glsl/mesa: split gl_shader in two
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "program/prog_instruction.h"
76 #include "linker.h"
77 #include "link_varyings.h"
78 #include "ir_optimization.h"
79 #include "ir_rvalue_visitor.h"
80 #include "ir_uniform.h"
81
82 #include "main/shaderobj.h"
83 #include "main/enums.h"
84
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (!var->data.implicit_sized_array &&
210 size && size != this->num_vertices) {
211 linker_error(this->prog, "size of array %s declared as %u, "
212 "but number of input vertices is %u\n",
213 var->name, size, this->num_vertices);
214 return visit_continue;
215 }
216
217 /* Generate a link error if the shader attempts to access an input
218 * array using an index too large for its actual size assigned at link
219 * time.
220 */
221 if (var->data.max_array_access >= (int)this->num_vertices) {
222 linker_error(this->prog, "geometry shader accesses element %i of "
223 "%s, but only %i input vertices\n",
224 var->data.max_array_access, var->name, this->num_vertices);
225 return visit_continue;
226 }
227
228 var->type = glsl_type::get_array_instance(var->type->fields.array,
229 this->num_vertices);
230 var->data.max_array_access = this->num_vertices - 1;
231
232 return visit_continue;
233 }
234
235 /* Dereferences of input variables need to be updated so that their type
236 * matches the newly assigned type of the variable they are accessing. */
237 virtual ir_visitor_status visit(ir_dereference_variable *ir)
238 {
239 ir->type = ir->var->type;
240 return visit_continue;
241 }
242
243 /* Dereferences of 2D input arrays need to be updated so that their type
244 * matches the newly assigned type of the array they are accessing. */
245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252 };
253
254 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
255 public:
256 unsigned num_vertices;
257 gl_shader_program *prog;
258
259 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
260 {
261 this->num_vertices = num_vertices;
262 this->prog = prog;
263 }
264
265 virtual ~tess_eval_array_resize_visitor()
266 {
267 /* empty */
268 }
269
270 virtual ir_visitor_status visit(ir_variable *var)
271 {
272 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
273 return visit_continue;
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281
282 /* Dereferences of input variables need to be updated so that their type
283 * matches the newly assigned type of the variable they are accessing. */
284 virtual ir_visitor_status visit(ir_dereference_variable *ir)
285 {
286 ir->type = ir->var->type;
287 return visit_continue;
288 }
289
290 /* Dereferences of 2D input arrays need to be updated so that their type
291 * matches the newly assigned type of the array they are accessing. */
292 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
293 {
294 const glsl_type *const vt = ir->array->type;
295 if (vt->is_array())
296 ir->type = vt->fields.array;
297 return visit_continue;
298 }
299 };
300
301 class barrier_use_visitor : public ir_hierarchical_visitor {
302 public:
303 barrier_use_visitor(gl_shader_program *prog)
304 : prog(prog), in_main(false), after_return(false), control_flow(0)
305 {
306 }
307
308 virtual ~barrier_use_visitor()
309 {
310 /* empty */
311 }
312
313 virtual ir_visitor_status visit_enter(ir_function *ir)
314 {
315 if (strcmp(ir->name, "main") == 0)
316 in_main = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_function *)
322 {
323 in_main = false;
324 after_return = false;
325 return visit_continue;
326 }
327
328 virtual ir_visitor_status visit_leave(ir_return *)
329 {
330 after_return = true;
331 return visit_continue;
332 }
333
334 virtual ir_visitor_status visit_enter(ir_if *)
335 {
336 ++control_flow;
337 return visit_continue;
338 }
339
340 virtual ir_visitor_status visit_leave(ir_if *)
341 {
342 --control_flow;
343 return visit_continue;
344 }
345
346 virtual ir_visitor_status visit_enter(ir_loop *)
347 {
348 ++control_flow;
349 return visit_continue;
350 }
351
352 virtual ir_visitor_status visit_leave(ir_loop *)
353 {
354 --control_flow;
355 return visit_continue;
356 }
357
358 /* FINISHME: `switch` is not expressed at the IR level -- it's already
359 * been lowered to a mess of `if`s. We'll correctly disallow any use of
360 * barrier() in a conditional path within the switch, but not in a path
361 * which is always hit.
362 */
363
364 virtual ir_visitor_status visit_enter(ir_call *ir)
365 {
366 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
367 /* Use of barrier(); determine if it is legal: */
368 if (!in_main) {
369 linker_error(prog, "Builtin barrier() may only be used in main");
370 return visit_stop;
371 }
372
373 if (after_return) {
374 linker_error(prog, "Builtin barrier() may not be used after return");
375 return visit_stop;
376 }
377
378 if (control_flow != 0) {
379 linker_error(prog, "Builtin barrier() may not be used inside control flow");
380 return visit_stop;
381 }
382 }
383 return visit_continue;
384 }
385
386 private:
387 gl_shader_program *prog;
388 bool in_main, after_return;
389 int control_flow;
390 };
391
392 /**
393 * Visitor that determines the highest stream id to which a (geometry) shader
394 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
395 */
396 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
397 public:
398 find_emit_vertex_visitor(int max_allowed)
399 : max_stream_allowed(max_allowed),
400 invalid_stream_id(0),
401 invalid_stream_id_from_emit_vertex(false),
402 end_primitive_found(false),
403 uses_non_zero_stream(false)
404 {
405 /* empty */
406 }
407
408 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
409 {
410 int stream_id = ir->stream_id();
411
412 if (stream_id < 0) {
413 invalid_stream_id = stream_id;
414 invalid_stream_id_from_emit_vertex = true;
415 return visit_stop;
416 }
417
418 if (stream_id > max_stream_allowed) {
419 invalid_stream_id = stream_id;
420 invalid_stream_id_from_emit_vertex = true;
421 return visit_stop;
422 }
423
424 if (stream_id != 0)
425 uses_non_zero_stream = true;
426
427 return visit_continue;
428 }
429
430 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
431 {
432 end_primitive_found = true;
433
434 int stream_id = ir->stream_id();
435
436 if (stream_id < 0) {
437 invalid_stream_id = stream_id;
438 invalid_stream_id_from_emit_vertex = false;
439 return visit_stop;
440 }
441
442 if (stream_id > max_stream_allowed) {
443 invalid_stream_id = stream_id;
444 invalid_stream_id_from_emit_vertex = false;
445 return visit_stop;
446 }
447
448 if (stream_id != 0)
449 uses_non_zero_stream = true;
450
451 return visit_continue;
452 }
453
454 bool error()
455 {
456 return invalid_stream_id != 0;
457 }
458
459 const char *error_func()
460 {
461 return invalid_stream_id_from_emit_vertex ?
462 "EmitStreamVertex" : "EndStreamPrimitive";
463 }
464
465 int error_stream()
466 {
467 return invalid_stream_id;
468 }
469
470 bool uses_streams()
471 {
472 return uses_non_zero_stream;
473 }
474
475 bool uses_end_primitive()
476 {
477 return end_primitive_found;
478 }
479
480 private:
481 int max_stream_allowed;
482 int invalid_stream_id;
483 bool invalid_stream_id_from_emit_vertex;
484 bool end_primitive_found;
485 bool uses_non_zero_stream;
486 };
487
488 /* Class that finds array derefs and check if indexes are dynamic. */
489 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
490 {
491 public:
492 dynamic_sampler_array_indexing_visitor() :
493 dynamic_sampler_array_indexing(false)
494 {
495 }
496
497 ir_visitor_status visit_enter(ir_dereference_array *ir)
498 {
499 if (!ir->variable_referenced())
500 return visit_continue;
501
502 if (!ir->variable_referenced()->type->contains_sampler())
503 return visit_continue;
504
505 if (!ir->array_index->constant_expression_value()) {
506 dynamic_sampler_array_indexing = true;
507 return visit_stop;
508 }
509 return visit_continue;
510 }
511
512 bool uses_dynamic_sampler_array_indexing()
513 {
514 return dynamic_sampler_array_indexing;
515 }
516
517 private:
518 bool dynamic_sampler_array_indexing;
519 };
520
521 } /* anonymous namespace */
522
523 void
524 linker_error(gl_shader_program *prog, const char *fmt, ...)
525 {
526 va_list ap;
527
528 ralloc_strcat(&prog->InfoLog, "error: ");
529 va_start(ap, fmt);
530 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
531 va_end(ap);
532
533 prog->LinkStatus = false;
534 }
535
536
537 void
538 linker_warning(gl_shader_program *prog, const char *fmt, ...)
539 {
540 va_list ap;
541
542 ralloc_strcat(&prog->InfoLog, "warning: ");
543 va_start(ap, fmt);
544 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
545 va_end(ap);
546
547 }
548
549
550 /**
551 * Given a string identifying a program resource, break it into a base name
552 * and an optional array index in square brackets.
553 *
554 * If an array index is present, \c out_base_name_end is set to point to the
555 * "[" that precedes the array index, and the array index itself is returned
556 * as a long.
557 *
558 * If no array index is present (or if the array index is negative or
559 * mal-formed), \c out_base_name_end, is set to point to the null terminator
560 * at the end of the input string, and -1 is returned.
561 *
562 * Only the final array index is parsed; if the string contains other array
563 * indices (or structure field accesses), they are left in the base name.
564 *
565 * No attempt is made to check that the base name is properly formed;
566 * typically the caller will look up the base name in a hash table, so
567 * ill-formed base names simply turn into hash table lookup failures.
568 */
569 long
570 parse_program_resource_name(const GLchar *name,
571 const GLchar **out_base_name_end)
572 {
573 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
574 *
575 * "When an integer array element or block instance number is part of
576 * the name string, it will be specified in decimal form without a "+"
577 * or "-" sign or any extra leading zeroes. Additionally, the name
578 * string will not include white space anywhere in the string."
579 */
580
581 const size_t len = strlen(name);
582 *out_base_name_end = name + len;
583
584 if (len == 0 || name[len-1] != ']')
585 return -1;
586
587 /* Walk backwards over the string looking for a non-digit character. This
588 * had better be the opening bracket for an array index.
589 *
590 * Initially, i specifies the location of the ']'. Since the string may
591 * contain only the ']' charcater, walk backwards very carefully.
592 */
593 unsigned i;
594 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
595 /* empty */ ;
596
597 if ((i == 0) || name[i-1] != '[')
598 return -1;
599
600 long array_index = strtol(&name[i], NULL, 10);
601 if (array_index < 0)
602 return -1;
603
604 /* Check for leading zero */
605 if (name[i] == '0' && name[i+1] != ']')
606 return -1;
607
608 *out_base_name_end = name + (i - 1);
609 return array_index;
610 }
611
612
613 void
614 link_invalidate_variable_locations(exec_list *ir)
615 {
616 foreach_in_list(ir_instruction, node, ir) {
617 ir_variable *const var = node->as_variable();
618
619 if (var == NULL)
620 continue;
621
622 /* Only assign locations for variables that lack an explicit location.
623 * Explicit locations are set for all built-in variables, generic vertex
624 * shader inputs (via layout(location=...)), and generic fragment shader
625 * outputs (also via layout(location=...)).
626 */
627 if (!var->data.explicit_location) {
628 var->data.location = -1;
629 var->data.location_frac = 0;
630 }
631
632 /* ir_variable::is_unmatched_generic_inout is used by the linker while
633 * connecting outputs from one stage to inputs of the next stage.
634 */
635 if (var->data.explicit_location &&
636 var->data.location < VARYING_SLOT_VAR0) {
637 var->data.is_unmatched_generic_inout = 0;
638 } else {
639 var->data.is_unmatched_generic_inout = 1;
640 }
641 }
642 }
643
644
645 /**
646 * Set clip_distance_array_size based and cull_distance_array_size on the given
647 * shader.
648 *
649 * Also check for errors based on incorrect usage of gl_ClipVertex and
650 * gl_ClipDistance and gl_CullDistance.
651 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
652 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
653 *
654 * Return false if an error was reported.
655 */
656 static void
657 analyze_clip_cull_usage(struct gl_shader_program *prog,
658 struct gl_linked_shader *shader,
659 struct gl_context *ctx,
660 GLuint *clip_distance_array_size,
661 GLuint *cull_distance_array_size)
662 {
663 *clip_distance_array_size = 0;
664 *cull_distance_array_size = 0;
665
666 if (prog->Version >= (prog->IsES ? 300 : 130)) {
667 /* From section 7.1 (Vertex Shader Special Variables) of the
668 * GLSL 1.30 spec:
669 *
670 * "It is an error for a shader to statically write both
671 * gl_ClipVertex and gl_ClipDistance."
672 *
673 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
674 * gl_ClipVertex nor gl_ClipDistance. However with
675 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
676 */
677 find_assignment_visitor clip_distance("gl_ClipDistance");
678 find_assignment_visitor cull_distance("gl_CullDistance");
679
680 clip_distance.run(shader->ir);
681 cull_distance.run(shader->ir);
682
683 /* From the ARB_cull_distance spec:
684 *
685 * It is a compile-time or link-time error for the set of shaders forming
686 * a program to statically read or write both gl_ClipVertex and either
687 * gl_ClipDistance or gl_CullDistance.
688 *
689 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
690 * gl_ClipVertex.
691 */
692 if (!prog->IsES) {
693 find_assignment_visitor clip_vertex("gl_ClipVertex");
694
695 clip_vertex.run(shader->ir);
696
697 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
698 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
699 "and `gl_ClipDistance'\n",
700 _mesa_shader_stage_to_string(shader->Stage));
701 return;
702 }
703 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
704 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
705 "and `gl_CullDistance'\n",
706 _mesa_shader_stage_to_string(shader->Stage));
707 return;
708 }
709 }
710
711 if (clip_distance.variable_found()) {
712 ir_variable *clip_distance_var =
713 shader->symbols->get_variable("gl_ClipDistance");
714 assert(clip_distance_var);
715 *clip_distance_array_size = clip_distance_var->type->length;
716 }
717 if (cull_distance.variable_found()) {
718 ir_variable *cull_distance_var =
719 shader->symbols->get_variable("gl_CullDistance");
720 assert(cull_distance_var);
721 *cull_distance_array_size = cull_distance_var->type->length;
722 }
723 /* From the ARB_cull_distance spec:
724 *
725 * It is a compile-time or link-time error for the set of shaders forming
726 * a program to have the sum of the sizes of the gl_ClipDistance and
727 * gl_CullDistance arrays to be larger than
728 * gl_MaxCombinedClipAndCullDistances.
729 */
730 if ((*clip_distance_array_size + *cull_distance_array_size) >
731 ctx->Const.MaxClipPlanes) {
732 linker_error(prog, "%s shader: the combined size of "
733 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
734 "be larger than "
735 "gl_MaxCombinedClipAndCullDistances (%u)",
736 _mesa_shader_stage_to_string(shader->Stage),
737 ctx->Const.MaxClipPlanes);
738 }
739 }
740 }
741
742
743 /**
744 * Verify that a vertex shader executable meets all semantic requirements.
745 *
746 * Also sets prog->Vert.ClipDistanceArraySize and
747 * prog->Vert.CullDistanceArraySize as a side effect.
748 *
749 * \param shader Vertex shader executable to be verified
750 */
751 void
752 validate_vertex_shader_executable(struct gl_shader_program *prog,
753 struct gl_linked_shader *shader,
754 struct gl_context *ctx)
755 {
756 if (shader == NULL)
757 return;
758
759 /* From the GLSL 1.10 spec, page 48:
760 *
761 * "The variable gl_Position is available only in the vertex
762 * language and is intended for writing the homogeneous vertex
763 * position. All executions of a well-formed vertex shader
764 * executable must write a value into this variable. [...] The
765 * variable gl_Position is available only in the vertex
766 * language and is intended for writing the homogeneous vertex
767 * position. All executions of a well-formed vertex shader
768 * executable must write a value into this variable."
769 *
770 * while in GLSL 1.40 this text is changed to:
771 *
772 * "The variable gl_Position is available only in the vertex
773 * language and is intended for writing the homogeneous vertex
774 * position. It can be written at any time during shader
775 * execution. It may also be read back by a vertex shader
776 * after being written. This value will be used by primitive
777 * assembly, clipping, culling, and other fixed functionality
778 * operations, if present, that operate on primitives after
779 * vertex processing has occurred. Its value is undefined if
780 * the vertex shader executable does not write gl_Position."
781 *
782 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
783 * gl_Position is not an error.
784 */
785 if (prog->Version < (prog->IsES ? 300 : 140)) {
786 find_assignment_visitor find("gl_Position");
787 find.run(shader->ir);
788 if (!find.variable_found()) {
789 if (prog->IsES) {
790 linker_warning(prog,
791 "vertex shader does not write to `gl_Position'."
792 "It's value is undefined. \n");
793 } else {
794 linker_error(prog,
795 "vertex shader does not write to `gl_Position'. \n");
796 }
797 return;
798 }
799 }
800
801 analyze_clip_cull_usage(prog, shader, ctx,
802 &prog->Vert.ClipDistanceArraySize,
803 &prog->Vert.CullDistanceArraySize);
804 }
805
806 void
807 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
808 struct gl_linked_shader *shader,
809 struct gl_context *ctx)
810 {
811 if (shader == NULL)
812 return;
813
814 analyze_clip_cull_usage(prog, shader, ctx,
815 &prog->TessEval.ClipDistanceArraySize,
816 &prog->TessEval.CullDistanceArraySize);
817 }
818
819
820 /**
821 * Verify that a fragment shader executable meets all semantic requirements
822 *
823 * \param shader Fragment shader executable to be verified
824 */
825 void
826 validate_fragment_shader_executable(struct gl_shader_program *prog,
827 struct gl_linked_shader *shader)
828 {
829 if (shader == NULL)
830 return;
831
832 find_assignment_visitor frag_color("gl_FragColor");
833 find_assignment_visitor frag_data("gl_FragData");
834
835 frag_color.run(shader->ir);
836 frag_data.run(shader->ir);
837
838 if (frag_color.variable_found() && frag_data.variable_found()) {
839 linker_error(prog, "fragment shader writes to both "
840 "`gl_FragColor' and `gl_FragData'\n");
841 }
842 }
843
844 /**
845 * Verify that a geometry shader executable meets all semantic requirements
846 *
847 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
848 * prog->Geom.CullDistanceArraySize as a side effect.
