glsl: Add bit_xor builder
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "util/set.h"
76 #include "util/string_to_uint_map.h"
77 #include "linker.h"
78 #include "link_varyings.h"
79 #include "ir_optimization.h"
80 #include "ir_rvalue_visitor.h"
81 #include "ir_uniform.h"
82
83 #include "main/shaderobj.h"
84 #include "main/enums.h"
85
86
87 namespace {
88
89 /**
90 * Visitor that determines whether or not a variable is ever written.
91 */
92 class find_assignment_visitor : public ir_hierarchical_visitor {
93 public:
94 find_assignment_visitor(const char *name)
95 : name(name), found(false)
96 {
97 /* empty */
98 }
99
100 virtual ir_visitor_status visit_enter(ir_assignment *ir)
101 {
102 ir_variable *const var = ir->lhs->variable_referenced();
103
104 if (strcmp(name, var->name) == 0) {
105 found = true;
106 return visit_stop;
107 }
108
109 return visit_continue_with_parent;
110 }
111
112 virtual ir_visitor_status visit_enter(ir_call *ir)
113 {
114 foreach_two_lists(formal_node, &ir->callee->parameters,
115 actual_node, &ir->actual_parameters) {
116 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
117 ir_variable *sig_param = (ir_variable *) formal_node;
118
119 if (sig_param->data.mode == ir_var_function_out ||
120 sig_param->data.mode == ir_var_function_inout) {
121 ir_variable *var = param_rval->variable_referenced();
122 if (var && strcmp(name, var->name) == 0) {
123 found = true;
124 return visit_stop;
125 }
126 }
127 }
128
129 if (ir->return_deref != NULL) {
130 ir_variable *const var = ir->return_deref->variable_referenced();
131
132 if (strcmp(name, var->name) == 0) {
133 found = true;
134 return visit_stop;
135 }
136 }
137
138 return visit_continue_with_parent;
139 }
140
141 bool variable_found()
142 {
143 return found;
144 }
145
146 private:
147 const char *name; /**< Find writes to a variable with this name. */
148 bool found; /**< Was a write to the variable found? */
149 };
150
151
152 /**
153 * Visitor that determines whether or not a variable is ever read.
154 */
155 class find_deref_visitor : public ir_hierarchical_visitor {
156 public:
157 find_deref_visitor(const char *name)
158 : name(name), found(false)
159 {
160 /* empty */
161 }
162
163 virtual ir_visitor_status visit(ir_dereference_variable *ir)
164 {
165 if (strcmp(this->name, ir->var->name) == 0) {
166 this->found = true;
167 return visit_stop;
168 }
169
170 return visit_continue;
171 }
172
173 bool variable_found() const
174 {
175 return this->found;
176 }
177
178 private:
179 const char *name; /**< Find writes to a variable with this name. */
180 bool found; /**< Was a write to the variable found? */
181 };
182
183
184 class array_resize_visitor : public ir_hierarchical_visitor {
185 public:
186 unsigned num_vertices;
187 gl_shader_program *prog;
188 gl_shader_stage stage;
189
190 array_resize_visitor(unsigned num_vertices,
191 gl_shader_program *prog,
192 gl_shader_stage stage)
193 {
194 this->num_vertices = num_vertices;
195 this->prog = prog;
196 this->stage = stage;
197 }
198
199 virtual ~array_resize_visitor()
200 {
201 /* empty */
202 }
203
204 virtual ir_visitor_status visit(ir_variable *var)
205 {
206 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
207 var->data.patch)
208 return visit_continue;
209
210 unsigned size = var->type->length;
211
212 if (stage == MESA_SHADER_GEOMETRY) {
213 /* Generate a link error if the shader has declared this array with
214 * an incorrect size.
215 */
216 if (!var->data.implicit_sized_array &&
217 size && size != this->num_vertices) {
218 linker_error(this->prog, "size of array %s declared as %u, "
219 "but number of input vertices is %u\n",
220 var->name, size, this->num_vertices);
221 return visit_continue;
222 }
223
224 /* Generate a link error if the shader attempts to access an input
225 * array using an index too large for its actual size assigned at
226 * link time.
227 */
228 if (var->data.max_array_access >= (int)this->num_vertices) {
229 linker_error(this->prog, "%s shader accesses element %i of "
230 "%s, but only %i input vertices\n",
231 _mesa_shader_stage_to_string(this->stage),
232 var->data.max_array_access, var->name, this->num_vertices);
233 return visit_continue;
234 }
235 }
236
237 var->type = glsl_type::get_array_instance(var->type->fields.array,
238 this->num_vertices);
239 var->data.max_array_access = this->num_vertices - 1;
240
241 return visit_continue;
242 }
243
244 /* Dereferences of input variables need to be updated so that their type
245 * matches the newly assigned type of the variable they are accessing. */
246 virtual ir_visitor_status visit(ir_dereference_variable *ir)
247 {
248 ir->type = ir->var->type;
249 return visit_continue;
250 }
251
252 /* Dereferences of 2D input arrays need to be updated so that their type
253 * matches the newly assigned type of the array they are accessing. */
254 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
255 {
256 const glsl_type *const vt = ir->array->type;
257 if (vt->is_array())
258 ir->type = vt->fields.array;
259 return visit_continue;
260 }
261 };
262
263 /**
264 * Visitor that determines the highest stream id to which a (geometry) shader
265 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
266 */
267 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
268 public:
269 find_emit_vertex_visitor(int max_allowed)
270 : max_stream_allowed(max_allowed),
271 invalid_stream_id(0),
272 invalid_stream_id_from_emit_vertex(false),
273 end_primitive_found(false),
274 uses_non_zero_stream(false)
275 {
276 /* empty */
277 }
278
279 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
280 {
281 int stream_id = ir->stream_id();
282
283 if (stream_id < 0) {
284 invalid_stream_id = stream_id;
285 invalid_stream_id_from_emit_vertex = true;
286 return visit_stop;
287 }
288
289 if (stream_id > max_stream_allowed) {
290 invalid_stream_id = stream_id;
291 invalid_stream_id_from_emit_vertex = true;
292 return visit_stop;
293 }
294
295 if (stream_id != 0)
296 uses_non_zero_stream = true;
297
298 return visit_continue;
299 }
300
301 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
302 {
303 end_primitive_found = true;
304
305 int stream_id = ir->stream_id();
306
307 if (stream_id < 0) {
308 invalid_stream_id = stream_id;
309 invalid_stream_id_from_emit_vertex = false;
310 return visit_stop;
311 }
312
313 if (stream_id > max_stream_allowed) {
314 invalid_stream_id = stream_id;
315 invalid_stream_id_from_emit_vertex = false;
316 return visit_stop;
317 }
318
319 if (stream_id != 0)
320 uses_non_zero_stream = true;
321
322 return visit_continue;
323 }
324
325 bool error()
326 {
327 return invalid_stream_id != 0;
328 }
329
330 const char *error_func()
331 {
332 return invalid_stream_id_from_emit_vertex ?
333 "EmitStreamVertex" : "EndStreamPrimitive";
334 }
335
336 int error_stream()
337 {
338 return invalid_stream_id;
339 }
340
341 bool uses_streams()
342 {
343 return uses_non_zero_stream;
344 }
345
346 bool uses_end_primitive()
347 {
348 return end_primitive_found;
349 }
350
351 private:
352 int max_stream_allowed;
353 int invalid_stream_id;
354 bool invalid_stream_id_from_emit_vertex;
355 bool end_primitive_found;
356 bool uses_non_zero_stream;
357 };
358
359 /* Class that finds array derefs and check if indexes are dynamic. */
360 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
361 {
362 public:
363 dynamic_sampler_array_indexing_visitor() :
364 dynamic_sampler_array_indexing(false)
365 {
366 }
367
368 ir_visitor_status visit_enter(ir_dereference_array *ir)
369 {
370 if (!ir->variable_referenced())
371 return visit_continue;
372
373 if (!ir->variable_referenced()->type->contains_sampler())
374 return visit_continue;
375
376 if (!ir->array_index->constant_expression_value()) {
377 dynamic_sampler_array_indexing = true;
378 return visit_stop;
379 }
380 return visit_continue;
381 }
382
383 bool uses_dynamic_sampler_array_indexing()
384 {
385 return dynamic_sampler_array_indexing;
386 }
387
388 private:
389 bool dynamic_sampler_array_indexing;
390 };
391
392 } /* anonymous namespace */
393
394 void
395 linker_error(gl_shader_program *prog, const char *fmt, ...)
396 {
397 va_list ap;
398
399 ralloc_strcat(&prog->InfoLog, "error: ");
400 va_start(ap, fmt);
401 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
402 va_end(ap);
403
404 prog->LinkStatus = false;
405 }
406
407
408 void
409 linker_warning(gl_shader_program *prog, const char *fmt, ...)
410 {
411 va_list ap;
412
413 ralloc_strcat(&prog->InfoLog, "warning: ");
414 va_start(ap, fmt);
415 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
416 va_end(ap);
417
418 }
419
420
421 /**
422 * Given a string identifying a program resource, break it into a base name
423 * and an optional array index in square brackets.
424 *
425 * If an array index is present, \c out_base_name_end is set to point to the
426 * "[" that precedes the array index, and the array index itself is returned
427 * as a long.
428 *
429 * If no array index is present (or if the array index is negative or
430 * mal-formed), \c out_base_name_end, is set to point to the null terminator
431 * at the end of the input string, and -1 is returned.
432 *
433 * Only the final array index is parsed; if the string contains other array
434 * indices (or structure field accesses), they are left in the base name.
435 *
436 * No attempt is made to check that the base name is properly formed;
437 * typically the caller will look up the base name in a hash table, so
438 * ill-formed base names simply turn into hash table lookup failures.
439 */
440 long
441 parse_program_resource_name(const GLchar *name,
442 const GLchar **out_base_name_end)
443 {
444 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
445 *
446 * "When an integer array element or block instance number is part of
447 * the name string, it will be specified in decimal form without a "+"
448 * or "-" sign or any extra leading zeroes. Additionally, the name
449 * string will not include white space anywhere in the string."
450 */
451
452 const size_t len = strlen(name);
453 *out_base_name_end = name + len;
454
455 if (len == 0 || name[len-1] != ']')
456 return -1;
457
458 /* Walk backwards over the string looking for a non-digit character. This
459 * had better be the opening bracket for an array index.
460 *
461 * Initially, i specifies the location of the ']'. Since the string may
462 * contain only the ']' charcater, walk backwards very carefully.
463 */
464 unsigned i;
465 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
466 /* empty */ ;
467
468 if ((i == 0) || name[i-1] != '[')
469 return -1;
470
471 long array_index = strtol(&name[i], NULL, 10);
472 if (array_index < 0)
473 return -1;
474
475 /* Check for leading zero */
476 if (name[i] == '0' && name[i+1] != ']')
477 return -1;
478
479 *out_base_name_end = name + (i - 1);
480 return array_index;
481 }
482
483
484 void
485 link_invalidate_variable_locations(exec_list *ir)
486 {
487 foreach_in_list(ir_instruction, node, ir) {
488 ir_variable *const var = node->as_variable();
489
490 if (var == NULL)
491 continue;
492
493 /* Only assign locations for variables that lack an explicit location.
494 * Explicit locations are set for all built-in variables, generic vertex
495 * shader inputs (via layout(location=...)), and generic fragment shader
496 * outputs (also via layout(location=...)).
497 */
498 if (!var->data.explicit_location) {
499 var->data.location = -1;
500 var->data.location_frac = 0;
501 }
502
503 /* ir_variable::is_unmatched_generic_inout is used by the linker while
504 * connecting outputs from one stage to inputs of the next stage.
505 */
506 if (var->data.explicit_location &&
507 var->data.location < VARYING_SLOT_VAR0) {
508 var->data.is_unmatched_generic_inout = 0;
509 } else {
510 var->data.is_unmatched_generic_inout = 1;
511 }
512 }
513 }
514
515
516 /**
517 * Set clip_distance_array_size based and cull_distance_array_size on the given
518 * shader.
519 *
520 * Also check for errors based on incorrect usage of gl_ClipVertex and
521 * gl_ClipDistance and gl_CullDistance.
522 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
523 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
524 *
525 * Return false if an error was reported.
526 */
527 static void
528 analyze_clip_cull_usage(struct gl_shader_program *prog,
529 struct gl_linked_shader *shader,
530 struct gl_context *ctx,
531 GLuint *clip_distance_array_size,
532 GLuint *cull_distance_array_size)
533 {
534 *clip_distance_array_size = 0;
535 *cull_distance_array_size = 0;
536
537 if (prog->Version >= (prog->IsES ? 300 : 130)) {
538 /* From section 7.1 (Vertex Shader Special Variables) of the
539 * GLSL 1.30 spec:
540 *
541 * "It is an error for a shader to statically write both
542 * gl_ClipVertex and gl_ClipDistance."
543 *
544 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
545 * gl_ClipVertex nor gl_ClipDistance. However with
546 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
547 */
548 find_assignment_visitor clip_distance("gl_ClipDistance");
549 find_assignment_visitor cull_distance("gl_CullDistance");
550
551 clip_distance.run(shader->ir);
552 cull_distance.run(shader->ir);
553
554 /* From the ARB_cull_distance spec:
555 *
556 * It is a compile-time or link-time error for the set of shaders forming
557 * a program to statically read or write both gl_ClipVertex and either
558 * gl_ClipDistance or gl_CullDistance.
559 *
560 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
561 * gl_ClipVertex.
562 */
563 if (!prog->IsES) {
564 find_assignment_visitor clip_vertex("gl_ClipVertex");
565
566 clip_vertex.run(shader->ir);
567
568 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
569 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
570 "and `gl_ClipDistance'\n",
571 _mesa_shader_stage_to_string(shader->Stage));
572 return;
573 }
574 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
575 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
576 "and `gl_CullDistance'\n",
577 _mesa_shader_stage_to_string(shader->Stage));
578 return;
579 }
580 }
581
582 if (clip_distance.variable_found()) {
583 ir_variable *clip_distance_var =
584 shader->symbols->get_variable("gl_ClipDistance");
585 assert(clip_distance_var);
586 *clip_distance_array_size = clip_distance_var->type->length;
587 }
588 if (cull_distance.variable_found()) {
589 ir_variable *cull_distance_var =
590 shader->symbols->get_variable("gl_CullDistance");
591 assert(cull_distance_var);
592 *cull_distance_array_size = cull_distance_var->type->length;
593 }
594 /* From the ARB_cull_distance spec:
595 *
596 * It is a compile-time or link-time error for the set of shaders forming
597 * a program to have the sum of the sizes of the gl_ClipDistance and
598 * gl_CullDistance arrays to be larger than
599 * gl_MaxCombinedClipAndCullDistances.
600 */
601 if ((*clip_distance_array_size + *cull_distance_array_size) >
602 ctx->Const.MaxClipPlanes) {
603 linker_error(prog, "%s shader: the combined size of "
604 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
605 "be larger than "
606 "gl_MaxCombinedClipAndCullDistances (%u)",
607 _mesa_shader_stage_to_string(shader->Stage),
608 ctx->Const.MaxClipPlanes);
609 }
610 }
611 }
612
613
614 /**
615 * Verify that a vertex shader executable meets all semantic requirements.
616 *
617 * Also sets prog->Vert.ClipDistanceArraySize and
618 * prog->Vert.CullDistanceArraySize as a side effect.
619 *
620 * \param shader Vertex shader executable to be verified
621 */
622 void
623 validate_vertex_shader_executable(struct gl_shader_program *prog,
624 struct gl_linked_shader *shader,
625 struct gl_context *ctx)
626 {
627 if (shader == NULL)
628 return;
629
630 /* From the GLSL 1.10 spec, page 48:
631 *
632 * "The variable gl_Position is available only in the vertex
633 * language and is intended for writing the homogeneous vertex
634 * position. All executions of a well-formed vertex shader
635 * executable must write a value into this variable. [...] The
636 * variable gl_Position is available only in the vertex
637 * language and is intended for writing the homogeneous vertex
638 * position. All executions of a well-formed vertex shader
639 * executable must write a value into this variable."
640 *
641 * while in GLSL 1.40 this text is changed to:
642 *
643 * "The variable gl_Position is available only in the vertex
644 * language and is intended for writing the homogeneous vertex
645 * position. It can be written at any time during shader
646 * execution. It may also be read back by a vertex shader
647 * after being written. This value will be used by primitive
648 * assembly, clipping, culling, and other fixed functionality
649 * operations, if present, that operate on primitives after
650 * vertex processing has occurred. Its value is undefined if
651 * the vertex shader executable does not write gl_Position."
652 *
653 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
654 * gl_Position is not an error.
655 */
656 if (prog->Version < (prog->IsES ? 300 : 140)) {
657 find_assignment_visitor find("gl_Position");
658 find.run(shader->ir);
659 if (!find.variable_found()) {
660 if (prog->IsES) {
661 linker_warning(prog,
662 "vertex shader does not write to `gl_Position'. "
663 "Its value is undefined. \n");
664 } else {
665 linker_error(prog,
666 "vertex shader does not write to `gl_Position'. \n");
667 }
668 return;
669 }
670 }
671
672 analyze_clip_cull_usage(prog, shader, ctx,
673 &prog->Vert.ClipDistanceArraySize,
674 &prog->Vert.CullDistanceArraySize);
675 }
676
677 void
678 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
679 struct gl_linked_shader *shader,
680 struct gl_context *ctx)
681 {
682 if (shader == NULL)
683 return;
684
685 analyze_clip_cull_usage(prog, shader, ctx,
686 &prog->TessEval.ClipDistanceArraySize,
687 &prog->TessEval.CullDistanceArraySize);
688 }
689
690
691 /**
692 * Verify that a fragment shader executable meets all semantic requirements
693 *
694 * \param shader Fragment shader executable to be verified
695 */
696 void
697 validate_fragment_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader)
699 {
700 if (shader == NULL)
701 return;
702
703 find_assignment_visitor frag_color("gl_FragColor");
704 find_assignment_visitor frag_data("gl_FragData");
705
706 frag_color.run(shader->ir);
707 frag_data.run(shader->ir);
708
709 if (frag_color.variable_found() && frag_data.variable_found()) {
710 linker_error(prog, "fragment shader writes to both "
711 "`gl_FragColor' and `gl_FragData'\n");
712 }
713 }
714
715 /**
716 * Verify that a geometry shader executable meets all semantic requirements
717 *
718 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
719 * prog->Geom.CullDistanceArraySize as a side effect.
720 *
721 * \param shader Geometry shader executable to be verified
722 */
723 void
724 validate_geometry_shader_executable(struct gl_shader_program *prog,
725 struct gl_linked_shader *shader,
726 struct gl_context *ctx)
727 {
728 if (shader == NULL)
729 return;
730
731 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
732 prog->Geom.VerticesIn = num_vertices;
733
734 analyze_clip_cull_usage(prog, shader, ctx,
735 &prog->Geom.ClipDistanceArraySize,
736 &prog->Geom.CullDistanceArraySize);
737 }
738
739 /**
740 * Check if geometry shaders emit to non-zero streams and do corresponding
741 * validations.
