glsl: report correct number of allowed vertex inputs and fragment outputs
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "linker.h"
76 #include "link_varyings.h"
77 #include "ir_optimization.h"
78 #include "ir_rvalue_visitor.h"
79 #include "ir_uniform.h"
80
81 #include "main/shaderobj.h"
82 #include "main/enums.h"
83
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->fields.array,
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->fields.array;
248 return visit_continue;
249 }
250 };
251
252 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
253 public:
254 unsigned num_vertices;
255 gl_shader_program *prog;
256
257 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
258 {
259 this->num_vertices = num_vertices;
260 this->prog = prog;
261 }
262
263 virtual ~tess_eval_array_resize_visitor()
264 {
265 /* empty */
266 }
267
268 virtual ir_visitor_status visit(ir_variable *var)
269 {
270 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
271 return visit_continue;
272
273 var->type = glsl_type::get_array_instance(var->type->fields.array,
274 this->num_vertices);
275 var->data.max_array_access = this->num_vertices - 1;
276
277 return visit_continue;
278 }
279
280 /* Dereferences of input variables need to be updated so that their type
281 * matches the newly assigned type of the variable they are accessing. */
282 virtual ir_visitor_status visit(ir_dereference_variable *ir)
283 {
284 ir->type = ir->var->type;
285 return visit_continue;
286 }
287
288 /* Dereferences of 2D input arrays need to be updated so that their type
289 * matches the newly assigned type of the array they are accessing. */
290 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
291 {
292 const glsl_type *const vt = ir->array->type;
293 if (vt->is_array())
294 ir->type = vt->fields.array;
295 return visit_continue;
296 }
297 };
298
299 class barrier_use_visitor : public ir_hierarchical_visitor {
300 public:
301 barrier_use_visitor(gl_shader_program *prog)
302 : prog(prog), in_main(false), after_return(false), control_flow(0)
303 {
304 }
305
306 virtual ~barrier_use_visitor()
307 {
308 /* empty */
309 }
310
311 virtual ir_visitor_status visit_enter(ir_function *ir)
312 {
313 if (strcmp(ir->name, "main") == 0)
314 in_main = true;
315
316 return visit_continue;
317 }
318
319 virtual ir_visitor_status visit_leave(ir_function *)
320 {
321 in_main = false;
322 after_return = false;
323 return visit_continue;
324 }
325
326 virtual ir_visitor_status visit_leave(ir_return *)
327 {
328 after_return = true;
329 return visit_continue;
330 }
331
332 virtual ir_visitor_status visit_enter(ir_if *)
333 {
334 ++control_flow;
335 return visit_continue;
336 }
337
338 virtual ir_visitor_status visit_leave(ir_if *)
339 {
340 --control_flow;
341 return visit_continue;
342 }
343
344 virtual ir_visitor_status visit_enter(ir_loop *)
345 {
346 ++control_flow;
347 return visit_continue;
348 }
349
350 virtual ir_visitor_status visit_leave(ir_loop *)
351 {
352 --control_flow;
353 return visit_continue;
354 }
355
356 /* FINISHME: `switch` is not expressed at the IR level -- it's already
357 * been lowered to a mess of `if`s. We'll correctly disallow any use of
358 * barrier() in a conditional path within the switch, but not in a path
359 * which is always hit.
360 */
361
362 virtual ir_visitor_status visit_enter(ir_call *ir)
363 {
364 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
365 /* Use of barrier(); determine if it is legal: */
366 if (!in_main) {
367 linker_error(prog, "Builtin barrier() may only be used in main");
368 return visit_stop;
369 }
370
371 if (after_return) {
372 linker_error(prog, "Builtin barrier() may not be used after return");
373 return visit_stop;
374 }
375
376 if (control_flow != 0) {
377 linker_error(prog, "Builtin barrier() may not be used inside control flow");
378 return visit_stop;
379 }
380 }
381 return visit_continue;
382 }
383
384 private:
385 gl_shader_program *prog;
386 bool in_main, after_return;
387 int control_flow;
388 };
389
390 /**
391 * Visitor that determines the highest stream id to which a (geometry) shader
392 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
393 */
394 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
395 public:
396 find_emit_vertex_visitor(int max_allowed)
397 : max_stream_allowed(max_allowed),
398 invalid_stream_id(0),
399 invalid_stream_id_from_emit_vertex(false),
400 end_primitive_found(false),
401 uses_non_zero_stream(false)
402 {
403 /* empty */
404 }
405
406 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
407 {
408 int stream_id = ir->stream_id();
409
410 if (stream_id < 0) {
411 invalid_stream_id = stream_id;
412 invalid_stream_id_from_emit_vertex = true;
413 return visit_stop;
414 }
415
416 if (stream_id > max_stream_allowed) {
417 invalid_stream_id = stream_id;
418 invalid_stream_id_from_emit_vertex = true;
419 return visit_stop;
420 }
421
422 if (stream_id != 0)
423 uses_non_zero_stream = true;
424
425 return visit_continue;
426 }
427
428 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
429 {
430 end_primitive_found = true;
431
432 int stream_id = ir->stream_id();
433
434 if (stream_id < 0) {
435 invalid_stream_id = stream_id;
436 invalid_stream_id_from_emit_vertex = false;
437 return visit_stop;
438 }
439
440 if (stream_id > max_stream_allowed) {
441 invalid_stream_id = stream_id;
442 invalid_stream_id_from_emit_vertex = false;
443 return visit_stop;
444 }
445
446 if (stream_id != 0)
447 uses_non_zero_stream = true;
448
449 return visit_continue;
450 }
451
452 bool error()
453 {
454 return invalid_stream_id != 0;
455 }
456
457 const char *error_func()
458 {
459 return invalid_stream_id_from_emit_vertex ?
460 "EmitStreamVertex" : "EndStreamPrimitive";
461 }
462
463 int error_stream()
464 {
465 return invalid_stream_id;
466 }
467
468 bool uses_streams()
469 {
470 return uses_non_zero_stream;
471 }
472
473 bool uses_end_primitive()
474 {
475 return end_primitive_found;
476 }
477
478 private:
479 int max_stream_allowed;
480 int invalid_stream_id;
481 bool invalid_stream_id_from_emit_vertex;
482 bool end_primitive_found;
483 bool uses_non_zero_stream;
484 };
485
486 /* Class that finds array derefs and check if indexes are dynamic. */
487 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
488 {
489 public:
490 dynamic_sampler_array_indexing_visitor() :
491 dynamic_sampler_array_indexing(false)
492 {
493 }
494
495 ir_visitor_status visit_enter(ir_dereference_array *ir)
496 {
497 if (!ir->variable_referenced())
498 return visit_continue;
499
500 if (!ir->variable_referenced()->type->contains_sampler())
501 return visit_continue;
502
503 if (!ir->array_index->constant_expression_value()) {
504 dynamic_sampler_array_indexing = true;
505 return visit_stop;
506 }
507 return visit_continue;
508 }
509
510 bool uses_dynamic_sampler_array_indexing()
511 {
512 return dynamic_sampler_array_indexing;
513 }
514
515 private:
516 bool dynamic_sampler_array_indexing;
517 };
518
519 } /* anonymous namespace */
520
521 void
522 linker_error(gl_shader_program *prog, const char *fmt, ...)
523 {
524 va_list ap;
525
526 ralloc_strcat(&prog->InfoLog, "error: ");
527 va_start(ap, fmt);
528 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
529 va_end(ap);
530
531 prog->LinkStatus = false;
532 }
533
534
535 void
536 linker_warning(gl_shader_program *prog, const char *fmt, ...)
537 {
538 va_list ap;
539
540 ralloc_strcat(&prog->InfoLog, "warning: ");
541 va_start(ap, fmt);
542 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
543 va_end(ap);
544
545 }
546
547
548 /**
549 * Given a string identifying a program resource, break it into a base name
550 * and an optional array index in square brackets.
551 *
552 * If an array index is present, \c out_base_name_end is set to point to the
553 * "[" that precedes the array index, and the array index itself is returned
554 * as a long.
555 *
556 * If no array index is present (or if the array index is negative or
557 * mal-formed), \c out_base_name_end, is set to point to the null terminator
558 * at the end of the input string, and -1 is returned.
559 *
560 * Only the final array index is parsed; if the string contains other array
561 * indices (or structure field accesses), they are left in the base name.
562 *
563 * No attempt is made to check that the base name is properly formed;
564 * typically the caller will look up the base name in a hash table, so
565 * ill-formed base names simply turn into hash table lookup failures.
566 */
567 long
568 parse_program_resource_name(const GLchar *name,
569 const GLchar **out_base_name_end)
570 {
571 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
572 *
573 * "When an integer array element or block instance number is part of
574 * the name string, it will be specified in decimal form without a "+"
575 * or "-" sign or any extra leading zeroes. Additionally, the name
576 * string will not include white space anywhere in the string."
577 */
578
579 const size_t len = strlen(name);
580 *out_base_name_end = name + len;
581
582 if (len == 0 || name[len-1] != ']')
583 return -1;
584
585 /* Walk backwards over the string looking for a non-digit character. This
586 * had better be the opening bracket for an array index.
587 *
588 * Initially, i specifies the location of the ']'. Since the string may
589 * contain only the ']' charcater, walk backwards very carefully.
590 */
591 unsigned i;
592 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
593 /* empty */ ;
594
595 if ((i == 0) || name[i-1] != '[')
596 return -1;
597
598 long array_index = strtol(&name[i], NULL, 10);
599 if (array_index < 0)
600 return -1;
601
602 /* Check for leading zero */
603 if (name[i] == '0' && name[i+1] != ']')
604 return -1;
605
606 *out_base_name_end = name + (i - 1);
607 return array_index;
608 }
609
610
611 void
612 link_invalidate_variable_locations(exec_list *ir)
613 {
614 foreach_in_list(ir_instruction, node, ir) {
615 ir_variable *const var = node->as_variable();
616
617 if (var == NULL)
618 continue;
619
620 /* Only assign locations for variables that lack an explicit location.
621 * Explicit locations are set for all built-in variables, generic vertex
622 * shader inputs (via layout(location=...)), and generic fragment shader
623 * outputs (also via layout(location=...)).
624 */
625 if (!var->data.explicit_location) {
626 var->data.location = -1;
627 var->data.location_frac = 0;
628 }
629
630 /* ir_variable::is_unmatched_generic_inout is used by the linker while
631 * connecting outputs from one stage to inputs of the next stage.
632 */
633 if (var->data.explicit_location &&
634 var->data.location < VARYING_SLOT_VAR0) {
635 var->data.is_unmatched_generic_inout = 0;
636 } else {
637 var->data.is_unmatched_generic_inout = 1;
638 }
639 }
640 }
641
642
643 /**
644 * Set clip_distance_array_size based on the given shader.
645 *
646 * Also check for errors based on incorrect usage of gl_ClipVertex and
647 * gl_ClipDistance.
648 *
649 * Return false if an error was reported.
650 */
651 static void
652 analyze_clip_usage(struct gl_shader_program *prog,
653 struct gl_shader *shader,
654 GLuint *clip_distance_array_size)
655 {
656 *clip_distance_array_size = 0;
657
658 if (!prog->IsES && prog->Version >= 130) {
659 /* From section 7.1 (Vertex Shader Special Variables) of the
660 * GLSL 1.30 spec:
661 *
662 * "It is an error for a shader to statically write both
663 * gl_ClipVertex and gl_ClipDistance."
664 *
665 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
666 * gl_ClipVertex nor gl_ClipDistance.
667 */
668 find_assignment_visitor clip_vertex("gl_ClipVertex");
669 find_assignment_visitor clip_distance("gl_ClipDistance");
670
671 clip_vertex.run(shader->ir);
672 clip_distance.run(shader->ir);
673 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
674 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
675 "and `gl_ClipDistance'\n",
676 _mesa_shader_stage_to_string(shader->Stage));
677 return;
678 }
679
680 if (clip_distance.variable_found()) {
681 ir_variable *clip_distance_var =
682 shader->symbols->get_variable("gl_ClipDistance");
683
684 assert(clip_distance_var);
685 *clip_distance_array_size = clip_distance_var->type->length;
686 }
687 }
688 }
689
690
691 /**
692 * Verify that a vertex shader executable meets all semantic requirements.
693 *
694 * Also sets prog->Vert.ClipDistanceArraySize as a side effect.
695 *
696 * \param shader Vertex shader executable to be verified
697 */
698 void
699 validate_vertex_shader_executable(struct gl_shader_program *prog,
700 struct gl_shader *shader)
701 {
702 if (shader == NULL)
703 return;
704
705 /* From the GLSL 1.10 spec, page 48:
706 *
707 * "The variable gl_Position is available only in the vertex
708 * language and is intended for writing the homogeneous vertex
709 * position. All executions of a well-formed vertex shader
710 * executable must write a value into this variable. [...] The
711 * variable gl_Position is available only in the vertex
712 * language and is intended for writing the homogeneous vertex
713 * position. All executions of a well-formed vertex shader
714 * executable must write a value into this variable."
715 *
716 * while in GLSL 1.40 this text is changed to:
717 *
718 * "The variable gl_Position is available only in the vertex
719 * language and is intended for writing the homogeneous vertex
720 * position. It can be written at any time during shader
721 * execution. It may also be read back by a vertex shader
722 * after being written. This value will be used by primitive
723 * assembly, clipping, culling, and other fixed functionality
724 * operations, if present, that operate on primitives after
725 * vertex processing has occurred. Its value is undefined if
726 * the vertex shader executable does not write gl_Position."
727 *
728 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
729 * gl_Position is not an error.
730 */
731 if (prog->Version < (prog->IsES ? 300 : 140)) {
732 find_assignment_visitor find("gl_Position");
733 find.run(shader->ir);
734 if (!find.variable_found()) {
735 if (prog->IsES) {
736 linker_warning(prog,
737 "vertex shader does not write to `gl_Position'."
738 "It's value is undefined. \n");
739 } else {
740 linker_error(prog,
741 "vertex shader does not write to `gl_Position'. \n");
742 }
743 return;
744 }
745 }
746
747 analyze_clip_usage(prog, shader, &prog->Vert.ClipDistanceArraySize);
748 }
749
750 void
751 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
752 struct gl_shader *shader)
753 {
754 if (shader == NULL)
755 return;
756
757 analyze_clip_usage(prog, shader, &prog->TessEval.ClipDistanceArraySize);
758 }
759
760
761 /**
762 * Verify that a fragment shader executable meets all semantic requirements
763 *
764 * \param shader Fragment shader executable to be verified
765 */
766 void
767 validate_fragment_shader_executable(struct gl_shader_program *prog,
768 struct gl_shader *shader)
769 {
770 if (shader == NULL)
771 return;
772
773 find_assignment_visitor frag_color("gl_FragColor");
774 find_assignment_visitor frag_data("gl_FragData");
775
776 frag_color.run(shader->ir);
777 frag_data.run(shader->ir);
778
779 if (frag_color.variable_found() && frag_data.variable_found()) {
780 linker_error(prog, "fragment shader writes to both "
781 "`gl_FragColor' and `gl_FragData'\n");
782 }
783 }
784
785 /**
786 * Verify that a geometry shader executable meets all semantic requirements
787 *
788 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize as
789 * a side effect.
790 *
791 * \param shader Geometry shader executable to be verified
792 */
793 void
794 validate_geometry_shader_executable(struct gl_shader_program *prog,
795 struct gl_shader *shader)
796 {
797 if (shader == NULL)
798 return;
799
800 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
801 prog->Geom.VerticesIn = num_vertices;
802
803 analyze_clip_usage(prog, shader, &prog->Geom.ClipDistanceArraySize);
804 }
805
806 /**
807 * Check if geometry shaders emit to non-zero streams and do corresponding
808 * validations.
809 */
810 static void
811 validate_geometry_shader_emissions(struct gl_context *ctx,
812 struct gl_shader_program *prog)
813 {
814 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
815 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
816 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
817 if (emit_vertex.error()) {
818 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
819 "stream parameter are in the range [0, %d].\n",
820 emit_vertex.error_func(),
821 emit_vertex.error_stream(),
822 ctx->Const.MaxVertexStreams - 1);
823 }
824 prog->Geom.UsesStreams = emit_vertex.uses_streams();
825 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
826
827 /* From the ARB_gpu_shader5 spec:
828 *
829 * "Multiple vertex streams are supported only if the output primitive
830 * type is declared to be "points". A program will fail to link if it
831 * contains a geometry shader calling EmitStreamVertex() or
832 * EndStreamPrimitive() if its output primitive type is not "points".
833 *
834 * However, in the same spec:
835 *
836 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
837 * with <stream> set to zero."
838 *
839 * And:
840 *
841 * "The function EndPrimitive() is equivalent to calling
842 * EndStreamPrimitive() with <stream> set to zero."
843 *
844 * Since we can call EmitVertex() and EndPrimitive() when we output
845 * primitives other than points, calling EmitStreamVertex(0) or
846 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
847 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
848 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
849 * stream.
850 */
851 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
852 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
853 "with n>0 requires point output\n");
854 }
855 }
856 }
857
858 bool
859 validate_intrastage_arrays(struct gl_shader_program *prog,
860 ir_variable *const var,
861 ir_variable *const existing)
862 {
863 /* Consider the types to be "the same" if both types are arrays
864 * of the same type and one of the arrays is implicitly sized.