849 *
850 * \param shader Geometry shader executable to be verified
851 */
852 void
853 validate_geometry_shader_executable(struct gl_shader_program *prog,
854 struct gl_linked_shader *shader,
855 struct gl_context *ctx)
856 {
857 if (shader == NULL)
858 return;
859
860 unsigned num_vertices = vertices_per_prim(shader->Geom.InputType);
861 prog->Geom.VerticesIn = num_vertices;
862
863 analyze_clip_cull_usage(prog, shader, ctx,
864 &prog->Geom.ClipDistanceArraySize,
865 &prog->Geom.CullDistanceArraySize);
866 }
867
868 /**
869 * Check if geometry shaders emit to non-zero streams and do corresponding
870 * validations.
871 */
872 static void
873 validate_geometry_shader_emissions(struct gl_context *ctx,
874 struct gl_shader_program *prog)
875 {
876 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
877
878 if (sh != NULL) {
879 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
880 emit_vertex.run(sh->ir);
881 if (emit_vertex.error()) {
882 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
883 "stream parameter are in the range [0, %d].\n",
884 emit_vertex.error_func(),
885 emit_vertex.error_stream(),
886 ctx->Const.MaxVertexStreams - 1);
887 }
888 prog->Geom.UsesStreams = emit_vertex.uses_streams();
889 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
890
891 /* From the ARB_gpu_shader5 spec:
892 *
893 * "Multiple vertex streams are supported only if the output primitive
894 * type is declared to be "points". A program will fail to link if it
895 * contains a geometry shader calling EmitStreamVertex() or
896 * EndStreamPrimitive() if its output primitive type is not "points".
897 *
898 * However, in the same spec:
899 *
900 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
901 * with <stream> set to zero."
902 *
903 * And:
904 *
905 * "The function EndPrimitive() is equivalent to calling
906 * EndStreamPrimitive() with <stream> set to zero."
907 *
908 * Since we can call EmitVertex() and EndPrimitive() when we output
909 * primitives other than points, calling EmitStreamVertex(0) or
910 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
911 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
912 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
913 * stream.
914 */
915 if (prog->Geom.UsesStreams && sh->Geom.OutputType != GL_POINTS) {
916 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
917 "with n>0 requires point output\n");
918 }
919 }
920 }
921
922 bool
923 validate_intrastage_arrays(struct gl_shader_program *prog,
924 ir_variable *const var,
925 ir_variable *const existing)
926 {
927 /* Consider the types to be "the same" if both types are arrays
928 * of the same type and one of the arrays is implicitly sized.
929 * In addition, set the type of the linked variable to the
930 * explicitly sized array.
931 */
932 if (var->type->is_array() && existing->type->is_array()) {
933 if ((var->type->fields.array == existing->type->fields.array) &&
934 ((var->type->length == 0)|| (existing->type->length == 0))) {
935 if (var->type->length != 0) {
936 if ((int)var->type->length <= existing->data.max_array_access) {
937 linker_error(prog, "%s `%s' declared as type "
938 "`%s' but outermost dimension has an index"
939 " of `%i'\n",
940 mode_string(var),
941 var->name, var->type->name,
942 existing->data.max_array_access);
943 }
944 existing->type = var->type;
945 return true;
946 } else if (existing->type->length != 0) {
947 if((int)existing->type->length <= var->data.max_array_access &&
948 !existing->data.from_ssbo_unsized_array) {
949 linker_error(prog, "%s `%s' declared as type "
950 "`%s' but outermost dimension has an index"
951 " of `%i'\n",
952 mode_string(var),
953 var->name, existing->type->name,
954 var->data.max_array_access);
955 }
956 return true;
957 }
958 } else {
959 /* The arrays of structs could have different glsl_type pointers but
960 * they are actually the same type. Use record_compare() to check that.
961 */
962 if (existing->type->fields.array->is_record() &&
963 var->type->fields.array->is_record() &&
964 existing->type->fields.array->record_compare(var->type->fields.array))
965 return true;
966 }
967 }
968 return false;
969 }
970
971
972 /**
973 * Perform validation of global variables used across multiple shaders
974 */
975 void
976 cross_validate_globals(struct gl_shader_program *prog,
977 struct exec_list *ir, glsl_symbol_table *variables,
978 bool uniforms_only)
979 {
980 foreach_in_list(ir_instruction, node, ir) {
981 ir_variable *const var = node->as_variable();
982
983 if (var == NULL)
984 continue;
985
986 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
987 continue;
988
989 /* don't cross validate subroutine uniforms */
990 if (var->type->contains_subroutine())
991 continue;
992
993 /* Don't cross validate temporaries that are at global scope. These
994 * will eventually get pulled into the shaders 'main'.
995 */
996 if (var->data.mode == ir_var_temporary)
997 continue;
998
999 /* If a global with this name has already been seen, verify that the
1000 * new instance has the same type. In addition, if the globals have
1001 * initializers, the values of the initializers must be the same.
1002 */
1003 ir_variable *const existing = variables->get_variable(var->name);
1004 if (existing != NULL) {
1005 /* Check if types match. Interface blocks have some special
1006 * rules so we handle those elsewhere.
1007 */
1008 if (var->type != existing->type &&
1009 !var->is_interface_instance()) {
1010 if (!validate_intrastage_arrays(prog, var, existing)) {
1011 if (var->type->is_record() && existing->type->is_record()
1012 && existing->type->record_compare(var->type)) {
1013 existing->type = var->type;
1014 } else {
1015 /* If it is an unsized array in a Shader Storage Block,
1016 * two different shaders can access to different elements.
1017 * Because of that, they might be converted to different
1018 * sized arrays, then check that they are compatible but
1019 * ignore the array size.
1020 */
1021 if (!(var->data.mode == ir_var_shader_storage &&
1022 var->data.from_ssbo_unsized_array &&
1023 existing->data.mode == ir_var_shader_storage &&
1024 existing->data.from_ssbo_unsized_array &&
1025 var->type->gl_type == existing->type->gl_type)) {
1026 linker_error(prog, "%s `%s' declared as type "
1027 "`%s' and type `%s'\n",
1028 mode_string(var),
1029 var->name, var->type->name,
1030 existing->type->name);
1031 return;
1032 }
1033 }
1034 }
1035 }
1036
1037 if (var->data.explicit_location) {
1038 if (existing->data.explicit_location
1039 && (var->data.location != existing->data.location)) {
1040 linker_error(prog, "explicit locations for %s "
1041 "`%s' have differing values\n",
1042 mode_string(var), var->name);
1043 return;
1044 }
1045
1046 if (var->data.location_frac != existing->data.location_frac) {
1047 linker_error(prog, "explicit components for %s `%s' have "
1048 "differing values\n", mode_string(var), var->name);
1049 return;
1050 }
1051
1052 existing->data.location = var->data.location;
1053 existing->data.explicit_location = true;
1054 } else {
1055 /* Check if uniform with implicit location was marked explicit
1056 * by earlier shader stage. If so, mark it explicit in this stage
1057 * too to make sure later processing does not treat it as
1058 * implicit one.
1059 */
1060 if (existing->data.explicit_location) {
1061 var->data.location = existing->data.location;
1062 var->data.explicit_location = true;
1063 }
1064 }
1065
1066 /* From the GLSL 4.20 specification:
1067 * "A link error will result if two compilation units in a program
1068 * specify different integer-constant bindings for the same
1069 * opaque-uniform name. However, it is not an error to specify a
1070 * binding on some but not all declarations for the same name"
1071 */
1072 if (var->data.explicit_binding) {
1073 if (existing->data.explicit_binding &&
1074 var->data.binding != existing->data.binding) {
1075 linker_error(prog, "explicit bindings for %s "
1076 "`%s' have differing values\n",
1077 mode_string(var), var->name);
1078 return;
1079 }
1080
1081 existing->data.binding = var->data.binding;
1082 existing->data.explicit_binding = true;
1083 }
1084
1085 if (var->type->contains_atomic() &&
1086 var->data.offset != existing->data.offset) {
1087 linker_error(prog, "offset specifications for %s "
1088 "`%s' have differing values\n",
1089 mode_string(var), var->name);
1090 return;
1091 }
1092
1093 /* Validate layout qualifiers for gl_FragDepth.
1094 *
1095 * From the AMD/ARB_conservative_depth specs:
1096 *
1097 * "If gl_FragDepth is redeclared in any fragment shader in a
1098 * program, it must be redeclared in all fragment shaders in
1099 * that program that have static assignments to
1100 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1101 * fragment shaders in a single program must have the same set
1102 * of qualifiers."
1103 */
1104 if (strcmp(var->name, "gl_FragDepth") == 0) {
1105 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1106 bool layout_differs =
1107 var->data.depth_layout != existing->data.depth_layout;
1108
1109 if (layout_declared && layout_differs) {
1110 linker_error(prog,
1111 "All redeclarations of gl_FragDepth in all "
1112 "fragment shaders in a single program must have "
1113 "the same set of qualifiers.\n");
1114 }
1115
1116 if (var->data.used && layout_differs) {
1117 linker_error(prog,
1118 "If gl_FragDepth is redeclared with a layout "
1119 "qualifier in any fragment shader, it must be "
1120 "redeclared with the same layout qualifier in "
1121 "all fragment shaders that have assignments to "
1122 "gl_FragDepth\n");
1123 }
1124 }
1125
1126 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1127 *
1128 * "If a shared global has multiple initializers, the
1129 * initializers must all be constant expressions, and they
1130 * must all have the same value. Otherwise, a link error will
1131 * result. (A shared global having only one initializer does
1132 * not require that initializer to be a constant expression.)"
1133 *
1134 * Previous to 4.20 the GLSL spec simply said that initializers
1135 * must have the same value. In this case of non-constant
1136 * initializers, this was impossible to determine. As a result,
1137 * no vendor actually implemented that behavior. The 4.20
1138 * behavior matches the implemented behavior of at least one other
1139 * vendor, so we'll implement that for all GLSL versions.
1140 */
1141 if (var->constant_initializer != NULL) {
1142 if (existing->constant_initializer != NULL) {
1143 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1144 linker_error(prog, "initializers for %s "
1145 "`%s' have differing values\n",
1146 mode_string(var), var->name);
1147 return;
1148 }
1149 } else {
1150 /* If the first-seen instance of a particular uniform did
1151 * not have an initializer but a later instance does,
1152 * replace the former with the later.
1153 */
1154 variables->replace_variable(existing->name, var);
1155 }
1156 }
1157
1158 if (var->data.has_initializer) {
1159 if (existing->data.has_initializer
1160 && (var->constant_initializer == NULL
1161 || existing->constant_initializer == NULL)) {
1162 linker_error(prog,
1163 "shared global variable `%s' has multiple "
1164 "non-constant initializers.\n",
1165 var->name);
1166 return;
1167 }
1168 }
1169
1170 if (existing->data.invariant != var->data.invariant) {
1171 linker_error(prog, "declarations for %s `%s' have "
1172 "mismatching invariant qualifiers\n",
1173 mode_string(var), var->name);
1174 return;
1175 }
1176 if (existing->data.centroid != var->data.centroid) {
1177 linker_error(prog, "declarations for %s `%s' have "
1178 "mismatching centroid qualifiers\n",
1179 mode_string(var), var->name);
1180 return;
1181 }
1182 if (existing->data.sample != var->data.sample) {
1183 linker_error(prog, "declarations for %s `%s` have "
1184 "mismatching sample qualifiers\n",
1185 mode_string(var), var->name);
1186 return;
1187 }
1188 if (existing->data.image_format != var->data.image_format) {
1189 linker_error(prog, "declarations for %s `%s` have "
1190 "mismatching image format qualifiers\n",
1191 mode_string(var), var->name);
1192 return;
1193 }
1194 } else
1195 variables->add_variable(var);
1196 }
1197 }
1198
1199
1200 /**
1201 * Perform validation of uniforms used across multiple shader stages
1202 */
1203 void
1204 cross_validate_uniforms(struct gl_shader_program *prog)
1205 {
1206 glsl_symbol_table variables;
1207 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1208 if (prog->_LinkedShaders[i] == NULL)
1209 continue;
1210
1211 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1212 true);
1213 }
1214 }
1215
1216 /**
1217 * Accumulates the array of buffer blocks and checks that all definitions of
1218 * blocks agree on their contents.
1219 */
1220 static bool
1221 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1222 bool validate_ssbo)
1223 {
1224 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1225 struct gl_uniform_block *blks = NULL;
1226 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1227 &prog->NumUniformBlocks;
1228
1229 unsigned max_num_buffer_blocks = 0;
1230 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1231 if (prog->_LinkedShaders[i]) {
1232 if (validate_ssbo) {
1233 max_num_buffer_blocks +=
1234 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1235 } else {
1236 max_num_buffer_blocks +=
1237 prog->_LinkedShaders[i]->NumUniformBlocks;
1238 }
1239 }
1240 }
1241
1242 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1243 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1244
1245 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1246 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1247 InterfaceBlockStageIndex[i][j] = -1;
1248
1249 if (sh == NULL)
1250 continue;
1251
1252 unsigned sh_num_blocks;
1253 struct gl_uniform_block **sh_blks;
1254 if (validate_ssbo) {
1255 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1256 sh_blks = sh->ShaderStorageBlocks;
1257 } else {
1258 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1259 sh_blks = sh->UniformBlocks;
1260 }
1261
1262 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1263 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1264 sh_blks[j]);
1265
1266 if (index == -1) {
1267 linker_error(prog, "buffer block `%s' has mismatching "
1268 "definitions\n", sh_blks[j]->Name);
1269
1270 for (unsigned k = 0; k <= i; k++) {
1271 delete[] InterfaceBlockStageIndex[k];
1272 }
1273 return false;
1274 }
1275
1276 InterfaceBlockStageIndex[i][index] = j;
1277 }
1278 }
1279
1280 /* Update per stage block pointers to point to the program list.
1281 * FIXME: We should be able to free the per stage blocks here.
1282 */
1283 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1284 for (unsigned j = 0; j < *num_blks; j++) {
1285 int stage_index = InterfaceBlockStageIndex[i][j];
1286
1287 if (stage_index != -1) {
1288 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1289
1290 blks[j].stageref |= (1 << i);
1291
1292 struct gl_uniform_block **sh_blks = validate_ssbo ?
1293 sh->ShaderStorageBlocks : sh->UniformBlocks;
1294
1295 sh_blks[stage_index] = &blks[j];
1296 }
1297 }
1298 }
1299
1300 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1301 delete[] InterfaceBlockStageIndex[i];
1302 }
1303
1304 if (validate_ssbo)
1305 prog->ShaderStorageBlocks = blks;
1306 else
1307 prog->UniformBlocks = blks;
1308
1309 return true;
1310 }
1311
1312
1313 /**
1314 * Populates a shaders symbol table with all global declarations
1315 */
1316 static void
1317 populate_symbol_table(gl_linked_shader *sh)
1318 {
1319 sh->symbols = new(sh) glsl_symbol_table;
1320
1321 foreach_in_list(ir_instruction, inst, sh->ir) {
1322 ir_variable *var;
1323 ir_function *func;
1324
1325 if ((func = inst->as_function()) != NULL) {
1326 sh->symbols->add_function(func);
1327 } else if ((var = inst->as_variable()) != NULL) {
1328 if (var->data.mode != ir_var_temporary)
1329 sh->symbols->add_variable(var);
1330 }
1331 }
1332 }
1333
1334
1335 /**
1336 * Remap variables referenced in an instruction tree
1337 *
1338 * This is used when instruction trees are cloned from one shader and placed in
1339 * another. These trees will contain references to \c ir_variable nodes that
1340 * do not exist in the target shader. This function finds these \c ir_variable
1341 * references and replaces the references with matching variables in the target
1342 * shader.
1343 *
1344 * If there is no matching variable in the target shader, a clone of the
1345 * \c ir_variable is made and added to the target shader. The new variable is
1346 * added to \b both the instruction stream and the symbol table.
1347 *
1348 * \param inst IR tree that is to be processed.
1349 * \param symbols Symbol table containing global scope symbols in the
1350 * linked shader.
1351 * \param instructions Instruction stream where new variable declarations
1352 * should be added.
1353 */
1354 void
1355 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1356 hash_table *temps)
1357 {
1358 class remap_visitor : public ir_hierarchical_visitor {
1359 public:
1360 remap_visitor(struct gl_linked_shader *target,
1361 hash_table *temps)
1362 {
1363 this->target = target;
1364 this->symbols = target->symbols;
1365 this->instructions = target->ir;
1366 this->temps = temps;
1367 }
1368
1369 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1370 {
1371 if (ir->var->data.mode == ir_var_temporary) {
1372 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1373
1374 assert(var != NULL);
1375 ir->var = var;
1376 return visit_continue;
1377 }
1378
1379 ir_variable *const existing =
1380 this->symbols->get_variable(ir->var->name);
1381 if (existing != NULL)
1382 ir->var = existing;
1383 else {
1384 ir_variable *copy = ir->var->clone(this->target, NULL);
1385
1386 this->symbols->add_variable(copy);
1387 this->instructions->push_head(copy);
1388 ir->var = copy;
1389 }
1390
1391 return visit_continue;
1392 }
1393
1394 private:
1395 struct gl_linked_shader *target;
1396 glsl_symbol_table *symbols;
1397 exec_list *instructions;
1398 hash_table *temps;
1399 };
1400
1401 remap_visitor v(target, temps);
1402
1403 inst->accept(&v);
1404 }
1405
1406
1407 /**
1408 * Move non-declarations from one instruction stream to another
1409 *
1410 * The intended usage pattern of this function is to pass the pointer to the
1411 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1412 * pointer) for \c last and \c false for \c make_copies on the first
1413 * call. Successive calls pass the return value of the previous call for
1414 * \c last and \c true for \c make_copies.
1415 *
1416 * \param instructions Source instruction stream
1417 * \param last Instruction after which new instructions should be
1418 * inserted in the target instruction stream
1419 * \param make_copies Flag selecting whether instructions in \c instructions
1420 * should be copied (via \c ir_instruction::clone) into the
1421 * target list or moved.
1422 *
1423 * \return
1424 * The new "last" instruction in the target instruction stream. This pointer
1425 * is suitable for use as the \c last parameter of a later call to this
1426 * function.
