38cbbfa680fdc21e772efd4a8c50f41c16e93bdc
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83
84 #include "main/shaderobj.h"
85 #include "main/enums.h"
86
87
88 namespace {
89
90 /**
91 * Visitor that determines whether or not a variable is ever written.
92 */
93 class find_assignment_visitor : public ir_hierarchical_visitor {
94 public:
95 find_assignment_visitor(const char *name)
96 : name(name), found(false)
97 {
98 /* empty */
99 }
100
101 virtual ir_visitor_status visit_enter(ir_assignment *ir)
102 {
103 ir_variable *const var = ir->lhs->variable_referenced();
104
105 if (strcmp(name, var->name) == 0) {
106 found = true;
107 return visit_stop;
108 }
109
110 return visit_continue_with_parent;
111 }
112
113 virtual ir_visitor_status visit_enter(ir_call *ir)
114 {
115 foreach_two_lists(formal_node, &ir->callee->parameters,
116 actual_node, &ir->actual_parameters) {
117 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
118 ir_variable *sig_param = (ir_variable *) formal_node;
119
120 if (sig_param->data.mode == ir_var_function_out ||
121 sig_param->data.mode == ir_var_function_inout) {
122 ir_variable *var = param_rval->variable_referenced();
123 if (var && strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128 }
129
130 if (ir->return_deref != NULL) {
131 ir_variable *const var = ir->return_deref->variable_referenced();
132
133 if (strcmp(name, var->name) == 0) {
134 found = true;
135 return visit_stop;
136 }
137 }
138
139 return visit_continue_with_parent;
140 }
141
142 bool variable_found()
143 {
144 return found;
145 }
146
147 private:
148 const char *name; /**< Find writes to a variable with this name. */
149 bool found; /**< Was a write to the variable found? */
150 };
151
152
153 /**
154 * Visitor that determines whether or not a variable is ever read.
155 */
156 class find_deref_visitor : public ir_hierarchical_visitor {
157 public:
158 find_deref_visitor(const char *name)
159 : name(name), found(false)
160 {
161 /* empty */
162 }
163
164 virtual ir_visitor_status visit(ir_dereference_variable *ir)
165 {
166 if (strcmp(this->name, ir->var->name) == 0) {
167 this->found = true;
168 return visit_stop;
169 }
170
171 return visit_continue;
172 }
173
174 bool variable_found() const
175 {
176 return this->found;
177 }
178
179 private:
180 const char *name; /**< Find writes to a variable with this name. */
181 bool found; /**< Was a write to the variable found? */
182 };
183
184
185 /**
186 * A visitor helper that provides methods for updating the types of
187 * ir_dereferences. Classes that update variable types (say, updating
188 * array sizes) will want to use this so that dereference types stay in sync.
189 */
190 class deref_type_updater : public ir_hierarchical_visitor {
191 public:
192 virtual ir_visitor_status visit(ir_dereference_variable *ir)
193 {
194 ir->type = ir->var->type;
195 return visit_continue;
196 }
197
198 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
199 {
200 const glsl_type *const vt = ir->array->type;
201 if (vt->is_array())
202 ir->type = vt->fields.array;
203 return visit_continue;
204 }
205
206 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
207 {
208 for (unsigned i = 0; i < ir->record->type->length; i++) {
209 const struct glsl_struct_field *field =
210 &ir->record->type->fields.structure[i];
211 if (strcmp(field->name, ir->field) == 0) {
212 ir->type = field->type;
213 break;
214 }
215 }
216 return visit_continue;
217 }
218 };
219
220
221 class array_resize_visitor : public deref_type_updater {
222 public:
223 unsigned num_vertices;
224 gl_shader_program *prog;
225 gl_shader_stage stage;
226
227 array_resize_visitor(unsigned num_vertices,
228 gl_shader_program *prog,
229 gl_shader_stage stage)
230 {
231 this->num_vertices = num_vertices;
232 this->prog = prog;
233 this->stage = stage;
234 }
235
236 virtual ~array_resize_visitor()
237 {
238 /* empty */
239 }
240
241 virtual ir_visitor_status visit(ir_variable *var)
242 {
243 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
244 var->data.patch)
245 return visit_continue;
246
247 unsigned size = var->type->length;
248
249 if (stage == MESA_SHADER_GEOMETRY) {
250 /* Generate a link error if the shader has declared this array with
251 * an incorrect size.
252 */
253 if (!var->data.implicit_sized_array &&
254 size && size != this->num_vertices) {
255 linker_error(this->prog, "size of array %s declared as %u, "
256 "but number of input vertices is %u\n",
257 var->name, size, this->num_vertices);
258 return visit_continue;
259 }
260
261 /* Generate a link error if the shader attempts to access an input
262 * array using an index too large for its actual size assigned at
263 * link time.
264 */
265 if (var->data.max_array_access >= (int)this->num_vertices) {
266 linker_error(this->prog, "%s shader accesses element %i of "
267 "%s, but only %i input vertices\n",
268 _mesa_shader_stage_to_string(this->stage),
269 var->data.max_array_access, var->name, this->num_vertices);
270 return visit_continue;
271 }
272 }
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280 };
281
282 /**
283 * Visitor that determines the highest stream id to which a (geometry) shader
284 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
285 */
286 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
287 public:
288 find_emit_vertex_visitor(int max_allowed)
289 : max_stream_allowed(max_allowed),
290 invalid_stream_id(0),
291 invalid_stream_id_from_emit_vertex(false),
292 end_primitive_found(false),
293 uses_non_zero_stream(false)
294 {
295 /* empty */
296 }
297
298 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
299 {
300 int stream_id = ir->stream_id();
301
302 if (stream_id < 0) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = true;
305 return visit_stop;
306 }
307
308 if (stream_id > max_stream_allowed) {
309 invalid_stream_id = stream_id;
310 invalid_stream_id_from_emit_vertex = true;
311 return visit_stop;
312 }
313
314 if (stream_id != 0)
315 uses_non_zero_stream = true;
316
317 return visit_continue;
318 }
319
320 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
321 {
322 end_primitive_found = true;
323
324 int stream_id = ir->stream_id();
325
326 if (stream_id < 0) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = false;
329 return visit_stop;
330 }
331
332 if (stream_id > max_stream_allowed) {
333 invalid_stream_id = stream_id;
334 invalid_stream_id_from_emit_vertex = false;
335 return visit_stop;
336 }
337
338 if (stream_id != 0)
339 uses_non_zero_stream = true;
340
341 return visit_continue;
342 }
343
344 bool error()
345 {
346 return invalid_stream_id != 0;
347 }
348
349 const char *error_func()
350 {
351 return invalid_stream_id_from_emit_vertex ?
352 "EmitStreamVertex" : "EndStreamPrimitive";
353 }
354
355 int error_stream()
356 {
357 return invalid_stream_id;
358 }
359
360 bool uses_streams()
361 {
362 return uses_non_zero_stream;
363 }
364
365 bool uses_end_primitive()
366 {
367 return end_primitive_found;
368 }
369
370 private:
371 int max_stream_allowed;
372 int invalid_stream_id;
373 bool invalid_stream_id_from_emit_vertex;
374 bool end_primitive_found;
375 bool uses_non_zero_stream;
376 };
377
378 /* Class that finds array derefs and check if indexes are dynamic. */
379 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
380 {
381 public:
382 dynamic_sampler_array_indexing_visitor() :
383 dynamic_sampler_array_indexing(false)
384 {
385 }
386
387 ir_visitor_status visit_enter(ir_dereference_array *ir)
388 {
389 if (!ir->variable_referenced())
390 return visit_continue;
391
392 if (!ir->variable_referenced()->type->contains_sampler())
393 return visit_continue;
394
395 if (!ir->array_index->constant_expression_value()) {
396 dynamic_sampler_array_indexing = true;
397 return visit_stop;
398 }
399 return visit_continue;
400 }
401
402 bool uses_dynamic_sampler_array_indexing()
403 {
404 return dynamic_sampler_array_indexing;
405 }
406
407 private:
408 bool dynamic_sampler_array_indexing;
409 };
410
411 } /* anonymous namespace */
412
413 void
414 linker_error(gl_shader_program *prog, const char *fmt, ...)
415 {
416 va_list ap;
417
418 ralloc_strcat(&prog->data->InfoLog, "error: ");
419 va_start(ap, fmt);
420 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
421 va_end(ap);
422
423 prog->data->LinkStatus = false;
424 }
425
426
427 void
428 linker_warning(gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list ap;
431
432 ralloc_strcat(&prog->data->InfoLog, "warning: ");
433 va_start(ap, fmt);
434 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
435 va_end(ap);
436
437 }
438
439
440 /**
441 * Given a string identifying a program resource, break it into a base name
442 * and an optional array index in square brackets.
443 *
444 * If an array index is present, \c out_base_name_end is set to point to the
445 * "[" that precedes the array index, and the array index itself is returned
446 * as a long.
447 *
448 * If no array index is present (or if the array index is negative or
449 * mal-formed), \c out_base_name_end, is set to point to the null terminator
450 * at the end of the input string, and -1 is returned.
451 *
452 * Only the final array index is parsed; if the string contains other array
453 * indices (or structure field accesses), they are left in the base name.
454 *
455 * No attempt is made to check that the base name is properly formed;
456 * typically the caller will look up the base name in a hash table, so
457 * ill-formed base names simply turn into hash table lookup failures.
458 */
459 long
460 parse_program_resource_name(const GLchar *name,
461 const GLchar **out_base_name_end)
462 {
463 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
464 *
465 * "When an integer array element or block instance number is part of
466 * the name string, it will be specified in decimal form without a "+"
467 * or "-" sign or any extra leading zeroes. Additionally, the name
468 * string will not include white space anywhere in the string."
469 */
470
471 const size_t len = strlen(name);
472 *out_base_name_end = name + len;
473
474 if (len == 0 || name[len-1] != ']')
475 return -1;
476
477 /* Walk backwards over the string looking for a non-digit character. This
478 * had better be the opening bracket for an array index.
479 *
480 * Initially, i specifies the location of the ']'. Since the string may
481 * contain only the ']' charcater, walk backwards very carefully.
482 */
483 unsigned i;
484 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
485 /* empty */ ;
486
487 if ((i == 0) || name[i-1] != '[')
488 return -1;
489
490 long array_index = strtol(&name[i], NULL, 10);
491 if (array_index < 0)
492 return -1;
493
494 /* Check for leading zero */
495 if (name[i] == '0' && name[i+1] != ']')
496 return -1;
497
498 *out_base_name_end = name + (i - 1);
499 return array_index;
500 }
501
502
503 void
504 link_invalidate_variable_locations(exec_list *ir)
505 {
506 foreach_in_list(ir_instruction, node, ir) {
507 ir_variable *const var = node->as_variable();
508
509 if (var == NULL)
510 continue;
511
512 /* Only assign locations for variables that lack an explicit location.
513 * Explicit locations are set for all built-in variables, generic vertex
514 * shader inputs (via layout(location=...)), and generic fragment shader
515 * outputs (also via layout(location=...)).
516 */
517 if (!var->data.explicit_location) {
518 var->data.location = -1;
519 var->data.location_frac = 0;
520 }
521
522 /* ir_variable::is_unmatched_generic_inout is used by the linker while
523 * connecting outputs from one stage to inputs of the next stage.
524 */
525 if (var->data.explicit_location &&
526 var->data.location < VARYING_SLOT_VAR0) {
527 var->data.is_unmatched_generic_inout = 0;
528 } else {
529 var->data.is_unmatched_generic_inout = 1;
530 }
531 }
532 }
533
534
535 /**
536 * Set clip_distance_array_size based and cull_distance_array_size on the given
537 * shader.
538 *
539 * Also check for errors based on incorrect usage of gl_ClipVertex and
540 * gl_ClipDistance and gl_CullDistance.
541 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
542 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
543 *
544 * Return false if an error was reported.
545 */
546 static void
547 analyze_clip_cull_usage(struct gl_shader_program *prog,
548 struct gl_linked_shader *shader,
549 struct gl_context *ctx,
550 GLuint *clip_distance_array_size,
551 GLuint *cull_distance_array_size)
552 {
553 *clip_distance_array_size = 0;
554 *cull_distance_array_size = 0;
555
556 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
557 /* From section 7.1 (Vertex Shader Special Variables) of the
558 * GLSL 1.30 spec:
559 *
560 * "It is an error for a shader to statically write both
561 * gl_ClipVertex and gl_ClipDistance."
562 *
563 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
564 * gl_ClipVertex nor gl_ClipDistance. However with
565 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
566 */
567 find_assignment_visitor clip_distance("gl_ClipDistance");
568 find_assignment_visitor cull_distance("gl_CullDistance");
569
570 clip_distance.run(shader->ir);
571 cull_distance.run(shader->ir);
572
573 /* From the ARB_cull_distance spec:
574 *
575 * It is a compile-time or link-time error for the set of shaders forming
576 * a program to statically read or write both gl_ClipVertex and either
577 * gl_ClipDistance or gl_CullDistance.
578 *
579 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
580 * gl_ClipVertex.
581 */
582 if (!prog->IsES) {
583 find_assignment_visitor clip_vertex("gl_ClipVertex");
584
585 clip_vertex.run(shader->ir);
586
587 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
588 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
589 "and `gl_ClipDistance'\n",
590 _mesa_shader_stage_to_string(shader->Stage));
591 return;
592 }
593 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
594 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
595 "and `gl_CullDistance'\n",
596 _mesa_shader_stage_to_string(shader->Stage));
597 return;
598 }
599 }
600
601 if (clip_distance.variable_found()) {
602 ir_variable *clip_distance_var =
603 shader->symbols->get_variable("gl_ClipDistance");
604 assert(clip_distance_var);
605 *clip_distance_array_size = clip_distance_var->type->length;
606 }
607 if (cull_distance.variable_found()) {
608 ir_variable *cull_distance_var =
609 shader->symbols->get_variable("gl_CullDistance");
610 assert(cull_distance_var);
611 *cull_distance_array_size = cull_distance_var->type->length;
612 }
613 /* From the ARB_cull_distance spec:
614 *
615 * It is a compile-time or link-time error for the set of shaders forming
616 * a program to have the sum of the sizes of the gl_ClipDistance and
617 * gl_CullDistance arrays to be larger than
618 * gl_MaxCombinedClipAndCullDistances.
619 */
620 if ((*clip_distance_array_size + *cull_distance_array_size) >
621 ctx->Const.MaxClipPlanes) {
622 linker_error(prog, "%s shader: the combined size of "
623 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
624 "be larger than "
625 "gl_MaxCombinedClipAndCullDistances (%u)",
626 _mesa_shader_stage_to_string(shader->Stage),
627 ctx->Const.MaxClipPlanes);
628 }
629 }
630 }
631
632
633 /**
634 * Verify that a vertex shader executable meets all semantic requirements.
635 *
636 * Also sets prog->Vert.ClipDistanceArraySize and
637 * prog->Vert.CullDistanceArraySize as a side effect.
638 *
639 * \param shader Vertex shader executable to be verified
640 */
641 void
642 validate_vertex_shader_executable(struct gl_shader_program *prog,
643 struct gl_linked_shader *shader,
644 struct gl_context *ctx)
645 {
646 if (shader == NULL)
647 return;
648
649 /* From the GLSL 1.10 spec, page 48:
650 *
651 * "The variable gl_Position is available only in the vertex
652 * language and is intended for writing the homogeneous vertex
653 * position. All executions of a well-formed vertex shader
654 * executable must write a value into this variable. [...] The
655 * variable gl_Position is available only in the vertex
656 * language and is intended for writing the homogeneous vertex
657 * position. All executions of a well-formed vertex shader
658 * executable must write a value into this variable."
659 *
660 * while in GLSL 1.40 this text is changed to:
661 *
662 * "The variable gl_Position is available only in the vertex
663 * language and is intended for writing the homogeneous vertex
664 * position. It can be written at any time during shader
665 * execution. It may also be read back by a vertex shader
666 * after being written. This value will be used by primitive
667 * assembly, clipping, culling, and other fixed functionality
668 * operations, if present, that operate on primitives after
669 * vertex processing has occurred. Its value is undefined if
670 * the vertex shader executable does not write gl_Position."
671 *
672 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
673 * gl_Position is not an error.
674 */
675 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
676 find_assignment_visitor find("gl_Position");
677 find.run(shader->ir);
678 if (!find.variable_found()) {
679 if (prog->IsES) {
680 linker_warning(prog,
681 "vertex shader does not write to `gl_Position'. "
682 "Its value is undefined. \n");
683 } else {
684 linker_error(prog,
685 "vertex shader does not write to `gl_Position'. \n");
686 }
687 return;
688 }
689 }
690
691 analyze_clip_cull_usage(prog, shader, ctx,
692 &prog->Vert.ClipDistanceArraySize,
693 &prog->Vert.CullDistanceArraySize);
694 }
695
696 void
697 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader,
699 struct gl_context *ctx)
700 {
701 if (shader == NULL)
702 return;
703
704 analyze_clip_cull_usage(prog, shader, ctx,
705 &prog->TessEval.ClipDistanceArraySize,
706 &prog->TessEval.CullDistanceArraySize);
707 }
708
709
710 /**
711 * Verify that a fragment shader executable meets all semantic requirements
712 *
713 * \param shader Fragment shader executable to be verified
714 */
715 void
716 validate_fragment_shader_executable(struct gl_shader_program *prog,
717 struct gl_linked_shader *shader)
718 {
719 if (shader == NULL)
720 return;
721
722 find_assignment_visitor frag_color("gl_FragColor");
723 find_assignment_visitor frag_data("gl_FragData");
724
725 frag_color.run(shader->ir);
726 frag_data.run(shader->ir);
727
728 if (frag_color.variable_found() && frag_data.variable_found()) {
729 linker_error(prog, "fragment shader writes to both "
730 "`gl_FragColor' and `gl_FragData'\n");
731 }
732 }
733
734 /**
735 * Verify that a geometry shader executable meets all semantic requirements
736 *
737 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
738 * prog->Geom.CullDistanceArraySize as a side effect.
739 *
740 * \param shader Geometry shader executable to be verified
741 */
742 void
743 validate_geometry_shader_executable(struct gl_shader_program *prog,
744 struct gl_linked_shader *shader,
745 struct gl_context *ctx)
746 {
747 if (shader == NULL)
748 return;
749
750 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
751 prog->Geom.VerticesIn = num_vertices;
752
753 analyze_clip_cull_usage(prog, shader, ctx,
754 &prog->Geom.ClipDistanceArraySize,
755 &prog->Geom.CullDistanceArraySize);
756 }
757
758 /**
759 * Check if geometry shaders emit to non-zero streams and do corresponding
760 * validations.
761 */
762 static void
763 validate_geometry_shader_emissions(struct gl_context *ctx,
764 struct gl_shader_program *prog)
765 {
766 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
767
768 if (sh != NULL) {
769 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
770 emit_vertex.run(sh->ir);
771 if (emit_vertex.error()) {
772 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
773 "stream parameter are in the range [0, %d].\n",
774 emit_vertex.error_func(),
775 emit_vertex.error_stream(),
776 ctx->Const.MaxVertexStreams - 1);
777 }
778 prog->Geom.UsesStreams = emit_vertex.uses_streams();
779 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
780
781 /* From the ARB_gpu_shader5 spec:
782 *
783 * "Multiple vertex streams are supported only if the output primitive
784 * type is declared to be "points". A program will fail to link if it
785 * contains a geometry shader calling EmitStreamVertex() or
786 * EndStreamPrimitive() if its output primitive type is not "points".
