35f1d8b6a8e8d78db97cc2985bf8d2f85ef72f24
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83
84 #include "main/shaderobj.h"
85 #include "main/enums.h"
86
87
88 namespace {
89
90 /**
91 * Visitor that determines whether or not a variable is ever written.
92 */
93 class find_assignment_visitor : public ir_hierarchical_visitor {
94 public:
95 find_assignment_visitor(const char *name)
96 : name(name), found(false)
97 {
98 /* empty */
99 }
100
101 virtual ir_visitor_status visit_enter(ir_assignment *ir)
102 {
103 ir_variable *const var = ir->lhs->variable_referenced();
104
105 if (strcmp(name, var->name) == 0) {
106 found = true;
107 return visit_stop;
108 }
109
110 return visit_continue_with_parent;
111 }
112
113 virtual ir_visitor_status visit_enter(ir_call *ir)
114 {
115 foreach_two_lists(formal_node, &ir->callee->parameters,
116 actual_node, &ir->actual_parameters) {
117 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
118 ir_variable *sig_param = (ir_variable *) formal_node;
119
120 if (sig_param->data.mode == ir_var_function_out ||
121 sig_param->data.mode == ir_var_function_inout) {
122 ir_variable *var = param_rval->variable_referenced();
123 if (var && strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128 }
129
130 if (ir->return_deref != NULL) {
131 ir_variable *const var = ir->return_deref->variable_referenced();
132
133 if (strcmp(name, var->name) == 0) {
134 found = true;
135 return visit_stop;
136 }
137 }
138
139 return visit_continue_with_parent;
140 }
141
142 bool variable_found()
143 {
144 return found;
145 }
146
147 private:
148 const char *name; /**< Find writes to a variable with this name. */
149 bool found; /**< Was a write to the variable found? */
150 };
151
152
153 /**
154 * Visitor that determines whether or not a variable is ever read.
155 */
156 class find_deref_visitor : public ir_hierarchical_visitor {
157 public:
158 find_deref_visitor(const char *name)
159 : name(name), found(false)
160 {
161 /* empty */
162 }
163
164 virtual ir_visitor_status visit(ir_dereference_variable *ir)
165 {
166 if (strcmp(this->name, ir->var->name) == 0) {
167 this->found = true;
168 return visit_stop;
169 }
170
171 return visit_continue;
172 }
173
174 bool variable_found() const
175 {
176 return this->found;
177 }
178
179 private:
180 const char *name; /**< Find writes to a variable with this name. */
181 bool found; /**< Was a write to the variable found? */
182 };
183
184
185 /**
186 * A visitor helper that provides methods for updating the types of
187 * ir_dereferences. Classes that update variable types (say, updating
188 * array sizes) will want to use this so that dereference types stay in sync.
189 */
190 class deref_type_updater : public ir_hierarchical_visitor {
191 public:
192 virtual ir_visitor_status visit(ir_dereference_variable *ir)
193 {
194 ir->type = ir->var->type;
195 return visit_continue;
196 }
197
198 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
199 {
200 const glsl_type *const vt = ir->array->type;
201 if (vt->is_array())
202 ir->type = vt->fields.array;
203 return visit_continue;
204 }
205
206 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
207 {
208 for (unsigned i = 0; i < ir->record->type->length; i++) {
209 const struct glsl_struct_field *field =
210 &ir->record->type->fields.structure[i];
211 if (strcmp(field->name, ir->field) == 0) {
212 ir->type = field->type;
213 break;
214 }
215 }
216 return visit_continue;
217 }
218 };
219
220
221 class array_resize_visitor : public deref_type_updater {
222 public:
223 unsigned num_vertices;
224 gl_shader_program *prog;
225 gl_shader_stage stage;
226
227 array_resize_visitor(unsigned num_vertices,
228 gl_shader_program *prog,
229 gl_shader_stage stage)
230 {
231 this->num_vertices = num_vertices;
232 this->prog = prog;
233 this->stage = stage;
234 }
235
236 virtual ~array_resize_visitor()
237 {
238 /* empty */
239 }
240
241 virtual ir_visitor_status visit(ir_variable *var)
242 {
243 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
244 var->data.patch)
245 return visit_continue;
246
247 unsigned size = var->type->length;
248
249 if (stage == MESA_SHADER_GEOMETRY) {
250 /* Generate a link error if the shader has declared this array with
251 * an incorrect size.
252 */
253 if (!var->data.implicit_sized_array &&
254 size && size != this->num_vertices) {
255 linker_error(this->prog, "size of array %s declared as %u, "
256 "but number of input vertices is %u\n",
257 var->name, size, this->num_vertices);
258 return visit_continue;
259 }
260
261 /* Generate a link error if the shader attempts to access an input
262 * array using an index too large for its actual size assigned at
263 * link time.
264 */
265 if (var->data.max_array_access >= (int)this->num_vertices) {
266 linker_error(this->prog, "%s shader accesses element %i of "
267 "%s, but only %i input vertices\n",
268 _mesa_shader_stage_to_string(this->stage),
269 var->data.max_array_access, var->name, this->num_vertices);
270 return visit_continue;
271 }
272 }
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280 };
281
282 /**
283 * Visitor that determines the highest stream id to which a (geometry) shader
284 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
285 */
286 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
287 public:
288 find_emit_vertex_visitor(int max_allowed)
289 : max_stream_allowed(max_allowed),
290 invalid_stream_id(0),
291 invalid_stream_id_from_emit_vertex(false),
292 end_primitive_found(false),
293 uses_non_zero_stream(false)
294 {
295 /* empty */
296 }
297
298 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
299 {
300 int stream_id = ir->stream_id();
301
302 if (stream_id < 0) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = true;
305 return visit_stop;
306 }
307
308 if (stream_id > max_stream_allowed) {
309 invalid_stream_id = stream_id;
310 invalid_stream_id_from_emit_vertex = true;
311 return visit_stop;
312 }
313
314 if (stream_id != 0)
315 uses_non_zero_stream = true;
316
317 return visit_continue;
318 }
319
320 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
321 {
322 end_primitive_found = true;
323
324 int stream_id = ir->stream_id();
325
326 if (stream_id < 0) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = false;
329 return visit_stop;
330 }
331
332 if (stream_id > max_stream_allowed) {
333 invalid_stream_id = stream_id;
334 invalid_stream_id_from_emit_vertex = false;
335 return visit_stop;
336 }
337
338 if (stream_id != 0)
339 uses_non_zero_stream = true;
340
341 return visit_continue;
342 }
343
344 bool error()
345 {
346 return invalid_stream_id != 0;
347 }
348
349 const char *error_func()
350 {
351 return invalid_stream_id_from_emit_vertex ?
352 "EmitStreamVertex" : "EndStreamPrimitive";
353 }
354
355 int error_stream()
356 {
357 return invalid_stream_id;
358 }
359
360 bool uses_streams()
361 {
362 return uses_non_zero_stream;
363 }
364
365 bool uses_end_primitive()
366 {
367 return end_primitive_found;
368 }
369
370 private:
371 int max_stream_allowed;
372 int invalid_stream_id;
373 bool invalid_stream_id_from_emit_vertex;
374 bool end_primitive_found;
375 bool uses_non_zero_stream;
376 };
377
378 /* Class that finds array derefs and check if indexes are dynamic. */
379 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
380 {
381 public:
382 dynamic_sampler_array_indexing_visitor() :
383 dynamic_sampler_array_indexing(false)
384 {
385 }
386
387 ir_visitor_status visit_enter(ir_dereference_array *ir)
388 {
389 if (!ir->variable_referenced())
390 return visit_continue;
391
392 if (!ir->variable_referenced()->type->contains_sampler())
393 return visit_continue;
394
395 if (!ir->array_index->constant_expression_value()) {
396 dynamic_sampler_array_indexing = true;
397 return visit_stop;
398 }
399 return visit_continue;
400 }
401
402 bool uses_dynamic_sampler_array_indexing()
403 {
404 return dynamic_sampler_array_indexing;
405 }
406
407 private:
408 bool dynamic_sampler_array_indexing;
409 };
410
411 } /* anonymous namespace */
412
413 void
414 linker_error(gl_shader_program *prog, const char *fmt, ...)
415 {
416 va_list ap;
417
418 ralloc_strcat(&prog->data->InfoLog, "error: ");
419 va_start(ap, fmt);
420 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
421 va_end(ap);
422
423 prog->data->LinkStatus = false;
424 }
425
426
427 void
428 linker_warning(gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list ap;
431
432 ralloc_strcat(&prog->data->InfoLog, "warning: ");
433 va_start(ap, fmt);
434 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
435 va_end(ap);
436
437 }
438
439
440 /**
441 * Given a string identifying a program resource, break it into a base name
442 * and an optional array index in square brackets.
443 *
444 * If an array index is present, \c out_base_name_end is set to point to the
445 * "[" that precedes the array index, and the array index itself is returned
446 * as a long.
447 *
448 * If no array index is present (or if the array index is negative or
449 * mal-formed), \c out_base_name_end, is set to point to the null terminator
450 * at the end of the input string, and -1 is returned.
451 *
452 * Only the final array index is parsed; if the string contains other array
453 * indices (or structure field accesses), they are left in the base name.
454 *
455 * No attempt is made to check that the base name is properly formed;
456 * typically the caller will look up the base name in a hash table, so
457 * ill-formed base names simply turn into hash table lookup failures.
458 */
459 long
460 parse_program_resource_name(const GLchar *name,
461 const GLchar **out_base_name_end)
462 {
463 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
464 *
465 * "When an integer array element or block instance number is part of
466 * the name string, it will be specified in decimal form without a "+"
467 * or "-" sign or any extra leading zeroes. Additionally, the name
468 * string will not include white space anywhere in the string."
469 */
470
471 const size_t len = strlen(name);
472 *out_base_name_end = name + len;
473
474 if (len == 0 || name[len-1] != ']')
475 return -1;
476
477 /* Walk backwards over the string looking for a non-digit character. This
478 * had better be the opening bracket for an array index.
479 *
480 * Initially, i specifies the location of the ']'. Since the string may
481 * contain only the ']' charcater, walk backwards very carefully.
482 */
483 unsigned i;
484 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
485 /* empty */ ;
486
487 if ((i == 0) || name[i-1] != '[')
488 return -1;
489
490 long array_index = strtol(&name[i], NULL, 10);
491 if (array_index < 0)
492 return -1;
493
494 /* Check for leading zero */
495 if (name[i] == '0' && name[i+1] != ']')
496 return -1;
497
498 *out_base_name_end = name + (i - 1);
499 return array_index;
500 }
501
502
503 void
504 link_invalidate_variable_locations(exec_list *ir)
505 {
506 foreach_in_list(ir_instruction, node, ir) {
507 ir_variable *const var = node->as_variable();
508
509 if (var == NULL)
510 continue;
511
512 /* Only assign locations for variables that lack an explicit location.
513 * Explicit locations are set for all built-in variables, generic vertex
514 * shader inputs (via layout(location=...)), and generic fragment shader
515 * outputs (also via layout(location=...)).
516 */
517 if (!var->data.explicit_location) {
518 var->data.location = -1;
519 var->data.location_frac = 0;
520 }
521
522 /* ir_variable::is_unmatched_generic_inout is used by the linker while
523 * connecting outputs from one stage to inputs of the next stage.
524 */
525 if (var->data.explicit_location &&
526 var->data.location < VARYING_SLOT_VAR0) {
527 var->data.is_unmatched_generic_inout = 0;
528 } else {
529 var->data.is_unmatched_generic_inout = 1;
530 }
531 }
532 }
533
534
535 /**
536 * Set clip_distance_array_size based and cull_distance_array_size on the given
537 * shader.
538 *
539 * Also check for errors based on incorrect usage of gl_ClipVertex and
540 * gl_ClipDistance and gl_CullDistance.
541 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
542 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
543 *
544 * Return false if an error was reported.
545 */
546 static void
547 analyze_clip_cull_usage(struct gl_shader_program *prog,
548 struct gl_linked_shader *shader,
549 struct gl_context *ctx,
550 GLuint *clip_distance_array_size,
551 GLuint *cull_distance_array_size)
552 {
553 *clip_distance_array_size = 0;
554 *cull_distance_array_size = 0;
555
556 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
557 /* From section 7.1 (Vertex Shader Special Variables) of the
558 * GLSL 1.30 spec:
559 *
560 * "It is an error for a shader to statically write both
561 * gl_ClipVertex and gl_ClipDistance."
562 *
563 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
564 * gl_ClipVertex nor gl_ClipDistance. However with
565 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
566 */
567 find_assignment_visitor clip_distance("gl_ClipDistance");
568 find_assignment_visitor cull_distance("gl_CullDistance");
569
570 clip_distance.run(shader->ir);
571 cull_distance.run(shader->ir);
572
573 /* From the ARB_cull_distance spec:
574 *
575 * It is a compile-time or link-time error for the set of shaders forming
576 * a program to statically read or write both gl_ClipVertex and either
577 * gl_ClipDistance or gl_CullDistance.
578 *
579 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
580 * gl_ClipVertex.
581 */
582 if (!prog->IsES) {
583 find_assignment_visitor clip_vertex("gl_ClipVertex");
584
585 clip_vertex.run(shader->ir);
586
587 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
588 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
589 "and `gl_ClipDistance'\n",
590 _mesa_shader_stage_to_string(shader->Stage));
591 return;
592 }
593 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
594 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
595 "and `gl_CullDistance'\n",
596 _mesa_shader_stage_to_string(shader->Stage));
597 return;
598 }
599 }
600
601 if (clip_distance.variable_found()) {
602 ir_variable *clip_distance_var =
603 shader->symbols->get_variable("gl_ClipDistance");
604 assert(clip_distance_var);
605 *clip_distance_array_size = clip_distance_var->type->length;
606 }
607 if (cull_distance.variable_found()) {
608 ir_variable *cull_distance_var =
609 shader->symbols->get_variable("gl_CullDistance");
610 assert(cull_distance_var);
611 *cull_distance_array_size = cull_distance_var->type->length;
612 }
613 /* From the ARB_cull_distance spec:
614 *
615 * It is a compile-time or link-time error for the set of shaders forming
616 * a program to have the sum of the sizes of the gl_ClipDistance and
617 * gl_CullDistance arrays to be larger than
618 * gl_MaxCombinedClipAndCullDistances.
619 */
620 if ((*clip_distance_array_size + *cull_distance_array_size) >
621 ctx->Const.MaxClipPlanes) {
622 linker_error(prog, "%s shader: the combined size of "
623 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
624 "be larger than "
625 "gl_MaxCombinedClipAndCullDistances (%u)",
626 _mesa_shader_stage_to_string(shader->Stage),
627 ctx->Const.MaxClipPlanes);
628 }
629 }
630 }
631
632
633 /**
634 * Verify that a vertex shader executable meets all semantic requirements.
635 *
636 * Also sets prog->Vert.ClipDistanceArraySize and
637 * prog->Vert.CullDistanceArraySize as a side effect.
638 *
639 * \param shader Vertex shader executable to be verified
640 */
641 void
642 validate_vertex_shader_executable(struct gl_shader_program *prog,
643 struct gl_linked_shader *shader,
644 struct gl_context *ctx)
645 {
646 if (shader == NULL)
647 return;
648
649 /* From the GLSL 1.10 spec, page 48:
650 *
651 * "The variable gl_Position is available only in the vertex
652 * language and is intended for writing the homogeneous vertex
653 * position. All executions of a well-formed vertex shader
654 * executable must write a value into this variable. [...] The
655 * variable gl_Position is available only in the vertex
656 * language and is intended for writing the homogeneous vertex
657 * position. All executions of a well-formed vertex shader
658 * executable must write a value into this variable."
659 *
660 * while in GLSL 1.40 this text is changed to:
661 *
662 * "The variable gl_Position is available only in the vertex
663 * language and is intended for writing the homogeneous vertex
664 * position. It can be written at any time during shader
665 * execution. It may also be read back by a vertex shader
666 * after being written. This value will be used by primitive
667 * assembly, clipping, culling, and other fixed functionality
668 * operations, if present, that operate on primitives after
669 * vertex processing has occurred. Its value is undefined if
670 * the vertex shader executable does not write gl_Position."
671 *
672 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
673 * gl_Position is not an error.
674 */
675 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
676 find_assignment_visitor find("gl_Position");
677 find.run(shader->ir);
678 if (!find.variable_found()) {
679 if (prog->IsES) {
680 linker_warning(prog,
681 "vertex shader does not write to `gl_Position'. "
682 "Its value is undefined. \n");
683 } else {
684 linker_error(prog,
685 "vertex shader does not write to `gl_Position'. \n");
686 }
687 return;
688 }
689 }
690
691 analyze_clip_cull_usage(prog, shader, ctx,
692 &prog->Vert.ClipDistanceArraySize,
693 &prog->Vert.CullDistanceArraySize);
694 }
695
696 void
697 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader,
699 struct gl_context *ctx)
700 {
701 if (shader == NULL)
702 return;
703
704 analyze_clip_cull_usage(prog, shader, ctx,
705 &prog->TessEval.ClipDistanceArraySize,
706 &prog->TessEval.CullDistanceArraySize);
707 }
708
709
710 /**
711 * Verify that a fragment shader executable meets all semantic requirements
712 *
713 * \param shader Fragment shader executable to be verified
714 */
715 void
716 validate_fragment_shader_executable(struct gl_shader_program *prog,
717 struct gl_linked_shader *shader)
718 {
719 if (shader == NULL)
720 return;
721
722 find_assignment_visitor frag_color("gl_FragColor");
723 find_assignment_visitor frag_data("gl_FragData");
724
725 frag_color.run(shader->ir);
726 frag_data.run(shader->ir);
727
728 if (frag_color.variable_found() && frag_data.variable_found()) {
729 linker_error(prog, "fragment shader writes to both "
730 "`gl_FragColor' and `gl_FragData'\n");
731 }
732 }
733
734 /**
735 * Verify that a geometry shader executable meets all semantic requirements
736 *
737 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
738 * prog->Geom.CullDistanceArraySize as a side effect.
739 *
740 * \param shader Geometry shader executable to be verified
741 */
742 void
743 validate_geometry_shader_executable(struct gl_shader_program *prog,
744 struct gl_linked_shader *shader,
745 struct gl_context *ctx)
746 {
747 if (shader == NULL)
748 return;
749
750 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
751 prog->Geom.VerticesIn = num_vertices;
752
753 analyze_clip_cull_usage(prog, shader, ctx,
754 &prog->Geom.ClipDistanceArraySize,
755 &prog->Geom.CullDistanceArraySize);
756 }
757
758 /**
759 * Check if geometry shaders emit to non-zero streams and do corresponding
760 * validations.
