nir: Add a "compact array" flag and IO lowering code.
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83
84 #include "main/shaderobj.h"
85 #include "main/enums.h"
86
87
88 namespace {
89
90 /**
91 * Visitor that determines whether or not a variable is ever written.
92 */
93 class find_assignment_visitor : public ir_hierarchical_visitor {
94 public:
95 find_assignment_visitor(const char *name)
96 : name(name), found(false)
97 {
98 /* empty */
99 }
100
101 virtual ir_visitor_status visit_enter(ir_assignment *ir)
102 {
103 ir_variable *const var = ir->lhs->variable_referenced();
104
105 if (strcmp(name, var->name) == 0) {
106 found = true;
107 return visit_stop;
108 }
109
110 return visit_continue_with_parent;
111 }
112
113 virtual ir_visitor_status visit_enter(ir_call *ir)
114 {
115 foreach_two_lists(formal_node, &ir->callee->parameters,
116 actual_node, &ir->actual_parameters) {
117 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
118 ir_variable *sig_param = (ir_variable *) formal_node;
119
120 if (sig_param->data.mode == ir_var_function_out ||
121 sig_param->data.mode == ir_var_function_inout) {
122 ir_variable *var = param_rval->variable_referenced();
123 if (var && strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128 }
129
130 if (ir->return_deref != NULL) {
131 ir_variable *const var = ir->return_deref->variable_referenced();
132
133 if (strcmp(name, var->name) == 0) {
134 found = true;
135 return visit_stop;
136 }
137 }
138
139 return visit_continue_with_parent;
140 }
141
142 bool variable_found()
143 {
144 return found;
145 }
146
147 private:
148 const char *name; /**< Find writes to a variable with this name. */
149 bool found; /**< Was a write to the variable found? */
150 };
151
152
153 /**
154 * Visitor that determines whether or not a variable is ever read.
155 */
156 class find_deref_visitor : public ir_hierarchical_visitor {
157 public:
158 find_deref_visitor(const char *name)
159 : name(name), found(false)
160 {
161 /* empty */
162 }
163
164 virtual ir_visitor_status visit(ir_dereference_variable *ir)
165 {
166 if (strcmp(this->name, ir->var->name) == 0) {
167 this->found = true;
168 return visit_stop;
169 }
170
171 return visit_continue;
172 }
173
174 bool variable_found() const
175 {
176 return this->found;
177 }
178
179 private:
180 const char *name; /**< Find writes to a variable with this name. */
181 bool found; /**< Was a write to the variable found? */
182 };
183
184
185 /**
186 * A visitor helper that provides methods for updating the types of
187 * ir_dereferences. Classes that update variable types (say, updating
188 * array sizes) will want to use this so that dereference types stay in sync.
189 */
190 class deref_type_updater : public ir_hierarchical_visitor {
191 public:
192 virtual ir_visitor_status visit(ir_dereference_variable *ir)
193 {
194 ir->type = ir->var->type;
195 return visit_continue;
196 }
197
198 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
199 {
200 const glsl_type *const vt = ir->array->type;
201 if (vt->is_array())
202 ir->type = vt->fields.array;
203 return visit_continue;
204 }
205
206 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
207 {
208 for (unsigned i = 0; i < ir->record->type->length; i++) {
209 const struct glsl_struct_field *field =
210 &ir->record->type->fields.structure[i];
211 if (strcmp(field->name, ir->field) == 0) {
212 ir->type = field->type;
213 break;
214 }
215 }
216 return visit_continue;
217 }
218 };
219
220
221 class array_resize_visitor : public deref_type_updater {
222 public:
223 unsigned num_vertices;
224 gl_shader_program *prog;
225 gl_shader_stage stage;
226
227 array_resize_visitor(unsigned num_vertices,
228 gl_shader_program *prog,
229 gl_shader_stage stage)
230 {
231 this->num_vertices = num_vertices;
232 this->prog = prog;
233 this->stage = stage;
234 }
235
236 virtual ~array_resize_visitor()
237 {
238 /* empty */
239 }
240
241 virtual ir_visitor_status visit(ir_variable *var)
242 {
243 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
244 var->data.patch)
245 return visit_continue;
246
247 unsigned size = var->type->length;
248
249 if (stage == MESA_SHADER_GEOMETRY) {
250 /* Generate a link error if the shader has declared this array with
251 * an incorrect size.
252 */
253 if (!var->data.implicit_sized_array &&
254 size && size != this->num_vertices) {
255 linker_error(this->prog, "size of array %s declared as %u, "
256 "but number of input vertices is %u\n",
257 var->name, size, this->num_vertices);
258 return visit_continue;
259 }
260
261 /* Generate a link error if the shader attempts to access an input
262 * array using an index too large for its actual size assigned at
263 * link time.
264 */
265 if (var->data.max_array_access >= (int)this->num_vertices) {
266 linker_error(this->prog, "%s shader accesses element %i of "
267 "%s, but only %i input vertices\n",
268 _mesa_shader_stage_to_string(this->stage),
269 var->data.max_array_access, var->name, this->num_vertices);
270 return visit_continue;
271 }
272 }
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280 };
281
282 /**
283 * Visitor that determines the highest stream id to which a (geometry) shader
284 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
285 */
286 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
287 public:
288 find_emit_vertex_visitor(int max_allowed)
289 : max_stream_allowed(max_allowed),
290 invalid_stream_id(0),
291 invalid_stream_id_from_emit_vertex(false),
292 end_primitive_found(false),
293 uses_non_zero_stream(false)
294 {
295 /* empty */
296 }
297
298 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
299 {
300 int stream_id = ir->stream_id();
301
302 if (stream_id < 0) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = true;
305 return visit_stop;
306 }
307
308 if (stream_id > max_stream_allowed) {
309 invalid_stream_id = stream_id;
310 invalid_stream_id_from_emit_vertex = true;
311 return visit_stop;
312 }
313
314 if (stream_id != 0)
315 uses_non_zero_stream = true;
316
317 return visit_continue;
318 }
319
320 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
321 {
322 end_primitive_found = true;
323
324 int stream_id = ir->stream_id();
325
326 if (stream_id < 0) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = false;
329 return visit_stop;
330 }
331
332 if (stream_id > max_stream_allowed) {
333 invalid_stream_id = stream_id;
334 invalid_stream_id_from_emit_vertex = false;
335 return visit_stop;
336 }
337
338 if (stream_id != 0)
339 uses_non_zero_stream = true;
340
341 return visit_continue;
342 }
343
344 bool error()
345 {
346 return invalid_stream_id != 0;
347 }
348
349 const char *error_func()
350 {
351 return invalid_stream_id_from_emit_vertex ?
352 "EmitStreamVertex" : "EndStreamPrimitive";
353 }
354
355 int error_stream()
356 {
357 return invalid_stream_id;
358 }
359
360 bool uses_streams()
361 {
362 return uses_non_zero_stream;
363 }
364
365 bool uses_end_primitive()
366 {
367 return end_primitive_found;
368 }
369
370 private:
371 int max_stream_allowed;
372 int invalid_stream_id;
373 bool invalid_stream_id_from_emit_vertex;
374 bool end_primitive_found;
375 bool uses_non_zero_stream;
376 };
377
378 /* Class that finds array derefs and check if indexes are dynamic. */
379 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
380 {
381 public:
382 dynamic_sampler_array_indexing_visitor() :
383 dynamic_sampler_array_indexing(false)
384 {
385 }
386
387 ir_visitor_status visit_enter(ir_dereference_array *ir)
388 {
389 if (!ir->variable_referenced())
390 return visit_continue;
391
392 if (!ir->variable_referenced()->type->contains_sampler())
393 return visit_continue;
394
395 if (!ir->array_index->constant_expression_value()) {
396 dynamic_sampler_array_indexing = true;
397 return visit_stop;
398 }
399 return visit_continue;
400 }
401
402 bool uses_dynamic_sampler_array_indexing()
403 {
404 return dynamic_sampler_array_indexing;
405 }
406
407 private:
408 bool dynamic_sampler_array_indexing;
409 };
410
411 } /* anonymous namespace */
412
413 void
414 linker_error(gl_shader_program *prog, const char *fmt, ...)
415 {
416 va_list ap;
417
418 ralloc_strcat(&prog->data->InfoLog, "error: ");
419 va_start(ap, fmt);
420 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
421 va_end(ap);
422
423 prog->data->LinkStatus = false;
424 }
425
426
427 void
428 linker_warning(gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list ap;
431
432 ralloc_strcat(&prog->data->InfoLog, "warning: ");
433 va_start(ap, fmt);
434 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
435 va_end(ap);
436
437 }
438
439
440 /**
441 * Given a string identifying a program resource, break it into a base name
442 * and an optional array index in square brackets.
443 *
444 * If an array index is present, \c out_base_name_end is set to point to the
445 * "[" that precedes the array index, and the array index itself is returned
446 * as a long.
447 *
448 * If no array index is present (or if the array index is negative or
449 * mal-formed), \c out_base_name_end, is set to point to the null terminator
450 * at the end of the input string, and -1 is returned.
451 *
452 * Only the final array index is parsed; if the string contains other array
453 * indices (or structure field accesses), they are left in the base name.
454 *
455 * No attempt is made to check that the base name is properly formed;
456 * typically the caller will look up the base name in a hash table, so
457 * ill-formed base names simply turn into hash table lookup failures.
458 */
459 long
460 parse_program_resource_name(const GLchar *name,
461 const GLchar **out_base_name_end)
462 {
463 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
464 *
465 * "When an integer array element or block instance number is part of
466 * the name string, it will be specified in decimal form without a "+"
467 * or "-" sign or any extra leading zeroes. Additionally, the name
468 * string will not include white space anywhere in the string."
469 */
470
471 const size_t len = strlen(name);
472 *out_base_name_end = name + len;
473
474 if (len == 0 || name[len-1] != ']')
475 return -1;
476
477 /* Walk backwards over the string looking for a non-digit character. This
478 * had better be the opening bracket for an array index.
479 *
480 * Initially, i specifies the location of the ']'. Since the string may
481 * contain only the ']' charcater, walk backwards very carefully.
482 */
483 unsigned i;
484 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
485 /* empty */ ;
486
487 if ((i == 0) || name[i-1] != '[')
488 return -1;
489
490 long array_index = strtol(&name[i], NULL, 10);
491 if (array_index < 0)
492 return -1;
493
494 /* Check for leading zero */
495 if (name[i] == '0' && name[i+1] != ']')
496 return -1;
497
498 *out_base_name_end = name + (i - 1);
499 return array_index;
500 }
501
502
503 void
504 link_invalidate_variable_locations(exec_list *ir)
505 {
506 foreach_in_list(ir_instruction, node, ir) {
507 ir_variable *const var = node->as_variable();
508
509 if (var == NULL)
510 continue;
511
512 /* Only assign locations for variables that lack an explicit location.
513 * Explicit locations are set for all built-in variables, generic vertex
514 * shader inputs (via layout(location=...)), and generic fragment shader
515 * outputs (also via layout(location=...)).
516 */
517 if (!var->data.explicit_location) {
518 var->data.location = -1;
519 var->data.location_frac = 0;
520 }
521
522 /* ir_variable::is_unmatched_generic_inout is used by the linker while
523 * connecting outputs from one stage to inputs of the next stage.
524 */
525 if (var->data.explicit_location &&
526 var->data.location < VARYING_SLOT_VAR0) {
527 var->data.is_unmatched_generic_inout = 0;
528 } else {
529 var->data.is_unmatched_generic_inout = 1;
530 }
531 }
532 }
533
534
535 /**
536 * Set clip_distance_array_size based and cull_distance_array_size on the given
537 * shader.
538 *
539 * Also check for errors based on incorrect usage of gl_ClipVertex and
540 * gl_ClipDistance and gl_CullDistance.
541 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
542 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
543 *
544 * Return false if an error was reported.
545 */
546 static void
547 analyze_clip_cull_usage(struct gl_shader_program *prog,
548 struct gl_linked_shader *shader,
549 struct gl_context *ctx,
550 GLuint *clip_distance_array_size,
551 GLuint *cull_distance_array_size)
552 {
553 *clip_distance_array_size = 0;
554 *cull_distance_array_size = 0;
555
556 if (prog->Version >= (prog->IsES ? 300 : 130)) {
557 /* From section 7.1 (Vertex Shader Special Variables) of the
558 * GLSL 1.30 spec:
559 *
560 * "It is an error for a shader to statically write both
561 * gl_ClipVertex and gl_ClipDistance."
562 *
563 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
564 * gl_ClipVertex nor gl_ClipDistance. However with
565 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
566 */
567 find_assignment_visitor clip_distance("gl_ClipDistance");
568 find_assignment_visitor cull_distance("gl_CullDistance");
569
570 clip_distance.run(shader->ir);
571 cull_distance.run(shader->ir);
572
573 /* From the ARB_cull_distance spec:
574 *
575 * It is a compile-time or link-time error for the set of shaders forming
576 * a program to statically read or write both gl_ClipVertex and either
577 * gl_ClipDistance or gl_CullDistance.
578 *
579 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
580 * gl_ClipVertex.
581 */
582 if (!prog->IsES) {
583 find_assignment_visitor clip_vertex("gl_ClipVertex");
584
585 clip_vertex.run(shader->ir);
586
587 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
588 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
589 "and `gl_ClipDistance'\n",
590 _mesa_shader_stage_to_string(shader->Stage));
591 return;
592 }
593 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
594 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
595 "and `gl_CullDistance'\n",
596 _mesa_shader_stage_to_string(shader->Stage));
597 return;
598 }
599 }
600
601 if (clip_distance.variable_found()) {
602 ir_variable *clip_distance_var =
603 shader->symbols->get_variable("gl_ClipDistance");
604 assert(clip_distance_var);
605 *clip_distance_array_size = clip_distance_var->type->length;
606 }
607 if (cull_distance.variable_found()) {
608 ir_variable *cull_distance_var =
609 shader->symbols->get_variable("gl_CullDistance");
610 assert(cull_distance_var);
611 *cull_distance_array_size = cull_distance_var->type->length;
612 }
613 /* From the ARB_cull_distance spec:
614 *
615 * It is a compile-time or link-time error for the set of shaders forming
616 * a program to have the sum of the sizes of the gl_ClipDistance and
617 * gl_CullDistance arrays to be larger than
618 * gl_MaxCombinedClipAndCullDistances.
619 */
620 if ((*clip_distance_array_size + *cull_distance_array_size) >
621 ctx->Const.MaxClipPlanes) {
622 linker_error(prog, "%s shader: the combined size of "
623 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
624 "be larger than "
625 "gl_MaxCombinedClipAndCullDistances (%u)",
626 _mesa_shader_stage_to_string(shader->Stage),
627 ctx->Const.MaxClipPlanes);
628 }
629 }
630 }
631
632
633 /**
634 * Verify that a vertex shader executable meets all semantic requirements.
635 *
636 * Also sets prog->Vert.ClipDistanceArraySize and
637 * prog->Vert.CullDistanceArraySize as a side effect.
638 *
639 * \param shader Vertex shader executable to be verified
640 */
641 void
642 validate_vertex_shader_executable(struct gl_shader_program *prog,
643 struct gl_linked_shader *shader,
644 struct gl_context *ctx)
645 {
646 if (shader == NULL)
647 return;
648
649 /* From the GLSL 1.10 spec, page 48:
650 *
651 * "The variable gl_Position is available only in the vertex
652 * language and is intended for writing the homogeneous vertex
653 * position. All executions of a well-formed vertex shader
654 * executable must write a value into this variable. [...] The
655 * variable gl_Position is available only in the vertex
656 * language and is intended for writing the homogeneous vertex
657 * position. All executions of a well-formed vertex shader
658 * executable must write a value into this variable."
659 *
660 * while in GLSL 1.40 this text is changed to:
661 *
662 * "The variable gl_Position is available only in the vertex
663 * language and is intended for writing the homogeneous vertex
664 * position. It can be written at any time during shader
665 * execution. It may also be read back by a vertex shader
666 * after being written. This value will be used by primitive
667 * assembly, clipping, culling, and other fixed functionality
668 * operations, if present, that operate on primitives after
669 * vertex processing has occurred. Its value is undefined if
670 * the vertex shader executable does not write gl_Position."
671 *
672 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
673 * gl_Position is not an error.
674 */
675 if (prog->Version < (prog->IsES ? 300 : 140)) {
676 find_assignment_visitor find("gl_Position");
677 find.run(shader->ir);
678 if (!find.variable_found()) {
679 if (prog->IsES) {
680 linker_warning(prog,
681 "vertex shader does not write to `gl_Position'. "
682 "Its value is undefined. \n");
683 } else {
684 linker_error(prog,
685 "vertex shader does not write to `gl_Position'. \n");
686 }
687 return;
688 }
689 }
690
691 analyze_clip_cull_usage(prog, shader, ctx,
692 &prog->Vert.ClipDistanceArraySize,
693 &prog->Vert.CullDistanceArraySize);
694 }
695
696 void
697 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader,
699 struct gl_context *ctx)
700 {
701 if (shader == NULL)
702 return;
703
704 analyze_clip_cull_usage(prog, shader, ctx,
705 &prog->TessEval.ClipDistanceArraySize,
706 &prog->TessEval.CullDistanceArraySize);
707 }
708
709
710 /**
711 * Verify that a fragment shader executable meets all semantic requirements
712 *
713 * \param shader Fragment shader executable to be verified
714 */
715 void
716 validate_fragment_shader_executable(struct gl_shader_program *prog,
717 struct gl_linked_shader *shader)
718 {
719 if (shader == NULL)
720 return;
721
722 find_assignment_visitor frag_color("gl_FragColor");
723 find_assignment_visitor frag_data("gl_FragData");
724
725 frag_color.run(shader->ir);
726 frag_data.run(shader->ir);
727
728 if (frag_color.variable_found() && frag_data.variable_found()) {
729 linker_error(prog, "fragment shader writes to both "
730 "`gl_FragColor' and `gl_FragData'\n");
731 }
732 }
733
734 /**
735 * Verify that a geometry shader executable meets all semantic requirements
736 *
737 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
738 * prog->Geom.CullDistanceArraySize as a side effect.
739 *
740 * \param shader Geometry shader executable to be verified
741 */
742 void
743 validate_geometry_shader_executable(struct gl_shader_program *prog,
744 struct gl_linked_shader *shader,
745 struct gl_context *ctx)
746 {
747 if (shader == NULL)
748 return;
749
750 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
751 prog->Geom.VerticesIn = num_vertices;
752
753 analyze_clip_cull_usage(prog, shader, ctx,
754 &prog->Geom.ClipDistanceArraySize,
755 &prog->Geom.CullDistanceArraySize);
756 }
757
758 /**
759 * Check if geometry shaders emit to non-zero streams and do corresponding
760 * validations.
761 */
762 static void
763 validate_geometry_shader_emissions(struct gl_context *ctx,
764 struct gl_shader_program *prog)
765 {
766 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
767
768 if (sh != NULL) {
769 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
770 emit_vertex.run(sh->ir);
771 if (emit_vertex.error()) {
772 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
773 "stream parameter are in the range [0, %d].\n",
774 emit_vertex.error_func(),
775 emit_vertex.error_stream(),
776 ctx->Const.MaxVertexStreams - 1);
777 }
778 prog->Geom.UsesStreams = emit_vertex.uses_streams();
779 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
780
781 /* From the ARB_gpu_shader5 spec:
782 *
783 * "Multiple vertex streams are supported only if the output primitive
784 * type is declared to be "points". A program will fail to link if it
785 * contains a geometry shader calling EmitStreamVertex() or
786 * EndStreamPrimitive() if its output primitive type is not "points".