787 *
788 * However, in the same spec:
789 *
790 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
791 * with <stream> set to zero."
792 *
793 * And:
794 *
795 * "The function EndPrimitive() is equivalent to calling
796 * EndStreamPrimitive() with <stream> set to zero."
797 *
798 * Since we can call EmitVertex() and EndPrimitive() when we output
799 * primitives other than points, calling EmitStreamVertex(0) or
800 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
801 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
802 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
803 * stream.
804 */
805 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
806 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
807 "with n>0 requires point output\n");
808 }
809 }
810 }
811
812 bool
813 validate_intrastage_arrays(struct gl_shader_program *prog,
814 ir_variable *const var,
815 ir_variable *const existing)
816 {
817 /* Consider the types to be "the same" if both types are arrays
818 * of the same type and one of the arrays is implicitly sized.
819 * In addition, set the type of the linked variable to the
820 * explicitly sized array.
821 */
822 if (var->type->is_array() && existing->type->is_array()) {
823 if ((var->type->fields.array == existing->type->fields.array) &&
824 ((var->type->length == 0)|| (existing->type->length == 0))) {
825 if (var->type->length != 0) {
826 if ((int)var->type->length <= existing->data.max_array_access) {
827 linker_error(prog, "%s `%s' declared as type "
828 "`%s' but outermost dimension has an index"
829 " of `%i'\n",
830 mode_string(var),
831 var->name, var->type->name,
832 existing->data.max_array_access);
833 }
834 existing->type = var->type;
835 return true;
836 } else if (existing->type->length != 0) {
837 if((int)existing->type->length <= var->data.max_array_access &&
838 !existing->data.from_ssbo_unsized_array) {
839 linker_error(prog, "%s `%s' declared as type "
840 "`%s' but outermost dimension has an index"
841 " of `%i'\n",
842 mode_string(var),
843 var->name, existing->type->name,
844 var->data.max_array_access);
845 }
846 return true;
847 }
848 } else {
849 /* The arrays of structs could have different glsl_type pointers but
850 * they are actually the same type. Use record_compare() to check that.
851 */
852 if (existing->type->fields.array->is_record() &&
853 var->type->fields.array->is_record() &&
854 existing->type->fields.array->record_compare(var->type->fields.array))
855 return true;
856 }
857 }
858 return false;
859 }
860
861
862 /**
863 * Perform validation of global variables used across multiple shaders
864 */
865 void
866 cross_validate_globals(struct gl_shader_program *prog,
867 struct exec_list *ir, glsl_symbol_table *variables,
868 bool uniforms_only)
869 {
870 foreach_in_list(ir_instruction, node, ir) {
871 ir_variable *const var = node->as_variable();
872
873 if (var == NULL)
874 continue;
875
876 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
877 continue;
878
879 /* don't cross validate subroutine uniforms */
880 if (var->type->contains_subroutine())
881 continue;
882
883 /* Don't cross validate temporaries that are at global scope. These
884 * will eventually get pulled into the shaders 'main'.
885 */
886 if (var->data.mode == ir_var_temporary)
887 continue;
888
889 /* If a global with this name has already been seen, verify that the
890 * new instance has the same type. In addition, if the globals have
891 * initializers, the values of the initializers must be the same.
892 */
893 ir_variable *const existing = variables->get_variable(var->name);
894 if (existing != NULL) {
895 /* Check if types match. Interface blocks have some special
896 * rules so we handle those elsewhere.
897 */
898 if (var->type != existing->type &&
899 !var->is_interface_instance()) {
900 if (!validate_intrastage_arrays(prog, var, existing)) {
901 if (var->type->is_record() && existing->type->is_record()
902 && existing->type->record_compare(var->type)) {
903 existing->type = var->type;
904 } else {
905 /* If it is an unsized array in a Shader Storage Block,
906 * two different shaders can access to different elements.
907 * Because of that, they might be converted to different
908 * sized arrays, then check that they are compatible but
909 * ignore the array size.
910 */
911 if (!(var->data.mode == ir_var_shader_storage &&
912 var->data.from_ssbo_unsized_array &&
913 existing->data.mode == ir_var_shader_storage &&
914 existing->data.from_ssbo_unsized_array &&
915 var->type->gl_type == existing->type->gl_type)) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' and type `%s'\n",
918 mode_string(var),
919 var->name, var->type->name,
920 existing->type->name);
921 return;
922 }
923 }
924 }
925 }
926
927 if (var->data.explicit_location) {
928 if (existing->data.explicit_location
929 && (var->data.location != existing->data.location)) {
930 linker_error(prog, "explicit locations for %s "
931 "`%s' have differing values\n",
932 mode_string(var), var->name);
933 return;
934 }
935
936 if (var->data.location_frac != existing->data.location_frac) {
937 linker_error(prog, "explicit components for %s `%s' have "
938 "differing values\n", mode_string(var), var->name);
939 return;
940 }
941
942 existing->data.location = var->data.location;
943 existing->data.explicit_location = true;
944 } else {
945 /* Check if uniform with implicit location was marked explicit
946 * by earlier shader stage. If so, mark it explicit in this stage
947 * too to make sure later processing does not treat it as
948 * implicit one.
949 */
950 if (existing->data.explicit_location) {
951 var->data.location = existing->data.location;
952 var->data.explicit_location = true;
953 }
954 }
955
956 /* From the GLSL 4.20 specification:
957 * "A link error will result if two compilation units in a program
958 * specify different integer-constant bindings for the same
959 * opaque-uniform name. However, it is not an error to specify a
960 * binding on some but not all declarations for the same name"
961 */
962 if (var->data.explicit_binding) {
963 if (existing->data.explicit_binding &&
964 var->data.binding != existing->data.binding) {
965 linker_error(prog, "explicit bindings for %s "
966 "`%s' have differing values\n",
967 mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.binding = var->data.binding;
972 existing->data.explicit_binding = true;
973 }
974
975 if (var->type->contains_atomic() &&
976 var->data.offset != existing->data.offset) {
977 linker_error(prog, "offset specifications for %s "
978 "`%s' have differing values\n",
979 mode_string(var), var->name);
980 return;
981 }
982
983 /* Validate layout qualifiers for gl_FragDepth.
984 *
985 * From the AMD/ARB_conservative_depth specs:
986 *
987 * "If gl_FragDepth is redeclared in any fragment shader in a
988 * program, it must be redeclared in all fragment shaders in
989 * that program that have static assignments to
990 * gl_FragDepth. All redeclarations of gl_FragDepth in all
991 * fragment shaders in a single program must have the same set
992 * of qualifiers."
993 */
994 if (strcmp(var->name, "gl_FragDepth") == 0) {
995 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
996 bool layout_differs =
997 var->data.depth_layout != existing->data.depth_layout;
998
999 if (layout_declared && layout_differs) {
1000 linker_error(prog,
1001 "All redeclarations of gl_FragDepth in all "
1002 "fragment shaders in a single program must have "
1003 "the same set of qualifiers.\n");
1004 }
1005
1006 if (var->data.used && layout_differs) {
1007 linker_error(prog,
1008 "If gl_FragDepth is redeclared with a layout "
1009 "qualifier in any fragment shader, it must be "
1010 "redeclared with the same layout qualifier in "
1011 "all fragment shaders that have assignments to "
1012 "gl_FragDepth\n");
1013 }
1014 }
1015
1016 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1017 *
1018 * "If a shared global has multiple initializers, the
1019 * initializers must all be constant expressions, and they
1020 * must all have the same value. Otherwise, a link error will
1021 * result. (A shared global having only one initializer does
1022 * not require that initializer to be a constant expression.)"
1023 *
1024 * Previous to 4.20 the GLSL spec simply said that initializers
1025 * must have the same value. In this case of non-constant
1026 * initializers, this was impossible to determine. As a result,
1027 * no vendor actually implemented that behavior. The 4.20
1028 * behavior matches the implemented behavior of at least one other
1029 * vendor, so we'll implement that for all GLSL versions.
1030 */
1031 if (var->constant_initializer != NULL) {
1032 if (existing->constant_initializer != NULL) {
1033 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1034 linker_error(prog, "initializers for %s "
1035 "`%s' have differing values\n",
1036 mode_string(var), var->name);
1037 return;
1038 }
1039 } else {
1040 /* If the first-seen instance of a particular uniform did
1041 * not have an initializer but a later instance does,
1042 * replace the former with the later.
1043 */
1044 variables->replace_variable(existing->name, var);
1045 }
1046 }
1047
1048 if (var->data.has_initializer) {
1049 if (existing->data.has_initializer
1050 && (var->constant_initializer == NULL
1051 || existing->constant_initializer == NULL)) {
1052 linker_error(prog,
1053 "shared global variable `%s' has multiple "
1054 "non-constant initializers.\n",
1055 var->name);
1056 return;
1057 }
1058 }
1059
1060 if (existing->data.invariant != var->data.invariant) {
1061 linker_error(prog, "declarations for %s `%s' have "
1062 "mismatching invariant qualifiers\n",
1063 mode_string(var), var->name);
1064 return;
1065 }
1066 if (existing->data.centroid != var->data.centroid) {
1067 linker_error(prog, "declarations for %s `%s' have "
1068 "mismatching centroid qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 if (existing->data.sample != var->data.sample) {
1073 linker_error(prog, "declarations for %s `%s` have "
1074 "mismatching sample qualifiers\n",
1075 mode_string(var), var->name);
1076 return;
1077 }
1078 if (existing->data.image_format != var->data.image_format) {
1079 linker_error(prog, "declarations for %s `%s` have "
1080 "mismatching image format qualifiers\n",
1081 mode_string(var), var->name);
1082 return;
1083 }
1084
1085 /* Only in GLSL ES 3.10, the precision qualifier should not match
1086 * between block members defined in matched block names within a
1087 * shader interface.
1088 *
1089 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1090 * member should match.
1091 */
1092 if (prog->IsES && (prog->data->Version != 310 ||
1093 !var->get_interface_type()) &&
1094 existing->data.precision != var->data.precision) {
1095 linker_error(prog, "declarations for %s `%s` have "
1096 "mismatching precision qualifiers\n",
1097 mode_string(var), var->name);
1098 return;
1099 }
1100 } else
1101 variables->add_variable(var);
1102 }
1103 }
1104
1105
1106 /**
1107 * Perform validation of uniforms used across multiple shader stages
1108 */
1109 void
1110 cross_validate_uniforms(struct gl_shader_program *prog)
1111 {
1112 glsl_symbol_table variables;
1113 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1114 if (prog->_LinkedShaders[i] == NULL)
1115 continue;
1116
1117 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1118 true);
1119 }
1120 }
1121
1122 /**
1123 * Accumulates the array of buffer blocks and checks that all definitions of
1124 * blocks agree on their contents.
1125 */
1126 static bool
1127 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1128 bool validate_ssbo)
1129 {
1130 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1131 struct gl_uniform_block *blks = NULL;
1132 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1133 &prog->data->NumUniformBlocks;
1134
1135 unsigned max_num_buffer_blocks = 0;
1136 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1137 if (prog->_LinkedShaders[i]) {
1138 if (validate_ssbo) {
1139 max_num_buffer_blocks +=
1140 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1141 } else {
1142 max_num_buffer_blocks +=
1143 prog->_LinkedShaders[i]->Program->info.num_ubos;
1144 }
1145 }
1146 }
1147
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1150
1151 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1152 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1153 InterfaceBlockStageIndex[i][j] = -1;
1154
1155 if (sh == NULL)
1156 continue;
1157
1158 unsigned sh_num_blocks;
1159 struct gl_uniform_block **sh_blks;
1160 if (validate_ssbo) {
1161 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1162 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1163 } else {
1164 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1165 sh_blks = sh->Program->sh.UniformBlocks;
1166 }
1167
1168 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1169 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1170 sh_blks[j]);
1171
1172 if (index == -1) {
1173 linker_error(prog, "buffer block `%s' has mismatching "
1174 "definitions\n", sh_blks[j]->Name);
1175
1176 for (unsigned k = 0; k <= i; k++) {
1177 delete[] InterfaceBlockStageIndex[k];
1178 }
1179 return false;
1180 }
1181
1182 InterfaceBlockStageIndex[i][index] = j;
1183 }
1184 }
1185
1186 /* Update per stage block pointers to point to the program list.
1187 * FIXME: We should be able to free the per stage blocks here.
1188 */
1189 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1190 for (unsigned j = 0; j < *num_blks; j++) {
1191 int stage_index = InterfaceBlockStageIndex[i][j];
1192
1193 if (stage_index != -1) {
1194 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1195
1196 struct gl_uniform_block **sh_blks = validate_ssbo ?
1197 sh->Program->sh.ShaderStorageBlocks :
1198 sh->Program->sh.UniformBlocks;
1199
1200 blks[j].stageref |= sh_blks[stage_index]->stageref;
1201 sh_blks[stage_index] = &blks[j];
1202 }
1203 }
1204 }
1205
1206 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1207 delete[] InterfaceBlockStageIndex[i];
1208 }
1209
1210 if (validate_ssbo)
1211 prog->data->ShaderStorageBlocks = blks;
1212 else
1213 prog->data->UniformBlocks = blks;
1214
1215 return true;
1216 }
1217
1218
1219 /**
1220 * Populates a shaders symbol table with all global declarations
1221 */
1222 static void
1223 populate_symbol_table(gl_linked_shader *sh)
1224 {
1225 sh->symbols = new(sh) glsl_symbol_table;
1226
1227 foreach_in_list(ir_instruction, inst, sh->ir) {
1228 ir_variable *var;
1229 ir_function *func;
1230
1231 if ((func = inst->as_function()) != NULL) {
1232 sh->symbols->add_function(func);
1233 } else if ((var = inst->as_variable()) != NULL) {
1234 if (var->data.mode != ir_var_temporary)
1235 sh->symbols->add_variable(var);
1236 }
1237 }
1238 }
1239
1240
1241 /**
1242 * Remap variables referenced in an instruction tree
1243 *
1244 * This is used when instruction trees are cloned from one shader and placed in
1245 * another. These trees will contain references to \c ir_variable nodes that
1246 * do not exist in the target shader. This function finds these \c ir_variable
1247 * references and replaces the references with matching variables in the target
1248 * shader.
1249 *
1250 * If there is no matching variable in the target shader, a clone of the
1251 * \c ir_variable is made and added to the target shader. The new variable is
1252 * added to \b both the instruction stream and the symbol table.
1253 *
1254 * \param inst IR tree that is to be processed.
1255 * \param symbols Symbol table containing global scope symbols in the
1256 * linked shader.
1257 * \param instructions Instruction stream where new variable declarations
1258 * should be added.
1259 */
1260 void
1261 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1262 hash_table *temps)
1263 {
1264 class remap_visitor : public ir_hierarchical_visitor {
1265 public:
1266 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1267 {
1268 this->target = target;
1269 this->symbols = target->symbols;
1270 this->instructions = target->ir;
1271 this->temps = temps;
1272 }
1273
1274 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1275 {
1276 if (ir->var->data.mode == ir_var_temporary) {
1277 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1278 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1279
1280 assert(var != NULL);
1281 ir->var = var;
1282 return visit_continue;
1283 }
1284
1285 ir_variable *const existing =
1286 this->symbols->get_variable(ir->var->name);
1287 if (existing != NULL)
1288 ir->var = existing;
1289 else {
1290 ir_variable *copy = ir->var->clone(this->target, NULL);
1291
1292 this->symbols->add_variable(copy);
1293 this->instructions->push_head(copy);
1294 ir->var = copy;
1295 }
1296
1297 return visit_continue;
1298 }
1299
1300 private:
1301 struct gl_linked_shader *target;
1302 glsl_symbol_table *symbols;
1303 exec_list *instructions;
1304 hash_table *temps;
1305 };
1306
1307 remap_visitor v(target, temps);
1308
1309 inst->accept(&v);
1310 }
1311
1312
1313 /**
1314 * Move non-declarations from one instruction stream to another
1315 *
1316 * The intended usage pattern of this function is to pass the pointer to the
1317 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1318 * pointer) for \c last and \c false for \c make_copies on the first
1319 * call. Successive calls pass the return value of the previous call for
1320 * \c last and \c true for \c make_copies.
1321 *
1322 * \param instructions Source instruction stream
1323 * \param last Instruction after which new instructions should be
1324 * inserted in the target instruction stream
1325 * \param make_copies Flag selecting whether instructions in \c instructions
1326 * should be copied (via \c ir_instruction::clone) into the
1327 * target list or moved.
1328 *
1329 * \return
1330 * The new "last" instruction in the target instruction stream. This pointer
1331 * is suitable for use as the \c last parameter of a later call to this
1332 * function.
1333 */
1334 exec_node *
1335 move_non_declarations(exec_list *instructions, exec_node *last,
1336 bool make_copies, gl_linked_shader *target)
1337 {
1338 hash_table *temps = NULL;
1339
1340 if (make_copies)
1341 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1342 _mesa_key_pointer_equal);
1343
1344 foreach_in_list_safe(ir_instruction, inst, instructions) {
1345 if (inst->as_function())
1346 continue;
1347
1348 ir_variable *var = inst->as_variable();
1349 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1350 continue;
1351
1352 assert(inst->as_assignment()
1353 || inst->as_call()
1354 || inst->as_if() /* for initializers with the ?: operator */
1355 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1356
1357 if (make_copies) {
1358 inst = inst->clone(target, NULL);
1359
1360 if (var != NULL)
1361 _mesa_hash_table_insert(temps, var, inst);
1362 else
1363 remap_variables(inst, target, temps);
1364 } else {
1365 inst->remove();
1366 }
1367
1368 last->insert_after(inst);
1369 last = inst;
1370 }
1371
1372 if (make_copies)
1373 _mesa_hash_table_destroy(temps, NULL);
1374
1375 return last;
1376 }
1377
1378
1379 /**
1380 * This class is only used in link_intrastage_shaders() below but declaring
1381 * it inside that function leads to compiler warnings with some versions of
1382 * gcc.
1383 */
1384 class array_sizing_visitor : public deref_type_updater {
1385 public:
1386 array_sizing_visitor()
1387 : mem_ctx(ralloc_context(NULL)),
1388 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1389 _mesa_key_pointer_equal))
1390 {
1391 }
1392
1393 ~array_sizing_visitor()
1394 {
1395 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1396 ralloc_free(this->mem_ctx);
1397 }
1398
1399 virtual ir_visitor_status visit(ir_variable *var)
1400 {
1401 const glsl_type *type_without_array;
1402 bool implicit_sized_array = var->data.implicit_sized_array;
1403 fixup_type(&var->type, var->data.max_array_access,
1404 var->data.from_ssbo_unsized_array,
1405 &implicit_sized_array);
1406 var->data.implicit_sized_array = implicit_sized_array;
1407 type_without_array = var->type->without_array();
1408 if (var->type->is_interface()) {
1409 if (interface_contains_unsized_arrays(var->type)) {
1410 const glsl_type *new_type =
1411 resize_interface_members(var->type,
1412 var->get_max_ifc_array_access(),
1413 var->is_in_shader_storage_block());
1414 var->type = new_type;
1415 var->change_interface_type(new_type);
1416 }
1417 } else if (type_without_array->is_interface()) {
1418 if (interface_contains_unsized_arrays(type_without_array)) {
1419 const glsl_type *new_type =
1420 resize_interface_members(type_without_array,
1421 var->get_max_ifc_array_access(),
1422 var->is_in_shader_storage_block());
1423 var->change_interface_type(new_type);
1424 var->type = update_interface_members_array(var->type, new_type);
1425 }
1426 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1427 /* Store a pointer to the variable in the unnamed_interfaces
1428 * hashtable.