1427 */
1428 exec_node *
1429 move_non_declarations(exec_list *instructions, exec_node *last,
1430 bool make_copies, gl_linked_shader *target)
1431 {
1432 hash_table *temps = NULL;
1433
1434 if (make_copies)
1435 temps = hash_table_ctor(0, hash_table_pointer_hash,
1436 hash_table_pointer_compare);
1437
1438 foreach_in_list_safe(ir_instruction, inst, instructions) {
1439 if (inst->as_function())
1440 continue;
1441
1442 ir_variable *var = inst->as_variable();
1443 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1444 continue;
1445
1446 assert(inst->as_assignment()
1447 || inst->as_call()
1448 || inst->as_if() /* for initializers with the ?: operator */
1449 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1450
1451 if (make_copies) {
1452 inst = inst->clone(target, NULL);
1453
1454 if (var != NULL)
1455 hash_table_insert(temps, inst, var);
1456 else
1457 remap_variables(inst, target, temps);
1458 } else {
1459 inst->remove();
1460 }
1461
1462 last->insert_after(inst);
1463 last = inst;
1464 }
1465
1466 if (make_copies)
1467 hash_table_dtor(temps);
1468
1469 return last;
1470 }
1471
1472
1473 /**
1474 * This class is only used in link_intrastage_shaders() below but declaring
1475 * it inside that function leads to compiler warnings with some versions of
1476 * gcc.
1477 */
1478 class array_sizing_visitor : public ir_hierarchical_visitor {
1479 public:
1480 array_sizing_visitor()
1481 : mem_ctx(ralloc_context(NULL)),
1482 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1483 hash_table_pointer_compare))
1484 {
1485 }
1486
1487 ~array_sizing_visitor()
1488 {
1489 hash_table_dtor(this->unnamed_interfaces);
1490 ralloc_free(this->mem_ctx);
1491 }
1492
1493 virtual ir_visitor_status visit(ir_variable *var)
1494 {
1495 const glsl_type *type_without_array;
1496 bool implicit_sized_array = var->data.implicit_sized_array;
1497 fixup_type(&var->type, var->data.max_array_access,
1498 var->data.from_ssbo_unsized_array,
1499 &implicit_sized_array);
1500 var->data.implicit_sized_array = implicit_sized_array;
1501 type_without_array = var->type->without_array();
1502 if (var->type->is_interface()) {
1503 if (interface_contains_unsized_arrays(var->type)) {
1504 const glsl_type *new_type =
1505 resize_interface_members(var->type,
1506 var->get_max_ifc_array_access(),
1507 var->is_in_shader_storage_block());
1508 var->type = new_type;
1509 var->change_interface_type(new_type);
1510 }
1511 } else if (type_without_array->is_interface()) {
1512 if (interface_contains_unsized_arrays(type_without_array)) {
1513 const glsl_type *new_type =
1514 resize_interface_members(type_without_array,
1515 var->get_max_ifc_array_access(),
1516 var->is_in_shader_storage_block());
1517 var->change_interface_type(new_type);
1518 var->type = update_interface_members_array(var->type, new_type);
1519 }
1520 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1521 /* Store a pointer to the variable in the unnamed_interfaces
1522 * hashtable.
1523 */
1524 ir_variable **interface_vars = (ir_variable **)
1525 hash_table_find(this->unnamed_interfaces, ifc_type);
1526 if (interface_vars == NULL) {
1527 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1528 ifc_type->length);
1529 hash_table_insert(this->unnamed_interfaces, interface_vars,
1530 ifc_type);
1531 }
1532 unsigned index = ifc_type->field_index(var->name);
1533 assert(index < ifc_type->length);
1534 assert(interface_vars[index] == NULL);
1535 interface_vars[index] = var;
1536 }
1537 return visit_continue;
1538 }
1539
1540 /**
1541 * For each unnamed interface block that was discovered while running the
1542 * visitor, adjust the interface type to reflect the newly assigned array
1543 * sizes, and fix up the ir_variable nodes to point to the new interface
1544 * type.
1545 */
1546 void fixup_unnamed_interface_types()
1547 {
1548 hash_table_call_foreach(this->unnamed_interfaces,
1549 fixup_unnamed_interface_type, NULL);
1550 }
1551
1552 private:
1553 /**
1554 * If the type pointed to by \c type represents an unsized array, replace
1555 * it with a sized array whose size is determined by max_array_access.
1556 */
1557 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1558 bool from_ssbo_unsized_array, bool *implicit_sized)
1559 {
1560 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1561 *type = glsl_type::get_array_instance((*type)->fields.array,
1562 max_array_access + 1);
1563 *implicit_sized = true;
1564 assert(*type != NULL);
1565 }
1566 }
1567
1568 static const glsl_type *
1569 update_interface_members_array(const glsl_type *type,
1570 const glsl_type *new_interface_type)
1571 {
1572 const glsl_type *element_type = type->fields.array;
1573 if (element_type->is_array()) {
1574 const glsl_type *new_array_type =
1575 update_interface_members_array(element_type, new_interface_type);
1576 return glsl_type::get_array_instance(new_array_type, type->length);
1577 } else {
1578 return glsl_type::get_array_instance(new_interface_type,
1579 type->length);
1580 }
1581 }
1582
1583 /**
1584 * Determine whether the given interface type contains unsized arrays (if
1585 * it doesn't, array_sizing_visitor doesn't need to process it).
1586 */
1587 static bool interface_contains_unsized_arrays(const glsl_type *type)
1588 {
1589 for (unsigned i = 0; i < type->length; i++) {
1590 const glsl_type *elem_type = type->fields.structure[i].type;
1591 if (elem_type->is_unsized_array())
1592 return true;
1593 }
1594 return false;
1595 }
1596
1597 /**
1598 * Create a new interface type based on the given type, with unsized arrays
1599 * replaced by sized arrays whose size is determined by
1600 * max_ifc_array_access.
1601 */
1602 static const glsl_type *
1603 resize_interface_members(const glsl_type *type,
1604 const int *max_ifc_array_access,
1605 bool is_ssbo)
1606 {
1607 unsigned num_fields = type->length;
1608 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1609 memcpy(fields, type->fields.structure,
1610 num_fields * sizeof(*fields));
1611 for (unsigned i = 0; i < num_fields; i++) {
1612 bool implicit_sized_array = fields[i].implicit_sized_array;
1613 /* If SSBO last member is unsized array, we don't replace it by a sized
1614 * array.
1615 */
1616 if (is_ssbo && i == (num_fields - 1))
1617 fixup_type(&fields[i].type, max_ifc_array_access[i],
1618 true, &implicit_sized_array);
1619 else
1620 fixup_type(&fields[i].type, max_ifc_array_access[i],
1621 false, &implicit_sized_array);
1622 fields[i].implicit_sized_array = implicit_sized_array;
1623 }
1624 glsl_interface_packing packing =
1625 (glsl_interface_packing) type->interface_packing;
1626 const glsl_type *new_ifc_type =
1627 glsl_type::get_interface_instance(fields, num_fields,
1628 packing, type->name);
1629 delete [] fields;
1630 return new_ifc_type;
1631 }
1632
1633 static void fixup_unnamed_interface_type(const void *key, void *data,
1634 void *)
1635 {
1636 const glsl_type *ifc_type = (const glsl_type *) key;
1637 ir_variable **interface_vars = (ir_variable **) data;
1638 unsigned num_fields = ifc_type->length;
1639 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1640 memcpy(fields, ifc_type->fields.structure,
1641 num_fields * sizeof(*fields));
1642 bool interface_type_changed = false;
1643 for (unsigned i = 0; i < num_fields; i++) {
1644 if (interface_vars[i] != NULL &&
1645 fields[i].type != interface_vars[i]->type) {
1646 fields[i].type = interface_vars[i]->type;
1647 interface_type_changed = true;
1648 }
1649 }
1650 if (!interface_type_changed) {
1651 delete [] fields;
1652 return;
1653 }
1654 glsl_interface_packing packing =
1655 (glsl_interface_packing) ifc_type->interface_packing;
1656 const glsl_type *new_ifc_type =
1657 glsl_type::get_interface_instance(fields, num_fields, packing,
1658 ifc_type->name);
1659 delete [] fields;
1660 for (unsigned i = 0; i < num_fields; i++) {
1661 if (interface_vars[i] != NULL)
1662 interface_vars[i]->change_interface_type(new_ifc_type);
1663 }
1664 }
1665
1666 /**
1667 * Memory context used to allocate the data in \c unnamed_interfaces.
1668 */
1669 void *mem_ctx;
1670
1671 /**
1672 * Hash table from const glsl_type * to an array of ir_variable *'s
1673 * pointing to the ir_variables constituting each unnamed interface block.
1674 */
1675 hash_table *unnamed_interfaces;
1676 };
1677
1678 /**
1679 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1680 * for later use.
1681 */
1682 static void
1683 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1684 struct gl_shader_program *prog,
1685 struct gl_linked_shader *linked_shader,
1686 struct gl_shader **shader_list,
1687 unsigned num_shaders)
1688 {
1689 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1690 linked_shader->TransformFeedback.BufferStride[i] = 0;
1691 }
1692
1693 for (unsigned i = 0; i < num_shaders; i++) {
1694 struct gl_shader *shader = shader_list[i];
1695
1696 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1697 if (shader->TransformFeedback.BufferStride[j]) {
1698 if (linked_shader->TransformFeedback.BufferStride[j] != 0 &&
1699 shader->TransformFeedback.BufferStride[j] != 0 &&
1700 linked_shader->TransformFeedback.BufferStride[j] !=
1701 shader->TransformFeedback.BufferStride[j]) {
1702 linker_error(prog,
1703 "intrastage shaders defined with conflicting "
1704 "xfb_stride for buffer %d (%d and %d)\n", j,
1705 linked_shader->TransformFeedback.BufferStride[j],
1706 shader->TransformFeedback.BufferStride[j]);
1707 return;
1708 }
1709
1710 if (shader->TransformFeedback.BufferStride[j])
1711 linked_shader->TransformFeedback.BufferStride[j] =
1712 shader->TransformFeedback.BufferStride[j];
1713 }
1714 }
1715 }
1716
1717 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1718 if (linked_shader->TransformFeedback.BufferStride[j]) {
1719 prog->TransformFeedback.BufferStride[j] =
1720 linked_shader->TransformFeedback.BufferStride[j];
1721
1722 /* We will validate doubles at a later stage */
1723 if (prog->TransformFeedback.BufferStride[j] % 4) {
1724 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1725 "multiple of 4 or if its applied to a type that is "
1726 "or contains a double a multiple of 8.",
1727 prog->TransformFeedback.BufferStride[j]);
1728 return;
1729 }
1730
1731 if (prog->TransformFeedback.BufferStride[j] / 4 >
1732 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1733 linker_error(prog,
1734 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1735 "limit has been exceeded.");
1736 return;
1737 }
1738 }
1739 }
1740 }
1741
1742 /**
1743 * Performs the cross-validation of tessellation control shader vertices and
1744 * layout qualifiers for the attached tessellation control shaders,
1745 * and propagates them to the linked TCS and linked shader program.
1746 */
1747 static void
1748 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1749 struct gl_linked_shader *linked_shader,
1750 struct gl_shader **shader_list,
1751 unsigned num_shaders)
1752 {
1753 linked_shader->TessCtrl.VerticesOut = 0;
1754
1755 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1756 return;
1757
1758 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1759 *
1760 * "All tessellation control shader layout declarations in a program
1761 * must specify the same output patch vertex count. There must be at
1762 * least one layout qualifier specifying an output patch vertex count
1763 * in any program containing tessellation control shaders; however,
1764 * such a declaration is not required in all tessellation control
1765 * shaders."
1766 */
1767
1768 for (unsigned i = 0; i < num_shaders; i++) {
1769 struct gl_shader *shader = shader_list[i];
1770
1771 if (shader->TessCtrl.VerticesOut != 0) {
1772 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1773 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1774 linker_error(prog, "tessellation control shader defined with "
1775 "conflicting output vertex count (%d and %d)\n",
1776 linked_shader->TessCtrl.VerticesOut,
1777 shader->TessCtrl.VerticesOut);
1778 return;
1779 }
1780 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1781 }
1782 }
1783
1784 /* Just do the intrastage -> interstage propagation right now,
1785 * since we already know we're in the right type of shader program
1786 * for doing it.
1787 */
1788 if (linked_shader->TessCtrl.VerticesOut == 0) {
1789 linker_error(prog, "tessellation control shader didn't declare "
1790 "vertices out layout qualifier\n");
1791 return;
1792 }
1793 }
1794
1795
1796 /**
1797 * Performs the cross-validation of tessellation evaluation shader
1798 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1799 * for the attached tessellation evaluation shaders, and propagates them
1800 * to the linked TES and linked shader program.
1801 */
1802 static void
1803 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1804 struct gl_linked_shader *linked_shader,
1805 struct gl_shader **shader_list,
1806 unsigned num_shaders)
1807 {
1808 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1809 linked_shader->TessEval.Spacing = 0;
1810 linked_shader->TessEval.VertexOrder = 0;
1811 linked_shader->TessEval.PointMode = -1;
1812
1813 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1814 return;
1815
1816 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1817 *
1818 * "At least one tessellation evaluation shader (compilation unit) in
1819 * a program must declare a primitive mode in its input layout.
1820 * Declaration vertex spacing, ordering, and point mode identifiers is
1821 * optional. It is not required that all tessellation evaluation
1822 * shaders in a program declare a primitive mode. If spacing or
1823 * vertex ordering declarations are omitted, the tessellation
1824 * primitive generator will use equal spacing or counter-clockwise
1825 * vertex ordering, respectively. If a point mode declaration is
1826 * omitted, the tessellation primitive generator will produce lines or
1827 * triangles according to the primitive mode."
1828 */
1829
1830 for (unsigned i = 0; i < num_shaders; i++) {
1831 struct gl_shader *shader = shader_list[i];
1832
1833 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1834 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1835 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1836 linker_error(prog, "tessellation evaluation shader defined with "
1837 "conflicting input primitive modes.\n");
1838 return;
1839 }
1840 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1841 }
1842
1843 if (shader->TessEval.Spacing != 0) {
1844 if (linked_shader->TessEval.Spacing != 0 &&
1845 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1846 linker_error(prog, "tessellation evaluation shader defined with "
1847 "conflicting vertex spacing.\n");
1848 return;
1849 }
1850 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1851 }
1852
1853 if (shader->TessEval.VertexOrder != 0) {
1854 if (linked_shader->TessEval.VertexOrder != 0 &&
1855 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1856 linker_error(prog, "tessellation evaluation shader defined with "
1857 "conflicting ordering.\n");
1858 return;
1859 }
1860 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1861 }
1862
1863 if (shader->TessEval.PointMode != -1) {
1864 if (linked_shader->TessEval.PointMode != -1 &&
1865 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1866 linker_error(prog, "tessellation evaluation shader defined with "
1867 "conflicting point modes.\n");
1868 return;
1869 }
1870 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1871 }
1872
1873 }
1874
1875 /* Just do the intrastage -> interstage propagation right now,
1876 * since we already know we're in the right type of shader program
1877 * for doing it.
1878 */
1879 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1880 linker_error(prog,
1881 "tessellation evaluation shader didn't declare input "
1882 "primitive modes.\n");
1883 return;
1884 }
1885
1886 if (linked_shader->TessEval.Spacing == 0)
1887 linked_shader->TessEval.Spacing = GL_EQUAL;
1888
1889 if (linked_shader->TessEval.VertexOrder == 0)
1890 linked_shader->TessEval.VertexOrder = GL_CCW;
1891
1892 if (linked_shader->TessEval.PointMode == -1)
1893 linked_shader->TessEval.PointMode = GL_FALSE;
1894 }
1895
1896
1897 /**
1898 * Performs the cross-validation of layout qualifiers specified in
1899 * redeclaration of gl_FragCoord for the attached fragment shaders,
1900 * and propagates them to the linked FS and linked shader program.
1901 */
1902 static void
1903 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1904 struct gl_linked_shader *linked_shader,
1905 struct gl_shader **shader_list,
1906 unsigned num_shaders)
1907 {
1908 linked_shader->redeclares_gl_fragcoord = false;
1909 linked_shader->uses_gl_fragcoord = false;
1910 linked_shader->origin_upper_left = false;
1911 linked_shader->pixel_center_integer = false;
1912
1913 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1914 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1915 return;
1916
1917 for (unsigned i = 0; i < num_shaders; i++) {
1918 struct gl_shader *shader = shader_list[i];
1919 /* From the GLSL 1.50 spec, page 39:
1920 *
1921 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1922 * it must be redeclared in all the fragment shaders in that program
1923 * that have a static use gl_FragCoord."
1924 */
1925 if ((linked_shader->redeclares_gl_fragcoord
1926 && !shader->redeclares_gl_fragcoord
1927 && shader->uses_gl_fragcoord)
1928 || (shader->redeclares_gl_fragcoord
1929 && !linked_shader->redeclares_gl_fragcoord
1930 && linked_shader->uses_gl_fragcoord)) {
1931 linker_error(prog, "fragment shader defined with conflicting "
1932 "layout qualifiers for gl_FragCoord\n");
1933 }
1934
1935 /* From the GLSL 1.50 spec, page 39:
1936 *
1937 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1938 * single program must have the same set of qualifiers."
1939 */
1940 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1941 && (shader->origin_upper_left != linked_shader->origin_upper_left
1942 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1943 linker_error(prog, "fragment shader defined with conflicting "
1944 "layout qualifiers for gl_FragCoord\n");
1945 }
1946
1947 /* Update the linked shader state. Note that uses_gl_fragcoord should
1948 * accumulate the results. The other values should replace. If there
1949 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1950 * are already known to be the same.
1951 */
1952 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1953 linked_shader->redeclares_gl_fragcoord =
1954 shader->redeclares_gl_fragcoord;
1955 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1956 || shader->uses_gl_fragcoord;
1957 linked_shader->origin_upper_left = shader->origin_upper_left;
1958 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1959 }
1960
1961 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1962 }
1963 }
1964
1965 /**
1966 * Performs the cross-validation of geometry shader max_vertices and
1967 * primitive type layout qualifiers for the attached geometry shaders,
1968 * and propagates them to the linked GS and linked shader program.
1969 */
1970 static void
1971 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1972 struct gl_linked_shader *linked_shader,
1973 struct gl_shader **shader_list,
1974 unsigned num_shaders)
1975 {
1976 linked_shader->Geom.VerticesOut = -1;
1977 linked_shader->Geom.Invocations = 0;
1978 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1979 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1980
1981 /* No in/out qualifiers defined for anything but GLSL 1.50+
1982 * geometry shaders so far.
1983 */
1984 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1985 return;
1986
1987 /* From the GLSL 1.50 spec, page 46:
1988 *
1989 * "All geometry shader output layout declarations in a program
1990 * must declare the same layout and same value for
1991 * max_vertices. There must be at least one geometry output
1992 * layout declaration somewhere in a program, but not all
1993 * geometry shaders (compilation units) are required to
1994 * declare it."