787 *
788 * However, in the same spec:
789 *
790 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
791 * with <stream> set to zero."
792 *
793 * And:
794 *
795 * "The function EndPrimitive() is equivalent to calling
796 * EndStreamPrimitive() with <stream> set to zero."
797 *
798 * Since we can call EmitVertex() and EndPrimitive() when we output
799 * primitives other than points, calling EmitStreamVertex(0) or
800 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
801 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
802 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
803 * stream.
804 */
805 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
806 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
807 "with n>0 requires point output\n");
808 }
809 }
810 }
811
812 bool
813 validate_intrastage_arrays(struct gl_shader_program *prog,
814 ir_variable *const var,
815 ir_variable *const existing)
816 {
817 /* Consider the types to be "the same" if both types are arrays
818 * of the same type and one of the arrays is implicitly sized.
819 * In addition, set the type of the linked variable to the
820 * explicitly sized array.
821 */
822 if (var->type->is_array() && existing->type->is_array()) {
823 if ((var->type->fields.array == existing->type->fields.array) &&
824 ((var->type->length == 0)|| (existing->type->length == 0))) {
825 if (var->type->length != 0) {
826 if ((int)var->type->length <= existing->data.max_array_access) {
827 linker_error(prog, "%s `%s' declared as type "
828 "`%s' but outermost dimension has an index"
829 " of `%i'\n",
830 mode_string(var),
831 var->name, var->type->name,
832 existing->data.max_array_access);
833 }
834 existing->type = var->type;
835 return true;
836 } else if (existing->type->length != 0) {
837 if((int)existing->type->length <= var->data.max_array_access &&
838 !existing->data.from_ssbo_unsized_array) {
839 linker_error(prog, "%s `%s' declared as type "
840 "`%s' but outermost dimension has an index"
841 " of `%i'\n",
842 mode_string(var),
843 var->name, existing->type->name,
844 var->data.max_array_access);
845 }
846 return true;
847 }
848 } else {
849 /* The arrays of structs could have different glsl_type pointers but
850 * they are actually the same type. Use record_compare() to check that.
851 */
852 if (existing->type->fields.array->is_record() &&
853 var->type->fields.array->is_record() &&
854 existing->type->fields.array->record_compare(var->type->fields.array))
855 return true;
856 }
857 }
858 return false;
859 }
860
861
862 /**
863 * Perform validation of global variables used across multiple shaders
864 */
865 void
866 cross_validate_globals(struct gl_shader_program *prog,
867 struct exec_list *ir, glsl_symbol_table *variables,
868 bool uniforms_only)
869 {
870 foreach_in_list(ir_instruction, node, ir) {
871 ir_variable *const var = node->as_variable();
872
873 if (var == NULL)
874 continue;
875
876 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
877 continue;
878
879 /* don't cross validate subroutine uniforms */
880 if (var->type->contains_subroutine())
881 continue;
882
883 /* Don't cross validate temporaries that are at global scope. These
884 * will eventually get pulled into the shaders 'main'.
885 */
886 if (var->data.mode == ir_var_temporary)
887 continue;
888
889 /* If a global with this name has already been seen, verify that the
890 * new instance has the same type. In addition, if the globals have
891 * initializers, the values of the initializers must be the same.
892 */
893 ir_variable *const existing = variables->get_variable(var->name);
894 if (existing != NULL) {
895 /* Check if types match. Interface blocks have some special
896 * rules so we handle those elsewhere.
897 */
898 if (var->type != existing->type &&
899 !var->is_interface_instance()) {
900 if (!validate_intrastage_arrays(prog, var, existing)) {
901 if (var->type->is_record() && existing->type->is_record()
902 && existing->type->record_compare(var->type)) {
903 existing->type = var->type;
904 } else {
905 /* If it is an unsized array in a Shader Storage Block,
906 * two different shaders can access to different elements.
907 * Because of that, they might be converted to different
908 * sized arrays, then check that they are compatible but
909 * ignore the array size.
910 */
911 if (!(var->data.mode == ir_var_shader_storage &&
912 var->data.from_ssbo_unsized_array &&
913 existing->data.mode == ir_var_shader_storage &&
914 existing->data.from_ssbo_unsized_array &&
915 var->type->gl_type == existing->type->gl_type)) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' and type `%s'\n",
918 mode_string(var),
919 var->name, var->type->name,
920 existing->type->name);
921 return;
922 }
923 }
924 }
925 }
926
927 if (var->data.explicit_location) {
928 if (existing->data.explicit_location
929 && (var->data.location != existing->data.location)) {
930 linker_error(prog, "explicit locations for %s "
931 "`%s' have differing values\n",
932 mode_string(var), var->name);
933 return;
934 }
935
936 if (var->data.location_frac != existing->data.location_frac) {
937 linker_error(prog, "explicit components for %s `%s' have "
938 "differing values\n", mode_string(var), var->name);
939 return;
940 }
941
942 existing->data.location = var->data.location;
943 existing->data.explicit_location = true;
944 } else {
945 /* Check if uniform with implicit location was marked explicit
946 * by earlier shader stage. If so, mark it explicit in this stage
947 * too to make sure later processing does not treat it as
948 * implicit one.
949 */
950 if (existing->data.explicit_location) {
951 var->data.location = existing->data.location;
952 var->data.explicit_location = true;
953 }
954 }
955
956 /* From the GLSL 4.20 specification:
957 * "A link error will result if two compilation units in a program
958 * specify different integer-constant bindings for the same
959 * opaque-uniform name. However, it is not an error to specify a
960 * binding on some but not all declarations for the same name"
961 */
962 if (var->data.explicit_binding) {
963 if (existing->data.explicit_binding &&
964 var->data.binding != existing->data.binding) {
965 linker_error(prog, "explicit bindings for %s "
966 "`%s' have differing values\n",
967 mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.binding = var->data.binding;
972 existing->data.explicit_binding = true;
973 }
974
975 if (var->type->contains_atomic() &&
976 var->data.offset != existing->data.offset) {
977 linker_error(prog, "offset specifications for %s "
978 "`%s' have differing values\n",
979 mode_string(var), var->name);
980 return;
981 }
982
983 /* Validate layout qualifiers for gl_FragDepth.
984 *
985 * From the AMD/ARB_conservative_depth specs:
986 *
987 * "If gl_FragDepth is redeclared in any fragment shader in a
988 * program, it must be redeclared in all fragment shaders in
989 * that program that have static assignments to
990 * gl_FragDepth. All redeclarations of gl_FragDepth in all
991 * fragment shaders in a single program must have the same set
992 * of qualifiers."
993 */
994 if (strcmp(var->name, "gl_FragDepth") == 0) {
995 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
996 bool layout_differs =
997 var->data.depth_layout != existing->data.depth_layout;
998
999 if (layout_declared && layout_differs) {
1000 linker_error(prog,
1001 "All redeclarations of gl_FragDepth in all "
1002 "fragment shaders in a single program must have "
1003 "the same set of qualifiers.\n");
1004 }
1005
1006 if (var->data.used && layout_differs) {
1007 linker_error(prog,
1008 "If gl_FragDepth is redeclared with a layout "
1009 "qualifier in any fragment shader, it must be "
1010 "redeclared with the same layout qualifier in "
1011 "all fragment shaders that have assignments to "
1012 "gl_FragDepth\n");
1013 }
1014 }
1015
1016 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1017 *
1018 * "If a shared global has multiple initializers, the
1019 * initializers must all be constant expressions, and they
1020 * must all have the same value. Otherwise, a link error will
1021 * result. (A shared global having only one initializer does
1022 * not require that initializer to be a constant expression.)"
1023 *
1024 * Previous to 4.20 the GLSL spec simply said that initializers
1025 * must have the same value. In this case of non-constant
1026 * initializers, this was impossible to determine. As a result,
1027 * no vendor actually implemented that behavior. The 4.20
1028 * behavior matches the implemented behavior of at least one other
1029 * vendor, so we'll implement that for all GLSL versions.
1030 */
1031 if (var->constant_initializer != NULL) {
1032 if (existing->constant_initializer != NULL) {
1033 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1034 linker_error(prog, "initializers for %s "
1035 "`%s' have differing values\n",
1036 mode_string(var), var->name);
1037 return;
1038 }
1039 } else {
1040 /* If the first-seen instance of a particular uniform did
1041 * not have an initializer but a later instance does,
1042 * replace the former with the later.
1043 */
1044 variables->replace_variable(existing->name, var);
1045 }
1046 }
1047
1048 if (var->data.has_initializer) {
1049 if (existing->data.has_initializer
1050 && (var->constant_initializer == NULL
1051 || existing->constant_initializer == NULL)) {
1052 linker_error(prog,
1053 "shared global variable `%s' has multiple "
1054 "non-constant initializers.\n",
1055 var->name);
1056 return;
1057 }
1058 }
1059
1060 if (existing->data.invariant != var->data.invariant) {
1061 linker_error(prog, "declarations for %s `%s' have "
1062 "mismatching invariant qualifiers\n",
1063 mode_string(var), var->name);
1064 return;
1065 }
1066 if (existing->data.centroid != var->data.centroid) {
1067 linker_error(prog, "declarations for %s `%s' have "
1068 "mismatching centroid qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 if (existing->data.sample != var->data.sample) {
1073 linker_error(prog, "declarations for %s `%s` have "
1074 "mismatching sample qualifiers\n",
1075 mode_string(var), var->name);
1076 return;
1077 }
1078 if (existing->data.image_format != var->data.image_format) {
1079 linker_error(prog, "declarations for %s `%s` have "
1080 "mismatching image format qualifiers\n",
1081 mode_string(var), var->name);
1082 return;
1083 }
1084
1085 /* Only in GLSL ES 3.10, the precision qualifier should not match
1086 * between block members defined in matched block names within a
1087 * shader interface.
1088 *
1089 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1090 * member should match.
1091 */
1092 if (prog->IsES && (prog->Version != 310 || !var->get_interface_type()) &&
1093 existing->data.precision != var->data.precision) {
1094 linker_error(prog, "declarations for %s `%s` have "
1095 "mismatching precision qualifiers\n",
1096 mode_string(var), var->name);
1097 return;
1098 }
1099 } else
1100 variables->add_variable(var);
1101 }
1102 }
1103
1104
1105 /**
1106 * Perform validation of uniforms used across multiple shader stages
1107 */
1108 void
1109 cross_validate_uniforms(struct gl_shader_program *prog)
1110 {
1111 glsl_symbol_table variables;
1112 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1113 if (prog->_LinkedShaders[i] == NULL)
1114 continue;
1115
1116 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1117 true);
1118 }
1119 }
1120
1121 /**
1122 * Accumulates the array of buffer blocks and checks that all definitions of
1123 * blocks agree on their contents.
1124 */
1125 static bool
1126 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1127 bool validate_ssbo)
1128 {
1129 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1130 struct gl_uniform_block *blks = NULL;
1131 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1132 &prog->data->NumUniformBlocks;
1133
1134 unsigned max_num_buffer_blocks = 0;
1135 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1136 if (prog->_LinkedShaders[i]) {
1137 if (validate_ssbo) {
1138 max_num_buffer_blocks +=
1139 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1140 } else {
1141 max_num_buffer_blocks +=
1142 prog->_LinkedShaders[i]->NumUniformBlocks;
1143 }
1144 }
1145 }
1146
1147 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1148 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1149
1150 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1151 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1152 InterfaceBlockStageIndex[i][j] = -1;
1153
1154 if (sh == NULL)
1155 continue;
1156
1157 unsigned sh_num_blocks;
1158 struct gl_uniform_block **sh_blks;
1159 if (validate_ssbo) {
1160 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1161 sh_blks = sh->ShaderStorageBlocks;
1162 } else {
1163 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1164 sh_blks = sh->UniformBlocks;
1165 }
1166
1167 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1168 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1169 sh_blks[j]);
1170
1171 if (index == -1) {
1172 linker_error(prog, "buffer block `%s' has mismatching "
1173 "definitions\n", sh_blks[j]->Name);
1174
1175 for (unsigned k = 0; k <= i; k++) {
1176 delete[] InterfaceBlockStageIndex[k];
1177 }
1178 return false;
1179 }
1180
1181 InterfaceBlockStageIndex[i][index] = j;
1182 }
1183 }
1184
1185 /* Update per stage block pointers to point to the program list.
1186 * FIXME: We should be able to free the per stage blocks here.
1187 */
1188 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1189 for (unsigned j = 0; j < *num_blks; j++) {
1190 int stage_index = InterfaceBlockStageIndex[i][j];
1191
1192 if (stage_index != -1) {
1193 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1194
1195 struct gl_uniform_block **sh_blks = validate_ssbo ?
1196 sh->ShaderStorageBlocks : sh->UniformBlocks;
1197
1198 blks[j].stageref |= sh_blks[stage_index]->stageref;
1199 sh_blks[stage_index] = &blks[j];
1200 }
1201 }
1202 }
1203
1204 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1205 delete[] InterfaceBlockStageIndex[i];
1206 }
1207
1208 if (validate_ssbo)
1209 prog->data->ShaderStorageBlocks = blks;
1210 else
1211 prog->data->UniformBlocks = blks;
1212
1213 return true;
1214 }
1215
1216
1217 /**
1218 * Populates a shaders symbol table with all global declarations
1219 */
1220 static void
1221 populate_symbol_table(gl_linked_shader *sh)
1222 {
1223 sh->symbols = new(sh) glsl_symbol_table;
1224
1225 foreach_in_list(ir_instruction, inst, sh->ir) {
1226 ir_variable *var;
1227 ir_function *func;
1228
1229 if ((func = inst->as_function()) != NULL) {
1230 sh->symbols->add_function(func);
1231 } else if ((var = inst->as_variable()) != NULL) {
1232 if (var->data.mode != ir_var_temporary)
1233 sh->symbols->add_variable(var);
1234 }
1235 }
1236 }
1237
1238
1239 /**
1240 * Remap variables referenced in an instruction tree
1241 *
1242 * This is used when instruction trees are cloned from one shader and placed in
1243 * another. These trees will contain references to \c ir_variable nodes that
1244 * do not exist in the target shader. This function finds these \c ir_variable
1245 * references and replaces the references with matching variables in the target
1246 * shader.
1247 *
1248 * If there is no matching variable in the target shader, a clone of the
1249 * \c ir_variable is made and added to the target shader. The new variable is
1250 * added to \b both the instruction stream and the symbol table.
1251 *
1252 * \param inst IR tree that is to be processed.
1253 * \param symbols Symbol table containing global scope symbols in the
1254 * linked shader.
1255 * \param instructions Instruction stream where new variable declarations
1256 * should be added.
1257 */
1258 void
1259 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1260 hash_table *temps)
1261 {
1262 class remap_visitor : public ir_hierarchical_visitor {
1263 public:
1264 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1265 {
1266 this->target = target;
1267 this->symbols = target->symbols;
1268 this->instructions = target->ir;
1269 this->temps = temps;
1270 }
1271
1272 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1273 {
1274 if (ir->var->data.mode == ir_var_temporary) {
1275 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1276 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1277
1278 assert(var != NULL);
1279 ir->var = var;
1280 return visit_continue;
1281 }
1282
1283 ir_variable *const existing =
1284 this->symbols->get_variable(ir->var->name);
1285 if (existing != NULL)
1286 ir->var = existing;
1287 else {
1288 ir_variable *copy = ir->var->clone(this->target, NULL);
1289
1290 this->symbols->add_variable(copy);
1291 this->instructions->push_head(copy);
1292 ir->var = copy;
1293 }
1294
1295 return visit_continue;
1296 }
1297
1298 private:
1299 struct gl_linked_shader *target;
1300 glsl_symbol_table *symbols;
1301 exec_list *instructions;
1302 hash_table *temps;
1303 };
1304
1305 remap_visitor v(target, temps);
1306
1307 inst->accept(&v);
1308 }
1309
1310
1311 /**
1312 * Move non-declarations from one instruction stream to another
1313 *
1314 * The intended usage pattern of this function is to pass the pointer to the
1315 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1316 * pointer) for \c last and \c false for \c make_copies on the first
1317 * call. Successive calls pass the return value of the previous call for
1318 * \c last and \c true for \c make_copies.
1319 *
1320 * \param instructions Source instruction stream
1321 * \param last Instruction after which new instructions should be
1322 * inserted in the target instruction stream
1323 * \param make_copies Flag selecting whether instructions in \c instructions
1324 * should be copied (via \c ir_instruction::clone) into the
1325 * target list or moved.
1326 *
1327 * \return
1328 * The new "last" instruction in the target instruction stream. This pointer
1329 * is suitable for use as the \c last parameter of a later call to this
1330 * function.
1331 */
1332 exec_node *
1333 move_non_declarations(exec_list *instructions, exec_node *last,
1334 bool make_copies, gl_linked_shader *target)
1335 {
1336 hash_table *temps = NULL;
1337
1338 if (make_copies)
1339 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1340 _mesa_key_pointer_equal);
1341
1342 foreach_in_list_safe(ir_instruction, inst, instructions) {
1343 if (inst->as_function())
1344 continue;
1345
1346 ir_variable *var = inst->as_variable();
1347 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1348 continue;
1349
1350 assert(inst->as_assignment()
1351 || inst->as_call()
1352 || inst->as_if() /* for initializers with the ?: operator */
1353 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1354
1355 if (make_copies) {
1356 inst = inst->clone(target, NULL);
1357
1358 if (var != NULL)
1359 _mesa_hash_table_insert(temps, var, inst);
1360 else
1361 remap_variables(inst, target, temps);
1362 } else {
1363 inst->remove();
1364 }
1365
1366 last->insert_after(inst);
1367 last = inst;
1368 }
1369
1370 if (make_copies)
1371 _mesa_hash_table_destroy(temps, NULL);
1372
1373 return last;
1374 }
1375
1376
1377 /**
1378 * This class is only used in link_intrastage_shaders() below but declaring
1379 * it inside that function leads to compiler warnings with some versions of
1380 * gcc.
1381 */
1382 class array_sizing_visitor : public deref_type_updater {
1383 public:
1384 array_sizing_visitor()
1385 : mem_ctx(ralloc_context(NULL)),
1386 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1387 _mesa_key_pointer_equal))
1388 {
1389 }
1390
1391 ~array_sizing_visitor()
1392 {
1393 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1394 ralloc_free(this->mem_ctx);
1395 }
1396
1397 virtual ir_visitor_status visit(ir_variable *var)
1398 {
1399 const glsl_type *type_without_array;
1400 bool implicit_sized_array = var->data.implicit_sized_array;
1401 fixup_type(&var->type, var->data.max_array_access,
1402 var->data.from_ssbo_unsized_array,
1403 &implicit_sized_array);
1404 var->data.implicit_sized_array = implicit_sized_array;
1405 type_without_array = var->type->without_array();
1406 if (var->type->is_interface()) {
1407 if (interface_contains_unsized_arrays(var->type)) {
1408 const glsl_type *new_type =
1409 resize_interface_members(var->type,
1410 var->get_max_ifc_array_access(),
1411 var->is_in_shader_storage_block());
1412 var->type = new_type;
1413 var->change_interface_type(new_type);
1414 }
1415 } else if (type_without_array->is_interface()) {
1416 if (interface_contains_unsized_arrays(type_without_array)) {
1417 const glsl_type *new_type =
1418 resize_interface_members(type_without_array,
1419 var->get_max_ifc_array_access(),
1420 var->is_in_shader_storage_block());
1421 var->change_interface_type(new_type);
1422 var->type = update_interface_members_array(var->type, new_type);
1423 }
1424 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1425 /* Store a pointer to the variable in the unnamed_interfaces
1426 * hashtable.