761 */
762 static void
763 validate_geometry_shader_emissions(struct gl_context *ctx,
764 struct gl_shader_program *prog)
765 {
766 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
767
768 if (sh != NULL) {
769 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
770 emit_vertex.run(sh->ir);
771 if (emit_vertex.error()) {
772 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
773 "stream parameter are in the range [0, %d].\n",
774 emit_vertex.error_func(),
775 emit_vertex.error_stream(),
776 ctx->Const.MaxVertexStreams - 1);
777 }
778 prog->Geom.UsesStreams = emit_vertex.uses_streams();
779 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
780
781 /* From the ARB_gpu_shader5 spec:
782 *
783 * "Multiple vertex streams are supported only if the output primitive
784 * type is declared to be "points". A program will fail to link if it
785 * contains a geometry shader calling EmitStreamVertex() or
786 * EndStreamPrimitive() if its output primitive type is not "points".
787 *
788 * However, in the same spec:
789 *
790 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
791 * with <stream> set to zero."
792 *
793 * And:
794 *
795 * "The function EndPrimitive() is equivalent to calling
796 * EndStreamPrimitive() with <stream> set to zero."
797 *
798 * Since we can call EmitVertex() and EndPrimitive() when we output
799 * primitives other than points, calling EmitStreamVertex(0) or
800 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
801 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
802 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
803 * stream.
804 */
805 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
806 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
807 "with n>0 requires point output\n");
808 }
809 }
810 }
811
812 bool
813 validate_intrastage_arrays(struct gl_shader_program *prog,
814 ir_variable *const var,
815 ir_variable *const existing)
816 {
817 /* Consider the types to be "the same" if both types are arrays
818 * of the same type and one of the arrays is implicitly sized.
819 * In addition, set the type of the linked variable to the
820 * explicitly sized array.
821 */
822 if (var->type->is_array() && existing->type->is_array()) {
823 if ((var->type->fields.array == existing->type->fields.array) &&
824 ((var->type->length == 0)|| (existing->type->length == 0))) {
825 if (var->type->length != 0) {
826 if ((int)var->type->length <= existing->data.max_array_access) {
827 linker_error(prog, "%s `%s' declared as type "
828 "`%s' but outermost dimension has an index"
829 " of `%i'\n",
830 mode_string(var),
831 var->name, var->type->name,
832 existing->data.max_array_access);
833 }
834 existing->type = var->type;
835 return true;
836 } else if (existing->type->length != 0) {
837 if((int)existing->type->length <= var->data.max_array_access &&
838 !existing->data.from_ssbo_unsized_array) {
839 linker_error(prog, "%s `%s' declared as type "
840 "`%s' but outermost dimension has an index"
841 " of `%i'\n",
842 mode_string(var),
843 var->name, existing->type->name,
844 var->data.max_array_access);
845 }
846 return true;
847 }
848 } else {
849 /* The arrays of structs could have different glsl_type pointers but
850 * they are actually the same type. Use record_compare() to check that.
851 */
852 if (existing->type->fields.array->is_record() &&
853 var->type->fields.array->is_record() &&
854 existing->type->fields.array->record_compare(var->type->fields.array))
855 return true;
856 }
857 }
858 return false;
859 }
860
861
862 /**
863 * Perform validation of global variables used across multiple shaders
864 */
865 void
866 cross_validate_globals(struct gl_shader_program *prog,
867 struct exec_list *ir, glsl_symbol_table *variables,
868 bool uniforms_only)
869 {
870 foreach_in_list(ir_instruction, node, ir) {
871 ir_variable *const var = node->as_variable();
872
873 if (var == NULL)
874 continue;
875
876 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
877 continue;
878
879 /* don't cross validate subroutine uniforms */
880 if (var->type->contains_subroutine())
881 continue;
882
883 /* Don't cross validate temporaries that are at global scope. These
884 * will eventually get pulled into the shaders 'main'.
885 */
886 if (var->data.mode == ir_var_temporary)
887 continue;
888
889 /* If a global with this name has already been seen, verify that the
890 * new instance has the same type. In addition, if the globals have
891 * initializers, the values of the initializers must be the same.
892 */
893 ir_variable *const existing = variables->get_variable(var->name);
894 if (existing != NULL) {
895 /* Check if types match. Interface blocks have some special
896 * rules so we handle those elsewhere.
897 */
898 if (var->type != existing->type &&
899 !var->is_interface_instance()) {
900 if (!validate_intrastage_arrays(prog, var, existing)) {
901 if (var->type->is_record() && existing->type->is_record()
902 && existing->type->record_compare(var->type)) {
903 existing->type = var->type;
904 } else {
905 /* If it is an unsized array in a Shader Storage Block,
906 * two different shaders can access to different elements.
907 * Because of that, they might be converted to different
908 * sized arrays, then check that they are compatible but
909 * ignore the array size.
910 */
911 if (!(var->data.mode == ir_var_shader_storage &&
912 var->data.from_ssbo_unsized_array &&
913 existing->data.mode == ir_var_shader_storage &&
914 existing->data.from_ssbo_unsized_array &&
915 var->type->gl_type == existing->type->gl_type)) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' and type `%s'\n",
918 mode_string(var),
919 var->name, var->type->name,
920 existing->type->name);
921 return;
922 }
923 }
924 }
925 }
926
927 if (var->data.explicit_location) {
928 if (existing->data.explicit_location
929 && (var->data.location != existing->data.location)) {
930 linker_error(prog, "explicit locations for %s "
931 "`%s' have differing values\n",
932 mode_string(var), var->name);
933 return;
934 }
935
936 if (var->data.location_frac != existing->data.location_frac) {
937 linker_error(prog, "explicit components for %s `%s' have "
938 "differing values\n", mode_string(var), var->name);
939 return;
940 }
941
942 existing->data.location = var->data.location;
943 existing->data.explicit_location = true;
944 } else {
945 /* Check if uniform with implicit location was marked explicit
946 * by earlier shader stage. If so, mark it explicit in this stage
947 * too to make sure later processing does not treat it as
948 * implicit one.
949 */
950 if (existing->data.explicit_location) {
951 var->data.location = existing->data.location;
952 var->data.explicit_location = true;
953 }
954 }
955
956 /* From the GLSL 4.20 specification:
957 * "A link error will result if two compilation units in a program
958 * specify different integer-constant bindings for the same
959 * opaque-uniform name. However, it is not an error to specify a
960 * binding on some but not all declarations for the same name"
961 */
962 if (var->data.explicit_binding) {
963 if (existing->data.explicit_binding &&
964 var->data.binding != existing->data.binding) {
965 linker_error(prog, "explicit bindings for %s "
966 "`%s' have differing values\n",
967 mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.binding = var->data.binding;
972 existing->data.explicit_binding = true;
973 }
974
975 if (var->type->contains_atomic() &&
976 var->data.offset != existing->data.offset) {
977 linker_error(prog, "offset specifications for %s "
978 "`%s' have differing values\n",
979 mode_string(var), var->name);
980 return;
981 }
982
983 /* Validate layout qualifiers for gl_FragDepth.
984 *
985 * From the AMD/ARB_conservative_depth specs:
986 *
987 * "If gl_FragDepth is redeclared in any fragment shader in a
988 * program, it must be redeclared in all fragment shaders in
989 * that program that have static assignments to
990 * gl_FragDepth. All redeclarations of gl_FragDepth in all
991 * fragment shaders in a single program must have the same set
992 * of qualifiers."
993 */
994 if (strcmp(var->name, "gl_FragDepth") == 0) {
995 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
996 bool layout_differs =
997 var->data.depth_layout != existing->data.depth_layout;
998
999 if (layout_declared && layout_differs) {
1000 linker_error(prog,
1001 "All redeclarations of gl_FragDepth in all "
1002 "fragment shaders in a single program must have "
1003 "the same set of qualifiers.\n");
1004 }
1005
1006 if (var->data.used && layout_differs) {
1007 linker_error(prog,
1008 "If gl_FragDepth is redeclared with a layout "
1009 "qualifier in any fragment shader, it must be "
1010 "redeclared with the same layout qualifier in "
1011 "all fragment shaders that have assignments to "
1012 "gl_FragDepth\n");
1013 }
1014 }
1015
1016 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1017 *
1018 * "If a shared global has multiple initializers, the
1019 * initializers must all be constant expressions, and they
1020 * must all have the same value. Otherwise, a link error will
1021 * result. (A shared global having only one initializer does
1022 * not require that initializer to be a constant expression.)"
1023 *
1024 * Previous to 4.20 the GLSL spec simply said that initializers
1025 * must have the same value. In this case of non-constant
1026 * initializers, this was impossible to determine. As a result,
1027 * no vendor actually implemented that behavior. The 4.20
1028 * behavior matches the implemented behavior of at least one other
1029 * vendor, so we'll implement that for all GLSL versions.
1030 */
1031 if (var->constant_initializer != NULL) {
1032 if (existing->constant_initializer != NULL) {
1033 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1034 linker_error(prog, "initializers for %s "
1035 "`%s' have differing values\n",
1036 mode_string(var), var->name);
1037 return;
1038 }
1039 } else {
1040 /* If the first-seen instance of a particular uniform did
1041 * not have an initializer but a later instance does,
1042 * replace the former with the later.
1043 */
1044 variables->replace_variable(existing->name, var);
1045 }
1046 }
1047
1048 if (var->data.has_initializer) {
1049 if (existing->data.has_initializer
1050 && (var->constant_initializer == NULL
1051 || existing->constant_initializer == NULL)) {
1052 linker_error(prog,
1053 "shared global variable `%s' has multiple "
1054 "non-constant initializers.\n",
1055 var->name);
1056 return;
1057 }
1058 }
1059
1060 if (existing->data.invariant != var->data.invariant) {
1061 linker_error(prog, "declarations for %s `%s' have "
1062 "mismatching invariant qualifiers\n",
1063 mode_string(var), var->name);
1064 return;
1065 }
1066 if (existing->data.centroid != var->data.centroid) {
1067 linker_error(prog, "declarations for %s `%s' have "
1068 "mismatching centroid qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 if (existing->data.sample != var->data.sample) {
1073 linker_error(prog, "declarations for %s `%s` have "
1074 "mismatching sample qualifiers\n",
1075 mode_string(var), var->name);
1076 return;
1077 }
1078 if (existing->data.image_format != var->data.image_format) {
1079 linker_error(prog, "declarations for %s `%s` have "
1080 "mismatching image format qualifiers\n",
1081 mode_string(var), var->name);
1082 return;
1083 }
1084
1085 /* Only in GLSL ES 3.10, the precision qualifier should not match
1086 * between block members defined in matched block names within a
1087 * shader interface.
1088 *
1089 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1090 * member should match.
1091 */
1092 if (prog->IsES && (prog->data->Version != 310 ||
1093 !var->get_interface_type()) &&
1094 existing->data.precision != var->data.precision) {
1095 linker_error(prog, "declarations for %s `%s` have "
1096 "mismatching precision qualifiers\n",
1097 mode_string(var), var->name);
1098 return;
1099 }
1100 } else
1101 variables->add_variable(var);
1102 }
1103 }
1104
1105
1106 /**
1107 * Perform validation of uniforms used across multiple shader stages
1108 */
1109 void
1110 cross_validate_uniforms(struct gl_shader_program *prog)
1111 {
1112 glsl_symbol_table variables;
1113 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1114 if (prog->_LinkedShaders[i] == NULL)
1115 continue;
1116
1117 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1118 true);
1119 }
1120 }
1121
1122 /**
1123 * Accumulates the array of buffer blocks and checks that all definitions of
1124 * blocks agree on their contents.
1125 */
1126 static bool
1127 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1128 bool validate_ssbo)
1129 {
1130 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1131 struct gl_uniform_block *blks = NULL;
1132 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1133 &prog->data->NumUniformBlocks;
1134
1135 unsigned max_num_buffer_blocks = 0;
1136 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1137 if (prog->_LinkedShaders[i]) {
1138 if (validate_ssbo) {
1139 max_num_buffer_blocks +=
1140 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1141 } else {
1142 max_num_buffer_blocks +=
1143 prog->_LinkedShaders[i]->Program->info.num_ubos;
1144 }
1145 }
1146 }
1147
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1150
1151 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1152 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1153 InterfaceBlockStageIndex[i][j] = -1;
1154
1155 if (sh == NULL)
1156 continue;
1157
1158 unsigned sh_num_blocks;
1159 struct gl_uniform_block **sh_blks;
1160 if (validate_ssbo) {
1161 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1162 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1163 } else {
1164 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1165 sh_blks = sh->Program->sh.UniformBlocks;
1166 }
1167
1168 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1169 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1170 sh_blks[j]);
1171
1172 if (index == -1) {
1173 linker_error(prog, "buffer block `%s' has mismatching "
1174 "definitions\n", sh_blks[j]->Name);
1175
1176 for (unsigned k = 0; k <= i; k++) {
1177 delete[] InterfaceBlockStageIndex[k];
1178 }
1179 return false;
1180 }
1181
1182 InterfaceBlockStageIndex[i][index] = j;
1183 }
1184 }
1185
1186 /* Update per stage block pointers to point to the program list.
1187 * FIXME: We should be able to free the per stage blocks here.
1188 */
1189 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1190 for (unsigned j = 0; j < *num_blks; j++) {
1191 int stage_index = InterfaceBlockStageIndex[i][j];
1192
1193 if (stage_index != -1) {
1194 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1195
1196 struct gl_uniform_block **sh_blks = validate_ssbo ?
1197 sh->Program->sh.ShaderStorageBlocks :
1198 sh->Program->sh.UniformBlocks;
1199
1200 blks[j].stageref |= sh_blks[stage_index]->stageref;
1201 sh_blks[stage_index] = &blks[j];
1202 }
1203 }
1204 }
1205
1206 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1207 delete[] InterfaceBlockStageIndex[i];
1208 }
1209
1210 if (validate_ssbo)
1211 prog->data->ShaderStorageBlocks = blks;
1212 else
1213 prog->data->UniformBlocks = blks;
1214
1215 return true;
1216 }
1217
1218
1219 /**
1220 * Populates a shaders symbol table with all global declarations
1221 */
1222 static void
1223 populate_symbol_table(gl_linked_shader *sh)
1224 {
1225 sh->symbols = new(sh) glsl_symbol_table;
1226
1227 foreach_in_list(ir_instruction, inst, sh->ir) {
1228 ir_variable *var;
1229 ir_function *func;
1230
1231 if ((func = inst->as_function()) != NULL) {
1232 sh->symbols->add_function(func);
1233 } else if ((var = inst->as_variable()) != NULL) {
1234 if (var->data.mode != ir_var_temporary)
1235 sh->symbols->add_variable(var);
1236 }
1237 }
1238 }
1239
1240
1241 /**
1242 * Remap variables referenced in an instruction tree
1243 *
1244 * This is used when instruction trees are cloned from one shader and placed in
1245 * another. These trees will contain references to \c ir_variable nodes that
1246 * do not exist in the target shader. This function finds these \c ir_variable
1247 * references and replaces the references with matching variables in the target
1248 * shader.
1249 *
1250 * If there is no matching variable in the target shader, a clone of the
1251 * \c ir_variable is made and added to the target shader. The new variable is
1252 * added to \b both the instruction stream and the symbol table.
1253 *
1254 * \param inst IR tree that is to be processed.
1255 * \param symbols Symbol table containing global scope symbols in the
1256 * linked shader.
1257 * \param instructions Instruction stream where new variable declarations
1258 * should be added.
1259 */
1260 void
1261 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1262 hash_table *temps)
1263 {
1264 class remap_visitor : public ir_hierarchical_visitor {
1265 public:
1266 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1267 {
1268 this->target = target;
1269 this->symbols = target->symbols;
1270 this->instructions = target->ir;
1271 this->temps = temps;
1272 }
1273
1274 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1275 {
1276 if (ir->var->data.mode == ir_var_temporary) {
1277 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1278 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1279
1280 assert(var != NULL);
1281 ir->var = var;
1282 return visit_continue;
1283 }
1284
1285 ir_variable *const existing =
1286 this->symbols->get_variable(ir->var->name);
1287 if (existing != NULL)
1288 ir->var = existing;
1289 else {
1290 ir_variable *copy = ir->var->clone(this->target, NULL);
1291
1292 this->symbols->add_variable(copy);
1293 this->instructions->push_head(copy);
1294 ir->var = copy;
1295 }
1296
1297 return visit_continue;
1298 }
1299
1300 private:
1301 struct gl_linked_shader *target;
1302 glsl_symbol_table *symbols;
1303 exec_list *instructions;
1304 hash_table *temps;
1305 };
1306
1307 remap_visitor v(target, temps);
1308
1309 inst->accept(&v);
1310 }
1311
1312
1313 /**
1314 * Move non-declarations from one instruction stream to another
1315 *
1316 * The intended usage pattern of this function is to pass the pointer to the
1317 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1318 * pointer) for \c last and \c false for \c make_copies on the first
1319 * call. Successive calls pass the return value of the previous call for
1320 * \c last and \c true for \c make_copies.
1321 *
1322 * \param instructions Source instruction stream
1323 * \param last Instruction after which new instructions should be
1324 * inserted in the target instruction stream
1325 * \param make_copies Flag selecting whether instructions in \c instructions
1326 * should be copied (via \c ir_instruction::clone) into the
1327 * target list or moved.
1328 *
1329 * \return
1330 * The new "last" instruction in the target instruction stream. This pointer
1331 * is suitable for use as the \c last parameter of a later call to this
1332 * function.
1333 */
1334 exec_node *
1335 move_non_declarations(exec_list *instructions, exec_node *last,
1336 bool make_copies, gl_linked_shader *target)
1337 {
1338 hash_table *temps = NULL;
1339
1340 if (make_copies)
1341 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1342 _mesa_key_pointer_equal);
1343
1344 foreach_in_list_safe(ir_instruction, inst, instructions) {
1345 if (inst->as_function())
1346 continue;
1347
1348 ir_variable *var = inst->as_variable();
1349 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1350 continue;
1351
1352 assert(inst->as_assignment()
1353 || inst->as_call()
1354 || inst->as_if() /* for initializers with the ?: operator */
1355 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1356
1357 if (make_copies) {
1358 inst = inst->clone(target, NULL);
1359
1360 if (var != NULL)
1361 _mesa_hash_table_insert(temps, var, inst);
1362 else
1363 remap_variables(inst, target, temps);
1364 } else {
1365 inst->remove();
1366 }
1367
1368 last->insert_after(inst);
1369 last = inst;
1370 }
1371
1372 if (make_copies)
1373 _mesa_hash_table_destroy(temps, NULL);
1374
1375 return last;
1376 }
1377
1378
1379 /**
1380 * This class is only used in link_intrastage_shaders() below but declaring
1381 * it inside that function leads to compiler warnings with some versions of
1382 * gcc.