1429 */
1430 hash_entry *entry =
1431 _mesa_hash_table_search(this->unnamed_interfaces,
1432 ifc_type);
1433
1434 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1435
1436 if (interface_vars == NULL) {
1437 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1438 ifc_type->length);
1439 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1440 interface_vars);
1441 }
1442 unsigned index = ifc_type->field_index(var->name);
1443 assert(index < ifc_type->length);
1444 assert(interface_vars[index] == NULL);
1445 interface_vars[index] = var;
1446 }
1447 return visit_continue;
1448 }
1449
1450 /**
1451 * For each unnamed interface block that was discovered while running the
1452 * visitor, adjust the interface type to reflect the newly assigned array
1453 * sizes, and fix up the ir_variable nodes to point to the new interface
1454 * type.
1455 */
1456 void fixup_unnamed_interface_types()
1457 {
1458 hash_table_call_foreach(this->unnamed_interfaces,
1459 fixup_unnamed_interface_type, NULL);
1460 }
1461
1462 private:
1463 /**
1464 * If the type pointed to by \c type represents an unsized array, replace
1465 * it with a sized array whose size is determined by max_array_access.
1466 */
1467 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1468 bool from_ssbo_unsized_array, bool *implicit_sized)
1469 {
1470 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1471 *type = glsl_type::get_array_instance((*type)->fields.array,
1472 max_array_access + 1);
1473 *implicit_sized = true;
1474 assert(*type != NULL);
1475 }
1476 }
1477
1478 static const glsl_type *
1479 update_interface_members_array(const glsl_type *type,
1480 const glsl_type *new_interface_type)
1481 {
1482 const glsl_type *element_type = type->fields.array;
1483 if (element_type->is_array()) {
1484 const glsl_type *new_array_type =
1485 update_interface_members_array(element_type, new_interface_type);
1486 return glsl_type::get_array_instance(new_array_type, type->length);
1487 } else {
1488 return glsl_type::get_array_instance(new_interface_type,
1489 type->length);
1490 }
1491 }
1492
1493 /**
1494 * Determine whether the given interface type contains unsized arrays (if
1495 * it doesn't, array_sizing_visitor doesn't need to process it).
1496 */
1497 static bool interface_contains_unsized_arrays(const glsl_type *type)
1498 {
1499 for (unsigned i = 0; i < type->length; i++) {
1500 const glsl_type *elem_type = type->fields.structure[i].type;
1501 if (elem_type->is_unsized_array())
1502 return true;
1503 }
1504 return false;
1505 }
1506
1507 /**
1508 * Create a new interface type based on the given type, with unsized arrays
1509 * replaced by sized arrays whose size is determined by
1510 * max_ifc_array_access.
1511 */
1512 static const glsl_type *
1513 resize_interface_members(const glsl_type *type,
1514 const int *max_ifc_array_access,
1515 bool is_ssbo)
1516 {
1517 unsigned num_fields = type->length;
1518 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1519 memcpy(fields, type->fields.structure,
1520 num_fields * sizeof(*fields));
1521 for (unsigned i = 0; i < num_fields; i++) {
1522 bool implicit_sized_array = fields[i].implicit_sized_array;
1523 /* If SSBO last member is unsized array, we don't replace it by a sized
1524 * array.
1525 */
1526 if (is_ssbo && i == (num_fields - 1))
1527 fixup_type(&fields[i].type, max_ifc_array_access[i],
1528 true, &implicit_sized_array);
1529 else
1530 fixup_type(&fields[i].type, max_ifc_array_access[i],
1531 false, &implicit_sized_array);
1532 fields[i].implicit_sized_array = implicit_sized_array;
1533 }
1534 glsl_interface_packing packing =
1535 (glsl_interface_packing) type->interface_packing;
1536 bool row_major = (bool) type->interface_row_major;
1537 const glsl_type *new_ifc_type =
1538 glsl_type::get_interface_instance(fields, num_fields,
1539 packing, row_major, type->name);
1540 delete [] fields;
1541 return new_ifc_type;
1542 }
1543
1544 static void fixup_unnamed_interface_type(const void *key, void *data,
1545 void *)
1546 {
1547 const glsl_type *ifc_type = (const glsl_type *) key;
1548 ir_variable **interface_vars = (ir_variable **) data;
1549 unsigned num_fields = ifc_type->length;
1550 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1551 memcpy(fields, ifc_type->fields.structure,
1552 num_fields * sizeof(*fields));
1553 bool interface_type_changed = false;
1554 for (unsigned i = 0; i < num_fields; i++) {
1555 if (interface_vars[i] != NULL &&
1556 fields[i].type != interface_vars[i]->type) {
1557 fields[i].type = interface_vars[i]->type;
1558 interface_type_changed = true;
1559 }
1560 }
1561 if (!interface_type_changed) {
1562 delete [] fields;
1563 return;
1564 }
1565 glsl_interface_packing packing =
1566 (glsl_interface_packing) ifc_type->interface_packing;
1567 bool row_major = (bool) ifc_type->interface_row_major;
1568 const glsl_type *new_ifc_type =
1569 glsl_type::get_interface_instance(fields, num_fields, packing,
1570 row_major, ifc_type->name);
1571 delete [] fields;
1572 for (unsigned i = 0; i < num_fields; i++) {
1573 if (interface_vars[i] != NULL)
1574 interface_vars[i]->change_interface_type(new_ifc_type);
1575 }
1576 }
1577
1578 /**
1579 * Memory context used to allocate the data in \c unnamed_interfaces.
1580 */
1581 void *mem_ctx;
1582
1583 /**
1584 * Hash table from const glsl_type * to an array of ir_variable *'s
1585 * pointing to the ir_variables constituting each unnamed interface block.
1586 */
1587 hash_table *unnamed_interfaces;
1588 };
1589
1590 /**
1591 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1592 * for later use.
1593 */
1594 static void
1595 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1596 struct gl_shader_program *prog,
1597 struct gl_linked_shader *linked_shader,
1598 struct gl_shader **shader_list,
1599 unsigned num_shaders)
1600 {
1601 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1602 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1603 }
1604
1605 for (unsigned i = 0; i < num_shaders; i++) {
1606 struct gl_shader *shader = shader_list[i];
1607
1608 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1609 if (shader->info.TransformFeedback.BufferStride[j]) {
1610 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1611 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1612 linked_shader->info.TransformFeedback.BufferStride[j] !=
1613 shader->info.TransformFeedback.BufferStride[j]) {
1614 linker_error(prog,
1615 "intrastage shaders defined with conflicting "
1616 "xfb_stride for buffer %d (%d and %d)\n", j,
1617 linked_shader->
1618 info.TransformFeedback.BufferStride[j],
1619 shader->info.TransformFeedback.BufferStride[j]);
1620 return;
1621 }
1622
1623 if (shader->info.TransformFeedback.BufferStride[j])
1624 linked_shader->info.TransformFeedback.BufferStride[j] =
1625 shader->info.TransformFeedback.BufferStride[j];
1626 }
1627 }
1628 }
1629
1630 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1631 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1632 prog->TransformFeedback.BufferStride[j] =
1633 linked_shader->info.TransformFeedback.BufferStride[j];
1634
1635 /* We will validate doubles at a later stage */
1636 if (prog->TransformFeedback.BufferStride[j] % 4) {
1637 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1638 "multiple of 4 or if its applied to a type that is "
1639 "or contains a double a multiple of 8.",
1640 prog->TransformFeedback.BufferStride[j]);
1641 return;
1642 }
1643
1644 if (prog->TransformFeedback.BufferStride[j] / 4 >
1645 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1646 linker_error(prog,
1647 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1648 "limit has been exceeded.");
1649 return;
1650 }
1651 }
1652 }
1653 }
1654
1655 /**
1656 * Performs the cross-validation of tessellation control shader vertices and
1657 * layout qualifiers for the attached tessellation control shaders,
1658 * and propagates them to the linked TCS and linked shader program.
1659 */
1660 static void
1661 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1662 struct gl_linked_shader *linked_shader,
1663 struct gl_shader **shader_list,
1664 unsigned num_shaders)
1665 {
1666 linked_shader->info.TessCtrl.VerticesOut = 0;
1667
1668 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1669 return;
1670
1671 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1672 *
1673 * "All tessellation control shader layout declarations in a program
1674 * must specify the same output patch vertex count. There must be at
1675 * least one layout qualifier specifying an output patch vertex count
1676 * in any program containing tessellation control shaders; however,
1677 * such a declaration is not required in all tessellation control
1678 * shaders."
1679 */
1680
1681 for (unsigned i = 0; i < num_shaders; i++) {
1682 struct gl_shader *shader = shader_list[i];
1683
1684 if (shader->info.TessCtrl.VerticesOut != 0) {
1685 if (linked_shader->info.TessCtrl.VerticesOut != 0 &&
1686 linked_shader->info.TessCtrl.VerticesOut !=
1687 shader->info.TessCtrl.VerticesOut) {
1688 linker_error(prog, "tessellation control shader defined with "
1689 "conflicting output vertex count (%d and %d)\n",
1690 linked_shader->info.TessCtrl.VerticesOut,
1691 shader->info.TessCtrl.VerticesOut);
1692 return;
1693 }
1694 linked_shader->info.TessCtrl.VerticesOut =
1695 shader->info.TessCtrl.VerticesOut;
1696 }
1697 }
1698
1699 /* Just do the intrastage -> interstage propagation right now,
1700 * since we already know we're in the right type of shader program
1701 * for doing it.
1702 */
1703 if (linked_shader->info.TessCtrl.VerticesOut == 0) {
1704 linker_error(prog, "tessellation control shader didn't declare "
1705 "vertices out layout qualifier\n");
1706 return;
1707 }
1708 }
1709
1710
1711 /**
1712 * Performs the cross-validation of tessellation evaluation shader
1713 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1714 * for the attached tessellation evaluation shaders, and propagates them
1715 * to the linked TES and linked shader program.
1716 */
1717 static void
1718 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1719 struct gl_linked_shader *linked_shader,
1720 struct gl_shader **shader_list,
1721 unsigned num_shaders)
1722 {
1723 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1724 linked_shader->info.TessEval.Spacing = 0;
1725 linked_shader->info.TessEval.VertexOrder = 0;
1726 linked_shader->info.TessEval.PointMode = -1;
1727
1728 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1729 return;
1730
1731 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1732 *
1733 * "At least one tessellation evaluation shader (compilation unit) in
1734 * a program must declare a primitive mode in its input layout.
1735 * Declaration vertex spacing, ordering, and point mode identifiers is
1736 * optional. It is not required that all tessellation evaluation
1737 * shaders in a program declare a primitive mode. If spacing or
1738 * vertex ordering declarations are omitted, the tessellation
1739 * primitive generator will use equal spacing or counter-clockwise
1740 * vertex ordering, respectively. If a point mode declaration is
1741 * omitted, the tessellation primitive generator will produce lines or
1742 * triangles according to the primitive mode."
1743 */
1744
1745 for (unsigned i = 0; i < num_shaders; i++) {
1746 struct gl_shader *shader = shader_list[i];
1747
1748 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1749 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1750 linked_shader->info.TessEval.PrimitiveMode !=
1751 shader->info.TessEval.PrimitiveMode) {
1752 linker_error(prog, "tessellation evaluation shader defined with "
1753 "conflicting input primitive modes.\n");
1754 return;
1755 }
1756 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1757 }
1758
1759 if (shader->info.TessEval.Spacing != 0) {
1760 if (linked_shader->info.TessEval.Spacing != 0 &&
1761 linked_shader->info.TessEval.Spacing !=
1762 shader->info.TessEval.Spacing) {
1763 linker_error(prog, "tessellation evaluation shader defined with "
1764 "conflicting vertex spacing.\n");
1765 return;
1766 }
1767 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1768 }
1769
1770 if (shader->info.TessEval.VertexOrder != 0) {
1771 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1772 linked_shader->info.TessEval.VertexOrder !=
1773 shader->info.TessEval.VertexOrder) {
1774 linker_error(prog, "tessellation evaluation shader defined with "
1775 "conflicting ordering.\n");
1776 return;
1777 }
1778 linked_shader->info.TessEval.VertexOrder =
1779 shader->info.TessEval.VertexOrder;
1780 }
1781
1782 if (shader->info.TessEval.PointMode != -1) {
1783 if (linked_shader->info.TessEval.PointMode != -1 &&
1784 linked_shader->info.TessEval.PointMode !=
1785 shader->info.TessEval.PointMode) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting point modes.\n");
1788 return;
1789 }
1790 linked_shader->info.TessEval.PointMode =
1791 shader->info.TessEval.PointMode;
1792 }
1793
1794 }
1795
1796 /* Just do the intrastage -> interstage propagation right now,
1797 * since we already know we're in the right type of shader program
1798 * for doing it.
1799 */
1800 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1801 linker_error(prog,
1802 "tessellation evaluation shader didn't declare input "
1803 "primitive modes.\n");
1804 return;
1805 }
1806
1807 if (linked_shader->info.TessEval.Spacing == 0)
1808 linked_shader->info.TessEval.Spacing = GL_EQUAL;
1809
1810 if (linked_shader->info.TessEval.VertexOrder == 0)
1811 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1812
1813 if (linked_shader->info.TessEval.PointMode == -1)
1814 linked_shader->info.TessEval.PointMode = GL_FALSE;
1815 }
1816
1817
1818 /**
1819 * Performs the cross-validation of layout qualifiers specified in
1820 * redeclaration of gl_FragCoord for the attached fragment shaders,
1821 * and propagates them to the linked FS and linked shader program.
1822 */
1823 static void
1824 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1825 struct gl_linked_shader *linked_shader,
1826 struct gl_shader **shader_list,
1827 unsigned num_shaders)
1828 {
1829 linked_shader->info.redeclares_gl_fragcoord = false;
1830 linked_shader->info.uses_gl_fragcoord = false;
1831 linked_shader->info.origin_upper_left = false;
1832 linked_shader->info.pixel_center_integer = false;
1833
1834 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1835 (prog->data->Version < 150 &&
1836 !prog->ARB_fragment_coord_conventions_enable))
1837 return;
1838
1839 for (unsigned i = 0; i < num_shaders; i++) {
1840 struct gl_shader *shader = shader_list[i];
1841 /* From the GLSL 1.50 spec, page 39:
1842 *
1843 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1844 * it must be redeclared in all the fragment shaders in that program
1845 * that have a static use gl_FragCoord."
1846 */
1847 if ((linked_shader->info.redeclares_gl_fragcoord
1848 && !shader->info.redeclares_gl_fragcoord
1849 && shader->info.uses_gl_fragcoord)
1850 || (shader->info.redeclares_gl_fragcoord
1851 && !linked_shader->info.redeclares_gl_fragcoord
1852 && linked_shader->info.uses_gl_fragcoord)) {
1853 linker_error(prog, "fragment shader defined with conflicting "
1854 "layout qualifiers for gl_FragCoord\n");
1855 }
1856
1857 /* From the GLSL 1.50 spec, page 39:
1858 *
1859 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1860 * single program must have the same set of qualifiers."
1861 */
1862 if (linked_shader->info.redeclares_gl_fragcoord &&
1863 shader->info.redeclares_gl_fragcoord &&
1864 (shader->info.origin_upper_left !=
1865 linked_shader->info.origin_upper_left ||
1866 shader->info.pixel_center_integer !=
1867 linked_shader->info.pixel_center_integer)) {
1868 linker_error(prog, "fragment shader defined with conflicting "
1869 "layout qualifiers for gl_FragCoord\n");
1870 }
1871
1872 /* Update the linked shader state. Note that uses_gl_fragcoord should
1873 * accumulate the results. The other values should replace. If there
1874 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1875 * are already known to be the same.
1876 */
1877 if (shader->info.redeclares_gl_fragcoord ||
1878 shader->info.uses_gl_fragcoord) {
1879 linked_shader->info.redeclares_gl_fragcoord =
1880 shader->info.redeclares_gl_fragcoord;
1881 linked_shader->info.uses_gl_fragcoord =
1882 linked_shader->info.uses_gl_fragcoord ||
1883 shader->info.uses_gl_fragcoord;
1884 linked_shader->info.origin_upper_left =
1885 shader->info.origin_upper_left;
1886 linked_shader->info.pixel_center_integer =
1887 shader->info.pixel_center_integer;
1888 }
1889
1890 linked_shader->info.EarlyFragmentTests |=
1891 shader->info.EarlyFragmentTests;
1892 linked_shader->info.InnerCoverage |=
1893 shader->info.InnerCoverage;
1894 linked_shader->Program->info.fs.post_depth_coverage |=
1895 shader->info.PostDepthCoverage;
1896
1897 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1898 }
1899 }
1900
1901 /**
1902 * Performs the cross-validation of geometry shader max_vertices and
1903 * primitive type layout qualifiers for the attached geometry shaders,
1904 * and propagates them to the linked GS and linked shader program.
1905 */
1906 static void
1907 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1908 struct gl_linked_shader *linked_shader,
1909 struct gl_shader **shader_list,
1910 unsigned num_shaders)
1911 {
1912 linked_shader->info.Geom.VerticesOut = -1;
1913 linked_shader->info.Geom.Invocations = 0;
1914 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1915 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1916
1917 /* No in/out qualifiers defined for anything but GLSL 1.50+
1918 * geometry shaders so far.
1919 */
1920 if (linked_shader->Stage != MESA_SHADER_GEOMETRY ||
1921 prog->data->Version < 150)
1922 return;
1923
1924 /* From the GLSL 1.50 spec, page 46:
1925 *
1926 * "All geometry shader output layout declarations in a program
1927 * must declare the same layout and same value for
1928 * max_vertices. There must be at least one geometry output
1929 * layout declaration somewhere in a program, but not all
1930 * geometry shaders (compilation units) are required to
1931 * declare it."
1932 */
1933
1934 for (unsigned i = 0; i < num_shaders; i++) {
1935 struct gl_shader *shader = shader_list[i];
1936
1937 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1938 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1939 linked_shader->info.Geom.InputType !=
1940 shader->info.Geom.InputType) {
1941 linker_error(prog, "geometry shader defined with conflicting "
1942 "input types\n");
1943 return;
1944 }
1945 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1946 }
1947
1948 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1949 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1950 linked_shader->info.Geom.OutputType !=
1951 shader->info.Geom.OutputType) {
1952 linker_error(prog, "geometry shader defined with conflicting "
1953 "output types\n");
1954 return;
1955 }
1956 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1957 }
1958
1959 if (shader->info.Geom.VerticesOut != -1) {
1960 if (linked_shader->info.Geom.VerticesOut != -1 &&
1961 linked_shader->info.Geom.VerticesOut !=
1962 shader->info.Geom.VerticesOut) {
1963 linker_error(prog, "geometry shader defined with conflicting "
1964 "output vertex count (%d and %d)\n",
1965 linked_shader->info.Geom.VerticesOut,
1966 shader->info.Geom.VerticesOut);
1967 return;
1968 }
1969 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1970 }
1971
1972 if (shader->info.Geom.Invocations != 0) {
1973 if (linked_shader->info.Geom.Invocations != 0 &&
1974 linked_shader->info.Geom.Invocations !=
1975 shader->info.Geom.Invocations) {
1976 linker_error(prog, "geometry shader defined with conflicting "
1977 "invocation count (%d and %d)\n",
1978 linked_shader->info.Geom.Invocations,
1979 shader->info.Geom.Invocations);
1980 return;
1981 }
1982 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1983 }
1984 }
1985
1986 /* Just do the intrastage -> interstage propagation right now,
1987 * since we already know we're in the right type of shader program
1988 * for doing it.