1427 */
1428 hash_entry *entry =
1429 _mesa_hash_table_search(this->unnamed_interfaces,
1430 ifc_type);
1431
1432 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1433
1434 if (interface_vars == NULL) {
1435 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1436 ifc_type->length);
1437 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1438 interface_vars);
1439 }
1440 unsigned index = ifc_type->field_index(var->name);
1441 assert(index < ifc_type->length);
1442 assert(interface_vars[index] == NULL);
1443 interface_vars[index] = var;
1444 }
1445 return visit_continue;
1446 }
1447
1448 /**
1449 * For each unnamed interface block that was discovered while running the
1450 * visitor, adjust the interface type to reflect the newly assigned array
1451 * sizes, and fix up the ir_variable nodes to point to the new interface
1452 * type.
1453 */
1454 void fixup_unnamed_interface_types()
1455 {
1456 hash_table_call_foreach(this->unnamed_interfaces,
1457 fixup_unnamed_interface_type, NULL);
1458 }
1459
1460 private:
1461 /**
1462 * If the type pointed to by \c type represents an unsized array, replace
1463 * it with a sized array whose size is determined by max_array_access.
1464 */
1465 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1466 bool from_ssbo_unsized_array, bool *implicit_sized)
1467 {
1468 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1469 *type = glsl_type::get_array_instance((*type)->fields.array,
1470 max_array_access + 1);
1471 *implicit_sized = true;
1472 assert(*type != NULL);
1473 }
1474 }
1475
1476 static const glsl_type *
1477 update_interface_members_array(const glsl_type *type,
1478 const glsl_type *new_interface_type)
1479 {
1480 const glsl_type *element_type = type->fields.array;
1481 if (element_type->is_array()) {
1482 const glsl_type *new_array_type =
1483 update_interface_members_array(element_type, new_interface_type);
1484 return glsl_type::get_array_instance(new_array_type, type->length);
1485 } else {
1486 return glsl_type::get_array_instance(new_interface_type,
1487 type->length);
1488 }
1489 }
1490
1491 /**
1492 * Determine whether the given interface type contains unsized arrays (if
1493 * it doesn't, array_sizing_visitor doesn't need to process it).
1494 */
1495 static bool interface_contains_unsized_arrays(const glsl_type *type)
1496 {
1497 for (unsigned i = 0; i < type->length; i++) {
1498 const glsl_type *elem_type = type->fields.structure[i].type;
1499 if (elem_type->is_unsized_array())
1500 return true;
1501 }
1502 return false;
1503 }
1504
1505 /**
1506 * Create a new interface type based on the given type, with unsized arrays
1507 * replaced by sized arrays whose size is determined by
1508 * max_ifc_array_access.
1509 */
1510 static const glsl_type *
1511 resize_interface_members(const glsl_type *type,
1512 const int *max_ifc_array_access,
1513 bool is_ssbo)
1514 {
1515 unsigned num_fields = type->length;
1516 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1517 memcpy(fields, type->fields.structure,
1518 num_fields * sizeof(*fields));
1519 for (unsigned i = 0; i < num_fields; i++) {
1520 bool implicit_sized_array = fields[i].implicit_sized_array;
1521 /* If SSBO last member is unsized array, we don't replace it by a sized
1522 * array.
1523 */
1524 if (is_ssbo && i == (num_fields - 1))
1525 fixup_type(&fields[i].type, max_ifc_array_access[i],
1526 true, &implicit_sized_array);
1527 else
1528 fixup_type(&fields[i].type, max_ifc_array_access[i],
1529 false, &implicit_sized_array);
1530 fields[i].implicit_sized_array = implicit_sized_array;
1531 }
1532 glsl_interface_packing packing =
1533 (glsl_interface_packing) type->interface_packing;
1534 bool row_major = (bool) type->interface_row_major;
1535 const glsl_type *new_ifc_type =
1536 glsl_type::get_interface_instance(fields, num_fields,
1537 packing, row_major, type->name);
1538 delete [] fields;
1539 return new_ifc_type;
1540 }
1541
1542 static void fixup_unnamed_interface_type(const void *key, void *data,
1543 void *)
1544 {
1545 const glsl_type *ifc_type = (const glsl_type *) key;
1546 ir_variable **interface_vars = (ir_variable **) data;
1547 unsigned num_fields = ifc_type->length;
1548 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1549 memcpy(fields, ifc_type->fields.structure,
1550 num_fields * sizeof(*fields));
1551 bool interface_type_changed = false;
1552 for (unsigned i = 0; i < num_fields; i++) {
1553 if (interface_vars[i] != NULL &&
1554 fields[i].type != interface_vars[i]->type) {
1555 fields[i].type = interface_vars[i]->type;
1556 interface_type_changed = true;
1557 }
1558 }
1559 if (!interface_type_changed) {
1560 delete [] fields;
1561 return;
1562 }
1563 glsl_interface_packing packing =
1564 (glsl_interface_packing) ifc_type->interface_packing;
1565 bool row_major = (bool) ifc_type->interface_row_major;
1566 const glsl_type *new_ifc_type =
1567 glsl_type::get_interface_instance(fields, num_fields, packing,
1568 row_major, ifc_type->name);
1569 delete [] fields;
1570 for (unsigned i = 0; i < num_fields; i++) {
1571 if (interface_vars[i] != NULL)
1572 interface_vars[i]->change_interface_type(new_ifc_type);
1573 }
1574 }
1575
1576 /**
1577 * Memory context used to allocate the data in \c unnamed_interfaces.
1578 */
1579 void *mem_ctx;
1580
1581 /**
1582 * Hash table from const glsl_type * to an array of ir_variable *'s
1583 * pointing to the ir_variables constituting each unnamed interface block.
1584 */
1585 hash_table *unnamed_interfaces;
1586 };
1587
1588 /**
1589 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1590 * for later use.
1591 */
1592 static void
1593 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1594 struct gl_shader_program *prog,
1595 struct gl_linked_shader *linked_shader,
1596 struct gl_shader **shader_list,
1597 unsigned num_shaders)
1598 {
1599 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1600 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1601 }
1602
1603 for (unsigned i = 0; i < num_shaders; i++) {
1604 struct gl_shader *shader = shader_list[i];
1605
1606 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1607 if (shader->info.TransformFeedback.BufferStride[j]) {
1608 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1609 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1610 linked_shader->info.TransformFeedback.BufferStride[j] !=
1611 shader->info.TransformFeedback.BufferStride[j]) {
1612 linker_error(prog,
1613 "intrastage shaders defined with conflicting "
1614 "xfb_stride for buffer %d (%d and %d)\n", j,
1615 linked_shader->
1616 info.TransformFeedback.BufferStride[j],
1617 shader->info.TransformFeedback.BufferStride[j]);
1618 return;
1619 }
1620
1621 if (shader->info.TransformFeedback.BufferStride[j])
1622 linked_shader->info.TransformFeedback.BufferStride[j] =
1623 shader->info.TransformFeedback.BufferStride[j];
1624 }
1625 }
1626 }
1627
1628 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1629 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1630 prog->TransformFeedback.BufferStride[j] =
1631 linked_shader->info.TransformFeedback.BufferStride[j];
1632
1633 /* We will validate doubles at a later stage */
1634 if (prog->TransformFeedback.BufferStride[j] % 4) {
1635 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1636 "multiple of 4 or if its applied to a type that is "
1637 "or contains a double a multiple of 8.",
1638 prog->TransformFeedback.BufferStride[j]);
1639 return;
1640 }
1641
1642 if (prog->TransformFeedback.BufferStride[j] / 4 >
1643 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1644 linker_error(prog,
1645 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1646 "limit has been exceeded.");
1647 return;
1648 }
1649 }
1650 }
1651 }
1652
1653 /**
1654 * Performs the cross-validation of tessellation control shader vertices and
1655 * layout qualifiers for the attached tessellation control shaders,
1656 * and propagates them to the linked TCS and linked shader program.
1657 */
1658 static void
1659 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1660 struct gl_linked_shader *linked_shader,
1661 struct gl_shader **shader_list,
1662 unsigned num_shaders)
1663 {
1664 linked_shader->info.TessCtrl.VerticesOut = 0;
1665
1666 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1667 return;
1668
1669 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1670 *
1671 * "All tessellation control shader layout declarations in a program
1672 * must specify the same output patch vertex count. There must be at
1673 * least one layout qualifier specifying an output patch vertex count
1674 * in any program containing tessellation control shaders; however,
1675 * such a declaration is not required in all tessellation control
1676 * shaders."
1677 */
1678
1679 for (unsigned i = 0; i < num_shaders; i++) {
1680 struct gl_shader *shader = shader_list[i];
1681
1682 if (shader->info.TessCtrl.VerticesOut != 0) {
1683 if (linked_shader->info.TessCtrl.VerticesOut != 0 &&
1684 linked_shader->info.TessCtrl.VerticesOut !=
1685 shader->info.TessCtrl.VerticesOut) {
1686 linker_error(prog, "tessellation control shader defined with "
1687 "conflicting output vertex count (%d and %d)\n",
1688 linked_shader->info.TessCtrl.VerticesOut,
1689 shader->info.TessCtrl.VerticesOut);
1690 return;
1691 }
1692 linked_shader->info.TessCtrl.VerticesOut =
1693 shader->info.TessCtrl.VerticesOut;
1694 }
1695 }
1696
1697 /* Just do the intrastage -> interstage propagation right now,
1698 * since we already know we're in the right type of shader program
1699 * for doing it.
1700 */
1701 if (linked_shader->info.TessCtrl.VerticesOut == 0) {
1702 linker_error(prog, "tessellation control shader didn't declare "
1703 "vertices out layout qualifier\n");
1704 return;
1705 }
1706 }
1707
1708
1709 /**
1710 * Performs the cross-validation of tessellation evaluation shader
1711 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1712 * for the attached tessellation evaluation shaders, and propagates them
1713 * to the linked TES and linked shader program.
1714 */
1715 static void
1716 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1717 struct gl_linked_shader *linked_shader,
1718 struct gl_shader **shader_list,
1719 unsigned num_shaders)
1720 {
1721 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1722 linked_shader->info.TessEval.Spacing = 0;
1723 linked_shader->info.TessEval.VertexOrder = 0;
1724 linked_shader->info.TessEval.PointMode = -1;
1725
1726 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1727 return;
1728
1729 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1730 *
1731 * "At least one tessellation evaluation shader (compilation unit) in
1732 * a program must declare a primitive mode in its input layout.
1733 * Declaration vertex spacing, ordering, and point mode identifiers is
1734 * optional. It is not required that all tessellation evaluation
1735 * shaders in a program declare a primitive mode. If spacing or
1736 * vertex ordering declarations are omitted, the tessellation
1737 * primitive generator will use equal spacing or counter-clockwise
1738 * vertex ordering, respectively. If a point mode declaration is
1739 * omitted, the tessellation primitive generator will produce lines or
1740 * triangles according to the primitive mode."
1741 */
1742
1743 for (unsigned i = 0; i < num_shaders; i++) {
1744 struct gl_shader *shader = shader_list[i];
1745
1746 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1747 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1748 linked_shader->info.TessEval.PrimitiveMode !=
1749 shader->info.TessEval.PrimitiveMode) {
1750 linker_error(prog, "tessellation evaluation shader defined with "
1751 "conflicting input primitive modes.\n");
1752 return;
1753 }
1754 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1755 }
1756
1757 if (shader->info.TessEval.Spacing != 0) {
1758 if (linked_shader->info.TessEval.Spacing != 0 &&
1759 linked_shader->info.TessEval.Spacing !=
1760 shader->info.TessEval.Spacing) {
1761 linker_error(prog, "tessellation evaluation shader defined with "
1762 "conflicting vertex spacing.\n");
1763 return;
1764 }
1765 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1766 }
1767
1768 if (shader->info.TessEval.VertexOrder != 0) {
1769 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1770 linked_shader->info.TessEval.VertexOrder !=
1771 shader->info.TessEval.VertexOrder) {
1772 linker_error(prog, "tessellation evaluation shader defined with "
1773 "conflicting ordering.\n");
1774 return;
1775 }
1776 linked_shader->info.TessEval.VertexOrder =
1777 shader->info.TessEval.VertexOrder;
1778 }
1779
1780 if (shader->info.TessEval.PointMode != -1) {
1781 if (linked_shader->info.TessEval.PointMode != -1 &&
1782 linked_shader->info.TessEval.PointMode !=
1783 shader->info.TessEval.PointMode) {
1784 linker_error(prog, "tessellation evaluation shader defined with "
1785 "conflicting point modes.\n");
1786 return;
1787 }
1788 linked_shader->info.TessEval.PointMode =
1789 shader->info.TessEval.PointMode;
1790 }
1791
1792 }
1793
1794 /* Just do the intrastage -> interstage propagation right now,
1795 * since we already know we're in the right type of shader program
1796 * for doing it.
1797 */
1798 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1799 linker_error(prog,
1800 "tessellation evaluation shader didn't declare input "
1801 "primitive modes.\n");
1802 return;
1803 }
1804
1805 if (linked_shader->info.TessEval.Spacing == 0)
1806 linked_shader->info.TessEval.Spacing = GL_EQUAL;
1807
1808 if (linked_shader->info.TessEval.VertexOrder == 0)
1809 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1810
1811 if (linked_shader->info.TessEval.PointMode == -1)
1812 linked_shader->info.TessEval.PointMode = GL_FALSE;
1813 }
1814
1815
1816 /**
1817 * Performs the cross-validation of layout qualifiers specified in
1818 * redeclaration of gl_FragCoord for the attached fragment shaders,
1819 * and propagates them to the linked FS and linked shader program.
1820 */
1821 static void
1822 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1823 struct gl_linked_shader *linked_shader,
1824 struct gl_shader **shader_list,
1825 unsigned num_shaders)
1826 {
1827 linked_shader->info.redeclares_gl_fragcoord = false;
1828 linked_shader->info.uses_gl_fragcoord = false;
1829 linked_shader->info.origin_upper_left = false;
1830 linked_shader->info.pixel_center_integer = false;
1831 linked_shader->info.BlendSupport = 0;
1832
1833 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1834 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1835 return;
1836
1837 for (unsigned i = 0; i < num_shaders; i++) {
1838 struct gl_shader *shader = shader_list[i];
1839 /* From the GLSL 1.50 spec, page 39:
1840 *
1841 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1842 * it must be redeclared in all the fragment shaders in that program
1843 * that have a static use gl_FragCoord."
1844 */
1845 if ((linked_shader->info.redeclares_gl_fragcoord
1846 && !shader->info.redeclares_gl_fragcoord
1847 && shader->info.uses_gl_fragcoord)
1848 || (shader->info.redeclares_gl_fragcoord
1849 && !linked_shader->info.redeclares_gl_fragcoord
1850 && linked_shader->info.uses_gl_fragcoord)) {
1851 linker_error(prog, "fragment shader defined with conflicting "
1852 "layout qualifiers for gl_FragCoord\n");
1853 }
1854
1855 /* From the GLSL 1.50 spec, page 39:
1856 *
1857 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1858 * single program must have the same set of qualifiers."
1859 */
1860 if (linked_shader->info.redeclares_gl_fragcoord &&
1861 shader->info.redeclares_gl_fragcoord &&
1862 (shader->info.origin_upper_left !=
1863 linked_shader->info.origin_upper_left ||
1864 shader->info.pixel_center_integer !=
1865 linked_shader->info.pixel_center_integer)) {
1866 linker_error(prog, "fragment shader defined with conflicting "
1867 "layout qualifiers for gl_FragCoord\n");
1868 }
1869
1870 /* Update the linked shader state. Note that uses_gl_fragcoord should
1871 * accumulate the results. The other values should replace. If there
1872 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1873 * are already known to be the same.
1874 */
1875 if (shader->info.redeclares_gl_fragcoord ||
1876 shader->info.uses_gl_fragcoord) {
1877 linked_shader->info.redeclares_gl_fragcoord =
1878 shader->info.redeclares_gl_fragcoord;
1879 linked_shader->info.uses_gl_fragcoord =
1880 linked_shader->info.uses_gl_fragcoord ||
1881 shader->info.uses_gl_fragcoord;
1882 linked_shader->info.origin_upper_left =
1883 shader->info.origin_upper_left;
1884 linked_shader->info.pixel_center_integer =
1885 shader->info.pixel_center_integer;
1886 }
1887
1888 linked_shader->info.EarlyFragmentTests |=
1889 shader->info.EarlyFragmentTests;
1890 linked_shader->info.BlendSupport |= shader->info.BlendSupport;
1891 }
1892 }
1893
1894 /**
1895 * Performs the cross-validation of geometry shader max_vertices and
1896 * primitive type layout qualifiers for the attached geometry shaders,
1897 * and propagates them to the linked GS and linked shader program.
1898 */
1899 static void
1900 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1901 struct gl_linked_shader *linked_shader,
1902 struct gl_shader **shader_list,
1903 unsigned num_shaders)
1904 {
1905 linked_shader->info.Geom.VerticesOut = -1;
1906 linked_shader->info.Geom.Invocations = 0;
1907 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1908 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1909
1910 /* No in/out qualifiers defined for anything but GLSL 1.50+
1911 * geometry shaders so far.
1912 */
1913 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1914 return;
1915
1916 /* From the GLSL 1.50 spec, page 46:
1917 *
1918 * "All geometry shader output layout declarations in a program
1919 * must declare the same layout and same value for
1920 * max_vertices. There must be at least one geometry output
1921 * layout declaration somewhere in a program, but not all
1922 * geometry shaders (compilation units) are required to
1923 * declare it."
