9826368c561546fa044adac6c01d335cb3dbdd8e
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "program/prog_instruction.h"
76 #include "linker.h"
77 #include "link_varyings.h"
78 #include "ir_optimization.h"
79 #include "ir_rvalue_visitor.h"
80 #include "ir_uniform.h"
81
82 #include "main/shaderobj.h"
83 #include "main/enums.h"
84
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (!var->data.implicit_sized_array &&
210 size && size != this->num_vertices) {
211 linker_error(this->prog, "size of array %s declared as %u, "
212 "but number of input vertices is %u\n",
213 var->name, size, this->num_vertices);
214 return visit_continue;
215 }
216
217 /* Generate a link error if the shader attempts to access an input
218 * array using an index too large for its actual size assigned at link
219 * time.
220 */
221 if (var->data.max_array_access >= (int)this->num_vertices) {
222 linker_error(this->prog, "geometry shader accesses element %i of "
223 "%s, but only %i input vertices\n",
224 var->data.max_array_access, var->name, this->num_vertices);
225 return visit_continue;
226 }
227
228 var->type = glsl_type::get_array_instance(var->type->fields.array,
229 this->num_vertices);
230 var->data.max_array_access = this->num_vertices - 1;
231
232 return visit_continue;
233 }
234
235 /* Dereferences of input variables need to be updated so that their type
236 * matches the newly assigned type of the variable they are accessing. */
237 virtual ir_visitor_status visit(ir_dereference_variable *ir)
238 {
239 ir->type = ir->var->type;
240 return visit_continue;
241 }
242
243 /* Dereferences of 2D input arrays need to be updated so that their type
244 * matches the newly assigned type of the array they are accessing. */
245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252 };
253
254 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
255 public:
256 unsigned num_vertices;
257 gl_shader_program *prog;
258
259 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
260 {
261 this->num_vertices = num_vertices;
262 this->prog = prog;
263 }
264
265 virtual ~tess_eval_array_resize_visitor()
266 {
267 /* empty */
268 }
269
270 virtual ir_visitor_status visit(ir_variable *var)
271 {
272 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
273 return visit_continue;
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281
282 /* Dereferences of input variables need to be updated so that their type
283 * matches the newly assigned type of the variable they are accessing. */
284 virtual ir_visitor_status visit(ir_dereference_variable *ir)
285 {
286 ir->type = ir->var->type;
287 return visit_continue;
288 }
289
290 /* Dereferences of 2D input arrays need to be updated so that their type
291 * matches the newly assigned type of the array they are accessing. */
292 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
293 {
294 const glsl_type *const vt = ir->array->type;
295 if (vt->is_array())
296 ir->type = vt->fields.array;
297 return visit_continue;
298 }
299 };
300
301 class barrier_use_visitor : public ir_hierarchical_visitor {
302 public:
303 barrier_use_visitor(gl_shader_program *prog)
304 : prog(prog), in_main(false), after_return(false), control_flow(0)
305 {
306 }
307
308 virtual ~barrier_use_visitor()
309 {
310 /* empty */
311 }
312
313 virtual ir_visitor_status visit_enter(ir_function *ir)
314 {
315 if (strcmp(ir->name, "main") == 0)
316 in_main = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_function *)
322 {
323 in_main = false;
324 after_return = false;
325 return visit_continue;
326 }
327
328 virtual ir_visitor_status visit_leave(ir_return *)
329 {
330 after_return = true;
331 return visit_continue;
332 }
333
334 virtual ir_visitor_status visit_enter(ir_if *)
335 {
336 ++control_flow;
337 return visit_continue;
338 }
339
340 virtual ir_visitor_status visit_leave(ir_if *)
341 {
342 --control_flow;
343 return visit_continue;
344 }
345
346 virtual ir_visitor_status visit_enter(ir_loop *)
347 {
348 ++control_flow;
349 return visit_continue;
350 }
351
352 virtual ir_visitor_status visit_leave(ir_loop *)
353 {
354 --control_flow;
355 return visit_continue;
356 }
357
358 /* FINISHME: `switch` is not expressed at the IR level -- it's already
359 * been lowered to a mess of `if`s. We'll correctly disallow any use of
360 * barrier() in a conditional path within the switch, but not in a path
361 * which is always hit.
362 */
363
364 virtual ir_visitor_status visit_enter(ir_call *ir)
365 {
366 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
367 /* Use of barrier(); determine if it is legal: */
368 if (!in_main) {
369 linker_error(prog, "Builtin barrier() may only be used in main");
370 return visit_stop;
371 }
372
373 if (after_return) {
374 linker_error(prog, "Builtin barrier() may not be used after return");
375 return visit_stop;
376 }
377
378 if (control_flow != 0) {
379 linker_error(prog, "Builtin barrier() may not be used inside control flow");
380 return visit_stop;
381 }
382 }
383 return visit_continue;
384 }
385
386 private:
387 gl_shader_program *prog;
388 bool in_main, after_return;
389 int control_flow;
390 };
391
392 /**
393 * Visitor that determines the highest stream id to which a (geometry) shader
394 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
395 */
396 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
397 public:
398 find_emit_vertex_visitor(int max_allowed)
399 : max_stream_allowed(max_allowed),
400 invalid_stream_id(0),
401 invalid_stream_id_from_emit_vertex(false),
402 end_primitive_found(false),
403 uses_non_zero_stream(false)
404 {
405 /* empty */
406 }
407
408 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
409 {
410 int stream_id = ir->stream_id();
411
412 if (stream_id < 0) {
413 invalid_stream_id = stream_id;
414 invalid_stream_id_from_emit_vertex = true;
415 return visit_stop;
416 }
417
418 if (stream_id > max_stream_allowed) {
419 invalid_stream_id = stream_id;
420 invalid_stream_id_from_emit_vertex = true;
421 return visit_stop;
422 }
423
424 if (stream_id != 0)
425 uses_non_zero_stream = true;
426
427 return visit_continue;
428 }
429
430 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
431 {
432 end_primitive_found = true;
433
434 int stream_id = ir->stream_id();
435
436 if (stream_id < 0) {
437 invalid_stream_id = stream_id;
438 invalid_stream_id_from_emit_vertex = false;
439 return visit_stop;
440 }
441
442 if (stream_id > max_stream_allowed) {
443 invalid_stream_id = stream_id;
444 invalid_stream_id_from_emit_vertex = false;
445 return visit_stop;
446 }
447
448 if (stream_id != 0)
449 uses_non_zero_stream = true;
450
451 return visit_continue;
452 }
453
454 bool error()
455 {
456 return invalid_stream_id != 0;
457 }
458
459 const char *error_func()
460 {
461 return invalid_stream_id_from_emit_vertex ?
462 "EmitStreamVertex" : "EndStreamPrimitive";
463 }
464
465 int error_stream()
466 {
467 return invalid_stream_id;
468 }
469
470 bool uses_streams()
471 {
472 return uses_non_zero_stream;
473 }
474
475 bool uses_end_primitive()
476 {
477 return end_primitive_found;
478 }
479
480 private:
481 int max_stream_allowed;
482 int invalid_stream_id;
483 bool invalid_stream_id_from_emit_vertex;
484 bool end_primitive_found;
485 bool uses_non_zero_stream;
486 };
487
488 /* Class that finds array derefs and check if indexes are dynamic. */
489 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
490 {
491 public:
492 dynamic_sampler_array_indexing_visitor() :
493 dynamic_sampler_array_indexing(false)
494 {
495 }
496
497 ir_visitor_status visit_enter(ir_dereference_array *ir)
498 {
499 if (!ir->variable_referenced())
500 return visit_continue;
501
502 if (!ir->variable_referenced()->type->contains_sampler())
503 return visit_continue;
504
505 if (!ir->array_index->constant_expression_value()) {
506 dynamic_sampler_array_indexing = true;
507 return visit_stop;
508 }
509 return visit_continue;
510 }
511
512 bool uses_dynamic_sampler_array_indexing()
513 {
514 return dynamic_sampler_array_indexing;
515 }
516
517 private:
518 bool dynamic_sampler_array_indexing;
519 };
520
521 } /* anonymous namespace */
522
523 void
524 linker_error(gl_shader_program *prog, const char *fmt, ...)
525 {
526 va_list ap;
527
528 ralloc_strcat(&prog->InfoLog, "error: ");
529 va_start(ap, fmt);
530 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
531 va_end(ap);
532
533 prog->LinkStatus = false;
534 }
535
536
537 void
538 linker_warning(gl_shader_program *prog, const char *fmt, ...)
539 {
540 va_list ap;
541
542 ralloc_strcat(&prog->InfoLog, "warning: ");
543 va_start(ap, fmt);
544 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
545 va_end(ap);
546
547 }
548
549
550 /**
551 * Given a string identifying a program resource, break it into a base name
552 * and an optional array index in square brackets.
553 *
554 * If an array index is present, \c out_base_name_end is set to point to the
555 * "[" that precedes the array index, and the array index itself is returned
556 * as a long.
557 *
558 * If no array index is present (or if the array index is negative or
559 * mal-formed), \c out_base_name_end, is set to point to the null terminator
560 * at the end of the input string, and -1 is returned.
561 *
562 * Only the final array index is parsed; if the string contains other array
563 * indices (or structure field accesses), they are left in the base name.
564 *
565 * No attempt is made to check that the base name is properly formed;
566 * typically the caller will look up the base name in a hash table, so
567 * ill-formed base names simply turn into hash table lookup failures.
568 */
569 long
570 parse_program_resource_name(const GLchar *name,
571 const GLchar **out_base_name_end)
572 {
573 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
574 *
575 * "When an integer array element or block instance number is part of
576 * the name string, it will be specified in decimal form without a "+"
577 * or "-" sign or any extra leading zeroes. Additionally, the name
578 * string will not include white space anywhere in the string."
579 */
580
581 const size_t len = strlen(name);
582 *out_base_name_end = name + len;
583
584 if (len == 0 || name[len-1] != ']')
585 return -1;
586
587 /* Walk backwards over the string looking for a non-digit character. This
588 * had better be the opening bracket for an array index.
589 *
590 * Initially, i specifies the location of the ']'. Since the string may
591 * contain only the ']' charcater, walk backwards very carefully.
592 */
593 unsigned i;
594 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
595 /* empty */ ;
596
597 if ((i == 0) || name[i-1] != '[')
598 return -1;
599
600 long array_index = strtol(&name[i], NULL, 10);
601 if (array_index < 0)
602 return -1;
603
604 /* Check for leading zero */
605 if (name[i] == '0' && name[i+1] != ']')
606 return -1;
607
608 *out_base_name_end = name + (i - 1);
609 return array_index;
610 }
611
612
613 void
614 link_invalidate_variable_locations(exec_list *ir)
615 {
616 foreach_in_list(ir_instruction, node, ir) {
617 ir_variable *const var = node->as_variable();
618
619 if (var == NULL)
620 continue;
621
622 /* Only assign locations for variables that lack an explicit location.
623 * Explicit locations are set for all built-in variables, generic vertex
624 * shader inputs (via layout(location=...)), and generic fragment shader
625 * outputs (also via layout(location=...)).
626 */
627 if (!var->data.explicit_location) {
628 var->data.location = -1;
629 var->data.location_frac = 0;
630 }
631
632 /* ir_variable::is_unmatched_generic_inout is used by the linker while
633 * connecting outputs from one stage to inputs of the next stage.
634 */
635 if (var->data.explicit_location &&
636 var->data.location < VARYING_SLOT_VAR0) {
637 var->data.is_unmatched_generic_inout = 0;
638 } else {
639 var->data.is_unmatched_generic_inout = 1;
640 }
641 }
642 }
643
644
645 /**
646 * Set clip_distance_array_size based and cull_distance_array_size on the given
647 * shader.
648 *
649 * Also check for errors based on incorrect usage of gl_ClipVertex and
650 * gl_ClipDistance and gl_CullDistance.
651 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
652 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
653 *
654 * Return false if an error was reported.
655 */
656 static void
657 analyze_clip_cull_usage(struct gl_shader_program *prog,
658 struct gl_linked_shader *shader,
659 struct gl_context *ctx,
660 GLuint *clip_distance_array_size,
661 GLuint *cull_distance_array_size)
662 {
663 *clip_distance_array_size = 0;
664 *cull_distance_array_size = 0;
665
666 if (prog->Version >= (prog->IsES ? 300 : 130)) {
667 /* From section 7.1 (Vertex Shader Special Variables) of the
668 * GLSL 1.30 spec:
669 *
670 * "It is an error for a shader to statically write both
671 * gl_ClipVertex and gl_ClipDistance."
672 *
673 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
674 * gl_ClipVertex nor gl_ClipDistance. However with
675 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
676 */
677 find_assignment_visitor clip_distance("gl_ClipDistance");
678 find_assignment_visitor cull_distance("gl_CullDistance");
679
680 clip_distance.run(shader->ir);
681 cull_distance.run(shader->ir);
682
683 /* From the ARB_cull_distance spec:
684 *
685 * It is a compile-time or link-time error for the set of shaders forming
686 * a program to statically read or write both gl_ClipVertex and either
687 * gl_ClipDistance or gl_CullDistance.
688 *
689 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
690 * gl_ClipVertex.
691 */
692 if (!prog->IsES) {
693 find_assignment_visitor clip_vertex("gl_ClipVertex");
694
695 clip_vertex.run(shader->ir);
696
697 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
698 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
699 "and `gl_ClipDistance'\n",
700 _mesa_shader_stage_to_string(shader->Stage));
701 return;
702 }
703 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
704 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
705 "and `gl_CullDistance'\n",
706 _mesa_shader_stage_to_string(shader->Stage));
707 return;
708 }
709 }
710
711 if (clip_distance.variable_found()) {
712 ir_variable *clip_distance_var =
713 shader->symbols->get_variable("gl_ClipDistance");
714 assert(clip_distance_var);
715 *clip_distance_array_size = clip_distance_var->type->length;
716 }
717 if (cull_distance.variable_found()) {
718 ir_variable *cull_distance_var =
719 shader->symbols->get_variable("gl_CullDistance");
720 assert(cull_distance_var);
721 *cull_distance_array_size = cull_distance_var->type->length;
722 }
723 /* From the ARB_cull_distance spec:
724 *
725 * It is a compile-time or link-time error for the set of shaders forming
726 * a program to have the sum of the sizes of the gl_ClipDistance and
727 * gl_CullDistance arrays to be larger than
728 * gl_MaxCombinedClipAndCullDistances.
729 */
730 if ((*clip_distance_array_size + *cull_distance_array_size) >
731 ctx->Const.MaxClipPlanes) {
732 linker_error(prog, "%s shader: the combined size of "
733 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
734 "be larger than "
735 "gl_MaxCombinedClipAndCullDistances (%u)",
736 _mesa_shader_stage_to_string(shader->Stage),
737 ctx->Const.MaxClipPlanes);
738 }
739 }
740 }
741
742
743 /**
744 * Verify that a vertex shader executable meets all semantic requirements.
745 *
746 * Also sets prog->Vert.ClipDistanceArraySize and
747 * prog->Vert.CullDistanceArraySize as a side effect.
748 *
749 * \param shader Vertex shader executable to be verified
750 */
751 void
752 validate_vertex_shader_executable(struct gl_shader_program *prog,
753 struct gl_linked_shader *shader,
754 struct gl_context *ctx)
755 {
756 if (shader == NULL)
757 return;
758
759 /* From the GLSL 1.10 spec, page 48:
760 *
761 * "The variable gl_Position is available only in the vertex
762 * language and is intended for writing the homogeneous vertex
763 * position. All executions of a well-formed vertex shader
764 * executable must write a value into this variable. [...] The
765 * variable gl_Position is available only in the vertex
766 * language and is intended for writing the homogeneous vertex
767 * position. All executions of a well-formed vertex shader
768 * executable must write a value into this variable."
769 *
770 * while in GLSL 1.40 this text is changed to:
771 *
772 * "The variable gl_Position is available only in the vertex
773 * language and is intended for writing the homogeneous vertex
774 * position. It can be written at any time during shader
775 * execution. It may also be read back by a vertex shader
776 * after being written. This value will be used by primitive
777 * assembly, clipping, culling, and other fixed functionality
778 * operations, if present, that operate on primitives after
779 * vertex processing has occurred. Its value is undefined if
780 * the vertex shader executable does not write gl_Position."
781 *
782 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
783 * gl_Position is not an error.
784 */
785 if (prog->Version < (prog->IsES ? 300 : 140)) {
786 find_assignment_visitor find("gl_Position");
787 find.run(shader->ir);
788 if (!find.variable_found()) {
789 if (prog->IsES) {
790 linker_warning(prog,
791 "vertex shader does not write to `gl_Position'."
792 "It's value is undefined. \n");
793 } else {
794 linker_error(prog,
795 "vertex shader does not write to `gl_Position'. \n");
796 }
797 return;
798 }
799 }
800
801 analyze_clip_cull_usage(prog, shader, ctx,
802 &prog->Vert.ClipDistanceArraySize,
803 &prog->Vert.CullDistanceArraySize);
804 }
805
806 void
807 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
808 struct gl_linked_shader *shader,
809 struct gl_context *ctx)
810 {
811 if (shader == NULL)
812 return;
813
814 analyze_clip_cull_usage(prog, shader, ctx,
815 &prog->TessEval.ClipDistanceArraySize,
816 &prog->TessEval.CullDistanceArraySize);
817 }
818
819
820 /**
821 * Verify that a fragment shader executable meets all semantic requirements
822 *
823 * \param shader Fragment shader executable to be verified
824 */
825 void
826 validate_fragment_shader_executable(struct gl_shader_program *prog,
827 struct gl_linked_shader *shader)
828 {
829 if (shader == NULL)
830 return;
831
832 find_assignment_visitor frag_color("gl_FragColor");
833 find_assignment_visitor frag_data("gl_FragData");
834
835 frag_color.run(shader->ir);
836 frag_data.run(shader->ir);
837
838 if (frag_color.variable_found() && frag_data.variable_found()) {
839 linker_error(prog, "fragment shader writes to both "
840 "`gl_FragColor' and `gl_FragData'\n");
841 }
842 }
843
844 /**
845 * Verify that a geometry shader executable meets all semantic requirements
846 *
847 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
848 * prog->Geom.CullDistanceArraySize as a side effect.