1995 */
1996
1997 for (unsigned i = 0; i < num_shaders; i++) {
1998 struct gl_shader *shader = shader_list[i];
1999
2000 if (shader->Geom.InputType != PRIM_UNKNOWN) {
2001 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
2002 linked_shader->Geom.InputType != shader->Geom.InputType) {
2003 linker_error(prog, "geometry shader defined with conflicting "
2004 "input types\n");
2005 return;
2006 }
2007 linked_shader->Geom.InputType = shader->Geom.InputType;
2008 }
2009
2010 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
2011 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
2012 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
2013 linker_error(prog, "geometry shader defined with conflicting "
2014 "output types\n");
2015 return;
2016 }
2017 linked_shader->Geom.OutputType = shader->Geom.OutputType;
2018 }
2019
2020 if (shader->Geom.VerticesOut != -1) {
2021 if (linked_shader->Geom.VerticesOut != -1 &&
2022 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
2023 linker_error(prog, "geometry shader defined with conflicting "
2024 "output vertex count (%d and %d)\n",
2025 linked_shader->Geom.VerticesOut,
2026 shader->Geom.VerticesOut);
2027 return;
2028 }
2029 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
2030 }
2031
2032 if (shader->Geom.Invocations != 0) {
2033 if (linked_shader->Geom.Invocations != 0 &&
2034 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
2035 linker_error(prog, "geometry shader defined with conflicting "
2036 "invocation count (%d and %d)\n",
2037 linked_shader->Geom.Invocations,
2038 shader->Geom.Invocations);
2039 return;
2040 }
2041 linked_shader->Geom.Invocations = shader->Geom.Invocations;
2042 }
2043 }
2044
2045 /* Just do the intrastage -> interstage propagation right now,
2046 * since we already know we're in the right type of shader program
2047 * for doing it.
2048 */
2049 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
2050 linker_error(prog,
2051 "geometry shader didn't declare primitive input type\n");
2052 return;
2053 }
2054
2055 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
2056 linker_error(prog,
2057 "geometry shader didn't declare primitive output type\n");
2058 return;
2059 }
2060
2061 if (linked_shader->Geom.VerticesOut == -1) {
2062 linker_error(prog,
2063 "geometry shader didn't declare max_vertices\n");
2064 return;
2065 }
2066
2067 if (linked_shader->Geom.Invocations == 0)
2068 linked_shader->Geom.Invocations = 1;
2069 }
2070
2071
2072 /**
2073 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2074 * qualifiers for the attached compute shaders, and propagate them to the
2075 * linked CS and linked shader program.
2076 */
2077 static void
2078 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2079 struct gl_linked_shader *linked_shader,
2080 struct gl_shader **shader_list,
2081 unsigned num_shaders)
2082 {
2083 for (int i = 0; i < 3; i++)
2084 linked_shader->Comp.LocalSize[i] = 0;
2085
2086 /* This function is called for all shader stages, but it only has an effect
2087 * for compute shaders.
2088 */
2089 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2090 return;
2091
2092 /* From the ARB_compute_shader spec, in the section describing local size
2093 * declarations:
2094 *
2095 * If multiple compute shaders attached to a single program object
2096 * declare local work-group size, the declarations must be identical;
2097 * otherwise a link-time error results. Furthermore, if a program
2098 * object contains any compute shaders, at least one must contain an
2099 * input layout qualifier specifying the local work sizes of the
2100 * program, or a link-time error will occur.
2101 */
2102 for (unsigned sh = 0; sh < num_shaders; sh++) {
2103 struct gl_shader *shader = shader_list[sh];
2104
2105 if (shader->Comp.LocalSize[0] != 0) {
2106 if (linked_shader->Comp.LocalSize[0] != 0) {
2107 for (int i = 0; i < 3; i++) {
2108 if (linked_shader->Comp.LocalSize[i] !=
2109 shader->Comp.LocalSize[i]) {
2110 linker_error(prog, "compute shader defined with conflicting "
2111 "local sizes\n");
2112 return;
2113 }
2114 }
2115 }
2116 for (int i = 0; i < 3; i++)
2117 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
2118 }
2119 }
2120
2121 /* Just do the intrastage -> interstage propagation right now,
2122 * since we already know we're in the right type of shader program
2123 * for doing it.
2124 */
2125 if (linked_shader->Comp.LocalSize[0] == 0) {
2126 linker_error(prog, "compute shader didn't declare local size\n");
2127 return;
2128 }
2129 for (int i = 0; i < 3; i++)
2130 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
2131 }
2132
2133
2134 /**
2135 * Combine a group of shaders for a single stage to generate a linked shader
2136 *
2137 * \note
2138 * If this function is supplied a single shader, it is cloned, and the new
2139 * shader is returned.
2140 */
2141 static struct gl_linked_shader *
2142 link_intrastage_shaders(void *mem_ctx,
2143 struct gl_context *ctx,
2144 struct gl_shader_program *prog,
2145 struct gl_shader **shader_list,
2146 unsigned num_shaders)
2147 {
2148 struct gl_uniform_block *ubo_blocks = NULL;
2149 struct gl_uniform_block *ssbo_blocks = NULL;
2150 unsigned num_ubo_blocks = 0;
2151 unsigned num_ssbo_blocks = 0;
2152
2153 /* Check that global variables defined in multiple shaders are consistent.
2154 */
2155 glsl_symbol_table variables;
2156 for (unsigned i = 0; i < num_shaders; i++) {
2157 if (shader_list[i] == NULL)
2158 continue;
2159 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2160 }
2161
2162 if (!prog->LinkStatus)
2163 return NULL;
2164
2165 /* Check that interface blocks defined in multiple shaders are consistent.
2166 */
2167 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2168 num_shaders);
2169 if (!prog->LinkStatus)
2170 return NULL;
2171
2172 /* Check that there is only a single definition of each function signature
2173 * across all shaders.
2174 */
2175 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2176 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2177 ir_function *const f = node->as_function();
2178
2179 if (f == NULL)
2180 continue;
2181
2182 for (unsigned j = i + 1; j < num_shaders; j++) {
2183 ir_function *const other =
2184 shader_list[j]->symbols->get_function(f->name);
2185
2186 /* If the other shader has no function (and therefore no function
2187 * signatures) with the same name, skip to the next shader.
2188 */
2189 if (other == NULL)
2190 continue;
2191
2192 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2193 if (!sig->is_defined || sig->is_builtin())
2194 continue;
2195
2196 ir_function_signature *other_sig =
2197 other->exact_matching_signature(NULL, &sig->parameters);
2198
2199 if ((other_sig != NULL) && other_sig->is_defined
2200 && !other_sig->is_builtin()) {
2201 linker_error(prog, "function `%s' is multiply defined\n",
2202 f->name);
2203 return NULL;
2204 }
2205 }
2206 }
2207 }
2208 }
2209
2210 /* Find the shader that defines main, and make a clone of it.
2211 *
2212 * Starting with the clone, search for undefined references. If one is
2213 * found, find the shader that defines it. Clone the reference and add
2214 * it to the shader. Repeat until there are no undefined references or
2215 * until a reference cannot be resolved.
2216 */
2217 gl_shader *main = NULL;
2218 for (unsigned i = 0; i < num_shaders; i++) {
2219 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2220 main = shader_list[i];
2221 break;
2222 }
2223 }
2224
2225 if (main == NULL) {
2226 linker_error(prog, "%s shader lacks `main'\n",
2227 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2228 return NULL;
2229 }
2230
2231 gl_linked_shader *linked = ctx->Driver.NewShader(shader_list[0]->Stage);
2232 linked->ir = new(linked) exec_list;
2233 clone_ir_list(mem_ctx, linked->ir, main->ir);
2234
2235 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2236 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2237 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2238 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2239 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2240 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2241 num_shaders);
2242
2243 populate_symbol_table(linked);
2244
2245 /* The pointer to the main function in the final linked shader (i.e., the
2246 * copy of the original shader that contained the main function).
2247 */
2248 ir_function_signature *const main_sig =
2249 _mesa_get_main_function_signature(linked->symbols);
2250
2251 /* Move any instructions other than variable declarations or function
2252 * declarations into main.
2253 */
2254 exec_node *insertion_point =
2255 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2256 linked);
2257
2258 for (unsigned i = 0; i < num_shaders; i++) {
2259 if (shader_list[i] == main)
2260 continue;
2261
2262 insertion_point = move_non_declarations(shader_list[i]->ir,
2263 insertion_point, true, linked);
2264 }
2265
2266 /* Check if any shader needs built-in functions. */
2267 bool need_builtins = false;
2268 for (unsigned i = 0; i < num_shaders; i++) {
2269 if (shader_list[i]->uses_builtin_functions) {
2270 need_builtins = true;
2271 break;
2272 }
2273 }
2274
2275 bool ok;
2276 if (need_builtins) {
2277 /* Make a temporary array one larger than shader_list, which will hold
2278 * the built-in function shader as well.
2279 */
2280 gl_shader **linking_shaders = (gl_shader **)
2281 calloc(num_shaders + 1, sizeof(gl_shader *));
2282
2283 ok = linking_shaders != NULL;
2284
2285 if (ok) {
2286 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2287 _mesa_glsl_initialize_builtin_functions();
2288 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2289
2290 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2291
2292 free(linking_shaders);
2293 } else {
2294 _mesa_error_no_memory(__func__);
2295 }
2296 } else {
2297 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2298 }
2299
2300
2301 if (!ok) {
2302 _mesa_delete_linked_shader(ctx, linked);
2303 return NULL;
2304 }
2305
2306 /* Make a pass over all variable declarations to ensure that arrays with
2307 * unspecified sizes have a size specified. The size is inferred from the
2308 * max_array_access field.
2309 */
2310 array_sizing_visitor v;
2311 v.run(linked->ir);
2312 v.fixup_unnamed_interface_types();
2313
2314 /* Link up uniform blocks defined within this stage. */
2315 link_uniform_blocks(mem_ctx, ctx, prog, &linked, 1,
2316 &ubo_blocks, &num_ubo_blocks, &ssbo_blocks,
2317 &num_ssbo_blocks);
2318
2319 if (!prog->LinkStatus) {
2320 _mesa_delete_linked_shader(ctx, linked);
2321 return NULL;
2322 }
2323
2324 /* Copy ubo blocks to linked shader list */
2325 linked->UniformBlocks =
2326 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2327 ralloc_steal(linked, ubo_blocks);
2328 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2329 linked->UniformBlocks[i] = &ubo_blocks[i];
2330 }
2331 linked->NumUniformBlocks = num_ubo_blocks;
2332
2333 /* Copy ssbo blocks to linked shader list */
2334 linked->ShaderStorageBlocks =
2335 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2336 ralloc_steal(linked, ssbo_blocks);
2337 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2338 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2339 }
2340 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2341
2342 /* At this point linked should contain all of the linked IR, so
2343 * validate it to make sure nothing went wrong.
2344 */
2345 validate_ir_tree(linked->ir);
2346
2347 /* Set the size of geometry shader input arrays */
2348 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2349 unsigned num_vertices = vertices_per_prim(linked->Geom.InputType);
2350 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2351 foreach_in_list(ir_instruction, ir, linked->ir) {
2352 ir->accept(&input_resize_visitor);
2353 }
2354 }
2355
2356 if (ctx->Const.VertexID_is_zero_based)
2357 lower_vertex_id(linked);
2358
2359 /* Validate correct usage of barrier() in the tess control shader */
2360 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2361 barrier_use_visitor visitor(prog);
2362 foreach_in_list(ir_instruction, ir, linked->ir) {
2363 ir->accept(&visitor);
2364 }
2365 }
2366
2367 return linked;
2368 }
2369
2370 /**
2371 * Update the sizes of linked shader uniform arrays to the maximum
2372 * array index used.
2373 *
2374 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2375 *
2376 * If one or more elements of an array are active,
2377 * GetActiveUniform will return the name of the array in name,
2378 * subject to the restrictions listed above. The type of the array
2379 * is returned in type. The size parameter contains the highest
2380 * array element index used, plus one. The compiler or linker
2381 * determines the highest index used. There will be only one
2382 * active uniform reported by the GL per uniform array.
2383
2384 */
2385 static void
2386 update_array_sizes(struct gl_shader_program *prog)
2387 {
2388 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2389 if (prog->_LinkedShaders[i] == NULL)
2390 continue;
2391
2392 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2393 ir_variable *const var = node->as_variable();
2394
2395 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2396 !var->type->is_array())
2397 continue;
2398
2399 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2400 * will not be eliminated. Since we always do std140, just
2401 * don't resize arrays in UBOs.
2402 *
2403 * Atomic counters are supposed to get deterministic
2404 * locations assigned based on the declaration ordering and
2405 * sizes, array compaction would mess that up.
2406 *
2407 * Subroutine uniforms are not removed.
2408 */
2409 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2410 var->type->contains_subroutine() || var->constant_initializer)
2411 continue;
2412
2413 int size = var->data.max_array_access;
2414 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2415 if (prog->_LinkedShaders[j] == NULL)
2416 continue;
2417
2418 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2419 ir_variable *other_var = node2->as_variable();
2420 if (!other_var)
2421 continue;
2422
2423 if (strcmp(var->name, other_var->name) == 0 &&
2424 other_var->data.max_array_access > size) {
2425 size = other_var->data.max_array_access;
2426 }
2427 }
2428 }
2429
2430 if (size + 1 != (int)var->type->length) {
2431 /* If this is a built-in uniform (i.e., it's backed by some
2432 * fixed-function state), adjust the number of state slots to
2433 * match the new array size. The number of slots per array entry
2434 * is not known. It seems safe to assume that the total number of
2435 * slots is an integer multiple of the number of array elements.
2436 * Determine the number of slots per array element by dividing by
2437 * the old (total) size.
2438 */
2439 const unsigned num_slots = var->get_num_state_slots();
2440 if (num_slots > 0) {
2441 var->set_num_state_slots((size + 1)
2442 * (num_slots / var->type->length));
2443 }
2444
2445 var->type = glsl_type::get_array_instance(var->type->fields.array,
2446 size + 1);
2447 /* FINISHME: We should update the types of array
2448 * dereferences of this variable now.
2449 */
2450 }
2451 }
2452 }
2453 }
2454
2455 /**
2456 * Resize tessellation evaluation per-vertex inputs to the size of
2457 * tessellation control per-vertex outputs.
2458 */
2459 static void
2460 resize_tes_inputs(struct gl_context *ctx,
2461 struct gl_shader_program *prog)
2462 {
2463 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2464 return;
2465
2466 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2467 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2468
2469 /* If no control shader is present, then the TES inputs are statically
2470 * sized to MaxPatchVertices; the actual size of the arrays won't be
2471 * known until draw time.
2472 */
2473 const int num_vertices = tcs
2474 ? tcs->TessCtrl.VerticesOut
2475 : ctx->Const.MaxPatchVertices;
2476
2477 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2478 foreach_in_list(ir_instruction, ir, tes->ir) {
2479 ir->accept(&input_resize_visitor);
2480 }
2481
2482 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2483 /* Convert the gl_PatchVerticesIn system value into a constant, since
2484 * the value is known at this point.
2485 */
2486 foreach_in_list(ir_instruction, ir, tes->ir) {
2487 ir_variable *var = ir->as_variable();
2488 if (var && var->data.mode == ir_var_system_value &&
2489 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2490 void *mem_ctx = ralloc_parent(var);
2491 var->data.location = 0;
2492 var->data.explicit_location = false;
2493 if (tcs) {
2494 var->data.mode = ir_var_auto;
2495 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2496 } else {
2497 var->data.mode = ir_var_uniform;
2498 var->data.how_declared = ir_var_hidden;
2499 var->allocate_state_slots(1);
2500 ir_state_slot *slot0 = &var->get_state_slots()[0];
2501 slot0->swizzle = SWIZZLE_XXXX;
2502 slot0->tokens[0] = STATE_INTERNAL;
2503 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2504 for (int i = 2; i < STATE_LENGTH; i++)
2505 slot0->tokens[i] = 0;
2506 }
2507 }
2508 }
2509 }
2510 }
2511
2512 /**
2513 * Find a contiguous set of available bits in a bitmask.
2514 *
2515 * \param used_mask Bits representing used (1) and unused (0) locations
2516 * \param needed_count Number of contiguous bits needed.
2517 *
2518 * \return
2519 * Base location of the available bits on success or -1 on failure.
2520 */
2521 int
2522 find_available_slots(unsigned used_mask, unsigned needed_count)
2523 {
2524 unsigned needed_mask = (1 << needed_count) - 1;
2525 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2526
2527 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2528 * cannot optimize possibly infinite loops" for the loop below.
2529 */
2530 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2531 return -1;
2532
2533 for (int i = 0; i <= max_bit_to_test; i++) {
2534 if ((needed_mask & ~used_mask) == needed_mask)
2535 return i;
2536
2537 needed_mask <<= 1;
2538 }
2539
2540 return -1;
2541 }
2542
2543
2544 /**
2545 * Assign locations for either VS inputs or FS outputs
2546 *
2547 * \param prog Shader program whose variables need locations assigned
2548 * \param constants Driver specific constant values for the program.
2549 * \param target_index Selector for the program target to receive location
2550 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2551 * \c MESA_SHADER_FRAGMENT.
2552 *
2553 * \return
2554 * If locations are successfully assigned, true is returned. Otherwise an
2555 * error is emitted to the shader link log and false is returned.
2556 */
2557 bool
2558 assign_attribute_or_color_locations(gl_shader_program *prog,
2559 struct gl_constants *constants,
2560 unsigned target_index)
2561 {
2562 /* Maximum number of generic locations. This corresponds to either the
2563 * maximum number of draw buffers or the maximum number of generic
2564 * attributes.
2565 */
2566 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2567 constants->Program[target_index].MaxAttribs :
2568 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2569
2570 /* Mark invalid locations as being used.
2571 */
2572 unsigned used_locations = (max_index >= 32)
2573 ? ~0 : ~((1 << max_index) - 1);
2574 unsigned double_storage_locations = 0;
2575
2576 assert((target_index == MESA_SHADER_VERTEX)
2577 || (target_index == MESA_SHADER_FRAGMENT));
2578
2579 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2580 if (sh == NULL)
2581 return true;
2582
2583 /* Operate in a total of four passes.
2584 *
2585 * 1. Invalidate the location assignments for all vertex shader inputs.
2586 *
2587 * 2. Assign locations for inputs that have user-defined (via
2588 * glBindVertexAttribLocation) locations and outputs that have
2589 * user-defined locations (via glBindFragDataLocation).