742 */
743 static void
744 validate_geometry_shader_emissions(struct gl_context *ctx,
745 struct gl_shader_program *prog)
746 {
747 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
748
749 if (sh != NULL) {
750 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
751 emit_vertex.run(sh->ir);
752 if (emit_vertex.error()) {
753 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
754 "stream parameter are in the range [0, %d].\n",
755 emit_vertex.error_func(),
756 emit_vertex.error_stream(),
757 ctx->Const.MaxVertexStreams - 1);
758 }
759 prog->Geom.UsesStreams = emit_vertex.uses_streams();
760 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
761
762 /* From the ARB_gpu_shader5 spec:
763 *
764 * "Multiple vertex streams are supported only if the output primitive
765 * type is declared to be "points". A program will fail to link if it
766 * contains a geometry shader calling EmitStreamVertex() or
767 * EndStreamPrimitive() if its output primitive type is not "points".
768 *
769 * However, in the same spec:
770 *
771 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
772 * with <stream> set to zero."
773 *
774 * And:
775 *
776 * "The function EndPrimitive() is equivalent to calling
777 * EndStreamPrimitive() with <stream> set to zero."
778 *
779 * Since we can call EmitVertex() and EndPrimitive() when we output
780 * primitives other than points, calling EmitStreamVertex(0) or
781 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
782 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
783 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
784 * stream.
785 */
786 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
787 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
788 "with n>0 requires point output\n");
789 }
790 }
791 }
792
793 bool
794 validate_intrastage_arrays(struct gl_shader_program *prog,
795 ir_variable *const var,
796 ir_variable *const existing)
797 {
798 /* Consider the types to be "the same" if both types are arrays
799 * of the same type and one of the arrays is implicitly sized.
800 * In addition, set the type of the linked variable to the
801 * explicitly sized array.
802 */
803 if (var->type->is_array() && existing->type->is_array()) {
804 if ((var->type->fields.array == existing->type->fields.array) &&
805 ((var->type->length == 0)|| (existing->type->length == 0))) {
806 if (var->type->length != 0) {
807 if ((int)var->type->length <= existing->data.max_array_access) {
808 linker_error(prog, "%s `%s' declared as type "
809 "`%s' but outermost dimension has an index"
810 " of `%i'\n",
811 mode_string(var),
812 var->name, var->type->name,
813 existing->data.max_array_access);
814 }
815 existing->type = var->type;
816 return true;
817 } else if (existing->type->length != 0) {
818 if((int)existing->type->length <= var->data.max_array_access &&
819 !existing->data.from_ssbo_unsized_array) {
820 linker_error(prog, "%s `%s' declared as type "
821 "`%s' but outermost dimension has an index"
822 " of `%i'\n",
823 mode_string(var),
824 var->name, existing->type->name,
825 var->data.max_array_access);
826 }
827 return true;
828 }
829 } else {
830 /* The arrays of structs could have different glsl_type pointers but
831 * they are actually the same type. Use record_compare() to check that.
832 */
833 if (existing->type->fields.array->is_record() &&
834 var->type->fields.array->is_record() &&
835 existing->type->fields.array->record_compare(var->type->fields.array))
836 return true;
837 }
838 }
839 return false;
840 }
841
842
843 /**
844 * Perform validation of global variables used across multiple shaders
845 */
846 void
847 cross_validate_globals(struct gl_shader_program *prog,
848 struct exec_list *ir, glsl_symbol_table *variables,
849 bool uniforms_only)
850 {
851 foreach_in_list(ir_instruction, node, ir) {
852 ir_variable *const var = node->as_variable();
853
854 if (var == NULL)
855 continue;
856
857 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
858 continue;
859
860 /* don't cross validate subroutine uniforms */
861 if (var->type->contains_subroutine())
862 continue;
863
864 /* Don't cross validate temporaries that are at global scope. These
865 * will eventually get pulled into the shaders 'main'.
866 */
867 if (var->data.mode == ir_var_temporary)
868 continue;
869
870 /* If a global with this name has already been seen, verify that the
871 * new instance has the same type. In addition, if the globals have
872 * initializers, the values of the initializers must be the same.
873 */
874 ir_variable *const existing = variables->get_variable(var->name);
875 if (existing != NULL) {
876 /* Check if types match. Interface blocks have some special
877 * rules so we handle those elsewhere.
878 */
879 if (var->type != existing->type &&
880 !var->is_interface_instance()) {
881 if (!validate_intrastage_arrays(prog, var, existing)) {
882 if (var->type->is_record() && existing->type->is_record()
883 && existing->type->record_compare(var->type)) {
884 existing->type = var->type;
885 } else {
886 /* If it is an unsized array in a Shader Storage Block,
887 * two different shaders can access to different elements.
888 * Because of that, they might be converted to different
889 * sized arrays, then check that they are compatible but
890 * ignore the array size.
891 */
892 if (!(var->data.mode == ir_var_shader_storage &&
893 var->data.from_ssbo_unsized_array &&
894 existing->data.mode == ir_var_shader_storage &&
895 existing->data.from_ssbo_unsized_array &&
896 var->type->gl_type == existing->type->gl_type)) {
897 linker_error(prog, "%s `%s' declared as type "
898 "`%s' and type `%s'\n",
899 mode_string(var),
900 var->name, var->type->name,
901 existing->type->name);
902 return;
903 }
904 }
905 }
906 }
907
908 if (var->data.explicit_location) {
909 if (existing->data.explicit_location
910 && (var->data.location != existing->data.location)) {
911 linker_error(prog, "explicit locations for %s "
912 "`%s' have differing values\n",
913 mode_string(var), var->name);
914 return;
915 }
916
917 if (var->data.location_frac != existing->data.location_frac) {
918 linker_error(prog, "explicit components for %s `%s' have "
919 "differing values\n", mode_string(var), var->name);
920 return;
921 }
922
923 existing->data.location = var->data.location;
924 existing->data.explicit_location = true;
925 } else {
926 /* Check if uniform with implicit location was marked explicit
927 * by earlier shader stage. If so, mark it explicit in this stage
928 * too to make sure later processing does not treat it as
929 * implicit one.
930 */
931 if (existing->data.explicit_location) {
932 var->data.location = existing->data.location;
933 var->data.explicit_location = true;
934 }
935 }
936
937 /* From the GLSL 4.20 specification:
938 * "A link error will result if two compilation units in a program
939 * specify different integer-constant bindings for the same
940 * opaque-uniform name. However, it is not an error to specify a
941 * binding on some but not all declarations for the same name"
942 */
943 if (var->data.explicit_binding) {
944 if (existing->data.explicit_binding &&
945 var->data.binding != existing->data.binding) {
946 linker_error(prog, "explicit bindings for %s "
947 "`%s' have differing values\n",
948 mode_string(var), var->name);
949 return;
950 }
951
952 existing->data.binding = var->data.binding;
953 existing->data.explicit_binding = true;
954 }
955
956 if (var->type->contains_atomic() &&
957 var->data.offset != existing->data.offset) {
958 linker_error(prog, "offset specifications for %s "
959 "`%s' have differing values\n",
960 mode_string(var), var->name);
961 return;
962 }
963
964 /* Validate layout qualifiers for gl_FragDepth.
965 *
966 * From the AMD/ARB_conservative_depth specs:
967 *
968 * "If gl_FragDepth is redeclared in any fragment shader in a
969 * program, it must be redeclared in all fragment shaders in
970 * that program that have static assignments to
971 * gl_FragDepth. All redeclarations of gl_FragDepth in all
972 * fragment shaders in a single program must have the same set
973 * of qualifiers."
974 */
975 if (strcmp(var->name, "gl_FragDepth") == 0) {
976 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
977 bool layout_differs =
978 var->data.depth_layout != existing->data.depth_layout;
979
980 if (layout_declared && layout_differs) {
981 linker_error(prog,
982 "All redeclarations of gl_FragDepth in all "
983 "fragment shaders in a single program must have "
984 "the same set of qualifiers.\n");
985 }
986
987 if (var->data.used && layout_differs) {
988 linker_error(prog,
989 "If gl_FragDepth is redeclared with a layout "
990 "qualifier in any fragment shader, it must be "
991 "redeclared with the same layout qualifier in "
992 "all fragment shaders that have assignments to "
993 "gl_FragDepth\n");
994 }
995 }
996
997 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
998 *
999 * "If a shared global has multiple initializers, the
1000 * initializers must all be constant expressions, and they
1001 * must all have the same value. Otherwise, a link error will
1002 * result. (A shared global having only one initializer does
1003 * not require that initializer to be a constant expression.)"
1004 *
1005 * Previous to 4.20 the GLSL spec simply said that initializers
1006 * must have the same value. In this case of non-constant
1007 * initializers, this was impossible to determine. As a result,
1008 * no vendor actually implemented that behavior. The 4.20
1009 * behavior matches the implemented behavior of at least one other
1010 * vendor, so we'll implement that for all GLSL versions.
1011 */
1012 if (var->constant_initializer != NULL) {
1013 if (existing->constant_initializer != NULL) {
1014 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1015 linker_error(prog, "initializers for %s "
1016 "`%s' have differing values\n",
1017 mode_string(var), var->name);
1018 return;
1019 }
1020 } else {
1021 /* If the first-seen instance of a particular uniform did
1022 * not have an initializer but a later instance does,
1023 * replace the former with the later.
1024 */
1025 variables->replace_variable(existing->name, var);
1026 }
1027 }
1028
1029 if (var->data.has_initializer) {
1030 if (existing->data.has_initializer
1031 && (var->constant_initializer == NULL
1032 || existing->constant_initializer == NULL)) {
1033 linker_error(prog,
1034 "shared global variable `%s' has multiple "
1035 "non-constant initializers.\n",
1036 var->name);
1037 return;
1038 }
1039 }
1040
1041 if (existing->data.invariant != var->data.invariant) {
1042 linker_error(prog, "declarations for %s `%s' have "
1043 "mismatching invariant qualifiers\n",
1044 mode_string(var), var->name);
1045 return;
1046 }
1047 if (existing->data.centroid != var->data.centroid) {
1048 linker_error(prog, "declarations for %s `%s' have "
1049 "mismatching centroid qualifiers\n",
1050 mode_string(var), var->name);
1051 return;
1052 }
1053 if (existing->data.sample != var->data.sample) {
1054 linker_error(prog, "declarations for %s `%s` have "
1055 "mismatching sample qualifiers\n",
1056 mode_string(var), var->name);
1057 return;
1058 }
1059 if (existing->data.image_format != var->data.image_format) {
1060 linker_error(prog, "declarations for %s `%s` have "
1061 "mismatching image format qualifiers\n",
1062 mode_string(var), var->name);
1063 return;
1064 }
1065
1066 if (prog->IsES && existing->data.precision != var->data.precision) {
1067 linker_error(prog, "declarations for %s `%s` have "
1068 "mismatching precision qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 } else
1073 variables->add_variable(var);
1074 }
1075 }
1076
1077
1078 /**
1079 * Perform validation of uniforms used across multiple shader stages
1080 */
1081 void
1082 cross_validate_uniforms(struct gl_shader_program *prog)
1083 {
1084 glsl_symbol_table variables;
1085 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1086 if (prog->_LinkedShaders[i] == NULL)
1087 continue;
1088
1089 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1090 true);
1091 }
1092 }
1093
1094 /**
1095 * Accumulates the array of buffer blocks and checks that all definitions of
1096 * blocks agree on their contents.
1097 */
1098 static bool
1099 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1100 bool validate_ssbo)
1101 {
1102 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1103 struct gl_uniform_block *blks = NULL;
1104 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1105 &prog->NumUniformBlocks;
1106
1107 unsigned max_num_buffer_blocks = 0;
1108 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1109 if (prog->_LinkedShaders[i]) {
1110 if (validate_ssbo) {
1111 max_num_buffer_blocks +=
1112 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1113 } else {
1114 max_num_buffer_blocks +=
1115 prog->_LinkedShaders[i]->NumUniformBlocks;
1116 }
1117 }
1118 }
1119
1120 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1121 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1122
1123 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1124 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1125 InterfaceBlockStageIndex[i][j] = -1;
1126
1127 if (sh == NULL)
1128 continue;
1129
1130 unsigned sh_num_blocks;
1131 struct gl_uniform_block **sh_blks;
1132 if (validate_ssbo) {
1133 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1134 sh_blks = sh->ShaderStorageBlocks;
1135 } else {
1136 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1137 sh_blks = sh->UniformBlocks;
1138 }
1139
1140 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1141 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1142 sh_blks[j]);
1143
1144 if (index == -1) {
1145 linker_error(prog, "buffer block `%s' has mismatching "
1146 "definitions\n", sh_blks[j]->Name);
1147
1148 for (unsigned k = 0; k <= i; k++) {
1149 delete[] InterfaceBlockStageIndex[k];
1150 }
1151 return false;
1152 }
1153
1154 InterfaceBlockStageIndex[i][index] = j;
1155 }
1156 }
1157
1158 /* Update per stage block pointers to point to the program list.
1159 * FIXME: We should be able to free the per stage blocks here.
1160 */
1161 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1162 for (unsigned j = 0; j < *num_blks; j++) {
1163 int stage_index = InterfaceBlockStageIndex[i][j];
1164
1165 if (stage_index != -1) {
1166 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1167
1168 blks[j].stageref |= (1 << i);
1169
1170 struct gl_uniform_block **sh_blks = validate_ssbo ?
1171 sh->ShaderStorageBlocks : sh->UniformBlocks;
1172
1173 sh_blks[stage_index] = &blks[j];
1174 }
1175 }
1176 }
1177
1178 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1179 delete[] InterfaceBlockStageIndex[i];
1180 }
1181
1182 if (validate_ssbo)
1183 prog->ShaderStorageBlocks = blks;
1184 else
1185 prog->UniformBlocks = blks;
1186
1187 return true;
1188 }
1189
1190
1191 /**
1192 * Populates a shaders symbol table with all global declarations
1193 */
1194 static void
1195 populate_symbol_table(gl_linked_shader *sh)
1196 {
1197 sh->symbols = new(sh) glsl_symbol_table;
1198
1199 foreach_in_list(ir_instruction, inst, sh->ir) {
1200 ir_variable *var;
1201 ir_function *func;
1202
1203 if ((func = inst->as_function()) != NULL) {
1204 sh->symbols->add_function(func);
1205 } else if ((var = inst->as_variable()) != NULL) {
1206 if (var->data.mode != ir_var_temporary)
1207 sh->symbols->add_variable(var);
1208 }
1209 }
1210 }
1211
1212
1213 /**
1214 * Remap variables referenced in an instruction tree
1215 *
1216 * This is used when instruction trees are cloned from one shader and placed in
1217 * another. These trees will contain references to \c ir_variable nodes that
1218 * do not exist in the target shader. This function finds these \c ir_variable
1219 * references and replaces the references with matching variables in the target
1220 * shader.
1221 *
1222 * If there is no matching variable in the target shader, a clone of the
1223 * \c ir_variable is made and added to the target shader. The new variable is
1224 * added to \b both the instruction stream and the symbol table.
1225 *
1226 * \param inst IR tree that is to be processed.
1227 * \param symbols Symbol table containing global scope symbols in the
1228 * linked shader.
1229 * \param instructions Instruction stream where new variable declarations
1230 * should be added.
1231 */
1232 void
1233 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1234 hash_table *temps)
1235 {
1236 class remap_visitor : public ir_hierarchical_visitor {
1237 public:
1238 remap_visitor(struct gl_linked_shader *target,
1239 hash_table *temps)
1240 {
1241 this->target = target;
1242 this->symbols = target->symbols;
1243 this->instructions = target->ir;
1244 this->temps = temps;
1245 }
1246
1247 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1248 {
1249 if (ir->var->data.mode == ir_var_temporary) {
1250 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1251 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1252
1253 assert(var != NULL);
1254 ir->var = var;
1255 return visit_continue;
1256 }
1257
1258 ir_variable *const existing =
1259 this->symbols->get_variable(ir->var->name);
1260 if (existing != NULL)
1261 ir->var = existing;
1262 else {
1263 ir_variable *copy = ir->var->clone(this->target, NULL);
1264
1265 this->symbols->add_variable(copy);
1266 this->instructions->push_head(copy);
1267 ir->var = copy;
1268 }
1269
1270 return visit_continue;
1271 }
1272
1273 private:
1274 struct gl_linked_shader *target;
1275 glsl_symbol_table *symbols;
1276 exec_list *instructions;
1277 hash_table *temps;
1278 };
1279
1280 remap_visitor v(target, temps);
1281
1282 inst->accept(&v);
1283 }
1284
1285
1286 /**
1287 * Move non-declarations from one instruction stream to another
1288 *
1289 * The intended usage pattern of this function is to pass the pointer to the
1290 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1291 * pointer) for \c last and \c false for \c make_copies on the first
1292 * call. Successive calls pass the return value of the previous call for
1293 * \c last and \c true for \c make_copies.
1294 *
1295 * \param instructions Source instruction stream
1296 * \param last Instruction after which new instructions should be
1297 * inserted in the target instruction stream
1298 * \param make_copies Flag selecting whether instructions in \c instructions
1299 * should be copied (via \c ir_instruction::clone) into the
1300 * target list or moved.
1301 *
1302 * \return
1303 * The new "last" instruction in the target instruction stream. This pointer
1304 * is suitable for use as the \c last parameter of a later call to this
1305 * function.
1306 */
1307 exec_node *
1308 move_non_declarations(exec_list *instructions, exec_node *last,
1309 bool make_copies, gl_linked_shader *target)
1310 {
1311 hash_table *temps = NULL;
1312
1313 if (make_copies)
1314 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1315 _mesa_key_pointer_equal);
1316
1317 foreach_in_list_safe(ir_instruction, inst, instructions) {
1318 if (inst->as_function())
1319 continue;
1320
1321 ir_variable *var = inst->as_variable();
1322 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1323 continue;
1324
1325 assert(inst->as_assignment()
1326 || inst->as_call()
1327 || inst->as_if() /* for initializers with the ?: operator */
1328 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1329
1330 if (make_copies) {
1331 inst = inst->clone(target, NULL);
1332
1333 if (var != NULL)
1334 _mesa_hash_table_insert(temps, var, inst);
1335 else
1336 remap_variables(inst, target, temps);
1337 } else {
1338 inst->remove();
1339 }
1340
1341 last->insert_after(inst);
1342 last = inst;
1343 }
1344
1345 if (make_copies)
1346 _mesa_hash_table_destroy(temps, NULL);
1347
1348 return last;
1349 }
1350
1351
1352 /**
1353 * This class is only used in link_intrastage_shaders() below but declaring
1354 * it inside that function leads to compiler warnings with some versions of
1355 * gcc.