849 *
850 * \param shader Geometry shader executable to be verified
851 */
852 void
853 validate_geometry_shader_executable(struct gl_shader_program *prog,
854 struct gl_linked_shader *shader,
855 struct gl_context *ctx)
856 {
857 if (shader == NULL)
858 return;
859
860 unsigned num_vertices = vertices_per_prim(shader->Geom.InputType);
861 prog->Geom.VerticesIn = num_vertices;
862
863 analyze_clip_cull_usage(prog, shader, ctx,
864 &prog->Geom.ClipDistanceArraySize,
865 &prog->Geom.CullDistanceArraySize);
866 }
867
868 /**
869 * Check if geometry shaders emit to non-zero streams and do corresponding
870 * validations.
871 */
872 static void
873 validate_geometry_shader_emissions(struct gl_context *ctx,
874 struct gl_shader_program *prog)
875 {
876 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
877
878 if (sh != NULL) {
879 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
880 emit_vertex.run(sh->ir);
881 if (emit_vertex.error()) {
882 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
883 "stream parameter are in the range [0, %d].\n",
884 emit_vertex.error_func(),
885 emit_vertex.error_stream(),
886 ctx->Const.MaxVertexStreams - 1);
887 }
888 prog->Geom.UsesStreams = emit_vertex.uses_streams();
889 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
890
891 /* From the ARB_gpu_shader5 spec:
892 *
893 * "Multiple vertex streams are supported only if the output primitive
894 * type is declared to be "points". A program will fail to link if it
895 * contains a geometry shader calling EmitStreamVertex() or
896 * EndStreamPrimitive() if its output primitive type is not "points".
897 *
898 * However, in the same spec:
899 *
900 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
901 * with <stream> set to zero."
902 *
903 * And:
904 *
905 * "The function EndPrimitive() is equivalent to calling
906 * EndStreamPrimitive() with <stream> set to zero."
907 *
908 * Since we can call EmitVertex() and EndPrimitive() when we output
909 * primitives other than points, calling EmitStreamVertex(0) or
910 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
911 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
912 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
913 * stream.
914 */
915 if (prog->Geom.UsesStreams && sh->Geom.OutputType != GL_POINTS) {
916 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
917 "with n>0 requires point output\n");
918 }
919 }
920 }
921
922 bool
923 validate_intrastage_arrays(struct gl_shader_program *prog,
924 ir_variable *const var,
925 ir_variable *const existing)
926 {
927 /* Consider the types to be "the same" if both types are arrays
928 * of the same type and one of the arrays is implicitly sized.
929 * In addition, set the type of the linked variable to the
930 * explicitly sized array.
931 */
932 if (var->type->is_array() && existing->type->is_array()) {
933 if ((var->type->fields.array == existing->type->fields.array) &&
934 ((var->type->length == 0)|| (existing->type->length == 0))) {
935 if (var->type->length != 0) {
936 if ((int)var->type->length <= existing->data.max_array_access) {
937 linker_error(prog, "%s `%s' declared as type "
938 "`%s' but outermost dimension has an index"
939 " of `%i'\n",
940 mode_string(var),
941 var->name, var->type->name,
942 existing->data.max_array_access);
943 }
944 existing->type = var->type;
945 return true;
946 } else if (existing->type->length != 0) {
947 if((int)existing->type->length <= var->data.max_array_access &&
948 !existing->data.from_ssbo_unsized_array) {
949 linker_error(prog, "%s `%s' declared as type "
950 "`%s' but outermost dimension has an index"
951 " of `%i'\n",
952 mode_string(var),
953 var->name, existing->type->name,
954 var->data.max_array_access);
955 }
956 return true;
957 }
958 } else {
959 /* The arrays of structs could have different glsl_type pointers but
960 * they are actually the same type. Use record_compare() to check that.
961 */
962 if (existing->type->fields.array->is_record() &&
963 var->type->fields.array->is_record() &&
964 existing->type->fields.array->record_compare(var->type->fields.array))
965 return true;
966 }
967 }
968 return false;
969 }
970
971
972 /**
973 * Perform validation of global variables used across multiple shaders
974 */
975 void
976 cross_validate_globals(struct gl_shader_program *prog,
977 struct exec_list *ir, glsl_symbol_table *variables,
978 bool uniforms_only)
979 {
980 foreach_in_list(ir_instruction, node, ir) {
981 ir_variable *const var = node->as_variable();
982
983 if (var == NULL)
984 continue;
985
986 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
987 continue;
988
989 /* don't cross validate subroutine uniforms */
990 if (var->type->contains_subroutine())
991 continue;
992
993 /* Don't cross validate temporaries that are at global scope. These
994 * will eventually get pulled into the shaders 'main'.
995 */
996 if (var->data.mode == ir_var_temporary)
997 continue;
998
999 /* If a global with this name has already been seen, verify that the
1000 * new instance has the same type. In addition, if the globals have
1001 * initializers, the values of the initializers must be the same.
1002 */
1003 ir_variable *const existing = variables->get_variable(var->name);
1004 if (existing != NULL) {
1005 /* Check if types match. Interface blocks have some special
1006 * rules so we handle those elsewhere.
1007 */
1008 if (var->type != existing->type &&
1009 !var->is_interface_instance()) {
1010 if (!validate_intrastage_arrays(prog, var, existing)) {
1011 if (var->type->is_record() && existing->type->is_record()
1012 && existing->type->record_compare(var->type)) {
1013 existing->type = var->type;
1014 } else {
1015 /* If it is an unsized array in a Shader Storage Block,
1016 * two different shaders can access to different elements.
1017 * Because of that, they might be converted to different
1018 * sized arrays, then check that they are compatible but
1019 * ignore the array size.
1020 */
1021 if (!(var->data.mode == ir_var_shader_storage &&
1022 var->data.from_ssbo_unsized_array &&
1023 existing->data.mode == ir_var_shader_storage &&
1024 existing->data.from_ssbo_unsized_array &&
1025 var->type->gl_type == existing->type->gl_type)) {
1026 linker_error(prog, "%s `%s' declared as type "
1027 "`%s' and type `%s'\n",
1028 mode_string(var),
1029 var->name, var->type->name,
1030 existing->type->name);
1031 return;
1032 }
1033 }
1034 }
1035 }
1036
1037 if (var->data.explicit_location) {
1038 if (existing->data.explicit_location
1039 && (var->data.location != existing->data.location)) {
1040 linker_error(prog, "explicit locations for %s "
1041 "`%s' have differing values\n",
1042 mode_string(var), var->name);
1043 return;
1044 }
1045
1046 if (var->data.location_frac != existing->data.location_frac) {
1047 linker_error(prog, "explicit components for %s `%s' have "
1048 "differing values\n", mode_string(var), var->name);
1049 return;
1050 }
1051
1052 existing->data.location = var->data.location;
1053 existing->data.explicit_location = true;
1054 } else {
1055 /* Check if uniform with implicit location was marked explicit
1056 * by earlier shader stage. If so, mark it explicit in this stage
1057 * too to make sure later processing does not treat it as
1058 * implicit one.
1059 */
1060 if (existing->data.explicit_location) {
1061 var->data.location = existing->data.location;
1062 var->data.explicit_location = true;
1063 }
1064 }
1065
1066 /* From the GLSL 4.20 specification:
1067 * "A link error will result if two compilation units in a program
1068 * specify different integer-constant bindings for the same
1069 * opaque-uniform name. However, it is not an error to specify a
1070 * binding on some but not all declarations for the same name"
1071 */
1072 if (var->data.explicit_binding) {
1073 if (existing->data.explicit_binding &&
1074 var->data.binding != existing->data.binding) {
1075 linker_error(prog, "explicit bindings for %s "
1076 "`%s' have differing values\n",
1077 mode_string(var), var->name);
1078 return;
1079 }
1080
1081 existing->data.binding = var->data.binding;
1082 existing->data.explicit_binding = true;
1083 }
1084
1085 if (var->type->contains_atomic() &&
1086 var->data.offset != existing->data.offset) {
1087 linker_error(prog, "offset specifications for %s "
1088 "`%s' have differing values\n",
1089 mode_string(var), var->name);
1090 return;
1091 }
1092
1093 /* Validate layout qualifiers for gl_FragDepth.
1094 *
1095 * From the AMD/ARB_conservative_depth specs:
1096 *
1097 * "If gl_FragDepth is redeclared in any fragment shader in a
1098 * program, it must be redeclared in all fragment shaders in
1099 * that program that have static assignments to
1100 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1101 * fragment shaders in a single program must have the same set
1102 * of qualifiers."
1103 */
1104 if (strcmp(var->name, "gl_FragDepth") == 0) {
1105 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1106 bool layout_differs =
1107 var->data.depth_layout != existing->data.depth_layout;
1108
1109 if (layout_declared && layout_differs) {
1110 linker_error(prog,
1111 "All redeclarations of gl_FragDepth in all "
1112 "fragment shaders in a single program must have "
1113 "the same set of qualifiers.\n");
1114 }
1115
1116 if (var->data.used && layout_differs) {
1117 linker_error(prog,
1118 "If gl_FragDepth is redeclared with a layout "
1119 "qualifier in any fragment shader, it must be "
1120 "redeclared with the same layout qualifier in "
1121 "all fragment shaders that have assignments to "
1122 "gl_FragDepth\n");
1123 }
1124 }
1125
1126 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1127 *
1128 * "If a shared global has multiple initializers, the
1129 * initializers must all be constant expressions, and they
1130 * must all have the same value. Otherwise, a link error will
1131 * result. (A shared global having only one initializer does
1132 * not require that initializer to be a constant expression.)"
1133 *
1134 * Previous to 4.20 the GLSL spec simply said that initializers
1135 * must have the same value. In this case of non-constant
1136 * initializers, this was impossible to determine. As a result,
1137 * no vendor actually implemented that behavior. The 4.20
1138 * behavior matches the implemented behavior of at least one other
1139 * vendor, so we'll implement that for all GLSL versions.
1140 */
1141 if (var->constant_initializer != NULL) {
1142 if (existing->constant_initializer != NULL) {
1143 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1144 linker_error(prog, "initializers for %s "
1145 "`%s' have differing values\n",
1146 mode_string(var), var->name);
1147 return;
1148 }
1149 } else {
1150 /* If the first-seen instance of a particular uniform did
1151 * not have an initializer but a later instance does,
1152 * replace the former with the later.
1153 */
1154 variables->replace_variable(existing->name, var);
1155 }
1156 }
1157
1158 if (var->data.has_initializer) {
1159 if (existing->data.has_initializer
1160 && (var->constant_initializer == NULL
1161 || existing->constant_initializer == NULL)) {
1162 linker_error(prog,
1163 "shared global variable `%s' has multiple "
1164 "non-constant initializers.\n",
1165 var->name);
1166 return;
1167 }
1168 }
1169
1170 if (existing->data.invariant != var->data.invariant) {
1171 linker_error(prog, "declarations for %s `%s' have "
1172 "mismatching invariant qualifiers\n",
1173 mode_string(var), var->name);
1174 return;
1175 }
1176 if (existing->data.centroid != var->data.centroid) {
1177 linker_error(prog, "declarations for %s `%s' have "
1178 "mismatching centroid qualifiers\n",
1179 mode_string(var), var->name);
1180 return;
1181 }
1182 if (existing->data.sample != var->data.sample) {
1183 linker_error(prog, "declarations for %s `%s` have "
1184 "mismatching sample qualifiers\n",
1185 mode_string(var), var->name);
1186 return;
1187 }
1188 if (existing->data.image_format != var->data.image_format) {
1189 linker_error(prog, "declarations for %s `%s` have "
1190 "mismatching image format qualifiers\n",
1191 mode_string(var), var->name);
1192 return;
1193 }
1194 } else
1195 variables->add_variable(var);
1196 }
1197 }
1198
1199
1200 /**
1201 * Perform validation of uniforms used across multiple shader stages
1202 */
1203 void
1204 cross_validate_uniforms(struct gl_shader_program *prog)
1205 {
1206 glsl_symbol_table variables;
1207 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1208 if (prog->_LinkedShaders[i] == NULL)
1209 continue;
1210
1211 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1212 true);
1213 }
1214 }
1215
1216 /**
1217 * Accumulates the array of buffer blocks and checks that all definitions of
1218 * blocks agree on their contents.
1219 */
1220 static bool
1221 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1222 bool validate_ssbo)
1223 {
1224 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1225 struct gl_uniform_block *blks = NULL;
1226 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1227 &prog->NumUniformBlocks;
1228
1229 unsigned max_num_buffer_blocks = 0;
1230 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1231 if (prog->_LinkedShaders[i]) {
1232 if (validate_ssbo) {
1233 max_num_buffer_blocks +=
1234 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1235 } else {
1236 max_num_buffer_blocks +=
1237 prog->_LinkedShaders[i]->NumUniformBlocks;
1238 }
1239 }
1240 }
1241
1242 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1243 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1244
1245 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1246 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1247 InterfaceBlockStageIndex[i][j] = -1;
1248
1249 if (sh == NULL)
1250 continue;
1251
1252 unsigned sh_num_blocks;
1253 struct gl_uniform_block **sh_blks;
1254 if (validate_ssbo) {
1255 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1256 sh_blks = sh->ShaderStorageBlocks;
1257 } else {
1258 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1259 sh_blks = sh->UniformBlocks;
1260 }
1261
1262 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1263 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1264 sh_blks[j]);
1265
1266 if (index == -1) {
1267 linker_error(prog, "buffer block `%s' has mismatching "
1268 "definitions\n", sh_blks[j]->Name);
1269
1270 for (unsigned k = 0; k <= i; k++) {
1271 delete[] InterfaceBlockStageIndex[k];
1272 }
1273 return false;
1274 }
1275
1276 InterfaceBlockStageIndex[i][index] = j;
1277 }
1278 }
1279
1280 /* Update per stage block pointers to point to the program list.
1281 * FIXME: We should be able to free the per stage blocks here.
1282 */
1283 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1284 for (unsigned j = 0; j < *num_blks; j++) {
1285 int stage_index = InterfaceBlockStageIndex[i][j];
1286
1287 if (stage_index != -1) {
1288 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1289
1290 blks[j].stageref |= (1 << i);
1291
1292 struct gl_uniform_block **sh_blks = validate_ssbo ?
1293 sh->ShaderStorageBlocks : sh->UniformBlocks;
1294
1295 sh_blks[stage_index] = &blks[j];
1296 }
1297 }
1298 }
1299
1300 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1301 delete[] InterfaceBlockStageIndex[i];
1302 }
1303
1304 if (validate_ssbo)
1305 prog->ShaderStorageBlocks = blks;
1306 else
1307 prog->UniformBlocks = blks;
1308
1309 return true;
1310 }
1311
1312
1313 /**
1314 * Populates a shaders symbol table with all global declarations
1315 */
1316 static void
1317 populate_symbol_table(gl_linked_shader *sh)
1318 {
1319 sh->symbols = new(sh) glsl_symbol_table;
1320
1321 foreach_in_list(ir_instruction, inst, sh->ir) {
1322 ir_variable *var;
1323 ir_function *func;
1324
1325 if ((func = inst->as_function()) != NULL) {
1326 sh->symbols->add_function(func);
1327 } else if ((var = inst->as_variable()) != NULL) {
1328 if (var->data.mode != ir_var_temporary)
1329 sh->symbols->add_variable(var);
1330 }
1331 }
1332 }
1333
1334
1335 /**
1336 * Remap variables referenced in an instruction tree
1337 *
1338 * This is used when instruction trees are cloned from one shader and placed in
1339 * another. These trees will contain references to \c ir_variable nodes that
1340 * do not exist in the target shader. This function finds these \c ir_variable
1341 * references and replaces the references with matching variables in the target
1342 * shader.
1343 *
1344 * If there is no matching variable in the target shader, a clone of the
1345 * \c ir_variable is made and added to the target shader. The new variable is
1346 * added to \b both the instruction stream and the symbol table.
1347 *
1348 * \param inst IR tree that is to be processed.
1349 * \param symbols Symbol table containing global scope symbols in the
1350 * linked shader.
1351 * \param instructions Instruction stream where new variable declarations
1352 * should be added.
1353 */
1354 void
1355 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1356 hash_table *temps)
1357 {
1358 class remap_visitor : public ir_hierarchical_visitor {
1359 public:
1360 remap_visitor(struct gl_linked_shader *target,
1361 hash_table *temps)
1362 {
1363 this->target = target;
1364 this->symbols = target->symbols;
1365 this->instructions = target->ir;
1366 this->temps = temps;
1367 }
1368
1369 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1370 {
1371 if (ir->var->data.mode == ir_var_temporary) {
1372 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1373
1374 assert(var != NULL);
1375 ir->var = var;
1376 return visit_continue;
1377 }
1378
1379 ir_variable *const existing =
1380 this->symbols->get_variable(ir->var->name);
1381 if (existing != NULL)
1382 ir->var = existing;
1383 else {
1384 ir_variable *copy = ir->var->clone(this->target, NULL);
1385
1386 this->symbols->add_variable(copy);
1387 this->instructions->push_head(copy);
1388 ir->var = copy;
1389 }
1390
1391 return visit_continue;
1392 }
1393
1394 private:
1395 struct gl_linked_shader *target;
1396 glsl_symbol_table *symbols;
1397 exec_list *instructions;
1398 hash_table *temps;
1399 };
1400
1401 remap_visitor v(target, temps);
1402
1403 inst->accept(&v);
1404 }
1405
1406
1407 /**
1408 * Move non-declarations from one instruction stream to another
1409 *
1410 * The intended usage pattern of this function is to pass the pointer to the
1411 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1412 * pointer) for \c last and \c false for \c make_copies on the first
1413 * call. Successive calls pass the return value of the previous call for
1414 * \c last and \c true for \c make_copies.
1415 *
1416 * \param instructions Source instruction stream
1417 * \param last Instruction after which new instructions should be
1418 * inserted in the target instruction stream
1419 * \param make_copies Flag selecting whether instructions in \c instructions
1420 * should be copied (via \c ir_instruction::clone) into the
1421 * target list or moved.
1422 *
1423 * \return
1424 * The new "last" instruction in the target instruction stream. This pointer
1425 * is suitable for use as the \c last parameter of a later call to this
1426 * function.
