.
3381 */
3382 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 static bool
3390 add_program_resource(struct gl_shader_program *prog, GLenum type,
3391 const void *data, uint8_t stages)
3392 {
3393 assert(data);
3394
3395 /* If resource already exists, do not add it again. */
3396 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3397 if (prog->ProgramResourceList[i].Data == data)
3398 return true;
3399
3400 prog->ProgramResourceList =
3401 reralloc(prog,
3402 prog->ProgramResourceList,
3403 gl_program_resource,
3404 prog->NumProgramResourceList + 1);
3405
3406 if (!prog->ProgramResourceList) {
3407 linker_error(prog, "Out of memory during linking.\n");
3408 return false;
3409 }
3410
3411 struct gl_program_resource *res =
3412 &prog->ProgramResourceList[prog->NumProgramResourceList];
3413
3414 res->Type = type;
3415 res->Data = data;
3416 res->StageReferences = stages;
3417
3418 prog->NumProgramResourceList++;
3419
3420 return true;
3421 }
3422
3423 /* Function checks if a variable var is a packed varying and
3424 * if given name is part of packed varying's list.
3425 *
3426 * If a variable is a packed varying, it has a name like
3427 * 'packed:a,b,c' where a, b and c are separate variables.
3428 */
3429 static bool
3430 included_in_packed_varying(ir_variable *var, const char *name)
3431 {
3432 if (strncmp(var->name, "packed:", 7) != 0)
3433 return false;
3434
3435 char *list = strdup(var->name + 7);
3436 assert(list);
3437
3438 bool found = false;
3439 char *saveptr;
3440 char *token = strtok_r(list, ",", &saveptr);
3441 while (token) {
3442 if (strcmp(token, name) == 0) {
3443 found = true;
3444 break;
3445 }
3446 token = strtok_r(NULL, ",", &saveptr);
3447 }
3448 free(list);
3449 return found;
3450 }
3451
3452 /**
3453 * Function builds a stage reference bitmask from variable name.
3454 */
3455 static uint8_t
3456 build_stageref(struct gl_shader_program *shProg, const char *name,
3457 unsigned mode)
3458 {
3459 uint8_t stages = 0;
3460
3461 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3462 * used for reference mask in gl_program_resource will need to be changed.
3463 */
3464 assert(MESA_SHADER_STAGES < 8);
3465
3466 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3467 struct gl_shader *sh = shProg->_LinkedShaders[i];
3468 if (!sh)
3469 continue;
3470
3471 /* Shader symbol table may contain variables that have
3472 * been optimized away. Search IR for the variable instead.
3473 */
3474 foreach_in_list(ir_instruction, node, sh->ir) {
3475 ir_variable *var = node->as_variable();
3476 if (var) {
3477 unsigned baselen = strlen(var->name);
3478
3479 if (included_in_packed_varying(var, name)) {
3480 stages |= (1 << i);
3481 break;
3482 }
3483
3484 /* Type needs to match if specified, otherwise we might
3485 * pick a variable with same name but different interface.
3486 */
3487 if (var->data.mode != mode)
3488 continue;
3489
3490 if (strncmp(var->name, name, baselen) == 0) {
3491 /* Check for exact name matches but also check for arrays and
3492 * structs.
3493 */
3494 if (name[baselen] == '\0' ||
3495 name[baselen] == '[' ||
3496 name[baselen] == '.') {
3497 stages |= (1 << i);
3498 break;
3499 }
3500 }
3501 }
3502 }
3503 }
3504 return stages;
3505 }
3506
3507 /**
3508 * Create gl_shader_variable from ir_variable class.
3509 */
3510 static gl_shader_variable *
3511 create_shader_variable(struct gl_shader_program *shProg,
3512 const ir_variable *in,
3513 const char *name, const glsl_type *type,
3514 bool use_implicit_location, int location)
3515 {
3516 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3517 if (!out)
3518 return NULL;
3519
3520 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3521 * expect to see gl_VertexID in the program resource list. Pretend.
3522 */
3523 if (in->data.mode == ir_var_system_value &&
3524 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3525 out->name = ralloc_strdup(shProg, "gl_VertexID");
3526 } else {
3527 out->name = ralloc_strdup(shProg, name);
3528 }
3529
3530 if (!out->name)
3531 return NULL;
3532
3533 /* From the ARB_program_interface_query specification:
3534 *
3535 * "Not all active variables are assigned valid locations; the
3536 * following variables will have an effective location of -1:
3537 *
3538 * * uniforms declared as atomic counters;
3539 *
3540 * * members of a uniform block;
3541 *
3542 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3543 *
3544 * * inputs or outputs not declared with a "location" layout qualifier,
3545 * except for vertex shader inputs and fragment shader outputs."
3546 */
3547 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3548 is_gl_identifier(in->name) ||
3549 !(in->data.explicit_location || use_implicit_location)) {
3550 out->location = -1;
3551 } else {
3552 out->location = location;
3553 }
3554
3555 out->type = type;
3556 out->component = in->data.location_frac;
3557 out->index = in->data.index;
3558 out->patch = in->data.patch;
3559 out->mode = in->data.mode;
3560
3561 return out;
3562 }
3563
3564 static bool
3565 add_shader_variable(struct gl_shader_program *shProg, unsigned stage_mask,
3566 GLenum programInterface, ir_variable *var,
3567 const char *name, const glsl_type *type,
3568 bool use_implicit_location, int location)
3569 {
3570 const bool is_vertex_input =
3571 programInterface == GL_PROGRAM_INPUT &&
3572 stage_mask == MESA_SHADER_VERTEX;
3573
3574 switch (type->base_type) {
3575 case GLSL_TYPE_STRUCT: {
3576 /* From the ARB_program_interface_query specification:
3577 *
3578 * "For an active variable declared as a structure, a separate entry
3579 * will be generated for each active structure member. The name of
3580 * each entry is formed by concatenating the name of the structure,
3581 * the "." character, and the name of the structure member. If a
3582 * structure member to enumerate is itself a structure or array, these
3583 * enumeration rules are applied recursively."