1989 */
1990 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1991 linker_error(prog,
1992 "geometry shader didn't declare primitive input type\n");
1993 return;
1994 }
1995
1996 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1997 linker_error(prog,
1998 "geometry shader didn't declare primitive output type\n");
1999 return;
2000 }
2001
2002 if (linked_shader->info.Geom.VerticesOut == -1) {
2003 linker_error(prog,
2004 "geometry shader didn't declare max_vertices\n");
2005 return;
2006 }
2007
2008 if (linked_shader->info.Geom.Invocations == 0)
2009 linked_shader->info.Geom.Invocations = 1;
2010 }
2011
2012
2013 /**
2014 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2015 * qualifiers for the attached compute shaders, and propagate them to the
2016 * linked CS and linked shader program.
2017 */
2018 static void
2019 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2020 struct gl_linked_shader *linked_shader,
2021 struct gl_shader **shader_list,
2022 unsigned num_shaders)
2023 {
2024 for (int i = 0; i < 3; i++)
2025 linked_shader->info.Comp.LocalSize[i] = 0;
2026
2027 linked_shader->info.Comp.LocalSizeVariable = false;
2028
2029 /* This function is called for all shader stages, but it only has an effect
2030 * for compute shaders.
2031 */
2032 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2033 return;
2034
2035 /* From the ARB_compute_shader spec, in the section describing local size
2036 * declarations:
2037 *
2038 * If multiple compute shaders attached to a single program object
2039 * declare local work-group size, the declarations must be identical;
2040 * otherwise a link-time error results. Furthermore, if a program
2041 * object contains any compute shaders, at least one must contain an
2042 * input layout qualifier specifying the local work sizes of the
2043 * program, or a link-time error will occur.
2044 */
2045 for (unsigned sh = 0; sh < num_shaders; sh++) {
2046 struct gl_shader *shader = shader_list[sh];
2047
2048 if (shader->info.Comp.LocalSize[0] != 0) {
2049 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2050 for (int i = 0; i < 3; i++) {
2051 if (linked_shader->info.Comp.LocalSize[i] !=
2052 shader->info.Comp.LocalSize[i]) {
2053 linker_error(prog, "compute shader defined with conflicting "
2054 "local sizes\n");
2055 return;
2056 }
2057 }
2058 }
2059 for (int i = 0; i < 3; i++) {
2060 linked_shader->info.Comp.LocalSize[i] =
2061 shader->info.Comp.LocalSize[i];
2062 }
2063 } else if (shader->info.Comp.LocalSizeVariable) {
2064 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2065 /* The ARB_compute_variable_group_size spec says:
2066 *
2067 * If one compute shader attached to a program declares a
2068 * variable local group size and a second compute shader
2069 * attached to the same program declares a fixed local group
2070 * size, a link-time error results.
2071 */
2072 linker_error(prog, "compute shader defined with both fixed and "
2073 "variable local group size\n");
2074 return;
2075 }
2076 linked_shader->info.Comp.LocalSizeVariable = true;
2077 }
2078 }
2079
2080 /* Just do the intrastage -> interstage propagation right now,
2081 * since we already know we're in the right type of shader program
2082 * for doing it.
2083 */
2084 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2085 !linked_shader->info.Comp.LocalSizeVariable) {
2086 linker_error(prog, "compute shader must contain a fixed or a variable "
2087 "local group size\n");
2088 return;
2089 }
2090 for (int i = 0; i < 3; i++)
2091 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2092
2093 prog->Comp.LocalSizeVariable =
2094 linked_shader->info.Comp.LocalSizeVariable;
2095 }
2096
2097
2098 /**
2099 * Combine a group of shaders for a single stage to generate a linked shader
2100 *
2101 * \note
2102 * If this function is supplied a single shader, it is cloned, and the new
2103 * shader is returned.
2104 */
2105 struct gl_linked_shader *
2106 link_intrastage_shaders(void *mem_ctx,
2107 struct gl_context *ctx,
2108 struct gl_shader_program *prog,
2109 struct gl_shader **shader_list,
2110 unsigned num_shaders,
2111 bool allow_missing_main)
2112 {
2113 struct gl_uniform_block *ubo_blocks = NULL;
2114 struct gl_uniform_block *ssbo_blocks = NULL;
2115 unsigned num_ubo_blocks = 0;
2116 unsigned num_ssbo_blocks = 0;
2117
2118 /* Check that global variables defined in multiple shaders are consistent.
2119 */
2120 glsl_symbol_table variables;
2121 for (unsigned i = 0; i < num_shaders; i++) {
2122 if (shader_list[i] == NULL)
2123 continue;
2124 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2125 }
2126
2127 if (!prog->data->LinkStatus)
2128 return NULL;
2129
2130 /* Check that interface blocks defined in multiple shaders are consistent.
2131 */
2132 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2133 num_shaders);
2134 if (!prog->data->LinkStatus)
2135 return NULL;
2136
2137 /* Check that there is only a single definition of each function signature
2138 * across all shaders.
2139 */
2140 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2141 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2142 ir_function *const f = node->as_function();
2143
2144 if (f == NULL)
2145 continue;
2146
2147 for (unsigned j = i + 1; j < num_shaders; j++) {
2148 ir_function *const other =
2149 shader_list[j]->symbols->get_function(f->name);
2150
2151 /* If the other shader has no function (and therefore no function
2152 * signatures) with the same name, skip to the next shader.
2153 */
2154 if (other == NULL)
2155 continue;
2156
2157 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2158 if (!sig->is_defined)
2159 continue;
2160
2161 ir_function_signature *other_sig =
2162 other->exact_matching_signature(NULL, &sig->parameters);
2163
2164 if (other_sig != NULL && other_sig->is_defined) {
2165 linker_error(prog, "function `%s' is multiply defined\n",
2166 f->name);
2167 return NULL;
2168 }
2169 }
2170 }
2171 }
2172 }
2173
2174 /* Find the shader that defines main, and make a clone of it.
2175 *
2176 * Starting with the clone, search for undefined references. If one is
2177 * found, find the shader that defines it. Clone the reference and add
2178 * it to the shader. Repeat until there are no undefined references or
2179 * until a reference cannot be resolved.
2180 */
2181 gl_shader *main = NULL;
2182 for (unsigned i = 0; i < num_shaders; i++) {
2183 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2184 main = shader_list[i];
2185 break;
2186 }
2187 }
2188
2189 if (main == NULL && allow_missing_main)
2190 main = shader_list[0];
2191
2192 if (main == NULL) {
2193 linker_error(prog, "%s shader lacks `main'\n",
2194 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2195 return NULL;
2196 }
2197
2198 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2199 linked->Stage = shader_list[0]->Stage;
2200
2201 /* Create program and attach it to the linked shader */
2202 struct gl_program *gl_prog =
2203 ctx->Driver.NewProgram(ctx,
2204 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2205 prog->Name);
2206 if (!gl_prog) {
2207 prog->data->LinkStatus = false;
2208 _mesa_delete_linked_shader(ctx, linked);
2209 return NULL;
2210 }
2211
2212 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2213
2214 /* Don't use _mesa_reference_program() just take ownership */
2215 linked->Program = gl_prog;
2216
2217 linked->ir = new(linked) exec_list;
2218 clone_ir_list(mem_ctx, linked->ir, main->ir);
2219
2220 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2221 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2222 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2223 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2224 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2225 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2226 num_shaders);
2227
2228 populate_symbol_table(linked);
2229
2230 /* The pointer to the main function in the final linked shader (i.e., the
2231 * copy of the original shader that contained the main function).
2232 */
2233 ir_function_signature *const main_sig =
2234 _mesa_get_main_function_signature(linked->symbols);
2235
2236 /* Move any instructions other than variable declarations or function
2237 * declarations into main.
2238 */
2239 if (main_sig != NULL) {
2240 exec_node *insertion_point =
2241 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2242 linked);
2243
2244 for (unsigned i = 0; i < num_shaders; i++) {
2245 if (shader_list[i] == main)
2246 continue;
2247
2248 insertion_point = move_non_declarations(shader_list[i]->ir,
2249 insertion_point, true, linked);
2250 }
2251 }
2252
2253 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2254 _mesa_delete_linked_shader(ctx, linked);
2255 return NULL;
2256 }
2257
2258 /* Make a pass over all variable declarations to ensure that arrays with
2259 * unspecified sizes have a size specified. The size is inferred from the
2260 * max_array_access field.
2261 */
2262 array_sizing_visitor v;
2263 v.run(linked->ir);
2264 v.fixup_unnamed_interface_types();
2265
2266 /* Link up uniform blocks defined within this stage. */
2267 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2268 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2269
2270 if (!prog->data->LinkStatus) {
2271 _mesa_delete_linked_shader(ctx, linked);
2272 return NULL;
2273 }
2274
2275 /* Copy ubo blocks to linked shader list */
2276 linked->Program->sh.UniformBlocks =
2277 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2278 ralloc_steal(linked, ubo_blocks);
2279 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2280 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2281 }
2282 linked->Program->info.num_ubos = num_ubo_blocks;
2283
2284 /* Copy ssbo blocks to linked shader list */
2285 linked->Program->sh.ShaderStorageBlocks =
2286 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2287 ralloc_steal(linked, ssbo_blocks);
2288 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2289 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2290 }
2291 linked->Program->info.num_ssbos = num_ssbo_blocks;
2292
2293 /* At this point linked should contain all of the linked IR, so
2294 * validate it to make sure nothing went wrong.
2295 */
2296 validate_ir_tree(linked->ir);
2297
2298 /* Set the size of geometry shader input arrays */
2299 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2300 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2301 array_resize_visitor input_resize_visitor(num_vertices, prog,
2302 MESA_SHADER_GEOMETRY);
2303 foreach_in_list(ir_instruction, ir, linked->ir) {
2304 ir->accept(&input_resize_visitor);
2305 }
2306 }
2307
2308 if (ctx->Const.VertexID_is_zero_based)
2309 lower_vertex_id(linked);
2310
2311 #ifdef DEBUG
2312 /* Compute the source checksum. */
2313 linked->SourceChecksum = 0;
2314 for (unsigned i = 0; i < num_shaders; i++) {
2315 if (shader_list[i] == NULL)
2316 continue;
2317 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2318 }
2319 #endif
2320
2321 return linked;
2322 }
2323
2324 /**
2325 * Update the sizes of linked shader uniform arrays to the maximum
2326 * array index used.
2327 *
2328 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2329 *
2330 * If one or more elements of an array are active,
2331 * GetActiveUniform will return the name of the array in name,
2332 * subject to the restrictions listed above. The type of the array
2333 * is returned in type. The size parameter contains the highest
2334 * array element index used, plus one. The compiler or linker
2335 * determines the highest index used. There will be only one
2336 * active uniform reported by the GL per uniform array.
2337
2338 */
2339 static void
2340 update_array_sizes(struct gl_shader_program *prog)
2341 {
2342 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2343 if (prog->_LinkedShaders[i] == NULL)
2344 continue;
2345
2346 bool types_were_updated = false;
2347
2348 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2349 ir_variable *const var = node->as_variable();
2350
2351 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2352 !var->type->is_array())
2353 continue;
2354
2355 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2356 * will not be eliminated. Since we always do std140, just
2357 * don't resize arrays in UBOs.
2358 *
2359 * Atomic counters are supposed to get deterministic
2360 * locations assigned based on the declaration ordering and
2361 * sizes, array compaction would mess that up.
2362 *
2363 * Subroutine uniforms are not removed.
2364 */
2365 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2366 var->type->contains_subroutine() || var->constant_initializer)
2367 continue;
2368
2369 int size = var->data.max_array_access;
2370 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2371 if (prog->_LinkedShaders[j] == NULL)
2372 continue;
2373
2374 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2375 ir_variable *other_var = node2->as_variable();
2376 if (!other_var)
2377 continue;
2378
2379 if (strcmp(var->name, other_var->name) == 0 &&
2380 other_var->data.max_array_access > size) {
2381 size = other_var->data.max_array_access;
2382 }
2383 }
2384 }
2385
2386 if (size + 1 != (int)var->type->length) {
2387 /* If this is a built-in uniform (i.e., it's backed by some
2388 * fixed-function state), adjust the number of state slots to
2389 * match the new array size. The number of slots per array entry
2390 * is not known. It seems safe to assume that the total number of
2391 * slots is an integer multiple of the number of array elements.
2392 * Determine the number of slots per array element by dividing by
2393 * the old (total) size.
2394 */
2395 const unsigned num_slots = var->get_num_state_slots();
2396 if (num_slots > 0) {
2397 var->set_num_state_slots((size + 1)
2398 * (num_slots / var->type->length));
2399 }
2400
2401 var->type = glsl_type::get_array_instance(var->type->fields.array,
2402 size + 1);
2403 types_were_updated = true;
2404 }
2405 }
2406
2407 /* Update the types of dereferences in case we changed any. */
2408 if (types_were_updated) {
2409 deref_type_updater v;
2410 v.run(prog->_LinkedShaders[i]->ir);
2411 }
2412 }
2413 }
2414
2415 /**
2416 * Resize tessellation evaluation per-vertex inputs to the size of
2417 * tessellation control per-vertex outputs.
2418 */
2419 static void
2420 resize_tes_inputs(struct gl_context *ctx,
2421 struct gl_shader_program *prog)
2422 {
2423 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2424 return;
2425
2426 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2427 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2428
2429 /* If no control shader is present, then the TES inputs are statically
2430 * sized to MaxPatchVertices; the actual size of the arrays won't be
2431 * known until draw time.
2432 */
2433 const int num_vertices = tcs
2434 ? tcs->info.TessCtrl.VerticesOut
2435 : ctx->Const.MaxPatchVertices;
2436
2437 array_resize_visitor input_resize_visitor(num_vertices, prog,
2438 MESA_SHADER_TESS_EVAL);
2439 foreach_in_list(ir_instruction, ir, tes->ir) {
2440 ir->accept(&input_resize_visitor);
2441 }
2442
2443 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2444 /* Convert the gl_PatchVerticesIn system value into a constant, since
2445 * the value is known at this point.
2446 */
2447 foreach_in_list(ir_instruction, ir, tes->ir) {
2448 ir_variable *var = ir->as_variable();
2449 if (var && var->data.mode == ir_var_system_value &&
2450 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2451 void *mem_ctx = ralloc_parent(var);
2452 var->data.location = 0;
2453 var->data.explicit_location = false;
2454 if (tcs) {
2455 var->data.mode = ir_var_auto;
2456 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2457 } else {
2458 var->data.mode = ir_var_uniform;
2459 var->data.how_declared = ir_var_hidden;
2460 var->allocate_state_slots(1);
2461 ir_state_slot *slot0 = &var->get_state_slots()[0];
2462 slot0->swizzle = SWIZZLE_XXXX;
2463 slot0->tokens[0] = STATE_INTERNAL;
2464 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2465 for (int i = 2; i < STATE_LENGTH; i++)
2466 slot0->tokens[i] = 0;
2467 }
2468 }
2469 }
2470 }
2471 }
2472
2473 /**
2474 * Find a contiguous set of available bits in a bitmask.
2475 *
2476 * \param used_mask Bits representing used (1) and unused (0) locations
2477 * \param needed_count Number of contiguous bits needed.
2478 *
2479 * \return
2480 * Base location of the available bits on success or -1 on failure.
2481 */
2482 int
2483 find_available_slots(unsigned used_mask, unsigned needed_count)
2484 {
2485 unsigned needed_mask = (1 << needed_count) - 1;
2486 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2487
2488 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2489 * cannot optimize possibly infinite loops" for the loop below.
2490 */
2491 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2492 return -1;
2493
2494 for (int i = 0; i <= max_bit_to_test; i++) {
2495 if ((needed_mask & ~used_mask) == needed_mask)
2496 return i;
2497
2498 needed_mask <<= 1;
2499 }
2500
2501 return -1;
2502 }
2503
2504
2505 /**
2506 * Assign locations for either VS inputs or FS outputs
2507 *
2508 * \param mem_ctx Temporary ralloc context used for linking
2509 * \param prog Shader program whose variables need locations assigned
2510 * \param constants Driver specific constant values for the program.
2511 * \param target_index Selector for the program target to receive location
2512 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2513 * \c MESA_SHADER_FRAGMENT.
2514 *
2515 * \return
2516 * If locations are successfully assigned, true is returned. Otherwise an
2517 * error is emitted to the shader link log and false is returned.
2518 */
2519 bool
2520 assign_attribute_or_color_locations(void *mem_ctx,
2521 gl_shader_program *prog,
2522 struct gl_constants *constants,
2523 unsigned target_index)
2524 {
2525 /* Maximum number of generic locations. This corresponds to either the
2526 * maximum number of draw buffers or the maximum number of generic
2527 * attributes.
2528 */
2529 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2530 constants->Program[target_index].MaxAttribs :
2531 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2532
2533 /* Mark invalid locations as being used.
2534 */
2535 unsigned used_locations = (max_index >= 32)
2536 ? ~0 : ~((1 << max_index) - 1);
2537 unsigned double_storage_locations = 0;
2538
2539 assert((target_index == MESA_SHADER_VERTEX)
2540 || (target_index == MESA_SHADER_FRAGMENT));
2541
2542 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2543 if (sh == NULL)
2544 return true;
2545
2546 /* Operate in a total of four passes.
2547 *
2548 * 1. Invalidate the location assignments for all vertex shader inputs.
2549 *
2550 * 2. Assign locations for inputs that have user-defined (via
2551 * glBindVertexAttribLocation) locations and outputs that have
2552 * user-defined locations (via glBindFragDataLocation).
2553 *
2554 * 3. Sort the attributes without assigned locations by number of slots
2555 * required in decreasing order. Fragmentation caused by attribute
2556 * locations assigned by the application may prevent large attributes
2557 * from having enough contiguous space.
2558 *
2559 * 4. Assign locations to any inputs without assigned locations.
2560 */
2561
2562 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2563 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2564
2565 const enum ir_variable_mode direction =
2566 (target_index == MESA_SHADER_VERTEX)
2567 ? ir_var_shader_in : ir_var_shader_out;
2568
2569
2570 /* Temporary storage for the set of attributes that need locations assigned.
2571 */
2572 struct temp_attr {
2573 unsigned slots;
2574 ir_variable *var;
2575
2576 /* Used below in the call to qsort. */
2577 static int compare(const void *a, const void *b)
2578 {
2579 const temp_attr *const l = (const temp_attr *) a;
2580 const temp_attr *const r = (const temp_attr *) b;
2581
2582 /* Reversed because we want a descending order sort below. */
2583 return r->slots - l->slots;
2584 }
2585 } to_assign[32];
2586 assert(max_index <= 32);
2587
2588 /* Temporary array for the set of attributes that have locations assigned.