2590 *
2591 * 3. Sort the attributes without assigned locations by number of slots
2592 * required in decreasing order. Fragmentation caused by attribute
2593 * locations assigned by the application may prevent large attributes
2594 * from having enough contiguous space.
2595 *
2596 * 4. Assign locations to any inputs without assigned locations.
2597 */
2598
2599 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2600 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2601
2602 const enum ir_variable_mode direction =
2603 (target_index == MESA_SHADER_VERTEX)
2604 ? ir_var_shader_in : ir_var_shader_out;
2605
2606
2607 /* Temporary storage for the set of attributes that need locations assigned.
2608 */
2609 struct temp_attr {
2610 unsigned slots;
2611 ir_variable *var;
2612
2613 /* Used below in the call to qsort. */
2614 static int compare(const void *a, const void *b)
2615 {
2616 const temp_attr *const l = (const temp_attr *) a;
2617 const temp_attr *const r = (const temp_attr *) b;
2618
2619 /* Reversed because we want a descending order sort below. */
2620 return r->slots - l->slots;
2621 }
2622 } to_assign[32];
2623 assert(max_index <= 32);
2624
2625 /* Temporary array for the set of attributes that have locations assigned.
2626 */
2627 ir_variable *assigned[16];
2628
2629 unsigned num_attr = 0;
2630 unsigned assigned_attr = 0;
2631
2632 foreach_in_list(ir_instruction, node, sh->ir) {
2633 ir_variable *const var = node->as_variable();
2634
2635 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2636 continue;
2637
2638 if (var->data.explicit_location) {
2639 var->data.is_unmatched_generic_inout = 0;
2640 if ((var->data.location >= (int)(max_index + generic_base))
2641 || (var->data.location < 0)) {
2642 linker_error(prog,
2643 "invalid explicit location %d specified for `%s'\n",
2644 (var->data.location < 0)
2645 ? var->data.location
2646 : var->data.location - generic_base,
2647 var->name);
2648 return false;
2649 }
2650 } else if (target_index == MESA_SHADER_VERTEX) {
2651 unsigned binding;
2652
2653 if (prog->AttributeBindings->get(binding, var->name)) {
2654 assert(binding >= VERT_ATTRIB_GENERIC0);
2655 var->data.location = binding;
2656 var->data.is_unmatched_generic_inout = 0;
2657 }
2658 } else if (target_index == MESA_SHADER_FRAGMENT) {
2659 unsigned binding;
2660 unsigned index;
2661
2662 if (prog->FragDataBindings->get(binding, var->name)) {
2663 assert(binding >= FRAG_RESULT_DATA0);
2664 var->data.location = binding;
2665 var->data.is_unmatched_generic_inout = 0;
2666
2667 if (prog->FragDataIndexBindings->get(index, var->name)) {
2668 var->data.index = index;
2669 }
2670 }
2671 }
2672
2673 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2674 *
2675 * "Output binding assignments will cause LinkProgram to fail:
2676 * ...
2677 * If the program has an active output assigned to a location greater
2678 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2679 * an active output assigned an index greater than or equal to one;"
2680 */
2681 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2682 var->data.location - generic_base >=
2683 (int) constants->MaxDualSourceDrawBuffers) {
2684 linker_error(prog,
2685 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2686 "with index %u for %s\n",
2687 var->data.location - generic_base, var->data.index,
2688 var->name);
2689 return false;
2690 }
2691
2692 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2693
2694 /* If the variable is not a built-in and has a location statically
2695 * assigned in the shader (presumably via a layout qualifier), make sure
2696 * that it doesn't collide with other assigned locations. Otherwise,
2697 * add it to the list of variables that need linker-assigned locations.
2698 */
2699 if (var->data.location != -1) {
2700 if (var->data.location >= generic_base && var->data.index < 1) {
2701 /* From page 61 of the OpenGL 4.0 spec:
2702 *
2703 * "LinkProgram will fail if the attribute bindings assigned
2704 * by BindAttribLocation do not leave not enough space to
2705 * assign a location for an active matrix attribute or an
2706 * active attribute array, both of which require multiple
2707 * contiguous generic attributes."
2708 *
2709 * I think above text prohibits the aliasing of explicit and
2710 * automatic assignments. But, aliasing is allowed in manual
2711 * assignments of attribute locations. See below comments for
2712 * the details.
2713 *
2714 * From OpenGL 4.0 spec, page 61:
2715 *
2716 * "It is possible for an application to bind more than one
2717 * attribute name to the same location. This is referred to as
2718 * aliasing. This will only work if only one of the aliased
2719 * attributes is active in the executable program, or if no
2720 * path through the shader consumes more than one attribute of
2721 * a set of attributes aliased to the same location. A link
2722 * error can occur if the linker determines that every path
2723 * through the shader consumes multiple aliased attributes,
2724 * but implementations are not required to generate an error
2725 * in this case."
2726 *
2727 * From GLSL 4.30 spec, page 54:
2728 *
2729 * "A program will fail to link if any two non-vertex shader
2730 * input variables are assigned to the same location. For
2731 * vertex shaders, multiple input variables may be assigned
2732 * to the same location using either layout qualifiers or via
2733 * the OpenGL API. However, such aliasing is intended only to
2734 * support vertex shaders where each execution path accesses
2735 * at most one input per each location. Implementations are
2736 * permitted, but not required, to generate link-time errors
2737 * if they detect that every path through the vertex shader
2738 * executable accesses multiple inputs assigned to any single
2739 * location. For all shader types, a program will fail to link
2740 * if explicit location assignments leave the linker unable
2741 * to find space for other variables without explicit
2742 * assignments."
2743 *
2744 * From OpenGL ES 3.0 spec, page 56:
2745 *
2746 * "Binding more than one attribute name to the same location
2747 * is referred to as aliasing, and is not permitted in OpenGL
2748 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2749 * fail when this condition exists. However, aliasing is
2750 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2751 * This will only work if only one of the aliased attributes
2752 * is active in the executable program, or if no path through
2753 * the shader consumes more than one attribute of a set of
2754 * attributes aliased to the same location. A link error can
2755 * occur if the linker determines that every path through the
2756 * shader consumes multiple aliased attributes, but implemen-
2757 * tations are not required to generate an error in this case."
2758 *
2759 * After looking at above references from OpenGL, OpenGL ES and
2760 * GLSL specifications, we allow aliasing of vertex input variables
2761 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2762 *
2763 * NOTE: This is not required by the spec but its worth mentioning
2764 * here that we're not doing anything to make sure that no path
2765 * through the vertex shader executable accesses multiple inputs
2766 * assigned to any single location.
2767 */
2768
2769 /* Mask representing the contiguous slots that will be used by
2770 * this attribute.
2771 */
2772 const unsigned attr = var->data.location - generic_base;
2773 const unsigned use_mask = (1 << slots) - 1;
2774 const char *const string = (target_index == MESA_SHADER_VERTEX)
2775 ? "vertex shader input" : "fragment shader output";
2776
2777 /* Generate a link error if the requested locations for this
2778 * attribute exceed the maximum allowed attribute location.
2779 */
2780 if (attr + slots > max_index) {
2781 linker_error(prog,
2782 "insufficient contiguous locations "
2783 "available for %s `%s' %d %d %d\n", string,
2784 var->name, used_locations, use_mask, attr);
2785 return false;
2786 }
2787
2788 /* Generate a link error if the set of bits requested for this
2789 * attribute overlaps any previously allocated bits.
2790 */
2791 if ((~(use_mask << attr) & used_locations) != used_locations) {
2792 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2793 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2794 * 4.40 spec:
2795 *
2796 * "Additionally, for fragment shader outputs, if two
2797 * variables are placed within the same location, they
2798 * must have the same underlying type (floating-point or
2799 * integer). No component aliasing of output variables or
2800 * members is allowed.
2801 */
2802 for (unsigned i = 0; i < assigned_attr; i++) {
2803 unsigned assigned_slots =
2804 assigned[i]->type->count_attribute_slots(false);
2805 unsigned assig_attr =
2806 assigned[i]->data.location - generic_base;
2807 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2808
2809 if ((assigned_use_mask << assig_attr) &
2810 (use_mask << attr)) {
2811
2812 const glsl_type *assigned_type =
2813 assigned[i]->type->without_array();
2814 const glsl_type *type = var->type->without_array();
2815 if (assigned_type->base_type != type->base_type) {
2816 linker_error(prog, "types do not match for aliased"
2817 " %ss %s and %s\n", string,
2818 assigned[i]->name, var->name);
2819 return false;
2820 }
2821
2822 unsigned assigned_component_mask =
2823 ((1 << assigned_type->vector_elements) - 1) <<
2824 assigned[i]->data.location_frac;
2825 unsigned component_mask =
2826 ((1 << type->vector_elements) - 1) <<
2827 var->data.location_frac;
2828 if (assigned_component_mask & component_mask) {
2829 linker_error(prog, "overlapping component is "
2830 "assigned to %ss %s and %s "
2831 "(component=%d)\n",
2832 string, assigned[i]->name, var->name,
2833 var->data.location_frac);
2834 return false;
2835 }
2836 }
2837 }
2838 } else if (target_index == MESA_SHADER_FRAGMENT ||
2839 (prog->IsES && prog->Version >= 300)) {
2840 linker_error(prog, "overlapping location is assigned "
2841 "to %s `%s' %d %d %d\n", string, var->name,
2842 used_locations, use_mask, attr);
2843 return false;
2844 } else {
2845 linker_warning(prog, "overlapping location is assigned "
2846 "to %s `%s' %d %d %d\n", string, var->name,
2847 used_locations, use_mask, attr);
2848 }
2849 }
2850
2851 used_locations |= (use_mask << attr);
2852
2853 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2854 *
2855 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2856 * active attribute variables may fail to link, unless
2857 * device-dependent optimizations are able to make the program
2858 * fit within available hardware resources. For the purposes
2859 * of this test, attribute variables of the type dvec3, dvec4,
2860 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2861 * count as consuming twice as many attributes as equivalent
2862 * single-precision types. While these types use the same number
2863 * of generic attributes as their single-precision equivalents,
2864 * implementations are permitted to consume two single-precision
2865 * vectors of internal storage for each three- or four-component
2866 * double-precision vector."
2867 *
2868 * Mark this attribute slot as taking up twice as much space
2869 * so we can count it properly against limits. According to
2870 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2871 * is optional behavior, but it seems preferable.
2872 */
2873 if (var->type->without_array()->is_dual_slot())
2874 double_storage_locations |= (use_mask << attr);
2875 }
2876
2877 assigned[assigned_attr] = var;
2878 assigned_attr++;
2879
2880 continue;
2881 }
2882
2883 if (num_attr >= max_index) {
2884 linker_error(prog, "too many %s (max %u)",
2885 target_index == MESA_SHADER_VERTEX ?
2886 "vertex shader inputs" : "fragment shader outputs",
2887 max_index);
2888 return false;
2889 }
2890 to_assign[num_attr].slots = slots;
2891 to_assign[num_attr].var = var;
2892 num_attr++;
2893 }
2894
2895 if (target_index == MESA_SHADER_VERTEX) {
2896 unsigned total_attribs_size =
2897 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2898 _mesa_bitcount(double_storage_locations);
2899 if (total_attribs_size > max_index) {
2900 linker_error(prog,
2901 "attempt to use %d vertex attribute slots only %d available ",
2902 total_attribs_size, max_index);
2903 return false;
2904 }
2905 }
2906
2907 /* If all of the attributes were assigned locations by the application (or
2908 * are built-in attributes with fixed locations), return early. This should
2909 * be the common case.
2910 */
2911 if (num_attr == 0)
2912 return true;
2913
2914 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2915
2916 if (target_index == MESA_SHADER_VERTEX) {
2917 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2918 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2919 * reserved to prevent it from being automatically allocated below.
2920 */
2921 find_deref_visitor find("gl_Vertex");
2922 find.run(sh->ir);
2923 if (find.variable_found())
2924 used_locations |= (1 << 0);
2925 }
2926
2927 for (unsigned i = 0; i < num_attr; i++) {
2928 /* Mask representing the contiguous slots that will be used by this
2929 * attribute.
2930 */
2931 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2932
2933 int location = find_available_slots(used_locations, to_assign[i].slots);
2934
2935 if (location < 0) {
2936 const char *const string = (target_index == MESA_SHADER_VERTEX)
2937 ? "vertex shader input" : "fragment shader output";
2938
2939 linker_error(prog,
2940 "insufficient contiguous locations "
2941 "available for %s `%s'\n",
2942 string, to_assign[i].var->name);
2943 return false;
2944 }
2945
2946 to_assign[i].var->data.location = generic_base + location;
2947 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2948 used_locations |= (use_mask << location);
2949
2950 if (to_assign[i].var->type->without_array()->is_dual_slot())
2951 double_storage_locations |= (use_mask << location);
2952 }
2953
2954 /* Now that we have all the locations, from the GL 4.5 core spec, section
2955 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2956 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2957 * as equivalent single-precision types.
2958 */
2959 if (target_index == MESA_SHADER_VERTEX) {
2960 unsigned total_attribs_size =
2961 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2962 _mesa_bitcount(double_storage_locations);
2963 if (total_attribs_size > max_index) {
2964 linker_error(prog,
2965 "attempt to use %d vertex attribute slots only %d available ",
2966 total_attribs_size, max_index);
2967 return false;
2968 }
2969 }
2970
2971 return true;
2972 }
2973
2974 /**
2975 * Match explicit locations of outputs to inputs and deactivate the
2976 * unmatch flag if found so we don't optimise them away.
2977 */
2978 static void
2979 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2980 gl_linked_shader *consumer)
2981 {
2982 glsl_symbol_table parameters;
2983 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2984 { {NULL, NULL} };
2985
2986 /* Find all shader outputs in the "producer" stage.
2987 */
2988 foreach_in_list(ir_instruction, node, producer->ir) {
2989 ir_variable *const var = node->as_variable();
2990
2991 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2992 continue;
2993
2994 if (var->data.explicit_location &&
2995 var->data.location >= VARYING_SLOT_VAR0) {
2996 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2997 if (explicit_locations[idx][var->data.location_frac] == NULL)
2998 explicit_locations[idx][var->data.location_frac] = var;
2999 }
3000 }
3001
3002 /* Match inputs to outputs */
3003 foreach_in_list(ir_instruction, node, consumer->ir) {
3004 ir_variable *const input = node->as_variable();
3005
3006 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3007 continue;
3008
3009 ir_variable *output = NULL;
3010 if (input->data.explicit_location
3011 && input->data.location >= VARYING_SLOT_VAR0) {
3012 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3013 [input->data.location_frac];
3014
3015 if (output != NULL){
3016 input->data.is_unmatched_generic_inout = 0;
3017 output->data.is_unmatched_generic_inout = 0;
3018 }
3019 }
3020 }
3021 }
3022
3023 /**
3024 * Store the gl_FragDepth layout in the gl_shader_program struct.
3025 */
3026 static void
3027 store_fragdepth_layout(struct gl_shader_program *prog)
3028 {
3029 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3030 return;
3031 }
3032
3033 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3034
3035 /* We don't look up the gl_FragDepth symbol directly because if
3036 * gl_FragDepth is not used in the shader, it's removed from the IR.
3037 * However, the symbol won't be removed from the symbol table.
3038 *
3039 * We're only interested in the cases where the variable is NOT removed
3040 * from the IR.
3041 */
3042 foreach_in_list(ir_instruction, node, ir) {
3043 ir_variable *const var = node->as_variable();
3044
3045 if (var == NULL || var->data.mode != ir_var_shader_out) {
3046 continue;
3047 }
3048
3049 if (strcmp(var->name, "gl_FragDepth") == 0) {
3050 switch (var->data.depth_layout) {
3051 case ir_depth_layout_none:
3052 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3053 return;
3054 case ir_depth_layout_any:
3055 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3056 return;
3057 case ir_depth_layout_greater:
3058 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3059 return;
3060 case ir_depth_layout_less:
3061 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3062 return;
3063 case ir_depth_layout_unchanged:
3064 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3065 return;
3066 default:
3067 assert(0);
3068 return;
3069 }
3070 }
3071 }
3072 }
3073
3074 /**
3075 * Validate the resources used by a program versus the implementation limits
3076 */
3077 static void
3078 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3079 {
3080 unsigned total_uniform_blocks = 0;
3081 unsigned total_shader_storage_blocks = 0;
3082
3083 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3084 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3085
3086 if (sh == NULL)
3087 continue;
3088
3089 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
3090 linker_error(prog, "Too many %s shader texture samplers\n",
3091 _mesa_shader_stage_to_string(i));
3092 }
3093
3094 if (sh->num_uniform_components >
3095 ctx->Const.Program[i].MaxUniformComponents) {
3096 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3097 linker_warning(prog, "Too many %s shader default uniform block "
3098 "components, but the driver will try to optimize "
3099 "them out; this is non-portable out-of-spec "
3100 "behavior\n",
3101 _mesa_shader_stage_to_string(i));
3102 } else {
3103 linker_error(prog, "Too many %s shader default uniform block "
3104 "components\n",
3105 _mesa_shader_stage_to_string(i));
3106 }
3107 }
3108
3109 if (sh->num_combined_uniform_components >
3110 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3111 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3112 linker_warning(prog, "Too many %s shader uniform components, "
3113 "but the driver will try to optimize them out; "
3114 "this is non-portable out-of-spec behavior\n",
3115 _mesa_shader_stage_to_string(i));
3116 } else {
3117 linker_error(prog, "Too many %s shader uniform components\n",
3118 _mesa_shader_stage_to_string(i));
3119 }
3120 }
3121
3122 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3123 total_uniform_blocks += sh->NumUniformBlocks;
3124
3125 const unsigned max_uniform_blocks =
3126 ctx->Const.Program[i].MaxUniformBlocks;
3127 if (max_uniform_blocks < sh->NumUniformBlocks) {
3128 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3129 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3130 max_uniform_blocks);
3131 }
3132
3133 const unsigned max_shader_storage_blocks =
3134 ctx->Const.Program[i].MaxShaderStorageBlocks;
3135 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3136 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3137 _mesa_shader_stage_to_string(i),
3138 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3139 }
3140 }
3141
3142 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3143 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3144 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3145 }
3146
3147 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3148 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3149 total_shader_storage_blocks,
3150 ctx->Const.MaxCombinedShaderStorageBlocks);
3151 }
3152
3153 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3154 if (prog->UniformBlocks[i].UniformBufferSize >
3155 ctx->Const.MaxUniformBlockSize) {
3156 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3157 prog->UniformBlocks[i].Name,
3158 prog->UniformBlocks[i].UniformBufferSize,
3159 ctx->Const.MaxUniformBlockSize);
3160 }
3161 }
3162
3163 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3164 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3165 ctx->Const.MaxShaderStorageBlockSize) {
3166 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3167 prog->ShaderStorageBlocks[i].Name,
3168 prog->ShaderStorageBlocks[i].UniformBufferSize,
3169 ctx->Const.MaxShaderStorageBlockSize);
3170 }
3171 }
3172 }
3173
3174 static void
3175 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3176 {
3177 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3178 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3179 int count;
3180 if (!sh)
3181 continue;
3182
3183 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3184 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3185 continue;
3186
3187 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3188
3189 if (!uni)
3190 continue;
3191
3192 sh->NumSubroutineUniforms++;
3193 count = 0;
3194 if (sh->NumSubroutineFunctions == 0) {
3195 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3196 continue;
3197 }
3198 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3199 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3200 for (int k = 0; k < fn->num_compat_types; k++) {
3201 if (fn->types[k] == uni->type) {
3202 count++;
3203 break;
3204 }
3205 }
3206 }
3207 uni->num_compatible_subroutines = count;
3208 }
3209 }
3210 }
3211
3212 static void
3213 check_subroutine_resources(struct gl_shader_program *prog)
3214 {
3215 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3216 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3217
3218 if (sh) {
3219 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3220 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3221 _mesa_shader_stage_to_string(i));
3222 }
3223 }
3224 }
3225 /**
3226 * Validate shader image resources.