1427 */
1428 exec_node *
1429 move_non_declarations(exec_list *instructions, exec_node *last,
1430 bool make_copies, gl_linked_shader *target)
1431 {
1432 hash_table *temps = NULL;
1433
1434 if (make_copies)
1435 temps = hash_table_ctor(0, hash_table_pointer_hash,
1436 hash_table_pointer_compare);
1437
1438 foreach_in_list_safe(ir_instruction, inst, instructions) {
1439 if (inst->as_function())
1440 continue;
1441
1442 ir_variable *var = inst->as_variable();
1443 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1444 continue;
1445
1446 assert(inst->as_assignment()
1447 || inst->as_call()
1448 || inst->as_if() /* for initializers with the ?: operator */
1449 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1450
1451 if (make_copies) {
1452 inst = inst->clone(target, NULL);
1453
1454 if (var != NULL)
1455 hash_table_insert(temps, inst, var);
1456 else
1457 remap_variables(inst, target, temps);
1458 } else {
1459 inst->remove();
1460 }
1461
1462 last->insert_after(inst);
1463 last = inst;
1464 }
1465
1466 if (make_copies)
1467 hash_table_dtor(temps);
1468
1469 return last;
1470 }
1471
1472
1473 /**
1474 * This class is only used in link_intrastage_shaders() below but declaring
1475 * it inside that function leads to compiler warnings with some versions of
1476 * gcc.
1477 */
1478 class array_sizing_visitor : public ir_hierarchical_visitor {
1479 public:
1480 array_sizing_visitor()
1481 : mem_ctx(ralloc_context(NULL)),
1482 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1483 hash_table_pointer_compare))
1484 {
1485 }
1486
1487 ~array_sizing_visitor()
1488 {
1489 hash_table_dtor(this->unnamed_interfaces);
1490 ralloc_free(this->mem_ctx);
1491 }
1492
1493 virtual ir_visitor_status visit(ir_variable *var)
1494 {
1495 const glsl_type *type_without_array;
1496 bool implicit_sized_array = var->data.implicit_sized_array;
1497 fixup_type(&var->type, var->data.max_array_access,
1498 var->data.from_ssbo_unsized_array,
1499 &implicit_sized_array);
1500 var->data.implicit_sized_array = implicit_sized_array;
1501 type_without_array = var->type->without_array();
1502 if (var->type->is_interface()) {
1503 if (interface_contains_unsized_arrays(var->type)) {
1504 const glsl_type *new_type =
1505 resize_interface_members(var->type,
1506 var->get_max_ifc_array_access(),
1507 var->is_in_shader_storage_block());
1508 var->type = new_type;
1509 var->change_interface_type(new_type);
1510 }
1511 } else if (type_without_array->is_interface()) {
1512 if (interface_contains_unsized_arrays(type_without_array)) {
1513 const glsl_type *new_type =
1514 resize_interface_members(type_without_array,
1515 var->get_max_ifc_array_access(),
1516 var->is_in_shader_storage_block());
1517 var->change_interface_type(new_type);
1518 var->type = update_interface_members_array(var->type, new_type);
1519 }
1520 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1521 /* Store a pointer to the variable in the unnamed_interfaces
1522 * hashtable.
1523 */
1524 ir_variable **interface_vars = (ir_variable **)
1525 hash_table_find(this->unnamed_interfaces, ifc_type);
1526 if (interface_vars == NULL) {
1527 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1528 ifc_type->length);
1529 hash_table_insert(this->unnamed_interfaces, interface_vars,
1530 ifc_type);
1531 }
1532 unsigned index = ifc_type->field_index(var->name);
1533 assert(index < ifc_type->length);
1534 assert(interface_vars[index] == NULL);
1535 interface_vars[index] = var;
1536 }
1537 return visit_continue;
1538 }
1539
1540 /**
1541 * For each unnamed interface block that was discovered while running the
1542 * visitor, adjust the interface type to reflect the newly assigned array
1543 * sizes, and fix up the ir_variable nodes to point to the new interface
1544 * type.
1545 */
1546 void fixup_unnamed_interface_types()
1547 {
1548 hash_table_call_foreach(this->unnamed_interfaces,
1549 fixup_unnamed_interface_type, NULL);
1550 }
1551
1552 private:
1553 /**
1554 * If the type pointed to by \c type represents an unsized array, replace
1555 * it with a sized array whose size is determined by max_array_access.
1556 */
1557 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1558 bool from_ssbo_unsized_array, bool *implicit_sized)
1559 {
1560 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1561 *type = glsl_type::get_array_instance((*type)->fields.array,
1562 max_array_access + 1);
1563 *implicit_sized = true;
1564 assert(*type != NULL);
1565 }
1566 }
1567
1568 static const glsl_type *
1569 update_interface_members_array(const glsl_type *type,
1570 const glsl_type *new_interface_type)
1571 {
1572 const glsl_type *element_type = type->fields.array;
1573 if (element_type->is_array()) {
1574 const glsl_type *new_array_type =
1575 update_interface_members_array(element_type, new_interface_type);
1576 return glsl_type::get_array_instance(new_array_type, type->length);
1577 } else {
1578 return glsl_type::get_array_instance(new_interface_type,
1579 type->length);
1580 }
1581 }
1582
1583 /**
1584 * Determine whether the given interface type contains unsized arrays (if
1585 * it doesn't, array_sizing_visitor doesn't need to process it).
1586 */
1587 static bool interface_contains_unsized_arrays(const glsl_type *type)
1588 {
1589 for (unsigned i = 0; i < type->length; i++) {
1590 const glsl_type *elem_type = type->fields.structure[i].type;
1591 if (elem_type->is_unsized_array())
1592 return true;
1593 }
1594 return false;
1595 }
1596
1597 /**
1598 * Create a new interface type based on the given type, with unsized arrays
1599 * replaced by sized arrays whose size is determined by
1600 * max_ifc_array_access.
1601 */
1602 static const glsl_type *
1603 resize_interface_members(const glsl_type *type,
1604 const int *max_ifc_array_access,
1605 bool is_ssbo)
1606 {
1607 unsigned num_fields = type->length;
1608 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1609 memcpy(fields, type->fields.structure,
1610 num_fields * sizeof(*fields));
1611 for (unsigned i = 0; i < num_fields; i++) {
1612 bool implicit_sized_array = fields[i].implicit_sized_array;
1613 /* If SSBO last member is unsized array, we don't replace it by a sized
1614 * array.
1615 */
1616 if (is_ssbo && i == (num_fields - 1))
1617 fixup_type(&fields[i].type, max_ifc_array_access[i],
1618 true, &implicit_sized_array);
1619 else
1620 fixup_type(&fields[i].type, max_ifc_array_access[i],
1621 false, &implicit_sized_array);
1622 fields[i].implicit_sized_array = implicit_sized_array;
1623 }
1624 glsl_interface_packing packing =
1625 (glsl_interface_packing) type->interface_packing;
1626 const glsl_type *new_ifc_type =
1627 glsl_type::get_interface_instance(fields, num_fields,
1628 packing, type->name);
1629 delete [] fields;
1630 return new_ifc_type;
1631 }
1632
1633 static void fixup_unnamed_interface_type(const void *key, void *data,
1634 void *)
1635 {
1636 const glsl_type *ifc_type = (const glsl_type *) key;
1637 ir_variable **interface_vars = (ir_variable **) data;
1638 unsigned num_fields = ifc_type->length;
1639 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1640 memcpy(fields, ifc_type->fields.structure,
1641 num_fields * sizeof(*fields));
1642 bool interface_type_changed = false;
1643 for (unsigned i = 0; i < num_fields; i++) {
1644 if (interface_vars[i] != NULL &&
1645 fields[i].type != interface_vars[i]->type) {
1646 fields[i].type = interface_vars[i]->type;
1647 interface_type_changed = true;
1648 }
1649 }
1650 if (!interface_type_changed) {
1651 delete [] fields;
1652 return;
1653 }
1654 glsl_interface_packing packing =
1655 (glsl_interface_packing) ifc_type->interface_packing;
1656 const glsl_type *new_ifc_type =
1657 glsl_type::get_interface_instance(fields, num_fields, packing,
1658 ifc_type->name);
1659 delete [] fields;
1660 for (unsigned i = 0; i < num_fields; i++) {
1661 if (interface_vars[i] != NULL)
1662 interface_vars[i]->change_interface_type(new_ifc_type);
1663 }
1664 }
1665
1666 /**
1667 * Memory context used to allocate the data in \c unnamed_interfaces.
1668 */
1669 void *mem_ctx;
1670
1671 /**
1672 * Hash table from const glsl_type * to an array of ir_variable *'s
1673 * pointing to the ir_variables constituting each unnamed interface block.
1674 */
1675 hash_table *unnamed_interfaces;
1676 };
1677
1678 /**
1679 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1680 * for later use.
1681 */
1682 static void
1683 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1684 struct gl_shader_program *prog,
1685 struct gl_linked_shader *linked_shader,
1686 struct gl_shader **shader_list,
1687 unsigned num_shaders)
1688 {
1689 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1690 linked_shader->TransformFeedback.BufferStride[i] = 0;
1691 }
1692
1693 for (unsigned i = 0; i < num_shaders; i++) {
1694 struct gl_shader *shader = shader_list[i];
1695
1696 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1697 if (shader->TransformFeedback.BufferStride[j]) {
1698 if (linked_shader->TransformFeedback.BufferStride[j] != 0 &&
1699 shader->TransformFeedback.BufferStride[j] != 0 &&
1700 linked_shader->TransformFeedback.BufferStride[j] !=
1701 shader->TransformFeedback.BufferStride[j]) {
1702 linker_error(prog,
1703 "intrastage shaders defined with conflicting "
1704 "xfb_stride for buffer %d (%d and %d)\n", j,
1705 linked_shader->TransformFeedback.BufferStride[j],
1706 shader->TransformFeedback.BufferStride[j]);
1707 return;
1708 }
1709
1710 if (shader->TransformFeedback.BufferStride[j])
1711 linked_shader->TransformFeedback.BufferStride[j] =
1712 shader->TransformFeedback.BufferStride[j];
1713 }
1714 }
1715 }
1716
1717 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1718 if (linked_shader->TransformFeedback.BufferStride[j]) {
1719 prog->TransformFeedback.BufferStride[j] =
1720 linked_shader->TransformFeedback.BufferStride[j];
1721
1722 /* We will validate doubles at a later stage */
1723 if (prog->TransformFeedback.BufferStride[j] % 4) {
1724 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1725 "multiple of 4 or if its applied to a type that is "
1726 "or contains a double a multiple of 8.",
1727 prog->TransformFeedback.BufferStride[j]);
1728 return;
1729 }
1730
1731 if (prog->TransformFeedback.BufferStride[j] / 4 >
1732 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1733 linker_error(prog,
1734 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1735 "limit has been exceeded.");
1736 return;
1737 }
1738 }
1739 }
1740 }
1741
1742 /**
1743 * Performs the cross-validation of tessellation control shader vertices and
1744 * layout qualifiers for the attached tessellation control shaders,
1745 * and propagates them to the linked TCS and linked shader program.
1746 */
1747 static void
1748 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1749 struct gl_linked_shader *linked_shader,
1750 struct gl_shader **shader_list,
1751 unsigned num_shaders)
1752 {
1753 linked_shader->TessCtrl.VerticesOut = 0;
1754
1755 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1756 return;
1757
1758 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1759 *
1760 * "All tessellation control shader layout declarations in a program
1761 * must specify the same output patch vertex count. There must be at
1762 * least one layout qualifier specifying an output patch vertex count
1763 * in any program containing tessellation control shaders; however,
1764 * such a declaration is not required in all tessellation control
1765 * shaders."
1766 */
1767
1768 for (unsigned i = 0; i < num_shaders; i++) {
1769 struct gl_shader *shader = shader_list[i];
1770
1771 if (shader->TessCtrl.VerticesOut != 0) {
1772 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1773 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1774 linker_error(prog, "tessellation control shader defined with "
1775 "conflicting output vertex count (%d and %d)\n",
1776 linked_shader->TessCtrl.VerticesOut,
1777 shader->TessCtrl.VerticesOut);
1778 return;
1779 }
1780 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1781 }
1782 }
1783
1784 /* Just do the intrastage -> interstage propagation right now,
1785 * since we already know we're in the right type of shader program
1786 * for doing it.
1787 */
1788 if (linked_shader->TessCtrl.VerticesOut == 0) {
1789 linker_error(prog, "tessellation control shader didn't declare "
1790 "vertices out layout qualifier\n");
1791 return;
1792 }
1793 }
1794
1795
1796 /**
1797 * Performs the cross-validation of tessellation evaluation shader
1798 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1799 * for the attached tessellation evaluation shaders, and propagates them
1800 * to the linked TES and linked shader program.
1801 */
1802 static void
1803 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1804 struct gl_linked_shader *linked_shader,
1805 struct gl_shader **shader_list,
1806 unsigned num_shaders)
1807 {
1808 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1809 linked_shader->TessEval.Spacing = 0;
1810 linked_shader->TessEval.VertexOrder = 0;
1811 linked_shader->TessEval.PointMode = -1;
1812
1813 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1814 return;
1815
1816 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1817 *
1818 * "At least one tessellation evaluation shader (compilation unit) in
1819 * a program must declare a primitive mode in its input layout.
1820 * Declaration vertex spacing, ordering, and point mode identifiers is
1821 * optional. It is not required that all tessellation evaluation
1822 * shaders in a program declare a primitive mode. If spacing or
1823 * vertex ordering declarations are omitted, the tessellation
1824 * primitive generator will use equal spacing or counter-clockwise
1825 * vertex ordering, respectively. If a point mode declaration is
1826 * omitted, the tessellation primitive generator will produce lines or
1827 * triangles according to the primitive mode."
1828 */
1829
1830 for (unsigned i = 0; i < num_shaders; i++) {
1831 struct gl_shader *shader = shader_list[i];
1832
1833 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1834 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1835 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1836 linker_error(prog, "tessellation evaluation shader defined with "
1837 "conflicting input primitive modes.\n");
1838 return;
1839 }
1840 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1841 }
1842
1843 if (shader->TessEval.Spacing != 0) {
1844 if (linked_shader->TessEval.Spacing != 0 &&
1845 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1846 linker_error(prog, "tessellation evaluation shader defined with "
1847 "conflicting vertex spacing.\n");
1848 return;
1849 }
1850 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1851 }
1852
1853 if (shader->TessEval.VertexOrder != 0) {
1854 if (linked_shader->TessEval.VertexOrder != 0 &&
1855 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1856 linker_error(prog, "tessellation evaluation shader defined with "
1857 "conflicting ordering.\n");
1858 return;
1859 }
1860 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1861 }
1862
1863 if (shader->TessEval.PointMode != -1) {
1864 if (linked_shader->TessEval.PointMode != -1 &&
1865 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1866 linker_error(prog, "tessellation evaluation shader defined with "
1867 "conflicting point modes.\n");
1868 return;
1869 }
1870 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1871 }
1872
1873 }
1874
1875 /* Just do the intrastage -> interstage propagation right now,
1876 * since we already know we're in the right type of shader program
1877 * for doing it.
1878 */
1879 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1880 linker_error(prog,
1881 "tessellation evaluation shader didn't declare input "
1882 "primitive modes.\n");
1883 return;
1884 }
1885
1886 if (linked_shader->TessEval.Spacing == 0)
1887 linked_shader->TessEval.Spacing = GL_EQUAL;
1888
1889 if (linked_shader->TessEval.VertexOrder == 0)
1890 linked_shader->TessEval.VertexOrder = GL_CCW;
1891
1892 if (linked_shader->TessEval.PointMode == -1)
1893 linked_shader->TessEval.PointMode = GL_FALSE;
1894 }
1895
1896
1897 /**
1898 * Performs the cross-validation of layout qualifiers specified in
1899 * redeclaration of gl_FragCoord for the attached fragment shaders,
1900 * and propagates them to the linked FS and linked shader program.
1901 */
1902 static void
1903 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1904 struct gl_linked_shader *linked_shader,
1905 struct gl_shader **shader_list,
1906 unsigned num_shaders)
1907 {
1908 linked_shader->redeclares_gl_fragcoord = false;
1909 linked_shader->uses_gl_fragcoord = false;
1910 linked_shader->origin_upper_left = false;
1911 linked_shader->pixel_center_integer = false;
1912
1913 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1914 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1915 return;
1916
1917 for (unsigned i = 0; i < num_shaders; i++) {
1918 struct gl_shader *shader = shader_list[i];
1919 /* From the GLSL 1.50 spec, page 39:
1920 *
1921 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1922 * it must be redeclared in all the fragment shaders in that program
1923 * that have a static use gl_FragCoord."
1924 */
1925 if ((linked_shader->redeclares_gl_fragcoord
1926 && !shader->redeclares_gl_fragcoord
1927 && shader->uses_gl_fragcoord)
1928 || (shader->redeclares_gl_fragcoord
1929 && !linked_shader->redeclares_gl_fragcoord
1930 && linked_shader->uses_gl_fragcoord)) {
1931 linker_error(prog, "fragment shader defined with conflicting "
1932 "layout qualifiers for gl_FragCoord\n");
1933 }
1934
1935 /* From the GLSL 1.50 spec, page 39:
1936 *
1937 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1938 * single program must have the same set of qualifiers."
1939 */
1940 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1941 && (shader->origin_upper_left != linked_shader->origin_upper_left
1942 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1943 linker_error(prog, "fragment shader defined with conflicting "
1944 "layout qualifiers for gl_FragCoord\n");
1945 }
1946
1947 /* Update the linked shader state. Note that uses_gl_fragcoord should
1948 * accumulate the results. The other values should replace. If there
1949 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1950 * are already known to be the same.
1951 */
1952 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1953 linked_shader->redeclares_gl_fragcoord =
1954 shader->redeclares_gl_fragcoord;
1955 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1956 || shader->uses_gl_fragcoord;
1957 linked_shader->origin_upper_left = shader->origin_upper_left;
1958 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1959 }
1960
1961 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1962 }
1963 }
1964
1965 /**
1966 * Performs the cross-validation of geometry shader max_vertices and
1967 * primitive type layout qualifiers for the attached geometry shaders,
1968 * and propagates them to the linked GS and linked shader program.
1969 */
1970 static void
1971 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1972 struct gl_linked_shader *linked_shader,
1973 struct gl_shader **shader_list,
1974 unsigned num_shaders)
1975 {
1976 linked_shader->Geom.VerticesOut = -1;
1977 linked_shader->Geom.Invocations = 0;
1978 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1979 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1980
1981 /* No in/out qualifiers defined for anything but GLSL 1.50+
1982 * geometry shaders so far.
1983 */
1984 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1985 return;
1986
1987 /* From the GLSL 1.50 spec, page 46:
1988 *
1989 * "All geometry shader output layout declarations in a program
1990 * must declare the same layout and same value for
1991 * max_vertices. There must be at least one geometry output
1992 * layout declaration somewhere in a program, but not all
1993 * geometry shaders (compilation units) are required to
1994 * declare it."