2589 */
2590 ir_variable *assigned[16];
2591
2592 unsigned num_attr = 0;
2593 unsigned assigned_attr = 0;
2594
2595 foreach_in_list(ir_instruction, node, sh->ir) {
2596 ir_variable *const var = node->as_variable();
2597
2598 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2599 continue;
2600
2601 if (var->data.explicit_location) {
2602 var->data.is_unmatched_generic_inout = 0;
2603 if ((var->data.location >= (int)(max_index + generic_base))
2604 || (var->data.location < 0)) {
2605 linker_error(prog,
2606 "invalid explicit location %d specified for `%s'\n",
2607 (var->data.location < 0)
2608 ? var->data.location
2609 : var->data.location - generic_base,
2610 var->name);
2611 return false;
2612 }
2613 } else if (target_index == MESA_SHADER_VERTEX) {
2614 unsigned binding;
2615
2616 if (prog->AttributeBindings->get(binding, var->name)) {
2617 assert(binding >= VERT_ATTRIB_GENERIC0);
2618 var->data.location = binding;
2619 var->data.is_unmatched_generic_inout = 0;
2620 }
2621 } else if (target_index == MESA_SHADER_FRAGMENT) {
2622 unsigned binding;
2623 unsigned index;
2624 const char *name = var->name;
2625 const glsl_type *type = var->type;
2626
2627 while (type) {
2628 /* Check if there's a binding for the variable name */
2629 if (prog->FragDataBindings->get(binding, name)) {
2630 assert(binding >= FRAG_RESULT_DATA0);
2631 var->data.location = binding;
2632 var->data.is_unmatched_generic_inout = 0;
2633
2634 if (prog->FragDataIndexBindings->get(index, name)) {
2635 var->data.index = index;
2636 }
2637 break;
2638 }
2639
2640 /* If not, but it's an array type, look for name[0] */
2641 if (type->is_array()) {
2642 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2643 type = type->fields.array;
2644 continue;
2645 }
2646
2647 break;
2648 }
2649 }
2650
2651 if (strcmp(var->name, "gl_LastFragData") == 0)
2652 continue;
2653
2654 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2655 *
2656 * "Output binding assignments will cause LinkProgram to fail:
2657 * ...
2658 * If the program has an active output assigned to a location greater
2659 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2660 * an active output assigned an index greater than or equal to one;"
2661 */
2662 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2663 var->data.location - generic_base >=
2664 (int) constants->MaxDualSourceDrawBuffers) {
2665 linker_error(prog,
2666 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2667 "with index %u for %s\n",
2668 var->data.location - generic_base, var->data.index,
2669 var->name);
2670 return false;
2671 }
2672
2673 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2674
2675 /* If the variable is not a built-in and has a location statically
2676 * assigned in the shader (presumably via a layout qualifier), make sure
2677 * that it doesn't collide with other assigned locations. Otherwise,
2678 * add it to the list of variables that need linker-assigned locations.
2679 */
2680 if (var->data.location != -1) {
2681 if (var->data.location >= generic_base && var->data.index < 1) {
2682 /* From page 61 of the OpenGL 4.0 spec:
2683 *
2684 * "LinkProgram will fail if the attribute bindings assigned
2685 * by BindAttribLocation do not leave not enough space to
2686 * assign a location for an active matrix attribute or an
2687 * active attribute array, both of which require multiple
2688 * contiguous generic attributes."
2689 *
2690 * I think above text prohibits the aliasing of explicit and
2691 * automatic assignments. But, aliasing is allowed in manual
2692 * assignments of attribute locations. See below comments for
2693 * the details.
2694 *
2695 * From OpenGL 4.0 spec, page 61:
2696 *
2697 * "It is possible for an application to bind more than one
2698 * attribute name to the same location. This is referred to as
2699 * aliasing. This will only work if only one of the aliased
2700 * attributes is active in the executable program, or if no
2701 * path through the shader consumes more than one attribute of
2702 * a set of attributes aliased to the same location. A link
2703 * error can occur if the linker determines that every path
2704 * through the shader consumes multiple aliased attributes,
2705 * but implementations are not required to generate an error
2706 * in this case."
2707 *
2708 * From GLSL 4.30 spec, page 54:
2709 *
2710 * "A program will fail to link if any two non-vertex shader
2711 * input variables are assigned to the same location. For
2712 * vertex shaders, multiple input variables may be assigned
2713 * to the same location using either layout qualifiers or via
2714 * the OpenGL API. However, such aliasing is intended only to
2715 * support vertex shaders where each execution path accesses
2716 * at most one input per each location. Implementations are
2717 * permitted, but not required, to generate link-time errors
2718 * if they detect that every path through the vertex shader
2719 * executable accesses multiple inputs assigned to any single
2720 * location. For all shader types, a program will fail to link
2721 * if explicit location assignments leave the linker unable
2722 * to find space for other variables without explicit
2723 * assignments."
2724 *
2725 * From OpenGL ES 3.0 spec, page 56:
2726 *
2727 * "Binding more than one attribute name to the same location
2728 * is referred to as aliasing, and is not permitted in OpenGL
2729 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2730 * fail when this condition exists. However, aliasing is
2731 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2732 * This will only work if only one of the aliased attributes
2733 * is active in the executable program, or if no path through
2734 * the shader consumes more than one attribute of a set of
2735 * attributes aliased to the same location. A link error can
2736 * occur if the linker determines that every path through the
2737 * shader consumes multiple aliased attributes, but implemen-
2738 * tations are not required to generate an error in this case."
2739 *
2740 * After looking at above references from OpenGL, OpenGL ES and
2741 * GLSL specifications, we allow aliasing of vertex input variables
2742 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2743 *
2744 * NOTE: This is not required by the spec but its worth mentioning
2745 * here that we're not doing anything to make sure that no path
2746 * through the vertex shader executable accesses multiple inputs
2747 * assigned to any single location.
2748 */
2749
2750 /* Mask representing the contiguous slots that will be used by
2751 * this attribute.
2752 */
2753 const unsigned attr = var->data.location - generic_base;
2754 const unsigned use_mask = (1 << slots) - 1;
2755 const char *const string = (target_index == MESA_SHADER_VERTEX)
2756 ? "vertex shader input" : "fragment shader output";
2757
2758 /* Generate a link error if the requested locations for this
2759 * attribute exceed the maximum allowed attribute location.
2760 */
2761 if (attr + slots > max_index) {
2762 linker_error(prog,
2763 "insufficient contiguous locations "
2764 "available for %s `%s' %d %d %d\n", string,
2765 var->name, used_locations, use_mask, attr);
2766 return false;
2767 }
2768
2769 /* Generate a link error if the set of bits requested for this
2770 * attribute overlaps any previously allocated bits.
2771 */
2772 if ((~(use_mask << attr) & used_locations) != used_locations) {
2773 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2774 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2775 * 4.40 spec:
2776 *
2777 * "Additionally, for fragment shader outputs, if two
2778 * variables are placed within the same location, they
2779 * must have the same underlying type (floating-point or
2780 * integer). No component aliasing of output variables or
2781 * members is allowed.
2782 */
2783 for (unsigned i = 0; i < assigned_attr; i++) {
2784 unsigned assigned_slots =
2785 assigned[i]->type->count_attribute_slots(false);
2786 unsigned assig_attr =
2787 assigned[i]->data.location - generic_base;
2788 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2789
2790 if ((assigned_use_mask << assig_attr) &
2791 (use_mask << attr)) {
2792
2793 const glsl_type *assigned_type =
2794 assigned[i]->type->without_array();
2795 const glsl_type *type = var->type->without_array();
2796 if (assigned_type->base_type != type->base_type) {
2797 linker_error(prog, "types do not match for aliased"
2798 " %ss %s and %s\n", string,
2799 assigned[i]->name, var->name);
2800 return false;
2801 }
2802
2803 unsigned assigned_component_mask =
2804 ((1 << assigned_type->vector_elements) - 1) <<
2805 assigned[i]->data.location_frac;
2806 unsigned component_mask =
2807 ((1 << type->vector_elements) - 1) <<
2808 var->data.location_frac;
2809 if (assigned_component_mask & component_mask) {
2810 linker_error(prog, "overlapping component is "
2811 "assigned to %ss %s and %s "
2812 "(component=%d)\n",
2813 string, assigned[i]->name, var->name,
2814 var->data.location_frac);
2815 return false;
2816 }
2817 }
2818 }
2819 } else if (target_index == MESA_SHADER_FRAGMENT ||
2820 (prog->IsES && prog->data->Version >= 300)) {
2821 linker_error(prog, "overlapping location is assigned "
2822 "to %s `%s' %d %d %d\n", string, var->name,
2823 used_locations, use_mask, attr);
2824 return false;
2825 } else {
2826 linker_warning(prog, "overlapping location is assigned "
2827 "to %s `%s' %d %d %d\n", string, var->name,
2828 used_locations, use_mask, attr);
2829 }
2830 }
2831
2832 used_locations |= (use_mask << attr);
2833
2834 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2835 *
2836 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2837 * active attribute variables may fail to link, unless
2838 * device-dependent optimizations are able to make the program
2839 * fit within available hardware resources. For the purposes
2840 * of this test, attribute variables of the type dvec3, dvec4,
2841 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2842 * count as consuming twice as many attributes as equivalent
2843 * single-precision types. While these types use the same number
2844 * of generic attributes as their single-precision equivalents,
2845 * implementations are permitted to consume two single-precision
2846 * vectors of internal storage for each three- or four-component
2847 * double-precision vector."
2848 *
2849 * Mark this attribute slot as taking up twice as much space
2850 * so we can count it properly against limits. According to
2851 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2852 * is optional behavior, but it seems preferable.
2853 */
2854 if (var->type->without_array()->is_dual_slot())
2855 double_storage_locations |= (use_mask << attr);
2856 }
2857
2858 assigned[assigned_attr] = var;
2859 assigned_attr++;
2860
2861 continue;
2862 }
2863
2864 if (num_attr >= max_index) {
2865 linker_error(prog, "too many %s (max %u)",
2866 target_index == MESA_SHADER_VERTEX ?
2867 "vertex shader inputs" : "fragment shader outputs",
2868 max_index);
2869 return false;
2870 }
2871 to_assign[num_attr].slots = slots;
2872 to_assign[num_attr].var = var;
2873 num_attr++;
2874 }
2875
2876 if (target_index == MESA_SHADER_VERTEX) {
2877 unsigned total_attribs_size =
2878 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2879 _mesa_bitcount(double_storage_locations);
2880 if (total_attribs_size > max_index) {
2881 linker_error(prog,
2882 "attempt to use %d vertex attribute slots only %d available ",
2883 total_attribs_size, max_index);
2884 return false;
2885 }
2886 }
2887
2888 /* If all of the attributes were assigned locations by the application (or
2889 * are built-in attributes with fixed locations), return early. This should
2890 * be the common case.
2891 */
2892 if (num_attr == 0)
2893 return true;
2894
2895 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2896
2897 if (target_index == MESA_SHADER_VERTEX) {
2898 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2899 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2900 * reserved to prevent it from being automatically allocated below.
2901 */
2902 find_deref_visitor find("gl_Vertex");
2903 find.run(sh->ir);
2904 if (find.variable_found())
2905 used_locations |= (1 << 0);
2906 }
2907
2908 for (unsigned i = 0; i < num_attr; i++) {
2909 /* Mask representing the contiguous slots that will be used by this
2910 * attribute.
2911 */
2912 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2913
2914 int location = find_available_slots(used_locations, to_assign[i].slots);
2915
2916 if (location < 0) {
2917 const char *const string = (target_index == MESA_SHADER_VERTEX)
2918 ? "vertex shader input" : "fragment shader output";
2919
2920 linker_error(prog,
2921 "insufficient contiguous locations "
2922 "available for %s `%s'\n",
2923 string, to_assign[i].var->name);
2924 return false;
2925 }
2926
2927 to_assign[i].var->data.location = generic_base + location;
2928 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2929 used_locations |= (use_mask << location);
2930
2931 if (to_assign[i].var->type->without_array()->is_dual_slot())
2932 double_storage_locations |= (use_mask << location);
2933 }
2934
2935 /* Now that we have all the locations, from the GL 4.5 core spec, section
2936 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2937 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2938 * as equivalent single-precision types.
2939 */
2940 if (target_index == MESA_SHADER_VERTEX) {
2941 unsigned total_attribs_size =
2942 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2943 _mesa_bitcount(double_storage_locations);
2944 if (total_attribs_size > max_index) {
2945 linker_error(prog,
2946 "attempt to use %d vertex attribute slots only %d available ",
2947 total_attribs_size, max_index);
2948 return false;
2949 }
2950 }
2951
2952 return true;
2953 }
2954
2955 /**
2956 * Match explicit locations of outputs to inputs and deactivate the
2957 * unmatch flag if found so we don't optimise them away.
2958 */
2959 static void
2960 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2961 gl_linked_shader *consumer)
2962 {
2963 glsl_symbol_table parameters;
2964 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2965 { {NULL, NULL} };
2966
2967 /* Find all shader outputs in the "producer" stage.
2968 */
2969 foreach_in_list(ir_instruction, node, producer->ir) {
2970 ir_variable *const var = node->as_variable();
2971
2972 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2973 continue;
2974
2975 if (var->data.explicit_location &&
2976 var->data.location >= VARYING_SLOT_VAR0) {
2977 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2978 if (explicit_locations[idx][var->data.location_frac] == NULL)
2979 explicit_locations[idx][var->data.location_frac] = var;
2980 }
2981 }
2982
2983 /* Match inputs to outputs */
2984 foreach_in_list(ir_instruction, node, consumer->ir) {
2985 ir_variable *const input = node->as_variable();
2986
2987 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2988 continue;
2989
2990 ir_variable *output = NULL;
2991 if (input->data.explicit_location
2992 && input->data.location >= VARYING_SLOT_VAR0) {
2993 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2994 [input->data.location_frac];
2995
2996 if (output != NULL){
2997 input->data.is_unmatched_generic_inout = 0;
2998 output->data.is_unmatched_generic_inout = 0;
2999 }
3000 }
3001 }
3002 }
3003
3004 /**
3005 * Store the gl_FragDepth layout in the gl_shader_program struct.
3006 */
3007 static void
3008 store_fragdepth_layout(struct gl_shader_program *prog)
3009 {
3010 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3011 return;
3012 }
3013
3014 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3015
3016 /* We don't look up the gl_FragDepth symbol directly because if
3017 * gl_FragDepth is not used in the shader, it's removed from the IR.
3018 * However, the symbol won't be removed from the symbol table.
3019 *
3020 * We're only interested in the cases where the variable is NOT removed
3021 * from the IR.
3022 */
3023 foreach_in_list(ir_instruction, node, ir) {
3024 ir_variable *const var = node->as_variable();
3025
3026 if (var == NULL || var->data.mode != ir_var_shader_out) {
3027 continue;
3028 }
3029
3030 if (strcmp(var->name, "gl_FragDepth") == 0) {
3031 switch (var->data.depth_layout) {
3032 case ir_depth_layout_none:
3033 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3034 return;
3035 case ir_depth_layout_any:
3036 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3037 return;
3038 case ir_depth_layout_greater:
3039 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3040 return;
3041 case ir_depth_layout_less:
3042 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3043 return;
3044 case ir_depth_layout_unchanged:
3045 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3046 return;
3047 default:
3048 assert(0);
3049 return;
3050 }
3051 }
3052 }
3053 }
3054
3055 /**
3056 * Validate the resources used by a program versus the implementation limits
3057 */
3058 static void
3059 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3060 {
3061 unsigned total_uniform_blocks = 0;
3062 unsigned total_shader_storage_blocks = 0;
3063
3064 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3065 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3066
3067 if (sh == NULL)
3068 continue;
3069
3070 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
3071 linker_error(prog, "Too many %s shader texture samplers\n",
3072 _mesa_shader_stage_to_string(i));
3073 }
3074
3075 if (sh->num_uniform_components >
3076 ctx->Const.Program[i].MaxUniformComponents) {
3077 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3078 linker_warning(prog, "Too many %s shader default uniform block "
3079 "components, but the driver will try to optimize "
3080 "them out; this is non-portable out-of-spec "
3081 "behavior\n",
3082 _mesa_shader_stage_to_string(i));
3083 } else {
3084 linker_error(prog, "Too many %s shader default uniform block "
3085 "components\n",
3086 _mesa_shader_stage_to_string(i));
3087 }
3088 }
3089
3090 if (sh->num_combined_uniform_components >
3091 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3092 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3093 linker_warning(prog, "Too many %s shader uniform components, "
3094 "but the driver will try to optimize them out; "
3095 "this is non-portable out-of-spec behavior\n",
3096 _mesa_shader_stage_to_string(i));
3097 } else {
3098 linker_error(prog, "Too many %s shader uniform components\n",
3099 _mesa_shader_stage_to_string(i));
3100 }
3101 }
3102
3103 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3104 total_uniform_blocks += sh->Program->info.num_ubos;
3105
3106 const unsigned max_uniform_blocks =
3107 ctx->Const.Program[i].MaxUniformBlocks;
3108 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3109 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3110 _mesa_shader_stage_to_string(i),
3111 sh->Program->info.num_ubos, max_uniform_blocks);
3112 }
3113
3114 const unsigned max_shader_storage_blocks =
3115 ctx->Const.Program[i].MaxShaderStorageBlocks;
3116 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3117 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3118 _mesa_shader_stage_to_string(i),
3119 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3120 }
3121 }
3122
3123 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3124 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3125 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3126 }
3127
3128 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3129 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3130 total_shader_storage_blocks,
3131 ctx->Const.MaxCombinedShaderStorageBlocks);
3132 }
3133
3134 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3135 if (prog->data->UniformBlocks[i].UniformBufferSize >
3136 ctx->Const.MaxUniformBlockSize) {
3137 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3138 prog->data->UniformBlocks[i].Name,
3139 prog->data->UniformBlocks[i].UniformBufferSize,
3140 ctx->Const.MaxUniformBlockSize);
3141 }
3142 }
3143
3144 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3145 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3146 ctx->Const.MaxShaderStorageBlockSize) {
3147 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3148 prog->data->ShaderStorageBlocks[i].Name,
3149 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3150 ctx->Const.MaxShaderStorageBlockSize);
3151 }
3152 }
3153 }
3154
3155 static void
3156 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3157 {
3158 unsigned mask = prog->data->linked_stages;
3159 while (mask) {
3160 const int i = u_bit_scan(&mask);
3161 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3162
3163 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3164 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3165 continue;
3166
3167 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3168
3169 if (!uni)
3170 continue;
3171
3172 int count = 0;
3173 if (p->sh.NumSubroutineFunctions == 0) {
3174 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3175 continue;
3176 }
3177 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3178 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3179 for (int k = 0; k < fn->num_compat_types; k++) {
3180 if (fn->types[k] == uni->type) {
3181 count++;
3182 break;
3183 }
3184 }
3185 }
3186 uni->num_compatible_subroutines = count;
3187 }
3188 }
3189 }
3190
3191 static void
3192 check_subroutine_resources(struct gl_shader_program *prog)
3193 {
3194 unsigned mask = prog->data->linked_stages;
3195 while (mask) {
3196 const int i = u_bit_scan(&mask);
3197 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3198
3199 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3200 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3201 _mesa_shader_stage_to_string(i));
3202 }
3203 }
3204 }
3205 /**
3206 * Validate shader image resources.