3584 */
3585 unsigned field_location = location;
3586 for (unsigned i = 0; i < type->length; i++) {
3587 const struct glsl_struct_field *field = &type->fields.structure[i];
3588 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3589 if (!add_shader_variable(shProg, stage_mask, programInterface,
3590 var, field_name, field->type,
3591 use_implicit_location, field_location))
3592 return false;
3593
3594 field_location +=
3595 field->type->count_attribute_slots(is_vertex_input);
3596 }
3597 return true;
3598 }
3599
3600 default: {
3601 /* From the ARB_program_interface_query specification:
3602 *
3603 * "For an active variable declared as a single instance of a basic
3604 * type, a single entry will be generated, using the variable name
3605 * from the shader source."
3606 */
3607 gl_shader_variable *sha_v =
3608 create_shader_variable(shProg, var, name, type,
3609 use_implicit_location, location);
3610 if (!sha_v)
3611 return false;
3612
3613 return add_program_resource(shProg, programInterface, sha_v, stage_mask);
3614 }
3615 }
3616 }
3617
3618 static bool
3619 add_interface_variables(struct gl_shader_program *shProg,
3620 unsigned stage, GLenum programInterface)
3621 {
3622 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3623
3624 foreach_in_list(ir_instruction, node, ir) {
3625 ir_variable *var = node->as_variable();
3626
3627 if (!var || var->data.how_declared == ir_var_hidden)
3628 continue;
3629
3630 int loc_bias;
3631
3632 switch (var->data.mode) {
3633 case ir_var_system_value:
3634 case ir_var_shader_in:
3635 if (programInterface != GL_PROGRAM_INPUT)
3636 continue;
3637 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3638 : int(VARYING_SLOT_VAR0);
3639 break;
3640 case ir_var_shader_out:
3641 if (programInterface != GL_PROGRAM_OUTPUT)
3642 continue;
3643 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3644 : int(VARYING_SLOT_VAR0);
3645 break;
3646 default:
3647 continue;
3648 };
3649
3650 /* Skip packed varyings, packed varyings are handled separately
3651 * by add_packed_varyings.
3652 */
3653 if (strncmp(var->name, "packed:", 7) == 0)
3654 continue;
3655
3656 /* Skip fragdata arrays, these are handled separately
3657 * by add_fragdata_arrays.
3658 */
3659 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3660 continue;
3661
3662 const bool vs_input_or_fs_output =
3663 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3664 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3665
3666 if (!add_shader_variable(shProg, 1 << stage, programInterface,
3667 var, var->name, var->type, vs_input_or_fs_output,
3668 var->data.location - loc_bias))
3669 return false;
3670 }
3671 return true;
3672 }
3673
3674 static bool
3675 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3676 {
3677 struct gl_shader *sh = shProg->_LinkedShaders[stage];
3678 GLenum iface;
3679
3680 if (!sh || !sh->packed_varyings)
3681 return true;
3682
3683 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3684 ir_variable *var = node->as_variable();
3685 if (var) {
3686 switch (var->data.mode) {
3687 case ir_var_shader_in:
3688 iface = GL_PROGRAM_INPUT;
3689 break;
3690 case ir_var_shader_out:
3691 iface = GL_PROGRAM_OUTPUT;
3692 break;
3693 default:
3694 unreachable("unexpected type");
3695 }
3696
3697 if (type == iface) {
3698 const int stage_mask =
3699 build_stageref(shProg, var->name, var->data.mode);
3700 if (!add_shader_variable(shProg, stage_mask,
3701 iface, var, var->name, var->type, false,
3702 var->data.location - VARYING_SLOT_VAR0))
3703 return false;
3704 }
3705 }
3706 }
3707 return true;
3708 }
3709
3710 static bool
3711 add_fragdata_arrays(struct gl_shader_program *shProg)
3712 {
3713 struct gl_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3714
3715 if (!sh || !sh->fragdata_arrays)
3716 return true;
3717
3718 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3719 ir_variable *var = node->as_variable();
3720 if (var) {
3721 assert(var->data.mode == ir_var_shader_out);
3722
3723 if (!add_shader_variable(shProg,
3724 1 << MESA_SHADER_FRAGMENT,
3725 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3726 true, var->data.location - FRAG_RESULT_DATA0))
3727 return false;
3728 }
3729 }
3730 return true;
3731 }
3732
3733 static char*
3734 get_top_level_name(const char *name)
3735 {
3736 const char *first_dot = strchr(name, '.');
3737 const char *first_square_bracket = strchr(name, '[');
3738 int name_size = 0;
3739 /* From ARB_program_interface_query spec:
3740 *
3741 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
3742 * number of active array elements of the top-level shader storage block
3743 * member containing to the active variable is written to <params>. If the
3744 * top-level block member is not declared as an array, the value one is
3745 * written to <params>. If the top-level block member is an array with no
3746 * declared size, the value zero is written to <params>.