1995 */
1996
1997 for (unsigned i = 0; i < num_shaders; i++) {
1998 struct gl_shader *shader = shader_list[i];
1999
2000 if (shader->Geom.InputType != PRIM_UNKNOWN) {
2001 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
2002 linked_shader->Geom.InputType != shader->Geom.InputType) {
2003 linker_error(prog, "geometry shader defined with conflicting "
2004 "input types\n");
2005 return;
2006 }
2007 linked_shader->Geom.InputType = shader->Geom.InputType;
2008 }
2009
2010 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
2011 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
2012 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
2013 linker_error(prog, "geometry shader defined with conflicting "
2014 "output types\n");
2015 return;
2016 }
2017 linked_shader->Geom.OutputType = shader->Geom.OutputType;
2018 }
2019
2020 if (shader->Geom.VerticesOut != -1) {
2021 if (linked_shader->Geom.VerticesOut != -1 &&
2022 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
2023 linker_error(prog, "geometry shader defined with conflicting "
2024 "output vertex count (%d and %d)\n",
2025 linked_shader->Geom.VerticesOut,
2026 shader->Geom.VerticesOut);
2027 return;
2028 }
2029 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
2030 }
2031
2032 if (shader->Geom.Invocations != 0) {
2033 if (linked_shader->Geom.Invocations != 0 &&
2034 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
2035 linker_error(prog, "geometry shader defined with conflicting "
2036 "invocation count (%d and %d)\n",
2037 linked_shader->Geom.Invocations,
2038 shader->Geom.Invocations);
2039 return;
2040 }
2041 linked_shader->Geom.Invocations = shader->Geom.Invocations;
2042 }
2043 }
2044
2045 /* Just do the intrastage -> interstage propagation right now,
2046 * since we already know we're in the right type of shader program
2047 * for doing it.
2048 */
2049 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
2050 linker_error(prog,
2051 "geometry shader didn't declare primitive input type\n");
2052 return;
2053 }
2054
2055 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
2056 linker_error(prog,
2057 "geometry shader didn't declare primitive output type\n");
2058 return;
2059 }
2060
2061 if (linked_shader->Geom.VerticesOut == -1) {
2062 linker_error(prog,
2063 "geometry shader didn't declare max_vertices\n");
2064 return;
2065 }
2066
2067 if (linked_shader->Geom.Invocations == 0)
2068 linked_shader->Geom.Invocations = 1;
2069 }
2070
2071
2072 /**
2073 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2074 * qualifiers for the attached compute shaders, and propagate them to the
2075 * linked CS and linked shader program.
2076 */
2077 static void
2078 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2079 struct gl_linked_shader *linked_shader,
2080 struct gl_shader **shader_list,
2081 unsigned num_shaders)
2082 {
2083 for (int i = 0; i < 3; i++)
2084 linked_shader->Comp.LocalSize[i] = 0;
2085
2086 /* This function is called for all shader stages, but it only has an effect
2087 * for compute shaders.
2088 */
2089 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2090 return;
2091
2092 /* From the ARB_compute_shader spec, in the section describing local size
2093 * declarations:
2094 *
2095 * If multiple compute shaders attached to a single program object
2096 * declare local work-group size, the declarations must be identical;
2097 * otherwise a link-time error results. Furthermore, if a program
2098 * object contains any compute shaders, at least one must contain an
2099 * input layout qualifier specifying the local work sizes of the
2100 * program, or a link-time error will occur.
2101 */
2102 for (unsigned sh = 0; sh < num_shaders; sh++) {
2103 struct gl_shader *shader = shader_list[sh];
2104
2105 if (shader->Comp.LocalSize[0] != 0) {
2106 if (linked_shader->Comp.LocalSize[0] != 0) {
2107 for (int i = 0; i < 3; i++) {
2108 if (linked_shader->Comp.LocalSize[i] !=
2109 shader->Comp.LocalSize[i]) {
2110 linker_error(prog, "compute shader defined with conflicting "
2111 "local sizes\n");
2112 return;
2113 }
2114 }
2115 }
2116 for (int i = 0; i < 3; i++)
2117 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
2118 }
2119 }
2120
2121 /* Just do the intrastage -> interstage propagation right now,
2122 * since we already know we're in the right type of shader program
2123 * for doing it.
2124 */
2125 if (linked_shader->Comp.LocalSize[0] == 0) {
2126 linker_error(prog, "compute shader didn't declare local size\n");
2127 return;
2128 }
2129 for (int i = 0; i < 3; i++)
2130 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
2131 }
2132
2133
2134 /**
2135 * Combine a group of shaders for a single stage to generate a linked shader
2136 *
2137 * \note
2138 * If this function is supplied a single shader, it is cloned, and the new
2139 * shader is returned.
2140 */
2141 static struct gl_linked_shader *
2142 link_intrastage_shaders(void *mem_ctx,
2143 struct gl_context *ctx,
2144 struct gl_shader_program *prog,
2145 struct gl_shader **shader_list,
2146 unsigned num_shaders)
2147 {
2148 struct gl_uniform_block *ubo_blocks = NULL;
2149 struct gl_uniform_block *ssbo_blocks = NULL;
2150 unsigned num_ubo_blocks = 0;
2151 unsigned num_ssbo_blocks = 0;
2152
2153 /* Check that global variables defined in multiple shaders are consistent.
2154 */
2155 glsl_symbol_table variables;
2156 for (unsigned i = 0; i < num_shaders; i++) {
2157 if (shader_list[i] == NULL)
2158 continue;
2159 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2160 }
2161
2162 if (!prog->LinkStatus)
2163 return NULL;
2164
2165 /* Check that interface blocks defined in multiple shaders are consistent.
2166 */
2167 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2168 num_shaders);
2169 if (!prog->LinkStatus)
2170 return NULL;
2171
2172 /* Check that there is only a single definition of each function signature
2173 * across all shaders.
2174 */
2175 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2176 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2177 ir_function *const f = node->as_function();
2178
2179 if (f == NULL)
2180 continue;
2181
2182 for (unsigned j = i + 1; j < num_shaders; j++) {
2183 ir_function *const other =
2184 shader_list[j]->symbols->get_function(f->name);
2185
2186 /* If the other shader has no function (and therefore no function
2187 * signatures) with the same name, skip to the next shader.
2188 */
2189 if (other == NULL)
2190 continue;
2191
2192 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2193 if (!sig->is_defined || sig->is_builtin())
2194 continue;
2195
2196 ir_function_signature *other_sig =
2197 other->exact_matching_signature(NULL, &sig->parameters);
2198
2199 if ((other_sig != NULL) && other_sig->is_defined
2200 && !other_sig->is_builtin()) {
2201 linker_error(prog, "function `%s' is multiply defined\n",
2202 f->name);
2203 return NULL;
2204 }
2205 }
2206 }
2207 }
2208 }
2209
2210 /* Find the shader that defines main, and make a clone of it.
2211 *
2212 * Starting with the clone, search for undefined references. If one is
2213 * found, find the shader that defines it. Clone the reference and add
2214 * it to the shader. Repeat until there are no undefined references or
2215 * until a reference cannot be resolved.
2216 */
2217 gl_shader *main = NULL;
2218 for (unsigned i = 0; i < num_shaders; i++) {
2219 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2220 main = shader_list[i];
2221 break;
2222 }
2223 }
2224
2225 if (main == NULL) {
2226 linker_error(prog, "%s shader lacks `main'\n",
2227 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2228 return NULL;
2229 }
2230
2231 gl_linked_shader *linked = ctx->Driver.NewShader(shader_list[0]->Stage);
2232 linked->ir = new(linked) exec_list;
2233 clone_ir_list(mem_ctx, linked->ir, main->ir);
2234
2235 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2236 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2237 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2238 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2239 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2240 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2241 num_shaders);
2242
2243 populate_symbol_table(linked);
2244
2245 /* The pointer to the main function in the final linked shader (i.e., the
2246 * copy of the original shader that contained the main function).
2247 */
2248 ir_function_signature *const main_sig =
2249 _mesa_get_main_function_signature(linked->symbols);
2250
2251 /* Move any instructions other than variable declarations or function
2252 * declarations into main.
2253 */
2254 exec_node *insertion_point =
2255 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2256 linked);
2257
2258 for (unsigned i = 0; i < num_shaders; i++) {
2259 if (shader_list[i] == main)
2260 continue;
2261
2262 insertion_point = move_non_declarations(shader_list[i]->ir,
2263 insertion_point, true, linked);
2264 }
2265
2266 /* Check if any shader needs built-in functions. */
2267 bool need_builtins = false;
2268 for (unsigned i = 0; i < num_shaders; i++) {
2269 if (shader_list[i]->uses_builtin_functions) {
2270 need_builtins = true;
2271 break;
2272 }
2273 }
2274
2275 bool ok;
2276 if (need_builtins) {
2277 /* Make a temporary array one larger than shader_list, which will hold
2278 * the built-in function shader as well.
2279 */
2280 gl_shader **linking_shaders = (gl_shader **)
2281 calloc(num_shaders + 1, sizeof(gl_shader *));
2282
2283 ok = linking_shaders != NULL;
2284
2285 if (ok) {
2286 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2287 _mesa_glsl_initialize_builtin_functions();
2288 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2289
2290 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2291
2292 free(linking_shaders);
2293 } else {
2294 _mesa_error_no_memory(__func__);
2295 }
2296 } else {
2297 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2298 }
2299
2300
2301 if (!ok) {
2302 _mesa_delete_linked_shader(ctx, linked);
2303 return NULL;
2304 }
2305
2306 /* Make a pass over all variable declarations to ensure that arrays with
2307 * unspecified sizes have a size specified. The size is inferred from the
2308 * max_array_access field.
2309 */
2310 array_sizing_visitor v;
2311 v.run(linked->ir);
2312 v.fixup_unnamed_interface_types();
2313
2314 /* Link up uniform blocks defined within this stage. */
2315 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2316 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2317
2318 if (!prog->LinkStatus) {
2319 _mesa_delete_linked_shader(ctx, linked);
2320 return NULL;
2321 }
2322
2323 /* Copy ubo blocks to linked shader list */
2324 linked->UniformBlocks =
2325 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2326 ralloc_steal(linked, ubo_blocks);
2327 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2328 linked->UniformBlocks[i] = &ubo_blocks[i];
2329 }
2330 linked->NumUniformBlocks = num_ubo_blocks;
2331
2332 /* Copy ssbo blocks to linked shader list */
2333 linked->ShaderStorageBlocks =
2334 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2335 ralloc_steal(linked, ssbo_blocks);
2336 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2337 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2338 }
2339 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2340
2341 /* At this point linked should contain all of the linked IR, so
2342 * validate it to make sure nothing went wrong.
2343 */
2344 validate_ir_tree(linked->ir);
2345
2346 /* Set the size of geometry shader input arrays */
2347 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2348 unsigned num_vertices = vertices_per_prim(linked->Geom.InputType);
2349 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2350 foreach_in_list(ir_instruction, ir, linked->ir) {
2351 ir->accept(&input_resize_visitor);
2352 }
2353 }
2354
2355 if (ctx->Const.VertexID_is_zero_based)
2356 lower_vertex_id(linked);
2357
2358 /* Validate correct usage of barrier() in the tess control shader */
2359 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2360 barrier_use_visitor visitor(prog);
2361 foreach_in_list(ir_instruction, ir, linked->ir) {
2362 ir->accept(&visitor);
2363 }
2364 }
2365
2366 return linked;
2367 }
2368
2369 /**
2370 * Update the sizes of linked shader uniform arrays to the maximum
2371 * array index used.
2372 *
2373 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2374 *
2375 * If one or more elements of an array are active,
2376 * GetActiveUniform will return the name of the array in name,
2377 * subject to the restrictions listed above. The type of the array
2378 * is returned in type. The size parameter contains the highest
2379 * array element index used, plus one. The compiler or linker
2380 * determines the highest index used. There will be only one
2381 * active uniform reported by the GL per uniform array.
2382
2383 */
2384 static void
2385 update_array_sizes(struct gl_shader_program *prog)
2386 {
2387 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2388 if (prog->_LinkedShaders[i] == NULL)
2389 continue;
2390
2391 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2392 ir_variable *const var = node->as_variable();
2393
2394 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2395 !var->type->is_array())
2396 continue;
2397
2398 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2399 * will not be eliminated. Since we always do std140, just
2400 * don't resize arrays in UBOs.
2401 *
2402 * Atomic counters are supposed to get deterministic
2403 * locations assigned based on the declaration ordering and
2404 * sizes, array compaction would mess that up.
2405 *
2406 * Subroutine uniforms are not removed.
2407 */
2408 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2409 var->type->contains_subroutine() || var->constant_initializer)
2410 continue;
2411
2412 int size = var->data.max_array_access;
2413 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2414 if (prog->_LinkedShaders[j] == NULL)
2415 continue;
2416
2417 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2418 ir_variable *other_var = node2->as_variable();
2419 if (!other_var)
2420 continue;
2421
2422 if (strcmp(var->name, other_var->name) == 0 &&
2423 other_var->data.max_array_access > size) {
2424 size = other_var->data.max_array_access;
2425 }
2426 }
2427 }
2428
2429 if (size + 1 != (int)var->type->length) {
2430 /* If this is a built-in uniform (i.e., it's backed by some
2431 * fixed-function state), adjust the number of state slots to
2432 * match the new array size. The number of slots per array entry
2433 * is not known. It seems safe to assume that the total number of
2434 * slots is an integer multiple of the number of array elements.
2435 * Determine the number of slots per array element by dividing by
2436 * the old (total) size.
2437 */
2438 const unsigned num_slots = var->get_num_state_slots();
2439 if (num_slots > 0) {
2440 var->set_num_state_slots((size + 1)
2441 * (num_slots / var->type->length));
2442 }
2443
2444 var->type = glsl_type::get_array_instance(var->type->fields.array,
2445 size + 1);
2446 /* FINISHME: We should update the types of array
2447 * dereferences of this variable now.
2448 */
2449 }
2450 }
2451 }
2452 }
2453
2454 /**
2455 * Resize tessellation evaluation per-vertex inputs to the size of
2456 * tessellation control per-vertex outputs.
2457 */
2458 static void
2459 resize_tes_inputs(struct gl_context *ctx,
2460 struct gl_shader_program *prog)
2461 {
2462 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2463 return;
2464
2465 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2466 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2467
2468 /* If no control shader is present, then the TES inputs are statically
2469 * sized to MaxPatchVertices; the actual size of the arrays won't be
2470 * known until draw time.
2471 */
2472 const int num_vertices = tcs
2473 ? tcs->TessCtrl.VerticesOut
2474 : ctx->Const.MaxPatchVertices;
2475
2476 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2477 foreach_in_list(ir_instruction, ir, tes->ir) {
2478 ir->accept(&input_resize_visitor);
2479 }
2480
2481 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2482 /* Convert the gl_PatchVerticesIn system value into a constant, since
2483 * the value is known at this point.
2484 */
2485 foreach_in_list(ir_instruction, ir, tes->ir) {
2486 ir_variable *var = ir->as_variable();
2487 if (var && var->data.mode == ir_var_system_value &&
2488 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2489 void *mem_ctx = ralloc_parent(var);
2490 var->data.location = 0;
2491 var->data.explicit_location = false;
2492 if (tcs) {
2493 var->data.mode = ir_var_auto;
2494 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2495 } else {
2496 var->data.mode = ir_var_uniform;
2497 var->data.how_declared = ir_var_hidden;
2498 var->allocate_state_slots(1);
2499 ir_state_slot *slot0 = &var->get_state_slots()[0];
2500 slot0->swizzle = SWIZZLE_XXXX;
2501 slot0->tokens[0] = STATE_INTERNAL;
2502 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2503 for (int i = 2; i < STATE_LENGTH; i++)
2504 slot0->tokens[i] = 0;
2505 }
2506 }
2507 }
2508 }
2509 }
2510
2511 /**
2512 * Find a contiguous set of available bits in a bitmask.
2513 *
2514 * \param used_mask Bits representing used (1) and unused (0) locations
2515 * \param needed_count Number of contiguous bits needed.
2516 *
2517 * \return
2518 * Base location of the available bits on success or -1 on failure.
2519 */
2520 int
2521 find_available_slots(unsigned used_mask, unsigned needed_count)
2522 {
2523 unsigned needed_mask = (1 << needed_count) - 1;
2524 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2525
2526 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2527 * cannot optimize possibly infinite loops" for the loop below.
2528 */
2529 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2530 return -1;
2531
2532 for (int i = 0; i <= max_bit_to_test; i++) {
2533 if ((needed_mask & ~used_mask) == needed_mask)
2534 return i;
2535
2536 needed_mask <<= 1;
2537 }
2538
2539 return -1;
2540 }
2541
2542
2543 /**
2544 * Assign locations for either VS inputs or FS outputs
2545 *
2546 * \param prog Shader program whose variables need locations assigned
2547 * \param constants Driver specific constant values for the program.
2548 * \param target_index Selector for the program target to receive location
2549 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2550 * \c MESA_SHADER_FRAGMENT.
2551 *
2552 * \return
2553 * If locations are successfully assigned, true is returned. Otherwise an
2554 * error is emitted to the shader link log and false is returned.
2555 */
2556 bool
2557 assign_attribute_or_color_locations(gl_shader_program *prog,
2558 struct gl_constants *constants,
2559 unsigned target_index)
2560 {
2561 /* Maximum number of generic locations. This corresponds to either the
2562 * maximum number of draw buffers or the maximum number of generic
2563 * attributes.
2564 */
2565 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2566 constants->Program[target_index].MaxAttribs :
2567 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2568
2569 /* Mark invalid locations as being used.
2570 */
2571 unsigned used_locations = (max_index >= 32)
2572 ? ~0 : ~((1 << max_index) - 1);
2573 unsigned double_storage_locations = 0;
2574
2575 assert((target_index == MESA_SHADER_VERTEX)
2576 || (target_index == MESA_SHADER_FRAGMENT));
2577
2578 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2579 if (sh == NULL)
2580 return true;
2581
2582 /* Operate in a total of four passes.
2583 *
2584 * 1. Invalidate the location assignments for all vertex shader inputs.
2585 *
2586 * 2. Assign locations for inputs that have user-defined (via
2587 * glBindVertexAttribLocation) locations and outputs that have
2588 * user-defined locations (via glBindFragDataLocation).
2589 *
2590 * 3. Sort the attributes without assigned locations by number of slots
2591 * required in decreasing order. Fragmentation caused by attribute
2592 * locations assigned by the application may prevent large attributes
2593 * from having enough contiguous space.