1356 */
1357 class array_sizing_visitor : public ir_hierarchical_visitor {
1358 public:
1359 array_sizing_visitor()
1360 : mem_ctx(ralloc_context(NULL)),
1361 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1362 _mesa_key_pointer_equal))
1363 {
1364 }
1365
1366 ~array_sizing_visitor()
1367 {
1368 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1369 ralloc_free(this->mem_ctx);
1370 }
1371
1372 virtual ir_visitor_status visit(ir_variable *var)
1373 {
1374 const glsl_type *type_without_array;
1375 bool implicit_sized_array = var->data.implicit_sized_array;
1376 fixup_type(&var->type, var->data.max_array_access,
1377 var->data.from_ssbo_unsized_array,
1378 &implicit_sized_array);
1379 var->data.implicit_sized_array = implicit_sized_array;
1380 type_without_array = var->type->without_array();
1381 if (var->type->is_interface()) {
1382 if (interface_contains_unsized_arrays(var->type)) {
1383 const glsl_type *new_type =
1384 resize_interface_members(var->type,
1385 var->get_max_ifc_array_access(),
1386 var->is_in_shader_storage_block());
1387 var->type = new_type;
1388 var->change_interface_type(new_type);
1389 }
1390 } else if (type_without_array->is_interface()) {
1391 if (interface_contains_unsized_arrays(type_without_array)) {
1392 const glsl_type *new_type =
1393 resize_interface_members(type_without_array,
1394 var->get_max_ifc_array_access(),
1395 var->is_in_shader_storage_block());
1396 var->change_interface_type(new_type);
1397 var->type = update_interface_members_array(var->type, new_type);
1398 }
1399 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1400 /* Store a pointer to the variable in the unnamed_interfaces
1401 * hashtable.
1402 */
1403 hash_entry *entry =
1404 _mesa_hash_table_search(this->unnamed_interfaces,
1405 ifc_type);
1406
1407 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1408
1409 if (interface_vars == NULL) {
1410 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1411 ifc_type->length);
1412 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1413 interface_vars);
1414 }
1415 unsigned index = ifc_type->field_index(var->name);
1416 assert(index < ifc_type->length);
1417 assert(interface_vars[index] == NULL);
1418 interface_vars[index] = var;
1419 }
1420 return visit_continue;
1421 }
1422
1423 /**
1424 * For each unnamed interface block that was discovered while running the
1425 * visitor, adjust the interface type to reflect the newly assigned array
1426 * sizes, and fix up the ir_variable nodes to point to the new interface
1427 * type.
1428 */
1429 void fixup_unnamed_interface_types()
1430 {
1431 hash_table_call_foreach(this->unnamed_interfaces,
1432 fixup_unnamed_interface_type, NULL);
1433 }
1434
1435 private:
1436 /**
1437 * If the type pointed to by \c type represents an unsized array, replace
1438 * it with a sized array whose size is determined by max_array_access.
1439 */
1440 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1441 bool from_ssbo_unsized_array, bool *implicit_sized)
1442 {
1443 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1444 *type = glsl_type::get_array_instance((*type)->fields.array,
1445 max_array_access + 1);
1446 *implicit_sized = true;
1447 assert(*type != NULL);
1448 }
1449 }
1450
1451 static const glsl_type *
1452 update_interface_members_array(const glsl_type *type,
1453 const glsl_type *new_interface_type)
1454 {
1455 const glsl_type *element_type = type->fields.array;
1456 if (element_type->is_array()) {
1457 const glsl_type *new_array_type =
1458 update_interface_members_array(element_type, new_interface_type);
1459 return glsl_type::get_array_instance(new_array_type, type->length);
1460 } else {
1461 return glsl_type::get_array_instance(new_interface_type,
1462 type->length);
1463 }
1464 }
1465
1466 /**
1467 * Determine whether the given interface type contains unsized arrays (if
1468 * it doesn't, array_sizing_visitor doesn't need to process it).
1469 */
1470 static bool interface_contains_unsized_arrays(const glsl_type *type)
1471 {
1472 for (unsigned i = 0; i < type->length; i++) {
1473 const glsl_type *elem_type = type->fields.structure[i].type;
1474 if (elem_type->is_unsized_array())
1475 return true;
1476 }
1477 return false;
1478 }
1479
1480 /**
1481 * Create a new interface type based on the given type, with unsized arrays
1482 * replaced by sized arrays whose size is determined by
1483 * max_ifc_array_access.
1484 */
1485 static const glsl_type *
1486 resize_interface_members(const glsl_type *type,
1487 const int *max_ifc_array_access,
1488 bool is_ssbo)
1489 {
1490 unsigned num_fields = type->length;
1491 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1492 memcpy(fields, type->fields.structure,
1493 num_fields * sizeof(*fields));
1494 for (unsigned i = 0; i < num_fields; i++) {
1495 bool implicit_sized_array = fields[i].implicit_sized_array;
1496 /* If SSBO last member is unsized array, we don't replace it by a sized
1497 * array.
1498 */
1499 if (is_ssbo && i == (num_fields - 1))
1500 fixup_type(&fields[i].type, max_ifc_array_access[i],
1501 true, &implicit_sized_array);
1502 else
1503 fixup_type(&fields[i].type, max_ifc_array_access[i],
1504 false, &implicit_sized_array);
1505 fields[i].implicit_sized_array = implicit_sized_array;
1506 }
1507 glsl_interface_packing packing =
1508 (glsl_interface_packing) type->interface_packing;
1509 const glsl_type *new_ifc_type =
1510 glsl_type::get_interface_instance(fields, num_fields,
1511 packing, type->name);
1512 delete [] fields;
1513 return new_ifc_type;
1514 }
1515
1516 static void fixup_unnamed_interface_type(const void *key, void *data,
1517 void *)
1518 {
1519 const glsl_type *ifc_type = (const glsl_type *) key;
1520 ir_variable **interface_vars = (ir_variable **) data;
1521 unsigned num_fields = ifc_type->length;
1522 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1523 memcpy(fields, ifc_type->fields.structure,
1524 num_fields * sizeof(*fields));
1525 bool interface_type_changed = false;
1526 for (unsigned i = 0; i < num_fields; i++) {
1527 if (interface_vars[i] != NULL &&
1528 fields[i].type != interface_vars[i]->type) {
1529 fields[i].type = interface_vars[i]->type;
1530 interface_type_changed = true;
1531 }
1532 }
1533 if (!interface_type_changed) {
1534 delete [] fields;
1535 return;
1536 }
1537 glsl_interface_packing packing =
1538 (glsl_interface_packing) ifc_type->interface_packing;
1539 const glsl_type *new_ifc_type =
1540 glsl_type::get_interface_instance(fields, num_fields, packing,
1541 ifc_type->name);
1542 delete [] fields;
1543 for (unsigned i = 0; i < num_fields; i++) {
1544 if (interface_vars[i] != NULL)
1545 interface_vars[i]->change_interface_type(new_ifc_type);
1546 }
1547 }
1548
1549 /**
1550 * Memory context used to allocate the data in \c unnamed_interfaces.
1551 */
1552 void *mem_ctx;
1553
1554 /**
1555 * Hash table from const glsl_type * to an array of ir_variable *'s
1556 * pointing to the ir_variables constituting each unnamed interface block.
1557 */
1558 hash_table *unnamed_interfaces;
1559 };
1560
1561 /**
1562 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1563 * for later use.
1564 */
1565 static void
1566 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1567 struct gl_shader_program *prog,
1568 struct gl_linked_shader *linked_shader,
1569 struct gl_shader **shader_list,
1570 unsigned num_shaders)
1571 {
1572 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1573 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1574 }
1575
1576 for (unsigned i = 0; i < num_shaders; i++) {
1577 struct gl_shader *shader = shader_list[i];
1578
1579 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1580 if (shader->info.TransformFeedback.BufferStride[j]) {
1581 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1582 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1583 linked_shader->info.TransformFeedback.BufferStride[j] !=
1584 shader->info.TransformFeedback.BufferStride[j]) {
1585 linker_error(prog,
1586 "intrastage shaders defined with conflicting "
1587 "xfb_stride for buffer %d (%d and %d)\n", j,
1588 linked_shader->
1589 info.TransformFeedback.BufferStride[j],
1590 shader->info.TransformFeedback.BufferStride[j]);
1591 return;
1592 }
1593
1594 if (shader->info.TransformFeedback.BufferStride[j])
1595 linked_shader->info.TransformFeedback.BufferStride[j] =
1596 shader->info.TransformFeedback.BufferStride[j];
1597 }
1598 }
1599 }
1600
1601 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1602 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1603 prog->TransformFeedback.BufferStride[j] =
1604 linked_shader->info.TransformFeedback.BufferStride[j];
1605
1606 /* We will validate doubles at a later stage */
1607 if (prog->TransformFeedback.BufferStride[j] % 4) {
1608 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1609 "multiple of 4 or if its applied to a type that is "
1610 "or contains a double a multiple of 8.",
1611 prog->TransformFeedback.BufferStride[j]);
1612 return;
1613 }
1614
1615 if (prog->TransformFeedback.BufferStride[j] / 4 >
1616 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1617 linker_error(prog,
1618 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1619 "limit has been exceeded.");
1620 return;
1621 }
1622 }
1623 }
1624 }
1625
1626 /**
1627 * Performs the cross-validation of tessellation control shader vertices and
1628 * layout qualifiers for the attached tessellation control shaders,
1629 * and propagates them to the linked TCS and linked shader program.
1630 */
1631 static void
1632 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1633 struct gl_linked_shader *linked_shader,
1634 struct gl_shader **shader_list,
1635 unsigned num_shaders)
1636 {
1637 linked_shader->info.TessCtrl.VerticesOut = 0;
1638
1639 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1640 return;
1641
1642 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1643 *
1644 * "All tessellation control shader layout declarations in a program
1645 * must specify the same output patch vertex count. There must be at
1646 * least one layout qualifier specifying an output patch vertex count
1647 * in any program containing tessellation control shaders; however,
1648 * such a declaration is not required in all tessellation control
1649 * shaders."
1650 */
1651
1652 for (unsigned i = 0; i < num_shaders; i++) {
1653 struct gl_shader *shader = shader_list[i];
1654
1655 if (shader->info.TessCtrl.VerticesOut != 0) {
1656 if (linked_shader->info.TessCtrl.VerticesOut != 0 &&
1657 linked_shader->info.TessCtrl.VerticesOut !=
1658 shader->info.TessCtrl.VerticesOut) {
1659 linker_error(prog, "tessellation control shader defined with "
1660 "conflicting output vertex count (%d and %d)\n",
1661 linked_shader->info.TessCtrl.VerticesOut,
1662 shader->info.TessCtrl.VerticesOut);
1663 return;
1664 }
1665 linked_shader->info.TessCtrl.VerticesOut =
1666 shader->info.TessCtrl.VerticesOut;
1667 }
1668 }
1669
1670 /* Just do the intrastage -> interstage propagation right now,
1671 * since we already know we're in the right type of shader program
1672 * for doing it.
1673 */
1674 if (linked_shader->info.TessCtrl.VerticesOut == 0) {
1675 linker_error(prog, "tessellation control shader didn't declare "
1676 "vertices out layout qualifier\n");
1677 return;
1678 }
1679 }
1680
1681
1682 /**
1683 * Performs the cross-validation of tessellation evaluation shader
1684 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1685 * for the attached tessellation evaluation shaders, and propagates them
1686 * to the linked TES and linked shader program.
1687 */
1688 static void
1689 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1690 struct gl_linked_shader *linked_shader,
1691 struct gl_shader **shader_list,
1692 unsigned num_shaders)
1693 {
1694 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1695 linked_shader->info.TessEval.Spacing = 0;
1696 linked_shader->info.TessEval.VertexOrder = 0;
1697 linked_shader->info.TessEval.PointMode = -1;
1698
1699 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1700 return;
1701
1702 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1703 *
1704 * "At least one tessellation evaluation shader (compilation unit) in
1705 * a program must declare a primitive mode in its input layout.
1706 * Declaration vertex spacing, ordering, and point mode identifiers is
1707 * optional. It is not required that all tessellation evaluation
1708 * shaders in a program declare a primitive mode. If spacing or
1709 * vertex ordering declarations are omitted, the tessellation
1710 * primitive generator will use equal spacing or counter-clockwise
1711 * vertex ordering, respectively. If a point mode declaration is
1712 * omitted, the tessellation primitive generator will produce lines or
1713 * triangles according to the primitive mode."
1714 */
1715
1716 for (unsigned i = 0; i < num_shaders; i++) {
1717 struct gl_shader *shader = shader_list[i];
1718
1719 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1720 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1721 linked_shader->info.TessEval.PrimitiveMode !=
1722 shader->info.TessEval.PrimitiveMode) {
1723 linker_error(prog, "tessellation evaluation shader defined with "
1724 "conflicting input primitive modes.\n");
1725 return;
1726 }
1727 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1728 }
1729
1730 if (shader->info.TessEval.Spacing != 0) {
1731 if (linked_shader->info.TessEval.Spacing != 0 &&
1732 linked_shader->info.TessEval.Spacing !=
1733 shader->info.TessEval.Spacing) {
1734 linker_error(prog, "tessellation evaluation shader defined with "
1735 "conflicting vertex spacing.\n");
1736 return;
1737 }
1738 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1739 }
1740
1741 if (shader->info.TessEval.VertexOrder != 0) {
1742 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1743 linked_shader->info.TessEval.VertexOrder !=
1744 shader->info.TessEval.VertexOrder) {
1745 linker_error(prog, "tessellation evaluation shader defined with "
1746 "conflicting ordering.\n");
1747 return;
1748 }
1749 linked_shader->info.TessEval.VertexOrder =
1750 shader->info.TessEval.VertexOrder;
1751 }
1752
1753 if (shader->info.TessEval.PointMode != -1) {
1754 if (linked_shader->info.TessEval.PointMode != -1 &&
1755 linked_shader->info.TessEval.PointMode !=
1756 shader->info.TessEval.PointMode) {
1757 linker_error(prog, "tessellation evaluation shader defined with "
1758 "conflicting point modes.\n");
1759 return;
1760 }
1761 linked_shader->info.TessEval.PointMode =
1762 shader->info.TessEval.PointMode;
1763 }
1764
1765 }
1766
1767 /* Just do the intrastage -> interstage propagation right now,
1768 * since we already know we're in the right type of shader program
1769 * for doing it.
1770 */
1771 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1772 linker_error(prog,
1773 "tessellation evaluation shader didn't declare input "
1774 "primitive modes.\n");
1775 return;
1776 }
1777
1778 if (linked_shader->info.TessEval.Spacing == 0)
1779 linked_shader->info.TessEval.Spacing = GL_EQUAL;
1780
1781 if (linked_shader->info.TessEval.VertexOrder == 0)
1782 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1783
1784 if (linked_shader->info.TessEval.PointMode == -1)
1785 linked_shader->info.TessEval.PointMode = GL_FALSE;
1786 }
1787
1788
1789 /**
1790 * Performs the cross-validation of layout qualifiers specified in
1791 * redeclaration of gl_FragCoord for the attached fragment shaders,
1792 * and propagates them to the linked FS and linked shader program.
1793 */
1794 static void
1795 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1796 struct gl_linked_shader *linked_shader,
1797 struct gl_shader **shader_list,
1798 unsigned num_shaders)
1799 {
1800 linked_shader->info.redeclares_gl_fragcoord = false;
1801 linked_shader->info.uses_gl_fragcoord = false;
1802 linked_shader->info.origin_upper_left = false;
1803 linked_shader->info.pixel_center_integer = false;
1804 linked_shader->info.BlendSupport = 0;
1805
1806 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1807 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1808 return;
1809
1810 for (unsigned i = 0; i < num_shaders; i++) {
1811 struct gl_shader *shader = shader_list[i];
1812 /* From the GLSL 1.50 spec, page 39:
1813 *
1814 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1815 * it must be redeclared in all the fragment shaders in that program
1816 * that have a static use gl_FragCoord."
1817 */
1818 if ((linked_shader->info.redeclares_gl_fragcoord
1819 && !shader->info.redeclares_gl_fragcoord
1820 && shader->info.uses_gl_fragcoord)
1821 || (shader->info.redeclares_gl_fragcoord
1822 && !linked_shader->info.redeclares_gl_fragcoord
1823 && linked_shader->info.uses_gl_fragcoord)) {
1824 linker_error(prog, "fragment shader defined with conflicting "
1825 "layout qualifiers for gl_FragCoord\n");
1826 }
1827
1828 /* From the GLSL 1.50 spec, page 39:
1829 *
1830 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1831 * single program must have the same set of qualifiers."
1832 */
1833 if (linked_shader->info.redeclares_gl_fragcoord &&
1834 shader->info.redeclares_gl_fragcoord &&
1835 (shader->info.origin_upper_left !=
1836 linked_shader->info.origin_upper_left ||
1837 shader->info.pixel_center_integer !=
1838 linked_shader->info.pixel_center_integer)) {
1839 linker_error(prog, "fragment shader defined with conflicting "
1840 "layout qualifiers for gl_FragCoord\n");
1841 }
1842
1843 /* Update the linked shader state. Note that uses_gl_fragcoord should
1844 * accumulate the results. The other values should replace. If there
1845 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1846 * are already known to be the same.
1847 */
1848 if (shader->info.redeclares_gl_fragcoord ||
1849 shader->info.uses_gl_fragcoord) {
1850 linked_shader->info.redeclares_gl_fragcoord =
1851 shader->info.redeclares_gl_fragcoord;
1852 linked_shader->info.uses_gl_fragcoord =
1853 linked_shader->info.uses_gl_fragcoord ||
1854 shader->info.uses_gl_fragcoord;
1855 linked_shader->info.origin_upper_left =
1856 shader->info.origin_upper_left;
1857 linked_shader->info.pixel_center_integer =
1858 shader->info.pixel_center_integer;
1859 }
1860
1861 linked_shader->info.EarlyFragmentTests |=
1862 shader->info.EarlyFragmentTests;
1863 linked_shader->info.BlendSupport |= shader->info.BlendSupport;
1864 }
1865 }
1866
1867 /**
1868 * Performs the cross-validation of geometry shader max_vertices and
1869 * primitive type layout qualifiers for the attached geometry shaders,
1870 * and propagates them to the linked GS and linked shader program.
1871 */
1872 static void
1873 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1874 struct gl_linked_shader *linked_shader,
1875 struct gl_shader **shader_list,
1876 unsigned num_shaders)
1877 {
1878 linked_shader->info.Geom.VerticesOut = -1;
1879 linked_shader->info.Geom.Invocations = 0;
1880 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1881 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1882
1883 /* No in/out qualifiers defined for anything but GLSL 1.50+
1884 * geometry shaders so far.