1924 */
1925
1926 for (unsigned i = 0; i < num_shaders; i++) {
1927 struct gl_shader *shader = shader_list[i];
1928
1929 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1930 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1931 linked_shader->info.Geom.InputType !=
1932 shader->info.Geom.InputType) {
1933 linker_error(prog, "geometry shader defined with conflicting "
1934 "input types\n");
1935 return;
1936 }
1937 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1938 }
1939
1940 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1941 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1942 linked_shader->info.Geom.OutputType !=
1943 shader->info.Geom.OutputType) {
1944 linker_error(prog, "geometry shader defined with conflicting "
1945 "output types\n");
1946 return;
1947 }
1948 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1949 }
1950
1951 if (shader->info.Geom.VerticesOut != -1) {
1952 if (linked_shader->info.Geom.VerticesOut != -1 &&
1953 linked_shader->info.Geom.VerticesOut !=
1954 shader->info.Geom.VerticesOut) {
1955 linker_error(prog, "geometry shader defined with conflicting "
1956 "output vertex count (%d and %d)\n",
1957 linked_shader->info.Geom.VerticesOut,
1958 shader->info.Geom.VerticesOut);
1959 return;
1960 }
1961 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1962 }
1963
1964 if (shader->info.Geom.Invocations != 0) {
1965 if (linked_shader->info.Geom.Invocations != 0 &&
1966 linked_shader->info.Geom.Invocations !=
1967 shader->info.Geom.Invocations) {
1968 linker_error(prog, "geometry shader defined with conflicting "
1969 "invocation count (%d and %d)\n",
1970 linked_shader->info.Geom.Invocations,
1971 shader->info.Geom.Invocations);
1972 return;
1973 }
1974 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1975 }
1976 }
1977
1978 /* Just do the intrastage -> interstage propagation right now,
1979 * since we already know we're in the right type of shader program
1980 * for doing it.
1981 */
1982 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1983 linker_error(prog,
1984 "geometry shader didn't declare primitive input type\n");
1985 return;
1986 }
1987
1988 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1989 linker_error(prog,
1990 "geometry shader didn't declare primitive output type\n");
1991 return;
1992 }
1993
1994 if (linked_shader->info.Geom.VerticesOut == -1) {
1995 linker_error(prog,
1996 "geometry shader didn't declare max_vertices\n");
1997 return;
1998 }
1999
2000 if (linked_shader->info.Geom.Invocations == 0)
2001 linked_shader->info.Geom.Invocations = 1;
2002 }
2003
2004
2005 /**
2006 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2007 * qualifiers for the attached compute shaders, and propagate them to the
2008 * linked CS and linked shader program.
2009 */
2010 static void
2011 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2012 struct gl_linked_shader *linked_shader,
2013 struct gl_shader **shader_list,
2014 unsigned num_shaders)
2015 {
2016 for (int i = 0; i < 3; i++)
2017 linked_shader->info.Comp.LocalSize[i] = 0;
2018
2019 linked_shader->info.Comp.LocalSizeVariable = false;
2020
2021 /* This function is called for all shader stages, but it only has an effect
2022 * for compute shaders.
2023 */
2024 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2025 return;
2026
2027 /* From the ARB_compute_shader spec, in the section describing local size
2028 * declarations:
2029 *
2030 * If multiple compute shaders attached to a single program object
2031 * declare local work-group size, the declarations must be identical;
2032 * otherwise a link-time error results. Furthermore, if a program
2033 * object contains any compute shaders, at least one must contain an
2034 * input layout qualifier specifying the local work sizes of the
2035 * program, or a link-time error will occur.
2036 */
2037 for (unsigned sh = 0; sh < num_shaders; sh++) {
2038 struct gl_shader *shader = shader_list[sh];
2039
2040 if (shader->info.Comp.LocalSize[0] != 0) {
2041 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2042 for (int i = 0; i < 3; i++) {
2043 if (linked_shader->info.Comp.LocalSize[i] !=
2044 shader->info.Comp.LocalSize[i]) {
2045 linker_error(prog, "compute shader defined with conflicting "
2046 "local sizes\n");
2047 return;
2048 }
2049 }
2050 }
2051 for (int i = 0; i < 3; i++) {
2052 linked_shader->info.Comp.LocalSize[i] =
2053 shader->info.Comp.LocalSize[i];
2054 }
2055 } else if (shader->info.Comp.LocalSizeVariable) {
2056 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2057 /* The ARB_compute_variable_group_size spec says:
2058 *
2059 * If one compute shader attached to a program declares a
2060 * variable local group size and a second compute shader
2061 * attached to the same program declares a fixed local group
2062 * size, a link-time error results.
2063 */
2064 linker_error(prog, "compute shader defined with both fixed and "
2065 "variable local group size\n");
2066 return;
2067 }
2068 linked_shader->info.Comp.LocalSizeVariable = true;
2069 }
2070 }
2071
2072 /* Just do the intrastage -> interstage propagation right now,
2073 * since we already know we're in the right type of shader program
2074 * for doing it.
2075 */
2076 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2077 !linked_shader->info.Comp.LocalSizeVariable) {
2078 linker_error(prog, "compute shader must contain a fixed or a variable "
2079 "local group size\n");
2080 return;
2081 }
2082 for (int i = 0; i < 3; i++)
2083 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2084
2085 prog->Comp.LocalSizeVariable =
2086 linked_shader->info.Comp.LocalSizeVariable;
2087 }
2088
2089
2090 /**
2091 * Combine a group of shaders for a single stage to generate a linked shader
2092 *
2093 * \note
2094 * If this function is supplied a single shader, it is cloned, and the new
2095 * shader is returned.
2096 */
2097 struct gl_linked_shader *
2098 link_intrastage_shaders(void *mem_ctx,
2099 struct gl_context *ctx,
2100 struct gl_shader_program *prog,
2101 struct gl_shader **shader_list,
2102 unsigned num_shaders,
2103 bool allow_missing_main)
2104 {
2105 struct gl_uniform_block *ubo_blocks = NULL;
2106 struct gl_uniform_block *ssbo_blocks = NULL;
2107 unsigned num_ubo_blocks = 0;
2108 unsigned num_ssbo_blocks = 0;
2109
2110 /* Check that global variables defined in multiple shaders are consistent.
2111 */
2112 glsl_symbol_table variables;
2113 for (unsigned i = 0; i < num_shaders; i++) {
2114 if (shader_list[i] == NULL)
2115 continue;
2116 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2117 }
2118
2119 if (!prog->data->LinkStatus)
2120 return NULL;
2121
2122 /* Check that interface blocks defined in multiple shaders are consistent.
2123 */
2124 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2125 num_shaders);
2126 if (!prog->data->LinkStatus)
2127 return NULL;
2128
2129 /* Check that there is only a single definition of each function signature
2130 * across all shaders.
2131 */
2132 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2133 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2134 ir_function *const f = node->as_function();
2135
2136 if (f == NULL)
2137 continue;
2138
2139 for (unsigned j = i + 1; j < num_shaders; j++) {
2140 ir_function *const other =
2141 shader_list[j]->symbols->get_function(f->name);
2142
2143 /* If the other shader has no function (and therefore no function
2144 * signatures) with the same name, skip to the next shader.
2145 */
2146 if (other == NULL)
2147 continue;
2148
2149 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2150 if (!sig->is_defined)
2151 continue;
2152
2153 ir_function_signature *other_sig =
2154 other->exact_matching_signature(NULL, &sig->parameters);
2155
2156 if (other_sig != NULL && other_sig->is_defined) {
2157 linker_error(prog, "function `%s' is multiply defined\n",
2158 f->name);
2159 return NULL;
2160 }
2161 }
2162 }
2163 }
2164 }
2165
2166 /* Find the shader that defines main, and make a clone of it.
2167 *
2168 * Starting with the clone, search for undefined references. If one is
2169 * found, find the shader that defines it. Clone the reference and add
2170 * it to the shader. Repeat until there are no undefined references or
2171 * until a reference cannot be resolved.
2172 */
2173 gl_shader *main = NULL;
2174 for (unsigned i = 0; i < num_shaders; i++) {
2175 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2176 main = shader_list[i];
2177 break;
2178 }
2179 }
2180
2181 if (main == NULL && allow_missing_main)
2182 main = shader_list[0];
2183
2184 if (main == NULL) {
2185 linker_error(prog, "%s shader lacks `main'\n",
2186 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2187 return NULL;
2188 }
2189
2190 gl_linked_shader *linked = ctx->Driver.NewShader(shader_list[0]->Stage);
2191
2192 /* Create program and attach it to the linked shader */
2193 struct gl_program *gl_prog =
2194 ctx->Driver.NewProgram(ctx,
2195 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2196 prog->Name);
2197 if (!gl_prog) {
2198 prog->data->LinkStatus = false;
2199 _mesa_delete_linked_shader(ctx, linked);
2200 return NULL;
2201 }
2202
2203 /* Don't use _mesa_reference_program() just take ownership */
2204 linked->Program = gl_prog;
2205
2206 linked->ir = new(linked) exec_list;
2207 clone_ir_list(mem_ctx, linked->ir, main->ir);
2208
2209 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2210 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2211 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2212 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2213 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2214 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2215 num_shaders);
2216
2217 populate_symbol_table(linked);
2218
2219 /* The pointer to the main function in the final linked shader (i.e., the
2220 * copy of the original shader that contained the main function).
2221 */
2222 ir_function_signature *const main_sig =
2223 _mesa_get_main_function_signature(linked->symbols);
2224
2225 /* Move any instructions other than variable declarations or function
2226 * declarations into main.
2227 */
2228 if (main_sig != NULL) {
2229 exec_node *insertion_point =
2230 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2231 linked);
2232
2233 for (unsigned i = 0; i < num_shaders; i++) {
2234 if (shader_list[i] == main)
2235 continue;
2236
2237 insertion_point = move_non_declarations(shader_list[i]->ir,
2238 insertion_point, true, linked);
2239 }
2240 }
2241
2242 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2243 _mesa_delete_linked_shader(ctx, linked);
2244 return NULL;
2245 }
2246
2247 /* Make a pass over all variable declarations to ensure that arrays with
2248 * unspecified sizes have a size specified. The size is inferred from the
2249 * max_array_access field.
2250 */
2251 array_sizing_visitor v;
2252 v.run(linked->ir);
2253 v.fixup_unnamed_interface_types();
2254
2255 /* Link up uniform blocks defined within this stage. */
2256 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2257 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2258
2259 if (!prog->data->LinkStatus) {
2260 _mesa_delete_linked_shader(ctx, linked);
2261 return NULL;
2262 }
2263
2264 /* Copy ubo blocks to linked shader list */
2265 linked->UniformBlocks =
2266 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2267 ralloc_steal(linked, ubo_blocks);
2268 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2269 linked->UniformBlocks[i] = &ubo_blocks[i];
2270 }
2271 linked->NumUniformBlocks = num_ubo_blocks;
2272
2273 /* Copy ssbo blocks to linked shader list */
2274 linked->ShaderStorageBlocks =
2275 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2276 ralloc_steal(linked, ssbo_blocks);
2277 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2278 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2279 }
2280 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2281
2282 /* At this point linked should contain all of the linked IR, so
2283 * validate it to make sure nothing went wrong.
2284 */
2285 validate_ir_tree(linked->ir);
2286
2287 /* Set the size of geometry shader input arrays */
2288 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2289 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2290 array_resize_visitor input_resize_visitor(num_vertices, prog,
2291 MESA_SHADER_GEOMETRY);
2292 foreach_in_list(ir_instruction, ir, linked->ir) {
2293 ir->accept(&input_resize_visitor);
2294 }
2295 }
2296
2297 if (ctx->Const.VertexID_is_zero_based)
2298 lower_vertex_id(linked);
2299
2300 return linked;
2301 }
2302
2303 /**
2304 * Update the sizes of linked shader uniform arrays to the maximum
2305 * array index used.
2306 *
2307 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2308 *
2309 * If one or more elements of an array are active,
2310 * GetActiveUniform will return the name of the array in name,
2311 * subject to the restrictions listed above. The type of the array
2312 * is returned in type. The size parameter contains the highest
2313 * array element index used, plus one. The compiler or linker
2314 * determines the highest index used. There will be only one
2315 * active uniform reported by the GL per uniform array.
2316
2317 */
2318 static void
2319 update_array_sizes(struct gl_shader_program *prog)
2320 {
2321 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2322 if (prog->_LinkedShaders[i] == NULL)
2323 continue;
2324
2325 bool types_were_updated = false;
2326
2327 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2328 ir_variable *const var = node->as_variable();
2329
2330 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2331 !var->type->is_array())
2332 continue;
2333
2334 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2335 * will not be eliminated. Since we always do std140, just
2336 * don't resize arrays in UBOs.
2337 *
2338 * Atomic counters are supposed to get deterministic
2339 * locations assigned based on the declaration ordering and
2340 * sizes, array compaction would mess that up.
2341 *
2342 * Subroutine uniforms are not removed.
2343 */
2344 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2345 var->type->contains_subroutine() || var->constant_initializer)
2346 continue;
2347
2348 int size = var->data.max_array_access;
2349 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2350 if (prog->_LinkedShaders[j] == NULL)
2351 continue;
2352
2353 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2354 ir_variable *other_var = node2->as_variable();
2355 if (!other_var)
2356 continue;
2357
2358 if (strcmp(var->name, other_var->name) == 0 &&
2359 other_var->data.max_array_access > size) {
2360 size = other_var->data.max_array_access;
2361 }
2362 }
2363 }
2364
2365 if (size + 1 != (int)var->type->length) {
2366 /* If this is a built-in uniform (i.e., it's backed by some
2367 * fixed-function state), adjust the number of state slots to
2368 * match the new array size. The number of slots per array entry
2369 * is not known. It seems safe to assume that the total number of
2370 * slots is an integer multiple of the number of array elements.
2371 * Determine the number of slots per array element by dividing by
2372 * the old (total) size.
2373 */
2374 const unsigned num_slots = var->get_num_state_slots();
2375 if (num_slots > 0) {
2376 var->set_num_state_slots((size + 1)
2377 * (num_slots / var->type->length));
2378 }
2379
2380 var->type = glsl_type::get_array_instance(var->type->fields.array,
2381 size + 1);
2382 types_were_updated = true;
2383 }
2384 }
2385
2386 /* Update the types of dereferences in case we changed any. */
2387 if (types_were_updated) {
2388 deref_type_updater v;
2389 v.run(prog->_LinkedShaders[i]->ir);
2390 }
2391 }
2392 }
2393
2394 /**
2395 * Resize tessellation evaluation per-vertex inputs to the size of
2396 * tessellation control per-vertex outputs.
2397 */
2398 static void
2399 resize_tes_inputs(struct gl_context *ctx,
2400 struct gl_shader_program *prog)
2401 {
2402 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2403 return;
2404
2405 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2406 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2407
2408 /* If no control shader is present, then the TES inputs are statically
2409 * sized to MaxPatchVertices; the actual size of the arrays won't be
2410 * known until draw time.
2411 */
2412 const int num_vertices = tcs
2413 ? tcs->info.TessCtrl.VerticesOut
2414 : ctx->Const.MaxPatchVertices;
2415
2416 array_resize_visitor input_resize_visitor(num_vertices, prog,
2417 MESA_SHADER_TESS_EVAL);
2418 foreach_in_list(ir_instruction, ir, tes->ir) {
2419 ir->accept(&input_resize_visitor);
2420 }
2421
2422 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2423 /* Convert the gl_PatchVerticesIn system value into a constant, since
2424 * the value is known at this point.
2425 */
2426 foreach_in_list(ir_instruction, ir, tes->ir) {
2427 ir_variable *var = ir->as_variable();
2428 if (var && var->data.mode == ir_var_system_value &&
2429 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2430 void *mem_ctx = ralloc_parent(var);
2431 var->data.location = 0;
2432 var->data.explicit_location = false;
2433 if (tcs) {
2434 var->data.mode = ir_var_auto;
2435 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2436 } else {
2437 var->data.mode = ir_var_uniform;
2438 var->data.how_declared = ir_var_hidden;
2439 var->allocate_state_slots(1);
2440 ir_state_slot *slot0 = &var->get_state_slots()[0];
2441 slot0->swizzle = SWIZZLE_XXXX;
2442 slot0->tokens[0] = STATE_INTERNAL;
2443 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2444 for (int i = 2; i < STATE_LENGTH; i++)
2445 slot0->tokens[i] = 0;
2446 }
2447 }
2448 }
2449 }
2450 }
2451
2452 /**
2453 * Find a contiguous set of available bits in a bitmask.
2454 *
2455 * \param used_mask Bits representing used (1) and unused (0) locations
2456 * \param needed_count Number of contiguous bits needed.
2457 *
2458 * \return
2459 * Base location of the available bits on success or -1 on failure.
2460 */
2461 int
2462 find_available_slots(unsigned used_mask, unsigned needed_count)
2463 {
2464 unsigned needed_mask = (1 << needed_count) - 1;
2465 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2466
2467 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2468 * cannot optimize possibly infinite loops" for the loop below.
2469 */
2470 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2471 return -1;
2472
2473 for (int i = 0; i <= max_bit_to_test; i++) {
2474 if ((needed_mask & ~used_mask) == needed_mask)
2475 return i;
2476
2477 needed_mask <<= 1;
2478 }
2479
2480 return -1;
2481 }
2482
2483
2484 /**
2485 * Assign locations for either VS inputs or FS outputs
2486 *
2487 * \param mem_ctx Temporary ralloc context used for linking
2488 * \param prog Shader program whose variables need locations assigned
2489 * \param constants Driver specific constant values for the program.
2490 * \param target_index Selector for the program target to receive location
2491 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2492 * \c MESA_SHADER_FRAGMENT.
2493 *
2494 * \return
2495 * If locations are successfully assigned, true is returned. Otherwise an
2496 * error is emitted to the shader link log and false is returned.
2497 */
2498 bool
2499 assign_attribute_or_color_locations(void *mem_ctx,
2500 gl_shader_program *prog,
2501 struct gl_constants *constants,
2502 unsigned target_index)
2503 {
2504 /* Maximum number of generic locations. This corresponds to either the
2505 * maximum number of draw buffers or the maximum number of generic
2506 * attributes.
2507 */
2508 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2509 constants->Program[target_index].MaxAttribs :
2510 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2511
2512 /* Mark invalid locations as being used.
2513 */
2514 unsigned used_locations = (max_index >= 32)
2515 ? ~0 : ~((1 << max_index) - 1);
2516 unsigned double_storage_locations = 0;
2517
2518 assert((target_index == MESA_SHADER_VERTEX)
2519 || (target_index == MESA_SHADER_FRAGMENT));
2520
2521 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2522 if (sh == NULL)
2523 return true;
2524
2525 /* Operate in a total of four passes.
2526 *
2527 * 1. Invalidate the location assignments for all vertex shader inputs.
2528 *
2529 * 2. Assign locations for inputs that have user-defined (via
2530 * glBindVertexAttribLocation) locations and outputs that have
2531 * user-defined locations (via glBindFragDataLocation).
2532 *
2533 * 3. Sort the attributes without assigned locations by number of slots
2534 * required in decreasing order. Fragmentation caused by attribute
2535 * locations assigned by the application may prevent large attributes
2536 * from having enough contiguous space.
2537 *
2538 * 4. Assign locations to any inputs without assigned locations.
2539 */
2540
2541 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2542 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2543
2544 const enum ir_variable_mode direction =
2545 (target_index == MESA_SHADER_VERTEX)
2546 ? ir_var_shader_in : ir_var_shader_out;
2547
2548
2549 /* Temporary storage for the set of attributes that need locations assigned.
2550 */
2551 struct temp_attr {
2552 unsigned slots;
2553 ir_variable *var;
2554
2555 /* Used below in the call to qsort. */
2556 static int compare(const void *a, const void *b)
2557 {
2558 const temp_attr *const l = (const temp_attr *) a;
2559 const temp_attr *const r = (const temp_attr *) b;
2560
2561 /* Reversed because we want a descending order sort below. */
2562 return r->slots - l->slots;
2563 }
2564 } to_assign[32];
2565 assert(max_index <= 32);
2566
2567 /* Temporary array for the set of attributes that have locations assigned.