3207 */
3208 static void
3209 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3210 {
3211 unsigned total_image_units = 0;
3212 unsigned fragment_outputs = 0;
3213 unsigned total_shader_storage_blocks = 0;
3214
3215 if (!ctx->Extensions.ARB_shader_image_load_store)
3216 return;
3217
3218 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3219 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3220
3221 if (sh) {
3222 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3223 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3224 _mesa_shader_stage_to_string(i), sh->NumImages,
3225 ctx->Const.Program[i].MaxImageUniforms);
3226
3227 total_image_units += sh->NumImages;
3228 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3229
3230 if (i == MESA_SHADER_FRAGMENT) {
3231 foreach_in_list(ir_instruction, node, sh->ir) {
3232 ir_variable *var = node->as_variable();
3233 if (var && var->data.mode == ir_var_shader_out)
3234 /* since there are no double fs outputs - pass false */
3235 fragment_outputs += var->type->count_attribute_slots(false);
3236 }
3237 }
3238 }
3239 }
3240
3241 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3242 linker_error(prog, "Too many combined image uniforms\n");
3243
3244 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3245 ctx->Const.MaxCombinedShaderOutputResources)
3246 linker_error(prog, "Too many combined image uniforms, shader storage "
3247 " buffers and fragment outputs\n");
3248 }
3249
3250
3251 /**
3252 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3253 * for a variable, checks for overlaps between other uniforms using explicit
3254 * locations.
3255 */
3256 static int
3257 reserve_explicit_locations(struct gl_shader_program *prog,
3258 string_to_uint_map *map, ir_variable *var)
3259 {
3260 unsigned slots = var->type->uniform_locations();
3261 unsigned max_loc = var->data.location + slots - 1;
3262 unsigned return_value = slots;
3263
3264 /* Resize remap table if locations do not fit in the current one. */
3265 if (max_loc + 1 > prog->NumUniformRemapTable) {
3266 prog->UniformRemapTable =
3267 reralloc(prog, prog->UniformRemapTable,
3268 gl_uniform_storage *,
3269 max_loc + 1);
3270
3271 if (!prog->UniformRemapTable) {
3272 linker_error(prog, "Out of memory during linking.\n");
3273 return -1;
3274 }
3275
3276 /* Initialize allocated space. */
3277 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3278 prog->UniformRemapTable[i] = NULL;
3279
3280 prog->NumUniformRemapTable = max_loc + 1;
3281 }
3282
3283 for (unsigned i = 0; i < slots; i++) {
3284 unsigned loc = var->data.location + i;
3285
3286 /* Check if location is already used. */
3287 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3288
3289 /* Possibly same uniform from a different stage, this is ok. */
3290 unsigned hash_loc;
3291 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3292 return_value = 0;
3293 continue;
3294 }
3295
3296 /* ARB_explicit_uniform_location specification states:
3297 *
3298 * "No two default-block uniform variables in the program can have
3299 * the same location, even if they are unused, otherwise a compiler
3300 * or linker error will be generated."
3301 */
3302 linker_error(prog,
3303 "location qualifier for uniform %s overlaps "
3304 "previously used location\n",
3305 var->name);
3306 return -1;
3307 }
3308
3309 /* Initialize location as inactive before optimization
3310 * rounds and location assignment.
3311 */
3312 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3313 }
3314
3315 /* Note, base location used for arrays. */
3316 map->put(var->data.location, var->name);
3317
3318 return return_value;
3319 }
3320
3321 static bool
3322 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3323 struct gl_program *p,
3324 ir_variable *var)
3325 {
3326 unsigned slots = var->type->uniform_locations();
3327 unsigned max_loc = var->data.location + slots - 1;
3328
3329 /* Resize remap table if locations do not fit in the current one. */
3330 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3331 p->sh.SubroutineUniformRemapTable =
3332 reralloc(p, p->sh.SubroutineUniformRemapTable,
3333 gl_uniform_storage *,
3334 max_loc + 1);
3335
3336 if (!p->sh.SubroutineUniformRemapTable) {
3337 linker_error(prog, "Out of memory during linking.\n");
3338 return false;
3339 }
3340
3341 /* Initialize allocated space. */
3342 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3343 p->sh.SubroutineUniformRemapTable[i] = NULL;
3344
3345 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3346 }
3347
3348 for (unsigned i = 0; i < slots; i++) {
3349 unsigned loc = var->data.location + i;
3350
3351 /* Check if location is already used. */
3352 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3353
3354 /* ARB_explicit_uniform_location specification states:
3355 * "No two subroutine uniform variables can have the same location
3356 * in the same shader stage, otherwise a compiler or linker error
3357 * will be generated."
3358 */
3359 linker_error(prog,
3360 "location qualifier for uniform %s overlaps "
3361 "previously used location\n",
3362 var->name);
3363 return false;
3364 }
3365
3366 /* Initialize location as inactive before optimization
3367 * rounds and location assignment.
3368 */
3369 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3370 }
3371
3372 return true;
3373 }
3374 /**
3375 * Check and reserve all explicit uniform locations, called before
3376 * any optimizations happen to handle also inactive uniforms and
3377 * inactive array elements that may get trimmed away.
3378 */
3379 static unsigned
3380 check_explicit_uniform_locations(struct gl_context *ctx,
3381 struct gl_shader_program *prog)
3382 {
3383 if (!ctx->Extensions.ARB_explicit_uniform_location)
3384 return 0;
3385
3386 /* This map is used to detect if overlapping explicit locations
3387 * occur with the same uniform (from different stage) or a different one.
3388 */
3389 string_to_uint_map *uniform_map = new string_to_uint_map;
3390
3391 if (!uniform_map) {
3392 linker_error(prog, "Out of memory during linking.\n");
3393 return 0;
3394 }
3395
3396 unsigned entries_total = 0;
3397 unsigned mask = prog->data->linked_stages;
3398 while (mask) {
3399 const int i = u_bit_scan(&mask);
3400 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3401
3402 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3403 ir_variable *var = node->as_variable();
3404 if (!var || var->data.mode != ir_var_uniform)
3405 continue;
3406
3407 if (var->data.explicit_location) {
3408 bool ret = false;
3409 if (var->type->without_array()->is_subroutine())
3410 ret = reserve_subroutine_explicit_locations(prog, p, var);
3411 else {
3412 int slots = reserve_explicit_locations(prog, uniform_map,
3413 var);
3414 if (slots != -1) {
3415 ret = true;
3416 entries_total += slots;
3417 }
3418 }
3419 if (!ret) {
3420 delete uniform_map;
3421 return 0;
3422 }
3423 }
3424 }
3425 }
3426
3427 struct empty_uniform_block *current_block = NULL;
3428
3429 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3430 /* We found empty space in UniformRemapTable. */
3431 if (prog->UniformRemapTable[i] == NULL) {
3432 /* We've found the beginning of a new continous block of empty slots */
3433 if (!current_block || current_block->start + current_block->slots != i) {
3434 current_block = rzalloc(prog, struct empty_uniform_block);
3435 current_block->start = i;
3436 exec_list_push_tail(&prog->EmptyUniformLocations,
3437 &current_block->link);
3438 }
3439
3440 /* The current block continues, so we simply increment its slots */
3441 current_block->slots++;
3442 }
3443 }
3444
3445 delete uniform_map;
3446 return entries_total;
3447 }
3448
3449 static bool
3450 should_add_buffer_variable(struct gl_shader_program *shProg,
3451 GLenum type, const char *name)
3452 {
3453 bool found_interface = false;
3454 unsigned block_name_len = 0;
3455 const char *block_name_dot = strchr(name, '.');
3456
3457 /* These rules only apply to buffer variables. So we return
3458 * true for the rest of types.
3459 */
3460 if (type != GL_BUFFER_VARIABLE)
3461 return true;
3462
3463 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3464 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3465 block_name_len = strlen(block_name);
3466
3467 const char *block_square_bracket = strchr(block_name, '[');
3468 if (block_square_bracket) {
3469 /* The block is part of an array of named interfaces,
3470 * for the name comparison we ignore the "[x]" part.
3471 */
3472 block_name_len -= strlen(block_square_bracket);
3473 }
3474
3475 if (block_name_dot) {
3476 /* Check if the variable name starts with the interface
3477 * name. The interface name (if present) should have the
3478 * length than the interface block name we are comparing to.
3479 */
3480 unsigned len = strlen(name) - strlen(block_name_dot);
3481 if (len != block_name_len)
3482 continue;
3483 }
3484
3485 if (strncmp(block_name, name, block_name_len) == 0) {
3486 found_interface = true;
3487 break;
3488 }
3489 }
3490
3491 /* We remove the interface name from the buffer variable name,
3492 * including the dot that follows it.
3493 */
3494 if (found_interface)
3495 name = name + block_name_len + 1;
3496
3497 /* The ARB_program_interface_query spec says:
3498 *
3499 * "For an active shader storage block member declared as an array, an
3500 * entry will be generated only for the first array element, regardless
3501 * of its type. For arrays of aggregate types, the enumeration rules
3502 * are applied recursively for the single enumerated array element."
3503 */
3504 const char *struct_first_dot = strchr(name, '.');
3505 const char *first_square_bracket = strchr(name, '[');
3506
3507 /* The buffer variable is on top level and it is not an array */
3508 if (!first_square_bracket) {
3509 return true;
3510 /* The shader storage block member is a struct, then generate the entry */
3511 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3512 return true;
3513 } else {
3514 /* Shader storage block member is an array, only generate an entry for the
3515 * first array element.
3516 */
3517 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3518 return true;
3519 }
3520
3521 return false;
3522 }
3523
3524 static bool
3525 add_program_resource(struct gl_shader_program *prog,
3526 struct set *resource_set,
3527 GLenum type, const void *data, uint8_t stages)
3528 {
3529 assert(data);
3530
3531 /* If resource already exists, do not add it again. */
3532 if (_mesa_set_search(resource_set, data))
3533 return true;
3534
3535 prog->ProgramResourceList =
3536 reralloc(prog,
3537 prog->ProgramResourceList,
3538 gl_program_resource,
3539 prog->NumProgramResourceList + 1);
3540
3541 if (!prog->ProgramResourceList) {
3542 linker_error(prog, "Out of memory during linking.\n");
3543 return false;
3544 }
3545
3546 struct gl_program_resource *res =
3547 &prog->ProgramResourceList[prog->NumProgramResourceList];
3548
3549 res->Type = type;
3550 res->Data = data;
3551 res->StageReferences = stages;
3552
3553 prog->NumProgramResourceList++;
3554
3555 _mesa_set_add(resource_set, data);
3556
3557 return true;
3558 }
3559
3560 /* Function checks if a variable var is a packed varying and
3561 * if given name is part of packed varying's list.
3562 *
3563 * If a variable is a packed varying, it has a name like
3564 * 'packed:a,b,c' where a, b and c are separate variables.
3565 */
3566 static bool
3567 included_in_packed_varying(ir_variable *var, const char *name)
3568 {
3569 if (strncmp(var->name, "packed:", 7) != 0)
3570 return false;
3571
3572 char *list = strdup(var->name + 7);
3573 assert(list);
3574
3575 bool found = false;
3576 char *saveptr;
3577 char *token = strtok_r(list, ",", &saveptr);
3578 while (token) {
3579 if (strcmp(token, name) == 0) {
3580 found = true;
3581 break;
3582 }
3583 token = strtok_r(NULL, ",", &saveptr);
3584 }
3585 free(list);
3586 return found;
3587 }
3588
3589 /**
3590 * Function builds a stage reference bitmask from variable name.
3591 */
3592 static uint8_t
3593 build_stageref(struct gl_shader_program *shProg, const char *name,
3594 unsigned mode)
3595 {
3596 uint8_t stages = 0;
3597
3598 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3599 * used for reference mask in gl_program_resource will need to be changed.
3600 */
3601 assert(MESA_SHADER_STAGES < 8);
3602
3603 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3604 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3605 if (!sh)
3606 continue;
3607
3608 /* Shader symbol table may contain variables that have
3609 * been optimized away. Search IR for the variable instead.
3610 */
3611 foreach_in_list(ir_instruction, node, sh->ir) {
3612 ir_variable *var = node->as_variable();
3613 if (var) {
3614 unsigned baselen = strlen(var->name);
3615
3616 if (included_in_packed_varying(var, name)) {
3617 stages |= (1 << i);
3618 break;
3619 }
3620
3621 /* Type needs to match if specified, otherwise we might
3622 * pick a variable with same name but different interface.
3623 */
3624 if (var->data.mode != mode)
3625 continue;
3626
3627 if (strncmp(var->name, name, baselen) == 0) {
3628 /* Check for exact name matches but also check for arrays and
3629 * structs.
3630 */
3631 if (name[baselen] == '\0' ||
3632 name[baselen] == '[' ||
3633 name[baselen] == '.') {
3634 stages |= (1 << i);
3635 break;
3636 }
3637 }
3638 }
3639 }
3640 }
3641 return stages;
3642 }
3643
3644 /**
3645 * Create gl_shader_variable from ir_variable class.
3646 */
3647 static gl_shader_variable *
3648 create_shader_variable(struct gl_shader_program *shProg,
3649 const ir_variable *in,
3650 const char *name, const glsl_type *type,
3651 const glsl_type *interface_type,
3652 bool use_implicit_location, int location,
3653 const glsl_type *outermost_struct_type)
3654 {
3655 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3656 if (!out)
3657 return NULL;
3658
3659 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3660 * expect to see gl_VertexID in the program resource list. Pretend.
3661 */
3662 if (in->data.mode == ir_var_system_value &&
3663 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3664 out->name = ralloc_strdup(shProg, "gl_VertexID");
3665 } else if ((in->data.mode == ir_var_shader_out &&
3666 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3667 (in->data.mode == ir_var_system_value &&
3668 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3669 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3670 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3671 } else if ((in->data.mode == ir_var_shader_out &&
3672 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3673 (in->data.mode == ir_var_system_value &&
3674 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3675 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3676 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3677 } else {
3678 out->name = ralloc_strdup(shProg, name);
3679 }
3680
3681 if (!out->name)
3682 return NULL;
3683
3684 /* The ARB_program_interface_query spec says:
3685 *
3686 * "Not all active variables are assigned valid locations; the
3687 * following variables will have an effective location of -1:
3688 *
3689 * * uniforms declared as atomic counters;
3690 *
3691 * * members of a uniform block;
3692 *
3693 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3694 *
3695 * * inputs or outputs not declared with a "location" layout
3696 * qualifier, except for vertex shader inputs and fragment shader
3697 * outputs."
3698 */
3699 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3700 is_gl_identifier(in->name) ||
3701 !(in->data.explicit_location || use_implicit_location)) {
3702 out->location = -1;
3703 } else {
3704 out->location = location;
3705 }
3706
3707 out->type = type;
3708 out->outermost_struct_type = outermost_struct_type;
3709 out->interface_type = interface_type;
3710 out->component = in->data.location_frac;
3711 out->index = in->data.index;
3712 out->patch = in->data.patch;
3713 out->mode = in->data.mode;
3714 out->interpolation = in->data.interpolation;
3715 out->explicit_location = in->data.explicit_location;
3716 out->precision = in->data.precision;
3717
3718 return out;
3719 }
3720
3721 static const glsl_type *
3722 resize_to_max_patch_vertices(const struct gl_context *ctx,
3723 const glsl_type *type)
3724 {
3725 if (!type)
3726 return NULL;
3727
3728 return glsl_type::get_array_instance(type->fields.array,
3729 ctx->Const.MaxPatchVertices);
3730 }
3731
3732 static bool
3733 add_shader_variable(const struct gl_context *ctx,
3734 struct gl_shader_program *shProg,
3735 struct set *resource_set,
3736 unsigned stage_mask,
3737 GLenum programInterface, ir_variable *var,
3738 const char *name, const glsl_type *type,
3739 bool use_implicit_location, int location,
3740 const glsl_type *outermost_struct_type = NULL)
3741 {
3742 const glsl_type *interface_type = var->get_interface_type();
3743
3744 if (outermost_struct_type == NULL) {
3745 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3746 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3747 * smaller size.
3748 *
3749 * This can cause trouble with SSO programs. Since the TCS declares
3750 * the number of output vertices, we can always shrink TCS output
3751 * arrays. However, the TES might not be linked with a TCS, in
3752 * which case it won't know the size of the patch. In other words,
3753 * the TCS and TES may disagree on the (smaller) array sizes. This
3754 * can result in the resource names differing across stages, causing
3755 * SSO validation failures and other cascading issues.
3756 *
3757 * Expanding the array size to the full gl_MaxPatchVertices fixes
3758 * these issues. It's also what program interface queries expect,
3759 * as that is the official size of the array.
3760 */
3761 if (var->data.tess_varying_implicit_sized_array) {
3762 type = resize_to_max_patch_vertices(ctx, type);
3763 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3764 }
3765
3766 if (var->data.from_named_ifc_block) {
3767 const char *interface_name = interface_type->name;
3768
3769 if (interface_type->is_array()) {
3770 /* Issue #16 of the ARB_program_interface_query spec says:
3771 *
3772 * "* If a variable is a member of an interface block without an
3773 * instance name, it is enumerated using just the variable name.
3774 *
3775 * * If a variable is a member of an interface block with an
3776 * instance name, it is enumerated as "BlockName.Member", where
3777 * "BlockName" is the name of the interface block (not the
3778 * instance name) and "Member" is the name of the variable."
3779 *
3780 * In particular, it indicates that it should be "BlockName",
3781 * not "BlockName[array length]". The conformance suite and
3782 * dEQP both require this behavior.
3783 *
3784 * Here, we unwrap the extra array level added by named interface
3785 * block array lowering so we have the correct variable type. We
3786 * also unwrap the interface type when constructing the name.
3787 *
3788 * We leave interface_type the same so that ES 3.x SSO pipeline
3789 * validation can enforce the rules requiring array length to
3790 * match on interface blocks.
3791 */
3792 type = type->fields.array;
3793
3794 interface_name = interface_type->fields.array->name;
3795 }
3796
3797 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3798 }
3799 }
3800
3801 switch (type->base_type) {
3802 case GLSL_TYPE_STRUCT: {
3803 /* The ARB_program_interface_query spec says:
3804 *
3805 * "For an active variable declared as a structure, a separate entry
3806 * will be generated for each active structure member. The name of
3807 * each entry is formed by concatenating the name of the structure,
3808 * the "." character, and the name of the structure member. If a
3809 * structure member to enumerate is itself a structure or array,
3810 * these enumeration rules are applied recursively."
3811 */
3812 if (outermost_struct_type == NULL)
3813 outermost_struct_type = type;
3814
3815 unsigned field_location = location;
3816 for (unsigned i = 0; i < type->length; i++) {
3817 const struct glsl_struct_field *field = &type->fields.structure[i];
3818 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3819 if (!add_shader_variable(ctx, shProg, resource_set,
3820 stage_mask, programInterface,
3821 var, field_name, field->type,
3822 use_implicit_location, field_location,
3823 outermost_struct_type))
3824 return false;
3825
3826 field_location += field->type->count_attribute_slots(false);
3827 }
3828 return true;
3829 }
3830
3831 default: {
3832 /* The ARB_program_interface_query spec says:
3833 *
3834 * "For an active variable declared as a single instance of a basic
3835 * type, a single entry will be generated, using the variable name
3836 * from the shader source."
3837 */
3838 gl_shader_variable *sha_v =
3839 create_shader_variable(shProg, var, name, type, interface_type,
3840 use_implicit_location, location,
3841 outermost_struct_type);
3842 if (!sha_v)
3843 return false;
3844
3845 return add_program_resource(shProg, resource_set,
3846 programInterface, sha_v, stage_mask);
3847 }
3848 }
3849 }
3850
3851 static bool
3852 add_interface_variables(const struct gl_context *ctx,
3853 struct gl_shader_program *shProg,
3854 struct set *resource_set,
3855 unsigned stage, GLenum programInterface)
3856 {
3857 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3858
3859 foreach_in_list(ir_instruction, node, ir) {
3860 ir_variable *var = node->as_variable();
3861
3862 if (!var || var->data.how_declared == ir_var_hidden)
3863 continue;
3864
3865 int loc_bias;
3866
3867 switch (var->data.mode) {
3868 case ir_var_system_value:
3869 case ir_var_shader_in:
3870 if (programInterface != GL_PROGRAM_INPUT)
3871 continue;
3872 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3873 : int(VARYING_SLOT_VAR0);
3874 break;
3875 case ir_var_shader_out:
3876 if (programInterface != GL_PROGRAM_OUTPUT)
3877 continue;
3878 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3879 : int(VARYING_SLOT_VAR0);
3880 break;
3881 default:
3882 continue;
3883 };
3884
3885 if (var->data.patch)
3886 loc_bias = int(VARYING_SLOT_PATCH0);
3887
3888 /* Skip packed varyings, packed varyings are handled separately
3889 * by add_packed_varyings.