865 * In addition, set the type of the linked variable to the
866 * explicitly sized array.
867 */
868 if (var->type->is_array() && existing->type->is_array()) {
869 if ((var->type->fields.array == existing->type->fields.array) &&
870 ((var->type->length == 0)|| (existing->type->length == 0))) {
871 if (var->type->length != 0) {
872 if (var->type->length <= existing->data.max_array_access) {
873 linker_error(prog, "%s `%s' declared as type "
874 "`%s' but outermost dimension has an index"
875 " of `%i'\n",
876 mode_string(var),
877 var->name, var->type->name,
878 existing->data.max_array_access);
879 }
880 existing->type = var->type;
881 return true;
882 } else if (existing->type->length != 0) {
883 if(existing->type->length <= var->data.max_array_access &&
884 !existing->data.from_ssbo_unsized_array) {
885 linker_error(prog, "%s `%s' declared as type "
886 "`%s' but outermost dimension has an index"
887 " of `%i'\n",
888 mode_string(var),
889 var->name, existing->type->name,
890 var->data.max_array_access);
891 }
892 return true;
893 }
894 } else {
895 /* The arrays of structs could have different glsl_type pointers but
896 * they are actually the same type. Use record_compare() to check that.
897 */
898 if (existing->type->fields.array->is_record() &&
899 var->type->fields.array->is_record() &&
900 existing->type->fields.array->record_compare(var->type->fields.array))
901 return true;
902 }
903 }
904 return false;
905 }
906
907
908 /**
909 * Perform validation of global variables used across multiple shaders
910 */
911 void
912 cross_validate_globals(struct gl_shader_program *prog,
913 struct gl_shader **shader_list,
914 unsigned num_shaders,
915 bool uniforms_only)
916 {
917 /* Examine all of the uniforms in all of the shaders and cross validate
918 * them.
919 */
920 glsl_symbol_table variables;
921 for (unsigned i = 0; i < num_shaders; i++) {
922 if (shader_list[i] == NULL)
923 continue;
924
925 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
926 ir_variable *const var = node->as_variable();
927
928 if (var == NULL)
929 continue;
930
931 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
932 continue;
933
934 /* don't cross validate subroutine uniforms */
935 if (var->type->contains_subroutine())
936 continue;
937
938 /* Don't cross validate temporaries that are at global scope. These
939 * will eventually get pulled into the shaders 'main'.
940 */
941 if (var->data.mode == ir_var_temporary)
942 continue;
943
944 /* If a global with this name has already been seen, verify that the
945 * new instance has the same type. In addition, if the globals have
946 * initializers, the values of the initializers must be the same.
947 */
948 ir_variable *const existing = variables.get_variable(var->name);
949 if (existing != NULL) {
950 /* Check if types match. Interface blocks have some special
951 * rules so we handle those elsewhere.
952 */
953 if (var->type != existing->type &&
954 !var->is_interface_instance()) {
955 if (!validate_intrastage_arrays(prog, var, existing)) {
956 if (var->type->is_record() && existing->type->is_record()
957 && existing->type->record_compare(var->type)) {
958 existing->type = var->type;
959 } else {
960 /* If it is an unsized array in a Shader Storage Block,
961 * two different shaders can access to different elements.
962 * Because of that, they might be converted to different
963 * sized arrays, then check that they are compatible but
964 * ignore the array size.
965 */
966 if (!(var->data.mode == ir_var_shader_storage &&
967 var->data.from_ssbo_unsized_array &&
968 existing->data.mode == ir_var_shader_storage &&
969 existing->data.from_ssbo_unsized_array &&
970 var->type->gl_type == existing->type->gl_type)) {
971 linker_error(prog, "%s `%s' declared as type "
972 "`%s' and type `%s'\n",
973 mode_string(var),
974 var->name, var->type->name,
975 existing->type->name);
976 return;
977 }
978 }
979 }
980 }
981
982 if (var->data.explicit_location) {
983 if (existing->data.explicit_location
984 && (var->data.location != existing->data.location)) {
985 linker_error(prog, "explicit locations for %s "
986 "`%s' have differing values\n",
987 mode_string(var), var->name);
988 return;
989 }
990
991 existing->data.location = var->data.location;
992 existing->data.explicit_location = true;
993 } else {
994 /* Check if uniform with implicit location was marked explicit
995 * by earlier shader stage. If so, mark it explicit in this stage
996 * too to make sure later processing does not treat it as
997 * implicit one.
998 */
999 if (existing->data.explicit_location) {
1000 var->data.location = existing->data.location;
1001 var->data.explicit_location = true;
1002 }
1003 }
1004
1005 /* From the GLSL 4.20 specification:
1006 * "A link error will result if two compilation units in a program
1007 * specify different integer-constant bindings for the same
1008 * opaque-uniform name. However, it is not an error to specify a
1009 * binding on some but not all declarations for the same name"
1010 */
1011 if (var->data.explicit_binding) {
1012 if (existing->data.explicit_binding &&
1013 var->data.binding != existing->data.binding) {
1014 linker_error(prog, "explicit bindings for %s "
1015 "`%s' have differing values\n",
1016 mode_string(var), var->name);
1017 return;
1018 }
1019
1020 existing->data.binding = var->data.binding;
1021 existing->data.explicit_binding = true;
1022 }
1023
1024 if (var->type->contains_atomic() &&
1025 var->data.offset != existing->data.offset) {
1026 linker_error(prog, "offset specifications for %s "
1027 "`%s' have differing values\n",
1028 mode_string(var), var->name);
1029 return;
1030 }
1031
1032 /* Validate layout qualifiers for gl_FragDepth.
1033 *
1034 * From the AMD/ARB_conservative_depth specs:
1035 *
1036 * "If gl_FragDepth is redeclared in any fragment shader in a
1037 * program, it must be redeclared in all fragment shaders in
1038 * that program that have static assignments to
1039 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1040 * fragment shaders in a single program must have the same set
1041 * of qualifiers."
1042 */
1043 if (strcmp(var->name, "gl_FragDepth") == 0) {
1044 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1045 bool layout_differs =
1046 var->data.depth_layout != existing->data.depth_layout;
1047
1048 if (layout_declared && layout_differs) {
1049 linker_error(prog,
1050 "All redeclarations of gl_FragDepth in all "
1051 "fragment shaders in a single program must have "
1052 "the same set of qualifiers.\n");
1053 }
1054
1055 if (var->data.used && layout_differs) {
1056 linker_error(prog,
1057 "If gl_FragDepth is redeclared with a layout "
1058 "qualifier in any fragment shader, it must be "
1059 "redeclared with the same layout qualifier in "
1060 "all fragment shaders that have assignments to "
1061 "gl_FragDepth\n");
1062 }
1063 }
1064
1065 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1066 *
1067 * "If a shared global has multiple initializers, the
1068 * initializers must all be constant expressions, and they
1069 * must all have the same value. Otherwise, a link error will
1070 * result. (A shared global having only one initializer does
1071 * not require that initializer to be a constant expression.)"
1072 *
1073 * Previous to 4.20 the GLSL spec simply said that initializers
1074 * must have the same value. In this case of non-constant
1075 * initializers, this was impossible to determine. As a result,
1076 * no vendor actually implemented that behavior. The 4.20
1077 * behavior matches the implemented behavior of at least one other
1078 * vendor, so we'll implement that for all GLSL versions.
1079 */
1080 if (var->constant_initializer != NULL) {
1081 if (existing->constant_initializer != NULL) {
1082 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1083 linker_error(prog, "initializers for %s "
1084 "`%s' have differing values\n",
1085 mode_string(var), var->name);
1086 return;
1087 }
1088 } else {
1089 /* If the first-seen instance of a particular uniform did not
1090 * have an initializer but a later instance does, copy the
1091 * initializer to the version stored in the symbol table.
1092 */
1093 /* FINISHME: This is wrong. The constant_value field should
1094 * FINISHME: not be modified! Imagine a case where a shader
1095 * FINISHME: without an initializer is linked in two different
1096 * FINISHME: programs with shaders that have differing
1097 * FINISHME: initializers. Linking with the first will
1098 * FINISHME: modify the shader, and linking with the second
1099 * FINISHME: will fail.
1100 */
1101 existing->constant_initializer =
1102 var->constant_initializer->clone(ralloc_parent(existing),
1103 NULL);
1104 }
1105 }
1106
1107 if (var->data.has_initializer) {
1108 if (existing->data.has_initializer
1109 && (var->constant_initializer == NULL
1110 || existing->constant_initializer == NULL)) {
1111 linker_error(prog,
1112 "shared global variable `%s' has multiple "
1113 "non-constant initializers.\n",
1114 var->name);
1115 return;
1116 }
1117
1118 /* Some instance had an initializer, so keep track of that. In
1119 * this location, all sorts of initializers (constant or
1120 * otherwise) will propagate the existence to the variable
1121 * stored in the symbol table.
1122 */
1123 existing->data.has_initializer = true;
1124 }
1125
1126 if (existing->data.invariant != var->data.invariant) {
1127 linker_error(prog, "declarations for %s `%s' have "
1128 "mismatching invariant qualifiers\n",
1129 mode_string(var), var->name);
1130 return;
1131 }
1132 if (existing->data.centroid != var->data.centroid) {
1133 linker_error(prog, "declarations for %s `%s' have "
1134 "mismatching centroid qualifiers\n",
1135 mode_string(var), var->name);
1136 return;
1137 }
1138 if (existing->data.sample != var->data.sample) {
1139 linker_error(prog, "declarations for %s `%s` have "
1140 "mismatching sample qualifiers\n",
1141 mode_string(var), var->name);
1142 return;
1143 }
1144 if (existing->data.image_format != var->data.image_format) {
1145 linker_error(prog, "declarations for %s `%s` have "
1146 "mismatching image format qualifiers\n",
1147 mode_string(var), var->name);
1148 return;
1149 }
1150 } else
1151 variables.add_variable(var);
1152 }
1153 }
1154 }
1155
1156
1157 /**
1158 * Perform validation of uniforms used across multiple shader stages
1159 */
1160 void
1161 cross_validate_uniforms(struct gl_shader_program *prog)
1162 {
1163 cross_validate_globals(prog, prog->_LinkedShaders,
1164 MESA_SHADER_STAGES, true);
1165 }
1166
1167 /**
1168 * Accumulates the array of prog->BufferInterfaceBlocks and checks that all
1169 * definitons of blocks agree on their contents.
1170 */
1171 static bool
1172 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
1173 {
1174 unsigned max_num_uniform_blocks = 0;
1175 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1176 if (prog->_LinkedShaders[i])
1177 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumBufferInterfaceBlocks;
1178 }
1179
1180 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1181 struct gl_shader *sh = prog->_LinkedShaders[i];
1182
1183 prog->InterfaceBlockStageIndex[i] = ralloc_array(prog, int,
1184 max_num_uniform_blocks);
1185 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1186 prog->InterfaceBlockStageIndex[i][j] = -1;
1187
1188 if (sh == NULL)
1189 continue;
1190
1191 for (unsigned int j = 0; j < sh->NumBufferInterfaceBlocks; j++) {
1192 int index = link_cross_validate_uniform_block(prog,
1193 &prog->BufferInterfaceBlocks,
1194 &prog->NumBufferInterfaceBlocks,
1195 &sh->BufferInterfaceBlocks[j]);
1196
1197 if (index == -1) {
1198 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1199 sh->BufferInterfaceBlocks[j].Name);
1200 return false;
1201 }
1202
1203 prog->InterfaceBlockStageIndex[i][index] = j;
1204 }
1205 }
1206
1207 return true;
1208 }
1209
1210
1211 /**
1212 * Populates a shaders symbol table with all global declarations
1213 */
1214 static void
1215 populate_symbol_table(gl_shader *sh)
1216 {
1217 sh->symbols = new(sh) glsl_symbol_table;
1218
1219 foreach_in_list(ir_instruction, inst, sh->ir) {
1220 ir_variable *var;
1221 ir_function *func;
1222
1223 if ((func = inst->as_function()) != NULL) {
1224 sh->symbols->add_function(func);
1225 } else if ((var = inst->as_variable()) != NULL) {
1226 if (var->data.mode != ir_var_temporary)
1227 sh->symbols->add_variable(var);
1228 }
1229 }
1230 }
1231
1232
1233 /**
1234 * Remap variables referenced in an instruction tree
1235 *
1236 * This is used when instruction trees are cloned from one shader and placed in
1237 * another. These trees will contain references to \c ir_variable nodes that
1238 * do not exist in the target shader. This function finds these \c ir_variable
1239 * references and replaces the references with matching variables in the target
1240 * shader.
1241 *
1242 * If there is no matching variable in the target shader, a clone of the
1243 * \c ir_variable is made and added to the target shader. The new variable is
1244 * added to \b both the instruction stream and the symbol table.
1245 *
1246 * \param inst IR tree that is to be processed.
1247 * \param symbols Symbol table containing global scope symbols in the
1248 * linked shader.
1249 * \param instructions Instruction stream where new variable declarations
1250 * should be added.
1251 */
1252 void
1253 remap_variables(ir_instruction *inst, struct gl_shader *target,
1254 hash_table *temps)
1255 {
1256 class remap_visitor : public ir_hierarchical_visitor {
1257 public:
1258 remap_visitor(struct gl_shader *target,
1259 hash_table *temps)
1260 {
1261 this->target = target;
1262 this->symbols = target->symbols;
1263 this->instructions = target->ir;
1264 this->temps = temps;
1265 }
1266
1267 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1268 {
1269 if (ir->var->data.mode == ir_var_temporary) {
1270 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1271
1272 assert(var != NULL);
1273 ir->var = var;
1274 return visit_continue;
1275 }
1276
1277 ir_variable *const existing =
1278 this->symbols->get_variable(ir->var->name);
1279 if (existing != NULL)
1280 ir->var = existing;
1281 else {
1282 ir_variable *copy = ir->var->clone(this->target, NULL);
1283
1284 this->symbols->add_variable(copy);
1285 this->instructions->push_head(copy);
1286 ir->var = copy;
1287 }
1288
1289 return visit_continue;
1290 }
1291
1292 private:
1293 struct gl_shader *target;
1294 glsl_symbol_table *symbols;
1295 exec_list *instructions;
1296 hash_table *temps;
1297 };
1298
1299 remap_visitor v(target, temps);
1300
1301 inst->accept(&v);
1302 }
1303
1304
1305 /**
1306 * Move non-declarations from one instruction stream to another
1307 *
1308 * The intended usage pattern of this function is to pass the pointer to the
1309 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1310 * pointer) for \c last and \c false for \c make_copies on the first
1311 * call. Successive calls pass the return value of the previous call for
1312 * \c last and \c true for \c make_copies.
1313 *
1314 * \param instructions Source instruction stream
1315 * \param last Instruction after which new instructions should be
1316 * inserted in the target instruction stream
1317 * \param make_copies Flag selecting whether instructions in \c instructions
1318 * should be copied (via \c ir_instruction::clone) into the
1319 * target list or moved.
1320 *
1321 * \return
1322 * The new "last" instruction in the target instruction stream. This pointer
1323 * is suitable for use as the \c last parameter of a later call to this
1324 * function.
1325 */
1326 exec_node *
1327 move_non_declarations(exec_list *instructions, exec_node *last,
1328 bool make_copies, gl_shader *target)
1329 {
1330 hash_table *temps = NULL;
1331
1332 if (make_copies)
1333 temps = hash_table_ctor(0, hash_table_pointer_hash,
1334 hash_table_pointer_compare);
1335
1336 foreach_in_list_safe(ir_instruction, inst, instructions) {
1337 if (inst->as_function())
1338 continue;
1339
1340 ir_variable *var = inst->as_variable();
1341 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1342 continue;
1343
1344 assert(inst->as_assignment()
1345 || inst->as_call()
1346 || inst->as_if() /* for initializers with the ?: operator */
1347 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1348
1349 if (make_copies) {
1350 inst = inst->clone(target, NULL);
1351
1352 if (var != NULL)
1353 hash_table_insert(temps, inst, var);
1354 else
1355 remap_variables(inst, target, temps);
1356 } else {
1357 inst->remove();
1358 }
1359
1360 last->insert_after(inst);
1361 last = inst;
1362 }
1363
1364 if (make_copies)
1365 hash_table_dtor(temps);
1366
1367 return last;
1368 }
1369
1370
1371 /**
1372 * This class is only used in link_intrastage_shaders() below but declaring
1373 * it inside that function leads to compiler warnings with some versions of
1374 * gcc.
