141bf4303704e5664aa4b4e6a258d472f48644ed
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = linking_failure;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 linker_error(prog, "declarations for %s `%s` have "
1125 "mismatching precision qualifiers\n",
1126 mode_string(var), var->name);
1127 return;
1128 }
1129 } else
1130 variables->add_variable(var);
1131 }
1132 }
1133
1134
1135 /**
1136 * Perform validation of uniforms used across multiple shader stages
1137 */
1138 static void
1139 cross_validate_uniforms(struct gl_shader_program *prog)
1140 {
1141 glsl_symbol_table variables;
1142 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1143 if (prog->_LinkedShaders[i] == NULL)
1144 continue;
1145
1146 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1147 true);
1148 }
1149 }
1150
1151 /**
1152 * Accumulates the array of buffer blocks and checks that all definitions of
1153 * blocks agree on their contents.
1154 */
1155 static bool
1156 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1157 bool validate_ssbo)
1158 {
1159 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1160 struct gl_uniform_block *blks = NULL;
1161 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1162 &prog->data->NumUniformBlocks;
1163
1164 unsigned max_num_buffer_blocks = 0;
1165 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1166 if (prog->_LinkedShaders[i]) {
1167 if (validate_ssbo) {
1168 max_num_buffer_blocks +=
1169 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1170 } else {
1171 max_num_buffer_blocks +=
1172 prog->_LinkedShaders[i]->Program->info.num_ubos;
1173 }
1174 }
1175 }
1176
1177 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1178 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1179
1180 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1181 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1182 InterfaceBlockStageIndex[i][j] = -1;
1183
1184 if (sh == NULL)
1185 continue;
1186
1187 unsigned sh_num_blocks;
1188 struct gl_uniform_block **sh_blks;
1189 if (validate_ssbo) {
1190 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1191 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1192 } else {
1193 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1194 sh_blks = sh->Program->sh.UniformBlocks;
1195 }
1196
1197 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1198 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1199 sh_blks[j]);
1200
1201 if (index == -1) {
1202 linker_error(prog, "buffer block `%s' has mismatching "
1203 "definitions\n", sh_blks[j]->Name);
1204
1205 for (unsigned k = 0; k <= i; k++) {
1206 delete[] InterfaceBlockStageIndex[k];
1207 }
1208
1209 /* Reset the block count. This will help avoid various segfaults
1210 * from api calls that assume the array exists due to the count
1211 * being non-zero.
1212 */
1213 *num_blks = 0;
1214 return false;
1215 }
1216
1217 InterfaceBlockStageIndex[i][index] = j;
1218 }
1219 }
1220
1221 /* Update per stage block pointers to point to the program list.
1222 * FIXME: We should be able to free the per stage blocks here.
1223 */
1224 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1225 for (unsigned j = 0; j < *num_blks; j++) {
1226 int stage_index = InterfaceBlockStageIndex[i][j];
1227
1228 if (stage_index != -1) {
1229 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1230
1231 struct gl_uniform_block **sh_blks = validate_ssbo ?
1232 sh->Program->sh.ShaderStorageBlocks :
1233 sh->Program->sh.UniformBlocks;
1234
1235 blks[j].stageref |= sh_blks[stage_index]->stageref;
1236 sh_blks[stage_index] = &blks[j];
1237 }
1238 }
1239 }
1240
1241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1242 delete[] InterfaceBlockStageIndex[i];
1243 }
1244
1245 if (validate_ssbo)
1246 prog->data->ShaderStorageBlocks = blks;
1247 else
1248 prog->data->UniformBlocks = blks;
1249
1250 return true;
1251 }
1252
1253
1254 /**
1255 * Populates a shaders symbol table with all global declarations
1256 */
1257 static void
1258 populate_symbol_table(gl_linked_shader *sh)
1259 {
1260 sh->symbols = new(sh) glsl_symbol_table;
1261
1262 foreach_in_list(ir_instruction, inst, sh->ir) {
1263 ir_variable *var;
1264 ir_function *func;
1265
1266 if ((func = inst->as_function()) != NULL) {
1267 sh->symbols->add_function(func);
1268 } else if ((var = inst->as_variable()) != NULL) {
1269 if (var->data.mode != ir_var_temporary)
1270 sh->symbols->add_variable(var);
1271 }
1272 }
1273 }
1274
1275
1276 /**
1277 * Remap variables referenced in an instruction tree
1278 *
1279 * This is used when instruction trees are cloned from one shader and placed in
1280 * another. These trees will contain references to \c ir_variable nodes that
1281 * do not exist in the target shader. This function finds these \c ir_variable
1282 * references and replaces the references with matching variables in the target
1283 * shader.
1284 *
1285 * If there is no matching variable in the target shader, a clone of the
1286 * \c ir_variable is made and added to the target shader. The new variable is
1287 * added to \b both the instruction stream and the symbol table.
1288 *
1289 * \param inst IR tree that is to be processed.
1290 * \param symbols Symbol table containing global scope symbols in the
1291 * linked shader.
1292 * \param instructions Instruction stream where new variable declarations
1293 * should be added.
1294 */
1295 static void
1296 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1297 hash_table *temps)
1298 {
1299 class remap_visitor : public ir_hierarchical_visitor {
1300 public:
1301 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1302 {
1303 this->target = target;
1304 this->symbols = target->symbols;
1305 this->instructions = target->ir;
1306 this->temps = temps;
1307 }
1308
1309 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1310 {
1311 if (ir->var->data.mode == ir_var_temporary) {
1312 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1313 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1314
1315 assert(var != NULL);
1316 ir->var = var;
1317 return visit_continue;
1318 }
1319
1320 ir_variable *const existing =
1321 this->symbols->get_variable(ir->var->name);
1322 if (existing != NULL)
1323 ir->var = existing;
1324 else {
1325 ir_variable *copy = ir->var->clone(this->target, NULL);
1326
1327 this->symbols->add_variable(copy);
1328 this->instructions->push_head(copy);
1329 ir->var = copy;
1330 }
1331
1332 return visit_continue;
1333 }
1334
1335 private:
1336 struct gl_linked_shader *target;
1337 glsl_symbol_table *symbols;
1338 exec_list *instructions;
1339 hash_table *temps;
1340 };
1341
1342 remap_visitor v(target, temps);
1343
1344 inst->accept(&v);
1345 }
1346
1347
1348 /**
1349 * Move non-declarations from one instruction stream to another
1350 *
1351 * The intended usage pattern of this function is to pass the pointer to the
1352 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1353 * pointer) for \c last and \c false for \c make_copies on the first
1354 * call. Successive calls pass the return value of the previous call for
1355 * \c last and \c true for \c make_copies.
1356 *
1357 * \param instructions Source instruction stream
1358 * \param last Instruction after which new instructions should be
1359 * inserted in the target instruction stream
1360 * \param make_copies Flag selecting whether instructions in \c instructions
1361 * should be copied (via \c ir_instruction::clone) into the
1362 * target list or moved.
1363 *
1364 * \return
1365 * The new "last" instruction in the target instruction stream. This pointer
1366 * is suitable for use as the \c last parameter of a later call to this
1367 * function.
1368 */
1369 static exec_node *
1370 move_non_declarations(exec_list *instructions, exec_node *last,
1371 bool make_copies, gl_linked_shader *target)
1372 {
1373 hash_table *temps = NULL;
1374
1375 if (make_copies)
1376 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1377 _mesa_key_pointer_equal);
1378
1379 foreach_in_list_safe(ir_instruction, inst, instructions) {
1380 if (inst->as_function())
1381 continue;
1382
1383 ir_variable *var = inst->as_variable();
1384 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1385 continue;
1386
1387 assert(inst->as_assignment()
1388 || inst->as_call()
1389 || inst->as_if() /* for initializers with the ?: operator */
1390 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1391
1392 if (make_copies) {
1393 inst = inst->clone(target, NULL);
1394
1395 if (var != NULL)
1396 _mesa_hash_table_insert(temps, var, inst);
1397 else
1398 remap_variables(inst, target, temps);
1399 } else {
1400 inst->remove();
1401 }
1402
1403 last->insert_after(inst);
1404 last = inst;
1405 }
1406
1407 if (make_copies)
1408 _mesa_hash_table_destroy(temps, NULL);
1409
1410 return last;
1411 }
1412
1413
1414 /**
1415 * This class is only used in link_intrastage_shaders() below but declaring
1416 * it inside that function leads to compiler warnings with some versions of
1417 * gcc.
1418 */
1419 class array_sizing_visitor : public deref_type_updater {
1420 public:
1421 array_sizing_visitor()
1422 : mem_ctx(ralloc_context(NULL)),
1423 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1424 _mesa_key_pointer_equal))
1425 {
1426 }
1427
1428 ~array_sizing_visitor()
1429 {
1430 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1431 ralloc_free(this->mem_ctx);
1432 }
1433
1434 virtual ir_visitor_status visit(ir_variable *var)
1435 {
1436 const glsl_type *type_without_array;
1437 bool implicit_sized_array = var->data.implicit_sized_array;
1438 fixup_type(&var->type, var->data.max_array_access,
1439 var->data.from_ssbo_unsized_array,
1440 &implicit_sized_array);
1441 var->data.implicit_sized_array = implicit_sized_array;
1442 type_without_array = var->type->without_array();
1443 if (var->type->is_interface()) {
1444 if (interface_contains_unsized_arrays(var->type)) {
1445 const glsl_type *new_type =
1446 resize_interface_members(var->type,
1447 var->get_max_ifc_array_access(),
1448 var->is_in_shader_storage_block());
1449 var->type = new_type;
1450 var->change_interface_type(new_type);
1451 }
1452 } else if (type_without_array->is_interface()) {
1453 if (interface_contains_unsized_arrays(type_without_array)) {
1454 const glsl_type *new_type =
1455 resize_interface_members(type_without_array,
1456 var->get_max_ifc_array_access(),
1457 var->is_in_shader_storage_block());
1458 var->change_interface_type(new_type);
1459 var->type = update_interface_members_array(var->type, new_type);
1460 }
1461 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1462 /* Store a pointer to the variable in the unnamed_interfaces
1463 * hashtable.
1464 */
1465 hash_entry *entry =
1466 _mesa_hash_table_search(this->unnamed_interfaces,
1467 ifc_type);
1468
1469 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1470
1471 if (interface_vars == NULL) {
1472 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1473 ifc_type->length);
1474 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1475 interface_vars);
1476 }
1477 unsigned index = ifc_type->field_index(var->name);
1478 assert(index < ifc_type->length);
1479 assert(interface_vars[index] == NULL);
1480 interface_vars[index] = var;
1481 }
1482 return visit_continue;
1483 }
1484
1485 /**
1486 * For each unnamed interface block that was discovered while running the
1487 * visitor, adjust the interface type to reflect the newly assigned array
1488 * sizes, and fix up the ir_variable nodes to point to the new interface
1489 * type.
1490 */
1491 void fixup_unnamed_interface_types()
1492 {
1493 hash_table_call_foreach(this->unnamed_interfaces,
1494 fixup_unnamed_interface_type, NULL);
1495 }
1496
1497 private:
1498 /**
1499 * If the type pointed to by \c type represents an unsized array, replace
1500 * it with a sized array whose size is determined by max_array_access.
1501 */
1502 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1503 bool from_ssbo_unsized_array, bool *implicit_sized)
1504 {
1505 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1506 *type = glsl_type::get_array_instance((*type)->fields.array,
1507 max_array_access + 1);
1508 *implicit_sized = true;
1509 assert(*type != NULL);
1510 }
1511 }
1512
1513 static const glsl_type *
1514 update_interface_members_array(const glsl_type *type,
1515 const glsl_type *new_interface_type)
1516 {
1517 const glsl_type *element_type = type->fields.array;
1518 if (element_type->is_array()) {
1519 const glsl_type *new_array_type =
1520 update_interface_members_array(element_type, new_interface_type);
1521 return glsl_type::get_array_instance(new_array_type, type->length);
1522 } else {
1523 return glsl_type::get_array_instance(new_interface_type,
1524 type->length);
1525 }
1526 }
1527
1528 /**
1529 * Determine whether the given interface type contains unsized arrays (if
1530 * it doesn't, array_sizing_visitor doesn't need to process it).
1531 */
1532 static bool interface_contains_unsized_arrays(const glsl_type *type)
1533 {
1534 for (unsigned i = 0; i < type->length; i++) {
1535 const glsl_type *elem_type = type->fields.structure[i].type;
1536 if (elem_type->is_unsized_array())
1537 return true;
1538 }
1539 return false;
1540 }
1541
1542 /**
1543 * Create a new interface type based on the given type, with unsized arrays
1544 * replaced by sized arrays whose size is determined by
1545 * max_ifc_array_access.
1546 */
1547 static const glsl_type *
1548 resize_interface_members(const glsl_type *type,
1549 const int *max_ifc_array_access,
1550 bool is_ssbo)
1551 {
1552 unsigned num_fields = type->length;
1553 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1554 memcpy(fields, type->fields.structure,
1555 num_fields * sizeof(*fields));
1556 for (unsigned i = 0; i < num_fields; i++) {
1557 bool implicit_sized_array = fields[i].implicit_sized_array;
1558 /* If SSBO last member is unsized array, we don't replace it by a sized
1559 * array.
1560 */
1561 if (is_ssbo && i == (num_fields - 1))
1562 fixup_type(&fields[i].type, max_ifc_array_access[i],
1563 true, &implicit_sized_array);
1564 else
1565 fixup_type(&fields[i].type, max_ifc_array_access[i],
1566 false, &implicit_sized_array);
1567 fields[i].implicit_sized_array = implicit_sized_array;
1568 }
1569 glsl_interface_packing packing =
1570 (glsl_interface_packing) type->interface_packing;
1571 bool row_major = (bool) type->interface_row_major;
1572 const glsl_type *new_ifc_type =
1573 glsl_type::get_interface_instance(fields, num_fields,
1574 packing, row_major, type->name);
1575 delete [] fields;
1576 return new_ifc_type;
1577 }
1578
1579 static void fixup_unnamed_interface_type(const void *key, void *data,
1580 void *)
1581 {
1582 const glsl_type *ifc_type = (const glsl_type *) key;
1583 ir_variable **interface_vars = (ir_variable **) data;
1584 unsigned num_fields = ifc_type->length;
1585 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1586 memcpy(fields, ifc_type->fields.structure,
1587 num_fields * sizeof(*fields));
1588 bool interface_type_changed = false;
1589 for (unsigned i = 0; i < num_fields; i++) {
1590 if (interface_vars[i] != NULL &&
1591 fields[i].type != interface_vars[i]->type) {
1592 fields[i].type = interface_vars[i]->type;
1593 interface_type_changed = true;
1594 }
1595 }
1596 if (!interface_type_changed) {
1597 delete [] fields;
1598 return;
1599 }
1600 glsl_interface_packing packing =
1601 (glsl_interface_packing) ifc_type->interface_packing;
1602 bool row_major = (bool) ifc_type->interface_row_major;
1603 const glsl_type *new_ifc_type =
1604 glsl_type::get_interface_instance(fields, num_fields, packing,
1605 row_major, ifc_type->name);
1606 delete [] fields;
1607 for (unsigned i = 0; i < num_fields; i++) {
1608 if (interface_vars[i] != NULL)
1609 interface_vars[i]->change_interface_type(new_ifc_type);
1610 }
1611 }
1612
1613 /**
1614 * Memory context used to allocate the data in \c unnamed_interfaces.