3747 */
3748
3749 /* The buffer variable is on top level.*/
3750 if (!first_square_bracket && !first_dot)
3751 name_size = strlen(name);
3752 else if ((!first_square_bracket ||
3753 (first_dot && first_dot < first_square_bracket)))
3754 name_size = first_dot - name;
3755 else
3756 name_size = first_square_bracket - name;
3757
3758 return strndup(name, name_size);
3759 }
3760
3761 static char*
3762 get_var_name(const char *name)
3763 {
3764 const char *first_dot = strchr(name, '.');
3765
3766 if (!first_dot)
3767 return strdup(name);
3768
3769 return strndup(first_dot+1, strlen(first_dot) - 1);
3770 }
3771
3772 static bool
3773 is_top_level_shader_storage_block_member(const char* name,
3774 const char* interface_name,
3775 const char* field_name)
3776 {
3777 bool result = false;
3778
3779 /* If the given variable is already a top-level shader storage
3780 * block member, then return array_size = 1.
3781 * We could have two possibilities: if we have an instanced
3782 * shader storage block or not instanced.
3783 *
3784 * For the first, we check create a name as it was in top level and
3785 * compare it with the real name. If they are the same, then
3786 * the variable is already at top-level.
3787 *
3788 * Full instanced name is: interface name + '.' + var name +
3789 * NULL character
3790 */
3791 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3792 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3793 if (!full_instanced_name) {
3794 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3795 return false;
3796 }
3797
3798 snprintf(full_instanced_name, name_length, "%s.%s",
3799 interface_name, field_name);
3800
3801 /* Check if its top-level shader storage block member of an
3802 * instanced interface block, or of a unnamed interface block.
3803 */
3804 if (strcmp(name, full_instanced_name) == 0 ||
3805 strcmp(name, field_name) == 0)
3806 result = true;
3807
3808 free(full_instanced_name);
3809 return result;
3810 }
3811
3812 static int
3813 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
3814 char *interface_name, char *var_name)
3815 {
3816 /* From GL_ARB_program_interface_query spec:
3817 *
3818 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer
3819 * identifying the number of active array elements of the top-level
3820 * shader storage block member containing to the active variable is
3821 * written to <params>. If the top-level block member is not
3822 * declared as an array, the value one is written to <params>. If
3823 * the top-level block member is an array with no declared size,
3824 * the value zero is written to <params>.
3825 */
3826 if (is_top_level_shader_storage_block_member(uni->name,
3827 interface_name,
3828 var_name))
3829 return 1;
3830 else if (field->type->is_unsized_array())
3831 return 0;
3832 else if (field->type->is_array())
3833 return field->type->length;
3834
3835 return 1;
3836 }
3837
3838 static int
3839 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
3840 const glsl_struct_field *field, char *interface_name,
3841 char *var_name)
3842 {
3843 /* From GL_ARB_program_interface_query:
3844 *
3845 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
3846 * identifying the stride between array elements of the top-level
3847 * shader storage block member containing the active variable is
3848 * written to <params>. For top-level block members declared as
3849 * arrays, the value written is the difference, in basic machine
3850 * units, between the offsets of the active variable for
3851 * consecutive elements in the top-level array. For top-level
3852 * block members not declared as an array, zero is written to
3853 * <params>."
3854 */
3855 if (field->type->is_array()) {
3856 const enum glsl_matrix_layout matrix_layout =
3857 glsl_matrix_layout(field->matrix_layout);
3858 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
3859 const glsl_type *array_type = field->type->fields.array;
3860
3861 if (is_top_level_shader_storage_block_member(uni->name,
3862 interface_name,
3863 var_name))
3864 return 0;
3865
3866 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
3867 if (array_type->is_record() || array_type->is_array())
3868 return glsl_align(array_type->std140_size(row_major), 16);
3869 else
3870 return MAX2(array_type->std140_base_alignment(row_major), 16);
3871 } else {
3872 return array_type->std430_array_stride(row_major);
3873 }
3874 }
3875 return 0;
3876 }
3877
3878 static void
3879 calculate_array_size_and_stride(struct gl_shader_program *shProg,
3880 struct gl_uniform_storage *uni)
3881 {
3882 int block_index = uni->block_index;
3883 int array_size = -1;
3884 int array_stride = -1;
3885 char *var_name = get_top_level_name(uni->name);
3886 char *interface_name =
3887 get_top_level_name(uni->is_shader_storage ?
3888 shProg->ShaderStorageBlocks[block_index].Name :
3889 shProg->UniformBlocks[block_index].Name);
3890
3891 if (strcmp(var_name, interface_name) == 0) {
3892 /* Deal with instanced array of SSBOs */
3893 char *temp_name = get_var_name(uni->name);
3894 if (!temp_name) {
3895 linker_error(shProg, "Out of memory during linking.\n");
3896 goto write_top_level_array_size_and_stride;
3897 }
3898 free(var_name);
3899 var_name = get_top_level_name(temp_name);
3900 free(temp_name);
3901 if (!var_name) {
3902 linker_error(shProg, "Out of memory during linking.\n");
3903 goto write_top_level_array_size_and_stride;
3904 }
3905 }
3906
3907 for (unsigned i = 0; i < shProg->NumShaders; i++) {
3908 if (shProg->Shaders[i] == NULL)
3909 continue;
3910
3911 const gl_shader *stage = shProg->Shaders[i];
3912 foreach_in_list(ir_instruction, node, stage->ir) {
3913 ir_variable *var = node->as_variable();
3914 if (!var || !var->get_interface_type() ||
3915 var->data.mode != ir_var_shader_storage)
3916 continue;
3917
3918 const glsl_type *interface = var->get_interface_type();
3919
3920 if (strcmp(interface_name, interface->name) != 0)
3921 continue;
3922
3923 for (unsigned i = 0; i < interface->length; i++) {
3924 const glsl_struct_field *field = &interface->fields.structure[i];
3925 if (strcmp(field->name, var_name) != 0)
3926 continue;
3927
3928 array_stride = get_array_stride(uni, interface, field,
3929 interface_name, var_name);
3930 array_size = get_array_size(uni, field, interface_name, var_name);
3931 goto write_top_level_array_size_and_stride;
3932 }
3933 }
3934 }
3935 write_top_level_array_size_and_stride:
3936 free(interface_name);
3937 free(var_name);
3938 uni->top_level_array_stride = array_stride;
3939 uni->top_level_array_size = array_size;
3940 }
3941
3942 /**
3943 * Builds up a list of program resources that point to existing
3944 * resource data.