2568 */
2569 ir_variable *assigned[16];
2570
2571 unsigned num_attr = 0;
2572 unsigned assigned_attr = 0;
2573
2574 foreach_in_list(ir_instruction, node, sh->ir) {
2575 ir_variable *const var = node->as_variable();
2576
2577 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2578 continue;
2579
2580 if (var->data.explicit_location) {
2581 var->data.is_unmatched_generic_inout = 0;
2582 if ((var->data.location >= (int)(max_index + generic_base))
2583 || (var->data.location < 0)) {
2584 linker_error(prog,
2585 "invalid explicit location %d specified for `%s'\n",
2586 (var->data.location < 0)
2587 ? var->data.location
2588 : var->data.location - generic_base,
2589 var->name);
2590 return false;
2591 }
2592 } else if (target_index == MESA_SHADER_VERTEX) {
2593 unsigned binding;
2594
2595 if (prog->AttributeBindings->get(binding, var->name)) {
2596 assert(binding >= VERT_ATTRIB_GENERIC0);
2597 var->data.location = binding;
2598 var->data.is_unmatched_generic_inout = 0;
2599 }
2600 } else if (target_index == MESA_SHADER_FRAGMENT) {
2601 unsigned binding;
2602 unsigned index;
2603 const char *name = var->name;
2604 const glsl_type *type = var->type;
2605
2606 while (type) {
2607 /* Check if there's a binding for the variable name */
2608 if (prog->FragDataBindings->get(binding, name)) {
2609 assert(binding >= FRAG_RESULT_DATA0);
2610 var->data.location = binding;
2611 var->data.is_unmatched_generic_inout = 0;
2612
2613 if (prog->FragDataIndexBindings->get(index, name)) {
2614 var->data.index = index;
2615 }
2616 break;
2617 }
2618
2619 /* If not, but it's an array type, look for name[0] */
2620 if (type->is_array()) {
2621 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2622 type = type->fields.array;
2623 continue;
2624 }
2625
2626 break;
2627 }
2628 }
2629
2630 if (strcmp(var->name, "gl_LastFragData") == 0)
2631 continue;
2632
2633 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2634 *
2635 * "Output binding assignments will cause LinkProgram to fail:
2636 * ...
2637 * If the program has an active output assigned to a location greater
2638 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2639 * an active output assigned an index greater than or equal to one;"
2640 */
2641 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2642 var->data.location - generic_base >=
2643 (int) constants->MaxDualSourceDrawBuffers) {
2644 linker_error(prog,
2645 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2646 "with index %u for %s\n",
2647 var->data.location - generic_base, var->data.index,
2648 var->name);
2649 return false;
2650 }
2651
2652 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2653
2654 /* If the variable is not a built-in and has a location statically
2655 * assigned in the shader (presumably via a layout qualifier), make sure
2656 * that it doesn't collide with other assigned locations. Otherwise,
2657 * add it to the list of variables that need linker-assigned locations.
2658 */
2659 if (var->data.location != -1) {
2660 if (var->data.location >= generic_base && var->data.index < 1) {
2661 /* From page 61 of the OpenGL 4.0 spec:
2662 *
2663 * "LinkProgram will fail if the attribute bindings assigned
2664 * by BindAttribLocation do not leave not enough space to
2665 * assign a location for an active matrix attribute or an
2666 * active attribute array, both of which require multiple
2667 * contiguous generic attributes."
2668 *
2669 * I think above text prohibits the aliasing of explicit and
2670 * automatic assignments. But, aliasing is allowed in manual
2671 * assignments of attribute locations. See below comments for
2672 * the details.
2673 *
2674 * From OpenGL 4.0 spec, page 61:
2675 *
2676 * "It is possible for an application to bind more than one
2677 * attribute name to the same location. This is referred to as
2678 * aliasing. This will only work if only one of the aliased
2679 * attributes is active in the executable program, or if no
2680 * path through the shader consumes more than one attribute of
2681 * a set of attributes aliased to the same location. A link
2682 * error can occur if the linker determines that every path
2683 * through the shader consumes multiple aliased attributes,
2684 * but implementations are not required to generate an error
2685 * in this case."
2686 *
2687 * From GLSL 4.30 spec, page 54:
2688 *
2689 * "A program will fail to link if any two non-vertex shader
2690 * input variables are assigned to the same location. For
2691 * vertex shaders, multiple input variables may be assigned
2692 * to the same location using either layout qualifiers or via
2693 * the OpenGL API. However, such aliasing is intended only to
2694 * support vertex shaders where each execution path accesses
2695 * at most one input per each location. Implementations are
2696 * permitted, but not required, to generate link-time errors
2697 * if they detect that every path through the vertex shader
2698 * executable accesses multiple inputs assigned to any single
2699 * location. For all shader types, a program will fail to link
2700 * if explicit location assignments leave the linker unable
2701 * to find space for other variables without explicit
2702 * assignments."
2703 *
2704 * From OpenGL ES 3.0 spec, page 56:
2705 *
2706 * "Binding more than one attribute name to the same location
2707 * is referred to as aliasing, and is not permitted in OpenGL
2708 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2709 * fail when this condition exists. However, aliasing is
2710 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2711 * This will only work if only one of the aliased attributes
2712 * is active in the executable program, or if no path through
2713 * the shader consumes more than one attribute of a set of
2714 * attributes aliased to the same location. A link error can
2715 * occur if the linker determines that every path through the
2716 * shader consumes multiple aliased attributes, but implemen-
2717 * tations are not required to generate an error in this case."
2718 *
2719 * After looking at above references from OpenGL, OpenGL ES and
2720 * GLSL specifications, we allow aliasing of vertex input variables
2721 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2722 *
2723 * NOTE: This is not required by the spec but its worth mentioning
2724 * here that we're not doing anything to make sure that no path
2725 * through the vertex shader executable accesses multiple inputs
2726 * assigned to any single location.
2727 */
2728
2729 /* Mask representing the contiguous slots that will be used by
2730 * this attribute.
2731 */
2732 const unsigned attr = var->data.location - generic_base;
2733 const unsigned use_mask = (1 << slots) - 1;
2734 const char *const string = (target_index == MESA_SHADER_VERTEX)
2735 ? "vertex shader input" : "fragment shader output";
2736
2737 /* Generate a link error if the requested locations for this
2738 * attribute exceed the maximum allowed attribute location.
2739 */
2740 if (attr + slots > max_index) {
2741 linker_error(prog,
2742 "insufficient contiguous locations "
2743 "available for %s `%s' %d %d %d\n", string,
2744 var->name, used_locations, use_mask, attr);
2745 return false;
2746 }
2747
2748 /* Generate a link error if the set of bits requested for this
2749 * attribute overlaps any previously allocated bits.
2750 */
2751 if ((~(use_mask << attr) & used_locations) != used_locations) {
2752 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2753 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2754 * 4.40 spec:
2755 *
2756 * "Additionally, for fragment shader outputs, if two
2757 * variables are placed within the same location, they
2758 * must have the same underlying type (floating-point or
2759 * integer). No component aliasing of output variables or
2760 * members is allowed.
2761 */
2762 for (unsigned i = 0; i < assigned_attr; i++) {
2763 unsigned assigned_slots =
2764 assigned[i]->type->count_attribute_slots(false);
2765 unsigned assig_attr =
2766 assigned[i]->data.location - generic_base;
2767 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2768
2769 if ((assigned_use_mask << assig_attr) &
2770 (use_mask << attr)) {
2771
2772 const glsl_type *assigned_type =
2773 assigned[i]->type->without_array();
2774 const glsl_type *type = var->type->without_array();
2775 if (assigned_type->base_type != type->base_type) {
2776 linker_error(prog, "types do not match for aliased"
2777 " %ss %s and %s\n", string,
2778 assigned[i]->name, var->name);
2779 return false;
2780 }
2781
2782 unsigned assigned_component_mask =
2783 ((1 << assigned_type->vector_elements) - 1) <<
2784 assigned[i]->data.location_frac;
2785 unsigned component_mask =
2786 ((1 << type->vector_elements) - 1) <<
2787 var->data.location_frac;
2788 if (assigned_component_mask & component_mask) {
2789 linker_error(prog, "overlapping component is "
2790 "assigned to %ss %s and %s "
2791 "(component=%d)\n",
2792 string, assigned[i]->name, var->name,
2793 var->data.location_frac);
2794 return false;
2795 }
2796 }
2797 }
2798 } else if (target_index == MESA_SHADER_FRAGMENT ||
2799 (prog->IsES && prog->Version >= 300)) {
2800 linker_error(prog, "overlapping location is assigned "
2801 "to %s `%s' %d %d %d\n", string, var->name,
2802 used_locations, use_mask, attr);
2803 return false;
2804 } else {
2805 linker_warning(prog, "overlapping location is assigned "
2806 "to %s `%s' %d %d %d\n", string, var->name,
2807 used_locations, use_mask, attr);
2808 }
2809 }
2810
2811 used_locations |= (use_mask << attr);
2812
2813 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2814 *
2815 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2816 * active attribute variables may fail to link, unless
2817 * device-dependent optimizations are able to make the program
2818 * fit within available hardware resources. For the purposes
2819 * of this test, attribute variables of the type dvec3, dvec4,
2820 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2821 * count as consuming twice as many attributes as equivalent
2822 * single-precision types. While these types use the same number
2823 * of generic attributes as their single-precision equivalents,
2824 * implementations are permitted to consume two single-precision
2825 * vectors of internal storage for each three- or four-component
2826 * double-precision vector."
2827 *
2828 * Mark this attribute slot as taking up twice as much space
2829 * so we can count it properly against limits. According to
2830 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2831 * is optional behavior, but it seems preferable.
2832 */
2833 if (var->type->without_array()->is_dual_slot())
2834 double_storage_locations |= (use_mask << attr);
2835 }
2836
2837 assigned[assigned_attr] = var;
2838 assigned_attr++;
2839
2840 continue;
2841 }
2842
2843 if (num_attr >= max_index) {
2844 linker_error(prog, "too many %s (max %u)",
2845 target_index == MESA_SHADER_VERTEX ?
2846 "vertex shader inputs" : "fragment shader outputs",
2847 max_index);
2848 return false;
2849 }
2850 to_assign[num_attr].slots = slots;
2851 to_assign[num_attr].var = var;
2852 num_attr++;
2853 }
2854
2855 if (target_index == MESA_SHADER_VERTEX) {
2856 unsigned total_attribs_size =
2857 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2858 _mesa_bitcount(double_storage_locations);
2859 if (total_attribs_size > max_index) {
2860 linker_error(prog,
2861 "attempt to use %d vertex attribute slots only %d available ",
2862 total_attribs_size, max_index);
2863 return false;
2864 }
2865 }
2866
2867 /* If all of the attributes were assigned locations by the application (or
2868 * are built-in attributes with fixed locations), return early. This should
2869 * be the common case.
2870 */
2871 if (num_attr == 0)
2872 return true;
2873
2874 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2875
2876 if (target_index == MESA_SHADER_VERTEX) {
2877 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2878 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2879 * reserved to prevent it from being automatically allocated below.
2880 */
2881 find_deref_visitor find("gl_Vertex");
2882 find.run(sh->ir);
2883 if (find.variable_found())
2884 used_locations |= (1 << 0);
2885 }
2886
2887 for (unsigned i = 0; i < num_attr; i++) {
2888 /* Mask representing the contiguous slots that will be used by this
2889 * attribute.
2890 */
2891 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2892
2893 int location = find_available_slots(used_locations, to_assign[i].slots);
2894
2895 if (location < 0) {
2896 const char *const string = (target_index == MESA_SHADER_VERTEX)
2897 ? "vertex shader input" : "fragment shader output";
2898
2899 linker_error(prog,
2900 "insufficient contiguous locations "
2901 "available for %s `%s'\n",
2902 string, to_assign[i].var->name);
2903 return false;
2904 }
2905
2906 to_assign[i].var->data.location = generic_base + location;
2907 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2908 used_locations |= (use_mask << location);
2909
2910 if (to_assign[i].var->type->without_array()->is_dual_slot())
2911 double_storage_locations |= (use_mask << location);
2912 }
2913
2914 /* Now that we have all the locations, from the GL 4.5 core spec, section
2915 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2916 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2917 * as equivalent single-precision types.
2918 */
2919 if (target_index == MESA_SHADER_VERTEX) {
2920 unsigned total_attribs_size =
2921 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2922 _mesa_bitcount(double_storage_locations);
2923 if (total_attribs_size > max_index) {
2924 linker_error(prog,
2925 "attempt to use %d vertex attribute slots only %d available ",
2926 total_attribs_size, max_index);
2927 return false;
2928 }
2929 }
2930
2931 return true;
2932 }
2933
2934 /**
2935 * Match explicit locations of outputs to inputs and deactivate the
2936 * unmatch flag if found so we don't optimise them away.
2937 */
2938 static void
2939 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2940 gl_linked_shader *consumer)
2941 {
2942 glsl_symbol_table parameters;
2943 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2944 { {NULL, NULL} };
2945
2946 /* Find all shader outputs in the "producer" stage.
2947 */
2948 foreach_in_list(ir_instruction, node, producer->ir) {
2949 ir_variable *const var = node->as_variable();
2950
2951 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2952 continue;
2953
2954 if (var->data.explicit_location &&
2955 var->data.location >= VARYING_SLOT_VAR0) {
2956 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2957 if (explicit_locations[idx][var->data.location_frac] == NULL)
2958 explicit_locations[idx][var->data.location_frac] = var;
2959 }
2960 }
2961
2962 /* Match inputs to outputs */
2963 foreach_in_list(ir_instruction, node, consumer->ir) {
2964 ir_variable *const input = node->as_variable();
2965
2966 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2967 continue;
2968
2969 ir_variable *output = NULL;
2970 if (input->data.explicit_location
2971 && input->data.location >= VARYING_SLOT_VAR0) {
2972 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2973 [input->data.location_frac];
2974
2975 if (output != NULL){
2976 input->data.is_unmatched_generic_inout = 0;
2977 output->data.is_unmatched_generic_inout = 0;
2978 }
2979 }
2980 }
2981 }
2982
2983 /**
2984 * Store the gl_FragDepth layout in the gl_shader_program struct.
2985 */
2986 static void
2987 store_fragdepth_layout(struct gl_shader_program *prog)
2988 {
2989 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2990 return;
2991 }
2992
2993 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2994
2995 /* We don't look up the gl_FragDepth symbol directly because if
2996 * gl_FragDepth is not used in the shader, it's removed from the IR.
2997 * However, the symbol won't be removed from the symbol table.
2998 *
2999 * We're only interested in the cases where the variable is NOT removed
3000 * from the IR.
3001 */
3002 foreach_in_list(ir_instruction, node, ir) {
3003 ir_variable *const var = node->as_variable();
3004
3005 if (var == NULL || var->data.mode != ir_var_shader_out) {
3006 continue;
3007 }
3008
3009 if (strcmp(var->name, "gl_FragDepth") == 0) {
3010 switch (var->data.depth_layout) {
3011 case ir_depth_layout_none:
3012 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3013 return;
3014 case ir_depth_layout_any:
3015 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3016 return;
3017 case ir_depth_layout_greater:
3018 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3019 return;
3020 case ir_depth_layout_less:
3021 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3022 return;
3023 case ir_depth_layout_unchanged:
3024 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3025 return;
3026 default:
3027 assert(0);
3028 return;
3029 }
3030 }
3031 }
3032 }
3033
3034 /**
3035 * Validate the resources used by a program versus the implementation limits
3036 */
3037 static void
3038 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3039 {
3040 unsigned total_uniform_blocks = 0;
3041 unsigned total_shader_storage_blocks = 0;
3042
3043 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3044 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3045
3046 if (sh == NULL)
3047 continue;
3048
3049 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
3050 linker_error(prog, "Too many %s shader texture samplers\n",
3051 _mesa_shader_stage_to_string(i));
3052 }
3053
3054 if (sh->num_uniform_components >
3055 ctx->Const.Program[i].MaxUniformComponents) {
3056 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3057 linker_warning(prog, "Too many %s shader default uniform block "
3058 "components, but the driver will try to optimize "
3059 "them out; this is non-portable out-of-spec "
3060 "behavior\n",
3061 _mesa_shader_stage_to_string(i));
3062 } else {
3063 linker_error(prog, "Too many %s shader default uniform block "
3064 "components\n",
3065 _mesa_shader_stage_to_string(i));
3066 }
3067 }
3068
3069 if (sh->num_combined_uniform_components >
3070 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3071 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3072 linker_warning(prog, "Too many %s shader uniform components, "
3073 "but the driver will try to optimize them out; "
3074 "this is non-portable out-of-spec behavior\n",
3075 _mesa_shader_stage_to_string(i));
3076 } else {
3077 linker_error(prog, "Too many %s shader uniform components\n",
3078 _mesa_shader_stage_to_string(i));
3079 }
3080 }
3081
3082 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3083 total_uniform_blocks += sh->NumUniformBlocks;
3084
3085 const unsigned max_uniform_blocks =
3086 ctx->Const.Program[i].MaxUniformBlocks;
3087 if (max_uniform_blocks < sh->NumUniformBlocks) {
3088 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3089 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3090 max_uniform_blocks);
3091 }
3092
3093 const unsigned max_shader_storage_blocks =
3094 ctx->Const.Program[i].MaxShaderStorageBlocks;
3095 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3096 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3097 _mesa_shader_stage_to_string(i),
3098 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3099 }
3100 }
3101
3102 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3103 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3104 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3105 }
3106
3107 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3108 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3109 total_shader_storage_blocks,
3110 ctx->Const.MaxCombinedShaderStorageBlocks);
3111 }
3112
3113 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3114 if (prog->data->UniformBlocks[i].UniformBufferSize >
3115 ctx->Const.MaxUniformBlockSize) {
3116 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3117 prog->data->UniformBlocks[i].Name,
3118 prog->data->UniformBlocks[i].UniformBufferSize,
3119 ctx->Const.MaxUniformBlockSize);
3120 }
3121 }
3122
3123 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3124 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3125 ctx->Const.MaxShaderStorageBlockSize) {
3126 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3127 prog->data->ShaderStorageBlocks[i].Name,
3128 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3129 ctx->Const.MaxShaderStorageBlockSize);
3130 }
3131 }
3132 }
3133
3134 static void
3135 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3136 {
3137 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3138 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3139 int count;
3140 if (!sh)
3141 continue;
3142
3143 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3144 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3145 continue;
3146
3147 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3148
3149 if (!uni)
3150 continue;
3151
3152 sh->NumSubroutineUniforms++;
3153 count = 0;
3154 if (sh->NumSubroutineFunctions == 0) {
3155 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3156 continue;
3157 }
3158 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3159 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3160 for (int k = 0; k < fn->num_compat_types; k++) {
3161 if (fn->types[k] == uni->type) {
3162 count++;
3163 break;
3164 }
3165 }
3166 }
3167 uni->num_compatible_subroutines = count;
3168 }
3169 }
3170 }
3171
3172 static void
3173 check_subroutine_resources(struct gl_shader_program *prog)
3174 {
3175 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3176 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3177
3178 if (sh) {
3179 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3180 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3181 _mesa_shader_stage_to_string(i));
3182 }
3183 }
3184 }
3185 /**
3186 * Validate shader image resources.