2594 *
2595 * 4. Assign locations to any inputs without assigned locations.
2596 */
2597
2598 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2599 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2600
2601 const enum ir_variable_mode direction =
2602 (target_index == MESA_SHADER_VERTEX)
2603 ? ir_var_shader_in : ir_var_shader_out;
2604
2605
2606 /* Temporary storage for the set of attributes that need locations assigned.
2607 */
2608 struct temp_attr {
2609 unsigned slots;
2610 ir_variable *var;
2611
2612 /* Used below in the call to qsort. */
2613 static int compare(const void *a, const void *b)
2614 {
2615 const temp_attr *const l = (const temp_attr *) a;
2616 const temp_attr *const r = (const temp_attr *) b;
2617
2618 /* Reversed because we want a descending order sort below. */
2619 return r->slots - l->slots;
2620 }
2621 } to_assign[32];
2622 assert(max_index <= 32);
2623
2624 /* Temporary array for the set of attributes that have locations assigned.
2625 */
2626 ir_variable *assigned[16];
2627
2628 unsigned num_attr = 0;
2629 unsigned assigned_attr = 0;
2630
2631 foreach_in_list(ir_instruction, node, sh->ir) {
2632 ir_variable *const var = node->as_variable();
2633
2634 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2635 continue;
2636
2637 if (var->data.explicit_location) {
2638 var->data.is_unmatched_generic_inout = 0;
2639 if ((var->data.location >= (int)(max_index + generic_base))
2640 || (var->data.location < 0)) {
2641 linker_error(prog,
2642 "invalid explicit location %d specified for `%s'\n",
2643 (var->data.location < 0)
2644 ? var->data.location
2645 : var->data.location - generic_base,
2646 var->name);
2647 return false;
2648 }
2649 } else if (target_index == MESA_SHADER_VERTEX) {
2650 unsigned binding;
2651
2652 if (prog->AttributeBindings->get(binding, var->name)) {
2653 assert(binding >= VERT_ATTRIB_GENERIC0);
2654 var->data.location = binding;
2655 var->data.is_unmatched_generic_inout = 0;
2656 }
2657 } else if (target_index == MESA_SHADER_FRAGMENT) {
2658 unsigned binding;
2659 unsigned index;
2660
2661 if (prog->FragDataBindings->get(binding, var->name)) {
2662 assert(binding >= FRAG_RESULT_DATA0);
2663 var->data.location = binding;
2664 var->data.is_unmatched_generic_inout = 0;
2665
2666 if (prog->FragDataIndexBindings->get(index, var->name)) {
2667 var->data.index = index;
2668 }
2669 }
2670 }
2671
2672 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2673 *
2674 * "Output binding assignments will cause LinkProgram to fail:
2675 * ...
2676 * If the program has an active output assigned to a location greater
2677 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2678 * an active output assigned an index greater than or equal to one;"
2679 */
2680 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2681 var->data.location - generic_base >=
2682 (int) constants->MaxDualSourceDrawBuffers) {
2683 linker_error(prog,
2684 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2685 "with index %u for %s\n",
2686 var->data.location - generic_base, var->data.index,
2687 var->name);
2688 return false;
2689 }
2690
2691 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2692
2693 /* If the variable is not a built-in and has a location statically
2694 * assigned in the shader (presumably via a layout qualifier), make sure
2695 * that it doesn't collide with other assigned locations. Otherwise,
2696 * add it to the list of variables that need linker-assigned locations.
2697 */
2698 if (var->data.location != -1) {
2699 if (var->data.location >= generic_base && var->data.index < 1) {
2700 /* From page 61 of the OpenGL 4.0 spec:
2701 *
2702 * "LinkProgram will fail if the attribute bindings assigned
2703 * by BindAttribLocation do not leave not enough space to
2704 * assign a location for an active matrix attribute or an
2705 * active attribute array, both of which require multiple
2706 * contiguous generic attributes."
2707 *
2708 * I think above text prohibits the aliasing of explicit and
2709 * automatic assignments. But, aliasing is allowed in manual
2710 * assignments of attribute locations. See below comments for
2711 * the details.
2712 *
2713 * From OpenGL 4.0 spec, page 61:
2714 *
2715 * "It is possible for an application to bind more than one
2716 * attribute name to the same location. This is referred to as
2717 * aliasing. This will only work if only one of the aliased
2718 * attributes is active in the executable program, or if no
2719 * path through the shader consumes more than one attribute of
2720 * a set of attributes aliased to the same location. A link
2721 * error can occur if the linker determines that every path
2722 * through the shader consumes multiple aliased attributes,
2723 * but implementations are not required to generate an error
2724 * in this case."
2725 *
2726 * From GLSL 4.30 spec, page 54:
2727 *
2728 * "A program will fail to link if any two non-vertex shader
2729 * input variables are assigned to the same location. For
2730 * vertex shaders, multiple input variables may be assigned
2731 * to the same location using either layout qualifiers or via
2732 * the OpenGL API. However, such aliasing is intended only to
2733 * support vertex shaders where each execution path accesses
2734 * at most one input per each location. Implementations are
2735 * permitted, but not required, to generate link-time errors
2736 * if they detect that every path through the vertex shader
2737 * executable accesses multiple inputs assigned to any single
2738 * location. For all shader types, a program will fail to link
2739 * if explicit location assignments leave the linker unable
2740 * to find space for other variables without explicit
2741 * assignments."
2742 *
2743 * From OpenGL ES 3.0 spec, page 56:
2744 *
2745 * "Binding more than one attribute name to the same location
2746 * is referred to as aliasing, and is not permitted in OpenGL
2747 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2748 * fail when this condition exists. However, aliasing is
2749 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2750 * This will only work if only one of the aliased attributes
2751 * is active in the executable program, or if no path through
2752 * the shader consumes more than one attribute of a set of
2753 * attributes aliased to the same location. A link error can
2754 * occur if the linker determines that every path through the
2755 * shader consumes multiple aliased attributes, but implemen-
2756 * tations are not required to generate an error in this case."
2757 *
2758 * After looking at above references from OpenGL, OpenGL ES and
2759 * GLSL specifications, we allow aliasing of vertex input variables
2760 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2761 *
2762 * NOTE: This is not required by the spec but its worth mentioning
2763 * here that we're not doing anything to make sure that no path
2764 * through the vertex shader executable accesses multiple inputs
2765 * assigned to any single location.
2766 */
2767
2768 /* Mask representing the contiguous slots that will be used by
2769 * this attribute.
2770 */
2771 const unsigned attr = var->data.location - generic_base;
2772 const unsigned use_mask = (1 << slots) - 1;
2773 const char *const string = (target_index == MESA_SHADER_VERTEX)
2774 ? "vertex shader input" : "fragment shader output";
2775
2776 /* Generate a link error if the requested locations for this
2777 * attribute exceed the maximum allowed attribute location.
2778 */
2779 if (attr + slots > max_index) {
2780 linker_error(prog,
2781 "insufficient contiguous locations "
2782 "available for %s `%s' %d %d %d\n", string,
2783 var->name, used_locations, use_mask, attr);
2784 return false;
2785 }
2786
2787 /* Generate a link error if the set of bits requested for this
2788 * attribute overlaps any previously allocated bits.
2789 */
2790 if ((~(use_mask << attr) & used_locations) != used_locations) {
2791 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2792 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2793 * 4.40 spec:
2794 *
2795 * "Additionally, for fragment shader outputs, if two
2796 * variables are placed within the same location, they
2797 * must have the same underlying type (floating-point or
2798 * integer). No component aliasing of output variables or
2799 * members is allowed.
2800 */
2801 for (unsigned i = 0; i < assigned_attr; i++) {
2802 unsigned assigned_slots =
2803 assigned[i]->type->count_attribute_slots(false);
2804 unsigned assig_attr =
2805 assigned[i]->data.location - generic_base;
2806 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2807
2808 if ((assigned_use_mask << assig_attr) &
2809 (use_mask << attr)) {
2810
2811 const glsl_type *assigned_type =
2812 assigned[i]->type->without_array();
2813 const glsl_type *type = var->type->without_array();
2814 if (assigned_type->base_type != type->base_type) {
2815 linker_error(prog, "types do not match for aliased"
2816 " %ss %s and %s\n", string,
2817 assigned[i]->name, var->name);
2818 return false;
2819 }
2820
2821 unsigned assigned_component_mask =
2822 ((1 << assigned_type->vector_elements) - 1) <<
2823 assigned[i]->data.location_frac;
2824 unsigned component_mask =
2825 ((1 << type->vector_elements) - 1) <<
2826 var->data.location_frac;
2827 if (assigned_component_mask & component_mask) {
2828 linker_error(prog, "overlapping component is "
2829 "assigned to %ss %s and %s "
2830 "(component=%d)\n",
2831 string, assigned[i]->name, var->name,
2832 var->data.location_frac);
2833 return false;
2834 }
2835 }
2836 }
2837 } else if (target_index == MESA_SHADER_FRAGMENT ||
2838 (prog->IsES && prog->Version >= 300)) {
2839 linker_error(prog, "overlapping location is assigned "
2840 "to %s `%s' %d %d %d\n", string, var->name,
2841 used_locations, use_mask, attr);
2842 return false;
2843 } else {
2844 linker_warning(prog, "overlapping location is assigned "
2845 "to %s `%s' %d %d %d\n", string, var->name,
2846 used_locations, use_mask, attr);
2847 }
2848 }
2849
2850 used_locations |= (use_mask << attr);
2851
2852 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2853 *
2854 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2855 * active attribute variables may fail to link, unless
2856 * device-dependent optimizations are able to make the program
2857 * fit within available hardware resources. For the purposes
2858 * of this test, attribute variables of the type dvec3, dvec4,
2859 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2860 * count as consuming twice as many attributes as equivalent
2861 * single-precision types. While these types use the same number
2862 * of generic attributes as their single-precision equivalents,
2863 * implementations are permitted to consume two single-precision
2864 * vectors of internal storage for each three- or four-component
2865 * double-precision vector."
2866 *
2867 * Mark this attribute slot as taking up twice as much space
2868 * so we can count it properly against limits. According to
2869 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2870 * is optional behavior, but it seems preferable.
2871 */
2872 if (var->type->without_array()->is_dual_slot())
2873 double_storage_locations |= (use_mask << attr);
2874 }
2875
2876 assigned[assigned_attr] = var;
2877 assigned_attr++;
2878
2879 continue;
2880 }
2881
2882 if (num_attr >= max_index) {
2883 linker_error(prog, "too many %s (max %u)",
2884 target_index == MESA_SHADER_VERTEX ?
2885 "vertex shader inputs" : "fragment shader outputs",
2886 max_index);
2887 return false;
2888 }
2889 to_assign[num_attr].slots = slots;
2890 to_assign[num_attr].var = var;
2891 num_attr++;
2892 }
2893
2894 if (target_index == MESA_SHADER_VERTEX) {
2895 unsigned total_attribs_size =
2896 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2897 _mesa_bitcount(double_storage_locations);
2898 if (total_attribs_size > max_index) {
2899 linker_error(prog,
2900 "attempt to use %d vertex attribute slots only %d available ",
2901 total_attribs_size, max_index);
2902 return false;
2903 }
2904 }
2905
2906 /* If all of the attributes were assigned locations by the application (or
2907 * are built-in attributes with fixed locations), return early. This should
2908 * be the common case.
2909 */
2910 if (num_attr == 0)
2911 return true;
2912
2913 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2914
2915 if (target_index == MESA_SHADER_VERTEX) {
2916 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2917 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2918 * reserved to prevent it from being automatically allocated below.
2919 */
2920 find_deref_visitor find("gl_Vertex");
2921 find.run(sh->ir);
2922 if (find.variable_found())
2923 used_locations |= (1 << 0);
2924 }
2925
2926 for (unsigned i = 0; i < num_attr; i++) {
2927 /* Mask representing the contiguous slots that will be used by this
2928 * attribute.
2929 */
2930 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2931
2932 int location = find_available_slots(used_locations, to_assign[i].slots);
2933
2934 if (location < 0) {
2935 const char *const string = (target_index == MESA_SHADER_VERTEX)
2936 ? "vertex shader input" : "fragment shader output";
2937
2938 linker_error(prog,
2939 "insufficient contiguous locations "
2940 "available for %s `%s'\n",
2941 string, to_assign[i].var->name);
2942 return false;
2943 }
2944
2945 to_assign[i].var->data.location = generic_base + location;
2946 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2947 used_locations |= (use_mask << location);
2948
2949 if (to_assign[i].var->type->without_array()->is_dual_slot())
2950 double_storage_locations |= (use_mask << location);
2951 }
2952
2953 /* Now that we have all the locations, from the GL 4.5 core spec, section
2954 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2955 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2956 * as equivalent single-precision types.
2957 */
2958 if (target_index == MESA_SHADER_VERTEX) {
2959 unsigned total_attribs_size =
2960 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2961 _mesa_bitcount(double_storage_locations);
2962 if (total_attribs_size > max_index) {
2963 linker_error(prog,
2964 "attempt to use %d vertex attribute slots only %d available ",
2965 total_attribs_size, max_index);
2966 return false;
2967 }
2968 }
2969
2970 return true;
2971 }
2972
2973 /**
2974 * Match explicit locations of outputs to inputs and deactivate the
2975 * unmatch flag if found so we don't optimise them away.
2976 */
2977 static void
2978 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2979 gl_linked_shader *consumer)
2980 {
2981 glsl_symbol_table parameters;
2982 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2983 { {NULL, NULL} };
2984
2985 /* Find all shader outputs in the "producer" stage.
2986 */
2987 foreach_in_list(ir_instruction, node, producer->ir) {
2988 ir_variable *const var = node->as_variable();
2989
2990 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2991 continue;
2992
2993 if (var->data.explicit_location &&
2994 var->data.location >= VARYING_SLOT_VAR0) {
2995 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2996 if (explicit_locations[idx][var->data.location_frac] == NULL)
2997 explicit_locations[idx][var->data.location_frac] = var;
2998 }
2999 }
3000
3001 /* Match inputs to outputs */
3002 foreach_in_list(ir_instruction, node, consumer->ir) {
3003 ir_variable *const input = node->as_variable();
3004
3005 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3006 continue;
3007
3008 ir_variable *output = NULL;
3009 if (input->data.explicit_location
3010 && input->data.location >= VARYING_SLOT_VAR0) {
3011 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3012 [input->data.location_frac];
3013
3014 if (output != NULL){
3015 input->data.is_unmatched_generic_inout = 0;
3016 output->data.is_unmatched_generic_inout = 0;
3017 }
3018 }
3019 }
3020 }
3021
3022 /**
3023 * Store the gl_FragDepth layout in the gl_shader_program struct.
3024 */
3025 static void
3026 store_fragdepth_layout(struct gl_shader_program *prog)
3027 {
3028 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3029 return;
3030 }
3031
3032 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3033
3034 /* We don't look up the gl_FragDepth symbol directly because if
3035 * gl_FragDepth is not used in the shader, it's removed from the IR.
3036 * However, the symbol won't be removed from the symbol table.
3037 *
3038 * We're only interested in the cases where the variable is NOT removed
3039 * from the IR.
3040 */
3041 foreach_in_list(ir_instruction, node, ir) {
3042 ir_variable *const var = node->as_variable();
3043
3044 if (var == NULL || var->data.mode != ir_var_shader_out) {
3045 continue;
3046 }
3047
3048 if (strcmp(var->name, "gl_FragDepth") == 0) {
3049 switch (var->data.depth_layout) {
3050 case ir_depth_layout_none:
3051 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3052 return;
3053 case ir_depth_layout_any:
3054 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3055 return;
3056 case ir_depth_layout_greater:
3057 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3058 return;
3059 case ir_depth_layout_less:
3060 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3061 return;
3062 case ir_depth_layout_unchanged:
3063 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3064 return;
3065 default:
3066 assert(0);
3067 return;
3068 }
3069 }
3070 }
3071 }
3072
3073 /**
3074 * Validate the resources used by a program versus the implementation limits
3075 */
3076 static void
3077 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3078 {
3079 unsigned total_uniform_blocks = 0;
3080 unsigned total_shader_storage_blocks = 0;
3081
3082 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3083 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3084
3085 if (sh == NULL)
3086 continue;
3087
3088 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
3089 linker_error(prog, "Too many %s shader texture samplers\n",
3090 _mesa_shader_stage_to_string(i));
3091 }
3092
3093 if (sh->num_uniform_components >
3094 ctx->Const.Program[i].MaxUniformComponents) {
3095 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3096 linker_warning(prog, "Too many %s shader default uniform block "
3097 "components, but the driver will try to optimize "
3098 "them out; this is non-portable out-of-spec "
3099 "behavior\n",
3100 _mesa_shader_stage_to_string(i));
3101 } else {
3102 linker_error(prog, "Too many %s shader default uniform block "
3103 "components\n",
3104 _mesa_shader_stage_to_string(i));
3105 }
3106 }
3107
3108 if (sh->num_combined_uniform_components >
3109 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3110 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3111 linker_warning(prog, "Too many %s shader uniform components, "
3112 "but the driver will try to optimize them out; "
3113 "this is non-portable out-of-spec behavior\n",
3114 _mesa_shader_stage_to_string(i));
3115 } else {
3116 linker_error(prog, "Too many %s shader uniform components\n",
3117 _mesa_shader_stage_to_string(i));
3118 }
3119 }
3120
3121 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3122 total_uniform_blocks += sh->NumUniformBlocks;
3123
3124 const unsigned max_uniform_blocks =
3125 ctx->Const.Program[i].MaxUniformBlocks;
3126 if (max_uniform_blocks < sh->NumUniformBlocks) {
3127 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3128 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3129 max_uniform_blocks);
3130 }
3131
3132 const unsigned max_shader_storage_blocks =
3133 ctx->Const.Program[i].MaxShaderStorageBlocks;
3134 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3135 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3136 _mesa_shader_stage_to_string(i),
3137 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3138 }
3139 }
3140
3141 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3142 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3143 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3144 }
3145
3146 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3147 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3148 total_shader_storage_blocks,
3149 ctx->Const.MaxCombinedShaderStorageBlocks);
3150 }
3151
3152 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3153 if (prog->UniformBlocks[i].UniformBufferSize >
3154 ctx->Const.MaxUniformBlockSize) {
3155 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3156 prog->UniformBlocks[i].Name,
3157 prog->UniformBlocks[i].UniformBufferSize,
3158 ctx->Const.MaxUniformBlockSize);
3159 }
3160 }
3161
3162 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3163 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3164 ctx->Const.MaxShaderStorageBlockSize) {
3165 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3166 prog->ShaderStorageBlocks[i].Name,
3167 prog->ShaderStorageBlocks[i].UniformBufferSize,
3168 ctx->Const.MaxShaderStorageBlockSize);
3169 }
3170 }
3171 }
3172
3173 static void
3174 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3175 {
3176 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3177 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3178 int count;
3179 if (!sh)
3180 continue;
3181
3182 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3183 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3184 continue;
3185
3186 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3187
3188 if (!uni)
3189 continue;
3190
3191 sh->NumSubroutineUniforms++;
3192 count = 0;
3193 if (sh->NumSubroutineFunctions == 0) {
3194 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3195 continue;
3196 }
3197 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3198 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3199 for (int k = 0; k < fn->num_compat_types; k++) {
3200 if (fn->types[k] == uni->type) {
3201 count++;
3202 break;
3203 }
3204 }
3205 }
3206 uni->num_compatible_subroutines = count;
3207 }
3208 }
3209 }
3210
3211 static void
3212 check_subroutine_resources(struct gl_shader_program *prog)
3213 {
3214 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3215 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3216
3217 if (sh) {
3218 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3219 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3220 _mesa_shader_stage_to_string(i));
3221 }
3222 }
3223 }
3224 /**
3225 * Validate shader image resources.