1885 */
1886 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1887 return;
1888
1889 /* From the GLSL 1.50 spec, page 46:
1890 *
1891 * "All geometry shader output layout declarations in a program
1892 * must declare the same layout and same value for
1893 * max_vertices. There must be at least one geometry output
1894 * layout declaration somewhere in a program, but not all
1895 * geometry shaders (compilation units) are required to
1896 * declare it."
1897 */
1898
1899 for (unsigned i = 0; i < num_shaders; i++) {
1900 struct gl_shader *shader = shader_list[i];
1901
1902 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1903 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1904 linked_shader->info.Geom.InputType !=
1905 shader->info.Geom.InputType) {
1906 linker_error(prog, "geometry shader defined with conflicting "
1907 "input types\n");
1908 return;
1909 }
1910 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1911 }
1912
1913 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1914 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1915 linked_shader->info.Geom.OutputType !=
1916 shader->info.Geom.OutputType) {
1917 linker_error(prog, "geometry shader defined with conflicting "
1918 "output types\n");
1919 return;
1920 }
1921 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1922 }
1923
1924 if (shader->info.Geom.VerticesOut != -1) {
1925 if (linked_shader->info.Geom.VerticesOut != -1 &&
1926 linked_shader->info.Geom.VerticesOut !=
1927 shader->info.Geom.VerticesOut) {
1928 linker_error(prog, "geometry shader defined with conflicting "
1929 "output vertex count (%d and %d)\n",
1930 linked_shader->info.Geom.VerticesOut,
1931 shader->info.Geom.VerticesOut);
1932 return;
1933 }
1934 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1935 }
1936
1937 if (shader->info.Geom.Invocations != 0) {
1938 if (linked_shader->info.Geom.Invocations != 0 &&
1939 linked_shader->info.Geom.Invocations !=
1940 shader->info.Geom.Invocations) {
1941 linker_error(prog, "geometry shader defined with conflicting "
1942 "invocation count (%d and %d)\n",
1943 linked_shader->info.Geom.Invocations,
1944 shader->info.Geom.Invocations);
1945 return;
1946 }
1947 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1948 }
1949 }
1950
1951 /* Just do the intrastage -> interstage propagation right now,
1952 * since we already know we're in the right type of shader program
1953 * for doing it.
1954 */
1955 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1956 linker_error(prog,
1957 "geometry shader didn't declare primitive input type\n");
1958 return;
1959 }
1960
1961 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1962 linker_error(prog,
1963 "geometry shader didn't declare primitive output type\n");
1964 return;
1965 }
1966
1967 if (linked_shader->info.Geom.VerticesOut == -1) {
1968 linker_error(prog,
1969 "geometry shader didn't declare max_vertices\n");
1970 return;
1971 }
1972
1973 if (linked_shader->info.Geom.Invocations == 0)
1974 linked_shader->info.Geom.Invocations = 1;
1975 }
1976
1977
1978 /**
1979 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1980 * qualifiers for the attached compute shaders, and propagate them to the
1981 * linked CS and linked shader program.
1982 */
1983 static void
1984 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1985 struct gl_linked_shader *linked_shader,
1986 struct gl_shader **shader_list,
1987 unsigned num_shaders)
1988 {
1989 for (int i = 0; i < 3; i++)
1990 linked_shader->info.Comp.LocalSize[i] = 0;
1991
1992 /* This function is called for all shader stages, but it only has an effect
1993 * for compute shaders.
1994 */
1995 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1996 return;
1997
1998 /* From the ARB_compute_shader spec, in the section describing local size
1999 * declarations:
2000 *
2001 * If multiple compute shaders attached to a single program object
2002 * declare local work-group size, the declarations must be identical;
2003 * otherwise a link-time error results. Furthermore, if a program
2004 * object contains any compute shaders, at least one must contain an
2005 * input layout qualifier specifying the local work sizes of the
2006 * program, or a link-time error will occur.
2007 */
2008 for (unsigned sh = 0; sh < num_shaders; sh++) {
2009 struct gl_shader *shader = shader_list[sh];
2010
2011 if (shader->info.Comp.LocalSize[0] != 0) {
2012 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2013 for (int i = 0; i < 3; i++) {
2014 if (linked_shader->info.Comp.LocalSize[i] !=
2015 shader->info.Comp.LocalSize[i]) {
2016 linker_error(prog, "compute shader defined with conflicting "
2017 "local sizes\n");
2018 return;
2019 }
2020 }
2021 }
2022 for (int i = 0; i < 3; i++) {
2023 linked_shader->info.Comp.LocalSize[i] =
2024 shader->info.Comp.LocalSize[i];
2025 }
2026 }
2027 }
2028
2029 /* Just do the intrastage -> interstage propagation right now,
2030 * since we already know we're in the right type of shader program
2031 * for doing it.
2032 */
2033 if (linked_shader->info.Comp.LocalSize[0] == 0) {
2034 linker_error(prog, "compute shader didn't declare local size\n");
2035 return;
2036 }
2037 for (int i = 0; i < 3; i++)
2038 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2039 }
2040
2041
2042 /**
2043 * Combine a group of shaders for a single stage to generate a linked shader
2044 *
2045 * \note
2046 * If this function is supplied a single shader, it is cloned, and the new
2047 * shader is returned.
2048 */
2049 static struct gl_linked_shader *
2050 link_intrastage_shaders(void *mem_ctx,
2051 struct gl_context *ctx,
2052 struct gl_shader_program *prog,
2053 struct gl_shader **shader_list,
2054 unsigned num_shaders)
2055 {
2056 struct gl_uniform_block *ubo_blocks = NULL;
2057 struct gl_uniform_block *ssbo_blocks = NULL;
2058 unsigned num_ubo_blocks = 0;
2059 unsigned num_ssbo_blocks = 0;
2060
2061 /* Check that global variables defined in multiple shaders are consistent.
2062 */
2063 glsl_symbol_table variables;
2064 for (unsigned i = 0; i < num_shaders; i++) {
2065 if (shader_list[i] == NULL)
2066 continue;
2067 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2068 }
2069
2070 if (!prog->LinkStatus)
2071 return NULL;
2072
2073 /* Check that interface blocks defined in multiple shaders are consistent.
2074 */
2075 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2076 num_shaders);
2077 if (!prog->LinkStatus)
2078 return NULL;
2079
2080 /* Check that there is only a single definition of each function signature
2081 * across all shaders.
2082 */
2083 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2084 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2085 ir_function *const f = node->as_function();
2086
2087 if (f == NULL)
2088 continue;
2089
2090 for (unsigned j = i + 1; j < num_shaders; j++) {
2091 ir_function *const other =
2092 shader_list[j]->symbols->get_function(f->name);
2093
2094 /* If the other shader has no function (and therefore no function
2095 * signatures) with the same name, skip to the next shader.
2096 */
2097 if (other == NULL)
2098 continue;
2099
2100 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2101 if (!sig->is_defined)
2102 continue;
2103
2104 ir_function_signature *other_sig =
2105 other->exact_matching_signature(NULL, &sig->parameters);
2106
2107 if (other_sig != NULL && other_sig->is_defined) {
2108 linker_error(prog, "function `%s' is multiply defined\n",
2109 f->name);
2110 return NULL;
2111 }
2112 }
2113 }
2114 }
2115 }
2116
2117 /* Find the shader that defines main, and make a clone of it.
2118 *
2119 * Starting with the clone, search for undefined references. If one is
2120 * found, find the shader that defines it. Clone the reference and add
2121 * it to the shader. Repeat until there are no undefined references or
2122 * until a reference cannot be resolved.
2123 */
2124 gl_shader *main = NULL;
2125 for (unsigned i = 0; i < num_shaders; i++) {
2126 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2127 main = shader_list[i];
2128 break;
2129 }
2130 }
2131
2132 if (main == NULL) {
2133 linker_error(prog, "%s shader lacks `main'\n",
2134 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2135 return NULL;
2136 }
2137
2138 gl_linked_shader *linked = ctx->Driver.NewShader(shader_list[0]->Stage);
2139 linked->ir = new(linked) exec_list;
2140 clone_ir_list(mem_ctx, linked->ir, main->ir);
2141
2142 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2143 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2144 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2145 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2146 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2147 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2148 num_shaders);
2149
2150 populate_symbol_table(linked);
2151
2152 /* The pointer to the main function in the final linked shader (i.e., the
2153 * copy of the original shader that contained the main function).
2154 */
2155 ir_function_signature *const main_sig =
2156 _mesa_get_main_function_signature(linked->symbols);
2157
2158 /* Move any instructions other than variable declarations or function
2159 * declarations into main.
2160 */
2161 exec_node *insertion_point =
2162 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2163 linked);
2164
2165 for (unsigned i = 0; i < num_shaders; i++) {
2166 if (shader_list[i] == main)
2167 continue;
2168
2169 insertion_point = move_non_declarations(shader_list[i]->ir,
2170 insertion_point, true, linked);
2171 }
2172
2173 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2174 _mesa_delete_linked_shader(ctx, linked);
2175 return NULL;
2176 }
2177
2178 /* Make a pass over all variable declarations to ensure that arrays with
2179 * unspecified sizes have a size specified. The size is inferred from the
2180 * max_array_access field.
2181 */
2182 array_sizing_visitor v;
2183 v.run(linked->ir);
2184 v.fixup_unnamed_interface_types();
2185
2186 /* Link up uniform blocks defined within this stage. */
2187 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2188 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2189
2190 if (!prog->LinkStatus) {
2191 _mesa_delete_linked_shader(ctx, linked);
2192 return NULL;
2193 }
2194
2195 /* Copy ubo blocks to linked shader list */
2196 linked->UniformBlocks =
2197 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2198 ralloc_steal(linked, ubo_blocks);
2199 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2200 linked->UniformBlocks[i] = &ubo_blocks[i];
2201 }
2202 linked->NumUniformBlocks = num_ubo_blocks;
2203
2204 /* Copy ssbo blocks to linked shader list */
2205 linked->ShaderStorageBlocks =
2206 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2207 ralloc_steal(linked, ssbo_blocks);
2208 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2209 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2210 }
2211 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2212
2213 /* At this point linked should contain all of the linked IR, so
2214 * validate it to make sure nothing went wrong.
2215 */
2216 validate_ir_tree(linked->ir);
2217
2218 /* Set the size of geometry shader input arrays */
2219 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2220 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2221 array_resize_visitor input_resize_visitor(num_vertices, prog,
2222 MESA_SHADER_GEOMETRY);
2223 foreach_in_list(ir_instruction, ir, linked->ir) {
2224 ir->accept(&input_resize_visitor);
2225 }
2226 }
2227
2228 if (ctx->Const.VertexID_is_zero_based)
2229 lower_vertex_id(linked);
2230
2231 return linked;
2232 }
2233
2234 /**
2235 * Update the sizes of linked shader uniform arrays to the maximum
2236 * array index used.
2237 *
2238 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2239 *
2240 * If one or more elements of an array are active,
2241 * GetActiveUniform will return the name of the array in name,
2242 * subject to the restrictions listed above. The type of the array
2243 * is returned in type. The size parameter contains the highest
2244 * array element index used, plus one. The compiler or linker
2245 * determines the highest index used. There will be only one
2246 * active uniform reported by the GL per uniform array.
2247
2248 */
2249 static void
2250 update_array_sizes(struct gl_shader_program *prog)
2251 {
2252 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2253 if (prog->_LinkedShaders[i] == NULL)
2254 continue;
2255
2256 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2257 ir_variable *const var = node->as_variable();
2258
2259 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2260 !var->type->is_array())
2261 continue;
2262
2263 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2264 * will not be eliminated. Since we always do std140, just
2265 * don't resize arrays in UBOs.
2266 *
2267 * Atomic counters are supposed to get deterministic
2268 * locations assigned based on the declaration ordering and
2269 * sizes, array compaction would mess that up.
2270 *
2271 * Subroutine uniforms are not removed.
2272 */
2273 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2274 var->type->contains_subroutine() || var->constant_initializer)
2275 continue;
2276
2277 int size = var->data.max_array_access;
2278 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2279 if (prog->_LinkedShaders[j] == NULL)
2280 continue;
2281
2282 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2283 ir_variable *other_var = node2->as_variable();
2284 if (!other_var)
2285 continue;
2286
2287 if (strcmp(var->name, other_var->name) == 0 &&
2288 other_var->data.max_array_access > size) {
2289 size = other_var->data.max_array_access;
2290 }
2291 }
2292 }
2293
2294 if (size + 1 != (int)var->type->length) {
2295 /* If this is a built-in uniform (i.e., it's backed by some
2296 * fixed-function state), adjust the number of state slots to
2297 * match the new array size. The number of slots per array entry
2298 * is not known. It seems safe to assume that the total number of
2299 * slots is an integer multiple of the number of array elements.
2300 * Determine the number of slots per array element by dividing by
2301 * the old (total) size.
2302 */
2303 const unsigned num_slots = var->get_num_state_slots();
2304 if (num_slots > 0) {
2305 var->set_num_state_slots((size + 1)
2306 * (num_slots / var->type->length));
2307 }
2308
2309 var->type = glsl_type::get_array_instance(var->type->fields.array,
2310 size + 1);
2311 /* FINISHME: We should update the types of array
2312 * dereferences of this variable now.
2313 */
2314 }
2315 }
2316 }
2317 }
2318
2319 /**
2320 * Resize tessellation evaluation per-vertex inputs to the size of
2321 * tessellation control per-vertex outputs.
2322 */
2323 static void
2324 resize_tes_inputs(struct gl_context *ctx,
2325 struct gl_shader_program *prog)
2326 {
2327 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2328 return;
2329
2330 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2331 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2332
2333 /* If no control shader is present, then the TES inputs are statically
2334 * sized to MaxPatchVertices; the actual size of the arrays won't be
2335 * known until draw time.
2336 */
2337 const int num_vertices = tcs
2338 ? tcs->info.TessCtrl.VerticesOut
2339 : ctx->Const.MaxPatchVertices;
2340
2341 array_resize_visitor input_resize_visitor(num_vertices, prog,
2342 MESA_SHADER_TESS_EVAL);
2343 foreach_in_list(ir_instruction, ir, tes->ir) {
2344 ir->accept(&input_resize_visitor);
2345 }
2346
2347 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2348 /* Convert the gl_PatchVerticesIn system value into a constant, since
2349 * the value is known at this point.
2350 */
2351 foreach_in_list(ir_instruction, ir, tes->ir) {
2352 ir_variable *var = ir->as_variable();
2353 if (var && var->data.mode == ir_var_system_value &&
2354 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2355 void *mem_ctx = ralloc_parent(var);
2356 var->data.location = 0;
2357 var->data.explicit_location = false;
2358 if (tcs) {
2359 var->data.mode = ir_var_auto;
2360 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2361 } else {
2362 var->data.mode = ir_var_uniform;
2363 var->data.how_declared = ir_var_hidden;
2364 var->allocate_state_slots(1);
2365 ir_state_slot *slot0 = &var->get_state_slots()[0];
2366 slot0->swizzle = SWIZZLE_XXXX;
2367 slot0->tokens[0] = STATE_INTERNAL;
2368 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2369 for (int i = 2; i < STATE_LENGTH; i++)
2370 slot0->tokens[i] = 0;
2371 }
2372 }
2373 }
2374 }
2375 }
2376
2377 /**
2378 * Find a contiguous set of available bits in a bitmask.
2379 *
2380 * \param used_mask Bits representing used (1) and unused (0) locations
2381 * \param needed_count Number of contiguous bits needed.
2382 *
2383 * \return
2384 * Base location of the available bits on success or -1 on failure.
2385 */
2386 int
2387 find_available_slots(unsigned used_mask, unsigned needed_count)
2388 {
2389 unsigned needed_mask = (1 << needed_count) - 1;
2390 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2391
2392 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2393 * cannot optimize possibly infinite loops" for the loop below.
2394 */
2395 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2396 return -1;
2397
2398 for (int i = 0; i <= max_bit_to_test; i++) {
2399 if ((needed_mask & ~used_mask) == needed_mask)
2400 return i;
2401
2402 needed_mask <<= 1;
2403 }
2404
2405 return -1;
2406 }
2407
2408
2409 /**
2410 * Assign locations for either VS inputs or FS outputs
2411 *
2412 * \param mem_ctx Temporary ralloc context used for linking
2413 * \param prog Shader program whose variables need locations assigned
2414 * \param constants Driver specific constant values for the program.
2415 * \param target_index Selector for the program target to receive location
2416 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2417 * \c MESA_SHADER_FRAGMENT.
2418 *
2419 * \return
2420 * If locations are successfully assigned, true is returned. Otherwise an
2421 * error is emitted to the shader link log and false is returned.
2422 */
2423 bool
2424 assign_attribute_or_color_locations(void *mem_ctx,
2425 gl_shader_program *prog,
2426 struct gl_constants *constants,
2427 unsigned target_index)
2428 {
2429 /* Maximum number of generic locations. This corresponds to either the
2430 * maximum number of draw buffers or the maximum number of generic
2431 * attributes.
2432 */
2433 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2434 constants->Program[target_index].MaxAttribs :
2435 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2436
2437 /* Mark invalid locations as being used.
2438 */
2439 unsigned used_locations = (max_index >= 32)
2440 ? ~0 : ~((1 << max_index) - 1);
2441 unsigned double_storage_locations = 0;
2442
2443 assert((target_index == MESA_SHADER_VERTEX)
2444 || (target_index == MESA_SHADER_FRAGMENT));
2445
2446 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2447 if (sh == NULL)
2448 return true;
2449
2450 /* Operate in a total of four passes.
2451 *
2452 * 1. Invalidate the location assignments for all vertex shader inputs.
2453 *
2454 * 2. Assign locations for inputs that have user-defined (via
2455 * glBindVertexAttribLocation) locations and outputs that have
2456 * user-defined locations (via glBindFragDataLocation).
2457 *
2458 * 3. Sort the attributes without assigned locations by number of slots
2459 * required in decreasing order. Fragmentation caused by attribute
2460 * locations assigned by the application may prevent large attributes
2461 * from having enough contiguous space.
2462 *
2463 * 4. Assign locations to any inputs without assigned locations.
2464 */
2465
2466 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2467 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2468
2469 const enum ir_variable_mode direction =
2470 (target_index == MESA_SHADER_VERTEX)
2471 ? ir_var_shader_in : ir_var_shader_out;
2472
2473
2474 /* Temporary storage for the set of attributes that need locations assigned.
2475 */
2476 struct temp_attr {
2477 unsigned slots;
2478 ir_variable *var;
2479
2480 /* Used below in the call to qsort. */
2481 static int compare(const void *a, const void *b)
2482 {
2483 const temp_attr *const l = (const temp_attr *) a;
2484 const temp_attr *const r = (const temp_attr *) b;
2485
2486 /* Reversed because we want a descending order sort below. */
2487 return r->slots - l->slots;
2488 }
2489 } to_assign[32];
2490 assert(max_index <= 32);
2491
2492 /* Temporary array for the set of attributes that have locations assigned.