1375 */
1376 class array_sizing_visitor : public ir_hierarchical_visitor {
1377 public:
1378 array_sizing_visitor()
1379 : mem_ctx(ralloc_context(NULL)),
1380 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1381 hash_table_pointer_compare))
1382 {
1383 }
1384
1385 ~array_sizing_visitor()
1386 {
1387 hash_table_dtor(this->unnamed_interfaces);
1388 ralloc_free(this->mem_ctx);
1389 }
1390
1391 virtual ir_visitor_status visit(ir_variable *var)
1392 {
1393 const glsl_type *type_without_array;
1394 fixup_type(&var->type, var->data.max_array_access,
1395 var->data.from_ssbo_unsized_array);
1396 type_without_array = var->type->without_array();
1397 if (var->type->is_interface()) {
1398 if (interface_contains_unsized_arrays(var->type)) {
1399 const glsl_type *new_type =
1400 resize_interface_members(var->type,
1401 var->get_max_ifc_array_access(),
1402 var->is_in_shader_storage_block());
1403 var->type = new_type;
1404 var->change_interface_type(new_type);
1405 }
1406 } else if (type_without_array->is_interface()) {
1407 if (interface_contains_unsized_arrays(type_without_array)) {
1408 const glsl_type *new_type =
1409 resize_interface_members(type_without_array,
1410 var->get_max_ifc_array_access(),
1411 var->is_in_shader_storage_block());
1412 var->change_interface_type(new_type);
1413 var->type = update_interface_members_array(var->type, new_type);
1414 }
1415 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1416 /* Store a pointer to the variable in the unnamed_interfaces
1417 * hashtable.
1418 */
1419 ir_variable **interface_vars = (ir_variable **)
1420 hash_table_find(this->unnamed_interfaces, ifc_type);
1421 if (interface_vars == NULL) {
1422 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1423 ifc_type->length);
1424 hash_table_insert(this->unnamed_interfaces, interface_vars,
1425 ifc_type);
1426 }
1427 unsigned index = ifc_type->field_index(var->name);
1428 assert(index < ifc_type->length);
1429 assert(interface_vars[index] == NULL);
1430 interface_vars[index] = var;
1431 }
1432 return visit_continue;
1433 }
1434
1435 /**
1436 * For each unnamed interface block that was discovered while running the
1437 * visitor, adjust the interface type to reflect the newly assigned array
1438 * sizes, and fix up the ir_variable nodes to point to the new interface
1439 * type.
1440 */
1441 void fixup_unnamed_interface_types()
1442 {
1443 hash_table_call_foreach(this->unnamed_interfaces,
1444 fixup_unnamed_interface_type, NULL);
1445 }
1446
1447 private:
1448 /**
1449 * If the type pointed to by \c type represents an unsized array, replace
1450 * it with a sized array whose size is determined by max_array_access.
1451 */
1452 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1453 bool from_ssbo_unsized_array)
1454 {
1455 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1456 *type = glsl_type::get_array_instance((*type)->fields.array,
1457 max_array_access + 1);
1458 assert(*type != NULL);
1459 }
1460 }
1461
1462 static const glsl_type *
1463 update_interface_members_array(const glsl_type *type,
1464 const glsl_type *new_interface_type)
1465 {
1466 const glsl_type *element_type = type->fields.array;
1467 if (element_type->is_array()) {
1468 const glsl_type *new_array_type =
1469 update_interface_members_array(element_type, new_interface_type);
1470 return glsl_type::get_array_instance(new_array_type, type->length);
1471 } else {
1472 return glsl_type::get_array_instance(new_interface_type,
1473 type->length);
1474 }
1475 }
1476
1477 /**
1478 * Determine whether the given interface type contains unsized arrays (if
1479 * it doesn't, array_sizing_visitor doesn't need to process it).
1480 */
1481 static bool interface_contains_unsized_arrays(const glsl_type *type)
1482 {
1483 for (unsigned i = 0; i < type->length; i++) {
1484 const glsl_type *elem_type = type->fields.structure[i].type;
1485 if (elem_type->is_unsized_array())
1486 return true;
1487 }
1488 return false;
1489 }
1490
1491 /**
1492 * Create a new interface type based on the given type, with unsized arrays
1493 * replaced by sized arrays whose size is determined by
1494 * max_ifc_array_access.
1495 */
1496 static const glsl_type *
1497 resize_interface_members(const glsl_type *type,
1498 const unsigned *max_ifc_array_access,
1499 bool is_ssbo)
1500 {
1501 unsigned num_fields = type->length;
1502 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1503 memcpy(fields, type->fields.structure,
1504 num_fields * sizeof(*fields));
1505 for (unsigned i = 0; i < num_fields; i++) {
1506 /* If SSBO last member is unsized array, we don't replace it by a sized
1507 * array.
1508 */
1509 if (is_ssbo && i == (num_fields - 1))
1510 fixup_type(&fields[i].type, max_ifc_array_access[i],
1511 true);
1512 else
1513 fixup_type(&fields[i].type, max_ifc_array_access[i],
1514 false);
1515 }
1516 glsl_interface_packing packing =
1517 (glsl_interface_packing) type->interface_packing;
1518 const glsl_type *new_ifc_type =
1519 glsl_type::get_interface_instance(fields, num_fields,
1520 packing, type->name);
1521 delete [] fields;
1522 return new_ifc_type;
1523 }
1524
1525 static void fixup_unnamed_interface_type(const void *key, void *data,
1526 void *)
1527 {
1528 const glsl_type *ifc_type = (const glsl_type *) key;
1529 ir_variable **interface_vars = (ir_variable **) data;
1530 unsigned num_fields = ifc_type->length;
1531 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1532 memcpy(fields, ifc_type->fields.structure,
1533 num_fields * sizeof(*fields));
1534 bool interface_type_changed = false;
1535 for (unsigned i = 0; i < num_fields; i++) {
1536 if (interface_vars[i] != NULL &&
1537 fields[i].type != interface_vars[i]->type) {
1538 fields[i].type = interface_vars[i]->type;
1539 interface_type_changed = true;
1540 }
1541 }
1542 if (!interface_type_changed) {
1543 delete [] fields;
1544 return;
1545 }
1546 glsl_interface_packing packing =
1547 (glsl_interface_packing) ifc_type->interface_packing;
1548 const glsl_type *new_ifc_type =
1549 glsl_type::get_interface_instance(fields, num_fields, packing,
1550 ifc_type->name);
1551 delete [] fields;
1552 for (unsigned i = 0; i < num_fields; i++) {
1553 if (interface_vars[i] != NULL)
1554 interface_vars[i]->change_interface_type(new_ifc_type);
1555 }
1556 }
1557
1558 /**
1559 * Memory context used to allocate the data in \c unnamed_interfaces.
1560 */
1561 void *mem_ctx;
1562
1563 /**
1564 * Hash table from const glsl_type * to an array of ir_variable *'s
1565 * pointing to the ir_variables constituting each unnamed interface block.
1566 */
1567 hash_table *unnamed_interfaces;
1568 };
1569
1570
1571 /**
1572 * Performs the cross-validation of tessellation control shader vertices and
1573 * layout qualifiers for the attached tessellation control shaders,
1574 * and propagates them to the linked TCS and linked shader program.
1575 */
1576 static void
1577 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1578 struct gl_shader *linked_shader,
1579 struct gl_shader **shader_list,
1580 unsigned num_shaders)
1581 {
1582 linked_shader->TessCtrl.VerticesOut = 0;
1583
1584 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1585 return;
1586
1587 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1588 *
1589 * "All tessellation control shader layout declarations in a program
1590 * must specify the same output patch vertex count. There must be at
1591 * least one layout qualifier specifying an output patch vertex count
1592 * in any program containing tessellation control shaders; however,
1593 * such a declaration is not required in all tessellation control
1594 * shaders."
1595 */
1596
1597 for (unsigned i = 0; i < num_shaders; i++) {
1598 struct gl_shader *shader = shader_list[i];
1599
1600 if (shader->TessCtrl.VerticesOut != 0) {
1601 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1602 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1603 linker_error(prog, "tessellation control shader defined with "
1604 "conflicting output vertex count (%d and %d)\n",
1605 linked_shader->TessCtrl.VerticesOut,
1606 shader->TessCtrl.VerticesOut);
1607 return;
1608 }
1609 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1610 }
1611 }
1612
1613 /* Just do the intrastage -> interstage propagation right now,
1614 * since we already know we're in the right type of shader program
1615 * for doing it.
1616 */
1617 if (linked_shader->TessCtrl.VerticesOut == 0) {
1618 linker_error(prog, "tessellation control shader didn't declare "
1619 "vertices out layout qualifier\n");
1620 return;
1621 }
1622 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1623 }
1624
1625
1626 /**
1627 * Performs the cross-validation of tessellation evaluation shader
1628 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1629 * for the attached tessellation evaluation shaders, and propagates them
1630 * to the linked TES and linked shader program.
1631 */
1632 static void
1633 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1634 struct gl_shader *linked_shader,
1635 struct gl_shader **shader_list,
1636 unsigned num_shaders)
1637 {
1638 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1639 linked_shader->TessEval.Spacing = 0;
1640 linked_shader->TessEval.VertexOrder = 0;
1641 linked_shader->TessEval.PointMode = -1;
1642
1643 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1644 return;
1645
1646 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1647 *
1648 * "At least one tessellation evaluation shader (compilation unit) in
1649 * a program must declare a primitive mode in its input layout.
1650 * Declaration vertex spacing, ordering, and point mode identifiers is
1651 * optional. It is not required that all tessellation evaluation
1652 * shaders in a program declare a primitive mode. If spacing or
1653 * vertex ordering declarations are omitted, the tessellation
1654 * primitive generator will use equal spacing or counter-clockwise
1655 * vertex ordering, respectively. If a point mode declaration is
1656 * omitted, the tessellation primitive generator will produce lines or
1657 * triangles according to the primitive mode."
1658 */
1659
1660 for (unsigned i = 0; i < num_shaders; i++) {
1661 struct gl_shader *shader = shader_list[i];
1662
1663 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1664 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1665 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1666 linker_error(prog, "tessellation evaluation shader defined with "
1667 "conflicting input primitive modes.\n");
1668 return;
1669 }
1670 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1671 }
1672
1673 if (shader->TessEval.Spacing != 0) {
1674 if (linked_shader->TessEval.Spacing != 0 &&
1675 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1676 linker_error(prog, "tessellation evaluation shader defined with "
1677 "conflicting vertex spacing.\n");
1678 return;
1679 }
1680 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1681 }
1682
1683 if (shader->TessEval.VertexOrder != 0) {
1684 if (linked_shader->TessEval.VertexOrder != 0 &&
1685 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1686 linker_error(prog, "tessellation evaluation shader defined with "
1687 "conflicting ordering.\n");
1688 return;
1689 }
1690 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1691 }
1692
1693 if (shader->TessEval.PointMode != -1) {
1694 if (linked_shader->TessEval.PointMode != -1 &&
1695 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1696 linker_error(prog, "tessellation evaluation shader defined with "
1697 "conflicting point modes.\n");
1698 return;
1699 }
1700 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1701 }
1702
1703 }
1704
1705 /* Just do the intrastage -> interstage propagation right now,
1706 * since we already know we're in the right type of shader program
1707 * for doing it.
1708 */
1709 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1710 linker_error(prog,
1711 "tessellation evaluation shader didn't declare input "
1712 "primitive modes.\n");
1713 return;
1714 }
1715 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1716
1717 if (linked_shader->TessEval.Spacing == 0)
1718 linked_shader->TessEval.Spacing = GL_EQUAL;
1719 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1720
1721 if (linked_shader->TessEval.VertexOrder == 0)
1722 linked_shader->TessEval.VertexOrder = GL_CCW;
1723 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1724
1725 if (linked_shader->TessEval.PointMode == -1)
1726 linked_shader->TessEval.PointMode = GL_FALSE;
1727 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1728 }
1729
1730
1731 /**
1732 * Performs the cross-validation of layout qualifiers specified in
1733 * redeclaration of gl_FragCoord for the attached fragment shaders,
1734 * and propagates them to the linked FS and linked shader program.
1735 */
1736 static void
1737 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1738 struct gl_shader *linked_shader,
1739 struct gl_shader **shader_list,
1740 unsigned num_shaders)
1741 {
1742 linked_shader->redeclares_gl_fragcoord = false;
1743 linked_shader->uses_gl_fragcoord = false;
1744 linked_shader->origin_upper_left = false;
1745 linked_shader->pixel_center_integer = false;
1746
1747 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1748 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1749 return;
1750
1751 for (unsigned i = 0; i < num_shaders; i++) {
1752 struct gl_shader *shader = shader_list[i];
1753 /* From the GLSL 1.50 spec, page 39:
1754 *
1755 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1756 * it must be redeclared in all the fragment shaders in that program
1757 * that have a static use gl_FragCoord."
1758 */
1759 if ((linked_shader->redeclares_gl_fragcoord
1760 && !shader->redeclares_gl_fragcoord
1761 && shader->uses_gl_fragcoord)
1762 || (shader->redeclares_gl_fragcoord
1763 && !linked_shader->redeclares_gl_fragcoord
1764 && linked_shader->uses_gl_fragcoord)) {
1765 linker_error(prog, "fragment shader defined with conflicting "
1766 "layout qualifiers for gl_FragCoord\n");
1767 }
1768
1769 /* From the GLSL 1.50 spec, page 39:
1770 *
1771 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1772 * single program must have the same set of qualifiers."
1773 */
1774 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1775 && (shader->origin_upper_left != linked_shader->origin_upper_left
1776 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1777 linker_error(prog, "fragment shader defined with conflicting "
1778 "layout qualifiers for gl_FragCoord\n");
1779 }
1780
1781 /* Update the linked shader state. Note that uses_gl_fragcoord should
1782 * accumulate the results. The other values should replace. If there
1783 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1784 * are already known to be the same.
1785 */
1786 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1787 linked_shader->redeclares_gl_fragcoord =
1788 shader->redeclares_gl_fragcoord;
1789 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1790 || shader->uses_gl_fragcoord;
1791 linked_shader->origin_upper_left = shader->origin_upper_left;
1792 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1793 }
1794
1795 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1796 }
1797 }
1798
1799 /**
1800 * Performs the cross-validation of geometry shader max_vertices and
1801 * primitive type layout qualifiers for the attached geometry shaders,
1802 * and propagates them to the linked GS and linked shader program.
1803 */
1804 static void
1805 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1806 struct gl_shader *linked_shader,
1807 struct gl_shader **shader_list,
1808 unsigned num_shaders)
1809 {
1810 linked_shader->Geom.VerticesOut = 0;
1811 linked_shader->Geom.Invocations = 0;
1812 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1813 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1814
1815 /* No in/out qualifiers defined for anything but GLSL 1.50+
1816 * geometry shaders so far.
1817 */
1818 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1819 return;
1820
1821 /* From the GLSL 1.50 spec, page 46:
1822 *
1823 * "All geometry shader output layout declarations in a program
1824 * must declare the same layout and same value for
1825 * max_vertices. There must be at least one geometry output
1826 * layout declaration somewhere in a program, but not all
1827 * geometry shaders (compilation units) are required to
1828 * declare it."
1829 */
1830
1831 for (unsigned i = 0; i < num_shaders; i++) {
1832 struct gl_shader *shader = shader_list[i];
1833
1834 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1835 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1836 linked_shader->Geom.InputType != shader->Geom.InputType) {
1837 linker_error(prog, "geometry shader defined with conflicting "
1838 "input types\n");
1839 return;
1840 }
1841 linked_shader->Geom.InputType = shader->Geom.InputType;
1842 }
1843
1844 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1845 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1846 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1847 linker_error(prog, "geometry shader defined with conflicting "
1848 "output types\n");
1849 return;
1850 }
1851 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1852 }
1853
1854 if (shader->Geom.VerticesOut != 0) {
1855 if (linked_shader->Geom.VerticesOut != 0 &&
1856 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1857 linker_error(prog, "geometry shader defined with conflicting "
1858 "output vertex count (%d and %d)\n",
1859 linked_shader->Geom.VerticesOut,
1860 shader->Geom.VerticesOut);
1861 return;
1862 }
1863 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1864 }
1865
1866 if (shader->Geom.Invocations != 0) {
1867 if (linked_shader->Geom.Invocations != 0 &&
1868 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1869 linker_error(prog, "geometry shader defined with conflicting "
1870 "invocation count (%d and %d)\n",
1871 linked_shader->Geom.Invocations,
1872 shader->Geom.Invocations);
1873 return;
1874 }
1875 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1876 }
1877 }
1878
1879 /* Just do the intrastage -> interstage propagation right now,
1880 * since we already know we're in the right type of shader program
1881 * for doing it.
1882 */
1883 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1884 linker_error(prog,
1885 "geometry shader didn't declare primitive input type\n");
1886 return;
1887 }
1888 prog->Geom.InputType = linked_shader->Geom.InputType;
1889
1890 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1891 linker_error(prog,
1892 "geometry shader didn't declare primitive output type\n");
1893 return;
1894 }
1895 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1896
1897 if (linked_shader->Geom.VerticesOut == 0) {
1898 linker_error(prog,
1899 "geometry shader didn't declare max_vertices\n");
1900 return;
1901 }
1902 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1903
1904 if (linked_shader->Geom.Invocations == 0)
1905 linked_shader->Geom.Invocations = 1;
1906
1907 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1908 }
1909
1910
1911 /**
1912 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1913 * qualifiers for the attached compute shaders, and propagate them to the
1914 * linked CS and linked shader program.
1915 */
1916 static void
1917 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1918 struct gl_shader *linked_shader,
1919 struct gl_shader **shader_list,
1920 unsigned num_shaders)
1921 {
1922 for (int i = 0; i < 3; i++)
1923 linked_shader->Comp.LocalSize[i] = 0;
1924
1925 /* This function is called for all shader stages, but it only has an effect
1926 * for compute shaders.