3187 */
3188 static void
3189 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3190 {
3191 unsigned total_image_units = 0;
3192 unsigned fragment_outputs = 0;
3193 unsigned total_shader_storage_blocks = 0;
3194
3195 if (!ctx->Extensions.ARB_shader_image_load_store)
3196 return;
3197
3198 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3199 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3200
3201 if (sh) {
3202 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3203 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3204 _mesa_shader_stage_to_string(i), sh->NumImages,
3205 ctx->Const.Program[i].MaxImageUniforms);
3206
3207 total_image_units += sh->NumImages;
3208 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3209
3210 if (i == MESA_SHADER_FRAGMENT) {
3211 foreach_in_list(ir_instruction, node, sh->ir) {
3212 ir_variable *var = node->as_variable();
3213 if (var && var->data.mode == ir_var_shader_out)
3214 /* since there are no double fs outputs - pass false */
3215 fragment_outputs += var->type->count_attribute_slots(false);
3216 }
3217 }
3218 }
3219 }
3220
3221 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3222 linker_error(prog, "Too many combined image uniforms\n");
3223
3224 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3225 ctx->Const.MaxCombinedShaderOutputResources)
3226 linker_error(prog, "Too many combined image uniforms, shader storage "
3227 " buffers and fragment outputs\n");
3228 }
3229
3230
3231 /**
3232 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3233 * for a variable, checks for overlaps between other uniforms using explicit
3234 * locations.
3235 */
3236 static int
3237 reserve_explicit_locations(struct gl_shader_program *prog,
3238 string_to_uint_map *map, ir_variable *var)
3239 {
3240 unsigned slots = var->type->uniform_locations();
3241 unsigned max_loc = var->data.location + slots - 1;
3242 unsigned return_value = slots;
3243
3244 /* Resize remap table if locations do not fit in the current one. */
3245 if (max_loc + 1 > prog->NumUniformRemapTable) {
3246 prog->UniformRemapTable =
3247 reralloc(prog, prog->UniformRemapTable,
3248 gl_uniform_storage *,
3249 max_loc + 1);
3250
3251 if (!prog->UniformRemapTable) {
3252 linker_error(prog, "Out of memory during linking.\n");
3253 return -1;
3254 }
3255
3256 /* Initialize allocated space. */
3257 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3258 prog->UniformRemapTable[i] = NULL;
3259
3260 prog->NumUniformRemapTable = max_loc + 1;
3261 }
3262
3263 for (unsigned i = 0; i < slots; i++) {
3264 unsigned loc = var->data.location + i;
3265
3266 /* Check if location is already used. */
3267 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3268
3269 /* Possibly same uniform from a different stage, this is ok. */
3270 unsigned hash_loc;
3271 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3272 return_value = 0;
3273 continue;
3274 }
3275
3276 /* ARB_explicit_uniform_location specification states:
3277 *
3278 * "No two default-block uniform variables in the program can have
3279 * the same location, even if they are unused, otherwise a compiler
3280 * or linker error will be generated."
3281 */
3282 linker_error(prog,
3283 "location qualifier for uniform %s overlaps "
3284 "previously used location\n",
3285 var->name);
3286 return -1;
3287 }
3288
3289 /* Initialize location as inactive before optimization
3290 * rounds and location assignment.
3291 */
3292 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3293 }
3294
3295 /* Note, base location used for arrays. */
3296 map->put(var->data.location, var->name);
3297
3298 return return_value;
3299 }
3300
3301 static bool
3302 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3303 struct gl_linked_shader *sh,
3304 ir_variable *var)
3305 {
3306 unsigned slots = var->type->uniform_locations();
3307 unsigned max_loc = var->data.location + slots - 1;
3308
3309 /* Resize remap table if locations do not fit in the current one. */
3310 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3311 sh->SubroutineUniformRemapTable =
3312 reralloc(sh, sh->SubroutineUniformRemapTable,
3313 gl_uniform_storage *,
3314 max_loc + 1);
3315
3316 if (!sh->SubroutineUniformRemapTable) {
3317 linker_error(prog, "Out of memory during linking.\n");
3318 return false;
3319 }
3320
3321 /* Initialize allocated space. */
3322 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3323 sh->SubroutineUniformRemapTable[i] = NULL;
3324
3325 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3326 }
3327
3328 for (unsigned i = 0; i < slots; i++) {
3329 unsigned loc = var->data.location + i;
3330
3331 /* Check if location is already used. */
3332 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3333
3334 /* ARB_explicit_uniform_location specification states:
3335 * "No two subroutine uniform variables can have the same location
3336 * in the same shader stage, otherwise a compiler or linker error
3337 * will be generated."
3338 */
3339 linker_error(prog,
3340 "location qualifier for uniform %s overlaps "
3341 "previously used location\n",
3342 var->name);
3343 return false;
3344 }
3345
3346 /* Initialize location as inactive before optimization
3347 * rounds and location assignment.
3348 */
3349 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3350 }
3351
3352 return true;
3353 }
3354 /**
3355 * Check and reserve all explicit uniform locations, called before
3356 * any optimizations happen to handle also inactive uniforms and
3357 * inactive array elements that may get trimmed away.
3358 */
3359 static unsigned
3360 check_explicit_uniform_locations(struct gl_context *ctx,
3361 struct gl_shader_program *prog)
3362 {
3363 if (!ctx->Extensions.ARB_explicit_uniform_location)
3364 return 0;
3365
3366 /* This map is used to detect if overlapping explicit locations
3367 * occur with the same uniform (from different stage) or a different one.
3368 */
3369 string_to_uint_map *uniform_map = new string_to_uint_map;
3370
3371 if (!uniform_map) {
3372 linker_error(prog, "Out of memory during linking.\n");
3373 return 0;
3374 }
3375
3376 unsigned entries_total = 0;
3377 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3378 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3379
3380 if (!sh)
3381 continue;
3382
3383 foreach_in_list(ir_instruction, node, sh->ir) {
3384 ir_variable *var = node->as_variable();
3385 if (!var || var->data.mode != ir_var_uniform)
3386 continue;
3387
3388 if (var->data.explicit_location) {
3389 bool ret = false;
3390 if (var->type->without_array()->is_subroutine())
3391 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3392 else {
3393 int slots = reserve_explicit_locations(prog, uniform_map,
3394 var);
3395 if (slots != -1) {
3396 ret = true;
3397 entries_total += slots;
3398 }
3399 }
3400 if (!ret) {
3401 delete uniform_map;
3402 return 0;
3403 }
3404 }
3405 }
3406 }
3407
3408 struct empty_uniform_block *current_block = NULL;
3409
3410 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3411 /* We found empty space in UniformRemapTable. */
3412 if (prog->UniformRemapTable[i] == NULL) {
3413 /* We've found the beginning of a new continous block of empty slots */
3414 if (!current_block || current_block->start + current_block->slots != i) {
3415 current_block = rzalloc(prog, struct empty_uniform_block);
3416 current_block->start = i;
3417 exec_list_push_tail(&prog->EmptyUniformLocations,
3418 &current_block->link);
3419 }
3420
3421 /* The current block continues, so we simply increment its slots */
3422 current_block->slots++;
3423 }
3424 }
3425
3426 delete uniform_map;
3427 return entries_total;
3428 }
3429
3430 static bool
3431 should_add_buffer_variable(struct gl_shader_program *shProg,
3432 GLenum type, const char *name)
3433 {
3434 bool found_interface = false;
3435 unsigned block_name_len = 0;
3436 const char *block_name_dot = strchr(name, '.');
3437
3438 /* These rules only apply to buffer variables. So we return
3439 * true for the rest of types.
3440 */
3441 if (type != GL_BUFFER_VARIABLE)
3442 return true;
3443
3444 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3445 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3446 block_name_len = strlen(block_name);
3447
3448 const char *block_square_bracket = strchr(block_name, '[');
3449 if (block_square_bracket) {
3450 /* The block is part of an array of named interfaces,
3451 * for the name comparison we ignore the "[x]" part.
3452 */
3453 block_name_len -= strlen(block_square_bracket);
3454 }
3455
3456 if (block_name_dot) {
3457 /* Check if the variable name starts with the interface
3458 * name. The interface name (if present) should have the
3459 * length than the interface block name we are comparing to.
3460 */
3461 unsigned len = strlen(name) - strlen(block_name_dot);
3462 if (len != block_name_len)
3463 continue;
3464 }
3465
3466 if (strncmp(block_name, name, block_name_len) == 0) {
3467 found_interface = true;
3468 break;
3469 }
3470 }
3471
3472 /* We remove the interface name from the buffer variable name,
3473 * including the dot that follows it.
3474 */
3475 if (found_interface)
3476 name = name + block_name_len + 1;
3477
3478 /* The ARB_program_interface_query spec says:
3479 *
3480 * "For an active shader storage block member declared as an array, an
3481 * entry will be generated only for the first array element, regardless
3482 * of its type. For arrays of aggregate types, the enumeration rules
3483 * are applied recursively for the single enumerated array element."
3484 */
3485 const char *struct_first_dot = strchr(name, '.');
3486 const char *first_square_bracket = strchr(name, '[');
3487
3488 /* The buffer variable is on top level and it is not an array */
3489 if (!first_square_bracket) {
3490 return true;
3491 /* The shader storage block member is a struct, then generate the entry */
3492 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3493 return true;
3494 } else {
3495 /* Shader storage block member is an array, only generate an entry for the
3496 * first array element.
3497 */
3498 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3499 return true;
3500 }
3501
3502 return false;
3503 }
3504
3505 static bool
3506 add_program_resource(struct gl_shader_program *prog,
3507 struct set *resource_set,
3508 GLenum type, const void *data, uint8_t stages)
3509 {
3510 assert(data);
3511
3512 /* If resource already exists, do not add it again. */
3513 if (_mesa_set_search(resource_set, data))
3514 return true;
3515
3516 prog->ProgramResourceList =
3517 reralloc(prog,
3518 prog->ProgramResourceList,
3519 gl_program_resource,
3520 prog->NumProgramResourceList + 1);
3521
3522 if (!prog->ProgramResourceList) {
3523 linker_error(prog, "Out of memory during linking.\n");
3524 return false;
3525 }
3526
3527 struct gl_program_resource *res =
3528 &prog->ProgramResourceList[prog->NumProgramResourceList];
3529
3530 res->Type = type;
3531 res->Data = data;
3532 res->StageReferences = stages;
3533
3534 prog->NumProgramResourceList++;
3535
3536 _mesa_set_add(resource_set, data);
3537
3538 return true;
3539 }
3540
3541 /* Function checks if a variable var is a packed varying and
3542 * if given name is part of packed varying's list.
3543 *
3544 * If a variable is a packed varying, it has a name like
3545 * 'packed:a,b,c' where a, b and c are separate variables.
3546 */
3547 static bool
3548 included_in_packed_varying(ir_variable *var, const char *name)
3549 {
3550 if (strncmp(var->name, "packed:", 7) != 0)
3551 return false;
3552
3553 char *list = strdup(var->name + 7);
3554 assert(list);
3555
3556 bool found = false;
3557 char *saveptr;
3558 char *token = strtok_r(list, ",", &saveptr);
3559 while (token) {
3560 if (strcmp(token, name) == 0) {
3561 found = true;
3562 break;
3563 }
3564 token = strtok_r(NULL, ",", &saveptr);
3565 }
3566 free(list);
3567 return found;
3568 }
3569
3570 /**
3571 * Function builds a stage reference bitmask from variable name.
3572 */
3573 static uint8_t
3574 build_stageref(struct gl_shader_program *shProg, const char *name,
3575 unsigned mode)
3576 {
3577 uint8_t stages = 0;
3578
3579 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3580 * used for reference mask in gl_program_resource will need to be changed.
3581 */
3582 assert(MESA_SHADER_STAGES < 8);
3583
3584 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3585 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3586 if (!sh)
3587 continue;
3588
3589 /* Shader symbol table may contain variables that have
3590 * been optimized away. Search IR for the variable instead.
3591 */
3592 foreach_in_list(ir_instruction, node, sh->ir) {
3593 ir_variable *var = node->as_variable();
3594 if (var) {
3595 unsigned baselen = strlen(var->name);
3596
3597 if (included_in_packed_varying(var, name)) {
3598 stages |= (1 << i);
3599 break;
3600 }
3601
3602 /* Type needs to match if specified, otherwise we might
3603 * pick a variable with same name but different interface.
3604 */
3605 if (var->data.mode != mode)
3606 continue;
3607
3608 if (strncmp(var->name, name, baselen) == 0) {
3609 /* Check for exact name matches but also check for arrays and
3610 * structs.
3611 */
3612 if (name[baselen] == '\0' ||
3613 name[baselen] == '[' ||
3614 name[baselen] == '.') {
3615 stages |= (1 << i);
3616 break;
3617 }
3618 }
3619 }
3620 }
3621 }
3622 return stages;
3623 }
3624
3625 /**
3626 * Create gl_shader_variable from ir_variable class.
3627 */
3628 static gl_shader_variable *
3629 create_shader_variable(struct gl_shader_program *shProg,
3630 const ir_variable *in,
3631 const char *name, const glsl_type *type,
3632 const glsl_type *interface_type,
3633 bool use_implicit_location, int location,
3634 const glsl_type *outermost_struct_type)
3635 {
3636 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3637 if (!out)
3638 return NULL;
3639
3640 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3641 * expect to see gl_VertexID in the program resource list. Pretend.
3642 */
3643 if (in->data.mode == ir_var_system_value &&
3644 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3645 out->name = ralloc_strdup(shProg, "gl_VertexID");
3646 } else if ((in->data.mode == ir_var_shader_out &&
3647 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3648 (in->data.mode == ir_var_system_value &&
3649 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3650 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3651 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3652 } else if ((in->data.mode == ir_var_shader_out &&
3653 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3654 (in->data.mode == ir_var_system_value &&
3655 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3656 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3657 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3658 } else {
3659 out->name = ralloc_strdup(shProg, name);
3660 }
3661
3662 if (!out->name)
3663 return NULL;
3664
3665 /* The ARB_program_interface_query spec says:
3666 *
3667 * "Not all active variables are assigned valid locations; the
3668 * following variables will have an effective location of -1:
3669 *
3670 * * uniforms declared as atomic counters;
3671 *
3672 * * members of a uniform block;
3673 *
3674 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3675 *
3676 * * inputs or outputs not declared with a "location" layout
3677 * qualifier, except for vertex shader inputs and fragment shader
3678 * outputs."
3679 */
3680 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3681 is_gl_identifier(in->name) ||
3682 !(in->data.explicit_location || use_implicit_location)) {
3683 out->location = -1;
3684 } else {
3685 out->location = location;
3686 }
3687
3688 out->type = type;
3689 out->outermost_struct_type = outermost_struct_type;
3690 out->interface_type = interface_type;
3691 out->component = in->data.location_frac;
3692 out->index = in->data.index;
3693 out->patch = in->data.patch;
3694 out->mode = in->data.mode;
3695 out->interpolation = in->data.interpolation;
3696 out->explicit_location = in->data.explicit_location;
3697 out->precision = in->data.precision;
3698
3699 return out;
3700 }
3701
3702 static const glsl_type *
3703 resize_to_max_patch_vertices(const struct gl_context *ctx,
3704 const glsl_type *type)
3705 {
3706 if (!type)
3707 return NULL;
3708
3709 return glsl_type::get_array_instance(type->fields.array,
3710 ctx->Const.MaxPatchVertices);
3711 }
3712
3713 static bool
3714 add_shader_variable(const struct gl_context *ctx,
3715 struct gl_shader_program *shProg,
3716 struct set *resource_set,
3717 unsigned stage_mask,
3718 GLenum programInterface, ir_variable *var,
3719 const char *name, const glsl_type *type,
3720 bool use_implicit_location, int location,
3721 const glsl_type *outermost_struct_type = NULL)
3722 {
3723 const bool is_vertex_input =
3724 programInterface == GL_PROGRAM_INPUT &&
3725 stage_mask == MESA_SHADER_VERTEX;
3726
3727 switch (type->base_type) {
3728 case GLSL_TYPE_STRUCT: {
3729 /* The ARB_program_interface_query spec says:
3730 *
3731 * "For an active variable declared as a structure, a separate entry
3732 * will be generated for each active structure member. The name of
3733 * each entry is formed by concatenating the name of the structure,
3734 * the "." character, and the name of the structure member. If a
3735 * structure member to enumerate is itself a structure or array,
3736 * these enumeration rules are applied recursively."
3737 */
3738 if (outermost_struct_type == NULL)
3739 outermost_struct_type = type;
3740
3741 unsigned field_location = location;
3742 for (unsigned i = 0; i < type->length; i++) {
3743 const struct glsl_struct_field *field = &type->fields.structure[i];
3744 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3745 if (!add_shader_variable(ctx, shProg, resource_set,
3746 stage_mask, programInterface,
3747 var, field_name, field->type,
3748 use_implicit_location, field_location,
3749 outermost_struct_type))
3750 return false;
3751
3752 field_location +=
3753 field->type->count_attribute_slots(is_vertex_input);
3754 }
3755 return true;
3756 }
3757
3758 default: {
3759 const glsl_type *interface_type = var->get_interface_type();
3760
3761 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3762 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3763 * smaller size.
3764 *
3765 * This can cause trouble with SSO programs. Since the TCS declares
3766 * the number of output vertices, we can always shrink TCS output
3767 * arrays. However, the TES might not be linked with a TCS, in
3768 * which case it won't know the size of the patch. In other words,
3769 * the TCS and TES may disagree on the (smaller) array sizes. This
3770 * can result in the resource names differing across stages, causing
3771 * SSO validation failures and other cascading issues.
3772 *
3773 * Expanding the array size to the full gl_MaxPatchVertices fixes
3774 * these issues. It's also what program interface queries expect,
3775 * as that is the official size of the array.
3776 */
3777 if (var->data.tess_varying_implicit_sized_array) {
3778 type = resize_to_max_patch_vertices(ctx, type);
3779 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3780 }
3781
3782 /* Issue #16 of the ARB_program_interface_query spec says:
3783 *
3784 * "* If a variable is a member of an interface block without an
3785 * instance name, it is enumerated using just the variable name.
3786 *
3787 * * If a variable is a member of an interface block with an instance
3788 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3789 * the name of the interface block (not the instance name) and
3790 * "Member" is the name of the variable."
3791 */
3792 const char *prefixed_name = (var->data.from_named_ifc_block &&
3793 !is_gl_identifier(var->name))
3794 ? ralloc_asprintf(shProg, "%s.%s", interface_type->name, name)
3795 : name;
3796
3797 /* The ARB_program_interface_query spec says:
3798 *
3799 * "For an active variable declared as a single instance of a basic
3800 * type, a single entry will be generated, using the variable name
3801 * from the shader source."