3945 */
3946 void
3947 build_program_resource_list(struct gl_context *ctx,
3948 struct gl_shader_program *shProg)
3949 {
3950 /* Rebuild resource list. */
3951 if (shProg->ProgramResourceList) {
3952 ralloc_free(shProg->ProgramResourceList);
3953 shProg->ProgramResourceList = NULL;
3954 shProg->NumProgramResourceList = 0;
3955 }
3956
3957 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
3958
3959 /* Determine first input and final output stage. These are used to
3960 * detect which variables should be enumerated in the resource list
3961 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
3962 */
3963 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3964 if (!shProg->_LinkedShaders[i])
3965 continue;
3966 if (input_stage == MESA_SHADER_STAGES)
3967 input_stage = i;
3968 output_stage = i;
3969 }
3970
3971 /* Empty shader, no resources. */
3972 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
3973 return;
3974
3975 /* Program interface needs to expose varyings in case of SSO. */
3976 if (shProg->SeparateShader) {
3977 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
3978 return;
3979
3980 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
3981 return;
3982 }
3983
3984 if (!add_fragdata_arrays(shProg))
3985 return;
3986
3987 /* Add inputs and outputs to the resource list. */
3988 if (!add_interface_variables(shProg, input_stage, GL_PROGRAM_INPUT))
3989 return;
3990
3991 if (!add_interface_variables(shProg, output_stage, GL_PROGRAM_OUTPUT))
3992 return;
3993
3994 /* Add transform feedback varyings. */
3995 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
3996 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
3997 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
3998 &shProg->LinkedTransformFeedback.Varyings[i],
3999 0))
4000 return;
4001 }
4002 }
4003
4004 /* Add transform feedback buffers. */
4005 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4006 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4007 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4008 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_BUFFER,
4009 &shProg->LinkedTransformFeedback.Buffers[i],
4010 0))
4011 return;
4012 }
4013 }
4014
4015 /* Add uniforms from uniform storage. */
4016 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4017 /* Do not add uniforms internally used by Mesa. */
4018 if (shProg->UniformStorage[i].hidden)
4019 continue;
4020
4021 uint8_t stageref =
4022 build_stageref(shProg, shProg->UniformStorage[i].name,
4023 ir_var_uniform);
4024
4025 /* Add stagereferences for uniforms in a uniform block. */
4026 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4027 int block_index = shProg->UniformStorage[i].block_index;
4028 if (block_index != -1) {
4029 stageref |= is_shader_storage ?
4030 shProg->ShaderStorageBlocks[block_index].stageref :
4031 shProg->UniformBlocks[block_index].stageref;
4032 }
4033
4034 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4035 if (!should_add_buffer_variable(shProg, type,
4036 shProg->UniformStorage[i].name))
4037 continue;
4038
4039 if (is_shader_storage) {
4040 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4041 }
4042
4043 if (!add_program_resource(shProg, type,
4044 &shProg->UniformStorage[i], stageref))
4045 return;
4046 }
4047
4048 /* Add program uniform blocks. */
4049 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4050 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
4051 &shProg->UniformBlocks[i], 0))
4052 return;
4053 }
4054
4055 /* Add program shader storage blocks. */
4056 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4057 if (!add_program_resource(shProg, GL_SHADER_STORAGE_BLOCK,
4058 &shProg->ShaderStorageBlocks[i], 0))
4059 return;
4060 }
4061
4062 /* Add atomic counter buffers. */
4063 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4064 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
4065 &shProg->AtomicBuffers[i], 0))
4066 return;
4067 }
4068
4069 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4070 GLenum type;
4071 if (!shProg->UniformStorage[i].hidden)
4072 continue;
4073
4074 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4075 if (!shProg->UniformStorage[i].opaque[j].active ||
4076 !shProg->UniformStorage[i].type->is_subroutine())
4077 continue;
4078
4079 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4080 /* add shader subroutines */
4081 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
4082 return;
4083 }
4084 }
4085
4086 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4087 struct gl_shader *sh = shProg->_LinkedShaders[i];
4088 GLuint type;
4089
4090 if (!sh)
4091 continue;
4092
4093 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4094 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4095 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
4096 return;
4097 }
4098 }
4099 }
4100
4101 /**
4102 * This check is done to make sure we allow only constant expression
4103 * indexing and "constant-index-expression" (indexing with an expression
4104 * that includes loop induction variable).