1383 */
1384 class array_sizing_visitor : public deref_type_updater {
1385 public:
1386 array_sizing_visitor()
1387 : mem_ctx(ralloc_context(NULL)),
1388 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1389 _mesa_key_pointer_equal))
1390 {
1391 }
1392
1393 ~array_sizing_visitor()
1394 {
1395 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1396 ralloc_free(this->mem_ctx);
1397 }
1398
1399 virtual ir_visitor_status visit(ir_variable *var)
1400 {
1401 const glsl_type *type_without_array;
1402 bool implicit_sized_array = var->data.implicit_sized_array;
1403 fixup_type(&var->type, var->data.max_array_access,
1404 var->data.from_ssbo_unsized_array,
1405 &implicit_sized_array);
1406 var->data.implicit_sized_array = implicit_sized_array;
1407 type_without_array = var->type->without_array();
1408 if (var->type->is_interface()) {
1409 if (interface_contains_unsized_arrays(var->type)) {
1410 const glsl_type *new_type =
1411 resize_interface_members(var->type,
1412 var->get_max_ifc_array_access(),
1413 var->is_in_shader_storage_block());
1414 var->type = new_type;
1415 var->change_interface_type(new_type);
1416 }
1417 } else if (type_without_array->is_interface()) {
1418 if (interface_contains_unsized_arrays(type_without_array)) {
1419 const glsl_type *new_type =
1420 resize_interface_members(type_without_array,
1421 var->get_max_ifc_array_access(),
1422 var->is_in_shader_storage_block());
1423 var->change_interface_type(new_type);
1424 var->type = update_interface_members_array(var->type, new_type);
1425 }
1426 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1427 /* Store a pointer to the variable in the unnamed_interfaces
1428 * hashtable.
1429 */
1430 hash_entry *entry =
1431 _mesa_hash_table_search(this->unnamed_interfaces,
1432 ifc_type);
1433
1434 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1435
1436 if (interface_vars == NULL) {
1437 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1438 ifc_type->length);
1439 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1440 interface_vars);
1441 }
1442 unsigned index = ifc_type->field_index(var->name);
1443 assert(index < ifc_type->length);
1444 assert(interface_vars[index] == NULL);
1445 interface_vars[index] = var;
1446 }
1447 return visit_continue;
1448 }
1449
1450 /**
1451 * For each unnamed interface block that was discovered while running the
1452 * visitor, adjust the interface type to reflect the newly assigned array
1453 * sizes, and fix up the ir_variable nodes to point to the new interface
1454 * type.
1455 */
1456 void fixup_unnamed_interface_types()
1457 {
1458 hash_table_call_foreach(this->unnamed_interfaces,
1459 fixup_unnamed_interface_type, NULL);
1460 }
1461
1462 private:
1463 /**
1464 * If the type pointed to by \c type represents an unsized array, replace
1465 * it with a sized array whose size is determined by max_array_access.
1466 */
1467 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1468 bool from_ssbo_unsized_array, bool *implicit_sized)
1469 {
1470 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1471 *type = glsl_type::get_array_instance((*type)->fields.array,
1472 max_array_access + 1);
1473 *implicit_sized = true;
1474 assert(*type != NULL);
1475 }
1476 }
1477
1478 static const glsl_type *
1479 update_interface_members_array(const glsl_type *type,
1480 const glsl_type *new_interface_type)
1481 {
1482 const glsl_type *element_type = type->fields.array;
1483 if (element_type->is_array()) {
1484 const glsl_type *new_array_type =
1485 update_interface_members_array(element_type, new_interface_type);
1486 return glsl_type::get_array_instance(new_array_type, type->length);
1487 } else {
1488 return glsl_type::get_array_instance(new_interface_type,
1489 type->length);
1490 }
1491 }
1492
1493 /**
1494 * Determine whether the given interface type contains unsized arrays (if
1495 * it doesn't, array_sizing_visitor doesn't need to process it).
1496 */
1497 static bool interface_contains_unsized_arrays(const glsl_type *type)
1498 {
1499 for (unsigned i = 0; i < type->length; i++) {
1500 const glsl_type *elem_type = type->fields.structure[i].type;
1501 if (elem_type->is_unsized_array())
1502 return true;
1503 }
1504 return false;
1505 }
1506
1507 /**
1508 * Create a new interface type based on the given type, with unsized arrays
1509 * replaced by sized arrays whose size is determined by
1510 * max_ifc_array_access.
1511 */
1512 static const glsl_type *
1513 resize_interface_members(const glsl_type *type,
1514 const int *max_ifc_array_access,
1515 bool is_ssbo)
1516 {
1517 unsigned num_fields = type->length;
1518 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1519 memcpy(fields, type->fields.structure,
1520 num_fields * sizeof(*fields));
1521 for (unsigned i = 0; i < num_fields; i++) {
1522 bool implicit_sized_array = fields[i].implicit_sized_array;
1523 /* If SSBO last member is unsized array, we don't replace it by a sized
1524 * array.
1525 */
1526 if (is_ssbo && i == (num_fields - 1))
1527 fixup_type(&fields[i].type, max_ifc_array_access[i],
1528 true, &implicit_sized_array);
1529 else
1530 fixup_type(&fields[i].type, max_ifc_array_access[i],
1531 false, &implicit_sized_array);
1532 fields[i].implicit_sized_array = implicit_sized_array;
1533 }
1534 glsl_interface_packing packing =
1535 (glsl_interface_packing) type->interface_packing;
1536 bool row_major = (bool) type->interface_row_major;
1537 const glsl_type *new_ifc_type =
1538 glsl_type::get_interface_instance(fields, num_fields,
1539 packing, row_major, type->name);
1540 delete [] fields;
1541 return new_ifc_type;
1542 }
1543
1544 static void fixup_unnamed_interface_type(const void *key, void *data,
1545 void *)
1546 {
1547 const glsl_type *ifc_type = (const glsl_type *) key;
1548 ir_variable **interface_vars = (ir_variable **) data;
1549 unsigned num_fields = ifc_type->length;
1550 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1551 memcpy(fields, ifc_type->fields.structure,
1552 num_fields * sizeof(*fields));
1553 bool interface_type_changed = false;
1554 for (unsigned i = 0; i < num_fields; i++) {
1555 if (interface_vars[i] != NULL &&
1556 fields[i].type != interface_vars[i]->type) {
1557 fields[i].type = interface_vars[i]->type;
1558 interface_type_changed = true;
1559 }
1560 }
1561 if (!interface_type_changed) {
1562 delete [] fields;
1563 return;
1564 }
1565 glsl_interface_packing packing =
1566 (glsl_interface_packing) ifc_type->interface_packing;
1567 bool row_major = (bool) ifc_type->interface_row_major;
1568 const glsl_type *new_ifc_type =
1569 glsl_type::get_interface_instance(fields, num_fields, packing,
1570 row_major, ifc_type->name);
1571 delete [] fields;
1572 for (unsigned i = 0; i < num_fields; i++) {
1573 if (interface_vars[i] != NULL)
1574 interface_vars[i]->change_interface_type(new_ifc_type);
1575 }
1576 }
1577
1578 /**
1579 * Memory context used to allocate the data in \c unnamed_interfaces.
1580 */
1581 void *mem_ctx;
1582
1583 /**
1584 * Hash table from const glsl_type * to an array of ir_variable *'s
1585 * pointing to the ir_variables constituting each unnamed interface block.
1586 */
1587 hash_table *unnamed_interfaces;
1588 };
1589
1590 /**
1591 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1592 * for later use.
1593 */
1594 static void
1595 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1596 struct gl_shader_program *prog,
1597 struct gl_linked_shader *linked_shader,
1598 struct gl_shader **shader_list,
1599 unsigned num_shaders)
1600 {
1601 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1602 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1603 }
1604
1605 for (unsigned i = 0; i < num_shaders; i++) {
1606 struct gl_shader *shader = shader_list[i];
1607
1608 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1609 if (shader->info.TransformFeedback.BufferStride[j]) {
1610 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1611 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1612 linked_shader->info.TransformFeedback.BufferStride[j] !=
1613 shader->info.TransformFeedback.BufferStride[j]) {
1614 linker_error(prog,
1615 "intrastage shaders defined with conflicting "
1616 "xfb_stride for buffer %d (%d and %d)\n", j,
1617 linked_shader->
1618 info.TransformFeedback.BufferStride[j],
1619 shader->info.TransformFeedback.BufferStride[j]);
1620 return;
1621 }
1622
1623 if (shader->info.TransformFeedback.BufferStride[j])
1624 linked_shader->info.TransformFeedback.BufferStride[j] =
1625 shader->info.TransformFeedback.BufferStride[j];
1626 }
1627 }
1628 }
1629
1630 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1631 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1632 prog->TransformFeedback.BufferStride[j] =
1633 linked_shader->info.TransformFeedback.BufferStride[j];
1634
1635 /* We will validate doubles at a later stage */
1636 if (prog->TransformFeedback.BufferStride[j] % 4) {
1637 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1638 "multiple of 4 or if its applied to a type that is "
1639 "or contains a double a multiple of 8.",
1640 prog->TransformFeedback.BufferStride[j]);
1641 return;
1642 }
1643
1644 if (prog->TransformFeedback.BufferStride[j] / 4 >
1645 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1646 linker_error(prog,
1647 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1648 "limit has been exceeded.");
1649 return;
1650 }
1651 }
1652 }
1653 }
1654
1655 /**
1656 * Performs the cross-validation of tessellation control shader vertices and
1657 * layout qualifiers for the attached tessellation control shaders,
1658 * and propagates them to the linked TCS and linked shader program.
1659 */
1660 static void
1661 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1662 struct gl_program *gl_prog,
1663 struct gl_shader **shader_list,
1664 unsigned num_shaders)
1665 {
1666 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1667 return;
1668
1669 gl_prog->info.tess.tcs_vertices_out = 0;
1670
1671 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1672 *
1673 * "All tessellation control shader layout declarations in a program
1674 * must specify the same output patch vertex count. There must be at
1675 * least one layout qualifier specifying an output patch vertex count
1676 * in any program containing tessellation control shaders; however,
1677 * such a declaration is not required in all tessellation control
1678 * shaders."
1679 */
1680
1681 for (unsigned i = 0; i < num_shaders; i++) {
1682 struct gl_shader *shader = shader_list[i];
1683
1684 if (shader->info.TessCtrl.VerticesOut != 0) {
1685 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1686 gl_prog->info.tess.tcs_vertices_out !=
1687 (unsigned) shader->info.TessCtrl.VerticesOut) {
1688 linker_error(prog, "tessellation control shader defined with "
1689 "conflicting output vertex count (%d and %d)\n",
1690 gl_prog->info.tess.tcs_vertices_out,
1691 shader->info.TessCtrl.VerticesOut);
1692 return;
1693 }
1694 gl_prog->info.tess.tcs_vertices_out =
1695 shader->info.TessCtrl.VerticesOut;
1696 }
1697 }
1698
1699 /* Just do the intrastage -> interstage propagation right now,
1700 * since we already know we're in the right type of shader program
1701 * for doing it.
1702 */
1703 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1704 linker_error(prog, "tessellation control shader didn't declare "
1705 "vertices out layout qualifier\n");
1706 return;
1707 }
1708 }
1709
1710
1711 /**
1712 * Performs the cross-validation of tessellation evaluation shader
1713 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1714 * for the attached tessellation evaluation shaders, and propagates them
1715 * to the linked TES and linked shader program.
1716 */
1717 static void
1718 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1719 struct gl_linked_shader *linked_shader,
1720 struct gl_shader **shader_list,
1721 unsigned num_shaders)
1722 {
1723 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1724 linked_shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
1725 linked_shader->info.TessEval.VertexOrder = 0;
1726 linked_shader->info.TessEval.PointMode = -1;
1727
1728 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1729 return;
1730
1731 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1732 *
1733 * "At least one tessellation evaluation shader (compilation unit) in
1734 * a program must declare a primitive mode in its input layout.
1735 * Declaration vertex spacing, ordering, and point mode identifiers is
1736 * optional. It is not required that all tessellation evaluation
1737 * shaders in a program declare a primitive mode. If spacing or
1738 * vertex ordering declarations are omitted, the tessellation
1739 * primitive generator will use equal spacing or counter-clockwise
1740 * vertex ordering, respectively. If a point mode declaration is
1741 * omitted, the tessellation primitive generator will produce lines or
1742 * triangles according to the primitive mode."
1743 */
1744
1745 for (unsigned i = 0; i < num_shaders; i++) {
1746 struct gl_shader *shader = shader_list[i];
1747
1748 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1749 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1750 linked_shader->info.TessEval.PrimitiveMode !=
1751 shader->info.TessEval.PrimitiveMode) {
1752 linker_error(prog, "tessellation evaluation shader defined with "
1753 "conflicting input primitive modes.\n");
1754 return;
1755 }
1756 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1757 }
1758
1759 if (shader->info.TessEval.Spacing != 0) {
1760 if (linked_shader->info.TessEval.Spacing != 0 &&
1761 linked_shader->info.TessEval.Spacing !=
1762 shader->info.TessEval.Spacing) {
1763 linker_error(prog, "tessellation evaluation shader defined with "
1764 "conflicting vertex spacing.\n");
1765 return;
1766 }
1767 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1768 }
1769
1770 if (shader->info.TessEval.VertexOrder != 0) {
1771 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1772 linked_shader->info.TessEval.VertexOrder !=
1773 shader->info.TessEval.VertexOrder) {
1774 linker_error(prog, "tessellation evaluation shader defined with "
1775 "conflicting ordering.\n");
1776 return;
1777 }
1778 linked_shader->info.TessEval.VertexOrder =
1779 shader->info.TessEval.VertexOrder;
1780 }
1781
1782 if (shader->info.TessEval.PointMode != -1) {
1783 if (linked_shader->info.TessEval.PointMode != -1 &&
1784 linked_shader->info.TessEval.PointMode !=
1785 shader->info.TessEval.PointMode) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting point modes.\n");
1788 return;
1789 }
1790 linked_shader->info.TessEval.PointMode =
1791 shader->info.TessEval.PointMode;
1792 }
1793
1794 }
1795
1796 /* Just do the intrastage -> interstage propagation right now,
1797 * since we already know we're in the right type of shader program
1798 * for doing it.
1799 */
1800 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1801 linker_error(prog,
1802 "tessellation evaluation shader didn't declare input "
1803 "primitive modes.\n");
1804 return;
1805 }
1806
1807 if (linked_shader->info.TessEval.Spacing == TESS_SPACING_UNSPECIFIED)
1808 linked_shader->info.TessEval.Spacing = TESS_SPACING_EQUAL;
1809
1810 if (linked_shader->info.TessEval.VertexOrder == 0)
1811 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1812
1813 if (linked_shader->info.TessEval.PointMode == -1)
1814 linked_shader->info.TessEval.PointMode = GL_FALSE;
1815 }
1816
1817
1818 /**
1819 * Performs the cross-validation of layout qualifiers specified in
1820 * redeclaration of gl_FragCoord for the attached fragment shaders,
1821 * and propagates them to the linked FS and linked shader program.
1822 */
1823 static void
1824 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1825 struct gl_linked_shader *linked_shader,
1826 struct gl_shader **shader_list,
1827 unsigned num_shaders)
1828 {
1829 bool redeclares_gl_fragcoord = false;
1830 bool uses_gl_fragcoord = false;
1831 bool origin_upper_left = false;
1832 bool pixel_center_integer = false;
1833
1834 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1835 (prog->data->Version < 150 &&
1836 !prog->ARB_fragment_coord_conventions_enable))
1837 return;
1838
1839 for (unsigned i = 0; i < num_shaders; i++) {
1840 struct gl_shader *shader = shader_list[i];
1841 /* From the GLSL 1.50 spec, page 39:
1842 *
1843 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1844 * it must be redeclared in all the fragment shaders in that program
1845 * that have a static use gl_FragCoord."
1846 */
1847 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1848 shader->uses_gl_fragcoord)
1849 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1850 uses_gl_fragcoord)) {
1851 linker_error(prog, "fragment shader defined with conflicting "
1852 "layout qualifiers for gl_FragCoord\n");
1853 }
1854
1855 /* From the GLSL 1.50 spec, page 39:
1856 *
1857 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1858 * single program must have the same set of qualifiers."
1859 */
1860 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1861 (shader->origin_upper_left != origin_upper_left ||
1862 shader->pixel_center_integer != pixel_center_integer)) {
1863 linker_error(prog, "fragment shader defined with conflicting "
1864 "layout qualifiers for gl_FragCoord\n");
1865 }
1866
1867 /* Update the linked shader state. Note that uses_gl_fragcoord should
1868 * accumulate the results. The other values should replace. If there
1869 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1870 * are already known to be the same.
1871 */
1872 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1873 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1874 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1875 origin_upper_left = shader->origin_upper_left;
1876 pixel_center_integer = shader->pixel_center_integer;
1877 }
1878
1879 linked_shader->Program->info.fs.early_fragment_tests |=
1880 shader->EarlyFragmentTests;
1881 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1882 linked_shader->Program->info.fs.post_depth_coverage |=
1883 shader->PostDepthCoverage;
1884
1885 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1886 }
1887 }
1888
1889 /**
1890 * Performs the cross-validation of geometry shader max_vertices and
1891 * primitive type layout qualifiers for the attached geometry shaders,
1892 * and propagates them to the linked GS and linked shader program.
1893 */
1894 static void
1895 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1896 struct gl_linked_shader *linked_shader,
1897 struct gl_shader **shader_list,
1898 unsigned num_shaders)
1899 {
1900 linked_shader->info.Geom.VerticesOut = -1;
1901 linked_shader->info.Geom.Invocations = 0;
1902 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1903 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1904
1905 /* No in/out qualifiers defined for anything but GLSL 1.50+
1906 * geometry shaders so far.
1907 */
1908 if (linked_shader->Stage != MESA_SHADER_GEOMETRY ||
1909 prog->data->Version < 150)
1910 return;
1911
1912 /* From the GLSL 1.50 spec, page 46:
1913 *
1914 * "All geometry shader output layout declarations in a program
1915 * must declare the same layout and same value for
1916 * max_vertices. There must be at least one geometry output
1917 * layout declaration somewhere in a program, but not all
1918 * geometry shaders (compilation units) are required to
1919 * declare it."