1615 */
1616 void *mem_ctx;
1617
1618 /**
1619 * Hash table from const glsl_type * to an array of ir_variable *'s
1620 * pointing to the ir_variables constituting each unnamed interface block.
1621 */
1622 hash_table *unnamed_interfaces;
1623 };
1624
1625 static bool
1626 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1627 struct gl_shader_program *prog)
1628 {
1629 /* We will validate doubles at a later stage */
1630 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1631 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1632 "multiple of 4 or if its applied to a type that is "
1633 "or contains a double a multiple of 8.",
1634 prog->TransformFeedback.BufferStride[idx]);
1635 return false;
1636 }
1637
1638 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1639 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1640 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1641 "limit has been exceeded.");
1642 return false;
1643 }
1644
1645 return true;
1646 }
1647
1648 /**
1649 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1650 * for later use.
1651 */
1652 static void
1653 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1654 struct gl_shader_program *prog,
1655 struct gl_shader **shader_list,
1656 unsigned num_shaders)
1657 {
1658 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1659 prog->TransformFeedback.BufferStride[i] = 0;
1660 }
1661
1662 for (unsigned i = 0; i < num_shaders; i++) {
1663 struct gl_shader *shader = shader_list[i];
1664
1665 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1666 if (shader->TransformFeedbackBufferStride[j]) {
1667 if (prog->TransformFeedback.BufferStride[j] == 0) {
1668 prog->TransformFeedback.BufferStride[j] =
1669 shader->TransformFeedbackBufferStride[j];
1670 if (!validate_xfb_buffer_stride(ctx, j, prog))
1671 return;
1672 } else if (prog->TransformFeedback.BufferStride[j] !=
1673 shader->TransformFeedbackBufferStride[j]){
1674 linker_error(prog,
1675 "intrastage shaders defined with conflicting "
1676 "xfb_stride for buffer %d (%d and %d)\n", j,
1677 prog->TransformFeedback.BufferStride[j],
1678 shader->TransformFeedbackBufferStride[j]);
1679 return;
1680 }
1681 }
1682 }
1683 }
1684 }
1685
1686 /**
1687 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1688 * global scope.
1689 */
1690 static void
1691 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1692 struct gl_shader **shader_list,
1693 unsigned num_shaders)
1694 {
1695 bool bindless_sampler, bindless_image;
1696 bool bound_sampler, bound_image;
1697
1698 bindless_sampler = bindless_image = false;
1699 bound_sampler = bound_image = false;
1700
1701 for (unsigned i = 0; i < num_shaders; i++) {
1702 struct gl_shader *shader = shader_list[i];
1703
1704 if (shader->bindless_sampler)
1705 bindless_sampler = true;
1706 if (shader->bindless_image)
1707 bindless_image = true;
1708 if (shader->bound_sampler)
1709 bound_sampler = true;
1710 if (shader->bound_image)
1711 bound_image = true;
1712
1713 if ((bindless_sampler && bound_sampler) ||
1714 (bindless_image && bound_image)) {
1715 /* From section 4.4.6 of the ARB_bindless_texture spec:
1716 *
1717 * "If both bindless_sampler and bound_sampler, or bindless_image
1718 * and bound_image, are declared at global scope in any
1719 * compilation unit, a link- time error will be generated."
1720 */
1721 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1722 "bindless_image and bound_image, can't be declared at "
1723 "global scope");
1724 }
1725 }
1726 }
1727
1728 /**
1729 * Performs the cross-validation of tessellation control shader vertices and
1730 * layout qualifiers for the attached tessellation control shaders,
1731 * and propagates them to the linked TCS and linked shader program.
1732 */
1733 static void
1734 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1735 struct gl_program *gl_prog,
1736 struct gl_shader **shader_list,
1737 unsigned num_shaders)
1738 {
1739 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1740 return;
1741
1742 gl_prog->info.tess.tcs_vertices_out = 0;
1743
1744 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1745 *
1746 * "All tessellation control shader layout declarations in a program
1747 * must specify the same output patch vertex count. There must be at
1748 * least one layout qualifier specifying an output patch vertex count
1749 * in any program containing tessellation control shaders; however,
1750 * such a declaration is not required in all tessellation control
1751 * shaders."
1752 */
1753
1754 for (unsigned i = 0; i < num_shaders; i++) {
1755 struct gl_shader *shader = shader_list[i];
1756
1757 if (shader->info.TessCtrl.VerticesOut != 0) {
1758 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1759 gl_prog->info.tess.tcs_vertices_out !=
1760 (unsigned) shader->info.TessCtrl.VerticesOut) {
1761 linker_error(prog, "tessellation control shader defined with "
1762 "conflicting output vertex count (%d and %d)\n",
1763 gl_prog->info.tess.tcs_vertices_out,
1764 shader->info.TessCtrl.VerticesOut);
1765 return;
1766 }
1767 gl_prog->info.tess.tcs_vertices_out =
1768 shader->info.TessCtrl.VerticesOut;
1769 }
1770 }
1771
1772 /* Just do the intrastage -> interstage propagation right now,
1773 * since we already know we're in the right type of shader program
1774 * for doing it.
1775 */
1776 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1777 linker_error(prog, "tessellation control shader didn't declare "
1778 "vertices out layout qualifier\n");
1779 return;
1780 }
1781 }
1782
1783
1784 /**
1785 * Performs the cross-validation of tessellation evaluation shader
1786 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1787 * for the attached tessellation evaluation shaders, and propagates them
1788 * to the linked TES and linked shader program.
1789 */
1790 static void
1791 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1792 struct gl_program *gl_prog,
1793 struct gl_shader **shader_list,
1794 unsigned num_shaders)
1795 {
1796 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1797 return;
1798
1799 int point_mode = -1;
1800 unsigned vertex_order = 0;
1801
1802 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1803 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1804
1805 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1806 *
1807 * "At least one tessellation evaluation shader (compilation unit) in
1808 * a program must declare a primitive mode in its input layout.
1809 * Declaration vertex spacing, ordering, and point mode identifiers is
1810 * optional. It is not required that all tessellation evaluation
1811 * shaders in a program declare a primitive mode. If spacing or
1812 * vertex ordering declarations are omitted, the tessellation
1813 * primitive generator will use equal spacing or counter-clockwise
1814 * vertex ordering, respectively. If a point mode declaration is
1815 * omitted, the tessellation primitive generator will produce lines or
1816 * triangles according to the primitive mode."
1817 */
1818
1819 for (unsigned i = 0; i < num_shaders; i++) {
1820 struct gl_shader *shader = shader_list[i];
1821
1822 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1823 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1824 gl_prog->info.tess.primitive_mode !=
1825 shader->info.TessEval.PrimitiveMode) {
1826 linker_error(prog, "tessellation evaluation shader defined with "
1827 "conflicting input primitive modes.\n");
1828 return;
1829 }
1830 gl_prog->info.tess.primitive_mode =
1831 shader->info.TessEval.PrimitiveMode;
1832 }
1833
1834 if (shader->info.TessEval.Spacing != 0) {
1835 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1836 shader->info.TessEval.Spacing) {
1837 linker_error(prog, "tessellation evaluation shader defined with "
1838 "conflicting vertex spacing.\n");
1839 return;
1840 }
1841 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1842 }
1843
1844 if (shader->info.TessEval.VertexOrder != 0) {
1845 if (vertex_order != 0 &&
1846 vertex_order != shader->info.TessEval.VertexOrder) {
1847 linker_error(prog, "tessellation evaluation shader defined with "
1848 "conflicting ordering.\n");
1849 return;
1850 }
1851 vertex_order = shader->info.TessEval.VertexOrder;
1852 }
1853
1854 if (shader->info.TessEval.PointMode != -1) {
1855 if (point_mode != -1 &&
1856 point_mode != shader->info.TessEval.PointMode) {
1857 linker_error(prog, "tessellation evaluation shader defined with "
1858 "conflicting point modes.\n");
1859 return;
1860 }
1861 point_mode = shader->info.TessEval.PointMode;
1862 }
1863
1864 }
1865
1866 /* Just do the intrastage -> interstage propagation right now,
1867 * since we already know we're in the right type of shader program
1868 * for doing it.
1869 */
1870 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1871 linker_error(prog,
1872 "tessellation evaluation shader didn't declare input "
1873 "primitive modes.\n");
1874 return;
1875 }
1876
1877 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1878 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1879
1880 if (vertex_order == 0 || vertex_order == GL_CCW)
1881 gl_prog->info.tess.ccw = true;
1882 else
1883 gl_prog->info.tess.ccw = false;
1884
1885
1886 if (point_mode == -1 || point_mode == GL_FALSE)
1887 gl_prog->info.tess.point_mode = false;
1888 else
1889 gl_prog->info.tess.point_mode = true;
1890 }
1891
1892
1893 /**
1894 * Performs the cross-validation of layout qualifiers specified in
1895 * redeclaration of gl_FragCoord for the attached fragment shaders,
1896 * and propagates them to the linked FS and linked shader program.
1897 */
1898 static void
1899 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1900 struct gl_linked_shader *linked_shader,
1901 struct gl_shader **shader_list,
1902 unsigned num_shaders)
1903 {
1904 bool redeclares_gl_fragcoord = false;
1905 bool uses_gl_fragcoord = false;
1906 bool origin_upper_left = false;
1907 bool pixel_center_integer = false;
1908
1909 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1910 (prog->data->Version < 150 &&
1911 !prog->ARB_fragment_coord_conventions_enable))
1912 return;
1913
1914 for (unsigned i = 0; i < num_shaders; i++) {
1915 struct gl_shader *shader = shader_list[i];
1916 /* From the GLSL 1.50 spec, page 39:
1917 *
1918 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1919 * it must be redeclared in all the fragment shaders in that program
1920 * that have a static use gl_FragCoord."
1921 */
1922 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1923 shader->uses_gl_fragcoord)
1924 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1925 uses_gl_fragcoord)) {
1926 linker_error(prog, "fragment shader defined with conflicting "
1927 "layout qualifiers for gl_FragCoord\n");
1928 }
1929
1930 /* From the GLSL 1.50 spec, page 39:
1931 *
1932 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1933 * single program must have the same set of qualifiers."
1934 */
1935 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1936 (shader->origin_upper_left != origin_upper_left ||
1937 shader->pixel_center_integer != pixel_center_integer)) {
1938 linker_error(prog, "fragment shader defined with conflicting "
1939 "layout qualifiers for gl_FragCoord\n");
1940 }
1941
1942 /* Update the linked shader state. Note that uses_gl_fragcoord should
1943 * accumulate the results. The other values should replace. If there
1944 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1945 * are already known to be the same.
1946 */
1947 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1948 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1949 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1950 origin_upper_left = shader->origin_upper_left;
1951 pixel_center_integer = shader->pixel_center_integer;
1952 }
1953
1954 linked_shader->Program->info.fs.early_fragment_tests |=
1955 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1956 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1957 linked_shader->Program->info.fs.post_depth_coverage |=
1958 shader->PostDepthCoverage;
1959
1960 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1961 }
1962 }
1963
1964 /**
1965 * Performs the cross-validation of geometry shader max_vertices and
1966 * primitive type layout qualifiers for the attached geometry shaders,
1967 * and propagates them to the linked GS and linked shader program.
1968 */
1969 static void
1970 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1971 struct gl_program *gl_prog,
1972 struct gl_shader **shader_list,
1973 unsigned num_shaders)
1974 {
1975 /* No in/out qualifiers defined for anything but GLSL 1.50+
1976 * geometry shaders so far.
1977 */
1978 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1979 prog->data->Version < 150)
1980 return;
1981
1982 int vertices_out = -1;
1983
1984 gl_prog->info.gs.invocations = 0;
1985 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1986 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1987
1988 /* From the GLSL 1.50 spec, page 46:
1989 *
1990 * "All geometry shader output layout declarations in a program
1991 * must declare the same layout and same value for
1992 * max_vertices. There must be at least one geometry output
1993 * layout declaration somewhere in a program, but not all
1994 * geometry shaders (compilation units) are required to
1995 * declare it."
1996 */
1997
1998 for (unsigned i = 0; i < num_shaders; i++) {
1999 struct gl_shader *shader = shader_list[i];
2000
2001 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2002 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2003 gl_prog->info.gs.input_primitive !=
2004 shader->info.Geom.InputType) {
2005 linker_error(prog, "geometry shader defined with conflicting "
2006 "input types\n");
2007 return;
2008 }
2009 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2010 }
2011
2012 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2013 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2014 gl_prog->info.gs.output_primitive !=
2015 shader->info.Geom.OutputType) {
2016 linker_error(prog, "geometry shader defined with conflicting "
2017 "output types\n");
2018 return;
2019 }
2020 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2021 }
2022
2023 if (shader->info.Geom.VerticesOut != -1) {
2024 if (vertices_out != -1 &&
2025 vertices_out != shader->info.Geom.VerticesOut) {
2026 linker_error(prog, "geometry shader defined with conflicting "
2027 "output vertex count (%d and %d)\n",
2028 vertices_out, shader->info.Geom.VerticesOut);
2029 return;
2030 }
2031 vertices_out = shader->info.Geom.VerticesOut;
2032 }
2033
2034 if (shader->info.Geom.Invocations != 0) {
2035 if (gl_prog->info.gs.invocations != 0 &&
2036 gl_prog->info.gs.invocations !=
2037 (unsigned) shader->info.Geom.Invocations) {
2038 linker_error(prog, "geometry shader defined with conflicting "
2039 "invocation count (%d and %d)\n",
2040 gl_prog->info.gs.invocations,
2041 shader->info.Geom.Invocations);
2042 return;
2043 }
2044 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2045 }
2046 }
2047
2048 /* Just do the intrastage -> interstage propagation right now,
2049 * since we already know we're in the right type of shader program
2050 * for doing it.
2051 */
2052 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2053 linker_error(prog,
2054 "geometry shader didn't declare primitive input type\n");
2055 return;
2056 }
2057
2058 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2059 linker_error(prog,
2060 "geometry shader didn't declare primitive output type\n");
2061 return;
2062 }
2063
2064 if (vertices_out == -1) {
2065 linker_error(prog,
2066 "geometry shader didn't declare max_vertices\n");
2067 return;
2068 } else {
2069 gl_prog->info.gs.vertices_out = vertices_out;
2070 }
2071
2072 if (gl_prog->info.gs.invocations == 0)
2073 gl_prog->info.gs.invocations = 1;
2074 }
2075
2076
2077 /**
2078 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2079 * qualifiers for the attached compute shaders, and propagate them to the
2080 * linked CS and linked shader program.
2081 */
2082 static void
2083 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2084 struct gl_program *gl_prog,
2085 struct gl_shader **shader_list,
2086 unsigned num_shaders)
2087 {
2088 /* This function is called for all shader stages, but it only has an effect
2089 * for compute shaders.
2090 */
2091 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2092 return;
2093
2094 for (int i = 0; i < 3; i++)
2095 gl_prog->info.cs.local_size[i] = 0;
2096
2097 gl_prog->info.cs.local_size_variable = false;
2098
2099 /* From the ARB_compute_shader spec, in the section describing local size
2100 * declarations:
2101 *
2102 * If multiple compute shaders attached to a single program object
2103 * declare local work-group size, the declarations must be identical;
2104 * otherwise a link-time error results. Furthermore, if a program
2105 * object contains any compute shaders, at least one must contain an
2106 * input layout qualifier specifying the local work sizes of the
2107 * program, or a link-time error will occur.