3226 */
3227 static void
3228 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3229 {
3230 unsigned total_image_units = 0;
3231 unsigned fragment_outputs = 0;
3232 unsigned total_shader_storage_blocks = 0;
3233
3234 if (!ctx->Extensions.ARB_shader_image_load_store)
3235 return;
3236
3237 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3238 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3239
3240 if (sh) {
3241 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3242 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3243 _mesa_shader_stage_to_string(i), sh->NumImages,
3244 ctx->Const.Program[i].MaxImageUniforms);
3245
3246 total_image_units += sh->NumImages;
3247 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3248
3249 if (i == MESA_SHADER_FRAGMENT) {
3250 foreach_in_list(ir_instruction, node, sh->ir) {
3251 ir_variable *var = node->as_variable();
3252 if (var && var->data.mode == ir_var_shader_out)
3253 /* since there are no double fs outputs - pass false */
3254 fragment_outputs += var->type->count_attribute_slots(false);
3255 }
3256 }
3257 }
3258 }
3259
3260 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3261 linker_error(prog, "Too many combined image uniforms\n");
3262
3263 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3264 ctx->Const.MaxCombinedShaderOutputResources)
3265 linker_error(prog, "Too many combined image uniforms, shader storage "
3266 " buffers and fragment outputs\n");
3267 }
3268
3269
3270 /**
3271 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3272 * for a variable, checks for overlaps between other uniforms using explicit
3273 * locations.
3274 */
3275 static int
3276 reserve_explicit_locations(struct gl_shader_program *prog,
3277 string_to_uint_map *map, ir_variable *var)
3278 {
3279 unsigned slots = var->type->uniform_locations();
3280 unsigned max_loc = var->data.location + slots - 1;
3281 unsigned return_value = slots;
3282
3283 /* Resize remap table if locations do not fit in the current one. */
3284 if (max_loc + 1 > prog->NumUniformRemapTable) {
3285 prog->UniformRemapTable =
3286 reralloc(prog, prog->UniformRemapTable,
3287 gl_uniform_storage *,
3288 max_loc + 1);
3289
3290 if (!prog->UniformRemapTable) {
3291 linker_error(prog, "Out of memory during linking.\n");
3292 return -1;
3293 }
3294
3295 /* Initialize allocated space. */
3296 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3297 prog->UniformRemapTable[i] = NULL;
3298
3299 prog->NumUniformRemapTable = max_loc + 1;
3300 }
3301
3302 for (unsigned i = 0; i < slots; i++) {
3303 unsigned loc = var->data.location + i;
3304
3305 /* Check if location is already used. */
3306 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3307
3308 /* Possibly same uniform from a different stage, this is ok. */
3309 unsigned hash_loc;
3310 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3311 return_value = 0;
3312 continue;
3313 }
3314
3315 /* ARB_explicit_uniform_location specification states:
3316 *
3317 * "No two default-block uniform variables in the program can have
3318 * the same location, even if they are unused, otherwise a compiler
3319 * or linker error will be generated."
3320 */
3321 linker_error(prog,
3322 "location qualifier for uniform %s overlaps "
3323 "previously used location\n",
3324 var->name);
3325 return -1;
3326 }
3327
3328 /* Initialize location as inactive before optimization
3329 * rounds and location assignment.
3330 */
3331 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3332 }
3333
3334 /* Note, base location used for arrays. */
3335 map->put(var->data.location, var->name);
3336
3337 return return_value;
3338 }
3339
3340 static bool
3341 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3342 struct gl_linked_shader *sh,
3343 ir_variable *var)
3344 {
3345 unsigned slots = var->type->uniform_locations();
3346 unsigned max_loc = var->data.location + slots - 1;
3347
3348 /* Resize remap table if locations do not fit in the current one. */
3349 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3350 sh->SubroutineUniformRemapTable =
3351 reralloc(sh, sh->SubroutineUniformRemapTable,
3352 gl_uniform_storage *,
3353 max_loc + 1);
3354
3355 if (!sh->SubroutineUniformRemapTable) {
3356 linker_error(prog, "Out of memory during linking.\n");
3357 return false;
3358 }
3359
3360 /* Initialize allocated space. */
3361 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3362 sh->SubroutineUniformRemapTable[i] = NULL;
3363
3364 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3365 }
3366
3367 for (unsigned i = 0; i < slots; i++) {
3368 unsigned loc = var->data.location + i;
3369
3370 /* Check if location is already used. */
3371 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3372
3373 /* ARB_explicit_uniform_location specification states:
3374 * "No two subroutine uniform variables can have the same location
3375 * in the same shader stage, otherwise a compiler or linker error
3376 * will be generated."
3377 */
3378 linker_error(prog,
3379 "location qualifier for uniform %s overlaps "
3380 "previously used location\n",
3381 var->name);
3382 return false;
3383 }
3384
3385 /* Initialize location as inactive before optimization
3386 * rounds and location assignment.
3387 */
3388 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3389 }
3390
3391 return true;
3392 }
3393 /**
3394 * Check and reserve all explicit uniform locations, called before
3395 * any optimizations happen to handle also inactive uniforms and
3396 * inactive array elements that may get trimmed away.
3397 */
3398 static unsigned
3399 check_explicit_uniform_locations(struct gl_context *ctx,
3400 struct gl_shader_program *prog)
3401 {
3402 if (!ctx->Extensions.ARB_explicit_uniform_location)
3403 return 0;
3404
3405 /* This map is used to detect if overlapping explicit locations
3406 * occur with the same uniform (from different stage) or a different one.
3407 */
3408 string_to_uint_map *uniform_map = new string_to_uint_map;
3409
3410 if (!uniform_map) {
3411 linker_error(prog, "Out of memory during linking.\n");
3412 return 0;
3413 }
3414
3415 unsigned entries_total = 0;
3416 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3417 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3418
3419 if (!sh)
3420 continue;
3421
3422 foreach_in_list(ir_instruction, node, sh->ir) {
3423 ir_variable *var = node->as_variable();
3424 if (!var || var->data.mode != ir_var_uniform)
3425 continue;
3426
3427 if (var->data.explicit_location) {
3428 bool ret = false;
3429 if (var->type->without_array()->is_subroutine())
3430 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3431 else {
3432 int slots = reserve_explicit_locations(prog, uniform_map,
3433 var);
3434 if (slots != -1) {
3435 ret = true;
3436 entries_total += slots;
3437 }
3438 }
3439 if (!ret) {
3440 delete uniform_map;
3441 return 0;
3442 }
3443 }
3444 }
3445 }
3446
3447 struct empty_uniform_block *current_block = NULL;
3448
3449 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3450 /* We found empty space in UniformRemapTable. */
3451 if (prog->UniformRemapTable[i] == NULL) {
3452 /* We've found the beginning of a new continous block of empty slots */
3453 if (!current_block || current_block->start + current_block->slots != i) {
3454 current_block = rzalloc(prog, struct empty_uniform_block);
3455 current_block->start = i;
3456 exec_list_push_tail(&prog->EmptyUniformLocations,
3457 &current_block->link);
3458 }
3459
3460 /* The current block continues, so we simply increment its slots */
3461 current_block->slots++;
3462 }
3463 }
3464
3465 delete uniform_map;
3466 return entries_total;
3467 }
3468
3469 static bool
3470 should_add_buffer_variable(struct gl_shader_program *shProg,
3471 GLenum type, const char *name)
3472 {
3473 bool found_interface = false;
3474 unsigned block_name_len = 0;
3475 const char *block_name_dot = strchr(name, '.');
3476
3477 /* These rules only apply to buffer variables. So we return
3478 * true for the rest of types.
3479 */
3480 if (type != GL_BUFFER_VARIABLE)
3481 return true;
3482
3483 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3484 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3485 block_name_len = strlen(block_name);
3486
3487 const char *block_square_bracket = strchr(block_name, '[');
3488 if (block_square_bracket) {
3489 /* The block is part of an array of named interfaces,
3490 * for the name comparison we ignore the "[x]" part.
3491 */
3492 block_name_len -= strlen(block_square_bracket);
3493 }
3494
3495 if (block_name_dot) {
3496 /* Check if the variable name starts with the interface
3497 * name. The interface name (if present) should have the
3498 * length than the interface block name we are comparing to.
3499 */
3500 unsigned len = strlen(name) - strlen(block_name_dot);
3501 if (len != block_name_len)
3502 continue;
3503 }
3504
3505 if (strncmp(block_name, name, block_name_len) == 0) {
3506 found_interface = true;
3507 break;
3508 }
3509 }
3510
3511 /* We remove the interface name from the buffer variable name,
3512 * including the dot that follows it.
3513 */
3514 if (found_interface)
3515 name = name + block_name_len + 1;
3516
3517 /* The ARB_program_interface_query spec says:
3518 *
3519 * "For an active shader storage block member declared as an array, an
3520 * entry will be generated only for the first array element, regardless
3521 * of its type. For arrays of aggregate types, the enumeration rules
3522 * are applied recursively for the single enumerated array element."
3523 */
3524 const char *struct_first_dot = strchr(name, '.');
3525 const char *first_square_bracket = strchr(name, '[');
3526
3527 /* The buffer variable is on top level and it is not an array */
3528 if (!first_square_bracket) {
3529 return true;
3530 /* The shader storage block member is a struct, then generate the entry */
3531 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3532 return true;
3533 } else {
3534 /* Shader storage block member is an array, only generate an entry for the
3535 * first array element.
3536 */
3537 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3538 return true;
3539 }
3540
3541 return false;
3542 }
3543
3544 static bool
3545 add_program_resource(struct gl_shader_program *prog, GLenum type,
3546 const void *data, uint8_t stages)
3547 {
3548 assert(data);
3549
3550 /* If resource already exists, do not add it again. */
3551 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3552 if (prog->ProgramResourceList[i].Data == data)
3553 return true;
3554
3555 prog->ProgramResourceList =
3556 reralloc(prog,
3557 prog->ProgramResourceList,
3558 gl_program_resource,
3559 prog->NumProgramResourceList + 1);
3560
3561 if (!prog->ProgramResourceList) {
3562 linker_error(prog, "Out of memory during linking.\n");
3563 return false;
3564 }
3565
3566 struct gl_program_resource *res =
3567 &prog->ProgramResourceList[prog->NumProgramResourceList];
3568
3569 res->Type = type;
3570 res->Data = data;
3571 res->StageReferences = stages;
3572
3573 prog->NumProgramResourceList++;
3574
3575 return true;
3576 }
3577
3578 /* Function checks if a variable var is a packed varying and
3579 * if given name is part of packed varying's list.
3580 *
3581 * If a variable is a packed varying, it has a name like
3582 * 'packed:a,b,c' where a, b and c are separate variables.
3583 */
3584 static bool
3585 included_in_packed_varying(ir_variable *var, const char *name)
3586 {
3587 if (strncmp(var->name, "packed:", 7) != 0)
3588 return false;
3589
3590 char *list = strdup(var->name + 7);
3591 assert(list);
3592
3593 bool found = false;
3594 char *saveptr;
3595 char *token = strtok_r(list, ",", &saveptr);
3596 while (token) {
3597 if (strcmp(token, name) == 0) {
3598 found = true;
3599 break;
3600 }
3601 token = strtok_r(NULL, ",", &saveptr);
3602 }
3603 free(list);
3604 return found;
3605 }
3606
3607 /**
3608 * Function builds a stage reference bitmask from variable name.
3609 */
3610 static uint8_t
3611 build_stageref(struct gl_shader_program *shProg, const char *name,
3612 unsigned mode)
3613 {
3614 uint8_t stages = 0;
3615
3616 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3617 * used for reference mask in gl_program_resource will need to be changed.
3618 */
3619 assert(MESA_SHADER_STAGES < 8);
3620
3621 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3622 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3623 if (!sh)
3624 continue;
3625
3626 /* Shader symbol table may contain variables that have
3627 * been optimized away. Search IR for the variable instead.
3628 */
3629 foreach_in_list(ir_instruction, node, sh->ir) {
3630 ir_variable *var = node->as_variable();
3631 if (var) {
3632 unsigned baselen = strlen(var->name);
3633
3634 if (included_in_packed_varying(var, name)) {
3635 stages |= (1 << i);
3636 break;
3637 }
3638
3639 /* Type needs to match if specified, otherwise we might
3640 * pick a variable with same name but different interface.
3641 */
3642 if (var->data.mode != mode)
3643 continue;
3644
3645 if (strncmp(var->name, name, baselen) == 0) {
3646 /* Check for exact name matches but also check for arrays and
3647 * structs.
3648 */
3649 if (name[baselen] == '\0' ||
3650 name[baselen] == '[' ||
3651 name[baselen] == '.') {
3652 stages |= (1 << i);
3653 break;
3654 }
3655 }
3656 }
3657 }
3658 }
3659 return stages;
3660 }
3661
3662 /**
3663 * Create gl_shader_variable from ir_variable class.
3664 */
3665 static gl_shader_variable *
3666 create_shader_variable(struct gl_shader_program *shProg,
3667 const ir_variable *in,
3668 const char *name, const glsl_type *type,
3669 bool use_implicit_location, int location,
3670 const glsl_type *outermost_struct_type)
3671 {
3672 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3673 if (!out)
3674 return NULL;
3675
3676 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3677 * expect to see gl_VertexID in the program resource list. Pretend.
3678 */
3679 if (in->data.mode == ir_var_system_value &&
3680 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3681 out->name = ralloc_strdup(shProg, "gl_VertexID");
3682 } else {
3683 out->name = ralloc_strdup(shProg, name);
3684 }
3685
3686 if (!out->name)
3687 return NULL;
3688
3689 /* The ARB_program_interface_query spec says:
3690 *
3691 * "Not all active variables are assigned valid locations; the
3692 * following variables will have an effective location of -1:
3693 *
3694 * * uniforms declared as atomic counters;
3695 *
3696 * * members of a uniform block;
3697 *
3698 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3699 *
3700 * * inputs or outputs not declared with a "location" layout
3701 * qualifier, except for vertex shader inputs and fragment shader
3702 * outputs."
3703 */
3704 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3705 is_gl_identifier(in->name) ||
3706 !(in->data.explicit_location || use_implicit_location)) {
3707 out->location = -1;
3708 } else {
3709 out->location = location;
3710 }
3711
3712 out->type = type;
3713 out->outermost_struct_type = outermost_struct_type;
3714 out->interface_type = in->get_interface_type();
3715 out->component = in->data.location_frac;
3716 out->index = in->data.index;
3717 out->patch = in->data.patch;
3718 out->mode = in->data.mode;
3719 out->interpolation = in->data.interpolation;
3720 out->explicit_location = in->data.explicit_location;
3721 out->precision = in->data.precision;
3722
3723 return out;
3724 }
3725
3726 static bool
3727 add_shader_variable(struct gl_shader_program *shProg, unsigned stage_mask,
3728 GLenum programInterface, ir_variable *var,
3729 const char *name, const glsl_type *type,
3730 bool use_implicit_location, int location,
3731 const glsl_type *outermost_struct_type = NULL)
3732 {
3733 const bool is_vertex_input =
3734 programInterface == GL_PROGRAM_INPUT &&
3735 stage_mask == MESA_SHADER_VERTEX;
3736
3737 switch (type->base_type) {
3738 case GLSL_TYPE_STRUCT: {
3739 /* The ARB_program_interface_query spec says:
3740 *
3741 * "For an active variable declared as a structure, a separate entry
3742 * will be generated for each active structure member. The name of
3743 * each entry is formed by concatenating the name of the structure,
3744 * the "." character, and the name of the structure member. If a
3745 * structure member to enumerate is itself a structure or array,
3746 * these enumeration rules are applied recursively."
3747 */
3748 if (outermost_struct_type == NULL)
3749 outermost_struct_type = type;
3750
3751 unsigned field_location = location;
3752 for (unsigned i = 0; i < type->length; i++) {
3753 const struct glsl_struct_field *field = &type->fields.structure[i];
3754 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3755 if (!add_shader_variable(shProg, stage_mask, programInterface,
3756 var, field_name, field->type,
3757 use_implicit_location, field_location,
3758 outermost_struct_type))
3759 return false;
3760
3761 field_location +=
3762 field->type->count_attribute_slots(is_vertex_input);
3763 }
3764 return true;
3765 }
3766
3767 default: {
3768 /* Issue #16 of the ARB_program_interface_query spec says:
3769 *
3770 * "* If a variable is a member of an interface block without an
3771 * instance name, it is enumerated using just the variable name.
3772 *
3773 * * If a variable is a member of an interface block with an instance
3774 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3775 * the name of the interface block (not the instance name) and
3776 * "Member" is the name of the variable."
3777 */
3778 const char *prefixed_name = (var->data.from_named_ifc_block &&
3779 !is_gl_identifier(var->name))
3780 ? ralloc_asprintf(shProg, "%s.%s", var->get_interface_type()->name,
3781 name)
3782 : name;
3783
3784 /* The ARB_program_interface_query spec says:
3785 *
3786 * "For an active variable declared as a single instance of a basic
3787 * type, a single entry will be generated, using the variable name
3788 * from the shader source."