1920 */
1921
1922 for (unsigned i = 0; i < num_shaders; i++) {
1923 struct gl_shader *shader = shader_list[i];
1924
1925 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1926 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1927 linked_shader->info.Geom.InputType !=
1928 shader->info.Geom.InputType) {
1929 linker_error(prog, "geometry shader defined with conflicting "
1930 "input types\n");
1931 return;
1932 }
1933 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1934 }
1935
1936 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1937 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1938 linked_shader->info.Geom.OutputType !=
1939 shader->info.Geom.OutputType) {
1940 linker_error(prog, "geometry shader defined with conflicting "
1941 "output types\n");
1942 return;
1943 }
1944 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1945 }
1946
1947 if (shader->info.Geom.VerticesOut != -1) {
1948 if (linked_shader->info.Geom.VerticesOut != -1 &&
1949 linked_shader->info.Geom.VerticesOut !=
1950 shader->info.Geom.VerticesOut) {
1951 linker_error(prog, "geometry shader defined with conflicting "
1952 "output vertex count (%d and %d)\n",
1953 linked_shader->info.Geom.VerticesOut,
1954 shader->info.Geom.VerticesOut);
1955 return;
1956 }
1957 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1958 }
1959
1960 if (shader->info.Geom.Invocations != 0) {
1961 if (linked_shader->info.Geom.Invocations != 0 &&
1962 linked_shader->info.Geom.Invocations !=
1963 shader->info.Geom.Invocations) {
1964 linker_error(prog, "geometry shader defined with conflicting "
1965 "invocation count (%d and %d)\n",
1966 linked_shader->info.Geom.Invocations,
1967 shader->info.Geom.Invocations);
1968 return;
1969 }
1970 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1971 }
1972 }
1973
1974 /* Just do the intrastage -> interstage propagation right now,
1975 * since we already know we're in the right type of shader program
1976 * for doing it.
1977 */
1978 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1979 linker_error(prog,
1980 "geometry shader didn't declare primitive input type\n");
1981 return;
1982 }
1983
1984 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1985 linker_error(prog,
1986 "geometry shader didn't declare primitive output type\n");
1987 return;
1988 }
1989
1990 if (linked_shader->info.Geom.VerticesOut == -1) {
1991 linker_error(prog,
1992 "geometry shader didn't declare max_vertices\n");
1993 return;
1994 }
1995
1996 if (linked_shader->info.Geom.Invocations == 0)
1997 linked_shader->info.Geom.Invocations = 1;
1998 }
1999
2000
2001 /**
2002 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2003 * qualifiers for the attached compute shaders, and propagate them to the
2004 * linked CS and linked shader program.
2005 */
2006 static void
2007 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2008 struct gl_linked_shader *linked_shader,
2009 struct gl_shader **shader_list,
2010 unsigned num_shaders)
2011 {
2012 for (int i = 0; i < 3; i++)
2013 linked_shader->info.Comp.LocalSize[i] = 0;
2014
2015 linked_shader->info.Comp.LocalSizeVariable = false;
2016
2017 /* This function is called for all shader stages, but it only has an effect
2018 * for compute shaders.
2019 */
2020 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2021 return;
2022
2023 /* From the ARB_compute_shader spec, in the section describing local size
2024 * declarations:
2025 *
2026 * If multiple compute shaders attached to a single program object
2027 * declare local work-group size, the declarations must be identical;
2028 * otherwise a link-time error results. Furthermore, if a program
2029 * object contains any compute shaders, at least one must contain an
2030 * input layout qualifier specifying the local work sizes of the
2031 * program, or a link-time error will occur.
2032 */
2033 for (unsigned sh = 0; sh < num_shaders; sh++) {
2034 struct gl_shader *shader = shader_list[sh];
2035
2036 if (shader->info.Comp.LocalSize[0] != 0) {
2037 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2038 for (int i = 0; i < 3; i++) {
2039 if (linked_shader->info.Comp.LocalSize[i] !=
2040 shader->info.Comp.LocalSize[i]) {
2041 linker_error(prog, "compute shader defined with conflicting "
2042 "local sizes\n");
2043 return;
2044 }
2045 }
2046 }
2047 for (int i = 0; i < 3; i++) {
2048 linked_shader->info.Comp.LocalSize[i] =
2049 shader->info.Comp.LocalSize[i];
2050 }
2051 } else if (shader->info.Comp.LocalSizeVariable) {
2052 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2053 /* The ARB_compute_variable_group_size spec says:
2054 *
2055 * If one compute shader attached to a program declares a
2056 * variable local group size and a second compute shader
2057 * attached to the same program declares a fixed local group
2058 * size, a link-time error results.
2059 */
2060 linker_error(prog, "compute shader defined with both fixed and "
2061 "variable local group size\n");
2062 return;
2063 }
2064 linked_shader->info.Comp.LocalSizeVariable = true;
2065 }
2066 }
2067
2068 /* Just do the intrastage -> interstage propagation right now,
2069 * since we already know we're in the right type of shader program
2070 * for doing it.
2071 */
2072 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2073 !linked_shader->info.Comp.LocalSizeVariable) {
2074 linker_error(prog, "compute shader must contain a fixed or a variable "
2075 "local group size\n");
2076 return;
2077 }
2078 for (int i = 0; i < 3; i++)
2079 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2080
2081 prog->Comp.LocalSizeVariable =
2082 linked_shader->info.Comp.LocalSizeVariable;
2083 }
2084
2085
2086 /**
2087 * Combine a group of shaders for a single stage to generate a linked shader
2088 *
2089 * \note
2090 * If this function is supplied a single shader, it is cloned, and the new
2091 * shader is returned.
2092 */
2093 struct gl_linked_shader *
2094 link_intrastage_shaders(void *mem_ctx,
2095 struct gl_context *ctx,
2096 struct gl_shader_program *prog,
2097 struct gl_shader **shader_list,
2098 unsigned num_shaders,
2099 bool allow_missing_main)
2100 {
2101 struct gl_uniform_block *ubo_blocks = NULL;
2102 struct gl_uniform_block *ssbo_blocks = NULL;
2103 unsigned num_ubo_blocks = 0;
2104 unsigned num_ssbo_blocks = 0;
2105
2106 /* Check that global variables defined in multiple shaders are consistent.
2107 */
2108 glsl_symbol_table variables;
2109 for (unsigned i = 0; i < num_shaders; i++) {
2110 if (shader_list[i] == NULL)
2111 continue;
2112 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2113 }
2114
2115 if (!prog->data->LinkStatus)
2116 return NULL;
2117
2118 /* Check that interface blocks defined in multiple shaders are consistent.
2119 */
2120 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2121 num_shaders);
2122 if (!prog->data->LinkStatus)
2123 return NULL;
2124
2125 /* Check that there is only a single definition of each function signature
2126 * across all shaders.
2127 */
2128 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2129 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2130 ir_function *const f = node->as_function();
2131
2132 if (f == NULL)
2133 continue;
2134
2135 for (unsigned j = i + 1; j < num_shaders; j++) {
2136 ir_function *const other =
2137 shader_list[j]->symbols->get_function(f->name);
2138
2139 /* If the other shader has no function (and therefore no function
2140 * signatures) with the same name, skip to the next shader.
2141 */
2142 if (other == NULL)
2143 continue;
2144
2145 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2146 if (!sig->is_defined)
2147 continue;
2148
2149 ir_function_signature *other_sig =
2150 other->exact_matching_signature(NULL, &sig->parameters);
2151
2152 if (other_sig != NULL && other_sig->is_defined) {
2153 linker_error(prog, "function `%s' is multiply defined\n",
2154 f->name);
2155 return NULL;
2156 }
2157 }
2158 }
2159 }
2160 }
2161
2162 /* Find the shader that defines main, and make a clone of it.
2163 *
2164 * Starting with the clone, search for undefined references. If one is
2165 * found, find the shader that defines it. Clone the reference and add
2166 * it to the shader. Repeat until there are no undefined references or
2167 * until a reference cannot be resolved.
2168 */
2169 gl_shader *main = NULL;
2170 for (unsigned i = 0; i < num_shaders; i++) {
2171 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2172 main = shader_list[i];
2173 break;
2174 }
2175 }
2176
2177 if (main == NULL && allow_missing_main)
2178 main = shader_list[0];
2179
2180 if (main == NULL) {
2181 linker_error(prog, "%s shader lacks `main'\n",
2182 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2183 return NULL;
2184 }
2185
2186 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2187 linked->Stage = shader_list[0]->Stage;
2188
2189 /* Create program and attach it to the linked shader */
2190 struct gl_program *gl_prog =
2191 ctx->Driver.NewProgram(ctx,
2192 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2193 prog->Name, false);
2194 if (!gl_prog) {
2195 prog->data->LinkStatus = false;
2196 _mesa_delete_linked_shader(ctx, linked);
2197 return NULL;
2198 }
2199
2200 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2201
2202 /* Don't use _mesa_reference_program() just take ownership */
2203 linked->Program = gl_prog;
2204
2205 linked->ir = new(linked) exec_list;
2206 clone_ir_list(mem_ctx, linked->ir, main->ir);
2207
2208 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2209 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2210 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2211 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2212 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2213 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2214 num_shaders);
2215
2216 populate_symbol_table(linked);
2217
2218 /* The pointer to the main function in the final linked shader (i.e., the
2219 * copy of the original shader that contained the main function).
2220 */
2221 ir_function_signature *const main_sig =
2222 _mesa_get_main_function_signature(linked->symbols);
2223
2224 /* Move any instructions other than variable declarations or function
2225 * declarations into main.
2226 */
2227 if (main_sig != NULL) {
2228 exec_node *insertion_point =
2229 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2230 linked);
2231
2232 for (unsigned i = 0; i < num_shaders; i++) {
2233 if (shader_list[i] == main)
2234 continue;
2235
2236 insertion_point = move_non_declarations(shader_list[i]->ir,
2237 insertion_point, true, linked);
2238 }
2239 }
2240
2241 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2242 _mesa_delete_linked_shader(ctx, linked);
2243 return NULL;
2244 }
2245
2246 /* Make a pass over all variable declarations to ensure that arrays with
2247 * unspecified sizes have a size specified. The size is inferred from the
2248 * max_array_access field.
2249 */
2250 array_sizing_visitor v;
2251 v.run(linked->ir);
2252 v.fixup_unnamed_interface_types();
2253
2254 /* Link up uniform blocks defined within this stage. */
2255 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2256 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2257
2258 if (!prog->data->LinkStatus) {
2259 _mesa_delete_linked_shader(ctx, linked);
2260 return NULL;
2261 }
2262
2263 /* Copy ubo blocks to linked shader list */
2264 linked->Program->sh.UniformBlocks =
2265 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2266 ralloc_steal(linked, ubo_blocks);
2267 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2268 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2269 }
2270 linked->Program->info.num_ubos = num_ubo_blocks;
2271
2272 /* Copy ssbo blocks to linked shader list */
2273 linked->Program->sh.ShaderStorageBlocks =
2274 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2275 ralloc_steal(linked, ssbo_blocks);
2276 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2277 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2278 }
2279 linked->Program->info.num_ssbos = num_ssbo_blocks;
2280
2281 /* At this point linked should contain all of the linked IR, so
2282 * validate it to make sure nothing went wrong.
2283 */
2284 validate_ir_tree(linked->ir);
2285
2286 /* Set the size of geometry shader input arrays */
2287 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2288 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2289 array_resize_visitor input_resize_visitor(num_vertices, prog,
2290 MESA_SHADER_GEOMETRY);
2291 foreach_in_list(ir_instruction, ir, linked->ir) {
2292 ir->accept(&input_resize_visitor);
2293 }
2294 }
2295
2296 if (ctx->Const.VertexID_is_zero_based)
2297 lower_vertex_id(linked);
2298
2299 #ifdef DEBUG
2300 /* Compute the source checksum. */
2301 linked->SourceChecksum = 0;
2302 for (unsigned i = 0; i < num_shaders; i++) {
2303 if (shader_list[i] == NULL)
2304 continue;
2305 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2306 }
2307 #endif
2308
2309 return linked;
2310 }
2311
2312 /**
2313 * Update the sizes of linked shader uniform arrays to the maximum
2314 * array index used.
2315 *
2316 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2317 *
2318 * If one or more elements of an array are active,
2319 * GetActiveUniform will return the name of the array in name,
2320 * subject to the restrictions listed above. The type of the array
2321 * is returned in type. The size parameter contains the highest
2322 * array element index used, plus one. The compiler or linker
2323 * determines the highest index used. There will be only one
2324 * active uniform reported by the GL per uniform array.
2325
2326 */
2327 static void
2328 update_array_sizes(struct gl_shader_program *prog)
2329 {
2330 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2331 if (prog->_LinkedShaders[i] == NULL)
2332 continue;
2333
2334 bool types_were_updated = false;
2335
2336 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2337 ir_variable *const var = node->as_variable();
2338
2339 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2340 !var->type->is_array())
2341 continue;
2342
2343 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2344 * will not be eliminated. Since we always do std140, just
2345 * don't resize arrays in UBOs.
2346 *
2347 * Atomic counters are supposed to get deterministic
2348 * locations assigned based on the declaration ordering and
2349 * sizes, array compaction would mess that up.
2350 *
2351 * Subroutine uniforms are not removed.
2352 */
2353 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2354 var->type->contains_subroutine() || var->constant_initializer)
2355 continue;
2356
2357 int size = var->data.max_array_access;
2358 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2359 if (prog->_LinkedShaders[j] == NULL)
2360 continue;
2361
2362 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2363 ir_variable *other_var = node2->as_variable();
2364 if (!other_var)
2365 continue;
2366
2367 if (strcmp(var->name, other_var->name) == 0 &&
2368 other_var->data.max_array_access > size) {
2369 size = other_var->data.max_array_access;
2370 }
2371 }
2372 }
2373
2374 if (size + 1 != (int)var->type->length) {
2375 /* If this is a built-in uniform (i.e., it's backed by some
2376 * fixed-function state), adjust the number of state slots to
2377 * match the new array size. The number of slots per array entry
2378 * is not known. It seems safe to assume that the total number of
2379 * slots is an integer multiple of the number of array elements.
2380 * Determine the number of slots per array element by dividing by
2381 * the old (total) size.
2382 */
2383 const unsigned num_slots = var->get_num_state_slots();
2384 if (num_slots > 0) {
2385 var->set_num_state_slots((size + 1)
2386 * (num_slots / var->type->length));
2387 }
2388
2389 var->type = glsl_type::get_array_instance(var->type->fields.array,
2390 size + 1);
2391 types_were_updated = true;
2392 }
2393 }
2394
2395 /* Update the types of dereferences in case we changed any. */
2396 if (types_were_updated) {
2397 deref_type_updater v;
2398 v.run(prog->_LinkedShaders[i]->ir);
2399 }
2400 }
2401 }
2402
2403 /**
2404 * Resize tessellation evaluation per-vertex inputs to the size of
2405 * tessellation control per-vertex outputs.
2406 */
2407 static void
2408 resize_tes_inputs(struct gl_context *ctx,
2409 struct gl_shader_program *prog)
2410 {
2411 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2412 return;
2413
2414 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2415 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2416
2417 /* If no control shader is present, then the TES inputs are statically
2418 * sized to MaxPatchVertices; the actual size of the arrays won't be
2419 * known until draw time.
2420 */
2421 const int num_vertices = tcs
2422 ? tcs->Program->info.tess.tcs_vertices_out
2423 : ctx->Const.MaxPatchVertices;
2424
2425 array_resize_visitor input_resize_visitor(num_vertices, prog,
2426 MESA_SHADER_TESS_EVAL);
2427 foreach_in_list(ir_instruction, ir, tes->ir) {
2428 ir->accept(&input_resize_visitor);
2429 }
2430
2431 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2432 /* Convert the gl_PatchVerticesIn system value into a constant, since
2433 * the value is known at this point.
2434 */
2435 foreach_in_list(ir_instruction, ir, tes->ir) {
2436 ir_variable *var = ir->as_variable();
2437 if (var && var->data.mode == ir_var_system_value &&
2438 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2439 void *mem_ctx = ralloc_parent(var);
2440 var->data.location = 0;
2441 var->data.explicit_location = false;
2442 if (tcs) {
2443 var->data.mode = ir_var_auto;
2444 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2445 } else {
2446 var->data.mode = ir_var_uniform;
2447 var->data.how_declared = ir_var_hidden;
2448 var->allocate_state_slots(1);
2449 ir_state_slot *slot0 = &var->get_state_slots()[0];
2450 slot0->swizzle = SWIZZLE_XXXX;
2451 slot0->tokens[0] = STATE_INTERNAL;
2452 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2453 for (int i = 2; i < STATE_LENGTH; i++)
2454 slot0->tokens[i] = 0;
2455 }
2456 }
2457 }
2458 }
2459 }
2460
2461 /**
2462 * Find a contiguous set of available bits in a bitmask.
2463 *
2464 * \param used_mask Bits representing used (1) and unused (0) locations
2465 * \param needed_count Number of contiguous bits needed.
2466 *
2467 * \return
2468 * Base location of the available bits on success or -1 on failure.
2469 */
2470 int
2471 find_available_slots(unsigned used_mask, unsigned needed_count)
2472 {
2473 unsigned needed_mask = (1 << needed_count) - 1;
2474 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2475
2476 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2477 * cannot optimize possibly infinite loops" for the loop below.
2478 */
2479 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2480 return -1;
2481
2482 for (int i = 0; i <= max_bit_to_test; i++) {
2483 if ((needed_mask & ~used_mask) == needed_mask)
2484 return i;
2485
2486 needed_mask <<= 1;
2487 }
2488
2489 return -1;
2490 }
2491
2492
2493 /**
2494 * Assign locations for either VS inputs or FS outputs
2495 *
2496 * \param mem_ctx Temporary ralloc context used for linking
2497 * \param prog Shader program whose variables need locations assigned
2498 * \param constants Driver specific constant values for the program.
2499 * \param target_index Selector for the program target to receive location
2500 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2501 * \c MESA_SHADER_FRAGMENT.
2502 *
2503 * \return
2504 * If locations are successfully assigned, true is returned. Otherwise an
2505 * error is emitted to the shader link log and false is returned.
2506 */
2507 bool
2508 assign_attribute_or_color_locations(void *mem_ctx,
2509 gl_shader_program *prog,
2510 struct gl_constants *constants,
2511 unsigned target_index)
2512 {
2513 /* Maximum number of generic locations. This corresponds to either the
2514 * maximum number of draw buffers or the maximum number of generic
2515 * attributes.
2516 */
2517 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2518 constants->Program[target_index].MaxAttribs :
2519 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2520
2521 /* Mark invalid locations as being used.
2522 */
2523 unsigned used_locations = (max_index >= 32)
2524 ? ~0 : ~((1 << max_index) - 1);
2525 unsigned double_storage_locations = 0;
2526
2527 assert((target_index == MESA_SHADER_VERTEX)
2528 || (target_index == MESA_SHADER_FRAGMENT));
2529
2530 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2531 if (sh == NULL)
2532 return true;
2533
2534 /* Operate in a total of four passes.
2535 *
2536 * 1. Invalidate the location assignments for all vertex shader inputs.
2537 *
2538 * 2. Assign locations for inputs that have user-defined (via
2539 * glBindVertexAttribLocation) locations and outputs that have
2540 * user-defined locations (via glBindFragDataLocation).