2108 */
2109 for (unsigned sh = 0; sh < num_shaders; sh++) {
2110 struct gl_shader *shader = shader_list[sh];
2111
2112 if (shader->info.Comp.LocalSize[0] != 0) {
2113 if (gl_prog->info.cs.local_size[0] != 0) {
2114 for (int i = 0; i < 3; i++) {
2115 if (gl_prog->info.cs.local_size[i] !=
2116 shader->info.Comp.LocalSize[i]) {
2117 linker_error(prog, "compute shader defined with conflicting "
2118 "local sizes\n");
2119 return;
2120 }
2121 }
2122 }
2123 for (int i = 0; i < 3; i++) {
2124 gl_prog->info.cs.local_size[i] =
2125 shader->info.Comp.LocalSize[i];
2126 }
2127 } else if (shader->info.Comp.LocalSizeVariable) {
2128 if (gl_prog->info.cs.local_size[0] != 0) {
2129 /* The ARB_compute_variable_group_size spec says:
2130 *
2131 * If one compute shader attached to a program declares a
2132 * variable local group size and a second compute shader
2133 * attached to the same program declares a fixed local group
2134 * size, a link-time error results.
2135 */
2136 linker_error(prog, "compute shader defined with both fixed and "
2137 "variable local group size\n");
2138 return;
2139 }
2140 gl_prog->info.cs.local_size_variable = true;
2141 }
2142 }
2143
2144 /* Just do the intrastage -> interstage propagation right now,
2145 * since we already know we're in the right type of shader program
2146 * for doing it.
2147 */
2148 if (gl_prog->info.cs.local_size[0] == 0 &&
2149 !gl_prog->info.cs.local_size_variable) {
2150 linker_error(prog, "compute shader must contain a fixed or a variable "
2151 "local group size\n");
2152 return;
2153 }
2154 }
2155
2156
2157 /**
2158 * Combine a group of shaders for a single stage to generate a linked shader
2159 *
2160 * \note
2161 * If this function is supplied a single shader, it is cloned, and the new
2162 * shader is returned.
2163 */
2164 struct gl_linked_shader *
2165 link_intrastage_shaders(void *mem_ctx,
2166 struct gl_context *ctx,
2167 struct gl_shader_program *prog,
2168 struct gl_shader **shader_list,
2169 unsigned num_shaders,
2170 bool allow_missing_main)
2171 {
2172 struct gl_uniform_block *ubo_blocks = NULL;
2173 struct gl_uniform_block *ssbo_blocks = NULL;
2174 unsigned num_ubo_blocks = 0;
2175 unsigned num_ssbo_blocks = 0;
2176
2177 /* Check that global variables defined in multiple shaders are consistent.
2178 */
2179 glsl_symbol_table variables;
2180 for (unsigned i = 0; i < num_shaders; i++) {
2181 if (shader_list[i] == NULL)
2182 continue;
2183 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2184 }
2185
2186 if (!prog->data->LinkStatus)
2187 return NULL;
2188
2189 /* Check that interface blocks defined in multiple shaders are consistent.
2190 */
2191 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2192 num_shaders);
2193 if (!prog->data->LinkStatus)
2194 return NULL;
2195
2196 /* Check that there is only a single definition of each function signature
2197 * across all shaders.
2198 */
2199 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2200 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2201 ir_function *const f = node->as_function();
2202
2203 if (f == NULL)
2204 continue;
2205
2206 for (unsigned j = i + 1; j < num_shaders; j++) {
2207 ir_function *const other =
2208 shader_list[j]->symbols->get_function(f->name);
2209
2210 /* If the other shader has no function (and therefore no function
2211 * signatures) with the same name, skip to the next shader.
2212 */
2213 if (other == NULL)
2214 continue;
2215
2216 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2217 if (!sig->is_defined)
2218 continue;
2219
2220 ir_function_signature *other_sig =
2221 other->exact_matching_signature(NULL, &sig->parameters);
2222
2223 if (other_sig != NULL && other_sig->is_defined) {
2224 linker_error(prog, "function `%s' is multiply defined\n",
2225 f->name);
2226 return NULL;
2227 }
2228 }
2229 }
2230 }
2231 }
2232
2233 /* Find the shader that defines main, and make a clone of it.
2234 *
2235 * Starting with the clone, search for undefined references. If one is
2236 * found, find the shader that defines it. Clone the reference and add
2237 * it to the shader. Repeat until there are no undefined references or
2238 * until a reference cannot be resolved.
2239 */
2240 gl_shader *main = NULL;
2241 for (unsigned i = 0; i < num_shaders; i++) {
2242 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2243 main = shader_list[i];
2244 break;
2245 }
2246 }
2247
2248 if (main == NULL && allow_missing_main)
2249 main = shader_list[0];
2250
2251 if (main == NULL) {
2252 linker_error(prog, "%s shader lacks `main'\n",
2253 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2254 return NULL;
2255 }
2256
2257 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2258 linked->Stage = shader_list[0]->Stage;
2259
2260 /* Create program and attach it to the linked shader */
2261 struct gl_program *gl_prog =
2262 ctx->Driver.NewProgram(ctx,
2263 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2264 prog->Name, false);
2265 if (!gl_prog) {
2266 prog->data->LinkStatus = linking_failure;
2267 _mesa_delete_linked_shader(ctx, linked);
2268 return NULL;
2269 }
2270
2271 if (!prog->data->cache_fallback)
2272 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2273
2274 /* Don't use _mesa_reference_program() just take ownership */
2275 linked->Program = gl_prog;
2276
2277 linked->ir = new(linked) exec_list;
2278 clone_ir_list(mem_ctx, linked->ir, main->ir);
2279
2280 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2281 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2282 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2283 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2284 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2285
2286 if (linked->Stage != MESA_SHADER_FRAGMENT)
2287 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2288
2289 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2290
2291 populate_symbol_table(linked);
2292
2293 /* The pointer to the main function in the final linked shader (i.e., the
2294 * copy of the original shader that contained the main function).
2295 */
2296 ir_function_signature *const main_sig =
2297 _mesa_get_main_function_signature(linked->symbols);
2298
2299 /* Move any instructions other than variable declarations or function
2300 * declarations into main.
2301 */
2302 if (main_sig != NULL) {
2303 exec_node *insertion_point =
2304 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2305 linked);
2306
2307 for (unsigned i = 0; i < num_shaders; i++) {
2308 if (shader_list[i] == main)
2309 continue;
2310
2311 insertion_point = move_non_declarations(shader_list[i]->ir,
2312 insertion_point, true, linked);
2313 }
2314 }
2315
2316 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2317 _mesa_delete_linked_shader(ctx, linked);
2318 return NULL;
2319 }
2320
2321 /* Make a pass over all variable declarations to ensure that arrays with
2322 * unspecified sizes have a size specified. The size is inferred from the
2323 * max_array_access field.
2324 */
2325 array_sizing_visitor v;
2326 v.run(linked->ir);
2327 v.fixup_unnamed_interface_types();
2328
2329 if (!prog->data->cache_fallback) {
2330 /* Link up uniform blocks defined within this stage. */
2331 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2332 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2333
2334 if (!prog->data->LinkStatus) {
2335 _mesa_delete_linked_shader(ctx, linked);
2336 return NULL;
2337 }
2338
2339 /* Copy ubo blocks to linked shader list */
2340 linked->Program->sh.UniformBlocks =
2341 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2342 ralloc_steal(linked, ubo_blocks);
2343 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2344 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2345 }
2346 linked->Program->info.num_ubos = num_ubo_blocks;
2347
2348 /* Copy ssbo blocks to linked shader list */
2349 linked->Program->sh.ShaderStorageBlocks =
2350 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2351 ralloc_steal(linked, ssbo_blocks);
2352 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2353 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2354 }
2355 linked->Program->info.num_ssbos = num_ssbo_blocks;
2356 }
2357
2358 /* At this point linked should contain all of the linked IR, so
2359 * validate it to make sure nothing went wrong.
2360 */
2361 validate_ir_tree(linked->ir);
2362
2363 /* Set the size of geometry shader input arrays */
2364 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2365 unsigned num_vertices =
2366 vertices_per_prim(gl_prog->info.gs.input_primitive);
2367 array_resize_visitor input_resize_visitor(num_vertices, prog,
2368 MESA_SHADER_GEOMETRY);
2369 foreach_in_list(ir_instruction, ir, linked->ir) {
2370 ir->accept(&input_resize_visitor);
2371 }
2372 }
2373
2374 if (ctx->Const.VertexID_is_zero_based)
2375 lower_vertex_id(linked);
2376
2377 #ifdef DEBUG
2378 /* Compute the source checksum. */
2379 linked->SourceChecksum = 0;
2380 for (unsigned i = 0; i < num_shaders; i++) {
2381 if (shader_list[i] == NULL)
2382 continue;
2383 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2384 }
2385 #endif
2386
2387 return linked;
2388 }
2389
2390 /**
2391 * Update the sizes of linked shader uniform arrays to the maximum
2392 * array index used.
2393 *
2394 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2395 *
2396 * If one or more elements of an array are active,
2397 * GetActiveUniform will return the name of the array in name,
2398 * subject to the restrictions listed above. The type of the array
2399 * is returned in type. The size parameter contains the highest
2400 * array element index used, plus one. The compiler or linker
2401 * determines the highest index used. There will be only one
2402 * active uniform reported by the GL per uniform array.
2403
2404 */
2405 static void
2406 update_array_sizes(struct gl_shader_program *prog)
2407 {
2408 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2409 if (prog->_LinkedShaders[i] == NULL)
2410 continue;
2411
2412 bool types_were_updated = false;
2413
2414 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2415 ir_variable *const var = node->as_variable();
2416
2417 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2418 !var->type->is_array())
2419 continue;
2420
2421 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2422 * will not be eliminated. Since we always do std140, just
2423 * don't resize arrays in UBOs.
2424 *
2425 * Atomic counters are supposed to get deterministic
2426 * locations assigned based on the declaration ordering and
2427 * sizes, array compaction would mess that up.
2428 *
2429 * Subroutine uniforms are not removed.
2430 */
2431 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2432 var->type->contains_subroutine() || var->constant_initializer)
2433 continue;
2434
2435 int size = var->data.max_array_access;
2436 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2437 if (prog->_LinkedShaders[j] == NULL)
2438 continue;
2439
2440 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2441 ir_variable *other_var = node2->as_variable();
2442 if (!other_var)
2443 continue;
2444
2445 if (strcmp(var->name, other_var->name) == 0 &&
2446 other_var->data.max_array_access > size) {
2447 size = other_var->data.max_array_access;
2448 }
2449 }
2450 }
2451
2452 if (size + 1 != (int)var->type->length) {
2453 /* If this is a built-in uniform (i.e., it's backed by some
2454 * fixed-function state), adjust the number of state slots to
2455 * match the new array size. The number of slots per array entry
2456 * is not known. It seems safe to assume that the total number of
2457 * slots is an integer multiple of the number of array elements.
2458 * Determine the number of slots per array element by dividing by
2459 * the old (total) size.
2460 */
2461 const unsigned num_slots = var->get_num_state_slots();
2462 if (num_slots > 0) {
2463 var->set_num_state_slots((size + 1)
2464 * (num_slots / var->type->length));
2465 }
2466
2467 var->type = glsl_type::get_array_instance(var->type->fields.array,
2468 size + 1);
2469 types_were_updated = true;
2470 }
2471 }
2472
2473 /* Update the types of dereferences in case we changed any. */
2474 if (types_were_updated) {
2475 deref_type_updater v;
2476 v.run(prog->_LinkedShaders[i]->ir);
2477 }
2478 }
2479 }
2480
2481 /**
2482 * Resize tessellation evaluation per-vertex inputs to the size of
2483 * tessellation control per-vertex outputs.
2484 */
2485 static void
2486 resize_tes_inputs(struct gl_context *ctx,
2487 struct gl_shader_program *prog)
2488 {
2489 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2490 return;
2491
2492 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2493 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2494
2495 /* If no control shader is present, then the TES inputs are statically
2496 * sized to MaxPatchVertices; the actual size of the arrays won't be
2497 * known until draw time.
2498 */
2499 const int num_vertices = tcs
2500 ? tcs->Program->info.tess.tcs_vertices_out
2501 : ctx->Const.MaxPatchVertices;
2502
2503 array_resize_visitor input_resize_visitor(num_vertices, prog,
2504 MESA_SHADER_TESS_EVAL);
2505 foreach_in_list(ir_instruction, ir, tes->ir) {
2506 ir->accept(&input_resize_visitor);
2507 }
2508
2509 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2510 /* Convert the gl_PatchVerticesIn system value into a constant, since
2511 * the value is known at this point.
2512 */
2513 foreach_in_list(ir_instruction, ir, tes->ir) {
2514 ir_variable *var = ir->as_variable();
2515 if (var && var->data.mode == ir_var_system_value &&
2516 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2517 void *mem_ctx = ralloc_parent(var);
2518 var->data.location = 0;
2519 var->data.explicit_location = false;
2520 if (tcs) {
2521 var->data.mode = ir_var_auto;
2522 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2523 } else {
2524 var->data.mode = ir_var_uniform;
2525 var->data.how_declared = ir_var_hidden;
2526 var->allocate_state_slots(1);
2527 ir_state_slot *slot0 = &var->get_state_slots()[0];
2528 slot0->swizzle = SWIZZLE_XXXX;
2529 slot0->tokens[0] = STATE_INTERNAL;
2530 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2531 for (int i = 2; i < STATE_LENGTH; i++)
2532 slot0->tokens[i] = 0;
2533 }
2534 }
2535 }
2536 }
2537 }
2538
2539 /**
2540 * Find a contiguous set of available bits in a bitmask.
2541 *
2542 * \param used_mask Bits representing used (1) and unused (0) locations
2543 * \param needed_count Number of contiguous bits needed.
2544 *
2545 * \return
2546 * Base location of the available bits on success or -1 on failure.
2547 */
2548 static int
2549 find_available_slots(unsigned used_mask, unsigned needed_count)
2550 {
2551 unsigned needed_mask = (1 << needed_count) - 1;
2552 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2553
2554 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2555 * cannot optimize possibly infinite loops" for the loop below.
2556 */
2557 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2558 return -1;
2559
2560 for (int i = 0; i <= max_bit_to_test; i++) {
2561 if ((needed_mask & ~used_mask) == needed_mask)
2562 return i;
2563
2564 needed_mask <<= 1;
2565 }
2566
2567 return -1;
2568 }
2569
2570
2571 /**
2572 * Assign locations for either VS inputs or FS outputs
2573 *
2574 * \param mem_ctx Temporary ralloc context used for linking
2575 * \param prog Shader program whose variables need locations assigned
2576 * \param constants Driver specific constant values for the program.
2577 * \param target_index Selector for the program target to receive location
2578 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2579 * \c MESA_SHADER_FRAGMENT.
2580 *
2581 * \return
2582 * If locations are successfully assigned, true is returned. Otherwise an
2583 * error is emitted to the shader link log and false is returned.