2493 */
2494 ir_variable *assigned[16];
2495
2496 unsigned num_attr = 0;
2497 unsigned assigned_attr = 0;
2498
2499 foreach_in_list(ir_instruction, node, sh->ir) {
2500 ir_variable *const var = node->as_variable();
2501
2502 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2503 continue;
2504
2505 if (var->data.explicit_location) {
2506 var->data.is_unmatched_generic_inout = 0;
2507 if ((var->data.location >= (int)(max_index + generic_base))
2508 || (var->data.location < 0)) {
2509 linker_error(prog,
2510 "invalid explicit location %d specified for `%s'\n",
2511 (var->data.location < 0)
2512 ? var->data.location
2513 : var->data.location - generic_base,
2514 var->name);
2515 return false;
2516 }
2517 } else if (target_index == MESA_SHADER_VERTEX) {
2518 unsigned binding;
2519
2520 if (prog->AttributeBindings->get(binding, var->name)) {
2521 assert(binding >= VERT_ATTRIB_GENERIC0);
2522 var->data.location = binding;
2523 var->data.is_unmatched_generic_inout = 0;
2524 }
2525 } else if (target_index == MESA_SHADER_FRAGMENT) {
2526 unsigned binding;
2527 unsigned index;
2528 const char *name = var->name;
2529 const glsl_type *type = var->type;
2530
2531 while (type) {
2532 /* Check if there's a binding for the variable name */
2533 if (prog->FragDataBindings->get(binding, name)) {
2534 assert(binding >= FRAG_RESULT_DATA0);
2535 var->data.location = binding;
2536 var->data.is_unmatched_generic_inout = 0;
2537
2538 if (prog->FragDataIndexBindings->get(index, name)) {
2539 var->data.index = index;
2540 }
2541 break;
2542 }
2543
2544 /* If not, but it's an array type, look for name[0] */
2545 if (type->is_array()) {
2546 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2547 type = type->fields.array;
2548 continue;
2549 }
2550
2551 break;
2552 }
2553 }
2554
2555 if (strcmp(var->name, "gl_LastFragData") == 0)
2556 continue;
2557
2558 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2559 *
2560 * "Output binding assignments will cause LinkProgram to fail:
2561 * ...
2562 * If the program has an active output assigned to a location greater
2563 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2564 * an active output assigned an index greater than or equal to one;"
2565 */
2566 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2567 var->data.location - generic_base >=
2568 (int) constants->MaxDualSourceDrawBuffers) {
2569 linker_error(prog,
2570 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2571 "with index %u for %s\n",
2572 var->data.location - generic_base, var->data.index,
2573 var->name);
2574 return false;
2575 }
2576
2577 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2578
2579 /* If the variable is not a built-in and has a location statically
2580 * assigned in the shader (presumably via a layout qualifier), make sure
2581 * that it doesn't collide with other assigned locations. Otherwise,
2582 * add it to the list of variables that need linker-assigned locations.
2583 */
2584 if (var->data.location != -1) {
2585 if (var->data.location >= generic_base && var->data.index < 1) {
2586 /* From page 61 of the OpenGL 4.0 spec:
2587 *
2588 * "LinkProgram will fail if the attribute bindings assigned
2589 * by BindAttribLocation do not leave not enough space to
2590 * assign a location for an active matrix attribute or an
2591 * active attribute array, both of which require multiple
2592 * contiguous generic attributes."
2593 *
2594 * I think above text prohibits the aliasing of explicit and
2595 * automatic assignments. But, aliasing is allowed in manual
2596 * assignments of attribute locations. See below comments for
2597 * the details.
2598 *
2599 * From OpenGL 4.0 spec, page 61:
2600 *
2601 * "It is possible for an application to bind more than one
2602 * attribute name to the same location. This is referred to as
2603 * aliasing. This will only work if only one of the aliased
2604 * attributes is active in the executable program, or if no
2605 * path through the shader consumes more than one attribute of
2606 * a set of attributes aliased to the same location. A link
2607 * error can occur if the linker determines that every path
2608 * through the shader consumes multiple aliased attributes,
2609 * but implementations are not required to generate an error
2610 * in this case."
2611 *
2612 * From GLSL 4.30 spec, page 54:
2613 *
2614 * "A program will fail to link if any two non-vertex shader
2615 * input variables are assigned to the same location. For
2616 * vertex shaders, multiple input variables may be assigned
2617 * to the same location using either layout qualifiers or via
2618 * the OpenGL API. However, such aliasing is intended only to
2619 * support vertex shaders where each execution path accesses
2620 * at most one input per each location. Implementations are
2621 * permitted, but not required, to generate link-time errors
2622 * if they detect that every path through the vertex shader
2623 * executable accesses multiple inputs assigned to any single
2624 * location. For all shader types, a program will fail to link
2625 * if explicit location assignments leave the linker unable
2626 * to find space for other variables without explicit
2627 * assignments."
2628 *
2629 * From OpenGL ES 3.0 spec, page 56:
2630 *
2631 * "Binding more than one attribute name to the same location
2632 * is referred to as aliasing, and is not permitted in OpenGL
2633 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2634 * fail when this condition exists. However, aliasing is
2635 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2636 * This will only work if only one of the aliased attributes
2637 * is active in the executable program, or if no path through
2638 * the shader consumes more than one attribute of a set of
2639 * attributes aliased to the same location. A link error can
2640 * occur if the linker determines that every path through the
2641 * shader consumes multiple aliased attributes, but implemen-
2642 * tations are not required to generate an error in this case."
2643 *
2644 * After looking at above references from OpenGL, OpenGL ES and
2645 * GLSL specifications, we allow aliasing of vertex input variables
2646 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2647 *
2648 * NOTE: This is not required by the spec but its worth mentioning
2649 * here that we're not doing anything to make sure that no path
2650 * through the vertex shader executable accesses multiple inputs
2651 * assigned to any single location.
2652 */
2653
2654 /* Mask representing the contiguous slots that will be used by
2655 * this attribute.
2656 */
2657 const unsigned attr = var->data.location - generic_base;
2658 const unsigned use_mask = (1 << slots) - 1;
2659 const char *const string = (target_index == MESA_SHADER_VERTEX)
2660 ? "vertex shader input" : "fragment shader output";
2661
2662 /* Generate a link error if the requested locations for this
2663 * attribute exceed the maximum allowed attribute location.
2664 */
2665 if (attr + slots > max_index) {
2666 linker_error(prog,
2667 "insufficient contiguous locations "
2668 "available for %s `%s' %d %d %d\n", string,
2669 var->name, used_locations, use_mask, attr);
2670 return false;
2671 }
2672
2673 /* Generate a link error if the set of bits requested for this
2674 * attribute overlaps any previously allocated bits.
2675 */
2676 if ((~(use_mask << attr) & used_locations) != used_locations) {
2677 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2678 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2679 * 4.40 spec:
2680 *
2681 * "Additionally, for fragment shader outputs, if two
2682 * variables are placed within the same location, they
2683 * must have the same underlying type (floating-point or
2684 * integer). No component aliasing of output variables or
2685 * members is allowed.
2686 */
2687 for (unsigned i = 0; i < assigned_attr; i++) {
2688 unsigned assigned_slots =
2689 assigned[i]->type->count_attribute_slots(false);
2690 unsigned assig_attr =
2691 assigned[i]->data.location - generic_base;
2692 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2693
2694 if ((assigned_use_mask << assig_attr) &
2695 (use_mask << attr)) {
2696
2697 const glsl_type *assigned_type =
2698 assigned[i]->type->without_array();
2699 const glsl_type *type = var->type->without_array();
2700 if (assigned_type->base_type != type->base_type) {
2701 linker_error(prog, "types do not match for aliased"
2702 " %ss %s and %s\n", string,
2703 assigned[i]->name, var->name);
2704 return false;
2705 }
2706
2707 unsigned assigned_component_mask =
2708 ((1 << assigned_type->vector_elements) - 1) <<
2709 assigned[i]->data.location_frac;
2710 unsigned component_mask =
2711 ((1 << type->vector_elements) - 1) <<
2712 var->data.location_frac;
2713 if (assigned_component_mask & component_mask) {
2714 linker_error(prog, "overlapping component is "
2715 "assigned to %ss %s and %s "
2716 "(component=%d)\n",
2717 string, assigned[i]->name, var->name,
2718 var->data.location_frac);
2719 return false;
2720 }
2721 }
2722 }
2723 } else if (target_index == MESA_SHADER_FRAGMENT ||
2724 (prog->IsES && prog->Version >= 300)) {
2725 linker_error(prog, "overlapping location is assigned "
2726 "to %s `%s' %d %d %d\n", string, var->name,
2727 used_locations, use_mask, attr);
2728 return false;
2729 } else {
2730 linker_warning(prog, "overlapping location is assigned "
2731 "to %s `%s' %d %d %d\n", string, var->name,
2732 used_locations, use_mask, attr);
2733 }
2734 }
2735
2736 used_locations |= (use_mask << attr);
2737
2738 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2739 *
2740 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2741 * active attribute variables may fail to link, unless
2742 * device-dependent optimizations are able to make the program
2743 * fit within available hardware resources. For the purposes
2744 * of this test, attribute variables of the type dvec3, dvec4,
2745 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2746 * count as consuming twice as many attributes as equivalent
2747 * single-precision types. While these types use the same number
2748 * of generic attributes as their single-precision equivalents,
2749 * implementations are permitted to consume two single-precision
2750 * vectors of internal storage for each three- or four-component
2751 * double-precision vector."
2752 *
2753 * Mark this attribute slot as taking up twice as much space
2754 * so we can count it properly against limits. According to
2755 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2756 * is optional behavior, but it seems preferable.
2757 */
2758 if (var->type->without_array()->is_dual_slot())
2759 double_storage_locations |= (use_mask << attr);
2760 }
2761
2762 assigned[assigned_attr] = var;
2763 assigned_attr++;
2764
2765 continue;
2766 }
2767
2768 if (num_attr >= max_index) {
2769 linker_error(prog, "too many %s (max %u)",
2770 target_index == MESA_SHADER_VERTEX ?
2771 "vertex shader inputs" : "fragment shader outputs",
2772 max_index);
2773 return false;
2774 }
2775 to_assign[num_attr].slots = slots;
2776 to_assign[num_attr].var = var;
2777 num_attr++;
2778 }
2779
2780 if (target_index == MESA_SHADER_VERTEX) {
2781 unsigned total_attribs_size =
2782 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2783 _mesa_bitcount(double_storage_locations);
2784 if (total_attribs_size > max_index) {
2785 linker_error(prog,
2786 "attempt to use %d vertex attribute slots only %d available ",
2787 total_attribs_size, max_index);
2788 return false;
2789 }
2790 }
2791
2792 /* If all of the attributes were assigned locations by the application (or
2793 * are built-in attributes with fixed locations), return early. This should
2794 * be the common case.
2795 */
2796 if (num_attr == 0)
2797 return true;
2798
2799 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2800
2801 if (target_index == MESA_SHADER_VERTEX) {
2802 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2803 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2804 * reserved to prevent it from being automatically allocated below.
2805 */
2806 find_deref_visitor find("gl_Vertex");
2807 find.run(sh->ir);
2808 if (find.variable_found())
2809 used_locations |= (1 << 0);
2810 }
2811
2812 for (unsigned i = 0; i < num_attr; i++) {
2813 /* Mask representing the contiguous slots that will be used by this
2814 * attribute.
2815 */
2816 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2817
2818 int location = find_available_slots(used_locations, to_assign[i].slots);
2819
2820 if (location < 0) {
2821 const char *const string = (target_index == MESA_SHADER_VERTEX)
2822 ? "vertex shader input" : "fragment shader output";
2823
2824 linker_error(prog,
2825 "insufficient contiguous locations "
2826 "available for %s `%s'\n",
2827 string, to_assign[i].var->name);
2828 return false;
2829 }
2830
2831 to_assign[i].var->data.location = generic_base + location;
2832 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2833 used_locations |= (use_mask << location);
2834
2835 if (to_assign[i].var->type->without_array()->is_dual_slot())
2836 double_storage_locations |= (use_mask << location);
2837 }
2838
2839 /* Now that we have all the locations, from the GL 4.5 core spec, section
2840 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2841 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2842 * as equivalent single-precision types.
2843 */
2844 if (target_index == MESA_SHADER_VERTEX) {
2845 unsigned total_attribs_size =
2846 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2847 _mesa_bitcount(double_storage_locations);
2848 if (total_attribs_size > max_index) {
2849 linker_error(prog,
2850 "attempt to use %d vertex attribute slots only %d available ",
2851 total_attribs_size, max_index);
2852 return false;
2853 }
2854 }
2855
2856 return true;
2857 }
2858
2859 /**
2860 * Match explicit locations of outputs to inputs and deactivate the
2861 * unmatch flag if found so we don't optimise them away.
2862 */
2863 static void
2864 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2865 gl_linked_shader *consumer)
2866 {
2867 glsl_symbol_table parameters;
2868 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2869 { {NULL, NULL} };
2870
2871 /* Find all shader outputs in the "producer" stage.
2872 */
2873 foreach_in_list(ir_instruction, node, producer->ir) {
2874 ir_variable *const var = node->as_variable();
2875
2876 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2877 continue;
2878
2879 if (var->data.explicit_location &&
2880 var->data.location >= VARYING_SLOT_VAR0) {
2881 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2882 if (explicit_locations[idx][var->data.location_frac] == NULL)
2883 explicit_locations[idx][var->data.location_frac] = var;
2884 }
2885 }
2886
2887 /* Match inputs to outputs */
2888 foreach_in_list(ir_instruction, node, consumer->ir) {
2889 ir_variable *const input = node->as_variable();
2890
2891 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2892 continue;
2893
2894 ir_variable *output = NULL;
2895 if (input->data.explicit_location
2896 && input->data.location >= VARYING_SLOT_VAR0) {
2897 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2898 [input->data.location_frac];
2899
2900 if (output != NULL){
2901 input->data.is_unmatched_generic_inout = 0;
2902 output->data.is_unmatched_generic_inout = 0;
2903 }
2904 }
2905 }
2906 }
2907
2908 /**
2909 * Store the gl_FragDepth layout in the gl_shader_program struct.
2910 */
2911 static void
2912 store_fragdepth_layout(struct gl_shader_program *prog)
2913 {
2914 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2915 return;
2916 }
2917
2918 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2919
2920 /* We don't look up the gl_FragDepth symbol directly because if
2921 * gl_FragDepth is not used in the shader, it's removed from the IR.
2922 * However, the symbol won't be removed from the symbol table.
2923 *
2924 * We're only interested in the cases where the variable is NOT removed
2925 * from the IR.
2926 */
2927 foreach_in_list(ir_instruction, node, ir) {
2928 ir_variable *const var = node->as_variable();
2929
2930 if (var == NULL || var->data.mode != ir_var_shader_out) {
2931 continue;
2932 }
2933
2934 if (strcmp(var->name, "gl_FragDepth") == 0) {
2935 switch (var->data.depth_layout) {
2936 case ir_depth_layout_none:
2937 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2938 return;
2939 case ir_depth_layout_any:
2940 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2941 return;
2942 case ir_depth_layout_greater:
2943 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2944 return;
2945 case ir_depth_layout_less:
2946 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2947 return;
2948 case ir_depth_layout_unchanged:
2949 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2950 return;
2951 default:
2952 assert(0);
2953 return;
2954 }
2955 }
2956 }
2957 }
2958
2959 /**
2960 * Validate the resources used by a program versus the implementation limits
2961 */
2962 static void
2963 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2964 {
2965 unsigned total_uniform_blocks = 0;
2966 unsigned total_shader_storage_blocks = 0;
2967
2968 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2969 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
2970
2971 if (sh == NULL)
2972 continue;
2973
2974 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2975 linker_error(prog, "Too many %s shader texture samplers\n",
2976 _mesa_shader_stage_to_string(i));
2977 }
2978
2979 if (sh->num_uniform_components >
2980 ctx->Const.Program[i].MaxUniformComponents) {
2981 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2982 linker_warning(prog, "Too many %s shader default uniform block "
2983 "components, but the driver will try to optimize "
2984 "them out; this is non-portable out-of-spec "
2985 "behavior\n",
2986 _mesa_shader_stage_to_string(i));
2987 } else {
2988 linker_error(prog, "Too many %s shader default uniform block "
2989 "components\n",
2990 _mesa_shader_stage_to_string(i));
2991 }
2992 }
2993
2994 if (sh->num_combined_uniform_components >
2995 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2996 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2997 linker_warning(prog, "Too many %s shader uniform components, "
2998 "but the driver will try to optimize them out; "
2999 "this is non-portable out-of-spec behavior\n",
3000 _mesa_shader_stage_to_string(i));
3001 } else {
3002 linker_error(prog, "Too many %s shader uniform components\n",
3003 _mesa_shader_stage_to_string(i));
3004 }
3005 }
3006
3007 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3008 total_uniform_blocks += sh->NumUniformBlocks;
3009
3010 const unsigned max_uniform_blocks =
3011 ctx->Const.Program[i].MaxUniformBlocks;
3012 if (max_uniform_blocks < sh->NumUniformBlocks) {
3013 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3014 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3015 max_uniform_blocks);
3016 }
3017
3018 const unsigned max_shader_storage_blocks =
3019 ctx->Const.Program[i].MaxShaderStorageBlocks;
3020 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3021 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3022 _mesa_shader_stage_to_string(i),
3023 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3024 }
3025 }
3026
3027 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3028 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3029 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3030 }
3031
3032 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3033 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3034 total_shader_storage_blocks,
3035 ctx->Const.MaxCombinedShaderStorageBlocks);
3036 }
3037
3038 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3039 if (prog->UniformBlocks[i].UniformBufferSize >
3040 ctx->Const.MaxUniformBlockSize) {
3041 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3042 prog->UniformBlocks[i].Name,
3043 prog->UniformBlocks[i].UniformBufferSize,
3044 ctx->Const.MaxUniformBlockSize);
3045 }
3046 }
3047
3048 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3049 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3050 ctx->Const.MaxShaderStorageBlockSize) {
3051 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3052 prog->ShaderStorageBlocks[i].Name,
3053 prog->ShaderStorageBlocks[i].UniformBufferSize,
3054 ctx->Const.MaxShaderStorageBlockSize);
3055 }
3056 }
3057 }
3058
3059 static void
3060 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3061 {
3062 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3063 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3064 int count;
3065 if (!sh)
3066 continue;
3067
3068 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3069 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3070 continue;
3071
3072 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3073
3074 if (!uni)
3075 continue;
3076
3077 sh->NumSubroutineUniforms++;
3078 count = 0;
3079 if (sh->NumSubroutineFunctions == 0) {
3080 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3081 continue;
3082 }
3083 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3084 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3085 for (int k = 0; k < fn->num_compat_types; k++) {
3086 if (fn->types[k] == uni->type) {
3087 count++;
3088 break;
3089 }
3090 }
3091 }
3092 uni->num_compatible_subroutines = count;
3093 }
3094 }
3095 }
3096
3097 static void
3098 check_subroutine_resources(struct gl_shader_program *prog)
3099 {
3100 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3101 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3102
3103 if (sh) {
3104 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3105 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3106 _mesa_shader_stage_to_string(i));
3107 }
3108 }
3109 }
3110 /**
3111 * Validate shader image resources.