2541 *
2542 * 3. Sort the attributes without assigned locations by number of slots
2543 * required in decreasing order. Fragmentation caused by attribute
2544 * locations assigned by the application may prevent large attributes
2545 * from having enough contiguous space.
2546 *
2547 * 4. Assign locations to any inputs without assigned locations.
2548 */
2549
2550 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2551 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2552
2553 const enum ir_variable_mode direction =
2554 (target_index == MESA_SHADER_VERTEX)
2555 ? ir_var_shader_in : ir_var_shader_out;
2556
2557
2558 /* Temporary storage for the set of attributes that need locations assigned.
2559 */
2560 struct temp_attr {
2561 unsigned slots;
2562 ir_variable *var;
2563
2564 /* Used below in the call to qsort. */
2565 static int compare(const void *a, const void *b)
2566 {
2567 const temp_attr *const l = (const temp_attr *) a;
2568 const temp_attr *const r = (const temp_attr *) b;
2569
2570 /* Reversed because we want a descending order sort below. */
2571 return r->slots - l->slots;
2572 }
2573 } to_assign[32];
2574 assert(max_index <= 32);
2575
2576 /* Temporary array for the set of attributes that have locations assigned.
2577 */
2578 ir_variable *assigned[16];
2579
2580 unsigned num_attr = 0;
2581 unsigned assigned_attr = 0;
2582
2583 foreach_in_list(ir_instruction, node, sh->ir) {
2584 ir_variable *const var = node->as_variable();
2585
2586 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2587 continue;
2588
2589 if (var->data.explicit_location) {
2590 var->data.is_unmatched_generic_inout = 0;
2591 if ((var->data.location >= (int)(max_index + generic_base))
2592 || (var->data.location < 0)) {
2593 linker_error(prog,
2594 "invalid explicit location %d specified for `%s'\n",
2595 (var->data.location < 0)
2596 ? var->data.location
2597 : var->data.location - generic_base,
2598 var->name);
2599 return false;
2600 }
2601 } else if (target_index == MESA_SHADER_VERTEX) {
2602 unsigned binding;
2603
2604 if (prog->AttributeBindings->get(binding, var->name)) {
2605 assert(binding >= VERT_ATTRIB_GENERIC0);
2606 var->data.location = binding;
2607 var->data.is_unmatched_generic_inout = 0;
2608 }
2609 } else if (target_index == MESA_SHADER_FRAGMENT) {
2610 unsigned binding;
2611 unsigned index;
2612 const char *name = var->name;
2613 const glsl_type *type = var->type;
2614
2615 while (type) {
2616 /* Check if there's a binding for the variable name */
2617 if (prog->FragDataBindings->get(binding, name)) {
2618 assert(binding >= FRAG_RESULT_DATA0);
2619 var->data.location = binding;
2620 var->data.is_unmatched_generic_inout = 0;
2621
2622 if (prog->FragDataIndexBindings->get(index, name)) {
2623 var->data.index = index;
2624 }
2625 break;
2626 }
2627
2628 /* If not, but it's an array type, look for name[0] */
2629 if (type->is_array()) {
2630 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2631 type = type->fields.array;
2632 continue;
2633 }
2634
2635 break;
2636 }
2637 }
2638
2639 if (strcmp(var->name, "gl_LastFragData") == 0)
2640 continue;
2641
2642 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2643 *
2644 * "Output binding assignments will cause LinkProgram to fail:
2645 * ...
2646 * If the program has an active output assigned to a location greater
2647 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2648 * an active output assigned an index greater than or equal to one;"
2649 */
2650 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2651 var->data.location - generic_base >=
2652 (int) constants->MaxDualSourceDrawBuffers) {
2653 linker_error(prog,
2654 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2655 "with index %u for %s\n",
2656 var->data.location - generic_base, var->data.index,
2657 var->name);
2658 return false;
2659 }
2660
2661 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2662
2663 /* If the variable is not a built-in and has a location statically
2664 * assigned in the shader (presumably via a layout qualifier), make sure
2665 * that it doesn't collide with other assigned locations. Otherwise,
2666 * add it to the list of variables that need linker-assigned locations.
2667 */
2668 if (var->data.location != -1) {
2669 if (var->data.location >= generic_base && var->data.index < 1) {
2670 /* From page 61 of the OpenGL 4.0 spec:
2671 *
2672 * "LinkProgram will fail if the attribute bindings assigned
2673 * by BindAttribLocation do not leave not enough space to
2674 * assign a location for an active matrix attribute or an
2675 * active attribute array, both of which require multiple
2676 * contiguous generic attributes."
2677 *
2678 * I think above text prohibits the aliasing of explicit and
2679 * automatic assignments. But, aliasing is allowed in manual
2680 * assignments of attribute locations. See below comments for
2681 * the details.
2682 *
2683 * From OpenGL 4.0 spec, page 61:
2684 *
2685 * "It is possible for an application to bind more than one
2686 * attribute name to the same location. This is referred to as
2687 * aliasing. This will only work if only one of the aliased
2688 * attributes is active in the executable program, or if no
2689 * path through the shader consumes more than one attribute of
2690 * a set of attributes aliased to the same location. A link
2691 * error can occur if the linker determines that every path
2692 * through the shader consumes multiple aliased attributes,
2693 * but implementations are not required to generate an error
2694 * in this case."
2695 *
2696 * From GLSL 4.30 spec, page 54:
2697 *
2698 * "A program will fail to link if any two non-vertex shader
2699 * input variables are assigned to the same location. For
2700 * vertex shaders, multiple input variables may be assigned
2701 * to the same location using either layout qualifiers or via
2702 * the OpenGL API. However, such aliasing is intended only to
2703 * support vertex shaders where each execution path accesses
2704 * at most one input per each location. Implementations are
2705 * permitted, but not required, to generate link-time errors
2706 * if they detect that every path through the vertex shader
2707 * executable accesses multiple inputs assigned to any single
2708 * location. For all shader types, a program will fail to link
2709 * if explicit location assignments leave the linker unable
2710 * to find space for other variables without explicit
2711 * assignments."
2712 *
2713 * From OpenGL ES 3.0 spec, page 56:
2714 *
2715 * "Binding more than one attribute name to the same location
2716 * is referred to as aliasing, and is not permitted in OpenGL
2717 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2718 * fail when this condition exists. However, aliasing is
2719 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2720 * This will only work if only one of the aliased attributes
2721 * is active in the executable program, or if no path through
2722 * the shader consumes more than one attribute of a set of
2723 * attributes aliased to the same location. A link error can
2724 * occur if the linker determines that every path through the
2725 * shader consumes multiple aliased attributes, but implemen-
2726 * tations are not required to generate an error in this case."
2727 *
2728 * After looking at above references from OpenGL, OpenGL ES and
2729 * GLSL specifications, we allow aliasing of vertex input variables
2730 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2731 *
2732 * NOTE: This is not required by the spec but its worth mentioning
2733 * here that we're not doing anything to make sure that no path
2734 * through the vertex shader executable accesses multiple inputs
2735 * assigned to any single location.
2736 */
2737
2738 /* Mask representing the contiguous slots that will be used by
2739 * this attribute.
2740 */
2741 const unsigned attr = var->data.location - generic_base;
2742 const unsigned use_mask = (1 << slots) - 1;
2743 const char *const string = (target_index == MESA_SHADER_VERTEX)
2744 ? "vertex shader input" : "fragment shader output";
2745
2746 /* Generate a link error if the requested locations for this
2747 * attribute exceed the maximum allowed attribute location.
2748 */
2749 if (attr + slots > max_index) {
2750 linker_error(prog,
2751 "insufficient contiguous locations "
2752 "available for %s `%s' %d %d %d\n", string,
2753 var->name, used_locations, use_mask, attr);
2754 return false;
2755 }
2756
2757 /* Generate a link error if the set of bits requested for this
2758 * attribute overlaps any previously allocated bits.
2759 */
2760 if ((~(use_mask << attr) & used_locations) != used_locations) {
2761 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2762 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2763 * 4.40 spec:
2764 *
2765 * "Additionally, for fragment shader outputs, if two
2766 * variables are placed within the same location, they
2767 * must have the same underlying type (floating-point or
2768 * integer). No component aliasing of output variables or
2769 * members is allowed.
2770 */
2771 for (unsigned i = 0; i < assigned_attr; i++) {
2772 unsigned assigned_slots =
2773 assigned[i]->type->count_attribute_slots(false);
2774 unsigned assig_attr =
2775 assigned[i]->data.location - generic_base;
2776 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2777
2778 if ((assigned_use_mask << assig_attr) &
2779 (use_mask << attr)) {
2780
2781 const glsl_type *assigned_type =
2782 assigned[i]->type->without_array();
2783 const glsl_type *type = var->type->without_array();
2784 if (assigned_type->base_type != type->base_type) {
2785 linker_error(prog, "types do not match for aliased"
2786 " %ss %s and %s\n", string,
2787 assigned[i]->name, var->name);
2788 return false;
2789 }
2790
2791 unsigned assigned_component_mask =
2792 ((1 << assigned_type->vector_elements) - 1) <<
2793 assigned[i]->data.location_frac;
2794 unsigned component_mask =
2795 ((1 << type->vector_elements) - 1) <<
2796 var->data.location_frac;
2797 if (assigned_component_mask & component_mask) {
2798 linker_error(prog, "overlapping component is "
2799 "assigned to %ss %s and %s "
2800 "(component=%d)\n",
2801 string, assigned[i]->name, var->name,
2802 var->data.location_frac);
2803 return false;
2804 }
2805 }
2806 }
2807 } else if (target_index == MESA_SHADER_FRAGMENT ||
2808 (prog->IsES && prog->data->Version >= 300)) {
2809 linker_error(prog, "overlapping location is assigned "
2810 "to %s `%s' %d %d %d\n", string, var->name,
2811 used_locations, use_mask, attr);
2812 return false;
2813 } else {
2814 linker_warning(prog, "overlapping location is assigned "
2815 "to %s `%s' %d %d %d\n", string, var->name,
2816 used_locations, use_mask, attr);
2817 }
2818 }
2819
2820 used_locations |= (use_mask << attr);
2821
2822 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2823 *
2824 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2825 * active attribute variables may fail to link, unless
2826 * device-dependent optimizations are able to make the program
2827 * fit within available hardware resources. For the purposes
2828 * of this test, attribute variables of the type dvec3, dvec4,
2829 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2830 * count as consuming twice as many attributes as equivalent
2831 * single-precision types. While these types use the same number
2832 * of generic attributes as their single-precision equivalents,
2833 * implementations are permitted to consume two single-precision
2834 * vectors of internal storage for each three- or four-component
2835 * double-precision vector."
2836 *
2837 * Mark this attribute slot as taking up twice as much space
2838 * so we can count it properly against limits. According to
2839 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2840 * is optional behavior, but it seems preferable.
2841 */
2842 if (var->type->without_array()->is_dual_slot())
2843 double_storage_locations |= (use_mask << attr);
2844 }
2845
2846 assigned[assigned_attr] = var;
2847 assigned_attr++;
2848
2849 continue;
2850 }
2851
2852 if (num_attr >= max_index) {
2853 linker_error(prog, "too many %s (max %u)",
2854 target_index == MESA_SHADER_VERTEX ?
2855 "vertex shader inputs" : "fragment shader outputs",
2856 max_index);
2857 return false;
2858 }
2859 to_assign[num_attr].slots = slots;
2860 to_assign[num_attr].var = var;
2861 num_attr++;
2862 }
2863
2864 if (target_index == MESA_SHADER_VERTEX) {
2865 unsigned total_attribs_size =
2866 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2867 _mesa_bitcount(double_storage_locations);
2868 if (total_attribs_size > max_index) {
2869 linker_error(prog,
2870 "attempt to use %d vertex attribute slots only %d available ",
2871 total_attribs_size, max_index);
2872 return false;
2873 }
2874 }
2875
2876 /* If all of the attributes were assigned locations by the application (or
2877 * are built-in attributes with fixed locations), return early. This should
2878 * be the common case.
2879 */
2880 if (num_attr == 0)
2881 return true;
2882
2883 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2884
2885 if (target_index == MESA_SHADER_VERTEX) {
2886 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2887 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2888 * reserved to prevent it from being automatically allocated below.
2889 */
2890 find_deref_visitor find("gl_Vertex");
2891 find.run(sh->ir);
2892 if (find.variable_found())
2893 used_locations |= (1 << 0);
2894 }
2895
2896 for (unsigned i = 0; i < num_attr; i++) {
2897 /* Mask representing the contiguous slots that will be used by this
2898 * attribute.
2899 */
2900 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2901
2902 int location = find_available_slots(used_locations, to_assign[i].slots);
2903
2904 if (location < 0) {
2905 const char *const string = (target_index == MESA_SHADER_VERTEX)
2906 ? "vertex shader input" : "fragment shader output";
2907
2908 linker_error(prog,
2909 "insufficient contiguous locations "
2910 "available for %s `%s'\n",
2911 string, to_assign[i].var->name);
2912 return false;
2913 }
2914
2915 to_assign[i].var->data.location = generic_base + location;
2916 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2917 used_locations |= (use_mask << location);
2918
2919 if (to_assign[i].var->type->without_array()->is_dual_slot())
2920 double_storage_locations |= (use_mask << location);
2921 }
2922
2923 /* Now that we have all the locations, from the GL 4.5 core spec, section
2924 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2925 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2926 * as equivalent single-precision types.
2927 */
2928 if (target_index == MESA_SHADER_VERTEX) {
2929 unsigned total_attribs_size =
2930 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2931 _mesa_bitcount(double_storage_locations);
2932 if (total_attribs_size > max_index) {
2933 linker_error(prog,
2934 "attempt to use %d vertex attribute slots only %d available ",
2935 total_attribs_size, max_index);
2936 return false;
2937 }
2938 }
2939
2940 return true;
2941 }
2942
2943 /**
2944 * Match explicit locations of outputs to inputs and deactivate the
2945 * unmatch flag if found so we don't optimise them away.
2946 */
2947 static void
2948 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2949 gl_linked_shader *consumer)
2950 {
2951 glsl_symbol_table parameters;
2952 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2953 { {NULL, NULL} };
2954
2955 /* Find all shader outputs in the "producer" stage.
2956 */
2957 foreach_in_list(ir_instruction, node, producer->ir) {
2958 ir_variable *const var = node->as_variable();
2959
2960 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2961 continue;
2962
2963 if (var->data.explicit_location &&
2964 var->data.location >= VARYING_SLOT_VAR0) {
2965 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2966 if (explicit_locations[idx][var->data.location_frac] == NULL)
2967 explicit_locations[idx][var->data.location_frac] = var;
2968 }
2969 }
2970
2971 /* Match inputs to outputs */
2972 foreach_in_list(ir_instruction, node, consumer->ir) {
2973 ir_variable *const input = node->as_variable();
2974
2975 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2976 continue;
2977
2978 ir_variable *output = NULL;
2979 if (input->data.explicit_location
2980 && input->data.location >= VARYING_SLOT_VAR0) {
2981 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2982 [input->data.location_frac];
2983
2984 if (output != NULL){
2985 input->data.is_unmatched_generic_inout = 0;
2986 output->data.is_unmatched_generic_inout = 0;
2987 }
2988 }
2989 }
2990 }
2991
2992 /**
2993 * Store the gl_FragDepth layout in the gl_shader_program struct.
2994 */
2995 static void
2996 store_fragdepth_layout(struct gl_shader_program *prog)
2997 {
2998 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2999 return;
3000 }
3001
3002 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3003
3004 /* We don't look up the gl_FragDepth symbol directly because if
3005 * gl_FragDepth is not used in the shader, it's removed from the IR.
3006 * However, the symbol won't be removed from the symbol table.
3007 *
3008 * We're only interested in the cases where the variable is NOT removed
3009 * from the IR.
3010 */
3011 foreach_in_list(ir_instruction, node, ir) {
3012 ir_variable *const var = node->as_variable();
3013
3014 if (var == NULL || var->data.mode != ir_var_shader_out) {
3015 continue;
3016 }
3017
3018 if (strcmp(var->name, "gl_FragDepth") == 0) {
3019 switch (var->data.depth_layout) {
3020 case ir_depth_layout_none:
3021 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3022 return;
3023 case ir_depth_layout_any:
3024 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3025 return;
3026 case ir_depth_layout_greater:
3027 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3028 return;
3029 case ir_depth_layout_less:
3030 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3031 return;
3032 case ir_depth_layout_unchanged:
3033 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3034 return;
3035 default:
3036 assert(0);
3037 return;
3038 }
3039 }
3040 }
3041 }
3042
3043 /**
3044 * Validate the resources used by a program versus the implementation limits
3045 */
3046 static void
3047 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3048 {
3049 unsigned total_uniform_blocks = 0;
3050 unsigned total_shader_storage_blocks = 0;
3051
3052 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3053 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3054
3055 if (sh == NULL)
3056 continue;
3057
3058 if (sh->Program->info.num_textures >
3059 ctx->Const.Program[i].MaxTextureImageUnits) {
3060 linker_error(prog, "Too many %s shader texture samplers\n",
3061 _mesa_shader_stage_to_string(i));
3062 }
3063
3064 if (sh->num_uniform_components >
3065 ctx->Const.Program[i].MaxUniformComponents) {
3066 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3067 linker_warning(prog, "Too many %s shader default uniform block "
3068 "components, but the driver will try to optimize "
3069 "them out; this is non-portable out-of-spec "
3070 "behavior\n",
3071 _mesa_shader_stage_to_string(i));
3072 } else {
3073 linker_error(prog, "Too many %s shader default uniform block "
3074 "components\n",
3075 _mesa_shader_stage_to_string(i));
3076 }
3077 }
3078
3079 if (sh->num_combined_uniform_components >
3080 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3081 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3082 linker_warning(prog, "Too many %s shader uniform components, "
3083 "but the driver will try to optimize them out; "
3084 "this is non-portable out-of-spec behavior\n",
3085 _mesa_shader_stage_to_string(i));
3086 } else {
3087 linker_error(prog, "Too many %s shader uniform components\n",
3088 _mesa_shader_stage_to_string(i));
3089 }
3090 }
3091
3092 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3093 total_uniform_blocks += sh->Program->info.num_ubos;
3094
3095 const unsigned max_uniform_blocks =
3096 ctx->Const.Program[i].MaxUniformBlocks;
3097 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3098 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3099 _mesa_shader_stage_to_string(i),
3100 sh->Program->info.num_ubos, max_uniform_blocks);
3101 }
3102
3103 const unsigned max_shader_storage_blocks =
3104 ctx->Const.Program[i].MaxShaderStorageBlocks;
3105 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3106 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3107 _mesa_shader_stage_to_string(i),
3108 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3109 }
3110 }
3111
3112 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3113 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3114 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3115 }
3116
3117 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3118 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3119 total_shader_storage_blocks,
3120 ctx->Const.MaxCombinedShaderStorageBlocks);
3121 }
3122
3123 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3124 if (prog->data->UniformBlocks[i].UniformBufferSize >
3125 ctx->Const.MaxUniformBlockSize) {
3126 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3127 prog->data->UniformBlocks[i].Name,
3128 prog->data->UniformBlocks[i].UniformBufferSize,
3129 ctx->Const.MaxUniformBlockSize);
3130 }
3131 }
3132
3133 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3134 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3135 ctx->Const.MaxShaderStorageBlockSize) {
3136 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3137 prog->data->ShaderStorageBlocks[i].Name,
3138 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3139 ctx->Const.MaxShaderStorageBlockSize);
3140 }
3141 }
3142 }
3143
3144 static void
3145 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3146 {
3147 unsigned mask = prog->data->linked_stages;
3148 while (mask) {
3149 const int i = u_bit_scan(&mask);
3150 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3151
3152 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3153 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3154 continue;
3155
3156 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3157
3158 if (!uni)
3159 continue;
3160
3161 int count = 0;
3162 if (p->sh.NumSubroutineFunctions == 0) {
3163 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3164 continue;
3165 }
3166 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3167 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3168 for (int k = 0; k < fn->num_compat_types; k++) {
3169 if (fn->types[k] == uni->type) {
3170 count++;
3171 break;
3172 }
3173 }
3174 }
3175 uni->num_compatible_subroutines = count;
3176 }
3177 }
3178 }
3179
3180 static void
3181 check_subroutine_resources(struct gl_shader_program *prog)
3182 {
3183 unsigned mask = prog->data->linked_stages;
3184 while (mask) {
3185 const int i = u_bit_scan(&mask);
3186 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3187
3188 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3189 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3190 _mesa_shader_stage_to_string(i));
3191 }
3192 }
3193 }
3194 /**
3195 * Validate shader image resources.