4105 */
4106 static bool
4107 validate_sampler_array_indexing(struct gl_context *ctx,
4108 struct gl_shader_program *prog)
4109 {
4110 dynamic_sampler_array_indexing_visitor v;
4111 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4112 if (prog->_LinkedShaders[i] == NULL)
4113 continue;
4114
4115 bool no_dynamic_indexing =
4116 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4117
4118 /* Search for array derefs in shader. */
4119 v.run(prog->_LinkedShaders[i]->ir);
4120 if (v.uses_dynamic_sampler_array_indexing()) {
4121 const char *msg = "sampler arrays indexed with non-constant "
4122 "expressions is forbidden in GLSL %s %u";
4123 /* Backend has indicated that it has no dynamic indexing support. */
4124 if (no_dynamic_indexing) {
4125 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4126 return false;
4127 } else {
4128 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4129 }
4130 }
4131 }
4132 return true;
4133 }
4134
4135 static void
4136 link_assign_subroutine_types(struct gl_shader_program *prog)
4137 {
4138 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4139 gl_shader *sh = prog->_LinkedShaders[i];
4140
4141 if (sh == NULL)
4142 continue;
4143
4144 foreach_in_list(ir_instruction, node, sh->ir) {
4145 ir_function *fn = node->as_function();
4146 if (!fn)
4147 continue;
4148
4149 if (fn->is_subroutine)
4150 sh->NumSubroutineUniformTypes++;
4151
4152 if (!fn->num_subroutine_types)
4153 continue;
4154
4155 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4156 struct gl_subroutine_function,
4157 sh->NumSubroutineFunctions + 1);
4158 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4159 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4160 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4161 ralloc_array(sh, const struct glsl_type *,
4162 fn->num_subroutine_types);
4163
4164 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4165 * GLSL 4.5 spec:
4166 *
4167 * "Each subroutine with an index qualifier in the shader must be
4168 * given a unique index, otherwise a compile or link error will be
4169 * generated."
4170 */
4171 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4172 if (sh->SubroutineFunctions[j].index != -1 &&
4173 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4174 linker_error(prog, "each subroutine index qualifier in the "
4175 "shader must be unique\n");
4176 return;
4177 }
4178 }
4179 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4180 fn->subroutine_index;
4181
4182 for (int j = 0; j < fn->num_subroutine_types; j++)
4183 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4184 sh->NumSubroutineFunctions++;
4185 }
4186
4187 /* Assign index for subroutines without an explicit index*/
4188 int index = 0;
4189 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4190 while (sh->SubroutineFunctions[j].index == -1) {
4191 for (unsigned k = 0; k < sh->NumSubroutineFunctions; k++) {
4192 if (sh->SubroutineFunctions[k].index == index)
4193 break;
4194 else if (k == sh->NumSubroutineFunctions - 1)
4195 sh->SubroutineFunctions[j].index = index;
4196 }
4197 index++;
4198 }
4199 }
4200 }
4201 }
4202
4203 static void
4204 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4205 {
4206 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4207
4208 foreach_in_list(ir_instruction, node, ir) {
4209 ir_variable *const var = node->as_variable();
4210
4211 if (var == NULL || var->data.mode != io_mode)
4212 continue;
4213
4214 /* Don't set always active on builtins that haven't been redeclared */
4215 if (var->data.how_declared == ir_var_declared_implicitly)
4216 continue;
4217
4218 var->data.always_active_io = true;
4219 }
4220 }
4221
4222 /**
4223 * When separate shader programs are enabled, only input/outputs between
4224 * the stages of a multi-stage separate program can be safely removed
4225 * from the shader interface. Other inputs/outputs must remain active.
4226 */
4227 static void
4228 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4229 {
4230 unsigned first, last;
4231 assert(prog->SeparateShader);
4232
4233 first = MESA_SHADER_STAGES;
4234 last = 0;
4235
4236 /* Determine first and last stage. Excluding the compute stage */
4237 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4238 if (!prog->_LinkedShaders[i])
4239 continue;
4240 if (first == MESA_SHADER_STAGES)
4241 first = i;
4242 last = i;
4243 }
4244
4245 if (first == MESA_SHADER_STAGES)
4246 return;
4247
4248 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4249 gl_shader *sh = prog->_LinkedShaders[stage];
4250 if (!sh)
4251 continue;
4252
4253 if (first == last) {
4254 /* For a single shader program only allow inputs to the vertex shader
4255 * and outputs from the fragment shader to be removed.
4256 */
4257 if (stage != MESA_SHADER_VERTEX)
4258 set_always_active_io(sh->ir, ir_var_shader_in);
4259 if (stage != MESA_SHADER_FRAGMENT)
4260 set_always_active_io(sh->ir, ir_var_shader_out);
4261 } else {
4262 /* For multi-stage separate shader programs only allow inputs and
4263 * outputs between the shader stages to be removed as well as inputs
4264 * to the vertex shader and outputs from the fragment shader.
4265 */
4266 if (stage == first && stage != MESA_SHADER_VERTEX)
4267 set_always_active_io(sh->ir, ir_var_shader_in);
4268 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4269 set_always_active_io(sh->ir, ir_var_shader_out);
4270 }
4271 }
4272 }
4273
4274 void
4275 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4276 {
4277 prog->LinkStatus = true; /* All error paths will set this to false */
4278 prog->Validated = false;
4279 prog->_Used = false;
4280
4281 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4282 *
4283 * "Linking can fail for a variety of reasons as specified in the
4284 * OpenGL Shading Language Specification, as well as any of the
4285 * following reasons:
4286 *
4287 * - No shader objects are attached to program."
4288 *
4289 * The Compatibility Profile specification does not list the error. In
4290 * Compatibility Profile missing shader stages are replaced by
4291 * fixed-function. This applies to the case where all stages are
4292 * missing.