1927 */
1928 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1929 return;
1930
1931 /* From the ARB_compute_shader spec, in the section describing local size
1932 * declarations:
1933 *
1934 * If multiple compute shaders attached to a single program object
1935 * declare local work-group size, the declarations must be identical;
1936 * otherwise a link-time error results. Furthermore, if a program
1937 * object contains any compute shaders, at least one must contain an
1938 * input layout qualifier specifying the local work sizes of the
1939 * program, or a link-time error will occur.
1940 */
1941 for (unsigned sh = 0; sh < num_shaders; sh++) {
1942 struct gl_shader *shader = shader_list[sh];
1943
1944 if (shader->Comp.LocalSize[0] != 0) {
1945 if (linked_shader->Comp.LocalSize[0] != 0) {
1946 for (int i = 0; i < 3; i++) {
1947 if (linked_shader->Comp.LocalSize[i] !=
1948 shader->Comp.LocalSize[i]) {
1949 linker_error(prog, "compute shader defined with conflicting "
1950 "local sizes\n");
1951 return;
1952 }
1953 }
1954 }
1955 for (int i = 0; i < 3; i++)
1956 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1957 }
1958 }
1959
1960 /* Just do the intrastage -> interstage propagation right now,
1961 * since we already know we're in the right type of shader program
1962 * for doing it.
1963 */
1964 if (linked_shader->Comp.LocalSize[0] == 0) {
1965 linker_error(prog, "compute shader didn't declare local size\n");
1966 return;
1967 }
1968 for (int i = 0; i < 3; i++)
1969 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1970 }
1971
1972
1973 /**
1974 * Combine a group of shaders for a single stage to generate a linked shader
1975 *
1976 * \note
1977 * If this function is supplied a single shader, it is cloned, and the new
1978 * shader is returned.
1979 */
1980 static struct gl_shader *
1981 link_intrastage_shaders(void *mem_ctx,
1982 struct gl_context *ctx,
1983 struct gl_shader_program *prog,
1984 struct gl_shader **shader_list,
1985 unsigned num_shaders)
1986 {
1987 struct gl_uniform_block *uniform_blocks = NULL;
1988
1989 /* Check that global variables defined in multiple shaders are consistent.
1990 */
1991 cross_validate_globals(prog, shader_list, num_shaders, false);
1992 if (!prog->LinkStatus)
1993 return NULL;
1994
1995 /* Check that interface blocks defined in multiple shaders are consistent.
1996 */
1997 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1998 num_shaders);
1999 if (!prog->LinkStatus)
2000 return NULL;
2001
2002 /* Link up uniform blocks defined within this stage. */
2003 const unsigned num_uniform_blocks =
2004 link_uniform_blocks(mem_ctx, ctx, prog, shader_list, num_shaders,
2005 &uniform_blocks);
2006 if (!prog->LinkStatus)
2007 return NULL;
2008
2009 /* Check that there is only a single definition of each function signature
2010 * across all shaders.
2011 */
2012 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2013 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2014 ir_function *const f = node->as_function();
2015
2016 if (f == NULL)
2017 continue;
2018
2019 for (unsigned j = i + 1; j < num_shaders; j++) {
2020 ir_function *const other =
2021 shader_list[j]->symbols->get_function(f->name);
2022
2023 /* If the other shader has no function (and therefore no function
2024 * signatures) with the same name, skip to the next shader.
2025 */
2026 if (other == NULL)
2027 continue;
2028
2029 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2030 if (!sig->is_defined || sig->is_builtin())
2031 continue;
2032
2033 ir_function_signature *other_sig =
2034 other->exact_matching_signature(NULL, &sig->parameters);
2035
2036 if ((other_sig != NULL) && other_sig->is_defined
2037 && !other_sig->is_builtin()) {
2038 linker_error(prog, "function `%s' is multiply defined\n",
2039 f->name);
2040 return NULL;
2041 }
2042 }
2043 }
2044 }
2045 }
2046
2047 /* Find the shader that defines main, and make a clone of it.
2048 *
2049 * Starting with the clone, search for undefined references. If one is
2050 * found, find the shader that defines it. Clone the reference and add
2051 * it to the shader. Repeat until there are no undefined references or
2052 * until a reference cannot be resolved.
2053 */
2054 gl_shader *main = NULL;
2055 for (unsigned i = 0; i < num_shaders; i++) {
2056 if (_mesa_get_main_function_signature(shader_list[i]) != NULL) {
2057 main = shader_list[i];
2058 break;
2059 }
2060 }
2061
2062 if (main == NULL) {
2063 linker_error(prog, "%s shader lacks `main'\n",
2064 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2065 return NULL;
2066 }
2067
2068 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2069 linked->ir = new(linked) exec_list;
2070 clone_ir_list(mem_ctx, linked->ir, main->ir);
2071
2072 linked->BufferInterfaceBlocks = uniform_blocks;
2073 linked->NumBufferInterfaceBlocks = num_uniform_blocks;
2074 ralloc_steal(linked, linked->BufferInterfaceBlocks);
2075
2076 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2077 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2078 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2079 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2080 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2081
2082 populate_symbol_table(linked);
2083
2084 /* The pointer to the main function in the final linked shader (i.e., the
2085 * copy of the original shader that contained the main function).
2086 */
2087 ir_function_signature *const main_sig =
2088 _mesa_get_main_function_signature(linked);
2089
2090 /* Move any instructions other than variable declarations or function
2091 * declarations into main.
2092 */
2093 exec_node *insertion_point =
2094 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2095 linked);
2096
2097 for (unsigned i = 0; i < num_shaders; i++) {
2098 if (shader_list[i] == main)
2099 continue;
2100
2101 insertion_point = move_non_declarations(shader_list[i]->ir,
2102 insertion_point, true, linked);
2103 }
2104
2105 /* Check if any shader needs built-in functions. */
2106 bool need_builtins = false;
2107 for (unsigned i = 0; i < num_shaders; i++) {
2108 if (shader_list[i]->uses_builtin_functions) {
2109 need_builtins = true;
2110 break;
2111 }
2112 }
2113
2114 bool ok;
2115 if (need_builtins) {
2116 /* Make a temporary array one larger than shader_list, which will hold
2117 * the built-in function shader as well.
2118 */
2119 gl_shader **linking_shaders = (gl_shader **)
2120 calloc(num_shaders + 1, sizeof(gl_shader *));
2121
2122 ok = linking_shaders != NULL;
2123
2124 if (ok) {
2125 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2126 _mesa_glsl_initialize_builtin_functions();
2127 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2128
2129 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2130
2131 free(linking_shaders);
2132 } else {
2133 _mesa_error_no_memory(__func__);
2134 }
2135 } else {
2136 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2137 }
2138
2139
2140 if (!ok) {
2141 _mesa_delete_shader(ctx, linked);
2142 return NULL;
2143 }
2144
2145 /* At this point linked should contain all of the linked IR, so
2146 * validate it to make sure nothing went wrong.
2147 */
2148 validate_ir_tree(linked->ir);
2149
2150 /* Set the size of geometry shader input arrays */
2151 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2152 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2153 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2154 foreach_in_list(ir_instruction, ir, linked->ir) {
2155 ir->accept(&input_resize_visitor);
2156 }
2157 }
2158
2159 if (ctx->Const.VertexID_is_zero_based)
2160 lower_vertex_id(linked);
2161
2162 /* Validate correct usage of barrier() in the tess control shader */
2163 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2164 barrier_use_visitor visitor(prog);
2165 foreach_in_list(ir_instruction, ir, linked->ir) {
2166 ir->accept(&visitor);
2167 }
2168 }
2169
2170 /* Make a pass over all variable declarations to ensure that arrays with
2171 * unspecified sizes have a size specified. The size is inferred from the
2172 * max_array_access field.
2173 */
2174 array_sizing_visitor v;
2175 v.run(linked->ir);
2176 v.fixup_unnamed_interface_types();
2177
2178 return linked;
2179 }
2180
2181 /**
2182 * Update the sizes of linked shader uniform arrays to the maximum
2183 * array index used.
2184 *
2185 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2186 *
2187 * If one or more elements of an array are active,
2188 * GetActiveUniform will return the name of the array in name,
2189 * subject to the restrictions listed above. The type of the array
2190 * is returned in type. The size parameter contains the highest
2191 * array element index used, plus one. The compiler or linker
2192 * determines the highest index used. There will be only one
2193 * active uniform reported by the GL per uniform array.
2194
2195 */
2196 static void
2197 update_array_sizes(struct gl_shader_program *prog)
2198 {
2199 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2200 if (prog->_LinkedShaders[i] == NULL)
2201 continue;
2202
2203 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2204 ir_variable *const var = node->as_variable();
2205
2206 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2207 !var->type->is_array())
2208 continue;
2209
2210 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2211 * will not be eliminated. Since we always do std140, just
2212 * don't resize arrays in UBOs.
2213 *
2214 * Atomic counters are supposed to get deterministic
2215 * locations assigned based on the declaration ordering and
2216 * sizes, array compaction would mess that up.
2217 *
2218 * Subroutine uniforms are not removed.
2219 */
2220 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2221 var->type->contains_subroutine())
2222 continue;
2223
2224 unsigned int size = var->data.max_array_access;
2225 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2226 if (prog->_LinkedShaders[j] == NULL)
2227 continue;
2228
2229 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2230 ir_variable *other_var = node2->as_variable();
2231 if (!other_var)
2232 continue;
2233
2234 if (strcmp(var->name, other_var->name) == 0 &&
2235 other_var->data.max_array_access > size) {
2236 size = other_var->data.max_array_access;
2237 }
2238 }
2239 }
2240
2241 if (size + 1 != var->type->length) {
2242 /* If this is a built-in uniform (i.e., it's backed by some
2243 * fixed-function state), adjust the number of state slots to
2244 * match the new array size. The number of slots per array entry
2245 * is not known. It seems safe to assume that the total number of
2246 * slots is an integer multiple of the number of array elements.
2247 * Determine the number of slots per array element by dividing by
2248 * the old (total) size.
2249 */
2250 const unsigned num_slots = var->get_num_state_slots();
2251 if (num_slots > 0) {
2252 var->set_num_state_slots((size + 1)
2253 * (num_slots / var->type->length));
2254 }
2255
2256 var->type = glsl_type::get_array_instance(var->type->fields.array,
2257 size + 1);
2258 /* FINISHME: We should update the types of array
2259 * dereferences of this variable now.
2260 */
2261 }
2262 }
2263 }
2264 }
2265
2266 /**
2267 * Resize tessellation evaluation per-vertex inputs to the size of
2268 * tessellation control per-vertex outputs.
2269 */
2270 static void
2271 resize_tes_inputs(struct gl_context *ctx,
2272 struct gl_shader_program *prog)
2273 {
2274 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2275 return;
2276
2277 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2278 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2279
2280 /* If no control shader is present, then the TES inputs are statically
2281 * sized to MaxPatchVertices; the actual size of the arrays won't be
2282 * known until draw time.
2283 */
2284 const int num_vertices = tcs
2285 ? tcs->TessCtrl.VerticesOut
2286 : ctx->Const.MaxPatchVertices;
2287
2288 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2289 foreach_in_list(ir_instruction, ir, tes->ir) {
2290 ir->accept(&input_resize_visitor);
2291 }
2292
2293 if (tcs) {
2294 /* Convert the gl_PatchVerticesIn system value into a constant, since
2295 * the value is known at this point.
2296 */
2297 foreach_in_list(ir_instruction, ir, tes->ir) {
2298 ir_variable *var = ir->as_variable();
2299 if (var && var->data.mode == ir_var_system_value &&
2300 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2301 void *mem_ctx = ralloc_parent(var);
2302 var->data.mode = ir_var_auto;
2303 var->data.location = 0;
2304 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2305 }
2306 }
2307 }
2308 }
2309
2310 /**
2311 * Find a contiguous set of available bits in a bitmask.
2312 *
2313 * \param used_mask Bits representing used (1) and unused (0) locations
2314 * \param needed_count Number of contiguous bits needed.
2315 *
2316 * \return
2317 * Base location of the available bits on success or -1 on failure.
2318 */
2319 int
2320 find_available_slots(unsigned used_mask, unsigned needed_count)
2321 {
2322 unsigned needed_mask = (1 << needed_count) - 1;
2323 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2324
2325 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2326 * cannot optimize possibly infinite loops" for the loop below.
2327 */
2328 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2329 return -1;
2330
2331 for (int i = 0; i <= max_bit_to_test; i++) {
2332 if ((needed_mask & ~used_mask) == needed_mask)
2333 return i;
2334
2335 needed_mask <<= 1;
2336 }
2337
2338 return -1;
2339 }
2340
2341
2342 /**
2343 * Assign locations for either VS inputs or FS outputs
2344 *
2345 * \param prog Shader program whose variables need locations assigned
2346 * \param constants Driver specific constant values for the program.
2347 * \param target_index Selector for the program target to receive location
2348 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2349 * \c MESA_SHADER_FRAGMENT.
2350 *
2351 * \return
2352 * If locations are successfully assigned, true is returned. Otherwise an
2353 * error is emitted to the shader link log and false is returned.
2354 */
2355 bool
2356 assign_attribute_or_color_locations(gl_shader_program *prog,
2357 struct gl_constants *constants,
2358 unsigned target_index)
2359 {
2360 /* Maximum number of generic locations. This corresponds to either the
2361 * maximum number of draw buffers or the maximum number of generic
2362 * attributes.
2363 */
2364 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2365 constants->Program[target_index].MaxAttribs :
2366 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2367
2368 /* Mark invalid locations as being used.
2369 */
2370 unsigned used_locations = (max_index >= 32)
2371 ? ~0 : ~((1 << max_index) - 1);
2372 unsigned double_storage_locations = 0;
2373
2374 assert((target_index == MESA_SHADER_VERTEX)
2375 || (target_index == MESA_SHADER_FRAGMENT));
2376
2377 gl_shader *const sh = prog->_LinkedShaders[target_index];
2378 if (sh == NULL)
2379 return true;
2380
2381 /* Operate in a total of four passes.
2382 *
2383 * 1. Invalidate the location assignments for all vertex shader inputs.
2384 *
2385 * 2. Assign locations for inputs that have user-defined (via
2386 * glBindVertexAttribLocation) locations and outputs that have
2387 * user-defined locations (via glBindFragDataLocation).
2388 *
2389 * 3. Sort the attributes without assigned locations by number of slots
2390 * required in decreasing order. Fragmentation caused by attribute
2391 * locations assigned by the application may prevent large attributes
2392 * from having enough contiguous space.
2393 *
2394 * 4. Assign locations to any inputs without assigned locations.
2395 */
2396
2397 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2398 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2399
2400 const enum ir_variable_mode direction =
2401 (target_index == MESA_SHADER_VERTEX)
2402 ? ir_var_shader_in : ir_var_shader_out;
2403
2404
2405 /* Temporary storage for the set of attributes that need locations assigned.
2406 */
2407 struct temp_attr {
2408 unsigned slots;
2409 ir_variable *var;
2410
2411 /* Used below in the call to qsort. */
2412 static int compare(const void *a, const void *b)
2413 {
2414 const temp_attr *const l = (const temp_attr *) a;
2415 const temp_attr *const r = (const temp_attr *) b;
2416
2417 /* Reversed because we want a descending order sort below. */
2418 return r->slots - l->slots;
2419 }
2420 } to_assign[32];
2421 assert(max_index <= 32);
2422
2423 unsigned num_attr = 0;
2424
2425 foreach_in_list(ir_instruction, node, sh->ir) {
2426 ir_variable *const var = node->as_variable();
2427
2428 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2429 continue;
2430
2431 if (var->data.explicit_location) {
2432 var->data.is_unmatched_generic_inout = 0;
2433 if ((var->data.location >= (int)(max_index + generic_base))
2434 || (var->data.location < 0)) {
2435 linker_error(prog,
2436 "invalid explicit location %d specified for `%s'\n",
2437 (var->data.location < 0)
2438 ? var->data.location
2439 : var->data.location - generic_base,
2440 var->name);
2441 return false;
2442 }
2443 } else if (target_index == MESA_SHADER_VERTEX) {
2444 unsigned binding;
2445
2446 if (prog->AttributeBindings->get(binding, var->name)) {
2447 assert(binding >= VERT_ATTRIB_GENERIC0);
2448 var->data.location = binding;
2449 var->data.is_unmatched_generic_inout = 0;
2450 }
2451 } else if (target_index == MESA_SHADER_FRAGMENT) {
2452 unsigned binding;
2453 unsigned index;
2454
2455 if (prog->FragDataBindings->get(binding, var->name)) {
2456 assert(binding >= FRAG_RESULT_DATA0);
2457 var->data.location = binding;
2458 var->data.is_unmatched_generic_inout = 0;
2459
2460 if (prog->FragDataIndexBindings->get(index, var->name)) {
2461 var->data.index = index;
2462 }
2463 }
2464 }
2465
2466 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2467 *
2468 * "Output binding assignments will cause LinkProgram to fail:
2469 * ...