3196 */
3197 static void
3198 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3199 {
3200 unsigned total_image_units = 0;
3201 unsigned fragment_outputs = 0;
3202 unsigned total_shader_storage_blocks = 0;
3203
3204 if (!ctx->Extensions.ARB_shader_image_load_store)
3205 return;
3206
3207 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3208 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3209
3210 if (sh) {
3211 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3212 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3213 _mesa_shader_stage_to_string(i),
3214 sh->Program->info.num_images,
3215 ctx->Const.Program[i].MaxImageUniforms);
3216
3217 total_image_units += sh->Program->info.num_images;
3218 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3219
3220 if (i == MESA_SHADER_FRAGMENT) {
3221 foreach_in_list(ir_instruction, node, sh->ir) {
3222 ir_variable *var = node->as_variable();
3223 if (var && var->data.mode == ir_var_shader_out)
3224 /* since there are no double fs outputs - pass false */
3225 fragment_outputs += var->type->count_attribute_slots(false);
3226 }
3227 }
3228 }
3229 }
3230
3231 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3232 linker_error(prog, "Too many combined image uniforms\n");
3233
3234 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3235 ctx->Const.MaxCombinedShaderOutputResources)
3236 linker_error(prog, "Too many combined image uniforms, shader storage "
3237 " buffers and fragment outputs\n");
3238 }
3239
3240
3241 /**
3242 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3243 * for a variable, checks for overlaps between other uniforms using explicit
3244 * locations.
3245 */
3246 static int
3247 reserve_explicit_locations(struct gl_shader_program *prog,
3248 string_to_uint_map *map, ir_variable *var)
3249 {
3250 unsigned slots = var->type->uniform_locations();
3251 unsigned max_loc = var->data.location + slots - 1;
3252 unsigned return_value = slots;
3253
3254 /* Resize remap table if locations do not fit in the current one. */
3255 if (max_loc + 1 > prog->NumUniformRemapTable) {
3256 prog->UniformRemapTable =
3257 reralloc(prog, prog->UniformRemapTable,
3258 gl_uniform_storage *,
3259 max_loc + 1);
3260
3261 if (!prog->UniformRemapTable) {
3262 linker_error(prog, "Out of memory during linking.\n");
3263 return -1;
3264 }
3265
3266 /* Initialize allocated space. */
3267 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3268 prog->UniformRemapTable[i] = NULL;
3269
3270 prog->NumUniformRemapTable = max_loc + 1;
3271 }
3272
3273 for (unsigned i = 0; i < slots; i++) {
3274 unsigned loc = var->data.location + i;
3275
3276 /* Check if location is already used. */
3277 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3278
3279 /* Possibly same uniform from a different stage, this is ok. */
3280 unsigned hash_loc;
3281 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3282 return_value = 0;
3283 continue;
3284 }
3285
3286 /* ARB_explicit_uniform_location specification states:
3287 *
3288 * "No two default-block uniform variables in the program can have
3289 * the same location, even if they are unused, otherwise a compiler
3290 * or linker error will be generated."
3291 */
3292 linker_error(prog,
3293 "location qualifier for uniform %s overlaps "
3294 "previously used location\n",
3295 var->name);
3296 return -1;
3297 }
3298
3299 /* Initialize location as inactive before optimization
3300 * rounds and location assignment.
3301 */
3302 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3303 }
3304
3305 /* Note, base location used for arrays. */
3306 map->put(var->data.location, var->name);
3307
3308 return return_value;
3309 }
3310
3311 static bool
3312 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3313 struct gl_program *p,
3314 ir_variable *var)
3315 {
3316 unsigned slots = var->type->uniform_locations();
3317 unsigned max_loc = var->data.location + slots - 1;
3318
3319 /* Resize remap table if locations do not fit in the current one. */
3320 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3321 p->sh.SubroutineUniformRemapTable =
3322 reralloc(p, p->sh.SubroutineUniformRemapTable,
3323 gl_uniform_storage *,
3324 max_loc + 1);
3325
3326 if (!p->sh.SubroutineUniformRemapTable) {
3327 linker_error(prog, "Out of memory during linking.\n");
3328 return false;
3329 }
3330
3331 /* Initialize allocated space. */
3332 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3333 p->sh.SubroutineUniformRemapTable[i] = NULL;
3334
3335 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3336 }
3337
3338 for (unsigned i = 0; i < slots; i++) {
3339 unsigned loc = var->data.location + i;
3340
3341 /* Check if location is already used. */
3342 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3343
3344 /* ARB_explicit_uniform_location specification states:
3345 * "No two subroutine uniform variables can have the same location
3346 * in the same shader stage, otherwise a compiler or linker error
3347 * will be generated."
3348 */
3349 linker_error(prog,
3350 "location qualifier for uniform %s overlaps "
3351 "previously used location\n",
3352 var->name);
3353 return false;
3354 }
3355
3356 /* Initialize location as inactive before optimization
3357 * rounds and location assignment.
3358 */
3359 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3360 }
3361
3362 return true;
3363 }
3364 /**
3365 * Check and reserve all explicit uniform locations, called before
3366 * any optimizations happen to handle also inactive uniforms and
3367 * inactive array elements that may get trimmed away.
3368 */
3369 static void
3370 check_explicit_uniform_locations(struct gl_context *ctx,
3371 struct gl_shader_program *prog)
3372 {
3373 prog->NumExplicitUniformLocations = 0;
3374
3375 if (!ctx->Extensions.ARB_explicit_uniform_location)
3376 return;
3377
3378 /* This map is used to detect if overlapping explicit locations
3379 * occur with the same uniform (from different stage) or a different one.
3380 */
3381 string_to_uint_map *uniform_map = new string_to_uint_map;
3382
3383 if (!uniform_map) {
3384 linker_error(prog, "Out of memory during linking.\n");
3385 return;
3386 }
3387
3388 unsigned entries_total = 0;
3389 unsigned mask = prog->data->linked_stages;
3390 while (mask) {
3391 const int i = u_bit_scan(&mask);
3392 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3393
3394 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3395 ir_variable *var = node->as_variable();
3396 if (!var || var->data.mode != ir_var_uniform)
3397 continue;
3398
3399 if (var->data.explicit_location) {
3400 bool ret = false;
3401 if (var->type->without_array()->is_subroutine())
3402 ret = reserve_subroutine_explicit_locations(prog, p, var);
3403 else {
3404 int slots = reserve_explicit_locations(prog, uniform_map,
3405 var);
3406 if (slots != -1) {
3407 ret = true;
3408 entries_total += slots;
3409 }
3410 }
3411 if (!ret) {
3412 delete uniform_map;
3413 return;
3414 }
3415 }
3416 }
3417 }
3418
3419 struct empty_uniform_block *current_block = NULL;
3420
3421 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3422 /* We found empty space in UniformRemapTable. */
3423 if (prog->UniformRemapTable[i] == NULL) {
3424 /* We've found the beginning of a new continous block of empty slots */
3425 if (!current_block || current_block->start + current_block->slots != i) {
3426 current_block = rzalloc(prog, struct empty_uniform_block);
3427 current_block->start = i;
3428 exec_list_push_tail(&prog->EmptyUniformLocations,
3429 &current_block->link);
3430 }
3431
3432 /* The current block continues, so we simply increment its slots */
3433 current_block->slots++;
3434 }
3435 }
3436
3437 delete uniform_map;
3438 prog->NumExplicitUniformLocations = entries_total;
3439 }
3440
3441 static bool
3442 should_add_buffer_variable(struct gl_shader_program *shProg,
3443 GLenum type, const char *name)
3444 {
3445 bool found_interface = false;
3446 unsigned block_name_len = 0;
3447 const char *block_name_dot = strchr(name, '.');
3448
3449 /* These rules only apply to buffer variables. So we return
3450 * true for the rest of types.
3451 */
3452 if (type != GL_BUFFER_VARIABLE)
3453 return true;
3454
3455 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3456 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3457 block_name_len = strlen(block_name);
3458
3459 const char *block_square_bracket = strchr(block_name, '[');
3460 if (block_square_bracket) {
3461 /* The block is part of an array of named interfaces,
3462 * for the name comparison we ignore the "[x]" part.
3463 */
3464 block_name_len -= strlen(block_square_bracket);
3465 }
3466
3467 if (block_name_dot) {
3468 /* Check if the variable name starts with the interface
3469 * name. The interface name (if present) should have the
3470 * length than the interface block name we are comparing to.
3471 */
3472 unsigned len = strlen(name) - strlen(block_name_dot);
3473 if (len != block_name_len)
3474 continue;
3475 }
3476
3477 if (strncmp(block_name, name, block_name_len) == 0) {
3478 found_interface = true;
3479 break;
3480 }
3481 }
3482
3483 /* We remove the interface name from the buffer variable name,
3484 * including the dot that follows it.
3485 */
3486 if (found_interface)
3487 name = name + block_name_len + 1;
3488
3489 /* The ARB_program_interface_query spec says:
3490 *
3491 * "For an active shader storage block member declared as an array, an
3492 * entry will be generated only for the first array element, regardless
3493 * of its type. For arrays of aggregate types, the enumeration rules
3494 * are applied recursively for the single enumerated array element."
3495 */
3496 const char *struct_first_dot = strchr(name, '.');
3497 const char *first_square_bracket = strchr(name, '[');
3498
3499 /* The buffer variable is on top level and it is not an array */
3500 if (!first_square_bracket) {
3501 return true;
3502 /* The shader storage block member is a struct, then generate the entry */
3503 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3504 return true;
3505 } else {
3506 /* Shader storage block member is an array, only generate an entry for the
3507 * first array element.
3508 */
3509 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3510 return true;
3511 }
3512
3513 return false;
3514 }
3515
3516 static bool
3517 add_program_resource(struct gl_shader_program *prog,
3518 struct set *resource_set,
3519 GLenum type, const void *data, uint8_t stages)
3520 {
3521 assert(data);
3522
3523 /* If resource already exists, do not add it again. */
3524 if (_mesa_set_search(resource_set, data))
3525 return true;
3526
3527 prog->data->ProgramResourceList =
3528 reralloc(prog,
3529 prog->data->ProgramResourceList,
3530 gl_program_resource,
3531 prog->data->NumProgramResourceList + 1);
3532
3533 if (!prog->data->ProgramResourceList) {
3534 linker_error(prog, "Out of memory during linking.\n");
3535 return false;
3536 }
3537
3538 struct gl_program_resource *res =
3539 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3540
3541 res->Type = type;
3542 res->Data = data;
3543 res->StageReferences = stages;
3544
3545 prog->data->NumProgramResourceList++;
3546
3547 _mesa_set_add(resource_set, data);
3548
3549 return true;
3550 }
3551
3552 /* Function checks if a variable var is a packed varying and
3553 * if given name is part of packed varying's list.
3554 *
3555 * If a variable is a packed varying, it has a name like
3556 * 'packed:a,b,c' where a, b and c are separate variables.
3557 */
3558 static bool
3559 included_in_packed_varying(ir_variable *var, const char *name)
3560 {
3561 if (strncmp(var->name, "packed:", 7) != 0)
3562 return false;
3563
3564 char *list = strdup(var->name + 7);
3565 assert(list);
3566
3567 bool found = false;
3568 char *saveptr;
3569 char *token = strtok_r(list, ",", &saveptr);
3570 while (token) {
3571 if (strcmp(token, name) == 0) {
3572 found = true;
3573 break;
3574 }
3575 token = strtok_r(NULL, ",", &saveptr);
3576 }
3577 free(list);
3578 return found;
3579 }
3580
3581 /**
3582 * Function builds a stage reference bitmask from variable name.
3583 */
3584 static uint8_t
3585 build_stageref(struct gl_shader_program *shProg, const char *name,
3586 unsigned mode)
3587 {
3588 uint8_t stages = 0;
3589
3590 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3591 * used for reference mask in gl_program_resource will need to be changed.
3592 */
3593 assert(MESA_SHADER_STAGES < 8);
3594
3595 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3596 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3597 if (!sh)
3598 continue;
3599
3600 /* Shader symbol table may contain variables that have
3601 * been optimized away. Search IR for the variable instead.
3602 */
3603 foreach_in_list(ir_instruction, node, sh->ir) {
3604 ir_variable *var = node->as_variable();
3605 if (var) {
3606 unsigned baselen = strlen(var->name);
3607
3608 if (included_in_packed_varying(var, name)) {
3609 stages |= (1 << i);
3610 break;
3611 }
3612
3613 /* Type needs to match if specified, otherwise we might
3614 * pick a variable with same name but different interface.
3615 */
3616 if (var->data.mode != mode)
3617 continue;
3618
3619 if (strncmp(var->name, name, baselen) == 0) {
3620 /* Check for exact name matches but also check for arrays and
3621 * structs.
3622 */
3623 if (name[baselen] == '\0' ||
3624 name[baselen] == '[' ||
3625 name[baselen] == '.') {
3626 stages |= (1 << i);
3627 break;
3628 }
3629 }
3630 }
3631 }
3632 }
3633 return stages;
3634 }
3635
3636 /**
3637 * Create gl_shader_variable from ir_variable class.
3638 */
3639 static gl_shader_variable *
3640 create_shader_variable(struct gl_shader_program *shProg,
3641 const ir_variable *in,
3642 const char *name, const glsl_type *type,
3643 const glsl_type *interface_type,
3644 bool use_implicit_location, int location,
3645 const glsl_type *outermost_struct_type)
3646 {
3647 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3648 if (!out)
3649 return NULL;
3650
3651 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3652 * expect to see gl_VertexID in the program resource list. Pretend.
3653 */
3654 if (in->data.mode == ir_var_system_value &&
3655 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3656 out->name = ralloc_strdup(shProg, "gl_VertexID");
3657 } else if ((in->data.mode == ir_var_shader_out &&
3658 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3659 (in->data.mode == ir_var_system_value &&
3660 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3661 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3662 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3663 } else if ((in->data.mode == ir_var_shader_out &&
3664 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3665 (in->data.mode == ir_var_system_value &&
3666 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3667 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3668 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3669 } else {
3670 out->name = ralloc_strdup(shProg, name);
3671 }
3672
3673 if (!out->name)
3674 return NULL;
3675
3676 /* The ARB_program_interface_query spec says:
3677 *
3678 * "Not all active variables are assigned valid locations; the
3679 * following variables will have an effective location of -1:
3680 *
3681 * * uniforms declared as atomic counters;
3682 *
3683 * * members of a uniform block;
3684 *
3685 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3686 *
3687 * * inputs or outputs not declared with a "location" layout
3688 * qualifier, except for vertex shader inputs and fragment shader
3689 * outputs."
3690 */
3691 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3692 is_gl_identifier(in->name) ||
3693 !(in->data.explicit_location || use_implicit_location)) {
3694 out->location = -1;
3695 } else {
3696 out->location = location;
3697 }
3698
3699 out->type = type;
3700 out->outermost_struct_type = outermost_struct_type;
3701 out->interface_type = interface_type;
3702 out->component = in->data.location_frac;
3703 out->index = in->data.index;
3704 out->patch = in->data.patch;
3705 out->mode = in->data.mode;
3706 out->interpolation = in->data.interpolation;
3707 out->explicit_location = in->data.explicit_location;
3708 out->precision = in->data.precision;
3709
3710 return out;
3711 }
3712
3713 static const glsl_type *
3714 resize_to_max_patch_vertices(const struct gl_context *ctx,
3715 const glsl_type *type)
3716 {
3717 if (!type)
3718 return NULL;
3719
3720 return glsl_type::get_array_instance(type->fields.array,
3721 ctx->Const.MaxPatchVertices);
3722 }
3723
3724 static bool
3725 add_shader_variable(const struct gl_context *ctx,
3726 struct gl_shader_program *shProg,
3727 struct set *resource_set,
3728 unsigned stage_mask,
3729 GLenum programInterface, ir_variable *var,
3730 const char *name, const glsl_type *type,
3731 bool use_implicit_location, int location,
3732 const glsl_type *outermost_struct_type = NULL)
3733 {
3734 const glsl_type *interface_type = var->get_interface_type();
3735
3736 if (outermost_struct_type == NULL) {
3737 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3738 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3739 * smaller size.
3740 *
3741 * This can cause trouble with SSO programs. Since the TCS declares
3742 * the number of output vertices, we can always shrink TCS output
3743 * arrays. However, the TES might not be linked with a TCS, in
3744 * which case it won't know the size of the patch. In other words,
3745 * the TCS and TES may disagree on the (smaller) array sizes. This
3746 * can result in the resource names differing across stages, causing
3747 * SSO validation failures and other cascading issues.
3748 *
3749 * Expanding the array size to the full gl_MaxPatchVertices fixes
3750 * these issues. It's also what program interface queries expect,
3751 * as that is the official size of the array.
3752 */
3753 if (var->data.tess_varying_implicit_sized_array) {
3754 type = resize_to_max_patch_vertices(ctx, type);
3755 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3756 }
3757
3758 if (var->data.from_named_ifc_block) {
3759 const char *interface_name = interface_type->name;
3760
3761 if (interface_type->is_array()) {
3762 /* Issue #16 of the ARB_program_interface_query spec says:
3763 *
3764 * "* If a variable is a member of an interface block without an
3765 * instance name, it is enumerated using just the variable name.