4293 */
4294 if (prog->NumShaders == 0) {
4295 if (ctx->API != API_OPENGL_COMPAT)
4296 linker_error(prog, "no shaders attached to the program\n");
4297 return;
4298 }
4299
4300 unsigned num_tfeedback_decls = 0;
4301 unsigned int num_explicit_uniform_locs = 0;
4302 bool has_xfb_qualifiers = false;
4303 char **varying_names = NULL;
4304 tfeedback_decl *tfeedback_decls = NULL;
4305
4306 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4307
4308 prog->ARB_fragment_coord_conventions_enable = false;
4309
4310 /* Separate the shaders into groups based on their type.
4311 */
4312 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4313 unsigned num_shaders[MESA_SHADER_STAGES];
4314
4315 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4316 shader_list[i] = (struct gl_shader **)
4317 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4318 num_shaders[i] = 0;
4319 }
4320
4321 unsigned min_version = UINT_MAX;
4322 unsigned max_version = 0;
4323 for (unsigned i = 0; i < prog->NumShaders; i++) {
4324 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4325 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4326
4327 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4328 linker_error(prog, "all shaders must use same shading "
4329 "language version\n");
4330 goto done;
4331 }
4332
4333 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4334 prog->ARB_fragment_coord_conventions_enable = true;
4335 }
4336
4337 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4338 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4339 num_shaders[shader_type]++;
4340 }
4341
4342 /* In desktop GLSL, different shader versions may be linked together. In
4343 * GLSL ES, all shader versions must be the same.
4344 */
4345 if (prog->Shaders[0]->IsES && min_version != max_version) {
4346 linker_error(prog, "all shaders must use same shading "
4347 "language version\n");
4348 goto done;
4349 }
4350
4351 prog->Version = max_version;
4352 prog->IsES = prog->Shaders[0]->IsES;
4353
4354 /* Some shaders have to be linked with some other shaders present.
4355 */
4356 if (!prog->SeparateShader) {
4357 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4358 num_shaders[MESA_SHADER_VERTEX] == 0) {
4359 linker_error(prog, "Geometry shader must be linked with "
4360 "vertex shader\n");
4361 goto done;
4362 }
4363 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4364 num_shaders[MESA_SHADER_VERTEX] == 0) {
4365 linker_error(prog, "Tessellation evaluation shader must be linked "
4366 "with vertex shader\n");
4367 goto done;
4368 }
4369 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4370 num_shaders[MESA_SHADER_VERTEX] == 0) {
4371 linker_error(prog, "Tessellation control shader must be linked with "
4372 "vertex shader\n");
4373 goto done;
4374 }
4375
4376 /* The spec is self-contradictory here. It allows linking without a tess
4377 * eval shader, but that can only be used with transform feedback and
4378 * rasterization disabled. However, transform feedback isn't allowed
4379 * with GL_PATCHES, so it can't be used.
4380 *
4381 * More investigation showed that the idea of transform feedback after
4382 * a tess control shader was dropped, because some hw vendors couldn't
4383 * support tessellation without a tess eval shader, but the linker
4384 * section wasn't updated to reflect that.
4385 *
4386 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4387 * spec bug.
4388 *
4389 * Do what's reasonable and always require a tess eval shader if a tess
4390 * control shader is present.
4391 */
4392 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4393 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4394 linker_error(prog, "Tessellation control shader must be linked with "
4395 "tessellation evaluation shader\n");
4396 goto done;
4397 }
4398 }
4399
4400 /* Compute shaders have additional restrictions. */
4401 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4402 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4403 linker_error(prog, "Compute shaders may not be linked with any other "
4404 "type of shader\n");
4405 }
4406
4407 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4408 if (prog->_LinkedShaders[i] != NULL)
4409 _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
4410
4411 prog->_LinkedShaders[i] = NULL;
4412 }
4413
4414 /* Link all shaders for a particular stage and validate the result.
4415 */
4416 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4417 if (num_shaders[stage] > 0) {
4418 gl_shader *const sh =
4419 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4420 num_shaders[stage]);
4421
4422 if (!prog->LinkStatus) {
4423 if (sh)
4424 _mesa_delete_shader(ctx, sh);
4425 goto done;
4426 }
4427
4428 switch (stage) {
4429 case MESA_SHADER_VERTEX:
4430 validate_vertex_shader_executable(prog, sh);
4431 break;
4432 case MESA_SHADER_TESS_CTRL:
4433 /* nothing to be done */
4434 break;
4435 case MESA_SHADER_TESS_EVAL:
4436 validate_tess_eval_shader_executable(prog, sh);
4437 break;
4438 case MESA_SHADER_GEOMETRY:
4439 validate_geometry_shader_executable(prog, sh);
4440 break;
4441 case MESA_SHADER_FRAGMENT:
4442 validate_fragment_shader_executable(prog, sh);
4443 break;
4444 }
4445 if (!prog->LinkStatus) {
4446 if (sh)
4447 _mesa_delete_shader(ctx, sh);
4448 goto done;
4449 }
4450
4451 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
4452 }
4453 }
4454
4455 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
4456 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4457 else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
4458 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4459 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
4460 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4461 else
4462 prog->LastClipDistanceArraySize = 0; /* Not used */
4463
4464 /* Here begins the inter-stage linking phase. Some initial validation is
4465 * performed, then locations are assigned for uniforms, attributes, and
4466 * varyings.
4467 */
4468 cross_validate_uniforms(prog);
4469 if (!prog->LinkStatus)
4470 goto done;
4471
4472 unsigned first, last, prev;
4473
4474 first = MESA_SHADER_STAGES;
4475 last = 0;
4476
4477 /* Determine first and last stage. */
4478 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4479 if (!prog->_LinkedShaders[i])
4480 continue;
4481 if (first == MESA_SHADER_STAGES)
4482 first = i;
4483 last = i;
4484 }
4485
4486 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4487 link_assign_subroutine_types(prog);
4488
4489 if (!prog->LinkStatus)
4490 goto done;
4491
4492 resize_tes_inputs(ctx, prog);
4493
4494 /* Validate the inputs of each stage with the output of the preceding
4495 * stage.