3789 */
3790 gl_shader_variable *sha_v =
3791 create_shader_variable(shProg, var, prefixed_name, type,
3792 use_implicit_location, location,
3793 outermost_struct_type);
3794 if (!sha_v)
3795 return false;
3796
3797 return add_program_resource(shProg, programInterface, sha_v, stage_mask);
3798 }
3799 }
3800 }
3801
3802 static bool
3803 add_interface_variables(struct gl_shader_program *shProg,
3804 unsigned stage, GLenum programInterface)
3805 {
3806 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3807
3808 foreach_in_list(ir_instruction, node, ir) {
3809 ir_variable *var = node->as_variable();
3810
3811 if (!var || var->data.how_declared == ir_var_hidden)
3812 continue;
3813
3814 int loc_bias;
3815
3816 switch (var->data.mode) {
3817 case ir_var_system_value:
3818 case ir_var_shader_in:
3819 if (programInterface != GL_PROGRAM_INPUT)
3820 continue;
3821 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3822 : int(VARYING_SLOT_VAR0);
3823 break;
3824 case ir_var_shader_out:
3825 if (programInterface != GL_PROGRAM_OUTPUT)
3826 continue;
3827 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3828 : int(VARYING_SLOT_VAR0);
3829 break;
3830 default:
3831 continue;
3832 };
3833
3834 /* Skip packed varyings, packed varyings are handled separately
3835 * by add_packed_varyings.
3836 */
3837 if (strncmp(var->name, "packed:", 7) == 0)
3838 continue;
3839
3840 /* Skip fragdata arrays, these are handled separately
3841 * by add_fragdata_arrays.
3842 */
3843 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3844 continue;
3845
3846 const bool vs_input_or_fs_output =
3847 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3848 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3849
3850 if (!add_shader_variable(shProg, 1 << stage, programInterface,
3851 var, var->name, var->type, vs_input_or_fs_output,
3852 var->data.location - loc_bias))
3853 return false;
3854 }
3855 return true;
3856 }
3857
3858 static bool
3859 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3860 {
3861 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3862 GLenum iface;
3863
3864 if (!sh || !sh->packed_varyings)
3865 return true;
3866
3867 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3868 ir_variable *var = node->as_variable();
3869 if (var) {
3870 switch (var->data.mode) {
3871 case ir_var_shader_in:
3872 iface = GL_PROGRAM_INPUT;
3873 break;
3874 case ir_var_shader_out:
3875 iface = GL_PROGRAM_OUTPUT;
3876 break;
3877 default:
3878 unreachable("unexpected type");
3879 }
3880
3881 if (type == iface) {
3882 const int stage_mask =
3883 build_stageref(shProg, var->name, var->data.mode);
3884 if (!add_shader_variable(shProg, stage_mask,
3885 iface, var, var->name, var->type, false,
3886 var->data.location - VARYING_SLOT_VAR0))
3887 return false;
3888 }
3889 }
3890 }
3891 return true;
3892 }
3893
3894 static bool
3895 add_fragdata_arrays(struct gl_shader_program *shProg)
3896 {
3897 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3898
3899 if (!sh || !sh->fragdata_arrays)
3900 return true;
3901
3902 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3903 ir_variable *var = node->as_variable();
3904 if (var) {
3905 assert(var->data.mode == ir_var_shader_out);
3906
3907 if (!add_shader_variable(shProg,
3908 1 << MESA_SHADER_FRAGMENT,
3909 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3910 true, var->data.location - FRAG_RESULT_DATA0))
3911 return false;
3912 }
3913 }
3914 return true;
3915 }
3916
3917 static char*
3918 get_top_level_name(const char *name)
3919 {
3920 const char *first_dot = strchr(name, '.');
3921 const char *first_square_bracket = strchr(name, '[');
3922 int name_size = 0;
3923
3924 /* The ARB_program_interface_query spec says:
3925 *
3926 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3927 * the number of active array elements of the top-level shader storage
3928 * block member containing to the active variable is written to
3929 * <params>. If the top-level block member is not declared as an
3930 * array, the value one is written to <params>. If the top-level block
3931 * member is an array with no declared size, the value zero is written
3932 * to <params>."
3933 */
3934
3935 /* The buffer variable is on top level.*/
3936 if (!first_square_bracket && !first_dot)
3937 name_size = strlen(name);
3938 else if ((!first_square_bracket ||
3939 (first_dot && first_dot < first_square_bracket)))
3940 name_size = first_dot - name;
3941 else
3942 name_size = first_square_bracket - name;
3943
3944 return strndup(name, name_size);
3945 }
3946
3947 static char*
3948 get_var_name(const char *name)
3949 {
3950 const char *first_dot = strchr(name, '.');
3951
3952 if (!first_dot)
3953 return strdup(name);
3954
3955 return strndup(first_dot+1, strlen(first_dot) - 1);
3956 }
3957
3958 static bool
3959 is_top_level_shader_storage_block_member(const char* name,
3960 const char* interface_name,
3961 const char* field_name)
3962 {
3963 bool result = false;
3964
3965 /* If the given variable is already a top-level shader storage
3966 * block member, then return array_size = 1.
3967 * We could have two possibilities: if we have an instanced
3968 * shader storage block or not instanced.
3969 *
3970 * For the first, we check create a name as it was in top level and
3971 * compare it with the real name. If they are the same, then
3972 * the variable is already at top-level.
3973 *
3974 * Full instanced name is: interface name + '.' + var name +
3975 * NULL character
3976 */
3977 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3978 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3979 if (!full_instanced_name) {
3980 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3981 return false;
3982 }
3983
3984 snprintf(full_instanced_name, name_length, "%s.%s",
3985 interface_name, field_name);
3986
3987 /* Check if its top-level shader storage block member of an
3988 * instanced interface block, or of a unnamed interface block.
3989 */
3990 if (strcmp(name, full_instanced_name) == 0 ||
3991 strcmp(name, field_name) == 0)
3992 result = true;
3993
3994 free(full_instanced_name);
3995 return result;
3996 }
3997
3998 static int
3999 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4000 char *interface_name, char *var_name)
4001 {
4002 /* The ARB_program_interface_query spec says:
4003 *
4004 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4005 * the number of active array elements of the top-level shader storage
4006 * block member containing to the active variable is written to
4007 * <params>. If the top-level block member is not declared as an
4008 * array, the value one is written to <params>. If the top-level block
4009 * member is an array with no declared size, the value zero is written
4010 * to <params>."
4011 */
4012 if (is_top_level_shader_storage_block_member(uni->name,
4013 interface_name,
4014 var_name))
4015 return 1;
4016 else if (field->type->is_unsized_array())
4017 return 0;
4018 else if (field->type->is_array())
4019 return field->type->length;
4020
4021 return 1;
4022 }
4023
4024 static int
4025 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4026 const glsl_struct_field *field, char *interface_name,
4027 char *var_name)
4028 {
4029 /* The ARB_program_interface_query spec says:
4030 *
4031 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4032 * identifying the stride between array elements of the top-level
4033 * shader storage block member containing the active variable is
4034 * written to <params>. For top-level block members declared as
4035 * arrays, the value written is the difference, in basic machine units,
4036 * between the offsets of the active variable for consecutive elements
4037 * in the top-level array. For top-level block members not declared as
4038 * an array, zero is written to <params>."
4039 */
4040 if (field->type->is_array()) {
4041 const enum glsl_matrix_layout matrix_layout =
4042 glsl_matrix_layout(field->matrix_layout);
4043 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4044 const glsl_type *array_type = field->type->fields.array;
4045
4046 if (is_top_level_shader_storage_block_member(uni->name,
4047 interface_name,
4048 var_name))
4049 return 0;
4050
4051 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4052 if (array_type->is_record() || array_type->is_array())
4053 return glsl_align(array_type->std140_size(row_major), 16);
4054 else
4055 return MAX2(array_type->std140_base_alignment(row_major), 16);
4056 } else {
4057 return array_type->std430_array_stride(row_major);
4058 }
4059 }
4060 return 0;
4061 }
4062
4063 static void
4064 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4065 struct gl_uniform_storage *uni)
4066 {
4067 int block_index = uni->block_index;
4068 int array_size = -1;
4069 int array_stride = -1;
4070 char *var_name = get_top_level_name(uni->name);
4071 char *interface_name =
4072 get_top_level_name(uni->is_shader_storage ?
4073 shProg->ShaderStorageBlocks[block_index].Name :
4074 shProg->UniformBlocks[block_index].Name);
4075
4076 if (strcmp(var_name, interface_name) == 0) {
4077 /* Deal with instanced array of SSBOs */
4078 char *temp_name = get_var_name(uni->name);
4079 if (!temp_name) {
4080 linker_error(shProg, "Out of memory during linking.\n");
4081 goto write_top_level_array_size_and_stride;
4082 }
4083 free(var_name);
4084 var_name = get_top_level_name(temp_name);
4085 free(temp_name);
4086 if (!var_name) {
4087 linker_error(shProg, "Out of memory during linking.\n");
4088 goto write_top_level_array_size_and_stride;
4089 }
4090 }
4091
4092 for (unsigned i = 0; i < shProg->NumShaders; i++) {
4093 if (shProg->Shaders[i] == NULL)
4094 continue;
4095
4096 const gl_shader *stage = shProg->Shaders[i];
4097 foreach_in_list(ir_instruction, node, stage->ir) {
4098 ir_variable *var = node->as_variable();
4099 if (!var || !var->get_interface_type() ||
4100 var->data.mode != ir_var_shader_storage)
4101 continue;
4102
4103 const glsl_type *interface = var->get_interface_type();
4104
4105 if (strcmp(interface_name, interface->name) != 0)
4106 continue;
4107
4108 for (unsigned i = 0; i < interface->length; i++) {
4109 const glsl_struct_field *field = &interface->fields.structure[i];
4110 if (strcmp(field->name, var_name) != 0)
4111 continue;
4112
4113 array_stride = get_array_stride(uni, interface, field,
4114 interface_name, var_name);
4115 array_size = get_array_size(uni, field, interface_name, var_name);
4116 goto write_top_level_array_size_and_stride;
4117 }
4118 }
4119 }
4120 write_top_level_array_size_and_stride:
4121 free(interface_name);
4122 free(var_name);
4123 uni->top_level_array_stride = array_stride;
4124 uni->top_level_array_size = array_size;
4125 }
4126
4127 /**
4128 * Builds up a list of program resources that point to existing
4129 * resource data.
4130 */
4131 void
4132 build_program_resource_list(struct gl_context *ctx,
4133 struct gl_shader_program *shProg)
4134 {
4135 /* Rebuild resource list. */
4136 if (shProg->ProgramResourceList) {
4137 ralloc_free(shProg->ProgramResourceList);
4138 shProg->ProgramResourceList = NULL;
4139 shProg->NumProgramResourceList = 0;
4140 }
4141
4142 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4143
4144 /* Determine first input and final output stage. These are used to
4145 * detect which variables should be enumerated in the resource list
4146 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4147 */
4148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4149 if (!shProg->_LinkedShaders[i])
4150 continue;
4151 if (input_stage == MESA_SHADER_STAGES)
4152 input_stage = i;
4153 output_stage = i;
4154 }
4155
4156 /* Empty shader, no resources. */
4157 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4158 return;
4159
4160 /* Program interface needs to expose varyings in case of SSO. */
4161 if (shProg->SeparateShader) {
4162 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
4163 return;
4164
4165 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
4166 return;
4167 }
4168
4169 if (!add_fragdata_arrays(shProg))
4170 return;
4171
4172 /* Add inputs and outputs to the resource list. */
4173 if (!add_interface_variables(shProg, input_stage, GL_PROGRAM_INPUT))
4174 return;
4175
4176 if (!add_interface_variables(shProg, output_stage, GL_PROGRAM_OUTPUT))
4177 return;
4178
4179 /* Add transform feedback varyings. */
4180 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4181 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4182 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
4183 &shProg->LinkedTransformFeedback.Varyings[i],
4184 0))
4185 return;
4186 }
4187 }
4188
4189 /* Add transform feedback buffers. */
4190 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4191 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4192 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4193 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_BUFFER,
4194 &shProg->LinkedTransformFeedback.Buffers[i],
4195 0))
4196 return;
4197 }
4198 }
4199
4200 /* Add uniforms from uniform storage. */
4201 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4202 /* Do not add uniforms internally used by Mesa. */
4203 if (shProg->UniformStorage[i].hidden)
4204 continue;
4205
4206 uint8_t stageref =
4207 build_stageref(shProg, shProg->UniformStorage[i].name,
4208 ir_var_uniform);
4209
4210 /* Add stagereferences for uniforms in a uniform block. */
4211 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4212 int block_index = shProg->UniformStorage[i].block_index;
4213 if (block_index != -1) {
4214 stageref |= is_shader_storage ?
4215 shProg->ShaderStorageBlocks[block_index].stageref :
4216 shProg->UniformBlocks[block_index].stageref;
4217 }
4218
4219 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4220 if (!should_add_buffer_variable(shProg, type,
4221 shProg->UniformStorage[i].name))
4222 continue;
4223
4224 if (is_shader_storage) {
4225 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4226 }
4227
4228 if (!add_program_resource(shProg, type,
4229 &shProg->UniformStorage[i], stageref))
4230 return;
4231 }
4232
4233 /* Add program uniform blocks. */
4234 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4235 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
4236 &shProg->UniformBlocks[i], 0))
4237 return;
4238 }
4239
4240 /* Add program shader storage blocks. */
4241 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4242 if (!add_program_resource(shProg, GL_SHADER_STORAGE_BLOCK,
4243 &shProg->ShaderStorageBlocks[i], 0))
4244 return;
4245 }
4246
4247 /* Add atomic counter buffers. */
4248 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4249 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
4250 &shProg->AtomicBuffers[i], 0))
4251 return;
4252 }
4253
4254 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4255 GLenum type;
4256 if (!shProg->UniformStorage[i].hidden)
4257 continue;
4258
4259 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4260 if (!shProg->UniformStorage[i].opaque[j].active ||
4261 !shProg->UniformStorage[i].type->is_subroutine())
4262 continue;
4263
4264 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4265 /* add shader subroutines */
4266 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
4267 return;
4268 }
4269 }
4270
4271 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4272 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
4273 GLuint type;
4274
4275 if (!sh)
4276 continue;
4277
4278 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4279 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4280 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
4281 return;
4282 }
4283 }
4284 }
4285
4286 /**
4287 * This check is done to make sure we allow only constant expression
4288 * indexing and "constant-index-expression" (indexing with an expression
4289 * that includes loop induction variable).
4290 */
4291 static bool
4292 validate_sampler_array_indexing(struct gl_context *ctx,
4293 struct gl_shader_program *prog)
4294 {
4295 dynamic_sampler_array_indexing_visitor v;
4296 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4297 if (prog->_LinkedShaders[i] == NULL)
4298 continue;
4299
4300 bool no_dynamic_indexing =
4301 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4302
4303 /* Search for array derefs in shader. */
4304 v.run(prog->_LinkedShaders[i]->ir);
4305 if (v.uses_dynamic_sampler_array_indexing()) {
4306 const char *msg = "sampler arrays indexed with non-constant "
4307 "expressions is forbidden in GLSL %s %u";
4308 /* Backend has indicated that it has no dynamic indexing support. */
4309 if (no_dynamic_indexing) {
4310 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4311 return false;
4312 } else {
4313 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4314 }
4315 }
4316 }
4317 return true;
4318 }
4319
4320 static void
4321 link_assign_subroutine_types(struct gl_shader_program *prog)
4322 {
4323 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4324 gl_linked_shader *sh = prog->_LinkedShaders[i];
4325
4326 if (sh == NULL)
4327 continue;
4328
4329 sh->MaxSubroutineFunctionIndex = 0;
4330 foreach_in_list(ir_instruction, node, sh->ir) {
4331 ir_function *fn = node->as_function();
4332 if (!fn)
4333 continue;
4334
4335 if (fn->is_subroutine)
4336 sh->NumSubroutineUniformTypes++;
4337
4338 if (!fn->num_subroutine_types)
4339 continue;
4340
4341 /* these should have been calculated earlier. */
4342 assert(fn->subroutine_index != -1);
4343 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4344 linker_error(prog, "Too many subroutine functions declared.\n");
4345 return;
4346 }
4347 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4348 struct gl_subroutine_function,
4349 sh->NumSubroutineFunctions + 1);
4350 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4351 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4352 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4353 ralloc_array(sh, const struct glsl_type *,
4354 fn->num_subroutine_types);
4355
4356 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4357 * GLSL 4.5 spec:
4358 *
4359 * "Each subroutine with an index qualifier in the shader must be
4360 * given a unique index, otherwise a compile or link error will be
4361 * generated."
4362 */
4363 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4364 if (sh->SubroutineFunctions[j].index != -1 &&
4365 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4366 linker_error(prog, "each subroutine index qualifier in the "
4367 "shader must be unique\n");
4368 return;
4369 }
4370 }
4371 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4372 fn->subroutine_index;
4373
4374 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4375 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4376
4377 for (int j = 0; j < fn->num_subroutine_types; j++)
4378 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4379 sh->NumSubroutineFunctions++;
4380 }
4381 }
4382 }
4383
4384 static void
4385 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4386 {
4387 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4388
4389 foreach_in_list(ir_instruction, node, ir) {
4390 ir_variable *const var = node->as_variable();
4391
4392 if (var == NULL || var->data.mode != io_mode)
4393 continue;
4394
4395 /* Don't set always active on builtins that haven't been redeclared */
4396 if (var->data.how_declared == ir_var_declared_implicitly)
4397 continue;
4398
4399 var->data.always_active_io = true;
4400 }
4401 }
4402
4403 /**
4404 * When separate shader programs are enabled, only input/outputs between
4405 * the stages of a multi-stage separate program can be safely removed
4406 * from the shader interface. Other inputs/outputs must remain active.
4407 */
4408 static void
4409 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4410 {
4411 unsigned first, last;
4412 assert(prog->SeparateShader);
4413
4414 first = MESA_SHADER_STAGES;
4415 last = 0;
4416
4417 /* Determine first and last stage. Excluding the compute stage */
4418 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4419 if (!prog->_LinkedShaders[i])
4420 continue;
4421 if (first == MESA_SHADER_STAGES)
4422 first = i;
4423 last = i;
4424 }
4425
4426 if (first == MESA_SHADER_STAGES)
4427 return;
4428
4429 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4430 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4431 if (!sh)
4432 continue;
4433
4434 if (first == last) {
4435 /* For a single shader program only allow inputs to the vertex shader
4436 * and outputs from the fragment shader to be removed.