3766 *
3767 * * If a variable is a member of an interface block with an
3768 * instance name, it is enumerated as "BlockName.Member", where
3769 * "BlockName" is the name of the interface block (not the
3770 * instance name) and "Member" is the name of the variable."
3771 *
3772 * In particular, it indicates that it should be "BlockName",
3773 * not "BlockName[array length]". The conformance suite and
3774 * dEQP both require this behavior.
3775 *
3776 * Here, we unwrap the extra array level added by named interface
3777 * block array lowering so we have the correct variable type. We
3778 * also unwrap the interface type when constructing the name.
3779 *
3780 * We leave interface_type the same so that ES 3.x SSO pipeline
3781 * validation can enforce the rules requiring array length to
3782 * match on interface blocks.
3783 */
3784 type = type->fields.array;
3785
3786 interface_name = interface_type->fields.array->name;
3787 }
3788
3789 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3790 }
3791 }
3792
3793 switch (type->base_type) {
3794 case GLSL_TYPE_STRUCT: {
3795 /* The ARB_program_interface_query spec says:
3796 *
3797 * "For an active variable declared as a structure, a separate entry
3798 * will be generated for each active structure member. The name of
3799 * each entry is formed by concatenating the name of the structure,
3800 * the "." character, and the name of the structure member. If a
3801 * structure member to enumerate is itself a structure or array,
3802 * these enumeration rules are applied recursively."
3803 */
3804 if (outermost_struct_type == NULL)
3805 outermost_struct_type = type;
3806
3807 unsigned field_location = location;
3808 for (unsigned i = 0; i < type->length; i++) {
3809 const struct glsl_struct_field *field = &type->fields.structure[i];
3810 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3811 if (!add_shader_variable(ctx, shProg, resource_set,
3812 stage_mask, programInterface,
3813 var, field_name, field->type,
3814 use_implicit_location, field_location,
3815 outermost_struct_type))
3816 return false;
3817
3818 field_location += field->type->count_attribute_slots(false);
3819 }
3820 return true;
3821 }
3822
3823 default: {
3824 /* The ARB_program_interface_query spec says:
3825 *
3826 * "For an active variable declared as a single instance of a basic
3827 * type, a single entry will be generated, using the variable name
3828 * from the shader source."
3829 */
3830 gl_shader_variable *sha_v =
3831 create_shader_variable(shProg, var, name, type, interface_type,
3832 use_implicit_location, location,
3833 outermost_struct_type);
3834 if (!sha_v)
3835 return false;
3836
3837 return add_program_resource(shProg, resource_set,
3838 programInterface, sha_v, stage_mask);
3839 }
3840 }
3841 }
3842
3843 static bool
3844 add_interface_variables(const struct gl_context *ctx,
3845 struct gl_shader_program *shProg,
3846 struct set *resource_set,
3847 unsigned stage, GLenum programInterface)
3848 {
3849 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3850
3851 foreach_in_list(ir_instruction, node, ir) {
3852 ir_variable *var = node->as_variable();
3853
3854 if (!var || var->data.how_declared == ir_var_hidden)
3855 continue;
3856
3857 int loc_bias;
3858
3859 switch (var->data.mode) {
3860 case ir_var_system_value:
3861 case ir_var_shader_in:
3862 if (programInterface != GL_PROGRAM_INPUT)
3863 continue;
3864 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3865 : int(VARYING_SLOT_VAR0);
3866 break;
3867 case ir_var_shader_out:
3868 if (programInterface != GL_PROGRAM_OUTPUT)
3869 continue;
3870 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3871 : int(VARYING_SLOT_VAR0);
3872 break;
3873 default:
3874 continue;
3875 };
3876
3877 if (var->data.patch)
3878 loc_bias = int(VARYING_SLOT_PATCH0);
3879
3880 /* Skip packed varyings, packed varyings are handled separately
3881 * by add_packed_varyings.
3882 */
3883 if (strncmp(var->name, "packed:", 7) == 0)
3884 continue;
3885
3886 /* Skip fragdata arrays, these are handled separately
3887 * by add_fragdata_arrays.
3888 */
3889 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3890 continue;
3891
3892 const bool vs_input_or_fs_output =
3893 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3894 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3895
3896 if (!add_shader_variable(ctx, shProg, resource_set,
3897 1 << stage, programInterface,
3898 var, var->name, var->type, vs_input_or_fs_output,
3899 var->data.location - loc_bias))
3900 return false;
3901 }
3902 return true;
3903 }
3904
3905 static bool
3906 add_packed_varyings(const struct gl_context *ctx,
3907 struct gl_shader_program *shProg,
3908 struct set *resource_set,
3909 int stage, GLenum type)
3910 {
3911 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3912 GLenum iface;
3913
3914 if (!sh || !sh->packed_varyings)
3915 return true;
3916
3917 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3918 ir_variable *var = node->as_variable();
3919 if (var) {
3920 switch (var->data.mode) {
3921 case ir_var_shader_in:
3922 iface = GL_PROGRAM_INPUT;
3923 break;
3924 case ir_var_shader_out:
3925 iface = GL_PROGRAM_OUTPUT;
3926 break;
3927 default:
3928 unreachable("unexpected type");
3929 }
3930
3931 if (type == iface) {
3932 const int stage_mask =
3933 build_stageref(shProg, var->name, var->data.mode);
3934 if (!add_shader_variable(ctx, shProg, resource_set,
3935 stage_mask,
3936 iface, var, var->name, var->type, false,
3937 var->data.location - VARYING_SLOT_VAR0))
3938 return false;
3939 }
3940 }
3941 }
3942 return true;
3943 }
3944
3945 static bool
3946 add_fragdata_arrays(const struct gl_context *ctx,
3947 struct gl_shader_program *shProg,
3948 struct set *resource_set)
3949 {
3950 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3951
3952 if (!sh || !sh->fragdata_arrays)
3953 return true;
3954
3955 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3956 ir_variable *var = node->as_variable();
3957 if (var) {
3958 assert(var->data.mode == ir_var_shader_out);
3959
3960 if (!add_shader_variable(ctx, shProg, resource_set,
3961 1 << MESA_SHADER_FRAGMENT,
3962 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3963 true, var->data.location - FRAG_RESULT_DATA0))
3964 return false;
3965 }
3966 }
3967 return true;
3968 }
3969
3970 static char*
3971 get_top_level_name(const char *name)
3972 {
3973 const char *first_dot = strchr(name, '.');
3974 const char *first_square_bracket = strchr(name, '[');
3975 int name_size = 0;
3976
3977 /* The ARB_program_interface_query spec says:
3978 *
3979 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3980 * the number of active array elements of the top-level shader storage
3981 * block member containing to the active variable is written to
3982 * <params>. If the top-level block member is not declared as an
3983 * array, the value one is written to <params>. If the top-level block
3984 * member is an array with no declared size, the value zero is written
3985 * to <params>."
3986 */
3987
3988 /* The buffer variable is on top level.*/
3989 if (!first_square_bracket && !first_dot)
3990 name_size = strlen(name);
3991 else if ((!first_square_bracket ||
3992 (first_dot && first_dot < first_square_bracket)))
3993 name_size = first_dot - name;
3994 else
3995 name_size = first_square_bracket - name;
3996
3997 return strndup(name, name_size);
3998 }
3999
4000 static char*
4001 get_var_name(const char *name)
4002 {
4003 const char *first_dot = strchr(name, '.');
4004
4005 if (!first_dot)
4006 return strdup(name);
4007
4008 return strndup(first_dot+1, strlen(first_dot) - 1);
4009 }
4010
4011 static bool
4012 is_top_level_shader_storage_block_member(const char* name,
4013 const char* interface_name,
4014 const char* field_name)
4015 {
4016 bool result = false;
4017
4018 /* If the given variable is already a top-level shader storage
4019 * block member, then return array_size = 1.
4020 * We could have two possibilities: if we have an instanced
4021 * shader storage block or not instanced.
4022 *
4023 * For the first, we check create a name as it was in top level and
4024 * compare it with the real name. If they are the same, then
4025 * the variable is already at top-level.
4026 *
4027 * Full instanced name is: interface name + '.' + var name +
4028 * NULL character
4029 */
4030 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4031 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4032 if (!full_instanced_name) {
4033 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4034 return false;
4035 }
4036
4037 snprintf(full_instanced_name, name_length, "%s.%s",
4038 interface_name, field_name);
4039
4040 /* Check if its top-level shader storage block member of an
4041 * instanced interface block, or of a unnamed interface block.
4042 */
4043 if (strcmp(name, full_instanced_name) == 0 ||
4044 strcmp(name, field_name) == 0)
4045 result = true;
4046
4047 free(full_instanced_name);
4048 return result;
4049 }
4050
4051 static int
4052 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4053 char *interface_name, char *var_name)
4054 {
4055 /* The ARB_program_interface_query spec says:
4056 *
4057 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4058 * the number of active array elements of the top-level shader storage
4059 * block member containing to the active variable is written to
4060 * <params>. If the top-level block member is not declared as an
4061 * array, the value one is written to <params>. If the top-level block
4062 * member is an array with no declared size, the value zero is written
4063 * to <params>."
4064 */
4065 if (is_top_level_shader_storage_block_member(uni->name,
4066 interface_name,
4067 var_name))
4068 return 1;
4069 else if (field->type->is_unsized_array())
4070 return 0;
4071 else if (field->type->is_array())
4072 return field->type->length;
4073
4074 return 1;
4075 }
4076
4077 static int
4078 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4079 const glsl_struct_field *field, char *interface_name,
4080 char *var_name)
4081 {
4082 /* The ARB_program_interface_query spec says:
4083 *
4084 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4085 * identifying the stride between array elements of the top-level
4086 * shader storage block member containing the active variable is
4087 * written to <params>. For top-level block members declared as
4088 * arrays, the value written is the difference, in basic machine units,
4089 * between the offsets of the active variable for consecutive elements
4090 * in the top-level array. For top-level block members not declared as
4091 * an array, zero is written to <params>."
4092 */
4093 if (field->type->is_array()) {
4094 const enum glsl_matrix_layout matrix_layout =
4095 glsl_matrix_layout(field->matrix_layout);
4096 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4097 const glsl_type *array_type = field->type->fields.array;
4098
4099 if (is_top_level_shader_storage_block_member(uni->name,
4100 interface_name,
4101 var_name))
4102 return 0;
4103
4104 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4105 if (array_type->is_record() || array_type->is_array())
4106 return glsl_align(array_type->std140_size(row_major), 16);
4107 else
4108 return MAX2(array_type->std140_base_alignment(row_major), 16);
4109 } else {
4110 return array_type->std430_array_stride(row_major);
4111 }
4112 }
4113 return 0;
4114 }
4115
4116 static void
4117 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4118 struct gl_uniform_storage *uni)
4119 {
4120 int block_index = uni->block_index;
4121 int array_size = -1;
4122 int array_stride = -1;
4123 char *var_name = get_top_level_name(uni->name);
4124 char *interface_name =
4125 get_top_level_name(uni->is_shader_storage ?
4126 shProg->data->ShaderStorageBlocks[block_index].Name :
4127 shProg->data->UniformBlocks[block_index].Name);
4128
4129 if (strcmp(var_name, interface_name) == 0) {
4130 /* Deal with instanced array of SSBOs */
4131 char *temp_name = get_var_name(uni->name);
4132 if (!temp_name) {
4133 linker_error(shProg, "Out of memory during linking.\n");
4134 goto write_top_level_array_size_and_stride;
4135 }
4136 free(var_name);
4137 var_name = get_top_level_name(temp_name);
4138 free(temp_name);
4139 if (!var_name) {
4140 linker_error(shProg, "Out of memory during linking.\n");
4141 goto write_top_level_array_size_and_stride;
4142 }
4143 }
4144
4145 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4146 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4147 if (sh == NULL)
4148 continue;
4149
4150 foreach_in_list(ir_instruction, node, sh->ir) {
4151 ir_variable *var = node->as_variable();
4152 if (!var || !var->get_interface_type() ||
4153 var->data.mode != ir_var_shader_storage)
4154 continue;
4155
4156 const glsl_type *interface = var->get_interface_type();
4157
4158 if (strcmp(interface_name, interface->name) != 0)
4159 continue;
4160
4161 for (unsigned i = 0; i < interface->length; i++) {
4162 const glsl_struct_field *field = &interface->fields.structure[i];
4163 if (strcmp(field->name, var_name) != 0)
4164 continue;
4165
4166 array_stride = get_array_stride(uni, interface, field,
4167 interface_name, var_name);
4168 array_size = get_array_size(uni, field, interface_name, var_name);
4169 goto write_top_level_array_size_and_stride;
4170 }
4171 }
4172 }
4173 write_top_level_array_size_and_stride:
4174 free(interface_name);
4175 free(var_name);
4176 uni->top_level_array_stride = array_stride;
4177 uni->top_level_array_size = array_size;
4178 }
4179
4180 /**
4181 * Builds up a list of program resources that point to existing
4182 * resource data.
4183 */
4184 void
4185 build_program_resource_list(struct gl_context *ctx,
4186 struct gl_shader_program *shProg)
4187 {
4188 /* Rebuild resource list. */
4189 if (shProg->data->ProgramResourceList) {
4190 ralloc_free(shProg->data->ProgramResourceList);
4191 shProg->data->ProgramResourceList = NULL;
4192 shProg->data->NumProgramResourceList = 0;
4193 }
4194
4195 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4196
4197 /* Determine first input and final output stage. These are used to
4198 * detect which variables should be enumerated in the resource list
4199 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4200 */
4201 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4202 if (!shProg->_LinkedShaders[i])
4203 continue;
4204 if (input_stage == MESA_SHADER_STAGES)
4205 input_stage = i;
4206 output_stage = i;
4207 }
4208
4209 /* Empty shader, no resources. */
4210 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4211 return;
4212
4213 struct set *resource_set = _mesa_set_create(NULL,
4214 _mesa_hash_pointer,
4215 _mesa_key_pointer_equal);
4216
4217 /* Program interface needs to expose varyings in case of SSO. */
4218 if (shProg->SeparateShader) {
4219 if (!add_packed_varyings(ctx, shProg, resource_set,
4220 input_stage, GL_PROGRAM_INPUT))
4221 return;
4222
4223 if (!add_packed_varyings(ctx, shProg, resource_set,
4224 output_stage, GL_PROGRAM_OUTPUT))
4225 return;
4226 }
4227
4228 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4229 return;
4230
4231 /* Add inputs and outputs to the resource list. */
4232 if (!add_interface_variables(ctx, shProg, resource_set,
4233 input_stage, GL_PROGRAM_INPUT))
4234 return;
4235
4236 if (!add_interface_variables(ctx, shProg, resource_set,
4237 output_stage, GL_PROGRAM_OUTPUT))
4238 return;
4239
4240 struct gl_transform_feedback_info *linked_xfb =
4241 shProg->xfb_program->sh.LinkedTransformFeedback;
4242
4243 /* Add transform feedback varyings. */
4244 if (linked_xfb->NumVarying > 0) {
4245 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4246 if (!add_program_resource(shProg, resource_set,
4247 GL_TRANSFORM_FEEDBACK_VARYING,
4248 &linked_xfb->Varyings[i], 0))
4249 return;
4250 }
4251 }
4252
4253 /* Add transform feedback buffers. */
4254 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4255 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4256 linked_xfb->Buffers[i].Binding = i;
4257 if (!add_program_resource(shProg, resource_set,
4258 GL_TRANSFORM_FEEDBACK_BUFFER,
4259 &linked_xfb->Buffers[i], 0))
4260 return;
4261 }
4262 }
4263
4264 /* Add uniforms from uniform storage. */
4265 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4266 /* Do not add uniforms internally used by Mesa. */
4267 if (shProg->data->UniformStorage[i].hidden)
4268 continue;
4269
4270 uint8_t stageref =
4271 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4272 ir_var_uniform);
4273
4274 /* Add stagereferences for uniforms in a uniform block. */
4275 bool is_shader_storage =
4276 shProg->data->UniformStorage[i].is_shader_storage;
4277 int block_index = shProg->data->UniformStorage[i].block_index;
4278 if (block_index != -1) {
4279 stageref |= is_shader_storage ?
4280 shProg->data->ShaderStorageBlocks[block_index].stageref :
4281 shProg->data->UniformBlocks[block_index].stageref;
4282 }
4283
4284 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4285 if (!should_add_buffer_variable(shProg, type,
4286 shProg->data->UniformStorage[i].name))
4287 continue;
4288
4289 if (is_shader_storage) {
4290 calculate_array_size_and_stride(shProg,
4291 &shProg->data->UniformStorage[i]);
4292 }
4293
4294 if (!add_program_resource(shProg, resource_set, type,
4295 &shProg->data->UniformStorage[i], stageref))
4296 return;
4297 }
4298
4299 /* Add program uniform blocks. */
4300 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4301 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4302 &shProg->data->UniformBlocks[i], 0))
4303 return;
4304 }
4305
4306 /* Add program shader storage blocks. */
4307 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4308 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4309 &shProg->data->ShaderStorageBlocks[i], 0))
4310 return;
4311 }
4312
4313 /* Add atomic counter buffers. */
4314 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4315 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4316 &shProg->data->AtomicBuffers[i], 0))
4317 return;
4318 }
4319
4320 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4321 GLenum type;
4322 if (!shProg->data->UniformStorage[i].hidden)
4323 continue;
4324
4325 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4326 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4327 !shProg->data->UniformStorage[i].type->is_subroutine())
4328 continue;
4329
4330 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4331 /* add shader subroutines */
4332 if (!add_program_resource(shProg, resource_set,
4333 type, &shProg->data->UniformStorage[i], 0))
4334 return;
4335 }
4336 }
4337
4338 unsigned mask = shProg->data->linked_stages;
4339 while (mask) {
4340 const int i = u_bit_scan(&mask);
4341 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4342
4343 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4344 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4345 if (!add_program_resource(shProg, resource_set,
4346 type, &p->sh.SubroutineFunctions[j], 0))
4347 return;
4348 }
4349 }
4350
4351 _mesa_set_destroy(resource_set, NULL);
4352 }
4353
4354 /**
4355 * This check is done to make sure we allow only constant expression
4356 * indexing and "constant-index-expression" (indexing with an expression
4357 * that includes loop induction variable).