3112 */
3113 static void
3114 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3115 {
3116 unsigned total_image_units = 0;
3117 unsigned fragment_outputs = 0;
3118 unsigned total_shader_storage_blocks = 0;
3119
3120 if (!ctx->Extensions.ARB_shader_image_load_store)
3121 return;
3122
3123 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3124 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3125
3126 if (sh) {
3127 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3128 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3129 _mesa_shader_stage_to_string(i), sh->NumImages,
3130 ctx->Const.Program[i].MaxImageUniforms);
3131
3132 total_image_units += sh->NumImages;
3133 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3134
3135 if (i == MESA_SHADER_FRAGMENT) {
3136 foreach_in_list(ir_instruction, node, sh->ir) {
3137 ir_variable *var = node->as_variable();
3138 if (var && var->data.mode == ir_var_shader_out)
3139 /* since there are no double fs outputs - pass false */
3140 fragment_outputs += var->type->count_attribute_slots(false);
3141 }
3142 }
3143 }
3144 }
3145
3146 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3147 linker_error(prog, "Too many combined image uniforms\n");
3148
3149 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3150 ctx->Const.MaxCombinedShaderOutputResources)
3151 linker_error(prog, "Too many combined image uniforms, shader storage "
3152 " buffers and fragment outputs\n");
3153 }
3154
3155
3156 /**
3157 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3158 * for a variable, checks for overlaps between other uniforms using explicit
3159 * locations.
3160 */
3161 static int
3162 reserve_explicit_locations(struct gl_shader_program *prog,
3163 string_to_uint_map *map, ir_variable *var)
3164 {
3165 unsigned slots = var->type->uniform_locations();
3166 unsigned max_loc = var->data.location + slots - 1;
3167 unsigned return_value = slots;
3168
3169 /* Resize remap table if locations do not fit in the current one. */
3170 if (max_loc + 1 > prog->NumUniformRemapTable) {
3171 prog->UniformRemapTable =
3172 reralloc(prog, prog->UniformRemapTable,
3173 gl_uniform_storage *,
3174 max_loc + 1);
3175
3176 if (!prog->UniformRemapTable) {
3177 linker_error(prog, "Out of memory during linking.\n");
3178 return -1;
3179 }
3180
3181 /* Initialize allocated space. */
3182 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3183 prog->UniformRemapTable[i] = NULL;
3184
3185 prog->NumUniformRemapTable = max_loc + 1;
3186 }
3187
3188 for (unsigned i = 0; i < slots; i++) {
3189 unsigned loc = var->data.location + i;
3190
3191 /* Check if location is already used. */
3192 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3193
3194 /* Possibly same uniform from a different stage, this is ok. */
3195 unsigned hash_loc;
3196 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3197 return_value = 0;
3198 continue;
3199 }
3200
3201 /* ARB_explicit_uniform_location specification states:
3202 *
3203 * "No two default-block uniform variables in the program can have
3204 * the same location, even if they are unused, otherwise a compiler
3205 * or linker error will be generated."
3206 */
3207 linker_error(prog,
3208 "location qualifier for uniform %s overlaps "
3209 "previously used location\n",
3210 var->name);
3211 return -1;
3212 }
3213
3214 /* Initialize location as inactive before optimization
3215 * rounds and location assignment.
3216 */
3217 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3218 }
3219
3220 /* Note, base location used for arrays. */
3221 map->put(var->data.location, var->name);
3222
3223 return return_value;
3224 }
3225
3226 static bool
3227 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3228 struct gl_linked_shader *sh,
3229 ir_variable *var)
3230 {
3231 unsigned slots = var->type->uniform_locations();
3232 unsigned max_loc = var->data.location + slots - 1;
3233
3234 /* Resize remap table if locations do not fit in the current one. */
3235 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3236 sh->SubroutineUniformRemapTable =
3237 reralloc(sh, sh->SubroutineUniformRemapTable,
3238 gl_uniform_storage *,
3239 max_loc + 1);
3240
3241 if (!sh->SubroutineUniformRemapTable) {
3242 linker_error(prog, "Out of memory during linking.\n");
3243 return false;
3244 }
3245
3246 /* Initialize allocated space. */
3247 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3248 sh->SubroutineUniformRemapTable[i] = NULL;
3249
3250 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3251 }
3252
3253 for (unsigned i = 0; i < slots; i++) {
3254 unsigned loc = var->data.location + i;
3255
3256 /* Check if location is already used. */
3257 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3258
3259 /* ARB_explicit_uniform_location specification states:
3260 * "No two subroutine uniform variables can have the same location
3261 * in the same shader stage, otherwise a compiler or linker error
3262 * will be generated."
3263 */
3264 linker_error(prog,
3265 "location qualifier for uniform %s overlaps "
3266 "previously used location\n",
3267 var->name);
3268 return false;
3269 }
3270
3271 /* Initialize location as inactive before optimization
3272 * rounds and location assignment.
3273 */
3274 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3275 }
3276
3277 return true;
3278 }
3279 /**
3280 * Check and reserve all explicit uniform locations, called before
3281 * any optimizations happen to handle also inactive uniforms and
3282 * inactive array elements that may get trimmed away.
3283 */
3284 static unsigned
3285 check_explicit_uniform_locations(struct gl_context *ctx,
3286 struct gl_shader_program *prog)
3287 {
3288 if (!ctx->Extensions.ARB_explicit_uniform_location)
3289 return 0;
3290
3291 /* This map is used to detect if overlapping explicit locations
3292 * occur with the same uniform (from different stage) or a different one.
3293 */
3294 string_to_uint_map *uniform_map = new string_to_uint_map;
3295
3296 if (!uniform_map) {
3297 linker_error(prog, "Out of memory during linking.\n");
3298 return 0;
3299 }
3300
3301 unsigned entries_total = 0;
3302 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3303 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3304
3305 if (!sh)
3306 continue;
3307
3308 foreach_in_list(ir_instruction, node, sh->ir) {
3309 ir_variable *var = node->as_variable();
3310 if (!var || var->data.mode != ir_var_uniform)
3311 continue;
3312
3313 if (var->data.explicit_location) {
3314 bool ret = false;
3315 if (var->type->without_array()->is_subroutine())
3316 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3317 else {
3318 int slots = reserve_explicit_locations(prog, uniform_map,
3319 var);
3320 if (slots != -1) {
3321 ret = true;
3322 entries_total += slots;
3323 }
3324 }
3325 if (!ret) {
3326 delete uniform_map;
3327 return 0;
3328 }
3329 }
3330 }
3331 }
3332
3333 struct empty_uniform_block *current_block = NULL;
3334
3335 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3336 /* We found empty space in UniformRemapTable. */
3337 if (prog->UniformRemapTable[i] == NULL) {
3338 /* We've found the beginning of a new continous block of empty slots */
3339 if (!current_block || current_block->start + current_block->slots != i) {
3340 current_block = rzalloc(prog, struct empty_uniform_block);
3341 current_block->start = i;
3342 exec_list_push_tail(&prog->EmptyUniformLocations,
3343 &current_block->link);
3344 }
3345
3346 /* The current block continues, so we simply increment its slots */
3347 current_block->slots++;
3348 }
3349 }
3350
3351 delete uniform_map;
3352 return entries_total;
3353 }
3354
3355 static bool
3356 should_add_buffer_variable(struct gl_shader_program *shProg,
3357 GLenum type, const char *name)
3358 {
3359 bool found_interface = false;
3360 unsigned block_name_len = 0;
3361 const char *block_name_dot = strchr(name, '.');
3362
3363 /* These rules only apply to buffer variables. So we return
3364 * true for the rest of types.
3365 */
3366 if (type != GL_BUFFER_VARIABLE)
3367 return true;
3368
3369 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3370 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3371 block_name_len = strlen(block_name);
3372
3373 const char *block_square_bracket = strchr(block_name, '[');
3374 if (block_square_bracket) {
3375 /* The block is part of an array of named interfaces,
3376 * for the name comparison we ignore the "[x]" part.
3377 */
3378 block_name_len -= strlen(block_square_bracket);
3379 }
3380
3381 if (block_name_dot) {
3382 /* Check if the variable name starts with the interface
3383 * name. The interface name (if present) should have the
3384 * length than the interface block name we are comparing to.
3385 */
3386 unsigned len = strlen(name) - strlen(block_name_dot);
3387 if (len != block_name_len)
3388 continue;
3389 }
3390
3391 if (strncmp(block_name, name, block_name_len) == 0) {
3392 found_interface = true;
3393 break;
3394 }
3395 }
3396
3397 /* We remove the interface name from the buffer variable name,
3398 * including the dot that follows it.
3399 */
3400 if (found_interface)
3401 name = name + block_name_len + 1;
3402
3403 /* The ARB_program_interface_query spec says:
3404 *
3405 * "For an active shader storage block member declared as an array, an
3406 * entry will be generated only for the first array element, regardless
3407 * of its type. For arrays of aggregate types, the enumeration rules
3408 * are applied recursively for the single enumerated array element."
3409 */
3410 const char *struct_first_dot = strchr(name, '.');
3411 const char *first_square_bracket = strchr(name, '[');
3412
3413 /* The buffer variable is on top level and it is not an array */
3414 if (!first_square_bracket) {
3415 return true;
3416 /* The shader storage block member is a struct, then generate the entry */
3417 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3418 return true;
3419 } else {
3420 /* Shader storage block member is an array, only generate an entry for the
3421 * first array element.
3422 */
3423 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3424 return true;
3425 }
3426
3427 return false;
3428 }
3429
3430 static bool
3431 add_program_resource(struct gl_shader_program *prog,
3432 struct set *resource_set,
3433 GLenum type, const void *data, uint8_t stages)
3434 {
3435 assert(data);
3436
3437 /* If resource already exists, do not add it again. */
3438 if (_mesa_set_search(resource_set, data))
3439 return true;
3440
3441 prog->ProgramResourceList =
3442 reralloc(prog,
3443 prog->ProgramResourceList,
3444 gl_program_resource,
3445 prog->NumProgramResourceList + 1);
3446
3447 if (!prog->ProgramResourceList) {
3448 linker_error(prog, "Out of memory during linking.\n");
3449 return false;
3450 }
3451
3452 struct gl_program_resource *res =
3453 &prog->ProgramResourceList[prog->NumProgramResourceList];
3454
3455 res->Type = type;
3456 res->Data = data;
3457 res->StageReferences = stages;
3458
3459 prog->NumProgramResourceList++;
3460
3461 _mesa_set_add(resource_set, data);
3462
3463 return true;
3464 }
3465
3466 /* Function checks if a variable var is a packed varying and
3467 * if given name is part of packed varying's list.
3468 *
3469 * If a variable is a packed varying, it has a name like
3470 * 'packed:a,b,c' where a, b and c are separate variables.
3471 */
3472 static bool
3473 included_in_packed_varying(ir_variable *var, const char *name)
3474 {
3475 if (strncmp(var->name, "packed:", 7) != 0)
3476 return false;
3477
3478 char *list = strdup(var->name + 7);
3479 assert(list);
3480
3481 bool found = false;
3482 char *saveptr;
3483 char *token = strtok_r(list, ",", &saveptr);
3484 while (token) {
3485 if (strcmp(token, name) == 0) {
3486 found = true;
3487 break;
3488 }
3489 token = strtok_r(NULL, ",", &saveptr);
3490 }
3491 free(list);
3492 return found;
3493 }
3494
3495 /**
3496 * Function builds a stage reference bitmask from variable name.
3497 */
3498 static uint8_t
3499 build_stageref(struct gl_shader_program *shProg, const char *name,
3500 unsigned mode)
3501 {
3502 uint8_t stages = 0;
3503
3504 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3505 * used for reference mask in gl_program_resource will need to be changed.
3506 */
3507 assert(MESA_SHADER_STAGES < 8);
3508
3509 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3510 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3511 if (!sh)
3512 continue;
3513
3514 /* Shader symbol table may contain variables that have
3515 * been optimized away. Search IR for the variable instead.
3516 */
3517 foreach_in_list(ir_instruction, node, sh->ir) {
3518 ir_variable *var = node->as_variable();
3519 if (var) {
3520 unsigned baselen = strlen(var->name);
3521
3522 if (included_in_packed_varying(var, name)) {
3523 stages |= (1 << i);
3524 break;
3525 }
3526
3527 /* Type needs to match if specified, otherwise we might
3528 * pick a variable with same name but different interface.
3529 */
3530 if (var->data.mode != mode)
3531 continue;
3532
3533 if (strncmp(var->name, name, baselen) == 0) {
3534 /* Check for exact name matches but also check for arrays and
3535 * structs.
3536 */
3537 if (name[baselen] == '\0' ||
3538 name[baselen] == '[' ||
3539 name[baselen] == '.') {
3540 stages |= (1 << i);
3541 break;
3542 }
3543 }
3544 }
3545 }
3546 }
3547 return stages;
3548 }
3549
3550 /**
3551 * Create gl_shader_variable from ir_variable class.
3552 */
3553 static gl_shader_variable *
3554 create_shader_variable(struct gl_shader_program *shProg,
3555 const ir_variable *in,
3556 const char *name, const glsl_type *type,
3557 bool use_implicit_location, int location,
3558 const glsl_type *outermost_struct_type)
3559 {
3560 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3561 if (!out)
3562 return NULL;
3563
3564 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3565 * expect to see gl_VertexID in the program resource list. Pretend.
3566 */
3567 if (in->data.mode == ir_var_system_value &&
3568 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3569 out->name = ralloc_strdup(shProg, "gl_VertexID");
3570 } else if ((in->data.mode == ir_var_shader_out &&
3571 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3572 (in->data.mode == ir_var_system_value &&
3573 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3574 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3575 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3576 } else if ((in->data.mode == ir_var_shader_out &&
3577 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3578 (in->data.mode == ir_var_system_value &&
3579 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3580 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3581 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3582 } else {
3583 out->name = ralloc_strdup(shProg, name);
3584 }
3585
3586 if (!out->name)
3587 return NULL;
3588
3589 /* The ARB_program_interface_query spec says:
3590 *
3591 * "Not all active variables are assigned valid locations; the
3592 * following variables will have an effective location of -1:
3593 *
3594 * * uniforms declared as atomic counters;
3595 *
3596 * * members of a uniform block;
3597 *
3598 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3599 *
3600 * * inputs or outputs not declared with a "location" layout
3601 * qualifier, except for vertex shader inputs and fragment shader
3602 * outputs."
3603 */
3604 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3605 is_gl_identifier(in->name) ||
3606 !(in->data.explicit_location || use_implicit_location)) {
3607 out->location = -1;
3608 } else {
3609 out->location = location;
3610 }
3611
3612 out->type = type;
3613 out->outermost_struct_type = outermost_struct_type;
3614 out->interface_type = in->get_interface_type();
3615 out->component = in->data.location_frac;
3616 out->index = in->data.index;
3617 out->patch = in->data.patch;
3618 out->mode = in->data.mode;
3619 out->interpolation = in->data.interpolation;
3620 out->explicit_location = in->data.explicit_location;
3621 out->precision = in->data.precision;
3622
3623 return out;
3624 }
3625
3626 static bool
3627 add_shader_variable(struct gl_shader_program *shProg, struct set *resource_set,
3628 unsigned stage_mask,
3629 GLenum programInterface, ir_variable *var,
3630 const char *name, const glsl_type *type,
3631 bool use_implicit_location, int location,
3632 const glsl_type *outermost_struct_type = NULL)
3633 {
3634 const bool is_vertex_input =
3635 programInterface == GL_PROGRAM_INPUT &&
3636 stage_mask == MESA_SHADER_VERTEX;
3637
3638 switch (type->base_type) {
3639 case GLSL_TYPE_STRUCT: {
3640 /* The ARB_program_interface_query spec says:
3641 *
3642 * "For an active variable declared as a structure, a separate entry
3643 * will be generated for each active structure member. The name of
3644 * each entry is formed by concatenating the name of the structure,
3645 * the "." character, and the name of the structure member. If a
3646 * structure member to enumerate is itself a structure or array,
3647 * these enumeration rules are applied recursively."
3648 */
3649 if (outermost_struct_type == NULL)
3650 outermost_struct_type = type;
3651
3652 unsigned field_location = location;
3653 for (unsigned i = 0; i < type->length; i++) {
3654 const struct glsl_struct_field *field = &type->fields.structure[i];
3655 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3656 if (!add_shader_variable(shProg, resource_set,
3657 stage_mask, programInterface,
3658 var, field_name, field->type,
3659 use_implicit_location, field_location,
3660 outermost_struct_type))
3661 return false;
3662
3663 field_location +=
3664 field->type->count_attribute_slots(is_vertex_input);
3665 }
3666 return true;
3667 }
3668
3669 default: {
3670 /* Issue #16 of the ARB_program_interface_query spec says:
3671 *
3672 * "* If a variable is a member of an interface block without an
3673 * instance name, it is enumerated using just the variable name.
3674 *
3675 * * If a variable is a member of an interface block with an instance
3676 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3677 * the name of the interface block (not the instance name) and
3678 * "Member" is the name of the variable."
3679 */
3680 const char *prefixed_name = (var->data.from_named_ifc_block &&
3681 !is_gl_identifier(var->name))
3682 ? ralloc_asprintf(shProg, "%s.%s", var->get_interface_type()->name,
3683 name)
3684 : name;
3685
3686 /* The ARB_program_interface_query spec says:
3687 *
3688 * "For an active variable declared as a single instance of a basic
3689 * type, a single entry will be generated, using the variable name
3690 * from the shader source."
3691 */
3692 gl_shader_variable *sha_v =
3693 create_shader_variable(shProg, var, prefixed_name, type,
3694 use_implicit_location, location,
3695 outermost_struct_type);
3696 if (!sha_v)
3697 return false;
3698
3699 return add_program_resource(shProg, resource_set,
3700 programInterface, sha_v, stage_mask);
3701 }
3702 }
3703 }
3704
3705 static bool
3706 add_interface_variables(struct gl_shader_program *shProg,
3707 struct set *resource_set,
3708 unsigned stage, GLenum programInterface)
3709 {
3710 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3711
3712 foreach_in_list(ir_instruction, node, ir) {
3713 ir_variable *var = node->as_variable();
3714
3715 if (!var || var->data.how_declared == ir_var_hidden)
3716 continue;
3717
3718 int loc_bias;
3719
3720 switch (var->data.mode) {
3721 case ir_var_system_value:
3722 case ir_var_shader_in:
3723 if (programInterface != GL_PROGRAM_INPUT)
3724 continue;
3725 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3726 : int(VARYING_SLOT_VAR0);
3727 break;
3728 case ir_var_shader_out:
3729 if (programInterface != GL_PROGRAM_OUTPUT)
3730 continue;
3731 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3732 : int(VARYING_SLOT_VAR0);
3733 break;
3734 default:
3735 continue;
3736 };
3737
3738 if (var->data.patch)
3739 loc_bias = int(VARYING_SLOT_PATCH0);
3740
3741 /* Skip packed varyings, packed varyings are handled separately
3742 * by add_packed_varyings.