3227 */
3228 static void
3229 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3230 {
3231 unsigned total_image_units = 0;
3232 unsigned fragment_outputs = 0;
3233 unsigned total_shader_storage_blocks = 0;
3234
3235 if (!ctx->Extensions.ARB_shader_image_load_store)
3236 return;
3237
3238 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3239 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3240
3241 if (sh) {
3242 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3243 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3244 _mesa_shader_stage_to_string(i), sh->NumImages,
3245 ctx->Const.Program[i].MaxImageUniforms);
3246
3247 total_image_units += sh->NumImages;
3248 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3249
3250 if (i == MESA_SHADER_FRAGMENT) {
3251 foreach_in_list(ir_instruction, node, sh->ir) {
3252 ir_variable *var = node->as_variable();
3253 if (var && var->data.mode == ir_var_shader_out)
3254 /* since there are no double fs outputs - pass false */
3255 fragment_outputs += var->type->count_attribute_slots(false);
3256 }
3257 }
3258 }
3259 }
3260
3261 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3262 linker_error(prog, "Too many combined image uniforms\n");
3263
3264 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3265 ctx->Const.MaxCombinedShaderOutputResources)
3266 linker_error(prog, "Too many combined image uniforms, shader storage "
3267 " buffers and fragment outputs\n");
3268 }
3269
3270
3271 /**
3272 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3273 * for a variable, checks for overlaps between other uniforms using explicit
3274 * locations.
3275 */
3276 static int
3277 reserve_explicit_locations(struct gl_shader_program *prog,
3278 string_to_uint_map *map, ir_variable *var)
3279 {
3280 unsigned slots = var->type->uniform_locations();
3281 unsigned max_loc = var->data.location + slots - 1;
3282 unsigned return_value = slots;
3283
3284 /* Resize remap table if locations do not fit in the current one. */
3285 if (max_loc + 1 > prog->NumUniformRemapTable) {
3286 prog->UniformRemapTable =
3287 reralloc(prog, prog->UniformRemapTable,
3288 gl_uniform_storage *,
3289 max_loc + 1);
3290
3291 if (!prog->UniformRemapTable) {
3292 linker_error(prog, "Out of memory during linking.\n");
3293 return -1;
3294 }
3295
3296 /* Initialize allocated space. */
3297 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3298 prog->UniformRemapTable[i] = NULL;
3299
3300 prog->NumUniformRemapTable = max_loc + 1;
3301 }
3302
3303 for (unsigned i = 0; i < slots; i++) {
3304 unsigned loc = var->data.location + i;
3305
3306 /* Check if location is already used. */
3307 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3308
3309 /* Possibly same uniform from a different stage, this is ok. */
3310 unsigned hash_loc;
3311 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3312 return_value = 0;
3313 continue;
3314 }
3315
3316 /* ARB_explicit_uniform_location specification states:
3317 *
3318 * "No two default-block uniform variables in the program can have
3319 * the same location, even if they are unused, otherwise a compiler
3320 * or linker error will be generated."
3321 */
3322 linker_error(prog,
3323 "location qualifier for uniform %s overlaps "
3324 "previously used location\n",
3325 var->name);
3326 return -1;
3327 }
3328
3329 /* Initialize location as inactive before optimization
3330 * rounds and location assignment.
3331 */
3332 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3333 }
3334
3335 /* Note, base location used for arrays. */
3336 map->put(var->data.location, var->name);
3337
3338 return return_value;
3339 }
3340
3341 static bool
3342 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3343 struct gl_linked_shader *sh,
3344 ir_variable *var)
3345 {
3346 unsigned slots = var->type->uniform_locations();
3347 unsigned max_loc = var->data.location + slots - 1;
3348
3349 /* Resize remap table if locations do not fit in the current one. */
3350 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3351 sh->SubroutineUniformRemapTable =
3352 reralloc(sh, sh->SubroutineUniformRemapTable,
3353 gl_uniform_storage *,
3354 max_loc + 1);
3355
3356 if (!sh->SubroutineUniformRemapTable) {
3357 linker_error(prog, "Out of memory during linking.\n");
3358 return false;
3359 }
3360
3361 /* Initialize allocated space. */
3362 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3363 sh->SubroutineUniformRemapTable[i] = NULL;
3364
3365 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3366 }
3367
3368 for (unsigned i = 0; i < slots; i++) {
3369 unsigned loc = var->data.location + i;
3370
3371 /* Check if location is already used. */
3372 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3373
3374 /* ARB_explicit_uniform_location specification states:
3375 * "No two subroutine uniform variables can have the same location
3376 * in the same shader stage, otherwise a compiler or linker error
3377 * will be generated."
3378 */
3379 linker_error(prog,
3380 "location qualifier for uniform %s overlaps "
3381 "previously used location\n",
3382 var->name);
3383 return false;
3384 }
3385
3386 /* Initialize location as inactive before optimization
3387 * rounds and location assignment.
3388 */
3389 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3390 }
3391
3392 return true;
3393 }
3394 /**
3395 * Check and reserve all explicit uniform locations, called before
3396 * any optimizations happen to handle also inactive uniforms and
3397 * inactive array elements that may get trimmed away.
3398 */
3399 static unsigned
3400 check_explicit_uniform_locations(struct gl_context *ctx,
3401 struct gl_shader_program *prog)
3402 {
3403 if (!ctx->Extensions.ARB_explicit_uniform_location)
3404 return 0;
3405
3406 /* This map is used to detect if overlapping explicit locations
3407 * occur with the same uniform (from different stage) or a different one.
3408 */
3409 string_to_uint_map *uniform_map = new string_to_uint_map;
3410
3411 if (!uniform_map) {
3412 linker_error(prog, "Out of memory during linking.\n");
3413 return 0;
3414 }
3415
3416 unsigned entries_total = 0;
3417 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3418 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3419
3420 if (!sh)
3421 continue;
3422
3423 foreach_in_list(ir_instruction, node, sh->ir) {
3424 ir_variable *var = node->as_variable();
3425 if (!var || var->data.mode != ir_var_uniform)
3426 continue;
3427
3428 if (var->data.explicit_location) {
3429 bool ret = false;
3430 if (var->type->without_array()->is_subroutine())
3431 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3432 else {
3433 int slots = reserve_explicit_locations(prog, uniform_map,
3434 var);
3435 if (slots != -1) {
3436 ret = true;
3437 entries_total += slots;
3438 }
3439 }
3440 if (!ret) {
3441 delete uniform_map;
3442 return 0;
3443 }
3444 }
3445 }
3446 }
3447
3448 struct empty_uniform_block *current_block = NULL;
3449
3450 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3451 /* We found empty space in UniformRemapTable. */
3452 if (prog->UniformRemapTable[i] == NULL) {
3453 /* We've found the beginning of a new continous block of empty slots */
3454 if (!current_block || current_block->start + current_block->slots != i) {
3455 current_block = rzalloc(prog, struct empty_uniform_block);
3456 current_block->start = i;
3457 exec_list_push_tail(&prog->EmptyUniformLocations,
3458 &current_block->link);
3459 }
3460
3461 /* The current block continues, so we simply increment its slots */
3462 current_block->slots++;
3463 }
3464 }
3465
3466 delete uniform_map;
3467 return entries_total;
3468 }
3469
3470 static bool
3471 should_add_buffer_variable(struct gl_shader_program *shProg,
3472 GLenum type, const char *name)
3473 {
3474 bool found_interface = false;
3475 unsigned block_name_len = 0;
3476 const char *block_name_dot = strchr(name, '.');
3477
3478 /* These rules only apply to buffer variables. So we return
3479 * true for the rest of types.
3480 */
3481 if (type != GL_BUFFER_VARIABLE)
3482 return true;
3483
3484 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3485 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3486 block_name_len = strlen(block_name);
3487
3488 const char *block_square_bracket = strchr(block_name, '[');
3489 if (block_square_bracket) {
3490 /* The block is part of an array of named interfaces,
3491 * for the name comparison we ignore the "[x]" part.
3492 */
3493 block_name_len -= strlen(block_square_bracket);
3494 }
3495
3496 if (block_name_dot) {
3497 /* Check if the variable name starts with the interface
3498 * name. The interface name (if present) should have the
3499 * length than the interface block name we are comparing to.
3500 */
3501 unsigned len = strlen(name) - strlen(block_name_dot);
3502 if (len != block_name_len)
3503 continue;
3504 }
3505
3506 if (strncmp(block_name, name, block_name_len) == 0) {
3507 found_interface = true;
3508 break;
3509 }
3510 }
3511
3512 /* We remove the interface name from the buffer variable name,
3513 * including the dot that follows it.
3514 */
3515 if (found_interface)
3516 name = name + block_name_len + 1;
3517
3518 /* The ARB_program_interface_query spec says:
3519 *
3520 * "For an active shader storage block member declared as an array, an
3521 * entry will be generated only for the first array element, regardless
3522 * of its type. For arrays of aggregate types, the enumeration rules
3523 * are applied recursively for the single enumerated array element."
3524 */
3525 const char *struct_first_dot = strchr(name, '.');
3526 const char *first_square_bracket = strchr(name, '[');
3527
3528 /* The buffer variable is on top level and it is not an array */
3529 if (!first_square_bracket) {
3530 return true;
3531 /* The shader storage block member is a struct, then generate the entry */
3532 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3533 return true;
3534 } else {
3535 /* Shader storage block member is an array, only generate an entry for the
3536 * first array element.
3537 */
3538 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3539 return true;
3540 }
3541
3542 return false;
3543 }
3544
3545 static bool
3546 add_program_resource(struct gl_shader_program *prog, GLenum type,
3547 const void *data, uint8_t stages)
3548 {
3549 assert(data);
3550
3551 /* If resource already exists, do not add it again. */
3552 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3553 if (prog->ProgramResourceList[i].Data == data)
3554 return true;
3555
3556 prog->ProgramResourceList =
3557 reralloc(prog,
3558 prog->ProgramResourceList,
3559 gl_program_resource,
3560 prog->NumProgramResourceList + 1);
3561
3562 if (!prog->ProgramResourceList) {
3563 linker_error(prog, "Out of memory during linking.\n");
3564 return false;
3565 }
3566
3567 struct gl_program_resource *res =
3568 &prog->ProgramResourceList[prog->NumProgramResourceList];
3569
3570 res->Type = type;
3571 res->Data = data;
3572 res->StageReferences = stages;
3573
3574 prog->NumProgramResourceList++;
3575
3576 return true;
3577 }
3578
3579 /* Function checks if a variable var is a packed varying and
3580 * if given name is part of packed varying's list.
3581 *
3582 * If a variable is a packed varying, it has a name like
3583 * 'packed:a,b,c' where a, b and c are separate variables.
3584 */
3585 static bool
3586 included_in_packed_varying(ir_variable *var, const char *name)
3587 {
3588 if (strncmp(var->name, "packed:", 7) != 0)
3589 return false;
3590
3591 char *list = strdup(var->name + 7);
3592 assert(list);
3593
3594 bool found = false;
3595 char *saveptr;
3596 char *token = strtok_r(list, ",", &saveptr);
3597 while (token) {
3598 if (strcmp(token, name) == 0) {
3599 found = true;
3600 break;
3601 }
3602 token = strtok_r(NULL, ",", &saveptr);
3603 }
3604 free(list);
3605 return found;
3606 }
3607
3608 /**
3609 * Function builds a stage reference bitmask from variable name.
3610 */
3611 static uint8_t
3612 build_stageref(struct gl_shader_program *shProg, const char *name,
3613 unsigned mode)
3614 {
3615 uint8_t stages = 0;
3616
3617 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3618 * used for reference mask in gl_program_resource will need to be changed.
3619 */
3620 assert(MESA_SHADER_STAGES < 8);
3621
3622 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3623 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3624 if (!sh)
3625 continue;
3626
3627 /* Shader symbol table may contain variables that have
3628 * been optimized away. Search IR for the variable instead.
3629 */
3630 foreach_in_list(ir_instruction, node, sh->ir) {
3631 ir_variable *var = node->as_variable();
3632 if (var) {
3633 unsigned baselen = strlen(var->name);
3634
3635 if (included_in_packed_varying(var, name)) {
3636 stages |= (1 << i);
3637 break;
3638 }
3639
3640 /* Type needs to match if specified, otherwise we might
3641 * pick a variable with same name but different interface.
3642 */
3643 if (var->data.mode != mode)
3644 continue;
3645
3646 if (strncmp(var->name, name, baselen) == 0) {
3647 /* Check for exact name matches but also check for arrays and
3648 * structs.
3649 */
3650 if (name[baselen] == '\0' ||
3651 name[baselen] == '[' ||
3652 name[baselen] == '.') {
3653 stages |= (1 << i);
3654 break;
3655 }
3656 }
3657 }
3658 }
3659 }
3660 return stages;
3661 }
3662
3663 /**
3664 * Create gl_shader_variable from ir_variable class.
3665 */
3666 static gl_shader_variable *
3667 create_shader_variable(struct gl_shader_program *shProg,
3668 const ir_variable *in,
3669 const char *name, const glsl_type *type,
3670 bool use_implicit_location, int location,
3671 const glsl_type *outermost_struct_type)
3672 {
3673 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3674 if (!out)
3675 return NULL;
3676
3677 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3678 * expect to see gl_VertexID in the program resource list. Pretend.
3679 */
3680 if (in->data.mode == ir_var_system_value &&
3681 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3682 out->name = ralloc_strdup(shProg, "gl_VertexID");
3683 } else {
3684 out->name = ralloc_strdup(shProg, name);
3685 }
3686
3687 if (!out->name)
3688 return NULL;
3689
3690 /* The ARB_program_interface_query spec says:
3691 *
3692 * "Not all active variables are assigned valid locations; the
3693 * following variables will have an effective location of -1:
3694 *
3695 * * uniforms declared as atomic counters;
3696 *
3697 * * members of a uniform block;
3698 *
3699 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3700 *
3701 * * inputs or outputs not declared with a "location" layout
3702 * qualifier, except for vertex shader inputs and fragment shader
3703 * outputs."
3704 */
3705 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3706 is_gl_identifier(in->name) ||
3707 !(in->data.explicit_location || use_implicit_location)) {
3708 out->location = -1;
3709 } else {
3710 out->location = location;
3711 }
3712
3713 out->type = type;
3714 out->outermost_struct_type = outermost_struct_type;
3715 out->interface_type = in->get_interface_type();
3716 out->component = in->data.location_frac;
3717 out->index = in->data.index;
3718 out->patch = in->data.patch;
3719 out->mode = in->data.mode;
3720 out->interpolation = in->data.interpolation;
3721 out->explicit_location = in->data.explicit_location;
3722 out->precision = in->data.precision;
3723
3724 return out;
3725 }
3726
3727 static bool
3728 add_shader_variable(struct gl_shader_program *shProg, unsigned stage_mask,
3729 GLenum programInterface, ir_variable *var,
3730 const char *name, const glsl_type *type,
3731 bool use_implicit_location, int location,
3732 const glsl_type *outermost_struct_type = NULL)
3733 {
3734 const bool is_vertex_input =
3735 programInterface == GL_PROGRAM_INPUT &&
3736 stage_mask == MESA_SHADER_VERTEX;
3737
3738 switch (type->base_type) {
3739 case GLSL_TYPE_STRUCT: {
3740 /* The ARB_program_interface_query spec says:
3741 *
3742 * "For an active variable declared as a structure, a separate entry
3743 * will be generated for each active structure member. The name of
3744 * each entry is formed by concatenating the name of the structure,
3745 * the "." character, and the name of the structure member. If a
3746 * structure member to enumerate is itself a structure or array,
3747 * these enumeration rules are applied recursively."
3748 */
3749 if (outermost_struct_type == NULL)
3750 outermost_struct_type = type;
3751
3752 unsigned field_location = location;
3753 for (unsigned i = 0; i < type->length; i++) {
3754 const struct glsl_struct_field *field = &type->fields.structure[i];
3755 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3756 if (!add_shader_variable(shProg, stage_mask, programInterface,
3757 var, field_name, field->type,
3758 use_implicit_location, field_location,
3759 outermost_struct_type))
3760 return false;
3761
3762 field_location +=
3763 field->type->count_attribute_slots(is_vertex_input);
3764 }
3765 return true;
3766 }
3767
3768 default: {
3769 /* Issue #16 of the ARB_program_interface_query spec says:
3770 *
3771 * "* If a variable is a member of an interface block without an
3772 * instance name, it is enumerated using just the variable name.
3773 *
3774 * * If a variable is a member of an interface block with an instance
3775 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3776 * the name of the interface block (not the instance name) and
3777 * "Member" is the name of the variable."
3778 */
3779 const char *prefixed_name = (var->data.from_named_ifc_block &&
3780 !is_gl_identifier(var->name))
3781 ? ralloc_asprintf(shProg, "%s.%s", var->get_interface_type()->name,
3782 name)
3783 : name;
3784
3785 /* The ARB_program_interface_query spec says:
3786 *
3787 * "For an active variable declared as a single instance of a basic
3788 * type, a single entry will be generated, using the variable name
3789 * from the shader source."