4358 */
4359 static bool
4360 validate_sampler_array_indexing(struct gl_context *ctx,
4361 struct gl_shader_program *prog)
4362 {
4363 dynamic_sampler_array_indexing_visitor v;
4364 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4365 if (prog->_LinkedShaders[i] == NULL)
4366 continue;
4367
4368 bool no_dynamic_indexing =
4369 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4370
4371 /* Search for array derefs in shader. */
4372 v.run(prog->_LinkedShaders[i]->ir);
4373 if (v.uses_dynamic_sampler_array_indexing()) {
4374 const char *msg = "sampler arrays indexed with non-constant "
4375 "expressions is forbidden in GLSL %s %u";
4376 /* Backend has indicated that it has no dynamic indexing support. */
4377 if (no_dynamic_indexing) {
4378 linker_error(prog, msg, prog->IsES ? "ES" : "",
4379 prog->data->Version);
4380 return false;
4381 } else {
4382 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4383 prog->data->Version);
4384 }
4385 }
4386 }
4387 return true;
4388 }
4389
4390 static void
4391 link_assign_subroutine_types(struct gl_shader_program *prog)
4392 {
4393 unsigned mask = prog->data->linked_stages;
4394 while (mask) {
4395 const int i = u_bit_scan(&mask);
4396 gl_program *p = prog->_LinkedShaders[i]->Program;
4397
4398 p->sh.MaxSubroutineFunctionIndex = 0;
4399 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4400 ir_function *fn = node->as_function();
4401 if (!fn)
4402 continue;
4403
4404 if (fn->is_subroutine)
4405 p->sh.NumSubroutineUniformTypes++;
4406
4407 if (!fn->num_subroutine_types)
4408 continue;
4409
4410 /* these should have been calculated earlier. */
4411 assert(fn->subroutine_index != -1);
4412 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4413 linker_error(prog, "Too many subroutine functions declared.\n");
4414 return;
4415 }
4416 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4417 struct gl_subroutine_function,
4418 p->sh.NumSubroutineFunctions + 1);
4419 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4420 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4421 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4422 ralloc_array(p, const struct glsl_type *,
4423 fn->num_subroutine_types);
4424
4425 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4426 * GLSL 4.5 spec:
4427 *
4428 * "Each subroutine with an index qualifier in the shader must be
4429 * given a unique index, otherwise a compile or link error will be
4430 * generated."
4431 */
4432 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4433 if (p->sh.SubroutineFunctions[j].index != -1 &&
4434 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4435 linker_error(prog, "each subroutine index qualifier in the "
4436 "shader must be unique\n");
4437 return;
4438 }
4439 }
4440 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4441 fn->subroutine_index;
4442
4443 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4444 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4445
4446 for (int j = 0; j < fn->num_subroutine_types; j++)
4447 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4448 p->sh.NumSubroutineFunctions++;
4449 }
4450 }
4451 }
4452
4453 static void
4454 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4455 {
4456 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4457
4458 foreach_in_list(ir_instruction, node, ir) {
4459 ir_variable *const var = node->as_variable();
4460
4461 if (var == NULL || var->data.mode != io_mode)
4462 continue;
4463
4464 /* Don't set always active on builtins that haven't been redeclared */
4465 if (var->data.how_declared == ir_var_declared_implicitly)
4466 continue;
4467
4468 var->data.always_active_io = true;
4469 }
4470 }
4471
4472 /**
4473 * When separate shader programs are enabled, only input/outputs between
4474 * the stages of a multi-stage separate program can be safely removed
4475 * from the shader interface. Other inputs/outputs must remain active.
4476 */
4477 static void
4478 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4479 {
4480 unsigned first, last;
4481 assert(prog->SeparateShader);
4482
4483 first = MESA_SHADER_STAGES;
4484 last = 0;
4485
4486 /* Determine first and last stage. Excluding the compute stage */
4487 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4488 if (!prog->_LinkedShaders[i])
4489 continue;
4490 if (first == MESA_SHADER_STAGES)
4491 first = i;
4492 last = i;
4493 }
4494
4495 if (first == MESA_SHADER_STAGES)
4496 return;
4497
4498 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4499 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4500 if (!sh)
4501 continue;
4502
4503 if (first == last) {
4504 /* For a single shader program only allow inputs to the vertex shader
4505 * and outputs from the fragment shader to be removed.
4506 */
4507 if (stage != MESA_SHADER_VERTEX)
4508 set_always_active_io(sh->ir, ir_var_shader_in);
4509 if (stage != MESA_SHADER_FRAGMENT)
4510 set_always_active_io(sh->ir, ir_var_shader_out);
4511 } else {
4512 /* For multi-stage separate shader programs only allow inputs and
4513 * outputs between the shader stages to be removed as well as inputs
4514 * to the vertex shader and outputs from the fragment shader.
4515 */
4516 if (stage == first && stage != MESA_SHADER_VERTEX)
4517 set_always_active_io(sh->ir, ir_var_shader_in);
4518 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4519 set_always_active_io(sh->ir, ir_var_shader_out);
4520 }
4521 }
4522 }
4523
4524 static void
4525 link_and_validate_uniforms(struct gl_context *ctx,
4526 struct gl_shader_program *prog)
4527 {
4528 update_array_sizes(prog);
4529 link_assign_uniform_locations(prog, ctx);
4530
4531 link_assign_atomic_counter_resources(ctx, prog);
4532 link_calculate_subroutine_compat(prog);
4533 check_resources(ctx, prog);
4534 check_subroutine_resources(prog);
4535 check_image_resources(ctx, prog);
4536 link_check_atomic_counter_resources(ctx, prog);
4537 }
4538
4539 static bool
4540 link_varyings_and_uniforms(unsigned first, unsigned last,
4541 struct gl_context *ctx,
4542 struct gl_shader_program *prog, void *mem_ctx)
4543 {
4544 /* Mark all generic shader inputs and outputs as unpaired. */
4545 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4546 if (prog->_LinkedShaders[i] != NULL) {
4547 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4548 }
4549 }
4550
4551 unsigned prev = first;
4552 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4553 if (prog->_LinkedShaders[i] == NULL)
4554 continue;
4555
4556 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4557 prog->_LinkedShaders[i]);
4558 prev = i;
4559 }
4560
4561 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4562 MESA_SHADER_VERTEX)) {
4563 return false;
4564 }
4565
4566 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4567 MESA_SHADER_FRAGMENT)) {
4568 return false;
4569 }
4570
4571 /* Find the program used for xfb. Even if we don't use xfb we still want to
4572 * set this so we can fill the default values for program interface query.
4573 */
4574 prog->xfb_program = prog->_LinkedShaders[last]->Program;
4575 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4576 if (prog->_LinkedShaders[i] == NULL)
4577 continue;
4578
4579 prog->xfb_program = prog->_LinkedShaders[i]->Program;
4580 break;
4581 }
4582
4583 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4584 return false;
4585
4586 link_and_validate_uniforms(ctx, prog);
4587
4588 if (!prog->data->LinkStatus)
4589 return false;
4590
4591 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4592 if (prog->_LinkedShaders[i] == NULL)
4593 continue;
4594
4595 const struct gl_shader_compiler_options *options =
4596 &ctx->Const.ShaderCompilerOptions[i];
4597
4598 if (options->LowerBufferInterfaceBlocks)
4599 lower_ubo_reference(prog->_LinkedShaders[i],
4600 options->ClampBlockIndicesToArrayBounds);
4601
4602 if (i == MESA_SHADER_COMPUTE)
4603 lower_shared_reference(prog->_LinkedShaders[i],
4604 &prog->Comp.SharedSize);
4605
4606 lower_vector_derefs(prog->_LinkedShaders[i]);
4607 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4608 }
4609
4610 return true;
4611 }
4612
4613 void
4614 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4615 {
4616 prog->data->LinkStatus = true; /* All error paths will set this to false */
4617 prog->data->Validated = false;
4618
4619 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4620 *
4621 * "Linking can fail for a variety of reasons as specified in the
4622 * OpenGL Shading Language Specification, as well as any of the
4623 * following reasons:
4624 *
4625 * - No shader objects are attached to program."
4626 *
4627 * The Compatibility Profile specification does not list the error. In
4628 * Compatibility Profile missing shader stages are replaced by
4629 * fixed-function. This applies to the case where all stages are
4630 * missing.
4631 */
4632 if (prog->NumShaders == 0) {
4633 if (ctx->API != API_OPENGL_COMPAT)
4634 linker_error(prog, "no shaders attached to the program\n");
4635 return;
4636 }
4637
4638 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4639
4640 prog->ARB_fragment_coord_conventions_enable = false;
4641
4642 /* Separate the shaders into groups based on their type.
4643 */
4644 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4645 unsigned num_shaders[MESA_SHADER_STAGES];
4646
4647 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4648 shader_list[i] = (struct gl_shader **)
4649 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4650 num_shaders[i] = 0;
4651 }
4652
4653 unsigned min_version = UINT_MAX;
4654 unsigned max_version = 0;
4655 for (unsigned i = 0; i < prog->NumShaders; i++) {
4656 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4657 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4658
4659 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4660 linker_error(prog, "all shaders must use same shading "
4661 "language version\n");
4662 goto done;
4663 }
4664
4665 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4666 prog->ARB_fragment_coord_conventions_enable = true;
4667 }
4668
4669 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4670 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4671 num_shaders[shader_type]++;
4672 }
4673
4674 /* In desktop GLSL, different shader versions may be linked together. In
4675 * GLSL ES, all shader versions must be the same.
4676 */
4677 if (prog->Shaders[0]->IsES && min_version != max_version) {
4678 linker_error(prog, "all shaders must use same shading "
4679 "language version\n");
4680 goto done;
4681 }
4682
4683 prog->data->Version = max_version;
4684 prog->IsES = prog->Shaders[0]->IsES;
4685
4686 /* Some shaders have to be linked with some other shaders present.
4687 */
4688 if (!prog->SeparateShader) {
4689 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4690 num_shaders[MESA_SHADER_VERTEX] == 0) {
4691 linker_error(prog, "Geometry shader must be linked with "
4692 "vertex shader\n");
4693 goto done;
4694 }
4695 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4696 num_shaders[MESA_SHADER_VERTEX] == 0) {
4697 linker_error(prog, "Tessellation evaluation shader must be linked "
4698 "with vertex shader\n");
4699 goto done;
4700 }
4701 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4702 num_shaders[MESA_SHADER_VERTEX] == 0) {
4703 linker_error(prog, "Tessellation control shader must be linked with "
4704 "vertex shader\n");
4705 goto done;
4706 }
4707
4708 /* The spec is self-contradictory here. It allows linking without a tess
4709 * eval shader, but that can only be used with transform feedback and
4710 * rasterization disabled. However, transform feedback isn't allowed
4711 * with GL_PATCHES, so it can't be used.
4712 *
4713 * More investigation showed that the idea of transform feedback after
4714 * a tess control shader was dropped, because some hw vendors couldn't
4715 * support tessellation without a tess eval shader, but the linker
4716 * section wasn't updated to reflect that.
4717 *
4718 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4719 * spec bug.
4720 *
4721 * Do what's reasonable and always require a tess eval shader if a tess
4722 * control shader is present.
4723 */
4724 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4725 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4726 linker_error(prog, "Tessellation control shader must be linked with "
4727 "tessellation evaluation shader\n");
4728 goto done;
4729 }
4730 }
4731
4732 /* Compute shaders have additional restrictions. */
4733 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4734 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4735 linker_error(prog, "Compute shaders may not be linked with any other "
4736 "type of shader\n");
4737 }
4738
4739 /* Link all shaders for a particular stage and validate the result.
4740 */
4741 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4742 if (num_shaders[stage] > 0) {
4743 gl_linked_shader *const sh =
4744 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4745 num_shaders[stage], false);
4746
4747 if (!prog->data->LinkStatus) {
4748 if (sh)
4749 _mesa_delete_linked_shader(ctx, sh);
4750 goto done;
4751 }
4752
4753 switch (stage) {
4754 case MESA_SHADER_VERTEX:
4755 validate_vertex_shader_executable(prog, sh, ctx);
4756 break;
4757 case MESA_SHADER_TESS_CTRL:
4758 /* nothing to be done */
4759 break;
4760 case MESA_SHADER_TESS_EVAL:
4761 validate_tess_eval_shader_executable(prog, sh, ctx);
4762 break;
4763 case MESA_SHADER_GEOMETRY:
4764 validate_geometry_shader_executable(prog, sh, ctx);
4765 break;
4766 case MESA_SHADER_FRAGMENT:
4767 validate_fragment_shader_executable(prog, sh);
4768 break;
4769 }
4770 if (!prog->data->LinkStatus) {
4771 if (sh)
4772 _mesa_delete_linked_shader(ctx, sh);
4773 goto done;
4774 }
4775
4776 prog->_LinkedShaders[stage] = sh;
4777 prog->data->linked_stages |= 1 << stage;
4778 }
4779 }
4780
4781 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4782 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4783 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4784 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4785 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4786 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4787 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4788 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4789 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4790 } else {
4791 prog->LastClipDistanceArraySize = 0; /* Not used */
4792 prog->LastCullDistanceArraySize = 0; /* Not used */
4793 }
4794
4795 /* Here begins the inter-stage linking phase. Some initial validation is
4796 * performed, then locations are assigned for uniforms, attributes, and
4797 * varyings.
4798 */
4799 cross_validate_uniforms(prog);
4800 if (!prog->data->LinkStatus)
4801 goto done;
4802
4803 unsigned first, last, prev;
4804
4805 first = MESA_SHADER_STAGES;
4806 last = 0;
4807
4808 /* Determine first and last stage. */
4809 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4810 if (!prog->_LinkedShaders[i])
4811 continue;
4812 if (first == MESA_SHADER_STAGES)
4813 first = i;
4814 last = i;
4815 }
4816
4817 check_explicit_uniform_locations(ctx, prog);
4818 link_assign_subroutine_types(prog);
4819
4820 if (!prog->data->LinkStatus)
4821 goto done;
4822
4823 resize_tes_inputs(ctx, prog);
4824
4825 /* Validate the inputs of each stage with the output of the preceding
4826 * stage.
4827 */
4828 prev = first;
4829 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4830 if (prog->_LinkedShaders[i] == NULL)
4831 continue;
4832
4833 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4834 prog->_LinkedShaders[i]);
4835 if (!prog->data->LinkStatus)
4836 goto done;
4837
4838 cross_validate_outputs_to_inputs(prog,
4839 prog->_LinkedShaders[prev],
4840 prog->_LinkedShaders[i]);
4841 if (!prog->data->LinkStatus)
4842 goto done;
4843
4844 prev = i;
4845 }
4846
4847 /* Cross-validate uniform blocks between shader stages */
4848 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4849 if (!prog->data->LinkStatus)
4850 goto done;
4851
4852 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4853 if (prog->_LinkedShaders[i] != NULL)
4854 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4855 }
4856
4857 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4858 * it before optimization because we want most of the checks to get
4859 * dropped thanks to constant propagation.
4860 *
4861 * This rule also applies to GLSL ES 3.00.
4862 */
4863 if (max_version >= (prog->IsES ? 300 : 130)) {
4864 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4865 if (sh) {
4866 lower_discard_flow(sh->ir);
4867 }
4868 }
4869
4870 if (prog->SeparateShader)
4871 disable_varying_optimizations_for_sso(prog);
4872
4873 /* Process UBOs */
4874 if (!interstage_cross_validate_uniform_blocks(prog, false))
4875 goto done;
4876
4877 /* Process SSBOs */
4878 if (!interstage_cross_validate_uniform_blocks(prog, true))
4879 goto done;
4880
4881 /* Do common optimization before assigning storage for attributes,
4882 * uniforms, and varyings. Later optimization could possibly make
4883 * some of that unused.
4884 */
4885 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4886 if (prog->_LinkedShaders[i] == NULL)
4887 continue;
4888
4889 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4890 if (!prog->data->LinkStatus)
4891 goto done;
4892
4893 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4894 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4895 }
4896
4897 if (ctx->Const.LowerTessLevel) {
4898 lower_tess_level(prog->_LinkedShaders[i]);
4899 }
4900
4901 if (ctx->Const.GLSLOptimizeConservatively) {
4902 /* Run it just once. */
4903 do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4904 &ctx->Const.ShaderCompilerOptions[i],
4905 ctx->Const.NativeIntegers);
4906 } else {
4907 /* Repeat it until it stops making changes. */
4908 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4909 &ctx->Const.ShaderCompilerOptions[i],
4910 ctx->Const.NativeIntegers))
4911 ;
4912 }
4913
4914 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
4915 propagate_invariance(prog->_LinkedShaders[i]->ir);
4916 }
4917
4918 /* Validation for special cases where we allow sampler array indexing
4919 * with loop induction variable. This check emits a warning or error
4920 * depending if backend can handle dynamic indexing.
4921 */
4922 if ((!prog->IsES && prog->data->Version < 130) ||
4923 (prog->IsES && prog->data->Version < 300)) {
4924 if (!validate_sampler_array_indexing(ctx, prog))
4925 goto done;
4926 }
4927
4928 /* Check and validate stream emissions in geometry shaders */
4929 validate_geometry_shader_emissions(ctx, prog);
4930
4931 store_fragdepth_layout(prog);
4932
4933 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4934 goto done;
4935
4936 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4937 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4938 * anything about shader linking when one of the shaders (vertex or
4939 * fragment shader) is absent. So, the extension shouldn't change the
4940 * behavior specified in GLSL specification.
4941 *
4942 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4943 * "Linking can fail for a variety of reasons as specified in the
4944 * OpenGL ES Shading Language Specification, as well as any of the
4945 * following reasons:
4946 *
4947 * ...
4948 *
4949 * * program contains objects to form either a vertex shader or
4950 * fragment shader, and program is not separable, and does not
4951 * contain objects to form both a vertex shader and fragment
4952 * shader."
4953 *
4954 * However, the only scenario in 3.1+ where we don't require them both is
4955 * when we have a compute shader. For example:
4956 *
4957 * - No shaders is a link error.
4958 * - Geom or Tess without a Vertex shader is a link error which means we
4959 * always require a Vertex shader and hence a Fragment shader.
4960 * - Finally a Compute shader linked with any other stage is a link error.
4961 */
4962 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4963 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4964 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4965 linker_error(prog, "program lacks a vertex shader\n");
4966 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4967 linker_error(prog, "program lacks a fragment shader\n");
4968 }
4969 }
4970
4971 done:
4972 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4973 free(shader_list[i]);
4974 if (prog->_LinkedShaders[i] == NULL)
4975 continue;
4976
4977 /* Do a final validation step to make sure that the IR wasn't
4978 * invalidated by any modifications performed after intrastage linking.
4979 */
4980 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4981
4982 /* Retain any live IR, but trash the rest. */
4983 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4984
4985 /* The symbol table in the linked shaders may contain references to
4986 * variables that were removed (e.g., unused uniforms). Since it may
4987 * contain junk, there is no possible valid use. Delete it and set the
4988 * pointer to NULL.
4989 */
4990 delete prog->_LinkedShaders[i]->symbols;
4991 prog->_LinkedShaders[i]->symbols = NULL;
4992 }
4993
4994 ralloc_free(mem_ctx);
4995 }