2470 * If the program has an active output assigned to a location greater
2471 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2472 * an active output assigned an index greater than or equal to one;"
2473 */
2474 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2475 var->data.location - generic_base >=
2476 (int) constants->MaxDualSourceDrawBuffers) {
2477 linker_error(prog,
2478 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2479 "with index %u for %s\n",
2480 var->data.location - generic_base, var->data.index,
2481 var->name);
2482 return false;
2483 }
2484
2485 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX ? true : false);
2486
2487 /* If the variable is not a built-in and has a location statically
2488 * assigned in the shader (presumably via a layout qualifier), make sure
2489 * that it doesn't collide with other assigned locations. Otherwise,
2490 * add it to the list of variables that need linker-assigned locations.
2491 */
2492 if (var->data.location != -1) {
2493 if (var->data.location >= generic_base && var->data.index < 1) {
2494 /* From page 61 of the OpenGL 4.0 spec:
2495 *
2496 * "LinkProgram will fail if the attribute bindings assigned
2497 * by BindAttribLocation do not leave not enough space to
2498 * assign a location for an active matrix attribute or an
2499 * active attribute array, both of which require multiple
2500 * contiguous generic attributes."
2501 *
2502 * I think above text prohibits the aliasing of explicit and
2503 * automatic assignments. But, aliasing is allowed in manual
2504 * assignments of attribute locations. See below comments for
2505 * the details.
2506 *
2507 * From OpenGL 4.0 spec, page 61:
2508 *
2509 * "It is possible for an application to bind more than one
2510 * attribute name to the same location. This is referred to as
2511 * aliasing. This will only work if only one of the aliased
2512 * attributes is active in the executable program, or if no
2513 * path through the shader consumes more than one attribute of
2514 * a set of attributes aliased to the same location. A link
2515 * error can occur if the linker determines that every path
2516 * through the shader consumes multiple aliased attributes,
2517 * but implementations are not required to generate an error
2518 * in this case."
2519 *
2520 * From GLSL 4.30 spec, page 54:
2521 *
2522 * "A program will fail to link if any two non-vertex shader
2523 * input variables are assigned to the same location. For
2524 * vertex shaders, multiple input variables may be assigned
2525 * to the same location using either layout qualifiers or via
2526 * the OpenGL API. However, such aliasing is intended only to
2527 * support vertex shaders where each execution path accesses
2528 * at most one input per each location. Implementations are
2529 * permitted, but not required, to generate link-time errors
2530 * if they detect that every path through the vertex shader
2531 * executable accesses multiple inputs assigned to any single
2532 * location. For all shader types, a program will fail to link
2533 * if explicit location assignments leave the linker unable
2534 * to find space for other variables without explicit
2535 * assignments."
2536 *
2537 * From OpenGL ES 3.0 spec, page 56:
2538 *
2539 * "Binding more than one attribute name to the same location
2540 * is referred to as aliasing, and is not permitted in OpenGL
2541 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2542 * fail when this condition exists. However, aliasing is
2543 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2544 * This will only work if only one of the aliased attributes
2545 * is active in the executable program, or if no path through
2546 * the shader consumes more than one attribute of a set of
2547 * attributes aliased to the same location. A link error can
2548 * occur if the linker determines that every path through the
2549 * shader consumes multiple aliased attributes, but implemen-
2550 * tations are not required to generate an error in this case."
2551 *
2552 * After looking at above references from OpenGL, OpenGL ES and
2553 * GLSL specifications, we allow aliasing of vertex input variables
2554 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2555 *
2556 * NOTE: This is not required by the spec but its worth mentioning
2557 * here that we're not doing anything to make sure that no path
2558 * through the vertex shader executable accesses multiple inputs
2559 * assigned to any single location.
2560 */
2561
2562 /* Mask representing the contiguous slots that will be used by
2563 * this attribute.
2564 */
2565 const unsigned attr = var->data.location - generic_base;
2566 const unsigned use_mask = (1 << slots) - 1;
2567 const char *const string = (target_index == MESA_SHADER_VERTEX)
2568 ? "vertex shader input" : "fragment shader output";
2569
2570 /* Generate a link error if the requested locations for this
2571 * attribute exceed the maximum allowed attribute location.
2572 */
2573 if (attr + slots > max_index) {
2574 linker_error(prog,
2575 "insufficient contiguous locations "
2576 "available for %s `%s' %d %d %d\n", string,
2577 var->name, used_locations, use_mask, attr);
2578 return false;
2579 }
2580
2581 /* Generate a link error if the set of bits requested for this
2582 * attribute overlaps any previously allocated bits.
2583 */
2584 if ((~(use_mask << attr) & used_locations) != used_locations) {
2585 if (target_index == MESA_SHADER_FRAGMENT ||
2586 (prog->IsES && prog->Version >= 300)) {
2587 linker_error(prog,
2588 "overlapping location is assigned "
2589 "to %s `%s' %d %d %d\n", string,
2590 var->name, used_locations, use_mask, attr);
2591 return false;
2592 } else {
2593 linker_warning(prog,
2594 "overlapping location is assigned "
2595 "to %s `%s' %d %d %d\n", string,
2596 var->name, used_locations, use_mask, attr);
2597 }
2598 }
2599
2600 used_locations |= (use_mask << attr);
2601
2602 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2603 *
2604 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2605 * active attribute variables may fail to link, unless
2606 * device-dependent optimizations are able to make the program
2607 * fit within available hardware resources. For the purposes
2608 * of this test, attribute variables of the type dvec3, dvec4,
2609 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2610 * count as consuming twice as many attributes as equivalent
2611 * single-precision types. While these types use the same number
2612 * of generic attributes as their single-precision equivalents,
2613 * implementations are permitted to consume two single-precision
2614 * vectors of internal storage for each three- or four-component
2615 * double-precision vector."
2616 *
2617 * Mark this attribute slot as taking up twice as much space
2618 * so we can count it properly against limits. According to
2619 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2620 * is optional behavior, but it seems preferable.
2621 */
2622 if (var->type->without_array()->is_dual_slot_double())
2623 double_storage_locations |= (use_mask << attr);
2624 }
2625
2626 continue;
2627 }
2628
2629 if (num_attr >= max_index) {
2630 linker_error(prog, "too many %s (max %u)",
2631 target_index == MESA_SHADER_VERTEX ?
2632 "vertex shader inputs" : "fragment shader outputs",
2633 max_index);
2634 return false;
2635 }
2636 to_assign[num_attr].slots = slots;
2637 to_assign[num_attr].var = var;
2638 num_attr++;
2639 }
2640
2641 if (target_index == MESA_SHADER_VERTEX) {
2642 unsigned total_attribs_size =
2643 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2644 _mesa_bitcount(double_storage_locations);
2645 if (total_attribs_size > max_index) {
2646 linker_error(prog,
2647 "attempt to use %d vertex attribute slots only %d available ",
2648 total_attribs_size, max_index);
2649 return false;
2650 }
2651 }
2652
2653 /* If all of the attributes were assigned locations by the application (or
2654 * are built-in attributes with fixed locations), return early. This should
2655 * be the common case.
2656 */
2657 if (num_attr == 0)
2658 return true;
2659
2660 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2661
2662 if (target_index == MESA_SHADER_VERTEX) {
2663 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2664 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2665 * reserved to prevent it from being automatically allocated below.
2666 */
2667 find_deref_visitor find("gl_Vertex");
2668 find.run(sh->ir);
2669 if (find.variable_found())
2670 used_locations |= (1 << 0);
2671 }
2672
2673 for (unsigned i = 0; i < num_attr; i++) {
2674 /* Mask representing the contiguous slots that will be used by this
2675 * attribute.
2676 */
2677 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2678
2679 int location = find_available_slots(used_locations, to_assign[i].slots);
2680
2681 if (location < 0) {
2682 const char *const string = (target_index == MESA_SHADER_VERTEX)
2683 ? "vertex shader input" : "fragment shader output";
2684
2685 linker_error(prog,
2686 "insufficient contiguous locations "
2687 "available for %s `%s'\n",
2688 string, to_assign[i].var->name);
2689 return false;
2690 }
2691
2692 to_assign[i].var->data.location = generic_base + location;
2693 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2694 used_locations |= (use_mask << location);
2695 }
2696
2697 return true;
2698 }
2699
2700 /**
2701 * Match explicit locations of outputs to inputs and deactivate the
2702 * unmatch flag if found so we don't optimise them away.
2703 */
2704 static void
2705 match_explicit_outputs_to_inputs(struct gl_shader_program *prog,
2706 gl_shader *producer,
2707 gl_shader *consumer)
2708 {
2709 glsl_symbol_table parameters;
2710 ir_variable *explicit_locations[MAX_VARYING] = { NULL };
2711
2712 /* Find all shader outputs in the "producer" stage.
2713 */
2714 foreach_in_list(ir_instruction, node, producer->ir) {
2715 ir_variable *const var = node->as_variable();
2716
2717 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2718 continue;
2719
2720 if (var->data.explicit_location &&
2721 var->data.location >= VARYING_SLOT_VAR0) {
2722 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2723 if (explicit_locations[idx] == NULL)
2724 explicit_locations[idx] = var;
2725 }
2726 }
2727
2728 /* Match inputs to outputs */
2729 foreach_in_list(ir_instruction, node, consumer->ir) {
2730 ir_variable *const input = node->as_variable();
2731
2732 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2733 continue;
2734
2735 ir_variable *output = NULL;
2736 if (input->data.explicit_location
2737 && input->data.location >= VARYING_SLOT_VAR0) {
2738 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
2739
2740 if (output != NULL){
2741 input->data.is_unmatched_generic_inout = 0;
2742 output->data.is_unmatched_generic_inout = 0;
2743 }
2744 }
2745 }
2746 }
2747
2748 /**
2749 * Store the gl_FragDepth layout in the gl_shader_program struct.
2750 */
2751 static void
2752 store_fragdepth_layout(struct gl_shader_program *prog)
2753 {
2754 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2755 return;
2756 }
2757
2758 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2759
2760 /* We don't look up the gl_FragDepth symbol directly because if
2761 * gl_FragDepth is not used in the shader, it's removed from the IR.
2762 * However, the symbol won't be removed from the symbol table.
2763 *
2764 * We're only interested in the cases where the variable is NOT removed
2765 * from the IR.
2766 */
2767 foreach_in_list(ir_instruction, node, ir) {
2768 ir_variable *const var = node->as_variable();
2769
2770 if (var == NULL || var->data.mode != ir_var_shader_out) {
2771 continue;
2772 }
2773
2774 if (strcmp(var->name, "gl_FragDepth") == 0) {
2775 switch (var->data.depth_layout) {
2776 case ir_depth_layout_none:
2777 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2778 return;
2779 case ir_depth_layout_any:
2780 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2781 return;
2782 case ir_depth_layout_greater:
2783 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2784 return;
2785 case ir_depth_layout_less:
2786 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2787 return;
2788 case ir_depth_layout_unchanged:
2789 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2790 return;
2791 default:
2792 assert(0);
2793 return;
2794 }
2795 }
2796 }
2797 }
2798
2799 /**
2800 * Validate the resources used by a program versus the implementation limits
2801 */
2802 static void
2803 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2804 {
2805 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2806 struct gl_shader *sh = prog->_LinkedShaders[i];
2807
2808 if (sh == NULL)
2809 continue;
2810
2811 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2812 linker_error(prog, "Too many %s shader texture samplers\n",
2813 _mesa_shader_stage_to_string(i));
2814 }
2815
2816 if (sh->num_uniform_components >
2817 ctx->Const.Program[i].MaxUniformComponents) {
2818 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2819 linker_warning(prog, "Too many %s shader default uniform block "
2820 "components, but the driver will try to optimize "
2821 "them out; this is non-portable out-of-spec "
2822 "behavior\n",
2823 _mesa_shader_stage_to_string(i));
2824 } else {
2825 linker_error(prog, "Too many %s shader default uniform block "
2826 "components\n",
2827 _mesa_shader_stage_to_string(i));
2828 }
2829 }
2830
2831 if (sh->num_combined_uniform_components >
2832 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2833 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2834 linker_warning(prog, "Too many %s shader uniform components, "
2835 "but the driver will try to optimize them out; "
2836 "this is non-portable out-of-spec behavior\n",
2837 _mesa_shader_stage_to_string(i));
2838 } else {
2839 linker_error(prog, "Too many %s shader uniform components\n",
2840 _mesa_shader_stage_to_string(i));
2841 }
2842 }
2843 }
2844
2845 unsigned blocks[MESA_SHADER_STAGES] = {0};
2846 unsigned total_uniform_blocks = 0;
2847 unsigned shader_blocks[MESA_SHADER_STAGES] = {0};
2848 unsigned total_shader_storage_blocks = 0;
2849
2850 for (unsigned i = 0; i < prog->NumBufferInterfaceBlocks; i++) {
2851 /* Don't check SSBOs for Uniform Block Size */
2852 if (!prog->BufferInterfaceBlocks[i].IsShaderStorage &&
2853 prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2854 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2855 prog->BufferInterfaceBlocks[i].Name,
2856 prog->BufferInterfaceBlocks[i].UniformBufferSize,
2857 ctx->Const.MaxUniformBlockSize);
2858 }
2859
2860 if (prog->BufferInterfaceBlocks[i].IsShaderStorage &&
2861 prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxShaderStorageBlockSize) {
2862 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
2863 prog->BufferInterfaceBlocks[i].Name,
2864 prog->BufferInterfaceBlocks[i].UniformBufferSize,
2865 ctx->Const.MaxShaderStorageBlockSize);
2866 }
2867
2868 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2869 if (prog->InterfaceBlockStageIndex[j][i] != -1) {
2870 struct gl_shader *sh = prog->_LinkedShaders[j];
2871 int stage_index = prog->InterfaceBlockStageIndex[j][i];
2872 if (sh && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage) {
2873 shader_blocks[j]++;
2874 total_shader_storage_blocks++;
2875 } else {
2876 blocks[j]++;
2877 total_uniform_blocks++;
2878 }
2879 }
2880 }
2881
2882 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2883 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2884 total_uniform_blocks,
2885 ctx->Const.MaxCombinedUniformBlocks);
2886 } else {
2887 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2888 const unsigned max_uniform_blocks =
2889 ctx->Const.Program[i].MaxUniformBlocks;
2890 if (blocks[i] > max_uniform_blocks) {
2891 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2892 _mesa_shader_stage_to_string(i),
2893 blocks[i],
2894 max_uniform_blocks);
2895 break;
2896 }
2897 }
2898 }
2899
2900 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
2901 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
2902 total_shader_storage_blocks,
2903 ctx->Const.MaxCombinedShaderStorageBlocks);
2904 } else {
2905 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2906 const unsigned max_shader_storage_blocks =
2907 ctx->Const.Program[i].MaxShaderStorageBlocks;
2908 if (shader_blocks[i] > max_shader_storage_blocks) {
2909 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
2910 _mesa_shader_stage_to_string(i),
2911 shader_blocks[i],
2912 max_shader_storage_blocks);
2913 break;
2914 }
2915 }
2916 }
2917 }
2918 }
2919
2920 static void
2921 link_calculate_subroutine_compat(struct gl_shader_program *prog)
2922 {
2923 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2924 struct gl_shader *sh = prog->_LinkedShaders[i];
2925 int count;
2926 if (!sh)
2927 continue;
2928
2929 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
2930 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
2931
2932 if (!uni)
2933 continue;
2934
2935 count = 0;
2936 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
2937 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
2938 for (int k = 0; k < fn->num_compat_types; k++) {
2939 if (fn->types[k] == uni->type) {
2940 count++;
2941 break;
2942 }
2943 }
2944 }
2945 uni->num_compatible_subroutines = count;
2946 }
2947 }
2948 }
2949
2950 static void
2951 check_subroutine_resources(struct gl_shader_program *prog)
2952 {
2953 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2954 struct gl_shader *sh = prog->_LinkedShaders[i];
2955
2956 if (sh) {
2957 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
2958 linker_error(prog, "Too many %s shader subroutine uniforms\n",
2959 _mesa_shader_stage_to_string(i));
2960 }
2961 }
2962 }
2963 /**
2964 * Validate shader image resources.
2965 */
2966 static void
2967 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2968 {
2969 unsigned total_image_units = 0;
2970 unsigned fragment_outputs = 0;
2971 unsigned total_shader_storage_blocks = 0;
2972
2973 if (!ctx->Extensions.ARB_shader_image_load_store)
2974 return;
2975
2976 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2977 struct gl_shader *sh = prog->_LinkedShaders[i];
2978
2979 if (sh) {
2980 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2981 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
2982 _mesa_shader_stage_to_string(i), sh->NumImages,
2983 ctx->Const.Program[i].MaxImageUniforms);
2984
2985 total_image_units += sh->NumImages;
2986
2987 for (unsigned j = 0; j < prog->NumBufferInterfaceBlocks; j++) {
2988 int stage_index = prog->InterfaceBlockStageIndex[i][j];
2989 if (stage_index != -1 && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage)
2990 total_shader_storage_blocks++;
2991 }
2992
2993 if (i == MESA_SHADER_FRAGMENT) {
2994 foreach_in_list(ir_instruction, node, sh->ir) {
2995 ir_variable *var = node->as_variable();
2996 if (var && var->data.mode == ir_var_shader_out)
2997 /* since there are no double fs outputs - pass false */
2998 fragment_outputs += var->type->count_attribute_slots(false);
2999 }
3000 }
3001 }
3002 }
3003
3004 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3005 linker_error(prog, "Too many combined image uniforms\n");
3006
3007 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3008 ctx->Const.MaxCombinedShaderOutputResources)
3009 linker_error(prog, "Too many combined image uniforms, shader storage "
3010 " buffers and fragment outputs\n");
3011 }
3012
3013
3014 /**
3015 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3016 * for a variable, checks for overlaps between other uniforms using explicit
3017 * locations.