3743 */
3744 if (strncmp(var->name, "packed:", 7) == 0)
3745 continue;
3746
3747 /* Skip fragdata arrays, these are handled separately
3748 * by add_fragdata_arrays.
3749 */
3750 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3751 continue;
3752
3753 const bool vs_input_or_fs_output =
3754 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3755 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3756
3757 if (!add_shader_variable(shProg, resource_set,
3758 1 << stage, programInterface,
3759 var, var->name, var->type, vs_input_or_fs_output,
3760 var->data.location - loc_bias))
3761 return false;
3762 }
3763 return true;
3764 }
3765
3766 static bool
3767 add_packed_varyings(struct gl_shader_program *shProg, struct set *resource_set,
3768 int stage, GLenum type)
3769 {
3770 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3771 GLenum iface;
3772
3773 if (!sh || !sh->packed_varyings)
3774 return true;
3775
3776 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3777 ir_variable *var = node->as_variable();
3778 if (var) {
3779 switch (var->data.mode) {
3780 case ir_var_shader_in:
3781 iface = GL_PROGRAM_INPUT;
3782 break;
3783 case ir_var_shader_out:
3784 iface = GL_PROGRAM_OUTPUT;
3785 break;
3786 default:
3787 unreachable("unexpected type");
3788 }
3789
3790 if (type == iface) {
3791 const int stage_mask =
3792 build_stageref(shProg, var->name, var->data.mode);
3793 if (!add_shader_variable(shProg, resource_set,
3794 stage_mask,
3795 iface, var, var->name, var->type, false,
3796 var->data.location - VARYING_SLOT_VAR0))
3797 return false;
3798 }
3799 }
3800 }
3801 return true;
3802 }
3803
3804 static bool
3805 add_fragdata_arrays(struct gl_shader_program *shProg, struct set *resource_set)
3806 {
3807 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3808
3809 if (!sh || !sh->fragdata_arrays)
3810 return true;
3811
3812 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3813 ir_variable *var = node->as_variable();
3814 if (var) {
3815 assert(var->data.mode == ir_var_shader_out);
3816
3817 if (!add_shader_variable(shProg, resource_set,
3818 1 << MESA_SHADER_FRAGMENT,
3819 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3820 true, var->data.location - FRAG_RESULT_DATA0))
3821 return false;
3822 }
3823 }
3824 return true;
3825 }
3826
3827 static char*
3828 get_top_level_name(const char *name)
3829 {
3830 const char *first_dot = strchr(name, '.');
3831 const char *first_square_bracket = strchr(name, '[');
3832 int name_size = 0;
3833
3834 /* The ARB_program_interface_query spec says:
3835 *
3836 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3837 * the number of active array elements of the top-level shader storage
3838 * block member containing to the active variable is written to
3839 * <params>. If the top-level block member is not declared as an
3840 * array, the value one is written to <params>. If the top-level block
3841 * member is an array with no declared size, the value zero is written
3842 * to <params>."
3843 */
3844
3845 /* The buffer variable is on top level.*/
3846 if (!first_square_bracket && !first_dot)
3847 name_size = strlen(name);
3848 else if ((!first_square_bracket ||
3849 (first_dot && first_dot < first_square_bracket)))
3850 name_size = first_dot - name;
3851 else
3852 name_size = first_square_bracket - name;
3853
3854 return strndup(name, name_size);
3855 }
3856
3857 static char*
3858 get_var_name(const char *name)
3859 {
3860 const char *first_dot = strchr(name, '.');
3861
3862 if (!first_dot)
3863 return strdup(name);
3864
3865 return strndup(first_dot+1, strlen(first_dot) - 1);
3866 }
3867
3868 static bool
3869 is_top_level_shader_storage_block_member(const char* name,
3870 const char* interface_name,
3871 const char* field_name)
3872 {
3873 bool result = false;
3874
3875 /* If the given variable is already a top-level shader storage
3876 * block member, then return array_size = 1.
3877 * We could have two possibilities: if we have an instanced
3878 * shader storage block or not instanced.
3879 *
3880 * For the first, we check create a name as it was in top level and
3881 * compare it with the real name. If they are the same, then
3882 * the variable is already at top-level.
3883 *
3884 * Full instanced name is: interface name + '.' + var name +
3885 * NULL character
3886 */
3887 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3888 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3889 if (!full_instanced_name) {
3890 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3891 return false;
3892 }
3893
3894 snprintf(full_instanced_name, name_length, "%s.%s",
3895 interface_name, field_name);
3896
3897 /* Check if its top-level shader storage block member of an
3898 * instanced interface block, or of a unnamed interface block.
3899 */
3900 if (strcmp(name, full_instanced_name) == 0 ||
3901 strcmp(name, field_name) == 0)
3902 result = true;
3903
3904 free(full_instanced_name);
3905 return result;
3906 }
3907
3908 static int
3909 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
3910 char *interface_name, char *var_name)
3911 {
3912 /* The ARB_program_interface_query spec says:
3913 *
3914 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3915 * the number of active array elements of the top-level shader storage
3916 * block member containing to the active variable is written to
3917 * <params>. If the top-level block member is not declared as an
3918 * array, the value one is written to <params>. If the top-level block
3919 * member is an array with no declared size, the value zero is written
3920 * to <params>."
3921 */
3922 if (is_top_level_shader_storage_block_member(uni->name,
3923 interface_name,
3924 var_name))
3925 return 1;
3926 else if (field->type->is_unsized_array())
3927 return 0;
3928 else if (field->type->is_array())
3929 return field->type->length;
3930
3931 return 1;
3932 }
3933
3934 static int
3935 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
3936 const glsl_struct_field *field, char *interface_name,
3937 char *var_name)
3938 {
3939 /* The ARB_program_interface_query spec says:
3940 *
3941 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
3942 * identifying the stride between array elements of the top-level
3943 * shader storage block member containing the active variable is
3944 * written to <params>. For top-level block members declared as
3945 * arrays, the value written is the difference, in basic machine units,
3946 * between the offsets of the active variable for consecutive elements
3947 * in the top-level array. For top-level block members not declared as
3948 * an array, zero is written to <params>."
3949 */
3950 if (field->type->is_array()) {
3951 const enum glsl_matrix_layout matrix_layout =
3952 glsl_matrix_layout(field->matrix_layout);
3953 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
3954 const glsl_type *array_type = field->type->fields.array;
3955
3956 if (is_top_level_shader_storage_block_member(uni->name,
3957 interface_name,
3958 var_name))
3959 return 0;
3960
3961 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
3962 if (array_type->is_record() || array_type->is_array())
3963 return glsl_align(array_type->std140_size(row_major), 16);
3964 else
3965 return MAX2(array_type->std140_base_alignment(row_major), 16);
3966 } else {
3967 return array_type->std430_array_stride(row_major);
3968 }
3969 }
3970 return 0;
3971 }
3972
3973 static void
3974 calculate_array_size_and_stride(struct gl_shader_program *shProg,
3975 struct gl_uniform_storage *uni)
3976 {
3977 int block_index = uni->block_index;
3978 int array_size = -1;
3979 int array_stride = -1;
3980 char *var_name = get_top_level_name(uni->name);
3981 char *interface_name =
3982 get_top_level_name(uni->is_shader_storage ?
3983 shProg->ShaderStorageBlocks[block_index].Name :
3984 shProg->UniformBlocks[block_index].Name);
3985
3986 if (strcmp(var_name, interface_name) == 0) {
3987 /* Deal with instanced array of SSBOs */
3988 char *temp_name = get_var_name(uni->name);
3989 if (!temp_name) {
3990 linker_error(shProg, "Out of memory during linking.\n");
3991 goto write_top_level_array_size_and_stride;
3992 }
3993 free(var_name);
3994 var_name = get_top_level_name(temp_name);
3995 free(temp_name);
3996 if (!var_name) {
3997 linker_error(shProg, "Out of memory during linking.\n");
3998 goto write_top_level_array_size_and_stride;
3999 }
4000 }
4001
4002 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4003 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4004 if (sh == NULL)
4005 continue;
4006
4007 foreach_in_list(ir_instruction, node, sh->ir) {
4008 ir_variable *var = node->as_variable();
4009 if (!var || !var->get_interface_type() ||
4010 var->data.mode != ir_var_shader_storage)
4011 continue;
4012
4013 const glsl_type *interface = var->get_interface_type();
4014
4015 if (strcmp(interface_name, interface->name) != 0)
4016 continue;
4017
4018 for (unsigned i = 0; i < interface->length; i++) {
4019 const glsl_struct_field *field = &interface->fields.structure[i];
4020 if (strcmp(field->name, var_name) != 0)
4021 continue;
4022
4023 array_stride = get_array_stride(uni, interface, field,
4024 interface_name, var_name);
4025 array_size = get_array_size(uni, field, interface_name, var_name);
4026 goto write_top_level_array_size_and_stride;
4027 }
4028 }
4029 }
4030 write_top_level_array_size_and_stride:
4031 free(interface_name);
4032 free(var_name);
4033 uni->top_level_array_stride = array_stride;
4034 uni->top_level_array_size = array_size;
4035 }
4036
4037 /**
4038 * Builds up a list of program resources that point to existing
4039 * resource data.
4040 */
4041 void
4042 build_program_resource_list(struct gl_context *ctx,
4043 struct gl_shader_program *shProg)
4044 {
4045 /* Rebuild resource list. */
4046 if (shProg->ProgramResourceList) {
4047 ralloc_free(shProg->ProgramResourceList);
4048 shProg->ProgramResourceList = NULL;
4049 shProg->NumProgramResourceList = 0;
4050 }
4051
4052 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4053
4054 /* Determine first input and final output stage. These are used to
4055 * detect which variables should be enumerated in the resource list
4056 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4057 */
4058 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4059 if (!shProg->_LinkedShaders[i])
4060 continue;
4061 if (input_stage == MESA_SHADER_STAGES)
4062 input_stage = i;
4063 output_stage = i;
4064 }
4065
4066 /* Empty shader, no resources. */
4067 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4068 return;
4069
4070 struct set *resource_set = _mesa_set_create(NULL,
4071 _mesa_hash_pointer,
4072 _mesa_key_pointer_equal);
4073
4074 /* Program interface needs to expose varyings in case of SSO. */
4075 if (shProg->SeparateShader) {
4076 if (!add_packed_varyings(shProg, resource_set,
4077 input_stage, GL_PROGRAM_INPUT))
4078 return;
4079
4080 if (!add_packed_varyings(shProg, resource_set,
4081 output_stage, GL_PROGRAM_OUTPUT))
4082 return;
4083 }
4084
4085 if (!add_fragdata_arrays(shProg, resource_set))
4086 return;
4087
4088 /* Add inputs and outputs to the resource list. */
4089 if (!add_interface_variables(shProg, resource_set,
4090 input_stage, GL_PROGRAM_INPUT))
4091 return;
4092
4093 if (!add_interface_variables(shProg, resource_set,
4094 output_stage, GL_PROGRAM_OUTPUT))
4095 return;
4096
4097 /* Add transform feedback varyings. */
4098 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4099 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4100 if (!add_program_resource(shProg, resource_set,
4101 GL_TRANSFORM_FEEDBACK_VARYING,
4102 &shProg->LinkedTransformFeedback.Varyings[i],
4103 0))
4104 return;
4105 }
4106 }
4107
4108 /* Add transform feedback buffers. */
4109 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4110 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4111 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4112 if (!add_program_resource(shProg, resource_set,
4113 GL_TRANSFORM_FEEDBACK_BUFFER,
4114 &shProg->LinkedTransformFeedback.Buffers[i],
4115 0))
4116 return;
4117 }
4118 }
4119
4120 /* Add uniforms from uniform storage. */
4121 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4122 /* Do not add uniforms internally used by Mesa. */
4123 if (shProg->UniformStorage[i].hidden)
4124 continue;
4125
4126 uint8_t stageref =
4127 build_stageref(shProg, shProg->UniformStorage[i].name,
4128 ir_var_uniform);
4129
4130 /* Add stagereferences for uniforms in a uniform block. */
4131 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4132 int block_index = shProg->UniformStorage[i].block_index;
4133 if (block_index != -1) {
4134 stageref |= is_shader_storage ?
4135 shProg->ShaderStorageBlocks[block_index].stageref :
4136 shProg->UniformBlocks[block_index].stageref;
4137 }
4138
4139 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4140 if (!should_add_buffer_variable(shProg, type,
4141 shProg->UniformStorage[i].name))
4142 continue;
4143
4144 if (is_shader_storage) {
4145 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4146 }
4147
4148 if (!add_program_resource(shProg, resource_set, type,
4149 &shProg->UniformStorage[i], stageref))
4150 return;
4151 }
4152
4153 /* Add program uniform blocks. */
4154 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4155 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4156 &shProg->UniformBlocks[i], 0))
4157 return;
4158 }
4159
4160 /* Add program shader storage blocks. */
4161 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4162 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4163 &shProg->ShaderStorageBlocks[i], 0))
4164 return;
4165 }
4166
4167 /* Add atomic counter buffers. */
4168 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4169 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4170 &shProg->AtomicBuffers[i], 0))
4171 return;
4172 }
4173
4174 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4175 GLenum type;
4176 if (!shProg->UniformStorage[i].hidden)
4177 continue;
4178
4179 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4180 if (!shProg->UniformStorage[i].opaque[j].active ||
4181 !shProg->UniformStorage[i].type->is_subroutine())
4182 continue;
4183
4184 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4185 /* add shader subroutines */
4186 if (!add_program_resource(shProg, resource_set,
4187 type, &shProg->UniformStorage[i], 0))
4188 return;
4189 }
4190 }
4191
4192 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4193 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
4194 GLuint type;
4195
4196 if (!sh)
4197 continue;
4198
4199 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4200 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4201 if (!add_program_resource(shProg, resource_set,
4202 type, &sh->SubroutineFunctions[j], 0))
4203 return;
4204 }
4205 }
4206
4207 _mesa_set_destroy(resource_set, NULL);
4208 }
4209
4210 /**
4211 * This check is done to make sure we allow only constant expression
4212 * indexing and "constant-index-expression" (indexing with an expression
4213 * that includes loop induction variable).
4214 */
4215 static bool
4216 validate_sampler_array_indexing(struct gl_context *ctx,
4217 struct gl_shader_program *prog)
4218 {
4219 dynamic_sampler_array_indexing_visitor v;
4220 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4221 if (prog->_LinkedShaders[i] == NULL)
4222 continue;
4223
4224 bool no_dynamic_indexing =
4225 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4226
4227 /* Search for array derefs in shader. */
4228 v.run(prog->_LinkedShaders[i]->ir);
4229 if (v.uses_dynamic_sampler_array_indexing()) {
4230 const char *msg = "sampler arrays indexed with non-constant "
4231 "expressions is forbidden in GLSL %s %u";
4232 /* Backend has indicated that it has no dynamic indexing support. */
4233 if (no_dynamic_indexing) {
4234 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4235 return false;
4236 } else {
4237 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4238 }
4239 }
4240 }
4241 return true;
4242 }
4243
4244 static void
4245 link_assign_subroutine_types(struct gl_shader_program *prog)
4246 {
4247 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4248 gl_linked_shader *sh = prog->_LinkedShaders[i];
4249
4250 if (sh == NULL)
4251 continue;
4252
4253 sh->MaxSubroutineFunctionIndex = 0;
4254 foreach_in_list(ir_instruction, node, sh->ir) {
4255 ir_function *fn = node->as_function();
4256 if (!fn)
4257 continue;
4258
4259 if (fn->is_subroutine)
4260 sh->NumSubroutineUniformTypes++;
4261
4262 if (!fn->num_subroutine_types)
4263 continue;
4264
4265 /* these should have been calculated earlier. */
4266 assert(fn->subroutine_index != -1);
4267 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4268 linker_error(prog, "Too many subroutine functions declared.\n");
4269 return;
4270 }
4271 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4272 struct gl_subroutine_function,
4273 sh->NumSubroutineFunctions + 1);
4274 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4275 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4276 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4277 ralloc_array(sh, const struct glsl_type *,
4278 fn->num_subroutine_types);
4279
4280 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4281 * GLSL 4.5 spec:
4282 *
4283 * "Each subroutine with an index qualifier in the shader must be
4284 * given a unique index, otherwise a compile or link error will be
4285 * generated."
4286 */
4287 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4288 if (sh->SubroutineFunctions[j].index != -1 &&
4289 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4290 linker_error(prog, "each subroutine index qualifier in the "
4291 "shader must be unique\n");
4292 return;
4293 }
4294 }
4295 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4296 fn->subroutine_index;
4297
4298 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4299 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4300
4301 for (int j = 0; j < fn->num_subroutine_types; j++)
4302 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4303 sh->NumSubroutineFunctions++;
4304 }
4305 }
4306 }
4307
4308 static void
4309 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4310 {
4311 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4312
4313 foreach_in_list(ir_instruction, node, ir) {
4314 ir_variable *const var = node->as_variable();
4315
4316 if (var == NULL || var->data.mode != io_mode)
4317 continue;
4318
4319 /* Don't set always active on builtins that haven't been redeclared */
4320 if (var->data.how_declared == ir_var_declared_implicitly)
4321 continue;
4322
4323 var->data.always_active_io = true;
4324 }
4325 }
4326
4327 /**
4328 * When separate shader programs are enabled, only input/outputs between
4329 * the stages of a multi-stage separate program can be safely removed
4330 * from the shader interface. Other inputs/outputs must remain active.
4331 */
4332 static void
4333 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4334 {
4335 unsigned first, last;
4336 assert(prog->SeparateShader);
4337
4338 first = MESA_SHADER_STAGES;
4339 last = 0;
4340
4341 /* Determine first and last stage. Excluding the compute stage */
4342 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4343 if (!prog->_LinkedShaders[i])
4344 continue;
4345 if (first == MESA_SHADER_STAGES)
4346 first = i;
4347 last = i;
4348 }
4349
4350 if (first == MESA_SHADER_STAGES)
4351 return;
4352
4353 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4354 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4355 if (!sh)
4356 continue;
4357
4358 if (first == last) {
4359 /* For a single shader program only allow inputs to the vertex shader
4360 * and outputs from the fragment shader to be removed.