4496 */
4497 prev = first;
4498 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4499 if (prog->_LinkedShaders[i] == NULL)
4500 continue;
4501
4502 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4503 prog->_LinkedShaders[i]);
4504 if (!prog->LinkStatus)
4505 goto done;
4506
4507 cross_validate_outputs_to_inputs(prog,
4508 prog->_LinkedShaders[prev],
4509 prog->_LinkedShaders[i]);
4510 if (!prog->LinkStatus)
4511 goto done;
4512
4513 prev = i;
4514 }
4515
4516 /* Cross-validate uniform blocks between shader stages */
4517 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
4518 MESA_SHADER_STAGES);
4519 if (!prog->LinkStatus)
4520 goto done;
4521
4522 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4523 if (prog->_LinkedShaders[i] != NULL)
4524 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4525 }
4526
4527 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4528 * it before optimization because we want most of the checks to get
4529 * dropped thanks to constant propagation.
4530 *
4531 * This rule also applies to GLSL ES 3.00.
4532 */
4533 if (max_version >= (prog->IsES ? 300 : 130)) {
4534 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4535 if (sh) {
4536 lower_discard_flow(sh->ir);
4537 }
4538 }
4539
4540 if (prog->SeparateShader)
4541 disable_varying_optimizations_for_sso(prog);
4542
4543 /* Process UBOs */
4544 if (!interstage_cross_validate_uniform_blocks(prog, false))
4545 goto done;
4546
4547 /* Process SSBOs */
4548 if (!interstage_cross_validate_uniform_blocks(prog, true))
4549 goto done;
4550
4551 /* Do common optimization before assigning storage for attributes,
4552 * uniforms, and varyings. Later optimization could possibly make
4553 * some of that unused.
4554 */
4555 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4556 if (prog->_LinkedShaders[i] == NULL)
4557 continue;
4558
4559 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4560 if (!prog->LinkStatus)
4561 goto done;
4562
4563 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
4564 lower_clip_distance(prog->_LinkedShaders[i]);
4565 }
4566
4567 if (ctx->Const.LowerTessLevel) {
4568 lower_tess_level(prog->_LinkedShaders[i]);
4569 }
4570
4571 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4572 &ctx->Const.ShaderCompilerOptions[i],
4573 ctx->Const.NativeIntegers))
4574 ;
4575
4576 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4577 }
4578
4579 /* Validation for special cases where we allow sampler array indexing
4580 * with loop induction variable. This check emits a warning or error
4581 * depending if backend can handle dynamic indexing.
4582 */
4583 if ((!prog->IsES && prog->Version < 130) ||
4584 (prog->IsES && prog->Version < 300)) {
4585 if (!validate_sampler_array_indexing(ctx, prog))
4586 goto done;
4587 }
4588
4589 /* Check and validate stream emissions in geometry shaders */
4590 validate_geometry_shader_emissions(ctx, prog);
4591
4592 /* Mark all generic shader inputs and outputs as unpaired. */
4593 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4594 if (prog->_LinkedShaders[i] != NULL) {
4595 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4596 }
4597 }
4598
4599 prev = first;
4600 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4601 if (prog->_LinkedShaders[i] == NULL)
4602 continue;
4603
4604 match_explicit_outputs_to_inputs(prog, prog->_LinkedShaders[prev],
4605 prog->_LinkedShaders[i]);
4606 prev = i;
4607 }
4608
4609 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4610 MESA_SHADER_VERTEX)) {
4611 goto done;
4612 }
4613
4614 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4615 MESA_SHADER_FRAGMENT)) {
4616 goto done;
4617 }
4618
4619 /* From the ARB_enhanced_layouts spec:
4620 *
4621 * "If the shader used to record output variables for transform feedback
4622 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4623 * qualifiers, the values specified by TransformFeedbackVaryings are
4624 * ignored, and the set of variables captured for transform feedback is
4625 * instead derived from the specified layout qualifiers."
4626 */
4627 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4628 /* Find last stage before fragment shader */
4629 if (prog->_LinkedShaders[i]) {
4630 has_xfb_qualifiers =
4631 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4632 &num_tfeedback_decls,
4633 &varying_names);
4634 break;
4635 }
4636 }
4637
4638 if (!has_xfb_qualifiers) {
4639 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4640 varying_names = prog->TransformFeedback.VaryingNames;
4641 }
4642
4643 if (num_tfeedback_decls != 0) {
4644 /* From GL_EXT_transform_feedback:
4645 * A program will fail to link if:
4646 *
4647 * * the <count> specified by TransformFeedbackVaryingsEXT is
4648 * non-zero, but the program object has no vertex or geometry
4649 * shader;
4650 */
4651 if (first >= MESA_SHADER_FRAGMENT) {
4652 linker_error(prog, "Transform feedback varyings specified, but "
4653 "no vertex, tessellation, or geometry shader is "
4654 "present.\n");
4655 goto done;
4656 }
4657
4658 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4659 num_tfeedback_decls);
4660 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4661 varying_names, tfeedback_decls))
4662 goto done;
4663 }
4664
4665 /* If there is no fragment shader we need to set transform feedback.
4666 *
4667 * For SSO we need also need to assign output locations, we assign them
4668 * here because we need to do it for both single stage programs and multi
4669 * stage programs.