3018 */
3019 static int
3020 reserve_explicit_locations(struct gl_shader_program *prog,
3021 string_to_uint_map *map, ir_variable *var)
3022 {
3023 unsigned slots = var->type->uniform_locations();
3024 unsigned max_loc = var->data.location + slots - 1;
3025 unsigned return_value = slots;
3026
3027 /* Resize remap table if locations do not fit in the current one. */
3028 if (max_loc + 1 > prog->NumUniformRemapTable) {
3029 prog->UniformRemapTable =
3030 reralloc(prog, prog->UniformRemapTable,
3031 gl_uniform_storage *,
3032 max_loc + 1);
3033
3034 if (!prog->UniformRemapTable) {
3035 linker_error(prog, "Out of memory during linking.\n");
3036 return -1;
3037 }
3038
3039 /* Initialize allocated space. */
3040 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3041 prog->UniformRemapTable[i] = NULL;
3042
3043 prog->NumUniformRemapTable = max_loc + 1;
3044 }
3045
3046 for (unsigned i = 0; i < slots; i++) {
3047 unsigned loc = var->data.location + i;
3048
3049 /* Check if location is already used. */
3050 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3051
3052 /* Possibly same uniform from a different stage, this is ok. */
3053 unsigned hash_loc;
3054 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3055 return_value = 0;
3056 continue;
3057 }
3058
3059 /* ARB_explicit_uniform_location specification states:
3060 *
3061 * "No two default-block uniform variables in the program can have
3062 * the same location, even if they are unused, otherwise a compiler
3063 * or linker error will be generated."
3064 */
3065 linker_error(prog,
3066 "location qualifier for uniform %s overlaps "
3067 "previously used location\n",
3068 var->name);
3069 return -1;
3070 }
3071
3072 /* Initialize location as inactive before optimization
3073 * rounds and location assignment.
3074 */
3075 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3076 }
3077
3078 /* Note, base location used for arrays. */
3079 map->put(var->data.location, var->name);
3080
3081 return return_value;
3082 }
3083
3084 static bool
3085 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3086 struct gl_shader *sh,
3087 ir_variable *var)
3088 {
3089 unsigned slots = var->type->uniform_locations();
3090 unsigned max_loc = var->data.location + slots - 1;
3091
3092 /* Resize remap table if locations do not fit in the current one. */
3093 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3094 sh->SubroutineUniformRemapTable =
3095 reralloc(sh, sh->SubroutineUniformRemapTable,
3096 gl_uniform_storage *,
3097 max_loc + 1);
3098
3099 if (!sh->SubroutineUniformRemapTable) {
3100 linker_error(prog, "Out of memory during linking.\n");
3101 return false;
3102 }
3103
3104 /* Initialize allocated space. */
3105 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3106 sh->SubroutineUniformRemapTable[i] = NULL;
3107
3108 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3109 }
3110
3111 for (unsigned i = 0; i < slots; i++) {
3112 unsigned loc = var->data.location + i;
3113
3114 /* Check if location is already used. */
3115 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3116
3117 /* ARB_explicit_uniform_location specification states:
3118 * "No two subroutine uniform variables can have the same location
3119 * in the same shader stage, otherwise a compiler or linker error
3120 * will be generated."
3121 */
3122 linker_error(prog,
3123 "location qualifier for uniform %s overlaps "
3124 "previously used location\n",
3125 var->name);
3126 return false;
3127 }
3128
3129 /* Initialize location as inactive before optimization
3130 * rounds and location assignment.
3131 */
3132 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3133 }
3134
3135 return true;
3136 }
3137 /**
3138 * Check and reserve all explicit uniform locations, called before
3139 * any optimizations happen to handle also inactive uniforms and
3140 * inactive array elements that may get trimmed away.
3141 */
3142 static int
3143 check_explicit_uniform_locations(struct gl_context *ctx,
3144 struct gl_shader_program *prog)
3145 {
3146 if (!ctx->Extensions.ARB_explicit_uniform_location)
3147 return -1;
3148
3149 /* This map is used to detect if overlapping explicit locations
3150 * occur with the same uniform (from different stage) or a different one.
3151 */
3152 string_to_uint_map *uniform_map = new string_to_uint_map;
3153
3154 if (!uniform_map) {
3155 linker_error(prog, "Out of memory during linking.\n");
3156 return -1;
3157 }
3158
3159 unsigned entries_total = 0;
3160 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3161 struct gl_shader *sh = prog->_LinkedShaders[i];
3162
3163 if (!sh)
3164 continue;
3165
3166 foreach_in_list(ir_instruction, node, sh->ir) {
3167 ir_variable *var = node->as_variable();
3168 if (!var || var->data.mode != ir_var_uniform)
3169 continue;
3170
3171 if (var->data.explicit_location) {
3172 bool ret = false;
3173 if (var->type->without_array()->is_subroutine())
3174 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3175 else {
3176 int slots = reserve_explicit_locations(prog, uniform_map,
3177 var);
3178 if (slots != -1) {
3179 ret = true;
3180 entries_total += slots;
3181 }
3182 }
3183 if (!ret) {
3184 delete uniform_map;
3185 return -1;
3186 }
3187 }
3188 }
3189 }
3190
3191 struct empty_uniform_block *current_block = NULL;
3192
3193 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3194 /* We found empty space in UniformRemapTable. */
3195 if (prog->UniformRemapTable[i] == NULL) {
3196 /* We've found the beginning of a new continous block of empty slots */
3197 if (!current_block || current_block->start + current_block->slots != i) {
3198 current_block = rzalloc(prog, struct empty_uniform_block);
3199 current_block->start = i;
3200 exec_list_push_tail(&prog->EmptyUniformLocations,
3201 &current_block->link);
3202 }
3203
3204 /* The current block continues, so we simply increment its slots */
3205 current_block->slots++;
3206 }
3207 }
3208
3209 delete uniform_map;
3210 return entries_total;
3211 }
3212
3213 static bool
3214 should_add_buffer_variable(struct gl_shader_program *shProg,
3215 GLenum type, const char *name)
3216 {
3217 bool found_interface = false;
3218 unsigned block_name_len = 0;
3219 const char *block_name_dot = strchr(name, '.');
3220
3221 /* These rules only apply to buffer variables. So we return
3222 * true for the rest of types.
3223 */
3224 if (type != GL_BUFFER_VARIABLE)
3225 return true;
3226
3227 for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
3228 const char *block_name = shProg->BufferInterfaceBlocks[i].Name;
3229 block_name_len = strlen(block_name);
3230
3231 const char *block_square_bracket = strchr(block_name, '[');
3232 if (block_square_bracket) {
3233 /* The block is part of an array of named interfaces,
3234 * for the name comparison we ignore the "[x]" part.
3235 */
3236 block_name_len -= strlen(block_square_bracket);
3237 }
3238
3239 if (block_name_dot) {
3240 /* Check if the variable name starts with the interface
3241 * name. The interface name (if present) should have the
3242 * length than the interface block name we are comparing to.
3243 */
3244 unsigned len = strlen(name) - strlen(block_name_dot);
3245 if (len != block_name_len)
3246 continue;
3247 }
3248
3249 if (strncmp(block_name, name, block_name_len) == 0) {
3250 found_interface = true;
3251 break;
3252 }
3253 }
3254
3255 /* We remove the interface name from the buffer variable name,
3256 * including the dot that follows it.
3257 */
3258 if (found_interface)
3259 name = name + block_name_len + 1;
3260
3261 /* From: ARB_program_interface_query extension:
3262 *
3263 * "For an active shader storage block member declared as an array, an
3264 * entry will be generated only for the first array element, regardless
3265 * of its type. For arrays of aggregate types, the enumeration rules are
3266 * applied recursively for the single enumerated array element.
3267 */
3268 const char *struct_first_dot = strchr(name, '.');
3269 const char *first_square_bracket = strchr(name, '[');
3270
3271 /* The buffer variable is on top level and it is not an array */
3272 if (!first_square_bracket) {
3273 return true;
3274 /* The shader storage block member is a struct, then generate the entry */
3275 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3276 return true;
3277 } else {
3278 /* Shader storage block member is an array, only generate an entry for the
3279 * first array element.
3280 */
3281 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3282 return true;
3283 }
3284
3285 return false;
3286 }
3287
3288 static bool
3289 add_program_resource(struct gl_shader_program *prog, GLenum type,
3290 const void *data, uint8_t stages)
3291 {
3292 assert(data);
3293
3294 /* If resource already exists, do not add it again. */
3295 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3296 if (prog->ProgramResourceList[i].Data == data)
3297 return true;
3298
3299 prog->ProgramResourceList =
3300 reralloc(prog,
3301 prog->ProgramResourceList,
3302 gl_program_resource,
3303 prog->NumProgramResourceList + 1);
3304
3305 if (!prog->ProgramResourceList) {
3306 linker_error(prog, "Out of memory during linking.\n");
3307 return false;
3308 }
3309
3310 struct gl_program_resource *res =
3311 &prog->ProgramResourceList[prog->NumProgramResourceList];
3312
3313 res->Type = type;
3314 res->Data = data;
3315 res->StageReferences = stages;
3316
3317 prog->NumProgramResourceList++;
3318
3319 return true;
3320 }
3321
3322 /* Function checks if a variable var is a packed varying and
3323 * if given name is part of packed varying's list.
3324 *
3325 * If a variable is a packed varying, it has a name like
3326 * 'packed:a,b,c' where a, b and c are separate variables.
3327 */
3328 static bool
3329 included_in_packed_varying(ir_variable *var, const char *name)
3330 {
3331 if (strncmp(var->name, "packed:", 7) != 0)
3332 return false;
3333
3334 char *list = strdup(var->name + 7);
3335 assert(list);
3336
3337 bool found = false;
3338 char *saveptr;
3339 char *token = strtok_r(list, ",", &saveptr);
3340 while (token) {
3341 if (strcmp(token, name) == 0) {
3342 found = true;
3343 break;
3344 }
3345 token = strtok_r(NULL, ",", &saveptr);
3346 }
3347 free(list);
3348 return found;
3349 }
3350
3351 /**
3352 * Function builds a stage reference bitmask from variable name.
3353 */
3354 static uint8_t
3355 build_stageref(struct gl_shader_program *shProg, const char *name,
3356 unsigned mode)
3357 {
3358 uint8_t stages = 0;
3359
3360 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3361 * used for reference mask in gl_program_resource will need to be changed.
3362 */
3363 assert(MESA_SHADER_STAGES < 8);
3364
3365 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3366 struct gl_shader *sh = shProg->_LinkedShaders[i];
3367 if (!sh)
3368 continue;
3369
3370 /* Shader symbol table may contain variables that have
3371 * been optimized away. Search IR for the variable instead.
3372 */
3373 foreach_in_list(ir_instruction, node, sh->ir) {
3374 ir_variable *var = node->as_variable();
3375 if (var) {
3376 unsigned baselen = strlen(var->name);
3377
3378 if (included_in_packed_varying(var, name)) {
3379 stages |= (1 << i);
3380 break;
3381 }
3382
3383 /* Type needs to match if specified, otherwise we might
3384 * pick a variable with same name but different interface.
3385 */
3386 if (var->data.mode != mode)
3387 continue;
3388
3389 if (strncmp(var->name, name, baselen) == 0) {
3390 /* Check for exact name matches but also check for arrays and
3391 * structs.
3392 */
3393 if (name[baselen] == '\0' ||
3394 name[baselen] == '[' ||
3395 name[baselen] == '.') {
3396 stages |= (1 << i);
3397 break;
3398 }
3399 }
3400 }
3401 }
3402 }
3403 return stages;
3404 }
3405
3406 /**
3407 * Create gl_shader_variable from ir_variable class.
3408 */
3409 static gl_shader_variable *
3410 create_shader_variable(struct gl_shader_program *shProg, const ir_variable *in)
3411 {
3412 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3413 if (!out)
3414 return NULL;
3415
3416 out->type = in->type;
3417 out->name = ralloc_strdup(shProg, in->name);
3418
3419 if (!out->name)
3420 return NULL;
3421
3422 out->location = in->data.location;
3423 out->index = in->data.index;
3424 out->patch = in->data.patch;
3425 out->mode = in->data.mode;
3426
3427 return out;
3428 }
3429
3430 static bool
3431 add_interface_variables(struct gl_shader_program *shProg,
3432 exec_list *ir, GLenum programInterface)
3433 {
3434 foreach_in_list(ir_instruction, node, ir) {
3435 ir_variable *var = node->as_variable();
3436 uint8_t mask = 0;
3437
3438 if (!var)
3439 continue;
3440
3441 switch (var->data.mode) {
3442 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
3443 * "For GetActiveAttrib, all active vertex shader input variables
3444 * are enumerated, including the special built-in inputs gl_VertexID
3445 * and gl_InstanceID."
3446 */
3447 case ir_var_system_value:
3448 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
3449 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
3450 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
3451 continue;
3452 /* Mark special built-in inputs referenced by the vertex stage so
3453 * that they are considered active by the shader queries.
3454 */
3455 mask = (1 << (MESA_SHADER_VERTEX));
3456 /* FALLTHROUGH */
3457 case ir_var_shader_in:
3458 if (programInterface != GL_PROGRAM_INPUT)
3459 continue;
3460 break;
3461 case ir_var_shader_out:
3462 if (programInterface != GL_PROGRAM_OUTPUT)
3463 continue;
3464 break;
3465 default:
3466 continue;
3467 };
3468
3469 /* Skip packed varyings, packed varyings are handled separately
3470 * by add_packed_varyings.
3471 */
3472 if (strncmp(var->name, "packed:", 7) == 0)
3473 continue;
3474
3475 /* Skip fragdata arrays, these are handled separately
3476 * by add_fragdata_arrays.
3477 */
3478 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3479 continue;
3480
3481 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3482 if (!sha_v)
3483 return false;
3484
3485 if (!add_program_resource(shProg, programInterface, sha_v,
3486 build_stageref(shProg, sha_v->name,
3487 sha_v->mode) | mask))
3488 return false;
3489 }
3490 return true;
3491 }
3492
3493 static bool
3494 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3495 {
3496 struct gl_shader *sh = shProg->_LinkedShaders[stage];
3497 GLenum iface;
3498
3499 if (!sh || !sh->packed_varyings)
3500 return true;
3501
3502 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3503 ir_variable *var = node->as_variable();
3504 if (var) {
3505 switch (var->data.mode) {
3506 case ir_var_shader_in:
3507 iface = GL_PROGRAM_INPUT;
3508 break;
3509 case ir_var_shader_out:
3510 iface = GL_PROGRAM_OUTPUT;
3511 break;
3512 default:
3513 unreachable("unexpected type");
3514 }
3515
3516 if (type == iface) {
3517 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3518 if (!sha_v)
3519 return false;
3520 if (!add_program_resource(shProg, iface, sha_v,
3521 build_stageref(shProg, sha_v->name,
3522 sha_v->mode)))
3523 return false;
3524 }
3525 }
3526 }
3527 return true;
3528 }
3529
3530 static bool
3531 add_fragdata_arrays(struct gl_shader_program *shProg)
3532 {
3533 struct gl_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3534
3535 if (!sh || !sh->fragdata_arrays)
3536 return true;
3537
3538 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3539 ir_variable *var = node->as_variable();
3540 if (var) {
3541 assert(var->data.mode == ir_var_shader_out);
3542 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3543 if (!sha_v)
3544 return false;
3545 if (!add_program_resource(shProg, GL_PROGRAM_OUTPUT, sha_v,
3546 1 << MESA_SHADER_FRAGMENT))
3547 return false;
3548 }
3549 }
3550 return true;
3551 }
3552
3553 static char*
3554 get_top_level_name(const char *name)
3555 {
3556 const char *first_dot = strchr(name, '.');
3557 const char *first_square_bracket = strchr(name, '[');
3558 int name_size = 0;
3559 /* From ARB_program_interface_query spec:
3560 *
3561 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
3562 * number of active array elements of the top-level shader storage block
3563 * member containing to the active variable is written to <params>. If the
3564 * top-level block member is not declared as an array, the value one is
3565 * written to <params>. If the top-level block member is an array with no
3566 * declared size, the value zero is written to <params>.
3567 */
3568
3569 /* The buffer variable is on top level.*/
3570 if (!first_square_bracket && !first_dot)
3571 name_size = strlen(name);
3572 else if ((!first_square_bracket ||
3573 (first_dot && first_dot < first_square_bracket)))
3574 name_size = first_dot - name;
3575 else
3576 name_size = first_square_bracket - name;
3577
3578 return strndup(name, name_size);
3579 }
3580
3581 static char*
3582 get_var_name(const char *name)
3583 {
3584 const char *first_dot = strchr(name, '.');
3585
3586 if (!first_dot)
3587 return strdup(name);
3588
3589 return strndup(first_dot+1, strlen(first_dot) - 1);
3590 }
3591
3592 static bool
3593 is_top_level_shader_storage_block_member(const char* name,
3594 const char* interface_name,
3595 const char* field_name)
3596 {
3597 bool result = false;
3598
3599 /* If the given variable is already a top-level shader storage
3600 * block member, then return array_size = 1.