4361 */
4362 if (stage != MESA_SHADER_VERTEX)
4363 set_always_active_io(sh->ir, ir_var_shader_in);
4364 if (stage != MESA_SHADER_FRAGMENT)
4365 set_always_active_io(sh->ir, ir_var_shader_out);
4366 } else {
4367 /* For multi-stage separate shader programs only allow inputs and
4368 * outputs between the shader stages to be removed as well as inputs
4369 * to the vertex shader and outputs from the fragment shader.
4370 */
4371 if (stage == first && stage != MESA_SHADER_VERTEX)
4372 set_always_active_io(sh->ir, ir_var_shader_in);
4373 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4374 set_always_active_io(sh->ir, ir_var_shader_out);
4375 }
4376 }
4377 }
4378
4379 static bool
4380 link_varyings_and_uniforms(unsigned first, unsigned last,
4381 unsigned num_explicit_uniform_locs,
4382 struct gl_context *ctx,
4383 struct gl_shader_program *prog, void *mem_ctx)
4384 {
4385 bool has_xfb_qualifiers = false;
4386 unsigned num_tfeedback_decls = 0;
4387 char **varying_names = NULL;
4388 tfeedback_decl *tfeedback_decls = NULL;
4389
4390 /* Mark all generic shader inputs and outputs as unpaired. */
4391 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4392 if (prog->_LinkedShaders[i] != NULL) {
4393 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4394 }
4395 }
4396
4397 unsigned prev = first;
4398 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4399 if (prog->_LinkedShaders[i] == NULL)
4400 continue;
4401
4402 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4403 prog->_LinkedShaders[i]);
4404 prev = i;
4405 }
4406
4407 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4408 MESA_SHADER_VERTEX)) {
4409 return false;
4410 }
4411
4412 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4413 MESA_SHADER_FRAGMENT)) {
4414 return false;
4415 }
4416
4417 /* From the ARB_enhanced_layouts spec:
4418 *
4419 * "If the shader used to record output variables for transform feedback
4420 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4421 * qualifiers, the values specified by TransformFeedbackVaryings are
4422 * ignored, and the set of variables captured for transform feedback is
4423 * instead derived from the specified layout qualifiers."
4424 */
4425 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4426 /* Find last stage before fragment shader */
4427 if (prog->_LinkedShaders[i]) {
4428 has_xfb_qualifiers =
4429 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4430 &num_tfeedback_decls,
4431 &varying_names);
4432 break;
4433 }
4434 }
4435
4436 if (!has_xfb_qualifiers) {
4437 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4438 varying_names = prog->TransformFeedback.VaryingNames;
4439 }
4440
4441 if (num_tfeedback_decls != 0) {
4442 /* From GL_EXT_transform_feedback:
4443 * A program will fail to link if:
4444 *
4445 * * the <count> specified by TransformFeedbackVaryingsEXT is
4446 * non-zero, but the program object has no vertex or geometry
4447 * shader;
4448 */
4449 if (first >= MESA_SHADER_FRAGMENT) {
4450 linker_error(prog, "Transform feedback varyings specified, but "
4451 "no vertex, tessellation, or geometry shader is "
4452 "present.\n");
4453 return false;
4454 }
4455
4456 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4457 num_tfeedback_decls);
4458 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4459 varying_names, tfeedback_decls))
4460 return false;
4461 }
4462
4463 /* If there is no fragment shader we need to set transform feedback.
4464 *
4465 * For SSO we also need to assign output locations. We assign them here
4466 * because we need to do it for both single stage programs and multi stage
4467 * programs.
4468 */
4469 if (last < MESA_SHADER_FRAGMENT &&
4470 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4471 const uint64_t reserved_out_slots =
4472 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4473 if (!assign_varying_locations(ctx, mem_ctx, prog,
4474 prog->_LinkedShaders[last], NULL,
4475 num_tfeedback_decls, tfeedback_decls,
4476 reserved_out_slots))
4477 return false;
4478 }
4479
4480 if (last <= MESA_SHADER_FRAGMENT) {
4481 /* Remove unused varyings from the first/last stage unless SSO */
4482 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4483 prog->_LinkedShaders[first],
4484 ir_var_shader_in);
4485 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4486 prog->_LinkedShaders[last],
4487 ir_var_shader_out);
4488
4489 /* If the program is made up of only a single stage */
4490 if (first == last) {
4491 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4492
4493 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4494 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4495 tfeedback_decls);
4496
4497 if (prog->SeparateShader) {
4498 const uint64_t reserved_slots =
4499 reserved_varying_slot(sh, ir_var_shader_in);
4500
4501 /* Assign input locations for SSO, output locations are already
4502 * assigned.
4503 */
4504 if (!assign_varying_locations(ctx, mem_ctx, prog,
4505 NULL /* producer */,
4506 sh /* consumer */,
4507 0 /* num_tfeedback_decls */,
4508 NULL /* tfeedback_decls */,
4509 reserved_slots))
4510 return false;
4511 }
4512 } else {
4513 /* Linking the stages in the opposite order (from fragment to vertex)
4514 * ensures that inter-shader outputs written to in an earlier stage
4515 * are eliminated if they are (transitively) not used in a later
4516 * stage.
4517 */
4518 int next = last;
4519 for (int i = next - 1; i >= 0; i--) {
4520 if (prog->_LinkedShaders[i] == NULL && i != 0)
4521 continue;
4522
4523 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4524 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4525
4526 const uint64_t reserved_out_slots =
4527 reserved_varying_slot(sh_i, ir_var_shader_out);
4528 const uint64_t reserved_in_slots =
4529 reserved_varying_slot(sh_next, ir_var_shader_in);
4530
4531 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4532 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4533 tfeedback_decls);
4534
4535 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4536 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4537 tfeedback_decls,
4538 reserved_out_slots | reserved_in_slots))
4539 return false;
4540
4541 /* This must be done after all dead varyings are eliminated. */
4542 if (sh_i != NULL) {
4543 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4544 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4545 return false;
4546 }
4547 }
4548
4549 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4550 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4551 return false;
4552
4553 next = i;
4554 }
4555 }
4556 }
4557
4558 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4559 has_xfb_qualifiers))
4560 return false;
4561
4562 update_array_sizes(prog);
4563 link_assign_uniform_locations(prog, ctx, num_explicit_uniform_locs);
4564 link_assign_atomic_counter_resources(ctx, prog);
4565
4566 link_calculate_subroutine_compat(prog);
4567 check_resources(ctx, prog);
4568 check_subroutine_resources(prog);
4569 check_image_resources(ctx, prog);
4570 link_check_atomic_counter_resources(ctx, prog);
4571
4572 if (!prog->LinkStatus)
4573 return false;
4574
4575 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4576 if (prog->_LinkedShaders[i] == NULL)
4577 continue;
4578
4579 const struct gl_shader_compiler_options *options =
4580 &ctx->Const.ShaderCompilerOptions[i];
4581
4582 if (options->LowerBufferInterfaceBlocks)
4583 lower_ubo_reference(prog->_LinkedShaders[i],
4584 options->ClampBlockIndicesToArrayBounds);
4585
4586 if (options->LowerShaderSharedVariables)
4587 lower_shared_reference(prog->_LinkedShaders[i],
4588 &prog->Comp.SharedSize);
4589
4590 lower_vector_derefs(prog->_LinkedShaders[i]);
4591 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4592 }
4593
4594 return true;
4595 }
4596
4597 void
4598 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4599 {
4600 prog->LinkStatus = true; /* All error paths will set this to false */
4601 prog->Validated = false;
4602 prog->_Used = false;
4603
4604 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4605 *
4606 * "Linking can fail for a variety of reasons as specified in the
4607 * OpenGL Shading Language Specification, as well as any of the
4608 * following reasons:
4609 *
4610 * - No shader objects are attached to program."
4611 *
4612 * The Compatibility Profile specification does not list the error. In
4613 * Compatibility Profile missing shader stages are replaced by
4614 * fixed-function. This applies to the case where all stages are
4615 * missing.
4616 */
4617 if (prog->NumShaders == 0) {
4618 if (ctx->API != API_OPENGL_COMPAT)
4619 linker_error(prog, "no shaders attached to the program\n");
4620 return;
4621 }
4622
4623 unsigned int num_explicit_uniform_locs = 0;
4624
4625 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4626
4627 prog->ARB_fragment_coord_conventions_enable = false;
4628
4629 /* Separate the shaders into groups based on their type.
4630 */
4631 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4632 unsigned num_shaders[MESA_SHADER_STAGES];
4633
4634 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4635 shader_list[i] = (struct gl_shader **)
4636 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4637 num_shaders[i] = 0;
4638 }
4639
4640 unsigned min_version = UINT_MAX;
4641 unsigned max_version = 0;
4642 for (unsigned i = 0; i < prog->NumShaders; i++) {
4643 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4644 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4645
4646 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4647 linker_error(prog, "all shaders must use same shading "
4648 "language version\n");
4649 goto done;
4650 }
4651
4652 if (prog->Shaders[i]->info.ARB_fragment_coord_conventions_enable) {
4653 prog->ARB_fragment_coord_conventions_enable = true;
4654 }
4655
4656 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4657 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4658 num_shaders[shader_type]++;
4659 }
4660
4661 /* In desktop GLSL, different shader versions may be linked together. In
4662 * GLSL ES, all shader versions must be the same.
4663 */
4664 if (prog->Shaders[0]->IsES && min_version != max_version) {
4665 linker_error(prog, "all shaders must use same shading "
4666 "language version\n");
4667 goto done;
4668 }
4669
4670 prog->Version = max_version;
4671 prog->IsES = prog->Shaders[0]->IsES;
4672
4673 /* Some shaders have to be linked with some other shaders present.
4674 */
4675 if (!prog->SeparateShader) {
4676 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4677 num_shaders[MESA_SHADER_VERTEX] == 0) {
4678 linker_error(prog, "Geometry shader must be linked with "
4679 "vertex shader\n");
4680 goto done;
4681 }
4682 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4683 num_shaders[MESA_SHADER_VERTEX] == 0) {
4684 linker_error(prog, "Tessellation evaluation shader must be linked "
4685 "with vertex shader\n");
4686 goto done;
4687 }
4688 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4689 num_shaders[MESA_SHADER_VERTEX] == 0) {
4690 linker_error(prog, "Tessellation control shader must be linked with "
4691 "vertex shader\n");
4692 goto done;
4693 }
4694
4695 /* The spec is self-contradictory here. It allows linking without a tess
4696 * eval shader, but that can only be used with transform feedback and
4697 * rasterization disabled. However, transform feedback isn't allowed
4698 * with GL_PATCHES, so it can't be used.
4699 *
4700 * More investigation showed that the idea of transform feedback after
4701 * a tess control shader was dropped, because some hw vendors couldn't
4702 * support tessellation without a tess eval shader, but the linker
4703 * section wasn't updated to reflect that.
4704 *
4705 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4706 * spec bug.
4707 *
4708 * Do what's reasonable and always require a tess eval shader if a tess
4709 * control shader is present.
4710 */
4711 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4712 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4713 linker_error(prog, "Tessellation control shader must be linked with "
4714 "tessellation evaluation shader\n");
4715 goto done;
4716 }
4717 }
4718
4719 /* Compute shaders have additional restrictions. */
4720 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4721 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4722 linker_error(prog, "Compute shaders may not be linked with any other "
4723 "type of shader\n");
4724 }
4725
4726 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4727 if (prog->_LinkedShaders[i] != NULL) {
4728 _mesa_delete_linked_shader(ctx, prog->_LinkedShaders[i]);
4729 }
4730
4731 prog->_LinkedShaders[i] = NULL;
4732 }
4733
4734 /* Link all shaders for a particular stage and validate the result.
4735 */
4736 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4737 if (num_shaders[stage] > 0) {
4738 gl_linked_shader *const sh =
4739 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4740 num_shaders[stage]);
4741
4742 if (!prog->LinkStatus) {
4743 if (sh)
4744 _mesa_delete_linked_shader(ctx, sh);
4745 goto done;
4746 }
4747
4748 switch (stage) {
4749 case MESA_SHADER_VERTEX:
4750 validate_vertex_shader_executable(prog, sh, ctx);
4751 break;
4752 case MESA_SHADER_TESS_CTRL:
4753 /* nothing to be done */
4754 break;
4755 case MESA_SHADER_TESS_EVAL:
4756 validate_tess_eval_shader_executable(prog, sh, ctx);
4757 break;
4758 case MESA_SHADER_GEOMETRY:
4759 validate_geometry_shader_executable(prog, sh, ctx);
4760 break;
4761 case MESA_SHADER_FRAGMENT:
4762 validate_fragment_shader_executable(prog, sh);
4763 break;
4764 }
4765 if (!prog->LinkStatus) {
4766 if (sh)
4767 _mesa_delete_linked_shader(ctx, sh);
4768 goto done;
4769 }
4770
4771 prog->_LinkedShaders[stage] = sh;
4772 }
4773 }
4774
4775 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4776 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4777 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4778 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4779 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4780 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4781 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4782 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4783 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4784 } else {
4785 prog->LastClipDistanceArraySize = 0; /* Not used */
4786 prog->LastCullDistanceArraySize = 0; /* Not used */
4787 }
4788
4789 /* Here begins the inter-stage linking phase. Some initial validation is
4790 * performed, then locations are assigned for uniforms, attributes, and
4791 * varyings.
4792 */
4793 cross_validate_uniforms(prog);
4794 if (!prog->LinkStatus)
4795 goto done;
4796
4797 unsigned first, last, prev;
4798
4799 first = MESA_SHADER_STAGES;
4800 last = 0;
4801
4802 /* Determine first and last stage. */
4803 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4804 if (!prog->_LinkedShaders[i])
4805 continue;
4806 if (first == MESA_SHADER_STAGES)
4807 first = i;
4808 last = i;
4809 }
4810
4811 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4812 link_assign_subroutine_types(prog);
4813
4814 if (!prog->LinkStatus)
4815 goto done;
4816
4817 resize_tes_inputs(ctx, prog);
4818
4819 /* Validate the inputs of each stage with the output of the preceding
4820 * stage.
4821 */
4822 prev = first;
4823 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4824 if (prog->_LinkedShaders[i] == NULL)
4825 continue;
4826
4827 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4828 prog->_LinkedShaders[i]);
4829 if (!prog->LinkStatus)
4830 goto done;
4831
4832 cross_validate_outputs_to_inputs(prog,
4833 prog->_LinkedShaders[prev],
4834 prog->_LinkedShaders[i]);
4835 if (!prog->LinkStatus)
4836 goto done;
4837
4838 prev = i;
4839 }
4840
4841 /* Cross-validate uniform blocks between shader stages */
4842 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4843 if (!prog->LinkStatus)
4844 goto done;
4845
4846 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4847 if (prog->_LinkedShaders[i] != NULL)
4848 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4849 }
4850
4851 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4852 * it before optimization because we want most of the checks to get
4853 * dropped thanks to constant propagation.
4854 *
4855 * This rule also applies to GLSL ES 3.00.
4856 */
4857 if (max_version >= (prog->IsES ? 300 : 130)) {
4858 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4859 if (sh) {
4860 lower_discard_flow(sh->ir);
4861 }
4862 }
4863
4864 if (prog->SeparateShader)
4865 disable_varying_optimizations_for_sso(prog);
4866
4867 /* Process UBOs */
4868 if (!interstage_cross_validate_uniform_blocks(prog, false))
4869 goto done;
4870
4871 /* Process SSBOs */
4872 if (!interstage_cross_validate_uniform_blocks(prog, true))
4873 goto done;
4874
4875 /* Do common optimization before assigning storage for attributes,
4876 * uniforms, and varyings. Later optimization could possibly make
4877 * some of that unused.
4878 */
4879 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4880 if (prog->_LinkedShaders[i] == NULL)
4881 continue;
4882
4883 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4884 if (!prog->LinkStatus)
4885 goto done;
4886
4887 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4888 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4889 }
4890
4891 if (ctx->Const.LowerTessLevel) {
4892 lower_tess_level(prog->_LinkedShaders[i]);
4893 }
4894
4895 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4896 &ctx->Const.ShaderCompilerOptions[i],
4897 ctx->Const.NativeIntegers))
4898 ;
4899
4900 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
4901 propagate_invariance(prog->_LinkedShaders[i]->ir);
4902 }
4903
4904 /* Validation for special cases where we allow sampler array indexing
4905 * with loop induction variable. This check emits a warning or error
4906 * depending if backend can handle dynamic indexing.
4907 */
4908 if ((!prog->IsES && prog->Version < 130) ||
4909 (prog->IsES && prog->Version < 300)) {
4910 if (!validate_sampler_array_indexing(ctx, prog))
4911 goto done;
4912 }
4913
4914 /* Check and validate stream emissions in geometry shaders */
4915 validate_geometry_shader_emissions(ctx, prog);
4916
4917 store_fragdepth_layout(prog);
4918
4919 if(!link_varyings_and_uniforms(first, last, num_explicit_uniform_locs, ctx,
4920 prog, mem_ctx))
4921 goto done;
4922
4923 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4924 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4925 * anything about shader linking when one of the shaders (vertex or
4926 * fragment shader) is absent. So, the extension shouldn't change the
4927 * behavior specified in GLSL specification.
4928 *
4929 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4930 * "Linking can fail for a variety of reasons as specified in the
4931 * OpenGL ES Shading Language Specification, as well as any of the
4932 * following reasons:
4933 *
4934 * ...
4935 *
4936 * * program contains objects to form either a vertex shader or
4937 * fragment shader, and program is not separable, and does not
4938 * contain objects to form both a vertex shader and fragment
4939 * shader."
4940 *
4941 * However, the only scenario in 3.1+ where we don't require them both is
4942 * when we have a compute shader. For example:
4943 *
4944 * - No shaders is a link error.
4945 * - Geom or Tess without a Vertex shader is a link error which means we
4946 * always require a Vertex shader and hence a Fragment shader.
4947 * - Finally a Compute shader linked with any other stage is a link error.
4948 */
4949 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4950 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4951 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4952 linker_error(prog, "program lacks a vertex shader\n");
4953 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4954 linker_error(prog, "program lacks a fragment shader\n");
4955 }
4956 }
4957
4958 done:
4959 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4960 free(shader_list[i]);
4961 if (prog->_LinkedShaders[i] == NULL)
4962 continue;
4963
4964 /* Do a final validation step to make sure that the IR wasn't
4965 * invalidated by any modifications performed after intrastage linking.
4966 */
4967 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4968
4969 /* Retain any live IR, but trash the rest. */
4970 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4971
4972 /* The symbol table in the linked shaders may contain references to
4973 * variables that were removed (e.g., unused uniforms). Since it may
4974 * contain junk, there is no possible valid use. Delete it and set the
4975 * pointer to NULL.
4976 */
4977 delete prog->_LinkedShaders[i]->symbols;
4978 prog->_LinkedShaders[i]->symbols = NULL;
4979 }
4980
4981 ralloc_free(mem_ctx);
4982 }