3802 */
3803 gl_shader_variable *sha_v =
3804 create_shader_variable(shProg, var, prefixed_name, type,
3805 interface_type,
3806 use_implicit_location, location,
3807 outermost_struct_type);
3808 if (!sha_v)
3809 return false;
3810
3811 return add_program_resource(shProg, resource_set,
3812 programInterface, sha_v, stage_mask);
3813 }
3814 }
3815 }
3816
3817 static bool
3818 add_interface_variables(const struct gl_context *ctx,
3819 struct gl_shader_program *shProg,
3820 struct set *resource_set,
3821 unsigned stage, GLenum programInterface)
3822 {
3823 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3824
3825 foreach_in_list(ir_instruction, node, ir) {
3826 ir_variable *var = node->as_variable();
3827
3828 if (!var || var->data.how_declared == ir_var_hidden)
3829 continue;
3830
3831 int loc_bias;
3832
3833 switch (var->data.mode) {
3834 case ir_var_system_value:
3835 case ir_var_shader_in:
3836 if (programInterface != GL_PROGRAM_INPUT)
3837 continue;
3838 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3839 : int(VARYING_SLOT_VAR0);
3840 break;
3841 case ir_var_shader_out:
3842 if (programInterface != GL_PROGRAM_OUTPUT)
3843 continue;
3844 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3845 : int(VARYING_SLOT_VAR0);
3846 break;
3847 default:
3848 continue;
3849 };
3850
3851 if (var->data.patch)
3852 loc_bias = int(VARYING_SLOT_PATCH0);
3853
3854 /* Skip packed varyings, packed varyings are handled separately
3855 * by add_packed_varyings.
3856 */
3857 if (strncmp(var->name, "packed:", 7) == 0)
3858 continue;
3859
3860 /* Skip fragdata arrays, these are handled separately
3861 * by add_fragdata_arrays.
3862 */
3863 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3864 continue;
3865
3866 const bool vs_input_or_fs_output =
3867 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3868 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3869
3870 if (!add_shader_variable(ctx, shProg, resource_set,
3871 1 << stage, programInterface,
3872 var, var->name, var->type, vs_input_or_fs_output,
3873 var->data.location - loc_bias))
3874 return false;
3875 }
3876 return true;
3877 }
3878
3879 static bool
3880 add_packed_varyings(const struct gl_context *ctx,
3881 struct gl_shader_program *shProg,
3882 struct set *resource_set,
3883 int stage, GLenum type)
3884 {
3885 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3886 GLenum iface;
3887
3888 if (!sh || !sh->packed_varyings)
3889 return true;
3890
3891 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3892 ir_variable *var = node->as_variable();
3893 if (var) {
3894 switch (var->data.mode) {
3895 case ir_var_shader_in:
3896 iface = GL_PROGRAM_INPUT;
3897 break;
3898 case ir_var_shader_out:
3899 iface = GL_PROGRAM_OUTPUT;
3900 break;
3901 default:
3902 unreachable("unexpected type");
3903 }
3904
3905 if (type == iface) {
3906 const int stage_mask =
3907 build_stageref(shProg, var->name, var->data.mode);
3908 if (!add_shader_variable(ctx, shProg, resource_set,
3909 stage_mask,
3910 iface, var, var->name, var->type, false,
3911 var->data.location - VARYING_SLOT_VAR0))
3912 return false;
3913 }
3914 }
3915 }
3916 return true;
3917 }
3918
3919 static bool
3920 add_fragdata_arrays(const struct gl_context *ctx,
3921 struct gl_shader_program *shProg,
3922 struct set *resource_set)
3923 {
3924 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3925
3926 if (!sh || !sh->fragdata_arrays)
3927 return true;
3928
3929 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3930 ir_variable *var = node->as_variable();
3931 if (var) {
3932 assert(var->data.mode == ir_var_shader_out);
3933
3934 if (!add_shader_variable(ctx, shProg, resource_set,
3935 1 << MESA_SHADER_FRAGMENT,
3936 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3937 true, var->data.location - FRAG_RESULT_DATA0))
3938 return false;
3939 }
3940 }
3941 return true;
3942 }
3943
3944 static char*
3945 get_top_level_name(const char *name)
3946 {
3947 const char *first_dot = strchr(name, '.');
3948 const char *first_square_bracket = strchr(name, '[');
3949 int name_size = 0;
3950
3951 /* The ARB_program_interface_query spec says:
3952 *
3953 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3954 * the number of active array elements of the top-level shader storage
3955 * block member containing to the active variable is written to
3956 * <params>. If the top-level block member is not declared as an
3957 * array, the value one is written to <params>. If the top-level block
3958 * member is an array with no declared size, the value zero is written
3959 * to <params>."
3960 */
3961
3962 /* The buffer variable is on top level.*/
3963 if (!first_square_bracket && !first_dot)
3964 name_size = strlen(name);
3965 else if ((!first_square_bracket ||
3966 (first_dot && first_dot < first_square_bracket)))
3967 name_size = first_dot - name;
3968 else
3969 name_size = first_square_bracket - name;
3970
3971 return strndup(name, name_size);
3972 }
3973
3974 static char*
3975 get_var_name(const char *name)
3976 {
3977 const char *first_dot = strchr(name, '.');
3978
3979 if (!first_dot)
3980 return strdup(name);
3981
3982 return strndup(first_dot+1, strlen(first_dot) - 1);
3983 }
3984
3985 static bool
3986 is_top_level_shader_storage_block_member(const char* name,
3987 const char* interface_name,
3988 const char* field_name)
3989 {
3990 bool result = false;
3991
3992 /* If the given variable is already a top-level shader storage
3993 * block member, then return array_size = 1.
3994 * We could have two possibilities: if we have an instanced
3995 * shader storage block or not instanced.
3996 *
3997 * For the first, we check create a name as it was in top level and
3998 * compare it with the real name. If they are the same, then
3999 * the variable is already at top-level.
4000 *
4001 * Full instanced name is: interface name + '.' + var name +
4002 * NULL character
4003 */
4004 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4005 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4006 if (!full_instanced_name) {
4007 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4008 return false;
4009 }
4010
4011 snprintf(full_instanced_name, name_length, "%s.%s",
4012 interface_name, field_name);
4013
4014 /* Check if its top-level shader storage block member of an
4015 * instanced interface block, or of a unnamed interface block.
4016 */
4017 if (strcmp(name, full_instanced_name) == 0 ||
4018 strcmp(name, field_name) == 0)
4019 result = true;
4020
4021 free(full_instanced_name);
4022 return result;
4023 }
4024
4025 static int
4026 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4027 char *interface_name, char *var_name)
4028 {
4029 /* The ARB_program_interface_query spec says:
4030 *
4031 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4032 * the number of active array elements of the top-level shader storage
4033 * block member containing to the active variable is written to
4034 * <params>. If the top-level block member is not declared as an
4035 * array, the value one is written to <params>. If the top-level block
4036 * member is an array with no declared size, the value zero is written
4037 * to <params>."
4038 */
4039 if (is_top_level_shader_storage_block_member(uni->name,
4040 interface_name,
4041 var_name))
4042 return 1;
4043 else if (field->type->is_unsized_array())
4044 return 0;
4045 else if (field->type->is_array())
4046 return field->type->length;
4047
4048 return 1;
4049 }
4050
4051 static int
4052 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4053 const glsl_struct_field *field, char *interface_name,
4054 char *var_name)
4055 {
4056 /* The ARB_program_interface_query spec says:
4057 *
4058 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4059 * identifying the stride between array elements of the top-level
4060 * shader storage block member containing the active variable is
4061 * written to <params>. For top-level block members declared as
4062 * arrays, the value written is the difference, in basic machine units,
4063 * between the offsets of the active variable for consecutive elements
4064 * in the top-level array. For top-level block members not declared as
4065 * an array, zero is written to <params>."
4066 */
4067 if (field->type->is_array()) {
4068 const enum glsl_matrix_layout matrix_layout =
4069 glsl_matrix_layout(field->matrix_layout);
4070 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4071 const glsl_type *array_type = field->type->fields.array;
4072
4073 if (is_top_level_shader_storage_block_member(uni->name,
4074 interface_name,
4075 var_name))
4076 return 0;
4077
4078 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4079 if (array_type->is_record() || array_type->is_array())
4080 return glsl_align(array_type->std140_size(row_major), 16);
4081 else
4082 return MAX2(array_type->std140_base_alignment(row_major), 16);
4083 } else {
4084 return array_type->std430_array_stride(row_major);
4085 }
4086 }
4087 return 0;
4088 }
4089
4090 static void
4091 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4092 struct gl_uniform_storage *uni)
4093 {
4094 int block_index = uni->block_index;
4095 int array_size = -1;
4096 int array_stride = -1;
4097 char *var_name = get_top_level_name(uni->name);
4098 char *interface_name =
4099 get_top_level_name(uni->is_shader_storage ?
4100 shProg->data->ShaderStorageBlocks[block_index].Name :
4101 shProg->data->UniformBlocks[block_index].Name);
4102
4103 if (strcmp(var_name, interface_name) == 0) {
4104 /* Deal with instanced array of SSBOs */
4105 char *temp_name = get_var_name(uni->name);
4106 if (!temp_name) {
4107 linker_error(shProg, "Out of memory during linking.\n");
4108 goto write_top_level_array_size_and_stride;
4109 }
4110 free(var_name);
4111 var_name = get_top_level_name(temp_name);
4112 free(temp_name);
4113 if (!var_name) {
4114 linker_error(shProg, "Out of memory during linking.\n");
4115 goto write_top_level_array_size_and_stride;
4116 }
4117 }
4118
4119 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4120 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4121 if (sh == NULL)
4122 continue;
4123
4124 foreach_in_list(ir_instruction, node, sh->ir) {
4125 ir_variable *var = node->as_variable();
4126 if (!var || !var->get_interface_type() ||
4127 var->data.mode != ir_var_shader_storage)
4128 continue;
4129
4130 const glsl_type *interface = var->get_interface_type();
4131
4132 if (strcmp(interface_name, interface->name) != 0)
4133 continue;
4134
4135 for (unsigned i = 0; i < interface->length; i++) {
4136 const glsl_struct_field *field = &interface->fields.structure[i];
4137 if (strcmp(field->name, var_name) != 0)
4138 continue;
4139
4140 array_stride = get_array_stride(uni, interface, field,
4141 interface_name, var_name);
4142 array_size = get_array_size(uni, field, interface_name, var_name);
4143 goto write_top_level_array_size_and_stride;
4144 }
4145 }
4146 }
4147 write_top_level_array_size_and_stride:
4148 free(interface_name);
4149 free(var_name);
4150 uni->top_level_array_stride = array_stride;
4151 uni->top_level_array_size = array_size;
4152 }
4153
4154 /**
4155 * Builds up a list of program resources that point to existing
4156 * resource data.
4157 */
4158 void
4159 build_program_resource_list(struct gl_context *ctx,
4160 struct gl_shader_program *shProg)
4161 {
4162 /* Rebuild resource list. */
4163 if (shProg->ProgramResourceList) {
4164 ralloc_free(shProg->ProgramResourceList);
4165 shProg->ProgramResourceList = NULL;
4166 shProg->NumProgramResourceList = 0;
4167 }
4168
4169 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4170
4171 /* Determine first input and final output stage. These are used to
4172 * detect which variables should be enumerated in the resource list
4173 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4174 */
4175 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4176 if (!shProg->_LinkedShaders[i])
4177 continue;
4178 if (input_stage == MESA_SHADER_STAGES)
4179 input_stage = i;
4180 output_stage = i;
4181 }
4182
4183 /* Empty shader, no resources. */
4184 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4185 return;
4186
4187 struct set *resource_set = _mesa_set_create(NULL,
4188 _mesa_hash_pointer,
4189 _mesa_key_pointer_equal);
4190
4191 /* Program interface needs to expose varyings in case of SSO. */
4192 if (shProg->SeparateShader) {
4193 if (!add_packed_varyings(ctx, shProg, resource_set,
4194 input_stage, GL_PROGRAM_INPUT))
4195 return;
4196
4197 if (!add_packed_varyings(ctx, shProg, resource_set,
4198 output_stage, GL_PROGRAM_OUTPUT))
4199 return;
4200 }
4201
4202 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4203 return;
4204
4205 /* Add inputs and outputs to the resource list. */
4206 if (!add_interface_variables(ctx, shProg, resource_set,
4207 input_stage, GL_PROGRAM_INPUT))
4208 return;
4209
4210 if (!add_interface_variables(ctx, shProg, resource_set,
4211 output_stage, GL_PROGRAM_OUTPUT))
4212 return;
4213
4214 /* Add transform feedback varyings. */
4215 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4216 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4217 if (!add_program_resource(shProg, resource_set,
4218 GL_TRANSFORM_FEEDBACK_VARYING,
4219 &shProg->LinkedTransformFeedback.Varyings[i],
4220 0))
4221 return;
4222 }
4223 }
4224
4225 /* Add transform feedback buffers. */
4226 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4227 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4228 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4229 if (!add_program_resource(shProg, resource_set,
4230 GL_TRANSFORM_FEEDBACK_BUFFER,
4231 &shProg->LinkedTransformFeedback.Buffers[i],
4232 0))
4233 return;
4234 }
4235 }
4236
4237 /* Add uniforms from uniform storage. */
4238 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4239 /* Do not add uniforms internally used by Mesa. */
4240 if (shProg->data->UniformStorage[i].hidden)
4241 continue;
4242
4243 uint8_t stageref =
4244 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4245 ir_var_uniform);
4246
4247 /* Add stagereferences for uniforms in a uniform block. */
4248 bool is_shader_storage =
4249 shProg->data->UniformStorage[i].is_shader_storage;
4250 int block_index = shProg->data->UniformStorage[i].block_index;
4251 if (block_index != -1) {
4252 stageref |= is_shader_storage ?
4253 shProg->data->ShaderStorageBlocks[block_index].stageref :
4254 shProg->data->UniformBlocks[block_index].stageref;
4255 }
4256
4257 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4258 if (!should_add_buffer_variable(shProg, type,
4259 shProg->data->UniformStorage[i].name))
4260 continue;
4261
4262 if (is_shader_storage) {
4263 calculate_array_size_and_stride(shProg,
4264 &shProg->data->UniformStorage[i]);
4265 }
4266
4267 if (!add_program_resource(shProg, resource_set, type,
4268 &shProg->data->UniformStorage[i], stageref))
4269 return;
4270 }
4271
4272 /* Add program uniform blocks. */
4273 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4274 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4275 &shProg->data->UniformBlocks[i], 0))
4276 return;
4277 }
4278
4279 /* Add program shader storage blocks. */
4280 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4281 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4282 &shProg->data->ShaderStorageBlocks[i], 0))
4283 return;
4284 }
4285
4286 /* Add atomic counter buffers. */
4287 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4288 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4289 &shProg->data->AtomicBuffers[i], 0))
4290 return;
4291 }
4292
4293 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4294 GLenum type;
4295 if (!shProg->data->UniformStorage[i].hidden)
4296 continue;
4297
4298 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4299 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4300 !shProg->data->UniformStorage[i].type->is_subroutine())
4301 continue;
4302
4303 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4304 /* add shader subroutines */
4305 if (!add_program_resource(shProg, resource_set,
4306 type, &shProg->data->UniformStorage[i], 0))
4307 return;
4308 }
4309 }
4310
4311 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4312 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
4313 GLuint type;
4314
4315 if (!sh)
4316 continue;
4317
4318 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4319 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4320 if (!add_program_resource(shProg, resource_set,
4321 type, &sh->SubroutineFunctions[j], 0))
4322 return;
4323 }
4324 }
4325
4326 _mesa_set_destroy(resource_set, NULL);
4327 }
4328
4329 /**
4330 * This check is done to make sure we allow only constant expression
4331 * indexing and "constant-index-expression" (indexing with an expression
4332 * that includes loop induction variable).
4333 */
4334 static bool
4335 validate_sampler_array_indexing(struct gl_context *ctx,
4336 struct gl_shader_program *prog)
4337 {
4338 dynamic_sampler_array_indexing_visitor v;
4339 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4340 if (prog->_LinkedShaders[i] == NULL)
4341 continue;
4342
4343 bool no_dynamic_indexing =
4344 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4345
4346 /* Search for array derefs in shader. */
4347 v.run(prog->_LinkedShaders[i]->ir);
4348 if (v.uses_dynamic_sampler_array_indexing()) {
4349 const char *msg = "sampler arrays indexed with non-constant "
4350 "expressions is forbidden in GLSL %s %u";
4351 /* Backend has indicated that it has no dynamic indexing support. */
4352 if (no_dynamic_indexing) {
4353 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4354 return false;
4355 } else {
4356 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4357 }
4358 }
4359 }
4360 return true;
4361 }
4362
4363 static void
4364 link_assign_subroutine_types(struct gl_shader_program *prog)
4365 {
4366 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4367 gl_linked_shader *sh = prog->_LinkedShaders[i];
4368
4369 if (sh == NULL)
4370 continue;
4371
4372 sh->MaxSubroutineFunctionIndex = 0;
4373 foreach_in_list(ir_instruction, node, sh->ir) {
4374 ir_function *fn = node->as_function();
4375 if (!fn)
4376 continue;
4377
4378 if (fn->is_subroutine)
4379 sh->NumSubroutineUniformTypes++;
4380
4381 if (!fn->num_subroutine_types)
4382 continue;
4383
4384 /* these should have been calculated earlier. */
4385 assert(fn->subroutine_index != -1);
4386 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4387 linker_error(prog, "Too many subroutine functions declared.\n");
4388 return;
4389 }
4390 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4391 struct gl_subroutine_function,
4392 sh->NumSubroutineFunctions + 1);
4393 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4394 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4395 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4396 ralloc_array(sh, const struct glsl_type *,
4397 fn->num_subroutine_types);
4398
4399 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4400 * GLSL 4.5 spec:
4401 *
4402 * "Each subroutine with an index qualifier in the shader must be
4403 * given a unique index, otherwise a compile or link error will be
4404 * generated."
4405 */
4406 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4407 if (sh->SubroutineFunctions[j].index != -1 &&
4408 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4409 linker_error(prog, "each subroutine index qualifier in the "
4410 "shader must be unique\n");
4411 return;
4412 }
4413 }
4414 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4415 fn->subroutine_index;
4416
4417 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4418 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4419
4420 for (int j = 0; j < fn->num_subroutine_types; j++)
4421 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4422 sh->NumSubroutineFunctions++;
4423 }
4424 }
4425 }
4426
4427 static void
4428 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4429 {
4430 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4431
4432 foreach_in_list(ir_instruction, node, ir) {
4433 ir_variable *const var = node->as_variable();
4434
4435 if (var == NULL || var->data.mode != io_mode)
4436 continue;
4437
4438 /* Don't set always active on builtins that haven't been redeclared */
4439 if (var->data.how_declared == ir_var_declared_implicitly)
4440 continue;
4441
4442 var->data.always_active_io = true;
4443 }
4444 }
4445
4446 /**
4447 * When separate shader programs are enabled, only input/outputs between
4448 * the stages of a multi-stage separate program can be safely removed
4449 * from the shader interface. Other inputs/outputs must remain active.