3601 * We could have two possibilities: if we have an instanced
3602 * shader storage block or not instanced.
3603 *
3604 * For the first, we check create a name as it was in top level and
3605 * compare it with the real name. If they are the same, then
3606 * the variable is already at top-level.
3607 *
3608 * Full instanced name is: interface name + '.' + var name +
3609 * NULL character
3610 */
3611 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3612 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3613 if (!full_instanced_name) {
3614 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3615 return false;
3616 }
3617
3618 snprintf(full_instanced_name, name_length, "%s.%s",
3619 interface_name, field_name);
3620
3621 /* Check if its top-level shader storage block member of an
3622 * instanced interface block, or of a unnamed interface block.
3623 */
3624 if (strcmp(name, full_instanced_name) == 0 ||
3625 strcmp(name, field_name) == 0)
3626 result = true;
3627
3628 free(full_instanced_name);
3629 return result;
3630 }
3631
3632 static int
3633 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
3634 char *interface_name, char *var_name)
3635 {
3636 /* From GL_ARB_program_interface_query spec:
3637 *
3638 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer
3639 * identifying the number of active array elements of the top-level
3640 * shader storage block member containing to the active variable is
3641 * written to <params>. If the top-level block member is not
3642 * declared as an array, the value one is written to <params>. If
3643 * the top-level block member is an array with no declared size,
3644 * the value zero is written to <params>.
3645 */
3646 if (is_top_level_shader_storage_block_member(uni->name,
3647 interface_name,
3648 var_name))
3649 return 1;
3650 else if (field->type->is_unsized_array())
3651 return 0;
3652 else if (field->type->is_array())
3653 return field->type->length;
3654
3655 return 1;
3656 }
3657
3658 static int
3659 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
3660 const glsl_struct_field *field, char *interface_name,
3661 char *var_name)
3662 {
3663 /* From GL_ARB_program_interface_query:
3664 *
3665 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
3666 * identifying the stride between array elements of the top-level
3667 * shader storage block member containing the active variable is
3668 * written to <params>. For top-level block members declared as
3669 * arrays, the value written is the difference, in basic machine
3670 * units, between the offsets of the active variable for
3671 * consecutive elements in the top-level array. For top-level
3672 * block members not declared as an array, zero is written to
3673 * <params>."
3674 */
3675 if (field->type->is_array()) {
3676 const enum glsl_matrix_layout matrix_layout =
3677 glsl_matrix_layout(field->matrix_layout);
3678 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
3679 const glsl_type *array_type = field->type->fields.array;
3680
3681 if (is_top_level_shader_storage_block_member(uni->name,
3682 interface_name,
3683 var_name))
3684 return 0;
3685
3686 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
3687 if (array_type->is_record() || array_type->is_array())
3688 return glsl_align(array_type->std140_size(row_major), 16);
3689 else
3690 return MAX2(array_type->std140_base_alignment(row_major), 16);
3691 } else {
3692 return array_type->std430_array_stride(row_major);
3693 }
3694 }
3695 return 0;
3696 }
3697
3698 static void
3699 calculate_array_size_and_stride(struct gl_shader_program *shProg,
3700 struct gl_uniform_storage *uni)
3701 {
3702 int block_index = uni->block_index;
3703 int array_size = -1;
3704 int array_stride = -1;
3705 char *var_name = get_top_level_name(uni->name);
3706 char *interface_name =
3707 get_top_level_name(shProg->BufferInterfaceBlocks[block_index].Name);
3708
3709 if (strcmp(var_name, interface_name) == 0) {
3710 /* Deal with instanced array of SSBOs */
3711 char *temp_name = get_var_name(uni->name);
3712 if (!temp_name) {
3713 linker_error(shProg, "Out of memory during linking.\n");
3714 goto write_top_level_array_size_and_stride;
3715 }
3716 free(var_name);
3717 var_name = get_top_level_name(temp_name);
3718 free(temp_name);
3719 if (!var_name) {
3720 linker_error(shProg, "Out of memory during linking.\n");
3721 goto write_top_level_array_size_and_stride;
3722 }
3723 }
3724
3725 for (unsigned i = 0; i < shProg->NumShaders; i++) {
3726 if (shProg->Shaders[i] == NULL)
3727 continue;
3728
3729 const gl_shader *stage = shProg->Shaders[i];
3730 foreach_in_list(ir_instruction, node, stage->ir) {
3731 ir_variable *var = node->as_variable();
3732 if (!var || !var->get_interface_type() ||
3733 var->data.mode != ir_var_shader_storage)
3734 continue;
3735
3736 const glsl_type *interface = var->get_interface_type();
3737
3738 if (strcmp(interface_name, interface->name) != 0)
3739 continue;
3740
3741 for (unsigned i = 0; i < interface->length; i++) {
3742 const glsl_struct_field *field = &interface->fields.structure[i];
3743 if (strcmp(field->name, var_name) != 0)
3744 continue;
3745
3746 array_stride = get_array_stride(uni, interface, field,
3747 interface_name, var_name);
3748 array_size = get_array_size(uni, field, interface_name, var_name);
3749 goto write_top_level_array_size_and_stride;
3750 }
3751 }
3752 }
3753 write_top_level_array_size_and_stride:
3754 free(interface_name);
3755 free(var_name);
3756 uni->top_level_array_stride = array_stride;
3757 uni->top_level_array_size = array_size;
3758 }
3759
3760 /**
3761 * Builds up a list of program resources that point to existing
3762 * resource data.
3763 */
3764 void
3765 build_program_resource_list(struct gl_shader_program *shProg)
3766 {
3767 /* Rebuild resource list. */
3768 if (shProg->ProgramResourceList) {
3769 ralloc_free(shProg->ProgramResourceList);
3770 shProg->ProgramResourceList = NULL;
3771 shProg->NumProgramResourceList = 0;
3772 }
3773
3774 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
3775
3776 /* Determine first input and final output stage. These are used to
3777 * detect which variables should be enumerated in the resource list
3778 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
3779 */
3780 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3781 if (!shProg->_LinkedShaders[i])
3782 continue;
3783 if (input_stage == MESA_SHADER_STAGES)
3784 input_stage = i;
3785 output_stage = i;
3786 }
3787
3788 /* Empty shader, no resources. */
3789 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
3790 return;
3791
3792 /* Program interface needs to expose varyings in case of SSO. */
3793 if (shProg->SeparateShader) {
3794 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
3795 return;
3796
3797 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
3798 return;
3799 }
3800
3801 if (!add_fragdata_arrays(shProg))
3802 return;
3803
3804 /* Add inputs and outputs to the resource list. */
3805 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage]->ir,
3806 GL_PROGRAM_INPUT))
3807 return;
3808
3809 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage]->ir,
3810 GL_PROGRAM_OUTPUT))
3811 return;
3812
3813 /* Add transform feedback varyings. */
3814 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
3815 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
3816 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
3817 &shProg->LinkedTransformFeedback.Varyings[i],
3818 0))
3819 return;
3820 }
3821 }
3822
3823 /* Add uniforms from uniform storage. */
3824 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3825 /* Do not add uniforms internally used by Mesa. */
3826 if (shProg->UniformStorage[i].hidden)
3827 continue;
3828
3829 uint8_t stageref =
3830 build_stageref(shProg, shProg->UniformStorage[i].name,
3831 ir_var_uniform);
3832
3833 /* Add stagereferences for uniforms in a uniform block. */
3834 int block_index = shProg->UniformStorage[i].block_index;
3835 if (block_index != -1) {
3836 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
3837 if (shProg->InterfaceBlockStageIndex[j][block_index] != -1)
3838 stageref |= (1 << j);
3839 }
3840 }
3841
3842 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
3843 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
3844 if (!should_add_buffer_variable(shProg, type,
3845 shProg->UniformStorage[i].name))
3846 continue;
3847
3848 if (is_shader_storage) {
3849 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
3850 }
3851
3852 if (!add_program_resource(shProg, type,
3853 &shProg->UniformStorage[i], stageref))
3854 return;
3855 }
3856
3857 /* Add program uniform blocks and shader storage blocks. */
3858 for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
3859 bool is_shader_storage = shProg->BufferInterfaceBlocks[i].IsShaderStorage;
3860 GLenum type = is_shader_storage ? GL_SHADER_STORAGE_BLOCK : GL_UNIFORM_BLOCK;
3861 if (!add_program_resource(shProg, type,
3862 &shProg->BufferInterfaceBlocks[i], 0))
3863 return;
3864 }
3865
3866 /* Add atomic counter buffers. */
3867 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
3868 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
3869 &shProg->AtomicBuffers[i], 0))
3870 return;
3871 }
3872
3873 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3874 GLenum type;
3875 if (!shProg->UniformStorage[i].hidden)
3876 continue;
3877
3878 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
3879 if (!shProg->UniformStorage[i].opaque[j].active ||
3880 !shProg->UniformStorage[i].type->is_subroutine())
3881 continue;
3882
3883 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
3884 /* add shader subroutines */
3885 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
3886 return;
3887 }
3888 }
3889
3890 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3891 struct gl_shader *sh = shProg->_LinkedShaders[i];
3892 GLuint type;
3893
3894 if (!sh)
3895 continue;
3896
3897 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
3898 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3899 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
3900 return;
3901 }
3902 }
3903 }
3904
3905 /**
3906 * This check is done to make sure we allow only constant expression
3907 * indexing and "constant-index-expression" (indexing with an expression
3908 * that includes loop induction variable).
3909 */
3910 static bool
3911 validate_sampler_array_indexing(struct gl_context *ctx,
3912 struct gl_shader_program *prog)
3913 {
3914 dynamic_sampler_array_indexing_visitor v;
3915 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3916 if (prog->_LinkedShaders[i] == NULL)
3917 continue;
3918
3919 bool no_dynamic_indexing =
3920 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
3921
3922 /* Search for array derefs in shader. */
3923 v.run(prog->_LinkedShaders[i]->ir);
3924 if (v.uses_dynamic_sampler_array_indexing()) {
3925 const char *msg = "sampler arrays indexed with non-constant "
3926 "expressions is forbidden in GLSL %s %u";
3927 /* Backend has indicated that it has no dynamic indexing support. */
3928 if (no_dynamic_indexing) {
3929 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3930 return false;
3931 } else {
3932 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3933 }
3934 }
3935 }
3936 return true;
3937 }
3938
3939 static void
3940 link_assign_subroutine_types(struct gl_shader_program *prog)
3941 {
3942 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3943 gl_shader *sh = prog->_LinkedShaders[i];
3944
3945 if (sh == NULL)
3946 continue;
3947
3948 foreach_in_list(ir_instruction, node, sh->ir) {
3949 ir_function *fn = node->as_function();
3950 if (!fn)
3951 continue;
3952
3953 if (fn->is_subroutine)
3954 sh->NumSubroutineUniformTypes++;
3955
3956 if (!fn->num_subroutine_types)
3957 continue;
3958
3959 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
3960 struct gl_subroutine_function,
3961 sh->NumSubroutineFunctions + 1);
3962 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
3963 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
3964 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
3965 ralloc_array(sh, const struct glsl_type *,
3966 fn->num_subroutine_types);
3967
3968 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
3969 * GLSL 4.5 spec:
3970 *
3971 * "Each subroutine with an index qualifier in the shader must be
3972 * given a unique index, otherwise a compile or link error will be
3973 * generated."
3974 */
3975 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3976 if (sh->SubroutineFunctions[j].index != -1 &&
3977 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
3978 linker_error(prog, "each subroutine index qualifier in the "
3979 "shader must be unique\n");
3980 return;
3981 }
3982 }
3983 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
3984 fn->subroutine_index;
3985
3986 for (int j = 0; j < fn->num_subroutine_types; j++)
3987 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
3988 sh->NumSubroutineFunctions++;
3989 }
3990
3991 /* Assign index for subroutines without an explicit index*/
3992 int index = 0;
3993 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3994 while (sh->SubroutineFunctions[j].index == -1) {
3995 for (unsigned k = 0; k < sh->NumSubroutineFunctions; k++) {
3996 if (sh->SubroutineFunctions[k].index == index)
3997 break;
3998 else if (k == sh->NumSubroutineFunctions - 1)
3999 sh->SubroutineFunctions[j].index = index;
4000 }
4001 index++;
4002 }
4003 }
4004 }
4005 }
4006
4007 static void
4008 split_ubos_and_ssbos(void *mem_ctx,
4009 struct gl_uniform_block *blocks,
4010 unsigned num_blocks,
4011 struct gl_uniform_block ***ubos,
4012 unsigned *num_ubos,
4013 unsigned **ubo_interface_block_indices,
4014 struct gl_uniform_block ***ssbos,
4015 unsigned *num_ssbos,
4016 unsigned **ssbo_interface_block_indices)
4017 {
4018 unsigned num_ubo_blocks = 0;
4019 unsigned num_ssbo_blocks = 0;
4020
4021 for (unsigned i = 0; i < num_blocks; i++) {
4022 if (blocks[i].IsShaderStorage)
4023 num_ssbo_blocks++;
4024 else
4025 num_ubo_blocks++;
4026 }
4027
4028 *ubos = ralloc_array(mem_ctx, gl_uniform_block *, num_ubo_blocks);
4029 *num_ubos = 0;
4030
4031 *ssbos = ralloc_array(mem_ctx, gl_uniform_block *, num_ssbo_blocks);
4032 *num_ssbos = 0;
4033
4034 if (ubo_interface_block_indices)
4035 *ubo_interface_block_indices =
4036 ralloc_array(mem_ctx, unsigned, num_ubo_blocks);
4037
4038 if (ssbo_interface_block_indices)
4039 *ssbo_interface_block_indices =
4040 ralloc_array(mem_ctx, unsigned, num_ssbo_blocks);
4041
4042 for (unsigned i = 0; i < num_blocks; i++) {
4043 if (blocks[i].IsShaderStorage) {
4044 (*ssbos)[*num_ssbos] = &blocks[i];
4045 if (ssbo_interface_block_indices)
4046 (*ssbo_interface_block_indices)[*num_ssbos] = i;
4047 (*num_ssbos)++;
4048 } else {
4049 (*ubos)[*num_ubos] = &blocks[i];
4050 if (ubo_interface_block_indices)
4051 (*ubo_interface_block_indices)[*num_ubos] = i;
4052 (*num_ubos)++;
4053 }
4054 }
4055
4056 assert(*num_ubos + *num_ssbos == num_blocks);
4057 }
4058
4059 static void
4060 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4061 {
4062 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4063
4064 foreach_in_list(ir_instruction, node, ir) {
4065 ir_variable *const var = node->as_variable();
4066
4067 if (var == NULL || var->data.mode != io_mode)
4068 continue;
4069
4070 /* Don't set always active on builtins that haven't been redeclared */
4071 if (var->data.how_declared == ir_var_declared_implicitly)
4072 continue;
4073
4074 var->data.always_active_io = true;
4075 }
4076 }
4077
4078 /**
4079 * When separate shader programs are enabled, only input/outputs between
4080 * the stages of a multi-stage separate program can be safely removed
4081 * from the shader interface. Other inputs/outputs must remain active.
4082 */
4083 static void
4084 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4085 {
4086 unsigned first, last;
4087 assert(prog->SeparateShader);
4088
4089 first = MESA_SHADER_STAGES;
4090 last = 0;
4091
4092 /* Determine first and last stage. Excluding the compute stage */
4093 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4094 if (!prog->_LinkedShaders[i])
4095 continue;
4096 if (first == MESA_SHADER_STAGES)
4097 first = i;
4098 last = i;
4099 }
4100
4101 if (first == MESA_SHADER_STAGES)
4102 return;
4103
4104 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4105 gl_shader *sh = prog->_LinkedShaders[stage];
4106 if (!sh)
4107 continue;
4108
4109 if (first == last) {
4110 /* For a single shader program only allow inputs to the vertex shader
4111 * and outputs from the fragment shader to be removed.
4112 */
4113 if (stage != MESA_SHADER_VERTEX)
4114 set_always_active_io(sh->ir, ir_var_shader_in);
4115 if (stage != MESA_SHADER_FRAGMENT)
4116 set_always_active_io(sh->ir, ir_var_shader_out);
4117 } else {
4118 /* For multi-stage separate shader programs only allow inputs and
4119 * outputs between the shader stages to be removed as well as inputs
4120 * to the vertex shader and outputs from the fragment shader.
4121 */
4122 if (stage == first && stage != MESA_SHADER_VERTEX)
4123 set_always_active_io(sh->ir, ir_var_shader_in);
4124 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4125 set_always_active_io(sh->ir, ir_var_shader_out);
4126 }
4127 }
4128 }
4129
4130 void
4131 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4132 {
4133 prog->LinkStatus = true; /* All error paths will set this to false */
4134 prog->Validated = false;
4135 prog->_Used = false;
4136
4137 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4138 *
4139 * "Linking can fail for a variety of reasons as specified in the
4140 * OpenGL Shading Language Specification, as well as any of the
4141 * following reasons:
4142 *
4143 * - No shader objects are attached to program."