3790 */
3791 gl_shader_variable *sha_v =
3792 create_shader_variable(shProg, var, prefixed_name, type,
3793 use_implicit_location, location,
3794 outermost_struct_type);
3795 if (!sha_v)
3796 return false;
3797
3798 return add_program_resource(shProg, programInterface, sha_v, stage_mask);
3799 }
3800 }
3801 }
3802
3803 static bool
3804 add_interface_variables(struct gl_shader_program *shProg,
3805 unsigned stage, GLenum programInterface)
3806 {
3807 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3808
3809 foreach_in_list(ir_instruction, node, ir) {
3810 ir_variable *var = node->as_variable();
3811
3812 if (!var || var->data.how_declared == ir_var_hidden)
3813 continue;
3814
3815 int loc_bias;
3816
3817 switch (var->data.mode) {
3818 case ir_var_system_value:
3819 case ir_var_shader_in:
3820 if (programInterface != GL_PROGRAM_INPUT)
3821 continue;
3822 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3823 : int(VARYING_SLOT_VAR0);
3824 break;
3825 case ir_var_shader_out:
3826 if (programInterface != GL_PROGRAM_OUTPUT)
3827 continue;
3828 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3829 : int(VARYING_SLOT_VAR0);
3830 break;
3831 default:
3832 continue;
3833 };
3834
3835 /* Skip packed varyings, packed varyings are handled separately
3836 * by add_packed_varyings.
3837 */
3838 if (strncmp(var->name, "packed:", 7) == 0)
3839 continue;
3840
3841 /* Skip fragdata arrays, these are handled separately
3842 * by add_fragdata_arrays.
3843 */
3844 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3845 continue;
3846
3847 const bool vs_input_or_fs_output =
3848 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3849 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3850
3851 if (!add_shader_variable(shProg, 1 << stage, programInterface,
3852 var, var->name, var->type, vs_input_or_fs_output,
3853 var->data.location - loc_bias))
3854 return false;
3855 }
3856 return true;
3857 }
3858
3859 static bool
3860 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3861 {
3862 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3863 GLenum iface;
3864
3865 if (!sh || !sh->packed_varyings)
3866 return true;
3867
3868 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3869 ir_variable *var = node->as_variable();
3870 if (var) {
3871 switch (var->data.mode) {
3872 case ir_var_shader_in:
3873 iface = GL_PROGRAM_INPUT;
3874 break;
3875 case ir_var_shader_out:
3876 iface = GL_PROGRAM_OUTPUT;
3877 break;
3878 default:
3879 unreachable("unexpected type");
3880 }
3881
3882 if (type == iface) {
3883 const int stage_mask =
3884 build_stageref(shProg, var->name, var->data.mode);
3885 if (!add_shader_variable(shProg, stage_mask,
3886 iface, var, var->name, var->type, false,
3887 var->data.location - VARYING_SLOT_VAR0))
3888 return false;
3889 }
3890 }
3891 }
3892 return true;
3893 }
3894
3895 static bool
3896 add_fragdata_arrays(struct gl_shader_program *shProg)
3897 {
3898 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3899
3900 if (!sh || !sh->fragdata_arrays)
3901 return true;
3902
3903 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3904 ir_variable *var = node->as_variable();
3905 if (var) {
3906 assert(var->data.mode == ir_var_shader_out);
3907
3908 if (!add_shader_variable(shProg,
3909 1 << MESA_SHADER_FRAGMENT,
3910 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3911 true, var->data.location - FRAG_RESULT_DATA0))
3912 return false;
3913 }
3914 }
3915 return true;
3916 }
3917
3918 static char*
3919 get_top_level_name(const char *name)
3920 {
3921 const char *first_dot = strchr(name, '.');
3922 const char *first_square_bracket = strchr(name, '[');
3923 int name_size = 0;
3924
3925 /* The ARB_program_interface_query spec says:
3926 *
3927 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3928 * the number of active array elements of the top-level shader storage
3929 * block member containing to the active variable is written to
3930 * <params>. If the top-level block member is not declared as an
3931 * array, the value one is written to <params>. If the top-level block
3932 * member is an array with no declared size, the value zero is written
3933 * to <params>."
3934 */
3935
3936 /* The buffer variable is on top level.*/
3937 if (!first_square_bracket && !first_dot)
3938 name_size = strlen(name);
3939 else if ((!first_square_bracket ||
3940 (first_dot && first_dot < first_square_bracket)))
3941 name_size = first_dot - name;
3942 else
3943 name_size = first_square_bracket - name;
3944
3945 return strndup(name, name_size);
3946 }
3947
3948 static char*
3949 get_var_name(const char *name)
3950 {
3951 const char *first_dot = strchr(name, '.');
3952
3953 if (!first_dot)
3954 return strdup(name);
3955
3956 return strndup(first_dot+1, strlen(first_dot) - 1);
3957 }
3958
3959 static bool
3960 is_top_level_shader_storage_block_member(const char* name,
3961 const char* interface_name,
3962 const char* field_name)
3963 {
3964 bool result = false;
3965
3966 /* If the given variable is already a top-level shader storage
3967 * block member, then return array_size = 1.
3968 * We could have two possibilities: if we have an instanced
3969 * shader storage block or not instanced.
3970 *
3971 * For the first, we check create a name as it was in top level and
3972 * compare it with the real name. If they are the same, then
3973 * the variable is already at top-level.
3974 *
3975 * Full instanced name is: interface name + '.' + var name +
3976 * NULL character
3977 */
3978 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3979 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3980 if (!full_instanced_name) {
3981 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3982 return false;
3983 }
3984
3985 snprintf(full_instanced_name, name_length, "%s.%s",
3986 interface_name, field_name);
3987
3988 /* Check if its top-level shader storage block member of an
3989 * instanced interface block, or of a unnamed interface block.
3990 */
3991 if (strcmp(name, full_instanced_name) == 0 ||
3992 strcmp(name, field_name) == 0)
3993 result = true;
3994
3995 free(full_instanced_name);
3996 return result;
3997 }
3998
3999 static int
4000 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4001 char *interface_name, char *var_name)
4002 {
4003 /* The ARB_program_interface_query spec says:
4004 *
4005 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4006 * the number of active array elements of the top-level shader storage
4007 * block member containing to the active variable is written to
4008 * <params>. If the top-level block member is not declared as an
4009 * array, the value one is written to <params>. If the top-level block
4010 * member is an array with no declared size, the value zero is written
4011 * to <params>."
4012 */
4013 if (is_top_level_shader_storage_block_member(uni->name,
4014 interface_name,
4015 var_name))
4016 return 1;
4017 else if (field->type->is_unsized_array())
4018 return 0;
4019 else if (field->type->is_array())
4020 return field->type->length;
4021
4022 return 1;
4023 }
4024
4025 static int
4026 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4027 const glsl_struct_field *field, char *interface_name,
4028 char *var_name)
4029 {
4030 /* The ARB_program_interface_query spec says:
4031 *
4032 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4033 * identifying the stride between array elements of the top-level
4034 * shader storage block member containing the active variable is
4035 * written to <params>. For top-level block members declared as
4036 * arrays, the value written is the difference, in basic machine units,
4037 * between the offsets of the active variable for consecutive elements
4038 * in the top-level array. For top-level block members not declared as
4039 * an array, zero is written to <params>."
4040 */
4041 if (field->type->is_array()) {
4042 const enum glsl_matrix_layout matrix_layout =
4043 glsl_matrix_layout(field->matrix_layout);
4044 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4045 const glsl_type *array_type = field->type->fields.array;
4046
4047 if (is_top_level_shader_storage_block_member(uni->name,
4048 interface_name,
4049 var_name))
4050 return 0;
4051
4052 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4053 if (array_type->is_record() || array_type->is_array())
4054 return glsl_align(array_type->std140_size(row_major), 16);
4055 else
4056 return MAX2(array_type->std140_base_alignment(row_major), 16);
4057 } else {
4058 return array_type->std430_array_stride(row_major);
4059 }
4060 }
4061 return 0;
4062 }
4063
4064 static void
4065 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4066 struct gl_uniform_storage *uni)
4067 {
4068 int block_index = uni->block_index;
4069 int array_size = -1;
4070 int array_stride = -1;
4071 char *var_name = get_top_level_name(uni->name);
4072 char *interface_name =
4073 get_top_level_name(uni->is_shader_storage ?
4074 shProg->ShaderStorageBlocks[block_index].Name :
4075 shProg->UniformBlocks[block_index].Name);
4076
4077 if (strcmp(var_name, interface_name) == 0) {
4078 /* Deal with instanced array of SSBOs */
4079 char *temp_name = get_var_name(uni->name);
4080 if (!temp_name) {
4081 linker_error(shProg, "Out of memory during linking.\n");
4082 goto write_top_level_array_size_and_stride;
4083 }
4084 free(var_name);
4085 var_name = get_top_level_name(temp_name);
4086 free(temp_name);
4087 if (!var_name) {
4088 linker_error(shProg, "Out of memory during linking.\n");
4089 goto write_top_level_array_size_and_stride;
4090 }
4091 }
4092
4093 for (unsigned i = 0; i < shProg->NumShaders; i++) {
4094 if (shProg->Shaders[i] == NULL)
4095 continue;
4096
4097 const gl_shader *stage = shProg->Shaders[i];
4098 foreach_in_list(ir_instruction, node, stage->ir) {
4099 ir_variable *var = node->as_variable();
4100 if (!var || !var->get_interface_type() ||
4101 var->data.mode != ir_var_shader_storage)
4102 continue;
4103
4104 const glsl_type *interface = var->get_interface_type();
4105
4106 if (strcmp(interface_name, interface->name) != 0)
4107 continue;
4108
4109 for (unsigned i = 0; i < interface->length; i++) {
4110 const glsl_struct_field *field = &interface->fields.structure[i];
4111 if (strcmp(field->name, var_name) != 0)
4112 continue;
4113
4114 array_stride = get_array_stride(uni, interface, field,
4115 interface_name, var_name);
4116 array_size = get_array_size(uni, field, interface_name, var_name);
4117 goto write_top_level_array_size_and_stride;
4118 }
4119 }
4120 }
4121 write_top_level_array_size_and_stride:
4122 free(interface_name);
4123 free(var_name);
4124 uni->top_level_array_stride = array_stride;
4125 uni->top_level_array_size = array_size;
4126 }
4127
4128 /**
4129 * Builds up a list of program resources that point to existing
4130 * resource data.
4131 */
4132 void
4133 build_program_resource_list(struct gl_context *ctx,
4134 struct gl_shader_program *shProg)
4135 {
4136 /* Rebuild resource list. */
4137 if (shProg->ProgramResourceList) {
4138 ralloc_free(shProg->ProgramResourceList);
4139 shProg->ProgramResourceList = NULL;
4140 shProg->NumProgramResourceList = 0;
4141 }
4142
4143 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4144
4145 /* Determine first input and final output stage. These are used to
4146 * detect which variables should be enumerated in the resource list
4147 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4148 */
4149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4150 if (!shProg->_LinkedShaders[i])
4151 continue;
4152 if (input_stage == MESA_SHADER_STAGES)
4153 input_stage = i;
4154 output_stage = i;
4155 }
4156
4157 /* Empty shader, no resources. */
4158 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4159 return;
4160
4161 /* Program interface needs to expose varyings in case of SSO. */
4162 if (shProg->SeparateShader) {
4163 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
4164 return;
4165
4166 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
4167 return;
4168 }
4169
4170 if (!add_fragdata_arrays(shProg))
4171 return;
4172
4173 /* Add inputs and outputs to the resource list. */
4174 if (!add_interface_variables(shProg, input_stage, GL_PROGRAM_INPUT))
4175 return;
4176
4177 if (!add_interface_variables(shProg, output_stage, GL_PROGRAM_OUTPUT))
4178 return;
4179
4180 /* Add transform feedback varyings. */
4181 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4182 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4183 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
4184 &shProg->LinkedTransformFeedback.Varyings[i],
4185 0))
4186 return;
4187 }
4188 }
4189
4190 /* Add transform feedback buffers. */
4191 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4192 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4193 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4194 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_BUFFER,
4195 &shProg->LinkedTransformFeedback.Buffers[i],
4196 0))
4197 return;
4198 }
4199 }
4200
4201 /* Add uniforms from uniform storage. */
4202 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4203 /* Do not add uniforms internally used by Mesa. */
4204 if (shProg->UniformStorage[i].hidden)
4205 continue;
4206
4207 uint8_t stageref =
4208 build_stageref(shProg, shProg->UniformStorage[i].name,
4209 ir_var_uniform);
4210
4211 /* Add stagereferences for uniforms in a uniform block. */
4212 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4213 int block_index = shProg->UniformStorage[i].block_index;
4214 if (block_index != -1) {
4215 stageref |= is_shader_storage ?
4216 shProg->ShaderStorageBlocks[block_index].stageref :
4217 shProg->UniformBlocks[block_index].stageref;
4218 }
4219
4220 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4221 if (!should_add_buffer_variable(shProg, type,
4222 shProg->UniformStorage[i].name))
4223 continue;
4224
4225 if (is_shader_storage) {
4226 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4227 }
4228
4229 if (!add_program_resource(shProg, type,
4230 &shProg->UniformStorage[i], stageref))
4231 return;
4232 }
4233
4234 /* Add program uniform blocks. */
4235 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4236 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
4237 &shProg->UniformBlocks[i], 0))
4238 return;
4239 }
4240
4241 /* Add program shader storage blocks. */
4242 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4243 if (!add_program_resource(shProg, GL_SHADER_STORAGE_BLOCK,
4244 &shProg->ShaderStorageBlocks[i], 0))
4245 return;
4246 }
4247
4248 /* Add atomic counter buffers. */
4249 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4250 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
4251 &shProg->AtomicBuffers[i], 0))
4252 return;
4253 }
4254
4255 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4256 GLenum type;
4257 if (!shProg->UniformStorage[i].hidden)
4258 continue;
4259
4260 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4261 if (!shProg->UniformStorage[i].opaque[j].active ||
4262 !shProg->UniformStorage[i].type->is_subroutine())
4263 continue;
4264
4265 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4266 /* add shader subroutines */
4267 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
4268 return;
4269 }
4270 }
4271
4272 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4273 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
4274 GLuint type;
4275
4276 if (!sh)
4277 continue;
4278
4279 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4280 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4281 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
4282 return;
4283 }
4284 }
4285 }
4286
4287 /**
4288 * This check is done to make sure we allow only constant expression
4289 * indexing and "constant-index-expression" (indexing with an expression
4290 * that includes loop induction variable).
4291 */
4292 static bool
4293 validate_sampler_array_indexing(struct gl_context *ctx,
4294 struct gl_shader_program *prog)
4295 {
4296 dynamic_sampler_array_indexing_visitor v;
4297 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4298 if (prog->_LinkedShaders[i] == NULL)
4299 continue;
4300
4301 bool no_dynamic_indexing =
4302 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4303
4304 /* Search for array derefs in shader. */
4305 v.run(prog->_LinkedShaders[i]->ir);
4306 if (v.uses_dynamic_sampler_array_indexing()) {
4307 const char *msg = "sampler arrays indexed with non-constant "
4308 "expressions is forbidden in GLSL %s %u";
4309 /* Backend has indicated that it has no dynamic indexing support. */
4310 if (no_dynamic_indexing) {
4311 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4312 return false;
4313 } else {
4314 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4315 }
4316 }
4317 }
4318 return true;
4319 }
4320
4321 static void
4322 link_assign_subroutine_types(struct gl_shader_program *prog)
4323 {
4324 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4325 gl_linked_shader *sh = prog->_LinkedShaders[i];
4326
4327 if (sh == NULL)
4328 continue;
4329
4330 sh->MaxSubroutineFunctionIndex = 0;
4331 foreach_in_list(ir_instruction, node, sh->ir) {
4332 ir_function *fn = node->as_function();
4333 if (!fn)
4334 continue;
4335
4336 if (fn->is_subroutine)
4337 sh->NumSubroutineUniformTypes++;
4338
4339 if (!fn->num_subroutine_types)
4340 continue;
4341
4342 /* these should have been calculated earlier. */
4343 assert(fn->subroutine_index != -1);
4344 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4345 linker_error(prog, "Too many subroutine functions declared.\n");
4346 return;
4347 }
4348 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4349 struct gl_subroutine_function,
4350 sh->NumSubroutineFunctions + 1);
4351 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4352 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4353 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4354 ralloc_array(sh, const struct glsl_type *,
4355 fn->num_subroutine_types);
4356
4357 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4358 * GLSL 4.5 spec:
4359 *
4360 * "Each subroutine with an index qualifier in the shader must be
4361 * given a unique index, otherwise a compile or link error will be
4362 * generated."
4363 */
4364 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4365 if (sh->SubroutineFunctions[j].index != -1 &&
4366 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4367 linker_error(prog, "each subroutine index qualifier in the "
4368 "shader must be unique\n");
4369 return;
4370 }
4371 }
4372 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4373 fn->subroutine_index;
4374
4375 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4376 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4377
4378 for (int j = 0; j < fn->num_subroutine_types; j++)
4379 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4380 sh->NumSubroutineFunctions++;
4381 }
4382 }
4383 }
4384
4385 static void
4386 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4387 {
4388 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4389
4390 foreach_in_list(ir_instruction, node, ir) {
4391 ir_variable *const var = node->as_variable();
4392
4393 if (var == NULL || var->data.mode != io_mode)
4394 continue;
4395
4396 /* Don't set always active on builtins that haven't been redeclared */
4397 if (var->data.how_declared == ir_var_declared_implicitly)
4398 continue;
4399
4400 var->data.always_active_io = true;
4401 }
4402 }
4403
4404 /**
4405 * When separate shader programs are enabled, only input/outputs between
4406 * the stages of a multi-stage separate program can be safely removed
4407 * from the shader interface. Other inputs/outputs must remain active.
4408 */
4409 static void
4410 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4411 {
4412 unsigned first, last;
4413 assert(prog->SeparateShader);
4414
4415 first = MESA_SHADER_STAGES;
4416 last = 0;
4417
4418 /* Determine first and last stage. Excluding the compute stage */
4419 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4420 if (!prog->_LinkedShaders[i])
4421 continue;
4422 if (first == MESA_SHADER_STAGES)
4423 first = i;
4424 last = i;
4425 }
4426
4427 if (first == MESA_SHADER_STAGES)
4428 return;
4429
4430 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4431 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4432 if (!sh)
4433 continue;
4434
4435 if (first == last) {
4436 /* For a single shader program only allow inputs to the vertex shader
4437 * and outputs from the fragment shader to be removed.