3890 */
3891 if (strncmp(var->name, "packed:", 7) == 0)
3892 continue;
3893
3894 /* Skip fragdata arrays, these are handled separately
3895 * by add_fragdata_arrays.
3896 */
3897 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3898 continue;
3899
3900 const bool vs_input_or_fs_output =
3901 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3902 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3903
3904 if (!add_shader_variable(ctx, shProg, resource_set,
3905 1 << stage, programInterface,
3906 var, var->name, var->type, vs_input_or_fs_output,
3907 var->data.location - loc_bias))
3908 return false;
3909 }
3910 return true;
3911 }
3912
3913 static bool
3914 add_packed_varyings(const struct gl_context *ctx,
3915 struct gl_shader_program *shProg,
3916 struct set *resource_set,
3917 int stage, GLenum type)
3918 {
3919 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3920 GLenum iface;
3921
3922 if (!sh || !sh->packed_varyings)
3923 return true;
3924
3925 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3926 ir_variable *var = node->as_variable();
3927 if (var) {
3928 switch (var->data.mode) {
3929 case ir_var_shader_in:
3930 iface = GL_PROGRAM_INPUT;
3931 break;
3932 case ir_var_shader_out:
3933 iface = GL_PROGRAM_OUTPUT;
3934 break;
3935 default:
3936 unreachable("unexpected type");
3937 }
3938
3939 if (type == iface) {
3940 const int stage_mask =
3941 build_stageref(shProg, var->name, var->data.mode);
3942 if (!add_shader_variable(ctx, shProg, resource_set,
3943 stage_mask,
3944 iface, var, var->name, var->type, false,
3945 var->data.location - VARYING_SLOT_VAR0))
3946 return false;
3947 }
3948 }
3949 }
3950 return true;
3951 }
3952
3953 static bool
3954 add_fragdata_arrays(const struct gl_context *ctx,
3955 struct gl_shader_program *shProg,
3956 struct set *resource_set)
3957 {
3958 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3959
3960 if (!sh || !sh->fragdata_arrays)
3961 return true;
3962
3963 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3964 ir_variable *var = node->as_variable();
3965 if (var) {
3966 assert(var->data.mode == ir_var_shader_out);
3967
3968 if (!add_shader_variable(ctx, shProg, resource_set,
3969 1 << MESA_SHADER_FRAGMENT,
3970 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3971 true, var->data.location - FRAG_RESULT_DATA0))
3972 return false;
3973 }
3974 }
3975 return true;
3976 }
3977
3978 static char*
3979 get_top_level_name(const char *name)
3980 {
3981 const char *first_dot = strchr(name, '.');
3982 const char *first_square_bracket = strchr(name, '[');
3983 int name_size = 0;
3984
3985 /* The ARB_program_interface_query spec says:
3986 *
3987 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3988 * the number of active array elements of the top-level shader storage
3989 * block member containing to the active variable is written to
3990 * <params>. If the top-level block member is not declared as an
3991 * array, the value one is written to <params>. If the top-level block
3992 * member is an array with no declared size, the value zero is written
3993 * to <params>."
3994 */
3995
3996 /* The buffer variable is on top level.*/
3997 if (!first_square_bracket && !first_dot)
3998 name_size = strlen(name);
3999 else if ((!first_square_bracket ||
4000 (first_dot && first_dot < first_square_bracket)))
4001 name_size = first_dot - name;
4002 else
4003 name_size = first_square_bracket - name;
4004
4005 return strndup(name, name_size);
4006 }
4007
4008 static char*
4009 get_var_name(const char *name)
4010 {
4011 const char *first_dot = strchr(name, '.');
4012
4013 if (!first_dot)
4014 return strdup(name);
4015
4016 return strndup(first_dot+1, strlen(first_dot) - 1);
4017 }
4018
4019 static bool
4020 is_top_level_shader_storage_block_member(const char* name,
4021 const char* interface_name,
4022 const char* field_name)
4023 {
4024 bool result = false;
4025
4026 /* If the given variable is already a top-level shader storage
4027 * block member, then return array_size = 1.
4028 * We could have two possibilities: if we have an instanced
4029 * shader storage block or not instanced.
4030 *
4031 * For the first, we check create a name as it was in top level and
4032 * compare it with the real name. If they are the same, then
4033 * the variable is already at top-level.
4034 *
4035 * Full instanced name is: interface name + '.' + var name +
4036 * NULL character
4037 */
4038 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4039 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4040 if (!full_instanced_name) {
4041 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4042 return false;
4043 }
4044
4045 snprintf(full_instanced_name, name_length, "%s.%s",
4046 interface_name, field_name);
4047
4048 /* Check if its top-level shader storage block member of an
4049 * instanced interface block, or of a unnamed interface block.
4050 */
4051 if (strcmp(name, full_instanced_name) == 0 ||
4052 strcmp(name, field_name) == 0)
4053 result = true;
4054
4055 free(full_instanced_name);
4056 return result;
4057 }
4058
4059 static int
4060 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4061 char *interface_name, char *var_name)
4062 {
4063 /* The ARB_program_interface_query spec says:
4064 *
4065 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4066 * the number of active array elements of the top-level shader storage
4067 * block member containing to the active variable is written to
4068 * <params>. If the top-level block member is not declared as an
4069 * array, the value one is written to <params>. If the top-level block
4070 * member is an array with no declared size, the value zero is written
4071 * to <params>."
4072 */
4073 if (is_top_level_shader_storage_block_member(uni->name,
4074 interface_name,
4075 var_name))
4076 return 1;
4077 else if (field->type->is_unsized_array())
4078 return 0;
4079 else if (field->type->is_array())
4080 return field->type->length;
4081
4082 return 1;
4083 }
4084
4085 static int
4086 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4087 const glsl_struct_field *field, char *interface_name,
4088 char *var_name)
4089 {
4090 /* The ARB_program_interface_query spec says:
4091 *
4092 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4093 * identifying the stride between array elements of the top-level
4094 * shader storage block member containing the active variable is
4095 * written to <params>. For top-level block members declared as
4096 * arrays, the value written is the difference, in basic machine units,
4097 * between the offsets of the active variable for consecutive elements
4098 * in the top-level array. For top-level block members not declared as
4099 * an array, zero is written to <params>."
4100 */
4101 if (field->type->is_array()) {
4102 const enum glsl_matrix_layout matrix_layout =
4103 glsl_matrix_layout(field->matrix_layout);
4104 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4105 const glsl_type *array_type = field->type->fields.array;
4106
4107 if (is_top_level_shader_storage_block_member(uni->name,
4108 interface_name,
4109 var_name))
4110 return 0;
4111
4112 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4113 if (array_type->is_record() || array_type->is_array())
4114 return glsl_align(array_type->std140_size(row_major), 16);
4115 else
4116 return MAX2(array_type->std140_base_alignment(row_major), 16);
4117 } else {
4118 return array_type->std430_array_stride(row_major);
4119 }
4120 }
4121 return 0;
4122 }
4123
4124 static void
4125 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4126 struct gl_uniform_storage *uni)
4127 {
4128 int block_index = uni->block_index;
4129 int array_size = -1;
4130 int array_stride = -1;
4131 char *var_name = get_top_level_name(uni->name);
4132 char *interface_name =
4133 get_top_level_name(uni->is_shader_storage ?
4134 shProg->data->ShaderStorageBlocks[block_index].Name :
4135 shProg->data->UniformBlocks[block_index].Name);
4136
4137 if (strcmp(var_name, interface_name) == 0) {
4138 /* Deal with instanced array of SSBOs */
4139 char *temp_name = get_var_name(uni->name);
4140 if (!temp_name) {
4141 linker_error(shProg, "Out of memory during linking.\n");
4142 goto write_top_level_array_size_and_stride;
4143 }
4144 free(var_name);
4145 var_name = get_top_level_name(temp_name);
4146 free(temp_name);
4147 if (!var_name) {
4148 linker_error(shProg, "Out of memory during linking.\n");
4149 goto write_top_level_array_size_and_stride;
4150 }
4151 }
4152
4153 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4154 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4155 if (sh == NULL)
4156 continue;
4157
4158 foreach_in_list(ir_instruction, node, sh->ir) {
4159 ir_variable *var = node->as_variable();
4160 if (!var || !var->get_interface_type() ||
4161 var->data.mode != ir_var_shader_storage)
4162 continue;
4163
4164 const glsl_type *interface = var->get_interface_type();
4165
4166 if (strcmp(interface_name, interface->name) != 0)
4167 continue;
4168
4169 for (unsigned i = 0; i < interface->length; i++) {
4170 const glsl_struct_field *field = &interface->fields.structure[i];
4171 if (strcmp(field->name, var_name) != 0)
4172 continue;
4173
4174 array_stride = get_array_stride(uni, interface, field,
4175 interface_name, var_name);
4176 array_size = get_array_size(uni, field, interface_name, var_name);
4177 goto write_top_level_array_size_and_stride;
4178 }
4179 }
4180 }
4181 write_top_level_array_size_and_stride:
4182 free(interface_name);
4183 free(var_name);
4184 uni->top_level_array_stride = array_stride;
4185 uni->top_level_array_size = array_size;
4186 }
4187
4188 /**
4189 * Builds up a list of program resources that point to existing
4190 * resource data.
4191 */
4192 void
4193 build_program_resource_list(struct gl_context *ctx,
4194 struct gl_shader_program *shProg)
4195 {
4196 /* Rebuild resource list. */
4197 if (shProg->ProgramResourceList) {
4198 ralloc_free(shProg->ProgramResourceList);
4199 shProg->ProgramResourceList = NULL;
4200 shProg->NumProgramResourceList = 0;
4201 }
4202
4203 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4204
4205 /* Determine first input and final output stage. These are used to
4206 * detect which variables should be enumerated in the resource list
4207 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4208 */
4209 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4210 if (!shProg->_LinkedShaders[i])
4211 continue;
4212 if (input_stage == MESA_SHADER_STAGES)
4213 input_stage = i;
4214 output_stage = i;
4215 }
4216
4217 /* Empty shader, no resources. */
4218 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4219 return;
4220
4221 struct set *resource_set = _mesa_set_create(NULL,
4222 _mesa_hash_pointer,
4223 _mesa_key_pointer_equal);
4224
4225 /* Program interface needs to expose varyings in case of SSO. */
4226 if (shProg->SeparateShader) {
4227 if (!add_packed_varyings(ctx, shProg, resource_set,
4228 input_stage, GL_PROGRAM_INPUT))
4229 return;
4230
4231 if (!add_packed_varyings(ctx, shProg, resource_set,
4232 output_stage, GL_PROGRAM_OUTPUT))
4233 return;
4234 }
4235
4236 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4237 return;
4238
4239 /* Add inputs and outputs to the resource list. */
4240 if (!add_interface_variables(ctx, shProg, resource_set,
4241 input_stage, GL_PROGRAM_INPUT))
4242 return;
4243
4244 if (!add_interface_variables(ctx, shProg, resource_set,
4245 output_stage, GL_PROGRAM_OUTPUT))
4246 return;
4247
4248 struct gl_transform_feedback_info *linked_xfb =
4249 shProg->xfb_program->sh.LinkedTransformFeedback;
4250
4251 /* Add transform feedback varyings. */
4252 if (linked_xfb->NumVarying > 0) {
4253 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4254 if (!add_program_resource(shProg, resource_set,
4255 GL_TRANSFORM_FEEDBACK_VARYING,
4256 &linked_xfb->Varyings[i], 0))
4257 return;
4258 }
4259 }
4260
4261 /* Add transform feedback buffers. */
4262 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4263 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4264 linked_xfb->Buffers[i].Binding = i;
4265 if (!add_program_resource(shProg, resource_set,
4266 GL_TRANSFORM_FEEDBACK_BUFFER,
4267 &linked_xfb->Buffers[i], 0))
4268 return;
4269 }
4270 }
4271
4272 /* Add uniforms from uniform storage. */
4273 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4274 /* Do not add uniforms internally used by Mesa. */
4275 if (shProg->data->UniformStorage[i].hidden)
4276 continue;
4277
4278 uint8_t stageref =
4279 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4280 ir_var_uniform);
4281
4282 /* Add stagereferences for uniforms in a uniform block. */
4283 bool is_shader_storage =
4284 shProg->data->UniformStorage[i].is_shader_storage;
4285 int block_index = shProg->data->UniformStorage[i].block_index;
4286 if (block_index != -1) {
4287 stageref |= is_shader_storage ?
4288 shProg->data->ShaderStorageBlocks[block_index].stageref :
4289 shProg->data->UniformBlocks[block_index].stageref;
4290 }
4291
4292 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4293 if (!should_add_buffer_variable(shProg, type,
4294 shProg->data->UniformStorage[i].name))
4295 continue;
4296
4297 if (is_shader_storage) {
4298 calculate_array_size_and_stride(shProg,
4299 &shProg->data->UniformStorage[i]);
4300 }
4301
4302 if (!add_program_resource(shProg, resource_set, type,
4303 &shProg->data->UniformStorage[i], stageref))
4304 return;
4305 }
4306
4307 /* Add program uniform blocks. */
4308 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4309 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4310 &shProg->data->UniformBlocks[i], 0))
4311 return;
4312 }
4313
4314 /* Add program shader storage blocks. */
4315 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4316 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4317 &shProg->data->ShaderStorageBlocks[i], 0))
4318 return;
4319 }
4320
4321 /* Add atomic counter buffers. */
4322 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4323 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4324 &shProg->data->AtomicBuffers[i], 0))
4325 return;
4326 }
4327
4328 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4329 GLenum type;
4330 if (!shProg->data->UniformStorage[i].hidden)
4331 continue;
4332
4333 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4334 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4335 !shProg->data->UniformStorage[i].type->is_subroutine())
4336 continue;
4337
4338 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4339 /* add shader subroutines */
4340 if (!add_program_resource(shProg, resource_set,
4341 type, &shProg->data->UniformStorage[i], 0))
4342 return;
4343 }
4344 }
4345
4346 unsigned mask = shProg->data->linked_stages;
4347 while (mask) {
4348 const int i = u_bit_scan(&mask);
4349 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4350
4351 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4352 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4353 if (!add_program_resource(shProg, resource_set,
4354 type, &p->sh.SubroutineFunctions[j], 0))
4355 return;
4356 }
4357 }
4358
4359 _mesa_set_destroy(resource_set, NULL);
4360 }
4361
4362 /**
4363 * This check is done to make sure we allow only constant expression
4364 * indexing and "constant-index-expression" (indexing with an expression
4365 * that includes loop induction variable).
4366 */
4367 static bool
4368 validate_sampler_array_indexing(struct gl_context *ctx,
4369 struct gl_shader_program *prog)
4370 {
4371 dynamic_sampler_array_indexing_visitor v;
4372 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4373 if (prog->_LinkedShaders[i] == NULL)
4374 continue;
4375
4376 bool no_dynamic_indexing =
4377 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4378
4379 /* Search for array derefs in shader. */
4380 v.run(prog->_LinkedShaders[i]->ir);
4381 if (v.uses_dynamic_sampler_array_indexing()) {
4382 const char *msg = "sampler arrays indexed with non-constant "
4383 "expressions is forbidden in GLSL %s %u";
4384 /* Backend has indicated that it has no dynamic indexing support. */
4385 if (no_dynamic_indexing) {
4386 linker_error(prog, msg, prog->IsES ? "ES" : "",
4387 prog->data->Version);
4388 return false;
4389 } else {
4390 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4391 prog->data->Version);
4392 }
4393 }
4394 }
4395 return true;
4396 }
4397
4398 static void
4399 link_assign_subroutine_types(struct gl_shader_program *prog)
4400 {
4401 unsigned mask = prog->data->linked_stages;
4402 while (mask) {
4403 const int i = u_bit_scan(&mask);
4404 gl_program *p = prog->_LinkedShaders[i]->Program;
4405
4406 p->sh.MaxSubroutineFunctionIndex = 0;
4407 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4408 ir_function *fn = node->as_function();
4409 if (!fn)
4410 continue;
4411
4412 if (fn->is_subroutine)
4413 p->sh.NumSubroutineUniformTypes++;
4414
4415 if (!fn->num_subroutine_types)
4416 continue;
4417
4418 /* these should have been calculated earlier. */
4419 assert(fn->subroutine_index != -1);
4420 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4421 linker_error(prog, "Too many subroutine functions declared.\n");
4422 return;
4423 }
4424 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4425 struct gl_subroutine_function,
4426 p->sh.NumSubroutineFunctions + 1);
4427 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4428 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4429 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4430 ralloc_array(p, const struct glsl_type *,
4431 fn->num_subroutine_types);
4432
4433 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4434 * GLSL 4.5 spec:
4435 *
4436 * "Each subroutine with an index qualifier in the shader must be
4437 * given a unique index, otherwise a compile or link error will be
4438 * generated."
4439 */
4440 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4441 if (p->sh.SubroutineFunctions[j].index != -1 &&
4442 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4443 linker_error(prog, "each subroutine index qualifier in the "
4444 "shader must be unique\n");
4445 return;
4446 }
4447 }
4448 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4449 fn->subroutine_index;
4450
4451 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4452 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4453
4454 for (int j = 0; j < fn->num_subroutine_types; j++)
4455 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4456 p->sh.NumSubroutineFunctions++;
4457 }
4458 }
4459 }
4460
4461 static void
4462 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4463 {
4464 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4465
4466 foreach_in_list(ir_instruction, node, ir) {
4467 ir_variable *const var = node->as_variable();
4468
4469 if (var == NULL || var->data.mode != io_mode)
4470 continue;
4471
4472 /* Don't set always active on builtins that haven't been redeclared */
4473 if (var->data.how_declared == ir_var_declared_implicitly)
4474 continue;
4475
4476 var->data.always_active_io = true;
4477 }
4478 }
4479
4480 /**
4481 * When separate shader programs are enabled, only input/outputs between
4482 * the stages of a multi-stage separate program can be safely removed
4483 * from the shader interface. Other inputs/outputs must remain active.
4484 */
4485 static void
4486 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4487 {
4488 unsigned first, last;
4489 assert(prog->SeparateShader);
4490
4491 first = MESA_SHADER_STAGES;
4492 last = 0;
4493
4494 /* Determine first and last stage. Excluding the compute stage */
4495 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4496 if (!prog->_LinkedShaders[i])
4497 continue;
4498 if (first == MESA_SHADER_STAGES)
4499 first = i;
4500 last = i;
4501 }
4502
4503 if (first == MESA_SHADER_STAGES)
4504 return;
4505
4506 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4507 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4508 if (!sh)
4509 continue;
4510
4511 if (first == last) {
4512 /* For a single shader program only allow inputs to the vertex shader
4513 * and outputs from the fragment shader to be removed.