4450 */
4451 static void
4452 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4453 {
4454 unsigned first, last;
4455 assert(prog->SeparateShader);
4456
4457 first = MESA_SHADER_STAGES;
4458 last = 0;
4459
4460 /* Determine first and last stage. Excluding the compute stage */
4461 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4462 if (!prog->_LinkedShaders[i])
4463 continue;
4464 if (first == MESA_SHADER_STAGES)
4465 first = i;
4466 last = i;
4467 }
4468
4469 if (first == MESA_SHADER_STAGES)
4470 return;
4471
4472 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4473 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4474 if (!sh)
4475 continue;
4476
4477 if (first == last) {
4478 /* For a single shader program only allow inputs to the vertex shader
4479 * and outputs from the fragment shader to be removed.
4480 */
4481 if (stage != MESA_SHADER_VERTEX)
4482 set_always_active_io(sh->ir, ir_var_shader_in);
4483 if (stage != MESA_SHADER_FRAGMENT)
4484 set_always_active_io(sh->ir, ir_var_shader_out);
4485 } else {
4486 /* For multi-stage separate shader programs only allow inputs and
4487 * outputs between the shader stages to be removed as well as inputs
4488 * to the vertex shader and outputs from the fragment shader.
4489 */
4490 if (stage == first && stage != MESA_SHADER_VERTEX)
4491 set_always_active_io(sh->ir, ir_var_shader_in);
4492 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4493 set_always_active_io(sh->ir, ir_var_shader_out);
4494 }
4495 }
4496 }
4497
4498 static bool
4499 link_varyings_and_uniforms(unsigned first, unsigned last,
4500 unsigned num_explicit_uniform_locs,
4501 struct gl_context *ctx,
4502 struct gl_shader_program *prog, void *mem_ctx)
4503 {
4504 bool has_xfb_qualifiers = false;
4505 unsigned num_tfeedback_decls = 0;
4506 char **varying_names = NULL;
4507 tfeedback_decl *tfeedback_decls = NULL;
4508
4509 /* Mark all generic shader inputs and outputs as unpaired. */
4510 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4511 if (prog->_LinkedShaders[i] != NULL) {
4512 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4513 }
4514 }
4515
4516 unsigned prev = first;
4517 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4518 if (prog->_LinkedShaders[i] == NULL)
4519 continue;
4520
4521 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4522 prog->_LinkedShaders[i]);
4523 prev = i;
4524 }
4525
4526 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4527 MESA_SHADER_VERTEX)) {
4528 return false;
4529 }
4530
4531 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4532 MESA_SHADER_FRAGMENT)) {
4533 return false;
4534 }
4535
4536 /* From the ARB_enhanced_layouts spec:
4537 *
4538 * "If the shader used to record output variables for transform feedback
4539 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4540 * qualifiers, the values specified by TransformFeedbackVaryings are
4541 * ignored, and the set of variables captured for transform feedback is
4542 * instead derived from the specified layout qualifiers."
4543 */
4544 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4545 /* Find last stage before fragment shader */
4546 if (prog->_LinkedShaders[i]) {
4547 has_xfb_qualifiers =
4548 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4549 &num_tfeedback_decls,
4550 &varying_names);
4551 break;
4552 }
4553 }
4554
4555 if (!has_xfb_qualifiers) {
4556 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4557 varying_names = prog->TransformFeedback.VaryingNames;
4558 }
4559
4560 if (num_tfeedback_decls != 0) {
4561 /* From GL_EXT_transform_feedback:
4562 * A program will fail to link if:
4563 *
4564 * * the <count> specified by TransformFeedbackVaryingsEXT is
4565 * non-zero, but the program object has no vertex or geometry
4566 * shader;
4567 */
4568 if (first >= MESA_SHADER_FRAGMENT) {
4569 linker_error(prog, "Transform feedback varyings specified, but "
4570 "no vertex, tessellation, or geometry shader is "
4571 "present.\n");
4572 return false;
4573 }
4574
4575 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
4576 num_tfeedback_decls);
4577 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4578 varying_names, tfeedback_decls))
4579 return false;
4580 }
4581
4582 /* If there is no fragment shader we need to set transform feedback.
4583 *
4584 * For SSO we also need to assign output locations. We assign them here
4585 * because we need to do it for both single stage programs and multi stage
4586 * programs.
4587 */
4588 if (last < MESA_SHADER_FRAGMENT &&
4589 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4590 const uint64_t reserved_out_slots =
4591 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4592 if (!assign_varying_locations(ctx, mem_ctx, prog,
4593 prog->_LinkedShaders[last], NULL,
4594 num_tfeedback_decls, tfeedback_decls,
4595 reserved_out_slots))
4596 return false;
4597 }
4598
4599 if (last <= MESA_SHADER_FRAGMENT) {
4600 /* Remove unused varyings from the first/last stage unless SSO */
4601 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4602 prog->_LinkedShaders[first],
4603 ir_var_shader_in);
4604 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4605 prog->_LinkedShaders[last],
4606 ir_var_shader_out);
4607
4608 /* If the program is made up of only a single stage */
4609 if (first == last) {
4610 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4611
4612 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4613 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4614 tfeedback_decls);
4615
4616 if (prog->SeparateShader) {
4617 const uint64_t reserved_slots =
4618 reserved_varying_slot(sh, ir_var_shader_in);
4619
4620 /* Assign input locations for SSO, output locations are already
4621 * assigned.
4622 */
4623 if (!assign_varying_locations(ctx, mem_ctx, prog,
4624 NULL /* producer */,
4625 sh /* consumer */,
4626 0 /* num_tfeedback_decls */,
4627 NULL /* tfeedback_decls */,
4628 reserved_slots))
4629 return false;
4630 }
4631 } else {
4632 /* Linking the stages in the opposite order (from fragment to vertex)
4633 * ensures that inter-shader outputs written to in an earlier stage
4634 * are eliminated if they are (transitively) not used in a later
4635 * stage.
4636 */
4637 int next = last;
4638 for (int i = next - 1; i >= 0; i--) {
4639 if (prog->_LinkedShaders[i] == NULL && i != 0)
4640 continue;
4641
4642 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4643 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4644
4645 const uint64_t reserved_out_slots =
4646 reserved_varying_slot(sh_i, ir_var_shader_out);
4647 const uint64_t reserved_in_slots =
4648 reserved_varying_slot(sh_next, ir_var_shader_in);
4649
4650 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4651 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4652 tfeedback_decls);
4653
4654 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4655 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4656 tfeedback_decls,
4657 reserved_out_slots | reserved_in_slots))
4658 return false;
4659
4660 /* This must be done after all dead varyings are eliminated. */
4661 if (sh_i != NULL) {
4662 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4663 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4664 return false;
4665 }
4666 }
4667
4668 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4669 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4670 return false;
4671
4672 next = i;
4673 }
4674 }
4675 }
4676
4677 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4678 has_xfb_qualifiers))
4679 return false;
4680
4681 update_array_sizes(prog);
4682 link_assign_uniform_locations(prog, ctx, num_explicit_uniform_locs);
4683 link_assign_atomic_counter_resources(ctx, prog);
4684
4685 link_calculate_subroutine_compat(prog);
4686 check_resources(ctx, prog);
4687 check_subroutine_resources(prog);
4688 check_image_resources(ctx, prog);
4689 link_check_atomic_counter_resources(ctx, prog);
4690
4691 if (!prog->data->LinkStatus)
4692 return false;
4693
4694 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4695 if (prog->_LinkedShaders[i] == NULL)
4696 continue;
4697
4698 const struct gl_shader_compiler_options *options =
4699 &ctx->Const.ShaderCompilerOptions[i];
4700
4701 if (options->LowerBufferInterfaceBlocks)
4702 lower_ubo_reference(prog->_LinkedShaders[i],
4703 options->ClampBlockIndicesToArrayBounds);
4704
4705 if (i == MESA_SHADER_COMPUTE)
4706 lower_shared_reference(prog->_LinkedShaders[i],
4707 &prog->Comp.SharedSize);
4708
4709 lower_vector_derefs(prog->_LinkedShaders[i]);
4710 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4711 }
4712
4713 return true;
4714 }
4715
4716 void
4717 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4718 {
4719 prog->data->LinkStatus = true; /* All error paths will set this to false */
4720 prog->data->Validated = false;
4721 prog->_Used = false;
4722
4723 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4724 *
4725 * "Linking can fail for a variety of reasons as specified in the
4726 * OpenGL Shading Language Specification, as well as any of the
4727 * following reasons:
4728 *
4729 * - No shader objects are attached to program."
4730 *
4731 * The Compatibility Profile specification does not list the error. In
4732 * Compatibility Profile missing shader stages are replaced by
4733 * fixed-function. This applies to the case where all stages are
4734 * missing.
4735 */
4736 if (prog->NumShaders == 0) {
4737 if (ctx->API != API_OPENGL_COMPAT)
4738 linker_error(prog, "no shaders attached to the program\n");
4739 return;
4740 }
4741
4742 unsigned int num_explicit_uniform_locs = 0;
4743
4744 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4745
4746 prog->ARB_fragment_coord_conventions_enable = false;
4747
4748 /* Separate the shaders into groups based on their type.
4749 */
4750 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4751 unsigned num_shaders[MESA_SHADER_STAGES];
4752
4753 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4754 shader_list[i] = (struct gl_shader **)
4755 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4756 num_shaders[i] = 0;
4757 }
4758
4759 unsigned min_version = UINT_MAX;
4760 unsigned max_version = 0;
4761 for (unsigned i = 0; i < prog->NumShaders; i++) {
4762 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4763 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4764
4765 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4766 linker_error(prog, "all shaders must use same shading "
4767 "language version\n");
4768 goto done;
4769 }
4770
4771 if (prog->Shaders[i]->info.ARB_fragment_coord_conventions_enable) {
4772 prog->ARB_fragment_coord_conventions_enable = true;
4773 }
4774
4775 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4776 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4777 num_shaders[shader_type]++;
4778 }
4779
4780 /* In desktop GLSL, different shader versions may be linked together. In
4781 * GLSL ES, all shader versions must be the same.
4782 */
4783 if (prog->Shaders[0]->IsES && min_version != max_version) {
4784 linker_error(prog, "all shaders must use same shading "
4785 "language version\n");
4786 goto done;
4787 }
4788
4789 prog->Version = max_version;
4790 prog->IsES = prog->Shaders[0]->IsES;
4791
4792 /* Some shaders have to be linked with some other shaders present.
4793 */
4794 if (!prog->SeparateShader) {
4795 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4796 num_shaders[MESA_SHADER_VERTEX] == 0) {
4797 linker_error(prog, "Geometry shader must be linked with "
4798 "vertex shader\n");
4799 goto done;
4800 }
4801 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4802 num_shaders[MESA_SHADER_VERTEX] == 0) {
4803 linker_error(prog, "Tessellation evaluation shader must be linked "
4804 "with vertex shader\n");
4805 goto done;
4806 }
4807 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4808 num_shaders[MESA_SHADER_VERTEX] == 0) {
4809 linker_error(prog, "Tessellation control shader must be linked with "
4810 "vertex shader\n");
4811 goto done;
4812 }
4813
4814 /* The spec is self-contradictory here. It allows linking without a tess
4815 * eval shader, but that can only be used with transform feedback and
4816 * rasterization disabled. However, transform feedback isn't allowed
4817 * with GL_PATCHES, so it can't be used.
4818 *
4819 * More investigation showed that the idea of transform feedback after
4820 * a tess control shader was dropped, because some hw vendors couldn't
4821 * support tessellation without a tess eval shader, but the linker
4822 * section wasn't updated to reflect that.
4823 *
4824 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4825 * spec bug.
4826 *
4827 * Do what's reasonable and always require a tess eval shader if a tess
4828 * control shader is present.
4829 */
4830 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4831 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4832 linker_error(prog, "Tessellation control shader must be linked with "
4833 "tessellation evaluation shader\n");
4834 goto done;
4835 }
4836 }
4837
4838 /* Compute shaders have additional restrictions. */
4839 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4840 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4841 linker_error(prog, "Compute shaders may not be linked with any other "
4842 "type of shader\n");
4843 }
4844
4845 /* Link all shaders for a particular stage and validate the result.
4846 */
4847 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4848 if (num_shaders[stage] > 0) {
4849 gl_linked_shader *const sh =
4850 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4851 num_shaders[stage], false);
4852
4853 if (!prog->data->LinkStatus) {
4854 if (sh)
4855 _mesa_delete_linked_shader(ctx, sh);
4856 goto done;
4857 }
4858
4859 switch (stage) {
4860 case MESA_SHADER_VERTEX:
4861 validate_vertex_shader_executable(prog, sh, ctx);
4862 break;
4863 case MESA_SHADER_TESS_CTRL:
4864 /* nothing to be done */
4865 break;
4866 case MESA_SHADER_TESS_EVAL:
4867 validate_tess_eval_shader_executable(prog, sh, ctx);
4868 break;
4869 case MESA_SHADER_GEOMETRY:
4870 validate_geometry_shader_executable(prog, sh, ctx);
4871 break;
4872 case MESA_SHADER_FRAGMENT:
4873 validate_fragment_shader_executable(prog, sh);
4874 break;
4875 }
4876 if (!prog->data->LinkStatus) {
4877 if (sh)
4878 _mesa_delete_linked_shader(ctx, sh);
4879 goto done;
4880 }
4881
4882 prog->_LinkedShaders[stage] = sh;
4883 }
4884 }
4885
4886 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4887 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4888 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4889 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4890 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4891 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4892 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4893 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4894 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4895 } else {
4896 prog->LastClipDistanceArraySize = 0; /* Not used */
4897 prog->LastCullDistanceArraySize = 0; /* Not used */
4898 }
4899
4900 /* Here begins the inter-stage linking phase. Some initial validation is
4901 * performed, then locations are assigned for uniforms, attributes, and
4902 * varyings.
4903 */
4904 cross_validate_uniforms(prog);
4905 if (!prog->data->LinkStatus)
4906 goto done;
4907
4908 unsigned first, last, prev;
4909
4910 first = MESA_SHADER_STAGES;
4911 last = 0;
4912
4913 /* Determine first and last stage. */
4914 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4915 if (!prog->_LinkedShaders[i])
4916 continue;
4917 if (first == MESA_SHADER_STAGES)
4918 first = i;
4919 last = i;
4920 }
4921
4922 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4923 link_assign_subroutine_types(prog);
4924
4925 if (!prog->data->LinkStatus)
4926 goto done;
4927
4928 resize_tes_inputs(ctx, prog);
4929
4930 /* Validate the inputs of each stage with the output of the preceding
4931 * stage.
4932 */
4933 prev = first;
4934 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4935 if (prog->_LinkedShaders[i] == NULL)
4936 continue;
4937
4938 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4939 prog->_LinkedShaders[i]);
4940 if (!prog->data->LinkStatus)
4941 goto done;
4942
4943 cross_validate_outputs_to_inputs(prog,
4944 prog->_LinkedShaders[prev],
4945 prog->_LinkedShaders[i]);
4946 if (!prog->data->LinkStatus)
4947 goto done;
4948
4949 prev = i;
4950 }
4951
4952 /* Cross-validate uniform blocks between shader stages */
4953 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4954 if (!prog->data->LinkStatus)
4955 goto done;
4956
4957 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4958 if (prog->_LinkedShaders[i] != NULL)
4959 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4960 }
4961
4962 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4963 * it before optimization because we want most of the checks to get
4964 * dropped thanks to constant propagation.
4965 *
4966 * This rule also applies to GLSL ES 3.00.
4967 */
4968 if (max_version >= (prog->IsES ? 300 : 130)) {
4969 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4970 if (sh) {
4971 lower_discard_flow(sh->ir);
4972 }
4973 }
4974
4975 if (prog->SeparateShader)
4976 disable_varying_optimizations_for_sso(prog);
4977
4978 /* Process UBOs */
4979 if (!interstage_cross_validate_uniform_blocks(prog, false))
4980 goto done;
4981
4982 /* Process SSBOs */
4983 if (!interstage_cross_validate_uniform_blocks(prog, true))
4984 goto done;
4985
4986 /* Do common optimization before assigning storage for attributes,
4987 * uniforms, and varyings. Later optimization could possibly make
4988 * some of that unused.
4989 */
4990 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4991 if (prog->_LinkedShaders[i] == NULL)
4992 continue;
4993
4994 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4995 if (!prog->data->LinkStatus)
4996 goto done;
4997
4998 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4999 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5000 }
5001
5002 if (ctx->Const.LowerTessLevel) {
5003 lower_tess_level(prog->_LinkedShaders[i]);
5004 }
5005
5006 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
5007 &ctx->Const.ShaderCompilerOptions[i],
5008 ctx->Const.NativeIntegers))
5009 ;
5010
5011 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
5012 propagate_invariance(prog->_LinkedShaders[i]->ir);
5013 }
5014
5015 /* Validation for special cases where we allow sampler array indexing
5016 * with loop induction variable. This check emits a warning or error
5017 * depending if backend can handle dynamic indexing.
5018 */
5019 if ((!prog->IsES && prog->Version < 130) ||
5020 (prog->IsES && prog->Version < 300)) {
5021 if (!validate_sampler_array_indexing(ctx, prog))
5022 goto done;
5023 }
5024
5025 /* Check and validate stream emissions in geometry shaders */
5026 validate_geometry_shader_emissions(ctx, prog);
5027
5028 store_fragdepth_layout(prog);
5029
5030 if(!link_varyings_and_uniforms(first, last, num_explicit_uniform_locs, ctx,
5031 prog, mem_ctx))
5032 goto done;
5033
5034 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5035 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5036 * anything about shader linking when one of the shaders (vertex or
5037 * fragment shader) is absent. So, the extension shouldn't change the
5038 * behavior specified in GLSL specification.
5039 *
5040 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5041 * "Linking can fail for a variety of reasons as specified in the
5042 * OpenGL ES Shading Language Specification, as well as any of the
5043 * following reasons:
5044 *
5045 * ...
5046 *
5047 * * program contains objects to form either a vertex shader or
5048 * fragment shader, and program is not separable, and does not
5049 * contain objects to form both a vertex shader and fragment
5050 * shader."
5051 *
5052 * However, the only scenario in 3.1+ where we don't require them both is
5053 * when we have a compute shader. For example:
5054 *
5055 * - No shaders is a link error.
5056 * - Geom or Tess without a Vertex shader is a link error which means we
5057 * always require a Vertex shader and hence a Fragment shader.
5058 * - Finally a Compute shader linked with any other stage is a link error.
5059 */
5060 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5061 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5062 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5063 linker_error(prog, "program lacks a vertex shader\n");
5064 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5065 linker_error(prog, "program lacks a fragment shader\n");
5066 }
5067 }
5068
5069 done:
5070 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5071 free(shader_list[i]);
5072 if (prog->_LinkedShaders[i] == NULL)
5073 continue;
5074
5075 /* Do a final validation step to make sure that the IR wasn't
5076 * invalidated by any modifications performed after intrastage linking.
5077 */
5078 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5079
5080 /* Retain any live IR, but trash the rest. */
5081 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5082
5083 /* The symbol table in the linked shaders may contain references to
5084 * variables that were removed (e.g., unused uniforms). Since it may
5085 * contain junk, there is no possible valid use. Delete it and set the
5086 * pointer to NULL.
5087 */
5088 delete prog->_LinkedShaders[i]->symbols;
5089 prog->_LinkedShaders[i]->symbols = NULL;
5090 }
5091
5092 ralloc_free(mem_ctx);
5093 }