4438 */
4439 if (stage != MESA_SHADER_VERTEX)
4440 set_always_active_io(sh->ir, ir_var_shader_in);
4441 if (stage != MESA_SHADER_FRAGMENT)
4442 set_always_active_io(sh->ir, ir_var_shader_out);
4443 } else {
4444 /* For multi-stage separate shader programs only allow inputs and
4445 * outputs between the shader stages to be removed as well as inputs
4446 * to the vertex shader and outputs from the fragment shader.
4447 */
4448 if (stage == first && stage != MESA_SHADER_VERTEX)
4449 set_always_active_io(sh->ir, ir_var_shader_in);
4450 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4451 set_always_active_io(sh->ir, ir_var_shader_out);
4452 }
4453 }
4454 }
4455
4456 void
4457 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4458 {
4459 prog->LinkStatus = true; /* All error paths will set this to false */
4460 prog->Validated = false;
4461 prog->_Used = false;
4462
4463 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4464 *
4465 * "Linking can fail for a variety of reasons as specified in the
4466 * OpenGL Shading Language Specification, as well as any of the
4467 * following reasons:
4468 *
4469 * - No shader objects are attached to program."
4470 *
4471 * The Compatibility Profile specification does not list the error. In
4472 * Compatibility Profile missing shader stages are replaced by
4473 * fixed-function. This applies to the case where all stages are
4474 * missing.
4475 */
4476 if (prog->NumShaders == 0) {
4477 if (ctx->API != API_OPENGL_COMPAT)
4478 linker_error(prog, "no shaders attached to the program\n");
4479 return;
4480 }
4481
4482 unsigned num_tfeedback_decls = 0;
4483 unsigned int num_explicit_uniform_locs = 0;
4484 bool has_xfb_qualifiers = false;
4485 char **varying_names = NULL;
4486 tfeedback_decl *tfeedback_decls = NULL;
4487
4488 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4489
4490 prog->ARB_fragment_coord_conventions_enable = false;
4491
4492 /* Separate the shaders into groups based on their type.
4493 */
4494 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4495 unsigned num_shaders[MESA_SHADER_STAGES];
4496
4497 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4498 shader_list[i] = (struct gl_shader **)
4499 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4500 num_shaders[i] = 0;
4501 }
4502
4503 unsigned min_version = UINT_MAX;
4504 unsigned max_version = 0;
4505 for (unsigned i = 0; i < prog->NumShaders; i++) {
4506 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4507 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4508
4509 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4510 linker_error(prog, "all shaders must use same shading "
4511 "language version\n");
4512 goto done;
4513 }
4514
4515 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4516 prog->ARB_fragment_coord_conventions_enable = true;
4517 }
4518
4519 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4520 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4521 num_shaders[shader_type]++;
4522 }
4523
4524 /* In desktop GLSL, different shader versions may be linked together. In
4525 * GLSL ES, all shader versions must be the same.
4526 */
4527 if (prog->Shaders[0]->IsES && min_version != max_version) {
4528 linker_error(prog, "all shaders must use same shading "
4529 "language version\n");
4530 goto done;
4531 }
4532
4533 prog->Version = max_version;
4534 prog->IsES = prog->Shaders[0]->IsES;
4535
4536 /* Some shaders have to be linked with some other shaders present.
4537 */
4538 if (!prog->SeparateShader) {
4539 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4540 num_shaders[MESA_SHADER_VERTEX] == 0) {
4541 linker_error(prog, "Geometry shader must be linked with "
4542 "vertex shader\n");
4543 goto done;
4544 }
4545 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4546 num_shaders[MESA_SHADER_VERTEX] == 0) {
4547 linker_error(prog, "Tessellation evaluation shader must be linked "
4548 "with vertex shader\n");
4549 goto done;
4550 }
4551 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4552 num_shaders[MESA_SHADER_VERTEX] == 0) {
4553 linker_error(prog, "Tessellation control shader must be linked with "
4554 "vertex shader\n");
4555 goto done;
4556 }
4557
4558 /* The spec is self-contradictory here. It allows linking without a tess
4559 * eval shader, but that can only be used with transform feedback and
4560 * rasterization disabled. However, transform feedback isn't allowed
4561 * with GL_PATCHES, so it can't be used.
4562 *
4563 * More investigation showed that the idea of transform feedback after
4564 * a tess control shader was dropped, because some hw vendors couldn't
4565 * support tessellation without a tess eval shader, but the linker
4566 * section wasn't updated to reflect that.
4567 *
4568 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4569 * spec bug.
4570 *
4571 * Do what's reasonable and always require a tess eval shader if a tess
4572 * control shader is present.
4573 */
4574 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4575 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4576 linker_error(prog, "Tessellation control shader must be linked with "
4577 "tessellation evaluation shader\n");
4578 goto done;
4579 }
4580 }
4581
4582 /* Compute shaders have additional restrictions. */
4583 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4584 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4585 linker_error(prog, "Compute shaders may not be linked with any other "
4586 "type of shader\n");
4587 }
4588
4589 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4590 if (prog->_LinkedShaders[i] != NULL) {
4591 _mesa_delete_linked_shader(ctx, prog->_LinkedShaders[i]);
4592 }
4593
4594 prog->_LinkedShaders[i] = NULL;
4595 }
4596
4597 /* Link all shaders for a particular stage and validate the result.
4598 */
4599 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4600 if (num_shaders[stage] > 0) {
4601 gl_linked_shader *const sh =
4602 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4603 num_shaders[stage]);
4604
4605 if (!prog->LinkStatus) {
4606 if (sh)
4607 _mesa_delete_linked_shader(ctx, sh);
4608 goto done;
4609 }
4610
4611 switch (stage) {
4612 case MESA_SHADER_VERTEX:
4613 validate_vertex_shader_executable(prog, sh, ctx);
4614 break;
4615 case MESA_SHADER_TESS_CTRL:
4616 /* nothing to be done */
4617 break;
4618 case MESA_SHADER_TESS_EVAL:
4619 validate_tess_eval_shader_executable(prog, sh, ctx);
4620 break;
4621 case MESA_SHADER_GEOMETRY:
4622 validate_geometry_shader_executable(prog, sh, ctx);
4623 break;
4624 case MESA_SHADER_FRAGMENT:
4625 validate_fragment_shader_executable(prog, sh);
4626 break;
4627 }
4628 if (!prog->LinkStatus) {
4629 if (sh)
4630 _mesa_delete_linked_shader(ctx, sh);
4631 goto done;
4632 }
4633
4634 prog->_LinkedShaders[stage] = sh;
4635 }
4636 }
4637
4638 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4639 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4640 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4641 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4642 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4643 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4644 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4645 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4646 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4647 } else {
4648 prog->LastClipDistanceArraySize = 0; /* Not used */
4649 prog->LastCullDistanceArraySize = 0; /* Not used */
4650 }
4651
4652 /* Here begins the inter-stage linking phase. Some initial validation is
4653 * performed, then locations are assigned for uniforms, attributes, and
4654 * varyings.
4655 */
4656 cross_validate_uniforms(prog);
4657 if (!prog->LinkStatus)
4658 goto done;
4659
4660 unsigned first, last, prev;
4661
4662 first = MESA_SHADER_STAGES;
4663 last = 0;
4664
4665 /* Determine first and last stage. */
4666 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4667 if (!prog->_LinkedShaders[i])
4668 continue;
4669 if (first == MESA_SHADER_STAGES)
4670 first = i;
4671 last = i;
4672 }
4673
4674 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4675 link_assign_subroutine_types(prog);
4676
4677 if (!prog->LinkStatus)
4678 goto done;
4679
4680 resize_tes_inputs(ctx, prog);
4681
4682 /* Validate the inputs of each stage with the output of the preceding
4683 * stage.
4684 */
4685 prev = first;
4686 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4687 if (prog->_LinkedShaders[i] == NULL)
4688 continue;
4689
4690 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4691 prog->_LinkedShaders[i]);
4692 if (!prog->LinkStatus)
4693 goto done;
4694
4695 cross_validate_outputs_to_inputs(prog,
4696 prog->_LinkedShaders[prev],
4697 prog->_LinkedShaders[i]);
4698 if (!prog->LinkStatus)
4699 goto done;
4700
4701 prev = i;
4702 }
4703
4704 /* Cross-validate uniform blocks between shader stages */
4705 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4706 if (!prog->LinkStatus)
4707 goto done;
4708
4709 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4710 if (prog->_LinkedShaders[i] != NULL)
4711 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4712 }
4713
4714 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4715 * it before optimization because we want most of the checks to get
4716 * dropped thanks to constant propagation.
4717 *
4718 * This rule also applies to GLSL ES 3.00.
4719 */
4720 if (max_version >= (prog->IsES ? 300 : 130)) {
4721 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4722 if (sh) {
4723 lower_discard_flow(sh->ir);
4724 }
4725 }
4726
4727 if (prog->SeparateShader)
4728 disable_varying_optimizations_for_sso(prog);
4729
4730 /* Process UBOs */
4731 if (!interstage_cross_validate_uniform_blocks(prog, false))
4732 goto done;
4733
4734 /* Process SSBOs */
4735 if (!interstage_cross_validate_uniform_blocks(prog, true))
4736 goto done;
4737
4738 /* Do common optimization before assigning storage for attributes,
4739 * uniforms, and varyings. Later optimization could possibly make
4740 * some of that unused.
4741 */
4742 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4743 if (prog->_LinkedShaders[i] == NULL)
4744 continue;
4745
4746 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4747 if (!prog->LinkStatus)
4748 goto done;
4749
4750 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4751 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4752 }
4753
4754 if (ctx->Const.LowerTessLevel) {
4755 lower_tess_level(prog->_LinkedShaders[i]);
4756 }
4757
4758 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4759 &ctx->Const.ShaderCompilerOptions[i],
4760 ctx->Const.NativeIntegers))
4761 ;
4762
4763 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4764 propagate_invariance(prog->_LinkedShaders[i]->ir);
4765 }
4766
4767 /* Validation for special cases where we allow sampler array indexing
4768 * with loop induction variable. This check emits a warning or error
4769 * depending if backend can handle dynamic indexing.
4770 */
4771 if ((!prog->IsES && prog->Version < 130) ||
4772 (prog->IsES && prog->Version < 300)) {
4773 if (!validate_sampler_array_indexing(ctx, prog))
4774 goto done;
4775 }
4776
4777 /* Check and validate stream emissions in geometry shaders */
4778 validate_geometry_shader_emissions(ctx, prog);
4779
4780 /* Mark all generic shader inputs and outputs as unpaired. */
4781 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4782 if (prog->_LinkedShaders[i] != NULL) {
4783 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4784 }
4785 }
4786
4787 prev = first;
4788 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4789 if (prog->_LinkedShaders[i] == NULL)
4790 continue;
4791
4792 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4793 prog->_LinkedShaders[i]);
4794 prev = i;
4795 }
4796
4797 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4798 MESA_SHADER_VERTEX)) {
4799 goto done;
4800 }
4801
4802 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4803 MESA_SHADER_FRAGMENT)) {
4804 goto done;
4805 }
4806
4807 /* From the ARB_enhanced_layouts spec:
4808 *
4809 * "If the shader used to record output variables for transform feedback
4810 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4811 * qualifiers, the values specified by TransformFeedbackVaryings are
4812 * ignored, and the set of variables captured for transform feedback is
4813 * instead derived from the specified layout qualifiers."
4814 */
4815 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4816 /* Find last stage before fragment shader */
4817 if (prog->_LinkedShaders[i]) {
4818 has_xfb_qualifiers =
4819 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4820 &num_tfeedback_decls,
4821 &varying_names);
4822 break;
4823 }
4824 }
4825
4826 if (!has_xfb_qualifiers) {
4827 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4828 varying_names = prog->TransformFeedback.VaryingNames;
4829 }
4830
4831 if (num_tfeedback_decls != 0) {
4832 /* From GL_EXT_transform_feedback:
4833 * A program will fail to link if:
4834 *
4835 * * the <count> specified by TransformFeedbackVaryingsEXT is
4836 * non-zero, but the program object has no vertex or geometry
4837 * shader;
4838 */
4839 if (first >= MESA_SHADER_FRAGMENT) {
4840 linker_error(prog, "Transform feedback varyings specified, but "
4841 "no vertex, tessellation, or geometry shader is "
4842 "present.\n");
4843 goto done;
4844 }
4845
4846 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4847 num_tfeedback_decls);
4848 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4849 varying_names, tfeedback_decls))
4850 goto done;
4851 }
4852
4853 /* If there is no fragment shader we need to set transform feedback.
4854 *
4855 * For SSO we also need to assign output locations. We assign them here
4856 * because we need to do it for both single stage programs and multi stage
4857 * programs.
4858 */
4859 if (last < MESA_SHADER_FRAGMENT &&
4860 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4861 const uint64_t reserved_out_slots =
4862 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4863 if (!assign_varying_locations(ctx, mem_ctx, prog,
4864 prog->_LinkedShaders[last], NULL,
4865 num_tfeedback_decls, tfeedback_decls,
4866 reserved_out_slots))
4867 goto done;
4868 }
4869
4870 if (last <= MESA_SHADER_FRAGMENT) {
4871 /* Remove unused varyings from the first/last stage unless SSO */
4872 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4873 prog->_LinkedShaders[first],
4874 ir_var_shader_in);
4875 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4876 prog->_LinkedShaders[last],
4877 ir_var_shader_out);
4878
4879 /* If the program is made up of only a single stage */
4880 if (first == last) {
4881
4882 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4883 if (prog->SeparateShader) {
4884 const uint64_t reserved_slots =
4885 reserved_varying_slot(sh, ir_var_shader_in);
4886
4887 /* Assign input locations for SSO, output locations are already
4888 * assigned.
4889 */
4890 if (!assign_varying_locations(ctx, mem_ctx, prog,
4891 NULL /* producer */,
4892 sh /* consumer */,
4893 0 /* num_tfeedback_decls */,
4894 NULL /* tfeedback_decls */,
4895 reserved_slots))
4896 goto done;
4897 }
4898
4899 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4900 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4901 tfeedback_decls);
4902 } else {
4903 /* Linking the stages in the opposite order (from fragment to vertex)
4904 * ensures that inter-shader outputs written to in an earlier stage
4905 * are eliminated if they are (transitively) not used in a later
4906 * stage.
4907 */
4908 int next = last;
4909 for (int i = next - 1; i >= 0; i--) {
4910 if (prog->_LinkedShaders[i] == NULL && i != 0)
4911 continue;
4912
4913 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4914 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4915
4916 const uint64_t reserved_out_slots =
4917 reserved_varying_slot(sh_i, ir_var_shader_out);
4918 const uint64_t reserved_in_slots =
4919 reserved_varying_slot(sh_next, ir_var_shader_in);
4920
4921 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4922 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4923 tfeedback_decls,
4924 reserved_out_slots | reserved_in_slots))
4925 goto done;
4926
4927 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4928 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4929 tfeedback_decls);
4930
4931 /* This must be done after all dead varyings are eliminated. */
4932 if (sh_i != NULL) {
4933 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4934 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4935 goto done;
4936 }
4937 }
4938
4939 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4940 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4941 goto done;
4942
4943 next = i;
4944 }
4945 }
4946 }
4947
4948 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4949 has_xfb_qualifiers))
4950 goto done;
4951
4952 update_array_sizes(prog);
4953 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue,
4954 num_explicit_uniform_locs,
4955 ctx->Const.MaxUserAssignableUniformLocations);
4956 link_assign_atomic_counter_resources(ctx, prog);
4957 store_fragdepth_layout(prog);
4958
4959 link_calculate_subroutine_compat(prog);
4960 check_resources(ctx, prog);
4961 check_subroutine_resources(prog);
4962 check_image_resources(ctx, prog);
4963 link_check_atomic_counter_resources(ctx, prog);
4964
4965 if (!prog->LinkStatus)
4966 goto done;
4967
4968 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4969 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4970 * anything about shader linking when one of the shaders (vertex or
4971 * fragment shader) is absent. So, the extension shouldn't change the
4972 * behavior specified in GLSL specification.
4973 *
4974 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4975 * "Linking can fail for a variety of reasons as specified in the
4976 * OpenGL ES Shading Language Specification, as well as any of the
4977 * following reasons:
4978 *
4979 * ...
4980 *
4981 * * program contains objects to form either a vertex shader or
4982 * fragment shader, and program is not separable, and does not
4983 * contain objects to form both a vertex shader and fragment
4984 * shader."
4985 *
4986 * However, the only scenario in 3.1+ where we don't require them both is
4987 * when we have a compute shader. For example:
4988 *
4989 * - No shaders is a link error.
4990 * - Geom or Tess without a Vertex shader is a link error which means we
4991 * always require a Vertex shader and hence a Fragment shader.
4992 * - Finally a Compute shader linked with any other stage is a link error.
4993 */
4994 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4995 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4996 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4997 linker_error(prog, "program lacks a vertex shader\n");
4998 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4999 linker_error(prog, "program lacks a fragment shader\n");
5000 }
5001 }
5002
5003 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5004 if (prog->_LinkedShaders[i] == NULL)
5005 continue;
5006
5007 const struct gl_shader_compiler_options *options =
5008 &ctx->Const.ShaderCompilerOptions[i];
5009
5010 if (options->LowerBufferInterfaceBlocks)
5011 lower_ubo_reference(prog->_LinkedShaders[i],
5012 options->ClampBlockIndicesToArrayBounds);
5013
5014 if (options->LowerShaderSharedVariables)
5015 lower_shared_reference(prog->_LinkedShaders[i],
5016 &prog->Comp.SharedSize);
5017
5018 lower_vector_derefs(prog->_LinkedShaders[i]);
5019 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
5020 }
5021
5022 done:
5023 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5024 free(shader_list[i]);
5025 if (prog->_LinkedShaders[i] == NULL)
5026 continue;
5027
5028 /* Do a final validation step to make sure that the IR wasn't
5029 * invalidated by any modifications performed after intrastage linking.
5030 */
5031 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5032
5033 /* Retain any live IR, but trash the rest. */
5034 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5035
5036 /* The symbol table in the linked shaders may contain references to
5037 * variables that were removed (e.g., unused uniforms). Since it may
5038 * contain junk, there is no possible valid use. Delete it and set the
5039 * pointer to NULL.
5040 */
5041 delete prog->_LinkedShaders[i]->symbols;
5042 prog->_LinkedShaders[i]->symbols = NULL;
5043 }
5044
5045 ralloc_free(mem_ctx);
5046 }