2584 */
2585 static bool
2586 assign_attribute_or_color_locations(void *mem_ctx,
2587 gl_shader_program *prog,
2588 struct gl_constants *constants,
2589 unsigned target_index)
2590 {
2591 /* Maximum number of generic locations. This corresponds to either the
2592 * maximum number of draw buffers or the maximum number of generic
2593 * attributes.
2594 */
2595 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2596 constants->Program[target_index].MaxAttribs :
2597 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2598
2599 /* Mark invalid locations as being used.
2600 */
2601 unsigned used_locations = (max_index >= 32)
2602 ? ~0 : ~((1 << max_index) - 1);
2603 unsigned double_storage_locations = 0;
2604
2605 assert((target_index == MESA_SHADER_VERTEX)
2606 || (target_index == MESA_SHADER_FRAGMENT));
2607
2608 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2609 if (sh == NULL)
2610 return true;
2611
2612 /* Operate in a total of four passes.
2613 *
2614 * 1. Invalidate the location assignments for all vertex shader inputs.
2615 *
2616 * 2. Assign locations for inputs that have user-defined (via
2617 * glBindVertexAttribLocation) locations and outputs that have
2618 * user-defined locations (via glBindFragDataLocation).
2619 *
2620 * 3. Sort the attributes without assigned locations by number of slots
2621 * required in decreasing order. Fragmentation caused by attribute
2622 * locations assigned by the application may prevent large attributes
2623 * from having enough contiguous space.
2624 *
2625 * 4. Assign locations to any inputs without assigned locations.
2626 */
2627
2628 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2629 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2630
2631 const enum ir_variable_mode direction =
2632 (target_index == MESA_SHADER_VERTEX)
2633 ? ir_var_shader_in : ir_var_shader_out;
2634
2635
2636 /* Temporary storage for the set of attributes that need locations assigned.
2637 */
2638 struct temp_attr {
2639 unsigned slots;
2640 ir_variable *var;
2641
2642 /* Used below in the call to qsort. */
2643 static int compare(const void *a, const void *b)
2644 {
2645 const temp_attr *const l = (const temp_attr *) a;
2646 const temp_attr *const r = (const temp_attr *) b;
2647
2648 /* Reversed because we want a descending order sort below. */
2649 return r->slots - l->slots;
2650 }
2651 } to_assign[32];
2652 assert(max_index <= 32);
2653
2654 /* Temporary array for the set of attributes that have locations assigned.
2655 */
2656 ir_variable *assigned[16];
2657
2658 unsigned num_attr = 0;
2659 unsigned assigned_attr = 0;
2660
2661 foreach_in_list(ir_instruction, node, sh->ir) {
2662 ir_variable *const var = node->as_variable();
2663
2664 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2665 continue;
2666
2667 if (var->data.explicit_location) {
2668 var->data.is_unmatched_generic_inout = 0;
2669 if ((var->data.location >= (int)(max_index + generic_base))
2670 || (var->data.location < 0)) {
2671 linker_error(prog,
2672 "invalid explicit location %d specified for `%s'\n",
2673 (var->data.location < 0)
2674 ? var->data.location
2675 : var->data.location - generic_base,
2676 var->name);
2677 return false;
2678 }
2679 } else if (target_index == MESA_SHADER_VERTEX) {
2680 unsigned binding;
2681
2682 if (prog->AttributeBindings->get(binding, var->name)) {
2683 assert(binding >= VERT_ATTRIB_GENERIC0);
2684 var->data.location = binding;
2685 var->data.is_unmatched_generic_inout = 0;
2686 }
2687 } else if (target_index == MESA_SHADER_FRAGMENT) {
2688 unsigned binding;
2689 unsigned index;
2690 const char *name = var->name;
2691 const glsl_type *type = var->type;
2692
2693 while (type) {
2694 /* Check if there's a binding for the variable name */
2695 if (prog->FragDataBindings->get(binding, name)) {
2696 assert(binding >= FRAG_RESULT_DATA0);
2697 var->data.location = binding;
2698 var->data.is_unmatched_generic_inout = 0;
2699
2700 if (prog->FragDataIndexBindings->get(index, name)) {
2701 var->data.index = index;
2702 }
2703 break;
2704 }
2705
2706 /* If not, but it's an array type, look for name[0] */
2707 if (type->is_array()) {
2708 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2709 type = type->fields.array;
2710 continue;
2711 }
2712
2713 break;
2714 }
2715 }
2716
2717 if (strcmp(var->name, "gl_LastFragData") == 0)
2718 continue;
2719
2720 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2721 *
2722 * "Output binding assignments will cause LinkProgram to fail:
2723 * ...
2724 * If the program has an active output assigned to a location greater
2725 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2726 * an active output assigned an index greater than or equal to one;"
2727 */
2728 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2729 var->data.location - generic_base >=
2730 (int) constants->MaxDualSourceDrawBuffers) {
2731 linker_error(prog,
2732 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2733 "with index %u for %s\n",
2734 var->data.location - generic_base, var->data.index,
2735 var->name);
2736 return false;
2737 }
2738
2739 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2740
2741 /* If the variable is not a built-in and has a location statically
2742 * assigned in the shader (presumably via a layout qualifier), make sure
2743 * that it doesn't collide with other assigned locations. Otherwise,
2744 * add it to the list of variables that need linker-assigned locations.
2745 */
2746 if (var->data.location != -1) {
2747 if (var->data.location >= generic_base && var->data.index < 1) {
2748 /* From page 61 of the OpenGL 4.0 spec:
2749 *
2750 * "LinkProgram will fail if the attribute bindings assigned
2751 * by BindAttribLocation do not leave not enough space to
2752 * assign a location for an active matrix attribute or an
2753 * active attribute array, both of which require multiple
2754 * contiguous generic attributes."
2755 *
2756 * I think above text prohibits the aliasing of explicit and
2757 * automatic assignments. But, aliasing is allowed in manual
2758 * assignments of attribute locations. See below comments for
2759 * the details.
2760 *
2761 * From OpenGL 4.0 spec, page 61:
2762 *
2763 * "It is possible for an application to bind more than one
2764 * attribute name to the same location. This is referred to as
2765 * aliasing. This will only work if only one of the aliased
2766 * attributes is active in the executable program, or if no
2767 * path through the shader consumes more than one attribute of
2768 * a set of attributes aliased to the same location. A link
2769 * error can occur if the linker determines that every path
2770 * through the shader consumes multiple aliased attributes,
2771 * but implementations are not required to generate an error
2772 * in this case."
2773 *
2774 * From GLSL 4.30 spec, page 54:
2775 *
2776 * "A program will fail to link if any two non-vertex shader
2777 * input variables are assigned to the same location. For
2778 * vertex shaders, multiple input variables may be assigned
2779 * to the same location using either layout qualifiers or via
2780 * the OpenGL API. However, such aliasing is intended only to
2781 * support vertex shaders where each execution path accesses
2782 * at most one input per each location. Implementations are
2783 * permitted, but not required, to generate link-time errors
2784 * if they detect that every path through the vertex shader
2785 * executable accesses multiple inputs assigned to any single
2786 * location. For all shader types, a program will fail to link
2787 * if explicit location assignments leave the linker unable
2788 * to find space for other variables without explicit
2789 * assignments."
2790 *
2791 * From OpenGL ES 3.0 spec, page 56:
2792 *
2793 * "Binding more than one attribute name to the same location
2794 * is referred to as aliasing, and is not permitted in OpenGL
2795 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2796 * fail when this condition exists. However, aliasing is
2797 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2798 * This will only work if only one of the aliased attributes
2799 * is active in the executable program, or if no path through
2800 * the shader consumes more than one attribute of a set of
2801 * attributes aliased to the same location. A link error can
2802 * occur if the linker determines that every path through the
2803 * shader consumes multiple aliased attributes, but implemen-
2804 * tations are not required to generate an error in this case."
2805 *
2806 * After looking at above references from OpenGL, OpenGL ES and
2807 * GLSL specifications, we allow aliasing of vertex input variables
2808 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2809 *
2810 * NOTE: This is not required by the spec but its worth mentioning
2811 * here that we're not doing anything to make sure that no path
2812 * through the vertex shader executable accesses multiple inputs
2813 * assigned to any single location.
2814 */
2815
2816 /* Mask representing the contiguous slots that will be used by
2817 * this attribute.
2818 */
2819 const unsigned attr = var->data.location - generic_base;
2820 const unsigned use_mask = (1 << slots) - 1;
2821 const char *const string = (target_index == MESA_SHADER_VERTEX)
2822 ? "vertex shader input" : "fragment shader output";
2823
2824 /* Generate a link error if the requested locations for this
2825 * attribute exceed the maximum allowed attribute location.
2826 */
2827 if (attr + slots > max_index) {
2828 linker_error(prog,
2829 "insufficient contiguous locations "
2830 "available for %s `%s' %d %d %d\n", string,
2831 var->name, used_locations, use_mask, attr);
2832 return false;
2833 }
2834
2835 /* Generate a link error if the set of bits requested for this
2836 * attribute overlaps any previously allocated bits.
2837 */
2838 if ((~(use_mask << attr) & used_locations) != used_locations) {
2839 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2840 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2841 * 4.40 spec:
2842 *
2843 * "Additionally, for fragment shader outputs, if two
2844 * variables are placed within the same location, they
2845 * must have the same underlying type (floating-point or
2846 * integer). No component aliasing of output variables or
2847 * members is allowed.
2848 */
2849 for (unsigned i = 0; i < assigned_attr; i++) {
2850 unsigned assigned_slots =
2851 assigned[i]->type->count_attribute_slots(false);
2852 unsigned assig_attr =
2853 assigned[i]->data.location - generic_base;
2854 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2855
2856 if ((assigned_use_mask << assig_attr) &
2857 (use_mask << attr)) {
2858
2859 const glsl_type *assigned_type =
2860 assigned[i]->type->without_array();
2861 const glsl_type *type = var->type->without_array();
2862 if (assigned_type->base_type != type->base_type) {
2863 linker_error(prog, "types do not match for aliased"
2864 " %ss %s and %s\n", string,
2865 assigned[i]->name, var->name);
2866 return false;
2867 }
2868
2869 unsigned assigned_component_mask =
2870 ((1 << assigned_type->vector_elements) - 1) <<
2871 assigned[i]->data.location_frac;
2872 unsigned component_mask =
2873 ((1 << type->vector_elements) - 1) <<
2874 var->data.location_frac;
2875 if (assigned_component_mask & component_mask) {
2876 linker_error(prog, "overlapping component is "
2877 "assigned to %ss %s and %s "
2878 "(component=%d)\n",
2879 string, assigned[i]->name, var->name,
2880 var->data.location_frac);
2881 return false;
2882 }
2883 }
2884 }
2885 } else if (target_index == MESA_SHADER_FRAGMENT ||
2886 (prog->IsES && prog->data->Version >= 300)) {
2887 linker_error(prog, "overlapping location is assigned "
2888 "to %s `%s' %d %d %d\n", string, var->name,
2889 used_locations, use_mask, attr);
2890 return false;
2891 } else {
2892 linker_warning(prog, "overlapping location is assigned "
2893 "to %s `%s' %d %d %d\n", string, var->name,
2894 used_locations, use_mask, attr);
2895 }
2896 }
2897
2898 used_locations |= (use_mask << attr);
2899
2900 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2901 *
2902 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2903 * active attribute variables may fail to link, unless
2904 * device-dependent optimizations are able to make the program
2905 * fit within available hardware resources. For the purposes
2906 * of this test, attribute variables of the type dvec3, dvec4,
2907 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2908 * count as consuming twice as many attributes as equivalent
2909 * single-precision types. While these types use the same number
2910 * of generic attributes as their single-precision equivalents,
2911 * implementations are permitted to consume two single-precision
2912 * vectors of internal storage for each three- or four-component
2913 * double-precision vector."
2914 *
2915 * Mark this attribute slot as taking up twice as much space
2916 * so we can count it properly against limits. According to
2917 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2918 * is optional behavior, but it seems preferable.
2919 */
2920 if (var->type->without_array()->is_dual_slot())
2921 double_storage_locations |= (use_mask << attr);
2922 }
2923
2924 assigned[assigned_attr] = var;
2925 assigned_attr++;
2926
2927 continue;
2928 }
2929
2930 if (num_attr >= max_index) {
2931 linker_error(prog, "too many %s (max %u)",
2932 target_index == MESA_SHADER_VERTEX ?
2933 "vertex shader inputs" : "fragment shader outputs",
2934 max_index);
2935 return false;
2936 }
2937 to_assign[num_attr].slots = slots;
2938 to_assign[num_attr].var = var;
2939 num_attr++;
2940 }
2941
2942 if (target_index == MESA_SHADER_VERTEX) {
2943 unsigned total_attribs_size =
2944 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2945 _mesa_bitcount(double_storage_locations);
2946 if (total_attribs_size > max_index) {
2947 linker_error(prog,
2948 "attempt to use %d vertex attribute slots only %d available ",
2949 total_attribs_size, max_index);
2950 return false;
2951 }
2952 }
2953
2954 /* If all of the attributes were assigned locations by the application (or
2955 * are built-in attributes with fixed locations), return early. This should
2956 * be the common case.
2957 */
2958 if (num_attr == 0)
2959 return true;
2960
2961 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2962
2963 if (target_index == MESA_SHADER_VERTEX) {
2964 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2965 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2966 * reserved to prevent it from being automatically allocated below.
2967 */
2968 find_deref_visitor find("gl_Vertex");
2969 find.run(sh->ir);
2970 if (find.variable_found())
2971 used_locations |= (1 << 0);
2972 }
2973
2974 for (unsigned i = 0; i < num_attr; i++) {
2975 /* Mask representing the contiguous slots that will be used by this
2976 * attribute.
2977 */
2978 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2979
2980 int location = find_available_slots(used_locations, to_assign[i].slots);
2981
2982 if (location < 0) {
2983 const char *const string = (target_index == MESA_SHADER_VERTEX)
2984 ? "vertex shader input" : "fragment shader output";
2985
2986 linker_error(prog,
2987 "insufficient contiguous locations "
2988 "available for %s `%s'\n",
2989 string, to_assign[i].var->name);
2990 return false;
2991 }
2992
2993 to_assign[i].var->data.location = generic_base + location;
2994 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2995 used_locations |= (use_mask << location);
2996
2997 if (to_assign[i].var->type->without_array()->is_dual_slot())
2998 double_storage_locations |= (use_mask << location);
2999 }
3000
3001 /* Now that we have all the locations, from the GL 4.5 core spec, section
3002 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3003 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3004 * as equivalent single-precision types.
3005 */
3006 if (target_index == MESA_SHADER_VERTEX) {
3007 unsigned total_attribs_size =
3008 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3009 _mesa_bitcount(double_storage_locations);
3010 if (total_attribs_size > max_index) {
3011 linker_error(prog,
3012 "attempt to use %d vertex attribute slots only %d available ",
3013 total_attribs_size, max_index);
3014 return false;
3015 }
3016 }
3017
3018 return true;
3019 }
3020
3021 /**
3022 * Match explicit locations of outputs to inputs and deactivate the
3023 * unmatch flag if found so we don't optimise them away.
3024 */
3025 static void
3026 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3027 gl_linked_shader *consumer)
3028 {
3029 glsl_symbol_table parameters;
3030 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3031 { {NULL, NULL} };
3032
3033 /* Find all shader outputs in the "producer" stage.