4437 */
4438 if (stage != MESA_SHADER_VERTEX)
4439 set_always_active_io(sh->ir, ir_var_shader_in);
4440 if (stage != MESA_SHADER_FRAGMENT)
4441 set_always_active_io(sh->ir, ir_var_shader_out);
4442 } else {
4443 /* For multi-stage separate shader programs only allow inputs and
4444 * outputs between the shader stages to be removed as well as inputs
4445 * to the vertex shader and outputs from the fragment shader.
4446 */
4447 if (stage == first && stage != MESA_SHADER_VERTEX)
4448 set_always_active_io(sh->ir, ir_var_shader_in);
4449 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4450 set_always_active_io(sh->ir, ir_var_shader_out);
4451 }
4452 }
4453 }
4454
4455 void
4456 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4457 {
4458 prog->LinkStatus = true; /* All error paths will set this to false */
4459 prog->Validated = false;
4460 prog->_Used = false;
4461
4462 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4463 *
4464 * "Linking can fail for a variety of reasons as specified in the
4465 * OpenGL Shading Language Specification, as well as any of the
4466 * following reasons:
4467 *
4468 * - No shader objects are attached to program."
4469 *
4470 * The Compatibility Profile specification does not list the error. In
4471 * Compatibility Profile missing shader stages are replaced by
4472 * fixed-function. This applies to the case where all stages are
4473 * missing.
4474 */
4475 if (prog->NumShaders == 0) {
4476 if (ctx->API != API_OPENGL_COMPAT)
4477 linker_error(prog, "no shaders attached to the program\n");
4478 return;
4479 }
4480
4481 unsigned num_tfeedback_decls = 0;
4482 unsigned int num_explicit_uniform_locs = 0;
4483 bool has_xfb_qualifiers = false;
4484 char **varying_names = NULL;
4485 tfeedback_decl *tfeedback_decls = NULL;
4486
4487 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4488
4489 prog->ARB_fragment_coord_conventions_enable = false;
4490
4491 /* Separate the shaders into groups based on their type.
4492 */
4493 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4494 unsigned num_shaders[MESA_SHADER_STAGES];
4495
4496 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4497 shader_list[i] = (struct gl_shader **)
4498 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4499 num_shaders[i] = 0;
4500 }
4501
4502 unsigned min_version = UINT_MAX;
4503 unsigned max_version = 0;
4504 for (unsigned i = 0; i < prog->NumShaders; i++) {
4505 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4506 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4507
4508 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4509 linker_error(prog, "all shaders must use same shading "
4510 "language version\n");
4511 goto done;
4512 }
4513
4514 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4515 prog->ARB_fragment_coord_conventions_enable = true;
4516 }
4517
4518 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4519 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4520 num_shaders[shader_type]++;
4521 }
4522
4523 /* In desktop GLSL, different shader versions may be linked together. In
4524 * GLSL ES, all shader versions must be the same.
4525 */
4526 if (prog->Shaders[0]->IsES && min_version != max_version) {
4527 linker_error(prog, "all shaders must use same shading "
4528 "language version\n");
4529 goto done;
4530 }
4531
4532 prog->Version = max_version;
4533 prog->IsES = prog->Shaders[0]->IsES;
4534
4535 /* Some shaders have to be linked with some other shaders present.
4536 */
4537 if (!prog->SeparateShader) {
4538 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4539 num_shaders[MESA_SHADER_VERTEX] == 0) {
4540 linker_error(prog, "Geometry shader must be linked with "
4541 "vertex shader\n");
4542 goto done;
4543 }
4544 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4545 num_shaders[MESA_SHADER_VERTEX] == 0) {
4546 linker_error(prog, "Tessellation evaluation shader must be linked "
4547 "with vertex shader\n");
4548 goto done;
4549 }
4550 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4551 num_shaders[MESA_SHADER_VERTEX] == 0) {
4552 linker_error(prog, "Tessellation control shader must be linked with "
4553 "vertex shader\n");
4554 goto done;
4555 }
4556
4557 /* The spec is self-contradictory here. It allows linking without a tess
4558 * eval shader, but that can only be used with transform feedback and
4559 * rasterization disabled. However, transform feedback isn't allowed
4560 * with GL_PATCHES, so it can't be used.
4561 *
4562 * More investigation showed that the idea of transform feedback after
4563 * a tess control shader was dropped, because some hw vendors couldn't
4564 * support tessellation without a tess eval shader, but the linker
4565 * section wasn't updated to reflect that.
4566 *
4567 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4568 * spec bug.
4569 *
4570 * Do what's reasonable and always require a tess eval shader if a tess
4571 * control shader is present.
4572 */
4573 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4574 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4575 linker_error(prog, "Tessellation control shader must be linked with "
4576 "tessellation evaluation shader\n");
4577 goto done;
4578 }
4579 }
4580
4581 /* Compute shaders have additional restrictions. */
4582 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4583 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4584 linker_error(prog, "Compute shaders may not be linked with any other "
4585 "type of shader\n");
4586 }
4587
4588 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4589 if (prog->_LinkedShaders[i] != NULL) {
4590 _mesa_delete_linked_shader(ctx, prog->_LinkedShaders[i]);
4591 }
4592
4593 prog->_LinkedShaders[i] = NULL;
4594 }
4595
4596 /* Link all shaders for a particular stage and validate the result.
4597 */
4598 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4599 if (num_shaders[stage] > 0) {
4600 gl_linked_shader *const sh =
4601 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4602 num_shaders[stage]);
4603
4604 if (!prog->LinkStatus) {
4605 if (sh)
4606 _mesa_delete_linked_shader(ctx, sh);
4607 goto done;
4608 }
4609
4610 switch (stage) {
4611 case MESA_SHADER_VERTEX:
4612 validate_vertex_shader_executable(prog, sh, ctx);
4613 break;
4614 case MESA_SHADER_TESS_CTRL:
4615 /* nothing to be done */
4616 break;
4617 case MESA_SHADER_TESS_EVAL:
4618 validate_tess_eval_shader_executable(prog, sh, ctx);
4619 break;
4620 case MESA_SHADER_GEOMETRY:
4621 validate_geometry_shader_executable(prog, sh, ctx);
4622 break;
4623 case MESA_SHADER_FRAGMENT:
4624 validate_fragment_shader_executable(prog, sh);
4625 break;
4626 }
4627 if (!prog->LinkStatus) {
4628 if (sh)
4629 _mesa_delete_linked_shader(ctx, sh);
4630 goto done;
4631 }
4632
4633 prog->_LinkedShaders[stage] = sh;
4634 }
4635 }
4636
4637 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4638 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4639 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4640 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4641 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4642 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4643 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4644 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4645 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4646 } else {
4647 prog->LastClipDistanceArraySize = 0; /* Not used */
4648 prog->LastCullDistanceArraySize = 0; /* Not used */
4649 }
4650
4651 /* Here begins the inter-stage linking phase. Some initial validation is
4652 * performed, then locations are assigned for uniforms, attributes, and
4653 * varyings.
4654 */
4655 cross_validate_uniforms(prog);
4656 if (!prog->LinkStatus)
4657 goto done;
4658
4659 unsigned first, last, prev;
4660
4661 first = MESA_SHADER_STAGES;
4662 last = 0;
4663
4664 /* Determine first and last stage. */
4665 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4666 if (!prog->_LinkedShaders[i])
4667 continue;
4668 if (first == MESA_SHADER_STAGES)
4669 first = i;
4670 last = i;
4671 }
4672
4673 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4674 link_assign_subroutine_types(prog);
4675
4676 if (!prog->LinkStatus)
4677 goto done;
4678
4679 resize_tes_inputs(ctx, prog);
4680
4681 /* Validate the inputs of each stage with the output of the preceding
4682 * stage.
4683 */
4684 prev = first;
4685 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4686 if (prog->_LinkedShaders[i] == NULL)
4687 continue;
4688
4689 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4690 prog->_LinkedShaders[i]);
4691 if (!prog->LinkStatus)
4692 goto done;
4693
4694 cross_validate_outputs_to_inputs(prog,
4695 prog->_LinkedShaders[prev],
4696 prog->_LinkedShaders[i]);
4697 if (!prog->LinkStatus)
4698 goto done;
4699
4700 prev = i;
4701 }
4702
4703 /* Cross-validate uniform blocks between shader stages */
4704 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4705 if (!prog->LinkStatus)
4706 goto done;
4707
4708 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4709 if (prog->_LinkedShaders[i] != NULL)
4710 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4711 }
4712
4713 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4714 * it before optimization because we want most of the checks to get
4715 * dropped thanks to constant propagation.
4716 *
4717 * This rule also applies to GLSL ES 3.00.
4718 */
4719 if (max_version >= (prog->IsES ? 300 : 130)) {
4720 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4721 if (sh) {
4722 lower_discard_flow(sh->ir);
4723 }
4724 }
4725
4726 if (prog->SeparateShader)
4727 disable_varying_optimizations_for_sso(prog);
4728
4729 /* Process UBOs */
4730 if (!interstage_cross_validate_uniform_blocks(prog, false))
4731 goto done;
4732
4733 /* Process SSBOs */
4734 if (!interstage_cross_validate_uniform_blocks(prog, true))
4735 goto done;
4736
4737 /* Do common optimization before assigning storage for attributes,
4738 * uniforms, and varyings. Later optimization could possibly make
4739 * some of that unused.
4740 */
4741 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4742 if (prog->_LinkedShaders[i] == NULL)
4743 continue;
4744
4745 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4746 if (!prog->LinkStatus)
4747 goto done;
4748
4749 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4750 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4751 }
4752
4753 if (ctx->Const.LowerTessLevel) {
4754 lower_tess_level(prog->_LinkedShaders[i]);
4755 }
4756
4757 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4758 &ctx->Const.ShaderCompilerOptions[i],
4759 ctx->Const.NativeIntegers))
4760 ;
4761
4762 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4763 propagate_invariance(prog->_LinkedShaders[i]->ir);
4764 }
4765
4766 /* Validation for special cases where we allow sampler array indexing
4767 * with loop induction variable. This check emits a warning or error
4768 * depending if backend can handle dynamic indexing.
4769 */
4770 if ((!prog->IsES && prog->Version < 130) ||
4771 (prog->IsES && prog->Version < 300)) {
4772 if (!validate_sampler_array_indexing(ctx, prog))
4773 goto done;
4774 }
4775
4776 /* Check and validate stream emissions in geometry shaders */
4777 validate_geometry_shader_emissions(ctx, prog);
4778
4779 /* Mark all generic shader inputs and outputs as unpaired. */
4780 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4781 if (prog->_LinkedShaders[i] != NULL) {
4782 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4783 }
4784 }
4785
4786 prev = first;
4787 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4788 if (prog->_LinkedShaders[i] == NULL)
4789 continue;
4790
4791 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4792 prog->_LinkedShaders[i]);
4793 prev = i;
4794 }
4795
4796 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4797 MESA_SHADER_VERTEX)) {
4798 goto done;
4799 }
4800
4801 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4802 MESA_SHADER_FRAGMENT)) {
4803 goto done;
4804 }
4805
4806 /* From the ARB_enhanced_layouts spec:
4807 *
4808 * "If the shader used to record output variables for transform feedback
4809 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4810 * qualifiers, the values specified by TransformFeedbackVaryings are
4811 * ignored, and the set of variables captured for transform feedback is
4812 * instead derived from the specified layout qualifiers."
4813 */
4814 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4815 /* Find last stage before fragment shader */
4816 if (prog->_LinkedShaders[i]) {
4817 has_xfb_qualifiers =
4818 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4819 &num_tfeedback_decls,
4820 &varying_names);
4821 break;
4822 }
4823 }
4824
4825 if (!has_xfb_qualifiers) {
4826 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4827 varying_names = prog->TransformFeedback.VaryingNames;
4828 }
4829
4830 if (num_tfeedback_decls != 0) {
4831 /* From GL_EXT_transform_feedback:
4832 * A program will fail to link if:
4833 *
4834 * * the <count> specified by TransformFeedbackVaryingsEXT is
4835 * non-zero, but the program object has no vertex or geometry
4836 * shader;
4837 */
4838 if (first >= MESA_SHADER_FRAGMENT) {
4839 linker_error(prog, "Transform feedback varyings specified, but "
4840 "no vertex, tessellation, or geometry shader is "
4841 "present.\n");
4842 goto done;
4843 }
4844
4845 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4846 num_tfeedback_decls);
4847 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4848 varying_names, tfeedback_decls))
4849 goto done;
4850 }
4851
4852 /* If there is no fragment shader we need to set transform feedback.
4853 *
4854 * For SSO we also need to assign output locations. We assign them here
4855 * because we need to do it for both single stage programs and multi stage
4856 * programs.
4857 */
4858 if (last < MESA_SHADER_FRAGMENT &&
4859 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4860 const uint64_t reserved_out_slots =
4861 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4862 if (!assign_varying_locations(ctx, mem_ctx, prog,
4863 prog->_LinkedShaders[last], NULL,
4864 num_tfeedback_decls, tfeedback_decls,
4865 reserved_out_slots))
4866 goto done;
4867 }
4868
4869 if (last <= MESA_SHADER_FRAGMENT) {
4870 /* Remove unused varyings from the first/last stage unless SSO */
4871 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4872 prog->_LinkedShaders[first],
4873 ir_var_shader_in);
4874 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4875 prog->_LinkedShaders[last],
4876 ir_var_shader_out);
4877
4878 /* If the program is made up of only a single stage */
4879 if (first == last) {
4880
4881 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4882 if (prog->SeparateShader) {
4883 const uint64_t reserved_slots =
4884 reserved_varying_slot(sh, ir_var_shader_in);
4885
4886 /* Assign input locations for SSO, output locations are already
4887 * assigned.
4888 */
4889 if (!assign_varying_locations(ctx, mem_ctx, prog,
4890 NULL /* producer */,
4891 sh /* consumer */,
4892 0 /* num_tfeedback_decls */,
4893 NULL /* tfeedback_decls */,
4894 reserved_slots))
4895 goto done;
4896 }
4897
4898 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4899 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4900 tfeedback_decls);
4901 } else {
4902 /* Linking the stages in the opposite order (from fragment to vertex)
4903 * ensures that inter-shader outputs written to in an earlier stage
4904 * are eliminated if they are (transitively) not used in a later
4905 * stage.
4906 */
4907 int next = last;
4908 for (int i = next - 1; i >= 0; i--) {
4909 if (prog->_LinkedShaders[i] == NULL && i != 0)
4910 continue;
4911
4912 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4913 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4914
4915 const uint64_t reserved_out_slots =
4916 reserved_varying_slot(sh_i, ir_var_shader_out);
4917 const uint64_t reserved_in_slots =
4918 reserved_varying_slot(sh_next, ir_var_shader_in);
4919
4920 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4921 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4922 tfeedback_decls,
4923 reserved_out_slots | reserved_in_slots))
4924 goto done;
4925
4926 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4927 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4928 tfeedback_decls);
4929
4930 /* This must be done after all dead varyings are eliminated. */
4931 if (sh_i != NULL) {
4932 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4933 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4934 goto done;
4935 }
4936 }
4937
4938 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4939 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4940 goto done;
4941
4942 next = i;
4943 }
4944 }
4945 }
4946
4947 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4948 has_xfb_qualifiers))
4949 goto done;
4950
4951 update_array_sizes(prog);
4952 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue,
4953 num_explicit_uniform_locs,
4954 ctx->Const.MaxUserAssignableUniformLocations);
4955 link_assign_atomic_counter_resources(ctx, prog);
4956 store_fragdepth_layout(prog);
4957
4958 link_calculate_subroutine_compat(prog);
4959 check_resources(ctx, prog);
4960 check_subroutine_resources(prog);
4961 check_image_resources(ctx, prog);
4962 link_check_atomic_counter_resources(ctx, prog);
4963
4964 if (!prog->LinkStatus)
4965 goto done;
4966
4967 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4968 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4969 * anything about shader linking when one of the shaders (vertex or
4970 * fragment shader) is absent. So, the extension shouldn't change the
4971 * behavior specified in GLSL specification.
4972 *
4973 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4974 * "Linking can fail for a variety of reasons as specified in the
4975 * OpenGL ES Shading Language Specification, as well as any of the
4976 * following reasons:
4977 *
4978 * ...
4979 *
4980 * * program contains objects to form either a vertex shader or
4981 * fragment shader, and program is not separable, and does not
4982 * contain objects to form both a vertex shader and fragment
4983 * shader."
4984 *
4985 * However, the only scenario in 3.1+ where we don't require them both is
4986 * when we have a compute shader. For example:
4987 *
4988 * - No shaders is a link error.
4989 * - Geom or Tess without a Vertex shader is a link error which means we
4990 * always require a Vertex shader and hence a Fragment shader.
4991 * - Finally a Compute shader linked with any other stage is a link error.
4992 */
4993 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4994 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4995 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4996 linker_error(prog, "program lacks a vertex shader\n");
4997 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4998 linker_error(prog, "program lacks a fragment shader\n");
4999 }
5000 }
5001
5002 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5003 if (prog->_LinkedShaders[i] == NULL)
5004 continue;
5005
5006 const struct gl_shader_compiler_options *options =
5007 &ctx->Const.ShaderCompilerOptions[i];
5008
5009 if (options->LowerBufferInterfaceBlocks)
5010 lower_ubo_reference(prog->_LinkedShaders[i],
5011 options->ClampBlockIndicesToArrayBounds);
5012
5013 if (options->LowerShaderSharedVariables)
5014 lower_shared_reference(prog->_LinkedShaders[i],
5015 &prog->Comp.SharedSize);
5016
5017 lower_vector_derefs(prog->_LinkedShaders[i]);
5018 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
5019 }
5020
5021 done:
5022 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5023 free(shader_list[i]);
5024 if (prog->_LinkedShaders[i] == NULL)
5025 continue;
5026
5027 /* Do a final validation step to make sure that the IR wasn't
5028 * invalidated by any modifications performed after intrastage linking.
5029 */
5030 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5031
5032 /* Retain any live IR, but trash the rest. */
5033 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5034
5035 /* The symbol table in the linked shaders may contain references to
5036 * variables that were removed (e.g., unused uniforms). Since it may
5037 * contain junk, there is no possible valid use. Delete it and set the
5038 * pointer to NULL.
5039 */
5040 delete prog->_LinkedShaders[i]->symbols;
5041 prog->_LinkedShaders[i]->symbols = NULL;
5042 }
5043
5044 ralloc_free(mem_ctx);
5045 }