4670 */
4671 if (last < MESA_SHADER_FRAGMENT &&
4672 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4673 if (!assign_varying_locations(ctx, mem_ctx, prog,
4674 prog->_LinkedShaders[last], NULL,
4675 num_tfeedback_decls, tfeedback_decls))
4676 goto done;
4677 }
4678
4679 if (last <= MESA_SHADER_FRAGMENT) {
4680 /* Remove unused varyings from the first/last stage unless SSO */
4681 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4682 prog->_LinkedShaders[first],
4683 ir_var_shader_in);
4684 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4685 prog->_LinkedShaders[last],
4686 ir_var_shader_out);
4687
4688 /* If the program is made up of only a single stage */
4689 if (first == last) {
4690
4691 gl_shader *const sh = prog->_LinkedShaders[last];
4692 if (prog->SeparateShader) {
4693 /* Assign input locations for SSO, output locations are already
4694 * assigned.
4695 */
4696 if (!assign_varying_locations(ctx, mem_ctx, prog,
4697 NULL /* producer */,
4698 sh /* consumer */,
4699 0 /* num_tfeedback_decls */,
4700 NULL /* tfeedback_decls */))
4701 goto done;
4702 }
4703
4704 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4705 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4706 tfeedback_decls);
4707 } else {
4708 /* Linking the stages in the opposite order (from fragment to vertex)
4709 * ensures that inter-shader outputs written to in an earlier stage
4710 * are eliminated if they are (transitively) not used in a later
4711 * stage.
4712 */
4713 int next = last;
4714 for (int i = next - 1; i >= 0; i--) {
4715 if (prog->_LinkedShaders[i] == NULL)
4716 continue;
4717
4718 gl_shader *const sh_i = prog->_LinkedShaders[i];
4719 gl_shader *const sh_next = prog->_LinkedShaders[next];
4720
4721 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4722 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4723 tfeedback_decls))
4724 goto done;
4725
4726 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4727 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4728 tfeedback_decls);
4729
4730 /* This must be done after all dead varyings are eliminated. */
4731 if (!check_against_output_limit(ctx, prog, sh_i))
4732 goto done;
4733 if (!check_against_input_limit(ctx, prog, sh_next))
4734 goto done;
4735
4736 next = i;
4737 }
4738 }
4739 }
4740
4741 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4742 has_xfb_qualifiers))
4743 goto done;
4744
4745 update_array_sizes(prog);
4746 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue,
4747 num_explicit_uniform_locs,
4748 ctx->Const.MaxUserAssignableUniformLocations);
4749 link_assign_atomic_counter_resources(ctx, prog);
4750 store_fragdepth_layout(prog);
4751
4752 link_calculate_subroutine_compat(prog);
4753 check_resources(ctx, prog);
4754 check_subroutine_resources(prog);
4755 check_image_resources(ctx, prog);
4756 link_check_atomic_counter_resources(ctx, prog);
4757
4758 if (!prog->LinkStatus)
4759 goto done;
4760
4761 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4762 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4763 * anything about shader linking when one of the shaders (vertex or
4764 * fragment shader) is absent. So, the extension shouldn't change the
4765 * behavior specified in GLSL specification.
4766 *
4767 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4768 * "Linking can fail for a variety of reasons as specified in the
4769 * OpenGL ES Shading Language Specification, as well as any of the
4770 * following reasons:
4771 *
4772 * ...
4773 *
4774 * * program contains objects to form either a vertex shader or
4775 * fragment shader, and program is not separable, and does not
4776 * contain objects to form both a vertex shader and fragment
4777 * shader."
4778 *
4779 * However, the only scenario in 3.1+ where we don't require them both is
4780 * when we have a compute shader. For example:
4781 *
4782 * - No shaders is a link error.
4783 * - Geom or Tess without a Vertex shader is a link error which means we
4784 * always require a Vertex shader and hence a Fragment shader.
4785 * - Finally a Compute shader linked with any other stage is a link error.
4786 */
4787 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4788 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4789 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4790 linker_error(prog, "program lacks a vertex shader\n");
4791 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4792 linker_error(prog, "program lacks a fragment shader\n");
4793 }
4794 }
4795
4796 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4797 if (prog->_LinkedShaders[i] == NULL)
4798 continue;
4799
4800 if (ctx->Const.ShaderCompilerOptions[i].LowerBufferInterfaceBlocks)
4801 lower_ubo_reference(prog->_LinkedShaders[i]);
4802
4803 if (ctx->Const.ShaderCompilerOptions[i].LowerShaderSharedVariables)
4804 lower_shared_reference(prog->_LinkedShaders[i],
4805 &prog->Comp.SharedSize);
4806
4807 lower_vector_derefs(prog->_LinkedShaders[i]);
4808 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4809 }
4810
4811 done:
4812 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4813 free(shader_list[i]);
4814 if (prog->_LinkedShaders[i] == NULL)
4815 continue;
4816
4817 /* Do a final validation step to make sure that the IR wasn't
4818 * invalidated by any modifications performed after intrastage linking.
4819 */
4820 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4821
4822 /* Retain any live IR, but trash the rest. */
4823 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4824
4825 /* The symbol table in the linked shaders may contain references to
4826 * variables that were removed (e.g., unused uniforms). Since it may
4827 * contain junk, there is no possible valid use. Delete it and set the
4828 * pointer to NULL.
4829 */
4830 delete prog->_LinkedShaders[i]->symbols;
4831 prog->_LinkedShaders[i]->symbols = NULL;
4832 }
4833
4834 ralloc_free(mem_ctx);
4835 }