3034 */
3035 foreach_in_list(ir_instruction, node, producer->ir) {
3036 ir_variable *const var = node->as_variable();
3037
3038 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3039 continue;
3040
3041 if (var->data.explicit_location &&
3042 var->data.location >= VARYING_SLOT_VAR0) {
3043 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3044 if (explicit_locations[idx][var->data.location_frac] == NULL)
3045 explicit_locations[idx][var->data.location_frac] = var;
3046 }
3047 }
3048
3049 /* Match inputs to outputs */
3050 foreach_in_list(ir_instruction, node, consumer->ir) {
3051 ir_variable *const input = node->as_variable();
3052
3053 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3054 continue;
3055
3056 ir_variable *output = NULL;
3057 if (input->data.explicit_location
3058 && input->data.location >= VARYING_SLOT_VAR0) {
3059 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3060 [input->data.location_frac];
3061
3062 if (output != NULL){
3063 input->data.is_unmatched_generic_inout = 0;
3064 output->data.is_unmatched_generic_inout = 0;
3065 }
3066 }
3067 }
3068 }
3069
3070 /**
3071 * Store the gl_FragDepth layout in the gl_shader_program struct.
3072 */
3073 static void
3074 store_fragdepth_layout(struct gl_shader_program *prog)
3075 {
3076 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3077 return;
3078 }
3079
3080 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3081
3082 /* We don't look up the gl_FragDepth symbol directly because if
3083 * gl_FragDepth is not used in the shader, it's removed from the IR.
3084 * However, the symbol won't be removed from the symbol table.
3085 *
3086 * We're only interested in the cases where the variable is NOT removed
3087 * from the IR.
3088 */
3089 foreach_in_list(ir_instruction, node, ir) {
3090 ir_variable *const var = node->as_variable();
3091
3092 if (var == NULL || var->data.mode != ir_var_shader_out) {
3093 continue;
3094 }
3095
3096 if (strcmp(var->name, "gl_FragDepth") == 0) {
3097 switch (var->data.depth_layout) {
3098 case ir_depth_layout_none:
3099 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3100 return;
3101 case ir_depth_layout_any:
3102 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3103 return;
3104 case ir_depth_layout_greater:
3105 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3106 return;
3107 case ir_depth_layout_less:
3108 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3109 return;
3110 case ir_depth_layout_unchanged:
3111 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3112 return;
3113 default:
3114 assert(0);
3115 return;
3116 }
3117 }
3118 }
3119 }
3120
3121 /**
3122 * Validate the resources used by a program versus the implementation limits
3123 */
3124 static void
3125 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3126 {
3127 unsigned total_uniform_blocks = 0;
3128 unsigned total_shader_storage_blocks = 0;
3129
3130 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3131 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3132
3133 if (sh == NULL)
3134 continue;
3135
3136 if (sh->Program->info.num_textures >
3137 ctx->Const.Program[i].MaxTextureImageUnits) {
3138 linker_error(prog, "Too many %s shader texture samplers\n",
3139 _mesa_shader_stage_to_string(i));
3140 }
3141
3142 if (sh->num_uniform_components >
3143 ctx->Const.Program[i].MaxUniformComponents) {
3144 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3145 linker_warning(prog, "Too many %s shader default uniform block "
3146 "components, but the driver will try to optimize "
3147 "them out; this is non-portable out-of-spec "
3148 "behavior\n",
3149 _mesa_shader_stage_to_string(i));
3150 } else {
3151 linker_error(prog, "Too many %s shader default uniform block "
3152 "components\n",
3153 _mesa_shader_stage_to_string(i));
3154 }
3155 }
3156
3157 if (sh->num_combined_uniform_components >
3158 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3159 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3160 linker_warning(prog, "Too many %s shader uniform components, "
3161 "but the driver will try to optimize them out; "
3162 "this is non-portable out-of-spec behavior\n",
3163 _mesa_shader_stage_to_string(i));
3164 } else {
3165 linker_error(prog, "Too many %s shader uniform components\n",
3166 _mesa_shader_stage_to_string(i));
3167 }
3168 }
3169
3170 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3171 total_uniform_blocks += sh->Program->info.num_ubos;
3172
3173 const unsigned max_uniform_blocks =
3174 ctx->Const.Program[i].MaxUniformBlocks;
3175 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3176 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3177 _mesa_shader_stage_to_string(i),
3178 sh->Program->info.num_ubos, max_uniform_blocks);
3179 }
3180
3181 const unsigned max_shader_storage_blocks =
3182 ctx->Const.Program[i].MaxShaderStorageBlocks;
3183 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3184 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3185 _mesa_shader_stage_to_string(i),
3186 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3187 }
3188 }
3189
3190 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3191 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3192 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3193 }
3194
3195 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3196 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3197 total_shader_storage_blocks,
3198 ctx->Const.MaxCombinedShaderStorageBlocks);
3199 }
3200
3201 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3202 if (prog->data->UniformBlocks[i].UniformBufferSize >
3203 ctx->Const.MaxUniformBlockSize) {
3204 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3205 prog->data->UniformBlocks[i].Name,
3206 prog->data->UniformBlocks[i].UniformBufferSize,
3207 ctx->Const.MaxUniformBlockSize);
3208 }
3209 }
3210
3211 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3212 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3213 ctx->Const.MaxShaderStorageBlockSize) {
3214 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3215 prog->data->ShaderStorageBlocks[i].Name,
3216 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3217 ctx->Const.MaxShaderStorageBlockSize);
3218 }
3219 }
3220 }
3221
3222 static void
3223 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3224 {
3225 unsigned mask = prog->data->linked_stages;
3226 while (mask) {
3227 const int i = u_bit_scan(&mask);
3228 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3229
3230 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3231 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3232 continue;
3233
3234 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3235
3236 if (!uni)
3237 continue;
3238
3239 int count = 0;
3240 if (p->sh.NumSubroutineFunctions == 0) {
3241 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3242 continue;
3243 }
3244 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3245 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3246 for (int k = 0; k < fn->num_compat_types; k++) {
3247 if (fn->types[k] == uni->type) {
3248 count++;
3249 break;
3250 }
3251 }
3252 }
3253 uni->num_compatible_subroutines = count;
3254 }
3255 }
3256 }
3257
3258 static void
3259 check_subroutine_resources(struct gl_shader_program *prog)
3260 {
3261 unsigned mask = prog->data->linked_stages;
3262 while (mask) {
3263 const int i = u_bit_scan(&mask);
3264 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3265
3266 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3267 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3268 _mesa_shader_stage_to_string(i));
3269 }
3270 }
3271 }
3272 /**
3273 * Validate shader image resources.
3274 */
3275 static void
3276 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3277 {
3278 unsigned total_image_units = 0;
3279 unsigned fragment_outputs = 0;
3280 unsigned total_shader_storage_blocks = 0;
3281
3282 if (!ctx->Extensions.ARB_shader_image_load_store)
3283 return;
3284
3285 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3286 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3287
3288 if (sh) {
3289 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3290 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3291 _mesa_shader_stage_to_string(i),
3292 sh->Program->info.num_images,
3293 ctx->Const.Program[i].MaxImageUniforms);
3294
3295 total_image_units += sh->Program->info.num_images;
3296 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3297
3298 if (i == MESA_SHADER_FRAGMENT) {
3299 foreach_in_list(ir_instruction, node, sh->ir) {
3300 ir_variable *var = node->as_variable();
3301 if (var && var->data.mode == ir_var_shader_out)
3302 /* since there are no double fs outputs - pass false */
3303 fragment_outputs += var->type->count_attribute_slots(false);
3304 }
3305 }
3306 }
3307 }
3308
3309 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3310 linker_error(prog, "Too many combined image uniforms\n");
3311
3312 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3313 ctx->Const.MaxCombinedShaderOutputResources)
3314 linker_error(prog, "Too many combined image uniforms, shader storage "
3315 " buffers and fragment outputs\n");
3316 }
3317
3318
3319 /**
3320 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3321 * for a variable, checks for overlaps between other uniforms using explicit
3322 * locations.
3323 */
3324 static int
3325 reserve_explicit_locations(struct gl_shader_program *prog,
3326 string_to_uint_map *map, ir_variable *var)
3327 {
3328 unsigned slots = var->type->uniform_locations();
3329 unsigned max_loc = var->data.location + slots - 1;
3330 unsigned return_value = slots;
3331
3332 /* Resize remap table if locations do not fit in the current one. */
3333 if (max_loc + 1 > prog->NumUniformRemapTable) {
3334 prog->UniformRemapTable =
3335 reralloc(prog, prog->UniformRemapTable,
3336 gl_uniform_storage *,
3337 max_loc + 1);
3338
3339 if (!prog->UniformRemapTable) {
3340 linker_error(prog, "Out of memory during linking.\n");
3341 return -1;
3342 }
3343
3344 /* Initialize allocated space. */
3345 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3346 prog->UniformRemapTable[i] = NULL;
3347
3348 prog->NumUniformRemapTable = max_loc + 1;
3349 }
3350
3351 for (unsigned i = 0; i < slots; i++) {
3352 unsigned loc = var->data.location + i;
3353
3354 /* Check if location is already used. */
3355 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3356
3357 /* Possibly same uniform from a different stage, this is ok. */
3358 unsigned hash_loc;
3359 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3360 return_value = 0;
3361 continue;
3362 }
3363
3364 /* ARB_explicit_uniform_location specification states:
3365 *
3366 * "No two default-block uniform variables in the program can have
3367 * the same location, even if they are unused, otherwise a compiler
3368 * or linker error will be generated."
3369 */
3370 linker_error(prog,
3371 "location qualifier for uniform %s overlaps "
3372 "previously used location\n",
3373 var->name);
3374 return -1;
3375 }
3376
3377 /* Initialize location as inactive before optimization
3378 * rounds and location assignment.
3379 */
3380 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3381 }
3382
3383 /* Note, base location used for arrays. */
3384 map->put(var->data.location, var->name);
3385
3386 return return_value;
3387 }
3388
3389 static bool
3390 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3391 struct gl_program *p,
3392 ir_variable *var)
3393 {
3394 unsigned slots = var->type->uniform_locations();
3395 unsigned max_loc = var->data.location + slots - 1;
3396
3397 /* Resize remap table if locations do not fit in the current one. */
3398 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3399 p->sh.SubroutineUniformRemapTable =
3400 reralloc(p, p->sh.SubroutineUniformRemapTable,
3401 gl_uniform_storage *,
3402 max_loc + 1);
3403
3404 if (!p->sh.SubroutineUniformRemapTable) {
3405 linker_error(prog, "Out of memory during linking.\n");
3406 return false;
3407 }
3408
3409 /* Initialize allocated space. */
3410 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3411 p->sh.SubroutineUniformRemapTable[i] = NULL;
3412
3413 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3414 }
3415
3416 for (unsigned i = 0; i < slots; i++) {
3417 unsigned loc = var->data.location + i;
3418
3419 /* Check if location is already used. */
3420 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3421
3422 /* ARB_explicit_uniform_location specification states:
3423 * "No two subroutine uniform variables can have the same location
3424 * in the same shader stage, otherwise a compiler or linker error
3425 * will be generated."
3426 */
3427 linker_error(prog,
3428 "location qualifier for uniform %s overlaps "
3429 "previously used location\n",
3430 var->name);
3431 return false;
3432 }
3433
3434 /* Initialize location as inactive before optimization
3435 * rounds and location assignment.
3436 */
3437 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3438 }
3439
3440 return true;
3441 }
3442 /**
3443 * Check and reserve all explicit uniform locations, called before
3444 * any optimizations happen to handle also inactive uniforms and
3445 * inactive array elements that may get trimmed away.
3446 */
3447 static void
3448 check_explicit_uniform_locations(struct gl_context *ctx,
3449 struct gl_shader_program *prog)
3450 {
3451 prog->NumExplicitUniformLocations = 0;
3452
3453 if (!ctx->Extensions.ARB_explicit_uniform_location)
3454 return;
3455
3456 /* This map is used to detect if overlapping explicit locations
3457 * occur with the same uniform (from different stage) or a different one.
3458 */
3459 string_to_uint_map *uniform_map = new string_to_uint_map;
3460
3461 if (!uniform_map) {
3462 linker_error(prog, "Out of memory during linking.\n");
3463 return;
3464 }
3465
3466 unsigned entries_total = 0;
3467 unsigned mask = prog->data->linked_stages;
3468 while (mask) {
3469 const int i = u_bit_scan(&mask);
3470 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3471
3472 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3473 ir_variable *var = node->as_variable();
3474 if (!var || var->data.mode != ir_var_uniform)
3475 continue;
3476
3477 if (var->data.explicit_location) {
3478 bool ret = false;
3479 if (var->type->without_array()->is_subroutine())
3480 ret = reserve_subroutine_explicit_locations(prog, p, var);
3481 else {
3482 int slots = reserve_explicit_locations(prog, uniform_map,
3483 var);
3484 if (slots != -1) {
3485 ret = true;
3486 entries_total += slots;
3487 }
3488 }
3489 if (!ret) {
3490 delete uniform_map;
3491 return;
3492 }
3493 }
3494 }
3495 }
3496
3497 struct empty_uniform_block *current_block = NULL;
3498
3499 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3500 /* We found empty space in UniformRemapTable. */
3501 if (prog->UniformRemapTable[i] == NULL) {
3502 /* We've found the beginning of a new continous block of empty slots */
3503 if (!current_block || current_block->start + current_block->slots != i) {
3504 current_block = rzalloc(prog, struct empty_uniform_block);
3505 current_block->start = i;
3506 exec_list_push_tail(&prog->EmptyUniformLocations,
3507 &current_block->link);
3508 }
3509
3510 /* The current block continues, so we simply increment its slots */
3511 current_block->slots++;
3512 }
3513 }
3514
3515 delete uniform_map;
3516 prog->NumExplicitUniformLocations = entries_total;
3517 }
3518
3519 static bool
3520 should_add_buffer_variable(struct gl_shader_program *shProg,
3521 GLenum type, const char *name)
3522 {
3523 bool found_interface = false;
3524 unsigned block_name_len = 0;
3525 const char *block_name_dot = strchr(name, '.');
3526
3527 /* These rules only apply to buffer variables. So we return
3528 * true for the rest of types.
3529 */
3530 if (type != GL_BUFFER_VARIABLE)
3531 return true;
3532
3533 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3534 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3535 block_name_len = strlen(block_name);
3536
3537 const char *block_square_bracket = strchr(block_name, '[');
3538 if (block_square_bracket) {
3539 /* The block is part of an array of named interfaces,
3540 * for the name comparison we ignore the "[x]" part.
3541 */
3542 block_name_len -= strlen(block_square_bracket);
3543 }
3544
3545 if (block_name_dot) {
3546 /* Check if the variable name starts with the interface
3547 * name. The interface name (if present) should have the
3548 * length than the interface block name we are comparing to.
3549 */
3550 unsigned len = strlen(name) - strlen(block_name_dot);
3551 if (len != block_name_len)
3552 continue;
3553 }
3554
3555 if (strncmp(block_name, name, block_name_len) == 0) {
3556 found_interface = true;
3557 break;
3558 }
3559 }
3560
3561 /* We remove the interface name from the buffer variable name,
3562 * including the dot that follows it.