4514 */
4515 if (stage != MESA_SHADER_VERTEX)
4516 set_always_active_io(sh->ir, ir_var_shader_in);
4517 if (stage != MESA_SHADER_FRAGMENT)
4518 set_always_active_io(sh->ir, ir_var_shader_out);
4519 } else {
4520 /* For multi-stage separate shader programs only allow inputs and
4521 * outputs between the shader stages to be removed as well as inputs
4522 * to the vertex shader and outputs from the fragment shader.
4523 */
4524 if (stage == first && stage != MESA_SHADER_VERTEX)
4525 set_always_active_io(sh->ir, ir_var_shader_in);
4526 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4527 set_always_active_io(sh->ir, ir_var_shader_out);
4528 }
4529 }
4530 }
4531
4532 static bool
4533 link_varyings_and_uniforms(unsigned first, unsigned last,
4534 unsigned num_explicit_uniform_locs,
4535 struct gl_context *ctx,
4536 struct gl_shader_program *prog, void *mem_ctx)
4537 {
4538 bool has_xfb_qualifiers = false;
4539 unsigned num_tfeedback_decls = 0;
4540 char **varying_names = NULL;
4541 tfeedback_decl *tfeedback_decls = NULL;
4542
4543 /* Mark all generic shader inputs and outputs as unpaired. */
4544 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4545 if (prog->_LinkedShaders[i] != NULL) {
4546 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4547 }
4548 }
4549
4550 unsigned prev = first;
4551 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4552 if (prog->_LinkedShaders[i] == NULL)
4553 continue;
4554
4555 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4556 prog->_LinkedShaders[i]);
4557 prev = i;
4558 }
4559
4560 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4561 MESA_SHADER_VERTEX)) {
4562 return false;
4563 }
4564
4565 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4566 MESA_SHADER_FRAGMENT)) {
4567 return false;
4568 }
4569
4570 /* From the ARB_enhanced_layouts spec:
4571 *
4572 * "If the shader used to record output variables for transform feedback
4573 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4574 * qualifiers, the values specified by TransformFeedbackVaryings are
4575 * ignored, and the set of variables captured for transform feedback is
4576 * instead derived from the specified layout qualifiers."
4577 */
4578 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4579 /* Find last stage before fragment shader */
4580 if (prog->_LinkedShaders[i]) {
4581 has_xfb_qualifiers =
4582 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4583 &num_tfeedback_decls,
4584 &varying_names);
4585 break;
4586 }
4587 }
4588
4589 if (!has_xfb_qualifiers) {
4590 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4591 varying_names = prog->TransformFeedback.VaryingNames;
4592 }
4593
4594 /* Find the program used for xfb. Even if we don't use xfb we still want to
4595 * set this so we can fill the default values for program interface query.
4596 */
4597 prog->xfb_program = prog->_LinkedShaders[last]->Program;
4598 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4599 if (prog->_LinkedShaders[i] == NULL)
4600 continue;
4601
4602 prog->xfb_program = prog->_LinkedShaders[i]->Program;
4603 break;
4604 }
4605
4606 if (num_tfeedback_decls != 0) {
4607 /* From GL_EXT_transform_feedback:
4608 * A program will fail to link if:
4609 *
4610 * * the <count> specified by TransformFeedbackVaryingsEXT is
4611 * non-zero, but the program object has no vertex or geometry
4612 * shader;
4613 */
4614 if (first >= MESA_SHADER_FRAGMENT) {
4615 linker_error(prog, "Transform feedback varyings specified, but "
4616 "no vertex, tessellation, or geometry shader is "
4617 "present.\n");
4618 return false;
4619 }
4620
4621 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
4622 num_tfeedback_decls);
4623 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4624 varying_names, tfeedback_decls))
4625 return false;
4626 }
4627
4628 /* If there is no fragment shader we need to set transform feedback.
4629 *
4630 * For SSO we also need to assign output locations. We assign them here
4631 * because we need to do it for both single stage programs and multi stage
4632 * programs.
4633 */
4634 if (last < MESA_SHADER_FRAGMENT &&
4635 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4636 const uint64_t reserved_out_slots =
4637 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4638 if (!assign_varying_locations(ctx, mem_ctx, prog,
4639 prog->_LinkedShaders[last], NULL,
4640 num_tfeedback_decls, tfeedback_decls,
4641 reserved_out_slots))
4642 return false;
4643 }
4644
4645 if (last <= MESA_SHADER_FRAGMENT) {
4646 /* Remove unused varyings from the first/last stage unless SSO */
4647 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4648 prog->_LinkedShaders[first],
4649 ir_var_shader_in);
4650 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4651 prog->_LinkedShaders[last],
4652 ir_var_shader_out);
4653
4654 /* If the program is made up of only a single stage */
4655 if (first == last) {
4656 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4657
4658 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4659 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4660 tfeedback_decls);
4661
4662 if (prog->SeparateShader) {
4663 const uint64_t reserved_slots =
4664 reserved_varying_slot(sh, ir_var_shader_in);
4665
4666 /* Assign input locations for SSO, output locations are already
4667 * assigned.
4668 */
4669 if (!assign_varying_locations(ctx, mem_ctx, prog,
4670 NULL /* producer */,
4671 sh /* consumer */,
4672 0 /* num_tfeedback_decls */,
4673 NULL /* tfeedback_decls */,
4674 reserved_slots))
4675 return false;
4676 }
4677 } else {
4678 /* Linking the stages in the opposite order (from fragment to vertex)
4679 * ensures that inter-shader outputs written to in an earlier stage
4680 * are eliminated if they are (transitively) not used in a later
4681 * stage.
4682 */
4683 int next = last;
4684 for (int i = next - 1; i >= 0; i--) {
4685 if (prog->_LinkedShaders[i] == NULL && i != 0)
4686 continue;
4687
4688 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4689 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4690
4691 const uint64_t reserved_out_slots =
4692 reserved_varying_slot(sh_i, ir_var_shader_out);
4693 const uint64_t reserved_in_slots =
4694 reserved_varying_slot(sh_next, ir_var_shader_in);
4695
4696 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4697 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4698 tfeedback_decls);
4699
4700 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4701 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4702 tfeedback_decls,
4703 reserved_out_slots | reserved_in_slots))
4704 return false;
4705
4706 /* This must be done after all dead varyings are eliminated. */
4707 if (sh_i != NULL) {
4708 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4709 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4710 return false;
4711 }
4712 }
4713
4714 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4715 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4716 return false;
4717
4718 next = i;
4719 }
4720 }
4721 }
4722
4723 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4724 has_xfb_qualifiers))
4725 return false;
4726
4727 update_array_sizes(prog);
4728 link_assign_uniform_locations(prog, ctx, num_explicit_uniform_locs);
4729 link_assign_atomic_counter_resources(ctx, prog);
4730
4731 link_calculate_subroutine_compat(prog);
4732 check_resources(ctx, prog);
4733 check_subroutine_resources(prog);
4734 check_image_resources(ctx, prog);
4735 link_check_atomic_counter_resources(ctx, prog);
4736
4737 if (!prog->data->LinkStatus)
4738 return false;
4739
4740 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4741 if (prog->_LinkedShaders[i] == NULL)
4742 continue;
4743
4744 const struct gl_shader_compiler_options *options =
4745 &ctx->Const.ShaderCompilerOptions[i];
4746
4747 if (options->LowerBufferInterfaceBlocks)
4748 lower_ubo_reference(prog->_LinkedShaders[i],
4749 options->ClampBlockIndicesToArrayBounds);
4750
4751 if (i == MESA_SHADER_COMPUTE)
4752 lower_shared_reference(prog->_LinkedShaders[i],
4753 &prog->Comp.SharedSize);
4754
4755 lower_vector_derefs(prog->_LinkedShaders[i]);
4756 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4757 }
4758
4759 return true;
4760 }
4761
4762 void
4763 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4764 {
4765 prog->data->LinkStatus = true; /* All error paths will set this to false */
4766 prog->data->Validated = false;
4767
4768 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4769 *
4770 * "Linking can fail for a variety of reasons as specified in the
4771 * OpenGL Shading Language Specification, as well as any of the
4772 * following reasons:
4773 *
4774 * - No shader objects are attached to program."
4775 *
4776 * The Compatibility Profile specification does not list the error. In
4777 * Compatibility Profile missing shader stages are replaced by
4778 * fixed-function. This applies to the case where all stages are
4779 * missing.
4780 */
4781 if (prog->NumShaders == 0) {
4782 if (ctx->API != API_OPENGL_COMPAT)
4783 linker_error(prog, "no shaders attached to the program\n");
4784 return;
4785 }
4786
4787 unsigned int num_explicit_uniform_locs = 0;
4788
4789 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4790
4791 prog->ARB_fragment_coord_conventions_enable = false;
4792
4793 /* Separate the shaders into groups based on their type.
4794 */
4795 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4796 unsigned num_shaders[MESA_SHADER_STAGES];
4797
4798 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4799 shader_list[i] = (struct gl_shader **)
4800 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4801 num_shaders[i] = 0;
4802 }
4803
4804 unsigned min_version = UINT_MAX;
4805 unsigned max_version = 0;
4806 for (unsigned i = 0; i < prog->NumShaders; i++) {
4807 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4808 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4809
4810 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4811 linker_error(prog, "all shaders must use same shading "
4812 "language version\n");
4813 goto done;
4814 }
4815
4816 if (prog->Shaders[i]->info.ARB_fragment_coord_conventions_enable) {
4817 prog->ARB_fragment_coord_conventions_enable = true;
4818 }
4819
4820 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4821 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4822 num_shaders[shader_type]++;
4823 }
4824
4825 /* In desktop GLSL, different shader versions may be linked together. In
4826 * GLSL ES, all shader versions must be the same.
4827 */
4828 if (prog->Shaders[0]->IsES && min_version != max_version) {
4829 linker_error(prog, "all shaders must use same shading "
4830 "language version\n");
4831 goto done;
4832 }
4833
4834 prog->data->Version = max_version;
4835 prog->IsES = prog->Shaders[0]->IsES;
4836
4837 /* Some shaders have to be linked with some other shaders present.
4838 */
4839 if (!prog->SeparateShader) {
4840 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4841 num_shaders[MESA_SHADER_VERTEX] == 0) {
4842 linker_error(prog, "Geometry shader must be linked with "
4843 "vertex shader\n");
4844 goto done;
4845 }
4846 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4847 num_shaders[MESA_SHADER_VERTEX] == 0) {
4848 linker_error(prog, "Tessellation evaluation shader must be linked "
4849 "with vertex shader\n");
4850 goto done;
4851 }
4852 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4853 num_shaders[MESA_SHADER_VERTEX] == 0) {
4854 linker_error(prog, "Tessellation control shader must be linked with "
4855 "vertex shader\n");
4856 goto done;
4857 }
4858
4859 /* The spec is self-contradictory here. It allows linking without a tess
4860 * eval shader, but that can only be used with transform feedback and
4861 * rasterization disabled. However, transform feedback isn't allowed
4862 * with GL_PATCHES, so it can't be used.
4863 *
4864 * More investigation showed that the idea of transform feedback after
4865 * a tess control shader was dropped, because some hw vendors couldn't
4866 * support tessellation without a tess eval shader, but the linker
4867 * section wasn't updated to reflect that.
4868 *
4869 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4870 * spec bug.
4871 *
4872 * Do what's reasonable and always require a tess eval shader if a tess
4873 * control shader is present.
4874 */
4875 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4876 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4877 linker_error(prog, "Tessellation control shader must be linked with "
4878 "tessellation evaluation shader\n");
4879 goto done;
4880 }
4881 }
4882
4883 /* Compute shaders have additional restrictions. */
4884 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4885 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4886 linker_error(prog, "Compute shaders may not be linked with any other "
4887 "type of shader\n");
4888 }
4889
4890 /* Link all shaders for a particular stage and validate the result.
4891 */
4892 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4893 if (num_shaders[stage] > 0) {
4894 gl_linked_shader *const sh =
4895 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4896 num_shaders[stage], false);
4897
4898 if (!prog->data->LinkStatus) {
4899 if (sh)
4900 _mesa_delete_linked_shader(ctx, sh);
4901 goto done;
4902 }
4903
4904 switch (stage) {
4905 case MESA_SHADER_VERTEX:
4906 validate_vertex_shader_executable(prog, sh, ctx);
4907 break;
4908 case MESA_SHADER_TESS_CTRL:
4909 /* nothing to be done */
4910 break;
4911 case MESA_SHADER_TESS_EVAL:
4912 validate_tess_eval_shader_executable(prog, sh, ctx);
4913 break;
4914 case MESA_SHADER_GEOMETRY:
4915 validate_geometry_shader_executable(prog, sh, ctx);
4916 break;
4917 case MESA_SHADER_FRAGMENT:
4918 validate_fragment_shader_executable(prog, sh);
4919 break;
4920 }
4921 if (!prog->data->LinkStatus) {
4922 if (sh)
4923 _mesa_delete_linked_shader(ctx, sh);
4924 goto done;
4925 }
4926
4927 prog->_LinkedShaders[stage] = sh;
4928 prog->data->linked_stages |= 1 << stage;
4929 }
4930 }
4931
4932 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4933 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4934 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4935 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4936 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4937 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4938 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4939 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4940 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4941 } else {
4942 prog->LastClipDistanceArraySize = 0; /* Not used */
4943 prog->LastCullDistanceArraySize = 0; /* Not used */
4944 }
4945
4946 /* Here begins the inter-stage linking phase. Some initial validation is
4947 * performed, then locations are assigned for uniforms, attributes, and
4948 * varyings.
4949 */
4950 cross_validate_uniforms(prog);
4951 if (!prog->data->LinkStatus)
4952 goto done;
4953
4954 unsigned first, last, prev;
4955
4956 first = MESA_SHADER_STAGES;
4957 last = 0;
4958
4959 /* Determine first and last stage. */
4960 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4961 if (!prog->_LinkedShaders[i])
4962 continue;
4963 if (first == MESA_SHADER_STAGES)
4964 first = i;
4965 last = i;
4966 }
4967
4968 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4969 link_assign_subroutine_types(prog);
4970
4971 if (!prog->data->LinkStatus)
4972 goto done;
4973
4974 resize_tes_inputs(ctx, prog);
4975
4976 /* Validate the inputs of each stage with the output of the preceding
4977 * stage.
4978 */
4979 prev = first;
4980 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4981 if (prog->_LinkedShaders[i] == NULL)
4982 continue;
4983
4984 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4985 prog->_LinkedShaders[i]);
4986 if (!prog->data->LinkStatus)
4987 goto done;
4988
4989 cross_validate_outputs_to_inputs(prog,
4990 prog->_LinkedShaders[prev],
4991 prog->_LinkedShaders[i]);
4992 if (!prog->data->LinkStatus)
4993 goto done;
4994
4995 prev = i;
4996 }
4997
4998 /* Cross-validate uniform blocks between shader stages */
4999 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5000 if (!prog->data->LinkStatus)
5001 goto done;
5002
5003 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5004 if (prog->_LinkedShaders[i] != NULL)
5005 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5006 }
5007
5008 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5009 * it before optimization because we want most of the checks to get
5010 * dropped thanks to constant propagation.
5011 *
5012 * This rule also applies to GLSL ES 3.00.
5013 */
5014 if (max_version >= (prog->IsES ? 300 : 130)) {
5015 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5016 if (sh) {
5017 lower_discard_flow(sh->ir);
5018 }
5019 }
5020
5021 if (prog->SeparateShader)
5022 disable_varying_optimizations_for_sso(prog);
5023
5024 /* Process UBOs */
5025 if (!interstage_cross_validate_uniform_blocks(prog, false))
5026 goto done;
5027
5028 /* Process SSBOs */
5029 if (!interstage_cross_validate_uniform_blocks(prog, true))
5030 goto done;
5031
5032 /* Do common optimization before assigning storage for attributes,
5033 * uniforms, and varyings. Later optimization could possibly make
5034 * some of that unused.
5035 */
5036 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5037 if (prog->_LinkedShaders[i] == NULL)
5038 continue;
5039
5040 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5041 if (!prog->data->LinkStatus)
5042 goto done;
5043
5044 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5045 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5046 }
5047
5048 if (ctx->Const.LowerTessLevel) {
5049 lower_tess_level(prog->_LinkedShaders[i]);
5050 }
5051
5052 if (ctx->Const.GLSLOptimizeConservatively) {
5053 /* Run it just once. */
5054 do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
5055 &ctx->Const.ShaderCompilerOptions[i],
5056 ctx->Const.NativeIntegers);
5057 } else {
5058 /* Repeat it until it stops making changes. */
5059 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
5060 &ctx->Const.ShaderCompilerOptions[i],
5061 ctx->Const.NativeIntegers))
5062 ;
5063 }
5064
5065 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
5066 propagate_invariance(prog->_LinkedShaders[i]->ir);
5067 }
5068
5069 /* Validation for special cases where we allow sampler array indexing
5070 * with loop induction variable. This check emits a warning or error
5071 * depending if backend can handle dynamic indexing.
5072 */
5073 if ((!prog->IsES && prog->data->Version < 130) ||
5074 (prog->IsES && prog->data->Version < 300)) {
5075 if (!validate_sampler_array_indexing(ctx, prog))
5076 goto done;
5077 }
5078
5079 /* Check and validate stream emissions in geometry shaders */
5080 validate_geometry_shader_emissions(ctx, prog);
5081
5082 store_fragdepth_layout(prog);
5083
5084 if(!link_varyings_and_uniforms(first, last, num_explicit_uniform_locs, ctx,
5085 prog, mem_ctx))
5086 goto done;
5087
5088 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5089 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5090 * anything about shader linking when one of the shaders (vertex or
5091 * fragment shader) is absent. So, the extension shouldn't change the
5092 * behavior specified in GLSL specification.
5093 *
5094 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5095 * "Linking can fail for a variety of reasons as specified in the
5096 * OpenGL ES Shading Language Specification, as well as any of the
5097 * following reasons:
5098 *
5099 * ...
5100 *
5101 * * program contains objects to form either a vertex shader or
5102 * fragment shader, and program is not separable, and does not
5103 * contain objects to form both a vertex shader and fragment
5104 * shader."
5105 *
5106 * However, the only scenario in 3.1+ where we don't require them both is
5107 * when we have a compute shader. For example:
5108 *
5109 * - No shaders is a link error.
5110 * - Geom or Tess without a Vertex shader is a link error which means we
5111 * always require a Vertex shader and hence a Fragment shader.
5112 * - Finally a Compute shader linked with any other stage is a link error.
5113 */
5114 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5115 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5116 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5117 linker_error(prog, "program lacks a vertex shader\n");
5118 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5119 linker_error(prog, "program lacks a fragment shader\n");
5120 }
5121 }
5122
5123 done:
5124 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5125 free(shader_list[i]);
5126 if (prog->_LinkedShaders[i] == NULL)
5127 continue;
5128
5129 /* Do a final validation step to make sure that the IR wasn't
5130 * invalidated by any modifications performed after intrastage linking.
5131 */
5132 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5133
5134 /* Retain any live IR, but trash the rest. */
5135 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5136
5137 /* The symbol table in the linked shaders may contain references to
5138 * variables that were removed (e.g., unused uniforms). Since it may
5139 * contain junk, there is no possible valid use. Delete it and set the
5140 * pointer to NULL.
5141 */
5142 delete prog->_LinkedShaders[i]->symbols;
5143 prog->_LinkedShaders[i]->symbols = NULL;
5144 }
5145
5146 ralloc_free(mem_ctx);
5147 }