4144 *
4145 * The Compatibility Profile specification does not list the error. In
4146 * Compatibility Profile missing shader stages are replaced by
4147 * fixed-function. This applies to the case where all stages are
4148 * missing.
4149 */
4150 if (prog->NumShaders == 0) {
4151 if (ctx->API != API_OPENGL_COMPAT)
4152 linker_error(prog, "no shaders attached to the program\n");
4153 return;
4154 }
4155
4156 tfeedback_decl *tfeedback_decls = NULL;
4157 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4158 unsigned int num_explicit_uniform_locs = 0;
4159
4160 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4161
4162 prog->ARB_fragment_coord_conventions_enable = false;
4163
4164 /* Separate the shaders into groups based on their type.
4165 */
4166 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4167 unsigned num_shaders[MESA_SHADER_STAGES];
4168
4169 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4170 shader_list[i] = (struct gl_shader **)
4171 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4172 num_shaders[i] = 0;
4173 }
4174
4175 unsigned min_version = UINT_MAX;
4176 unsigned max_version = 0;
4177 for (unsigned i = 0; i < prog->NumShaders; i++) {
4178 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4179 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4180
4181 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4182 linker_error(prog, "all shaders must use same shading "
4183 "language version\n");
4184 goto done;
4185 }
4186
4187 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4188 prog->ARB_fragment_coord_conventions_enable = true;
4189 }
4190
4191 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4192 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4193 num_shaders[shader_type]++;
4194 }
4195
4196 /* In desktop GLSL, different shader versions may be linked together. In
4197 * GLSL ES, all shader versions must be the same.
4198 */
4199 if (prog->Shaders[0]->IsES && min_version != max_version) {
4200 linker_error(prog, "all shaders must use same shading "
4201 "language version\n");
4202 goto done;
4203 }
4204
4205 prog->Version = max_version;
4206 prog->IsES = prog->Shaders[0]->IsES;
4207
4208 /* Some shaders have to be linked with some other shaders present.
4209 */
4210 if (!prog->SeparateShader) {
4211 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4212 num_shaders[MESA_SHADER_VERTEX] == 0) {
4213 linker_error(prog, "Geometry shader must be linked with "
4214 "vertex shader\n");
4215 goto done;
4216 }
4217 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4218 num_shaders[MESA_SHADER_VERTEX] == 0) {
4219 linker_error(prog, "Tessellation evaluation shader must be linked "
4220 "with vertex shader\n");
4221 goto done;
4222 }
4223 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4224 num_shaders[MESA_SHADER_VERTEX] == 0) {
4225 linker_error(prog, "Tessellation control shader must be linked with "
4226 "vertex shader\n");
4227 goto done;
4228 }
4229
4230 /* The spec is self-contradictory here. It allows linking without a tess
4231 * eval shader, but that can only be used with transform feedback and
4232 * rasterization disabled. However, transform feedback isn't allowed
4233 * with GL_PATCHES, so it can't be used.
4234 *
4235 * More investigation showed that the idea of transform feedback after
4236 * a tess control shader was dropped, because some hw vendors couldn't
4237 * support tessellation without a tess eval shader, but the linker
4238 * section wasn't updated to reflect that.
4239 *
4240 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4241 * spec bug.
4242 *
4243 * Do what's reasonable and always require a tess eval shader if a tess
4244 * control shader is present.
4245 */
4246 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4247 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4248 linker_error(prog, "Tessellation control shader must be linked with "
4249 "tessellation evaluation shader\n");
4250 goto done;
4251 }
4252 }
4253
4254 /* Compute shaders have additional restrictions. */
4255 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4256 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4257 linker_error(prog, "Compute shaders may not be linked with any other "
4258 "type of shader\n");
4259 }
4260
4261 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4262 if (prog->_LinkedShaders[i] != NULL)
4263 _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
4264
4265 prog->_LinkedShaders[i] = NULL;
4266 }
4267
4268 /* Link all shaders for a particular stage and validate the result.
4269 */
4270 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4271 if (num_shaders[stage] > 0) {
4272 gl_shader *const sh =
4273 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4274 num_shaders[stage]);
4275
4276 if (!prog->LinkStatus) {
4277 if (sh)
4278 _mesa_delete_shader(ctx, sh);
4279 goto done;
4280 }
4281
4282 switch (stage) {
4283 case MESA_SHADER_VERTEX:
4284 validate_vertex_shader_executable(prog, sh);
4285 break;
4286 case MESA_SHADER_TESS_CTRL:
4287 /* nothing to be done */
4288 break;
4289 case MESA_SHADER_TESS_EVAL:
4290 validate_tess_eval_shader_executable(prog, sh);
4291 break;
4292 case MESA_SHADER_GEOMETRY:
4293 validate_geometry_shader_executable(prog, sh);
4294 break;
4295 case MESA_SHADER_FRAGMENT:
4296 validate_fragment_shader_executable(prog, sh);
4297 break;
4298 }
4299 if (!prog->LinkStatus) {
4300 if (sh)
4301 _mesa_delete_shader(ctx, sh);
4302 goto done;
4303 }
4304
4305 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
4306 }
4307 }
4308
4309 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
4310 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4311 else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
4312 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4313 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
4314 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4315 else
4316 prog->LastClipDistanceArraySize = 0; /* Not used */
4317
4318 /* Here begins the inter-stage linking phase. Some initial validation is
4319 * performed, then locations are assigned for uniforms, attributes, and
4320 * varyings.
4321 */
4322 cross_validate_uniforms(prog);
4323 if (!prog->LinkStatus)
4324 goto done;
4325
4326 unsigned first, last, prev;
4327
4328 first = MESA_SHADER_STAGES;
4329 last = 0;
4330
4331 /* Determine first and last stage. */
4332 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4333 if (!prog->_LinkedShaders[i])
4334 continue;
4335 if (first == MESA_SHADER_STAGES)
4336 first = i;
4337 last = i;
4338 }
4339
4340 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4341 link_assign_subroutine_types(prog);
4342
4343 if (!prog->LinkStatus)
4344 goto done;
4345
4346 resize_tes_inputs(ctx, prog);
4347
4348 /* Validate the inputs of each stage with the output of the preceding
4349 * stage.
4350 */
4351 prev = first;
4352 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4353 if (prog->_LinkedShaders[i] == NULL)
4354 continue;
4355
4356 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4357 prog->_LinkedShaders[i]);
4358 if (!prog->LinkStatus)
4359 goto done;
4360
4361 cross_validate_outputs_to_inputs(prog,
4362 prog->_LinkedShaders[prev],
4363 prog->_LinkedShaders[i]);
4364 if (!prog->LinkStatus)
4365 goto done;
4366
4367 prev = i;
4368 }
4369
4370 /* Cross-validate uniform blocks between shader stages */
4371 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
4372 MESA_SHADER_STAGES);
4373 if (!prog->LinkStatus)
4374 goto done;
4375
4376 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4377 if (prog->_LinkedShaders[i] != NULL)
4378 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4379 }
4380
4381 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4382 * it before optimization because we want most of the checks to get
4383 * dropped thanks to constant propagation.
4384 *
4385 * This rule also applies to GLSL ES 3.00.
4386 */
4387 if (max_version >= (prog->IsES ? 300 : 130)) {
4388 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4389 if (sh) {
4390 lower_discard_flow(sh->ir);
4391 }
4392 }
4393
4394 if (prog->SeparateShader)
4395 disable_varying_optimizations_for_sso(prog);
4396
4397 if (!interstage_cross_validate_uniform_blocks(prog))
4398 goto done;
4399
4400 /* Do common optimization before assigning storage for attributes,
4401 * uniforms, and varyings. Later optimization could possibly make
4402 * some of that unused.
4403 */
4404 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4405 if (prog->_LinkedShaders[i] == NULL)
4406 continue;
4407
4408 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4409 if (!prog->LinkStatus)
4410 goto done;
4411
4412 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
4413 lower_clip_distance(prog->_LinkedShaders[i]);
4414 }
4415
4416 if (ctx->Const.LowerTessLevel) {
4417 lower_tess_level(prog->_LinkedShaders[i]);
4418 }
4419
4420 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4421 &ctx->Const.ShaderCompilerOptions[i],
4422 ctx->Const.NativeIntegers))
4423 ;
4424
4425 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4426 }
4427
4428 /* Validation for special cases where we allow sampler array indexing
4429 * with loop induction variable. This check emits a warning or error
4430 * depending if backend can handle dynamic indexing.
4431 */
4432 if ((!prog->IsES && prog->Version < 130) ||
4433 (prog->IsES && prog->Version < 300)) {
4434 if (!validate_sampler_array_indexing(ctx, prog))
4435 goto done;
4436 }
4437
4438 /* Check and validate stream emissions in geometry shaders */
4439 validate_geometry_shader_emissions(ctx, prog);
4440
4441 /* Mark all generic shader inputs and outputs as unpaired. */
4442 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4443 if (prog->_LinkedShaders[i] != NULL) {
4444 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4445 }
4446 }
4447
4448 prev = first;
4449 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4450 if (prog->_LinkedShaders[i] == NULL)
4451 continue;
4452
4453 match_explicit_outputs_to_inputs(prog, prog->_LinkedShaders[prev],
4454 prog->_LinkedShaders[i]);
4455 prev = i;
4456 }
4457
4458 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4459 MESA_SHADER_VERTEX)) {
4460 goto done;
4461 }
4462
4463 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4464 MESA_SHADER_FRAGMENT)) {
4465 goto done;
4466 }
4467
4468 if (num_tfeedback_decls != 0) {
4469 /* From GL_EXT_transform_feedback:
4470 * A program will fail to link if:
4471 *
4472 * * the <count> specified by TransformFeedbackVaryingsEXT is
4473 * non-zero, but the program object has no vertex or geometry
4474 * shader;
4475 */
4476 if (first >= MESA_SHADER_FRAGMENT) {
4477 linker_error(prog, "Transform feedback varyings specified, but "
4478 "no vertex, tessellation, or geometry shader is "
4479 "present.\n");
4480 goto done;
4481 }
4482
4483 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4484 prog->TransformFeedback.NumVarying);
4485 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4486 prog->TransformFeedback.VaryingNames,
4487 tfeedback_decls))
4488 goto done;
4489 }
4490
4491 /* If there is no fragment shader we need to set transform feedback.
4492 *
4493 * For SSO we need also need to assign output locations, we assign them
4494 * here because we need to do it for both single stage programs and multi
4495 * stage programs.
4496 */
4497 if (last < MESA_SHADER_FRAGMENT &&
4498 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4499 if (!assign_varying_locations(ctx, mem_ctx, prog,
4500 prog->_LinkedShaders[last], NULL,
4501 num_tfeedback_decls, tfeedback_decls))
4502 goto done;
4503 }
4504
4505 if (last <= MESA_SHADER_FRAGMENT) {
4506 /* Remove unused varyings from the first/last stage unless SSO */
4507 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4508 prog->_LinkedShaders[first],
4509 ir_var_shader_in);
4510 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4511 prog->_LinkedShaders[last],
4512 ir_var_shader_out);
4513
4514 /* If the program is made up of only a single stage */
4515 if (first == last) {
4516
4517 gl_shader *const sh = prog->_LinkedShaders[last];
4518 if (prog->SeparateShader) {
4519 /* Assign input locations for SSO, output locations are already
4520 * assigned.
4521 */
4522 if (!assign_varying_locations(ctx, mem_ctx, prog,
4523 NULL /* producer */,
4524 sh /* consumer */,
4525 0 /* num_tfeedback_decls */,
4526 NULL /* tfeedback_decls */))
4527 goto done;
4528 }
4529
4530 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4531 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4532 tfeedback_decls);
4533 } else {
4534 /* Linking the stages in the opposite order (from fragment to vertex)
4535 * ensures that inter-shader outputs written to in an earlier stage
4536 * are eliminated if they are (transitively) not used in a later
4537 * stage.
4538 */
4539 int next = last;
4540 for (int i = next - 1; i >= 0; i--) {
4541 if (prog->_LinkedShaders[i] == NULL)
4542 continue;
4543
4544 gl_shader *const sh_i = prog->_LinkedShaders[i];
4545 gl_shader *const sh_next = prog->_LinkedShaders[next];
4546
4547 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4548 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4549 tfeedback_decls))
4550 goto done;
4551
4552 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4553 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4554 tfeedback_decls);
4555
4556 /* This must be done after all dead varyings are eliminated. */
4557 if (!check_against_output_limit(ctx, prog, sh_i))
4558 goto done;
4559 if (!check_against_input_limit(ctx, prog, sh_next))
4560 goto done;
4561
4562 next = i;
4563 }
4564 }
4565 }
4566
4567 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
4568 goto done;
4569
4570 update_array_sizes(prog);
4571 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue,
4572 num_explicit_uniform_locs,
4573 ctx->Const.MaxUserAssignableUniformLocations);
4574 link_assign_atomic_counter_resources(ctx, prog);
4575 store_fragdepth_layout(prog);
4576
4577 link_calculate_subroutine_compat(prog);
4578 check_resources(ctx, prog);
4579 check_subroutine_resources(prog);
4580 check_image_resources(ctx, prog);
4581 link_check_atomic_counter_resources(ctx, prog);
4582
4583 if (!prog->LinkStatus)
4584 goto done;
4585
4586 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4587 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4588 * anything about shader linking when one of the shaders (vertex or
4589 * fragment shader) is absent. So, the extension shouldn't change the
4590 * behavior specified in GLSL specification.
4591 *
4592 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4593 * "Linking can fail for a variety of reasons as specified in the
4594 * OpenGL ES Shading Language Specification, as well as any of the
4595 * following reasons:
4596 *
4597 * ...
4598 *
4599 * * program contains objects to form either a vertex shader or
4600 * fragment shader, and program is not separable, and does not
4601 * contain objects to form both a vertex shader and fragment
4602 * shader."
4603 *
4604 * However, the only scenario in 3.1+ where we don't require them both is
4605 * when we have a compute shader. For example:
4606 *
4607 * - No shaders is a link error.
4608 * - Geom or Tess without a Vertex shader is a link error which means we
4609 * always require a Vertex shader and hence a Fragment shader.
4610 * - Finally a Compute shader linked with any other stage is a link error.
4611 */
4612 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4613 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4614 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4615 linker_error(prog, "program lacks a vertex shader\n");
4616 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4617 linker_error(prog, "program lacks a fragment shader\n");
4618 }
4619 }
4620
4621 /* Split BufferInterfaceBlocks into UniformBlocks and ShaderStorageBlocks
4622 * for gl_shader_program and gl_shader, so that drivers that need separate
4623 * index spaces for each set can have that.
4624 */
4625 for (unsigned i = MESA_SHADER_VERTEX; i < MESA_SHADER_STAGES; i++) {
4626 if (prog->_LinkedShaders[i] != NULL) {
4627 gl_shader *sh = prog->_LinkedShaders[i];
4628 split_ubos_and_ssbos(sh,
4629 sh->BufferInterfaceBlocks,
4630 sh->NumBufferInterfaceBlocks,
4631 &sh->UniformBlocks,
4632 &sh->NumUniformBlocks,
4633 NULL,
4634 &sh->ShaderStorageBlocks,
4635 &sh->NumShaderStorageBlocks,
4636 NULL);
4637 }
4638 }
4639
4640 split_ubos_and_ssbos(prog,
4641 prog->BufferInterfaceBlocks,
4642 prog->NumBufferInterfaceBlocks,
4643 &prog->UniformBlocks,
4644 &prog->NumUniformBlocks,
4645 &prog->UboInterfaceBlockIndex,
4646 &prog->ShaderStorageBlocks,
4647 &prog->NumShaderStorageBlocks,
4648 &prog->SsboInterfaceBlockIndex);
4649
4650 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4651 if (prog->_LinkedShaders[i] == NULL)
4652 continue;
4653
4654 if (ctx->Const.ShaderCompilerOptions[i].LowerBufferInterfaceBlocks)
4655 lower_ubo_reference(prog->_LinkedShaders[i]);
4656
4657 if (ctx->Const.ShaderCompilerOptions[i].LowerShaderSharedVariables)
4658 lower_shared_reference(prog->_LinkedShaders[i],
4659 &prog->Comp.SharedSize);
4660
4661 lower_vector_derefs(prog->_LinkedShaders[i]);
4662 }
4663
4664 done:
4665 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4666 free(shader_list[i]);
4667 if (prog->_LinkedShaders[i] == NULL)
4668 continue;
4669
4670 /* Do a final validation step to make sure that the IR wasn't
4671 * invalidated by any modifications performed after intrastage linking.
4672 */
4673 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4674
4675 /* Retain any live IR, but trash the rest. */
4676 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4677
4678 /* The symbol table in the linked shaders may contain references to
4679 * variables that were removed (e.g., unused uniforms). Since it may
4680 * contain junk, there is no possible valid use. Delete it and set the
4681 * pointer to NULL.
4682 */
4683 delete prog->_LinkedShaders[i]->symbols;
4684 prog->_LinkedShaders[i]->symbols = NULL;
4685 }
4686
4687 ralloc_free(mem_ctx);
4688 }