3563 */
3564 if (found_interface)
3565 name = name + block_name_len + 1;
3566
3567 /* The ARB_program_interface_query spec says:
3568 *
3569 * "For an active shader storage block member declared as an array, an
3570 * entry will be generated only for the first array element, regardless
3571 * of its type. For arrays of aggregate types, the enumeration rules
3572 * are applied recursively for the single enumerated array element."
3573 */
3574 const char *struct_first_dot = strchr(name, '.');
3575 const char *first_square_bracket = strchr(name, '[');
3576
3577 /* The buffer variable is on top level and it is not an array */
3578 if (!first_square_bracket) {
3579 return true;
3580 /* The shader storage block member is a struct, then generate the entry */
3581 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3582 return true;
3583 } else {
3584 /* Shader storage block member is an array, only generate an entry for the
3585 * first array element.
3586 */
3587 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3588 return true;
3589 }
3590
3591 return false;
3592 }
3593
3594 static bool
3595 add_program_resource(struct gl_shader_program *prog,
3596 struct set *resource_set,
3597 GLenum type, const void *data, uint8_t stages)
3598 {
3599 assert(data);
3600
3601 /* If resource already exists, do not add it again. */
3602 if (_mesa_set_search(resource_set, data))
3603 return true;
3604
3605 prog->data->ProgramResourceList =
3606 reralloc(prog,
3607 prog->data->ProgramResourceList,
3608 gl_program_resource,
3609 prog->data->NumProgramResourceList + 1);
3610
3611 if (!prog->data->ProgramResourceList) {
3612 linker_error(prog, "Out of memory during linking.\n");
3613 return false;
3614 }
3615
3616 struct gl_program_resource *res =
3617 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3618
3619 res->Type = type;
3620 res->Data = data;
3621 res->StageReferences = stages;
3622
3623 prog->data->NumProgramResourceList++;
3624
3625 _mesa_set_add(resource_set, data);
3626
3627 return true;
3628 }
3629
3630 /* Function checks if a variable var is a packed varying and
3631 * if given name is part of packed varying's list.
3632 *
3633 * If a variable is a packed varying, it has a name like
3634 * 'packed:a,b,c' where a, b and c are separate variables.
3635 */
3636 static bool
3637 included_in_packed_varying(ir_variable *var, const char *name)
3638 {
3639 if (strncmp(var->name, "packed:", 7) != 0)
3640 return false;
3641
3642 char *list = strdup(var->name + 7);
3643 assert(list);
3644
3645 bool found = false;
3646 char *saveptr;
3647 char *token = strtok_r(list, ",", &saveptr);
3648 while (token) {
3649 if (strcmp(token, name) == 0) {
3650 found = true;
3651 break;
3652 }
3653 token = strtok_r(NULL, ",", &saveptr);
3654 }
3655 free(list);
3656 return found;
3657 }
3658
3659 /**
3660 * Function builds a stage reference bitmask from variable name.
3661 */
3662 static uint8_t
3663 build_stageref(struct gl_shader_program *shProg, const char *name,
3664 unsigned mode)
3665 {
3666 uint8_t stages = 0;
3667
3668 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3669 * used for reference mask in gl_program_resource will need to be changed.
3670 */
3671 assert(MESA_SHADER_STAGES < 8);
3672
3673 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3674 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3675 if (!sh)
3676 continue;
3677
3678 /* Shader symbol table may contain variables that have
3679 * been optimized away. Search IR for the variable instead.
3680 */
3681 foreach_in_list(ir_instruction, node, sh->ir) {
3682 ir_variable *var = node->as_variable();
3683 if (var) {
3684 unsigned baselen = strlen(var->name);
3685
3686 if (included_in_packed_varying(var, name)) {
3687 stages |= (1 << i);
3688 break;
3689 }
3690
3691 /* Type needs to match if specified, otherwise we might
3692 * pick a variable with same name but different interface.
3693 */
3694 if (var->data.mode != mode)
3695 continue;
3696
3697 if (strncmp(var->name, name, baselen) == 0) {
3698 /* Check for exact name matches but also check for arrays and
3699 * structs.
3700 */
3701 if (name[baselen] == '\0' ||
3702 name[baselen] == '[' ||
3703 name[baselen] == '.') {
3704 stages |= (1 << i);
3705 break;
3706 }
3707 }
3708 }
3709 }
3710 }
3711 return stages;
3712 }
3713
3714 /**
3715 * Create gl_shader_variable from ir_variable class.
3716 */
3717 static gl_shader_variable *
3718 create_shader_variable(struct gl_shader_program *shProg,
3719 const ir_variable *in,
3720 const char *name, const glsl_type *type,
3721 const glsl_type *interface_type,
3722 bool use_implicit_location, int location,
3723 const glsl_type *outermost_struct_type)
3724 {
3725 /* Allocate zero-initialized memory to ensure that bitfield padding
3726 * is zero.
3727 */
3728 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3729 if (!out)
3730 return NULL;
3731
3732 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3733 * expect to see gl_VertexID in the program resource list. Pretend.
3734 */
3735 if (in->data.mode == ir_var_system_value &&
3736 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3737 out->name = ralloc_strdup(shProg, "gl_VertexID");
3738 } else if ((in->data.mode == ir_var_shader_out &&
3739 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3740 (in->data.mode == ir_var_system_value &&
3741 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3742 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3743 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3744 } else if ((in->data.mode == ir_var_shader_out &&
3745 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3746 (in->data.mode == ir_var_system_value &&
3747 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3748 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3749 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3750 } else {
3751 out->name = ralloc_strdup(shProg, name);
3752 }
3753
3754 if (!out->name)
3755 return NULL;
3756
3757 /* The ARB_program_interface_query spec says:
3758 *
3759 * "Not all active variables are assigned valid locations; the
3760 * following variables will have an effective location of -1:
3761 *
3762 * * uniforms declared as atomic counters;
3763 *
3764 * * members of a uniform block;
3765 *
3766 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3767 *
3768 * * inputs or outputs not declared with a "location" layout
3769 * qualifier, except for vertex shader inputs and fragment shader
3770 * outputs."
3771 */
3772 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3773 !(in->data.explicit_location || use_implicit_location)) {
3774 out->location = -1;
3775 } else {
3776 out->location = location;
3777 }
3778
3779 out->type = type;
3780 out->outermost_struct_type = outermost_struct_type;
3781 out->interface_type = interface_type;
3782 out->component = in->data.location_frac;
3783 out->index = in->data.index;
3784 out->patch = in->data.patch;
3785 out->mode = in->data.mode;
3786 out->interpolation = in->data.interpolation;
3787 out->explicit_location = in->data.explicit_location;
3788 out->precision = in->data.precision;
3789
3790 return out;
3791 }
3792
3793 static bool
3794 add_shader_variable(const struct gl_context *ctx,
3795 struct gl_shader_program *shProg,
3796 struct set *resource_set,
3797 unsigned stage_mask,
3798 GLenum programInterface, ir_variable *var,
3799 const char *name, const glsl_type *type,
3800 bool use_implicit_location, int location,
3801 const glsl_type *outermost_struct_type = NULL)
3802 {
3803 const glsl_type *interface_type = var->get_interface_type();
3804
3805 if (outermost_struct_type == NULL) {
3806 if (var->data.from_named_ifc_block) {
3807 const char *interface_name = interface_type->name;
3808
3809 if (interface_type->is_array()) {
3810 /* Issue #16 of the ARB_program_interface_query spec says:
3811 *
3812 * "* If a variable is a member of an interface block without an
3813 * instance name, it is enumerated using just the variable name.
3814 *
3815 * * If a variable is a member of an interface block with an
3816 * instance name, it is enumerated as "BlockName.Member", where
3817 * "BlockName" is the name of the interface block (not the
3818 * instance name) and "Member" is the name of the variable."
3819 *
3820 * In particular, it indicates that it should be "BlockName",
3821 * not "BlockName[array length]". The conformance suite and
3822 * dEQP both require this behavior.
3823 *
3824 * Here, we unwrap the extra array level added by named interface
3825 * block array lowering so we have the correct variable type. We
3826 * also unwrap the interface type when constructing the name.
3827 *
3828 * We leave interface_type the same so that ES 3.x SSO pipeline
3829 * validation can enforce the rules requiring array length to
3830 * match on interface blocks.
3831 */
3832 type = type->fields.array;
3833
3834 interface_name = interface_type->fields.array->name;
3835 }
3836
3837 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3838 }
3839 }
3840
3841 switch (type->base_type) {
3842 case GLSL_TYPE_STRUCT: {
3843 /* The ARB_program_interface_query spec says:
3844 *
3845 * "For an active variable declared as a structure, a separate entry
3846 * will be generated for each active structure member. The name of
3847 * each entry is formed by concatenating the name of the structure,
3848 * the "." character, and the name of the structure member. If a
3849 * structure member to enumerate is itself a structure or array,
3850 * these enumeration rules are applied recursively."
3851 */
3852 if (outermost_struct_type == NULL)
3853 outermost_struct_type = type;
3854
3855 unsigned field_location = location;
3856 for (unsigned i = 0; i < type->length; i++) {
3857 const struct glsl_struct_field *field = &type->fields.structure[i];
3858 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3859 if (!add_shader_variable(ctx, shProg, resource_set,
3860 stage_mask, programInterface,
3861 var, field_name, field->type,
3862 use_implicit_location, field_location,
3863 outermost_struct_type))
3864 return false;
3865
3866 field_location += field->type->count_attribute_slots(false);
3867 }
3868 return true;
3869 }
3870
3871 default: {
3872 /* The ARB_program_interface_query spec says:
3873 *
3874 * "For an active variable declared as a single instance of a basic
3875 * type, a single entry will be generated, using the variable name
3876 * from the shader source."
3877 */
3878 gl_shader_variable *sha_v =
3879 create_shader_variable(shProg, var, name, type, interface_type,
3880 use_implicit_location, location,
3881 outermost_struct_type);
3882 if (!sha_v)
3883 return false;
3884
3885 return add_program_resource(shProg, resource_set,
3886 programInterface, sha_v, stage_mask);
3887 }
3888 }
3889 }
3890
3891 static bool
3892 add_interface_variables(const struct gl_context *ctx,
3893 struct gl_shader_program *shProg,
3894 struct set *resource_set,
3895 unsigned stage, GLenum programInterface)
3896 {
3897 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3898
3899 foreach_in_list(ir_instruction, node, ir) {
3900 ir_variable *var = node->as_variable();
3901
3902 if (!var || var->data.how_declared == ir_var_hidden)
3903 continue;
3904
3905 int loc_bias;
3906
3907 switch (var->data.mode) {
3908 case ir_var_system_value:
3909 case ir_var_shader_in:
3910 if (programInterface != GL_PROGRAM_INPUT)
3911 continue;
3912 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3913 : int(VARYING_SLOT_VAR0);
3914 break;
3915 case ir_var_shader_out:
3916 if (programInterface != GL_PROGRAM_OUTPUT)
3917 continue;
3918 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3919 : int(VARYING_SLOT_VAR0);
3920 break;
3921 default:
3922 continue;
3923 };
3924
3925 if (var->data.patch)
3926 loc_bias = int(VARYING_SLOT_PATCH0);
3927
3928 /* Skip packed varyings, packed varyings are handled separately
3929 * by add_packed_varyings.
3930 */
3931 if (strncmp(var->name, "packed:", 7) == 0)
3932 continue;
3933
3934 /* Skip fragdata arrays, these are handled separately
3935 * by add_fragdata_arrays.
3936 */
3937 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3938 continue;
3939
3940 const bool vs_input_or_fs_output =
3941 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3942 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3943
3944 if (!add_shader_variable(ctx, shProg, resource_set,
3945 1 << stage, programInterface,
3946 var, var->name, var->type, vs_input_or_fs_output,
3947 var->data.location - loc_bias))
3948 return false;
3949 }
3950 return true;
3951 }
3952
3953 static bool
3954 add_packed_varyings(const struct gl_context *ctx,
3955 struct gl_shader_program *shProg,
3956 struct set *resource_set,
3957 int stage, GLenum type)
3958 {
3959 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3960 GLenum iface;
3961
3962 if (!sh || !sh->packed_varyings)
3963 return true;
3964
3965 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3966 ir_variable *var = node->as_variable();
3967 if (var) {
3968 switch (var->data.mode) {
3969 case ir_var_shader_in:
3970 iface = GL_PROGRAM_INPUT;
3971 break;
3972 case ir_var_shader_out:
3973 iface = GL_PROGRAM_OUTPUT;
3974 break;
3975 default:
3976 unreachable("unexpected type");
3977 }
3978
3979 if (type == iface) {
3980 const int stage_mask =
3981 build_stageref(shProg, var->name, var->data.mode);
3982 if (!add_shader_variable(ctx, shProg, resource_set,
3983 stage_mask,
3984 iface, var, var->name, var->type, false,
3985 var->data.location - VARYING_SLOT_VAR0))
3986 return false;
3987 }
3988 }
3989 }
3990 return true;
3991 }
3992
3993 static bool
3994 add_fragdata_arrays(const struct gl_context *ctx,
3995 struct gl_shader_program *shProg,
3996 struct set *resource_set)
3997 {
3998 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3999
4000 if (!sh || !sh->fragdata_arrays)
4001 return true;
4002
4003 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4004 ir_variable *var = node->as_variable();
4005 if (var) {
4006 assert(var->data.mode == ir_var_shader_out);
4007
4008 if (!add_shader_variable(ctx, shProg, resource_set,
4009 1 << MESA_SHADER_FRAGMENT,
4010 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4011 true, var->data.location - FRAG_RESULT_DATA0))
4012 return false;
4013 }
4014 }
4015 return true;
4016 }
4017
4018 static char*
4019 get_top_level_name(const char *name)
4020 {
4021 const char *first_dot = strchr(name, '.');
4022 const char *first_square_bracket = strchr(name, '[');
4023 int name_size = 0;
4024
4025 /* The ARB_program_interface_query spec says:
4026 *
4027 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4028 * the number of active array elements of the top-level shader storage
4029 * block member containing to the active variable is written to
4030 * <params>. If the top-level block member is not declared as an
4031 * array, the value one is written to <params>. If the top-level block
4032 * member is an array with no declared size, the value zero is written
4033 * to <params>."
4034 */
4035
4036 /* The buffer variable is on top level.*/
4037 if (!first_square_bracket && !first_dot)
4038 name_size = strlen(name);
4039 else if ((!first_square_bracket ||
4040 (first_dot && first_dot < first_square_bracket)))
4041 name_size = first_dot - name;
4042 else
4043 name_size = first_square_bracket - name;
4044
4045 return strndup(name, name_size);
4046 }
4047
4048 static char*
4049 get_var_name(const char *name)
4050 {
4051 const char *first_dot = strchr(name, '.');
4052
4053 if (!first_dot)
4054 return strdup(name);
4055
4056 return strndup(first_dot+1, strlen(first_dot) - 1);
4057 }
4058
4059 static bool
4060 is_top_level_shader_storage_block_member(const char* name,
4061 const char* interface_name,
4062 const char* field_name)
4063 {
4064 bool result = false;
4065
4066 /* If the given variable is already a top-level shader storage
4067 * block member, then return array_size = 1.
4068 * We could have two possibilities: if we have an instanced
4069 * shader storage block or not instanced.
4070 *
4071 * For the first, we check create a name as it was in top level and
4072 * compare it with the real name. If they are the same, then
4073 * the variable is already at top-level.
4074 *
4075 * Full instanced name is: interface name + '.' + var name +
4076 * NULL character
4077 */
4078 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4079 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4080 if (!full_instanced_name) {
4081 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4082 return false;
4083 }
4084
4085 snprintf(full_instanced_name, name_length, "%s.%s",
4086 interface_name, field_name);
4087
4088 /* Check if its top-level shader storage block member of an
4089 * instanced interface block, or of a unnamed interface block.
4090 */
4091 if (strcmp(name, full_instanced_name) == 0 ||
4092 strcmp(name, field_name) == 0)
4093 result = true;
4094
4095 free(full_instanced_name);
4096 return result;
4097 }
4098
4099 static int
4100 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4101 char *interface_name, char *var_name)
4102 {
4103 /* The ARB_program_interface_query spec says:
4104 *
4105 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4106 * the number of active array elements of the top-level shader storage
4107 * block member containing to the active variable is written to
4108 * <params>. If the top-level block member is not declared as an
4109 * array, the value one is written to <params>. If the top-level block
4110 * member is an array with no declared size, the value zero is written
4111 * to <params>."
4112 */
4113 if (is_top_level_shader_storage_block_member(uni->name,
4114 interface_name,
4115 var_name))
4116 return 1;
4117 else if (field->type->is_unsized_array())
4118 return 0;
4119 else if (field->type->is_array())
4120 return field->type->length;
4121
4122 return 1;
4123 }
4124
4125 static int
4126 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4127 const glsl_type *interface, const glsl_struct_field *field,
4128 char *interface_name, char *var_name)
4129 {
4130 /* The ARB_program_interface_query spec says:
4131 *
4132 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4133 * identifying the stride between array elements of the top-level
4134 * shader storage block member containing the active variable is
4135 * written to <params>. For top-level block members declared as
4136 * arrays, the value written is the difference, in basic machine units,
4137 * between the offsets of the active variable for consecutive elements
4138 * in the top-level array. For top-level block members not declared as
4139 * an array, zero is written to <params>."
4140 */
4141 if (field->type->is_array()) {
4142 const enum glsl_matrix_layout matrix_layout =
4143 glsl_matrix_layout(field->matrix_layout);
4144 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4145 const glsl_type *array_type = field->type->fields.array;
4146
4147 if (is_top_level_shader_storage_block_member(uni->name,
4148 interface_name,
4149 var_name))
4150 return 0;
4151
4152 if (GLSL_INTERFACE_PACKING_STD140 ==
4153 interface->
4154 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4155 if (array_type->is_record() || array_type->is_array())
4156 return glsl_align(array_type->std140_size(row_major), 16);
4157 else
4158 return MAX2(array_type->std140_base_alignment(row_major), 16);
4159 } else {
4160 return array_type->std430_array_stride(row_major);
4161 }
4162 }
4163 return 0;
4164 }
4165
4166 static void
4167 calculate_array_size_and_stride(struct gl_context *ctx,
4168 struct gl_shader_program *shProg,
4169 struct gl_uniform_storage *uni)
4170 {
4171 int block_index = uni->block_index;
4172 int array_size = -1;
4173 int array_stride = -1;
4174 char *var_name = get_top_level_name(uni->name);
4175 char *interface_name =
4176 get_top_level_name(uni->is_shader_storage ?
4177 shProg->data->ShaderStorageBlocks[block_index].Name :
4178 shProg->data->UniformBlocks[block_index].Name);
4179
4180 if (strcmp(var_name, interface_name) == 0) {
4181 /* Deal with instanced array of SSBOs */
4182 char *temp_name = get_var_name(uni->name);
4183 if (!temp_name) {
4184 linker_error(shProg, "Out of memory during linking.\n");
4185 goto write_top_level_array_size_and_stride;
4186 }
4187 free(var_name);
4188 var_name = get_top_level_name(temp_name);
4189 free(temp_name);
4190 if (!var_name) {
4191 linker_error(shProg, "Out of memory during linking.\n");
4192 goto write_top_level_array_size_and_stride;
4193 }
4194 }
4195
4196 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4197 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4198 if (sh == NULL)
4199 continue;
4200
4201 foreach_in_list(ir_instruction, node, sh->ir) {
4202 ir_variable *var = node->as_variable();
4203 if (!var || !var->get_interface_type() ||
4204 var->data.mode != ir_var_shader_storage)
4205 continue;
4206
4207 const glsl_type *interface = var->get_interface_type();
4208
4209 if (strcmp(interface_name, interface->name) != 0)
4210 continue;
4211
4212 for (unsigned i = 0; i < interface->length; i++) {
4213 const glsl_struct_field *field = &interface->fields.structure[i];
4214 if (strcmp(field->name, var_name) != 0)
4215 continue;
4216
4217 array_stride = get_array_stride(ctx, uni, interface, field,
4218 interface_name, var_name);
4219 array_size = get_array_size(uni, field, interface_name, var_name);
4220 goto write_top_level_array_size_and_stride;
4221 }
4222 }
4223 }
4224 write_top_level_array_size_and_stride:
4225 free(interface_name);
4226 free(var_name);
4227 uni->top_level_array_stride = array_stride;
4228 uni->top_level_array_size = array_size;
4229 }
4230
4231 /**
4232 * Builds up a list of program resources that point to existing
4233 * resource data.
4234 */
4235 void
4236 build_program_resource_list(struct gl_context *ctx,
4237 struct gl_shader_program *shProg)
4238 {
4239 /* Rebuild resource list. */
4240 if (shProg->data->ProgramResourceList) {
4241 ralloc_free(shProg->data->ProgramResourceList);
4242 shProg->data->ProgramResourceList = NULL;
4243 shProg->data->NumProgramResourceList = 0;
4244 }
4245
4246 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4247
4248 /* Determine first input and final output stage. These are used to
4249 * detect which variables should be enumerated in the resource list
4250 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4251 */
4252 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4253 if (!shProg->_LinkedShaders[i])
4254 continue;
4255 if (input_stage == MESA_SHADER_STAGES)
4256 input_stage = i;
4257 output_stage = i;
4258 }
4259
4260 /* Empty shader, no resources. */
4261 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4262 return;
4263
4264 struct set *resource_set = _mesa_set_create(NULL,
4265 _mesa_hash_pointer,
4266 _mesa_key_pointer_equal);
4267
4268 /* Program interface needs to expose varyings in case of SSO. */
4269 if (shProg->SeparateShader) {
4270 if (!add_packed_varyings(ctx, shProg, resource_set,
4271 input_stage, GL_PROGRAM_INPUT))
4272 return;
4273
4274 if (!add_packed_varyings(ctx, shProg, resource_set,
4275 output_stage, GL_PROGRAM_OUTPUT))
4276 return;
4277 }
4278
4279 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4280 return;
4281
4282 /* Add inputs and outputs to the resource list. */
4283 if (!add_interface_variables(ctx, shProg, resource_set,
4284 input_stage, GL_PROGRAM_INPUT))
4285 return;
4286
4287 if (!add_interface_variables(ctx, shProg, resource_set,
4288 output_stage, GL_PROGRAM_OUTPUT))
4289 return;
4290
4291 if (shProg->last_vert_prog) {
4292 struct gl_transform_feedback_info *linked_xfb =
4293 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4294
4295 /* Add transform feedback varyings. */
4296 if (linked_xfb->NumVarying > 0) {
4297 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4298 if (!add_program_resource(shProg, resource_set,
4299 GL_TRANSFORM_FEEDBACK_VARYING,
4300 &linked_xfb->Varyings[i], 0))
4301 return;
4302 }
4303 }
4304
4305 /* Add transform feedback buffers. */
4306 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4307 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4308 linked_xfb->Buffers[i].Binding = i;
4309 if (!add_program_resource(shProg, resource_set,
4310 GL_TRANSFORM_FEEDBACK_BUFFER,
4311 &linked_xfb->Buffers[i], 0))
4312 return;
4313 }
4314 }
4315 }
4316
4317 /* Add uniforms from uniform storage. */
4318 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4319 /* Do not add uniforms internally used by Mesa. */
4320 if (shProg->data->UniformStorage[i].hidden)
4321 continue;
4322
4323 uint8_t stageref =
4324 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4325 ir_var_uniform);
4326
4327 /* Add stagereferences for uniforms in a uniform block. */
4328 bool is_shader_storage =
4329 shProg->data->UniformStorage[i].is_shader_storage;
4330 int block_index = shProg->data->UniformStorage[i].block_index;
4331 if (block_index != -1) {
4332 stageref |= is_shader_storage ?
4333 shProg->data->ShaderStorageBlocks[block_index].stageref :
4334 shProg->data->UniformBlocks[block_index].stageref;
4335 }
4336
4337 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4338 if (!should_add_buffer_variable(shProg, type,
4339 shProg->data->UniformStorage[i].name))
4340 continue;
4341
4342 if (is_shader_storage) {
4343 calculate_array_size_and_stride(ctx, shProg,
4344 &shProg->data->UniformStorage[i]);
4345 }
4346
4347 if (!add_program_resource(shProg, resource_set, type,
4348 &shProg->data->UniformStorage[i], stageref))
4349 return;
4350 }
4351
4352 /* Add program uniform blocks. */
4353 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4354 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4355 &shProg->data->UniformBlocks[i], 0))
4356 return;
4357 }
4358
4359 /* Add program shader storage blocks. */
4360 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4361 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4362 &shProg->data->ShaderStorageBlocks[i], 0))
4363 return;
4364 }
4365
4366 /* Add atomic counter buffers. */
4367 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4368 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4369 &shProg->data->AtomicBuffers[i], 0))
4370 return;
4371 }
4372
4373 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4374 GLenum type;
4375 if (!shProg->data->UniformStorage[i].hidden)
4376 continue;
4377
4378 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4379 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4380 !shProg->data->UniformStorage[i].type->is_subroutine())
4381 continue;
4382
4383 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4384 /* add shader subroutines */
4385 if (!add_program_resource(shProg, resource_set,
4386 type, &shProg->data->UniformStorage[i], 0))
4387 return;
4388 }
4389 }
4390
4391 unsigned mask = shProg->data->linked_stages;
4392 while (mask) {
4393 const int i = u_bit_scan(&mask);
4394 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4395
4396 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4397 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4398 if (!add_program_resource(shProg, resource_set,
4399 type, &p->sh.SubroutineFunctions[j], 0))
4400 return;
4401 }
4402 }
4403
4404 _mesa_set_destroy(resource_set, NULL);
4405 }
4406
4407 /**
4408 * This check is done to make sure we allow only constant expression
4409 * indexing and "constant-index-expression" (indexing with an expression
4410 * that includes loop induction variable).
4411 */
4412 static bool
4413 validate_sampler_array_indexing(struct gl_context *ctx,
4414 struct gl_shader_program *prog)
4415 {
4416 dynamic_sampler_array_indexing_visitor v;
4417 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4418 if (prog->_LinkedShaders[i] == NULL)
4419 continue;
4420
4421 bool no_dynamic_indexing =
4422 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4423
4424 /* Search for array derefs in shader. */
4425 v.run(prog->_LinkedShaders[i]->ir);
4426 if (v.uses_dynamic_sampler_array_indexing()) {
4427 const char *msg = "sampler arrays indexed with non-constant "
4428 "expressions is forbidden in GLSL %s %u";
4429 /* Backend has indicated that it has no dynamic indexing support. */
4430 if (no_dynamic_indexing) {
4431 linker_error(prog, msg, prog->IsES ? "ES" : "",
4432 prog->data->Version);
4433 return false;
4434 } else {
4435 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4436 prog->data->Version);
4437 }
4438 }
4439 }
4440 return true;
4441 }
4442
4443 static void
4444 link_assign_subroutine_types(struct gl_shader_program *prog)
4445 {
4446 unsigned mask = prog->data->linked_stages;
4447 while (mask) {
4448 const int i = u_bit_scan(&mask);
4449 gl_program *p = prog->_LinkedShaders[i]->Program;
4450
4451 p->sh.MaxSubroutineFunctionIndex = 0;
4452 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4453 ir_function *fn = node->as_function();
4454 if (!fn)
4455 continue;
4456
4457 if (fn->is_subroutine)
4458 p->sh.NumSubroutineUniformTypes++;
4459
4460 if (!fn->num_subroutine_types)
4461 continue;
4462
4463 /* these should have been calculated earlier. */
4464 assert(fn->subroutine_index != -1);
4465 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4466 linker_error(prog, "Too many subroutine functions declared.\n");
4467 return;
4468 }
4469 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4470 struct gl_subroutine_function,
4471 p->sh.NumSubroutineFunctions + 1);
4472 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4473 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4474 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4475 ralloc_array(p, const struct glsl_type *,
4476 fn->num_subroutine_types);
4477
4478 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4479 * GLSL 4.5 spec:
4480 *
4481 * "Each subroutine with an index qualifier in the shader must be
4482 * given a unique index, otherwise a compile or link error will be
4483 * generated."
4484 */
4485 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4486 if (p->sh.SubroutineFunctions[j].index != -1 &&
4487 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4488 linker_error(prog, "each subroutine index qualifier in the "
4489 "shader must be unique\n");
4490 return;
4491 }
4492 }
4493 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4494 fn->subroutine_index;
4495
4496 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4497 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4498
4499 for (int j = 0; j < fn->num_subroutine_types; j++)
4500 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4501 p->sh.NumSubroutineFunctions++;
4502 }
4503 }
4504 }
4505
4506 static void
4507 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4508 {
4509 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4510
4511 foreach_in_list(ir_instruction, node, ir) {
4512 ir_variable *const var = node->as_variable();
4513
4514 if (var == NULL || var->data.mode != io_mode)
4515 continue;
4516
4517 /* Don't set always active on builtins that haven't been redeclared */
4518 if (var->data.how_declared == ir_var_declared_implicitly)
4519 continue;
4520
4521 var->data.always_active_io = true;
4522 }
4523 }
4524
4525 /**
4526 * When separate shader programs are enabled, only input/outputs between
4527 * the stages of a multi-stage separate program can be safely removed
4528 * from the shader interface. Other inputs/outputs must remain active.
4529 */
4530 static void
4531 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4532 {
4533 unsigned first, last;
4534 assert(prog->SeparateShader);
4535
4536 first = MESA_SHADER_STAGES;
4537 last = 0;
4538
4539 /* Determine first and last stage. Excluding the compute stage */
4540 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4541 if (!prog->_LinkedShaders[i])
4542 continue;
4543 if (first == MESA_SHADER_STAGES)
4544 first = i;
4545 last = i;
4546 }
4547
4548 if (first == MESA_SHADER_STAGES)
4549 return;
4550
4551 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4552 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4553 if (!sh)
4554 continue;
4555
4556 /* Prevent the removal of inputs to the first and outputs from the last
4557 * stage, unless they are the initial pipeline inputs or final pipeline
4558 * outputs, respectively.
4559 *
4560 * The removal of IO between shaders in the same program is always
4561 * allowed.
4562 */
4563 if (stage == first && stage != MESA_SHADER_VERTEX)
4564 set_always_active_io(sh->ir, ir_var_shader_in);
4565 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4566 set_always_active_io(sh->ir, ir_var_shader_out);
4567 }
4568 }
4569
4570 static void
4571 link_and_validate_uniforms(struct gl_context *ctx,
4572 struct gl_shader_program *prog)
4573 {
4574 update_array_sizes(prog);
4575 link_assign_uniform_locations(prog, ctx);
4576
4577 if (!prog->data->cache_fallback) {
4578 link_assign_atomic_counter_resources(ctx, prog);
4579 link_calculate_subroutine_compat(prog);
4580 check_resources(ctx, prog);
4581 check_subroutine_resources(prog);
4582 check_image_resources(ctx, prog);
4583 link_check_atomic_counter_resources(ctx, prog);
4584 }
4585 }
4586
4587 static bool
4588 link_varyings_and_uniforms(unsigned first, unsigned last,
4589 struct gl_context *ctx,
4590 struct gl_shader_program *prog, void *mem_ctx)
4591 {
4592 /* Mark all generic shader inputs and outputs as unpaired. */
4593 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4594 if (prog->_LinkedShaders[i] != NULL) {
4595 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4596 }
4597 }
4598
4599 unsigned prev = first;
4600 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4601 if (prog->_LinkedShaders[i] == NULL)
4602 continue;
4603
4604 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4605 prog->_LinkedShaders[i]);
4606 prev = i;
4607 }
4608
4609 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4610 MESA_SHADER_VERTEX)) {
4611 return false;
4612 }
4613
4614 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4615 MESA_SHADER_FRAGMENT)) {
4616 return false;
4617 }
4618
4619 prog->last_vert_prog = NULL;
4620 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4621 if (prog->_LinkedShaders[i] == NULL)
4622 continue;
4623
4624 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4625 break;
4626 }
4627
4628 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4629 return false;
4630
4631 link_and_validate_uniforms(ctx, prog);
4632
4633 if (!prog->data->LinkStatus)
4634 return false;
4635
4636 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4637 if (prog->_LinkedShaders[i] == NULL)
4638 continue;
4639
4640 const struct gl_shader_compiler_options *options =
4641 &ctx->Const.ShaderCompilerOptions[i];
4642
4643 if (options->LowerBufferInterfaceBlocks)
4644 lower_ubo_reference(prog->_LinkedShaders[i],
4645 options->ClampBlockIndicesToArrayBounds,
4646 ctx->Const.UseSTD430AsDefaultPacking);
4647
4648 if (i == MESA_SHADER_COMPUTE)
4649 lower_shared_reference(prog->_LinkedShaders[i],
4650 &prog->Comp.SharedSize);
4651
4652 lower_vector_derefs(prog->_LinkedShaders[i]);
4653 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4654 }
4655
4656 return true;
4657 }
4658
4659 static void
4660 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4661 unsigned stage)
4662 {
4663 if (ctx->Const.GLSLOptimizeConservatively) {
4664 /* Run it just once. */
4665 do_common_optimization(ir, true, false,
4666 &ctx->Const.ShaderCompilerOptions[stage],
4667 ctx->Const.NativeIntegers);
4668 } else {
4669 /* Repeat it until it stops making changes. */
4670 while (do_common_optimization(ir, true, false,
4671 &ctx->Const.ShaderCompilerOptions[stage],
4672 ctx->Const.NativeIntegers))
4673 ;
4674 }
4675 }
4676
4677 void
4678 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4679 {
4680 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4681 prog->data->Validated = false;
4682
4683 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4684 *
4685 * "Linking can fail for a variety of reasons as specified in the
4686 * OpenGL Shading Language Specification, as well as any of the
4687 * following reasons:
4688 *
4689 * - No shader objects are attached to program."
4690 *
4691 * The Compatibility Profile specification does not list the error. In
4692 * Compatibility Profile missing shader stages are replaced by
4693 * fixed-function. This applies to the case where all stages are
4694 * missing.
4695 */
4696 if (prog->NumShaders == 0) {
4697 if (ctx->API != API_OPENGL_COMPAT)
4698 linker_error(prog, "no shaders attached to the program\n");
4699 return;
4700 }
4701
4702 #ifdef ENABLE_SHADER_CACHE
4703 /* If transform feedback used on the program then compile all shaders. */
4704 bool skip_cache = false;
4705 if (prog->TransformFeedback.NumVarying > 0) {
4706 for (unsigned i = 0; i < prog->NumShaders; i++) {
4707 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4708 }
4709 skip_cache = true;
4710 }
4711
4712 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4713 return;
4714 #endif
4715
4716 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4717
4718 prog->ARB_fragment_coord_conventions_enable = false;
4719
4720 /* Separate the shaders into groups based on their type.
4721 */
4722 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4723 unsigned num_shaders[MESA_SHADER_STAGES];
4724
4725 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4726 shader_list[i] = (struct gl_shader **)
4727 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4728 num_shaders[i] = 0;
4729 }
4730
4731 unsigned min_version = UINT_MAX;
4732 unsigned max_version = 0;
4733 for (unsigned i = 0; i < prog->NumShaders; i++) {
4734 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4735 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4736
4737 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4738 linker_error(prog, "all shaders must use same shading "
4739 "language version\n");
4740 goto done;
4741 }
4742
4743 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4744 prog->ARB_fragment_coord_conventions_enable = true;
4745 }
4746
4747 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4748 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4749 num_shaders[shader_type]++;
4750 }
4751
4752 /* In desktop GLSL, different shader versions may be linked together. In
4753 * GLSL ES, all shader versions must be the same.
4754 */
4755 if (prog->Shaders[0]->IsES && min_version != max_version) {
4756 linker_error(prog, "all shaders must use same shading "
4757 "language version\n");
4758 goto done;
4759 }
4760
4761 prog->data->Version = max_version;
4762 prog->IsES = prog->Shaders[0]->IsES;
4763
4764 /* Some shaders have to be linked with some other shaders present.
4765 */
4766 if (!prog->SeparateShader) {
4767 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4768 num_shaders[MESA_SHADER_VERTEX] == 0) {
4769 linker_error(prog, "Geometry shader must be linked with "
4770 "vertex shader\n");
4771 goto done;
4772 }
4773 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4774 num_shaders[MESA_SHADER_VERTEX] == 0) {
4775 linker_error(prog, "Tessellation evaluation shader must be linked "
4776 "with vertex shader\n");
4777 goto done;
4778 }
4779 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4780 num_shaders[MESA_SHADER_VERTEX] == 0) {
4781 linker_error(prog, "Tessellation control shader must be linked with "
4782 "vertex shader\n");
4783 goto done;
4784 }
4785
4786 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4787 *
4788 * "Linking can fail for [...] any of the following reasons:
4789 *
4790 * * program contains an object to form a tessellation control
4791 * shader [...] and [...] the program is not separable and
4792 * contains no object to form a tessellation evaluation shader"
4793 *
4794 * The OpenGL spec is contradictory. It allows linking without a tess
4795 * eval shader, but that can only be used with transform feedback and
4796 * rasterization disabled. However, transform feedback isn't allowed
4797 * with GL_PATCHES, so it can't be used.
4798 *
4799 * More investigation showed that the idea of transform feedback after
4800 * a tess control shader was dropped, because some hw vendors couldn't
4801 * support tessellation without a tess eval shader, but the linker
4802 * section wasn't updated to reflect that.
4803 *
4804 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4805 * spec bug.
4806 *
4807 * Do what's reasonable and always require a tess eval shader if a tess
4808 * control shader is present.
4809 */
4810 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4811 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4812 linker_error(prog, "Tessellation control shader must be linked with "
4813 "tessellation evaluation shader\n");
4814 goto done;
4815 }
4816
4817 if (prog->IsES) {
4818 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4819 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4820 linker_error(prog, "GLSL ES requires non-separable programs "
4821 "containing a tessellation evaluation shader to also "
4822 "be linked with a tessellation control shader\n");
4823 goto done;
4824 }
4825 }
4826 }
4827
4828 /* Compute shaders have additional restrictions. */
4829 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4830 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4831 linker_error(prog, "Compute shaders may not be linked with any other "
4832 "type of shader\n");
4833 }
4834
4835 /* Link all shaders for a particular stage and validate the result.
4836 */
4837 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4838 if (num_shaders[stage] > 0) {
4839 gl_linked_shader *const sh =
4840 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4841 num_shaders[stage], false);
4842
4843 if (!prog->data->LinkStatus) {
4844 if (sh)
4845 _mesa_delete_linked_shader(ctx, sh);
4846 goto done;
4847 }
4848
4849 switch (stage) {
4850 case MESA_SHADER_VERTEX:
4851 validate_vertex_shader_executable(prog, sh, ctx);
4852 break;
4853 case MESA_SHADER_TESS_CTRL:
4854 /* nothing to be done */
4855 break;
4856 case MESA_SHADER_TESS_EVAL:
4857 validate_tess_eval_shader_executable(prog, sh, ctx);
4858 break;
4859 case MESA_SHADER_GEOMETRY:
4860 validate_geometry_shader_executable(prog, sh, ctx);
4861 break;
4862 case MESA_SHADER_FRAGMENT:
4863 validate_fragment_shader_executable(prog, sh);
4864 break;
4865 }
4866 if (!prog->data->LinkStatus) {
4867 if (sh)
4868 _mesa_delete_linked_shader(ctx, sh);
4869 goto done;
4870 }
4871
4872 prog->_LinkedShaders[stage] = sh;
4873 prog->data->linked_stages |= 1 << stage;
4874 }
4875 }
4876
4877 /* Here begins the inter-stage linking phase. Some initial validation is
4878 * performed, then locations are assigned for uniforms, attributes, and
4879 * varyings.
4880 */
4881 cross_validate_uniforms(prog);
4882 if (!prog->data->LinkStatus)
4883 goto done;
4884
4885 unsigned first, last, prev;
4886
4887 first = MESA_SHADER_STAGES;
4888 last = 0;
4889
4890 /* Determine first and last stage. */
4891 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4892 if (!prog->_LinkedShaders[i])
4893 continue;
4894 if (first == MESA_SHADER_STAGES)
4895 first = i;
4896 last = i;
4897 }
4898
4899 if (!prog->data->cache_fallback) {
4900 check_explicit_uniform_locations(ctx, prog);
4901 link_assign_subroutine_types(prog);
4902 }
4903
4904 if (!prog->data->LinkStatus)
4905 goto done;
4906
4907 resize_tes_inputs(ctx, prog);
4908
4909 /* Validate the inputs of each stage with the output of the preceding
4910 * stage.
4911 */
4912 prev = first;
4913 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4914 if (prog->_LinkedShaders[i] == NULL)
4915 continue;
4916
4917 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4918 prog->_LinkedShaders[i]);
4919 if (!prog->data->LinkStatus)
4920 goto done;
4921
4922 cross_validate_outputs_to_inputs(prog,
4923 prog->_LinkedShaders[prev],
4924 prog->_LinkedShaders[i]);
4925 if (!prog->data->LinkStatus)
4926 goto done;
4927
4928 prev = i;
4929 }
4930
4931 /* Cross-validate uniform blocks between shader stages */
4932 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4933 if (!prog->data->LinkStatus)
4934 goto done;
4935
4936 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4937 if (prog->_LinkedShaders[i] != NULL)
4938 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4939 }
4940
4941 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4942 * it before optimization because we want most of the checks to get
4943 * dropped thanks to constant propagation.
4944 *
4945 * This rule also applies to GLSL ES 3.00.
4946 */
4947 if (max_version >= (prog->IsES ? 300 : 130)) {
4948 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4949 if (sh) {
4950 lower_discard_flow(sh->ir);
4951 }
4952 }
4953
4954 if (prog->SeparateShader)
4955 disable_varying_optimizations_for_sso(prog);
4956
4957 if (!prog->data->cache_fallback) {
4958 /* Process UBOs */
4959 if (!interstage_cross_validate_uniform_blocks(prog, false))
4960 goto done;
4961
4962 /* Process SSBOs */
4963 if (!interstage_cross_validate_uniform_blocks(prog, true))
4964 goto done;
4965 }
4966
4967 /* Do common optimization before assigning storage for attributes,
4968 * uniforms, and varyings. Later optimization could possibly make
4969 * some of that unused.
4970 */
4971 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4972 if (prog->_LinkedShaders[i] == NULL)
4973 continue;
4974
4975 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4976 if (!prog->data->LinkStatus)
4977 goto done;
4978
4979 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4980 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4981 }
4982
4983 if (ctx->Const.LowerTessLevel) {
4984 lower_tess_level(prog->_LinkedShaders[i]);
4985 }
4986
4987 /* Call opts before lowering const arrays to uniforms so we can const
4988 * propagate any elements accessed directly.
4989 */
4990 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4991
4992 /* Call opts after lowering const arrays to copy propagate things. */
4993 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4994 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4995
4996 propagate_invariance(prog->_LinkedShaders[i]->ir);
4997 }
4998
4999 /* Validation for special cases where we allow sampler array indexing
5000 * with loop induction variable. This check emits a warning or error
5001 * depending if backend can handle dynamic indexing.
5002 */
5003 if ((!prog->IsES && prog->data->Version < 130) ||
5004 (prog->IsES && prog->data->Version < 300)) {
5005 if (!validate_sampler_array_indexing(ctx, prog))
5006 goto done;
5007 }
5008
5009 /* Check and validate stream emissions in geometry shaders */
5010 validate_geometry_shader_emissions(ctx, prog);
5011
5012 store_fragdepth_layout(prog);
5013
5014 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5015 goto done;
5016
5017 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5018 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5019 * anything about shader linking when one of the shaders (vertex or
5020 * fragment shader) is absent. So, the extension shouldn't change the
5021 * behavior specified in GLSL specification.
5022 *
5023 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5024 * "Linking can fail for a variety of reasons as specified in the
5025 * OpenGL ES Shading Language Specification, as well as any of the
5026 * following reasons:
5027 *
5028 * ...
5029 *
5030 * * program contains objects to form either a vertex shader or
5031 * fragment shader, and program is not separable, and does not
5032 * contain objects to form both a vertex shader and fragment
5033 * shader."
5034 *
5035 * However, the only scenario in 3.1+ where we don't require them both is
5036 * when we have a compute shader. For example:
5037 *
5038 * - No shaders is a link error.
5039 * - Geom or Tess without a Vertex shader is a link error which means we
5040 * always require a Vertex shader and hence a Fragment shader.
5041 * - Finally a Compute shader linked with any other stage is a link error.
5042 */
5043 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5044 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5045 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5046 linker_error(prog, "program lacks a vertex shader\n");
5047 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5048 linker_error(prog, "program lacks a fragment shader\n");
5049 }
5050 }
5051
5052 done:
5053 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5054 free(shader_list[i]);
5055 if (prog->_LinkedShaders[i] == NULL)
5056 continue;
5057
5058 /* Do a final validation step to make sure that the IR wasn't
5059 * invalidated by any modifications performed after intrastage linking.
5060 */
5061 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5062
5063 /* Retain any live IR, but trash the rest. */
5064 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5065
5066 /* The symbol table in the linked shaders may contain references to
5067 * variables that were removed (e.g., unused uniforms). Since it may
5068 * contain junk, there is no possible valid use. Delete it and set the
5069 * pointer to NULL.
5070 */
5071 delete prog->_LinkedShaders[i]->symbols;
5072 prog->_LinkedShaders[i]->symbols = NULL;
5073 }
5074
5075 ralloc_free(mem_ctx);
5076 }