glsl: drop cache_fallback
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = linking_failure;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125 linker_error(prog, "declarations for %s `%s` have "
1126 "mismatching precision qualifiers\n",
1127 mode_string(var), var->name);
1128 return;
1129 } else {
1130 linker_warning(prog, "declarations for %s `%s` have "
1131 "mismatching precision qualifiers\n",
1132 mode_string(var), var->name);
1133 }
1134 }
1135 } else
1136 variables->add_variable(var);
1137 }
1138 }
1139
1140
1141 /**
1142 * Perform validation of uniforms used across multiple shader stages
1143 */
1144 static void
1145 cross_validate_uniforms(struct gl_shader_program *prog)
1146 {
1147 glsl_symbol_table variables;
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 if (prog->_LinkedShaders[i] == NULL)
1150 continue;
1151
1152 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1153 true);
1154 }
1155 }
1156
1157 /**
1158 * Accumulates the array of buffer blocks and checks that all definitions of
1159 * blocks agree on their contents.
1160 */
1161 static bool
1162 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1163 bool validate_ssbo)
1164 {
1165 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1166 struct gl_uniform_block *blks = NULL;
1167 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1168 &prog->data->NumUniformBlocks;
1169
1170 unsigned max_num_buffer_blocks = 0;
1171 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1172 if (prog->_LinkedShaders[i]) {
1173 if (validate_ssbo) {
1174 max_num_buffer_blocks +=
1175 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1176 } else {
1177 max_num_buffer_blocks +=
1178 prog->_LinkedShaders[i]->Program->info.num_ubos;
1179 }
1180 }
1181 }
1182
1183 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1184 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1185
1186 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1187 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1188 InterfaceBlockStageIndex[i][j] = -1;
1189
1190 if (sh == NULL)
1191 continue;
1192
1193 unsigned sh_num_blocks;
1194 struct gl_uniform_block **sh_blks;
1195 if (validate_ssbo) {
1196 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1197 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1198 } else {
1199 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1200 sh_blks = sh->Program->sh.UniformBlocks;
1201 }
1202
1203 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1204 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1205 sh_blks[j]);
1206
1207 if (index == -1) {
1208 linker_error(prog, "buffer block `%s' has mismatching "
1209 "definitions\n", sh_blks[j]->Name);
1210
1211 for (unsigned k = 0; k <= i; k++) {
1212 delete[] InterfaceBlockStageIndex[k];
1213 }
1214
1215 /* Reset the block count. This will help avoid various segfaults
1216 * from api calls that assume the array exists due to the count
1217 * being non-zero.
1218 */
1219 *num_blks = 0;
1220 return false;
1221 }
1222
1223 InterfaceBlockStageIndex[i][index] = j;
1224 }
1225 }
1226
1227 /* Update per stage block pointers to point to the program list.
1228 * FIXME: We should be able to free the per stage blocks here.
1229 */
1230 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1231 for (unsigned j = 0; j < *num_blks; j++) {
1232 int stage_index = InterfaceBlockStageIndex[i][j];
1233
1234 if (stage_index != -1) {
1235 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1236
1237 struct gl_uniform_block **sh_blks = validate_ssbo ?
1238 sh->Program->sh.ShaderStorageBlocks :
1239 sh->Program->sh.UniformBlocks;
1240
1241 blks[j].stageref |= sh_blks[stage_index]->stageref;
1242 sh_blks[stage_index] = &blks[j];
1243 }
1244 }
1245 }
1246
1247 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1248 delete[] InterfaceBlockStageIndex[i];
1249 }
1250
1251 if (validate_ssbo)
1252 prog->data->ShaderStorageBlocks = blks;
1253 else
1254 prog->data->UniformBlocks = blks;
1255
1256 return true;
1257 }
1258
1259
1260 /**
1261 * Populates a shaders symbol table with all global declarations
1262 */
1263 static void
1264 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1265 {
1266 sh->symbols = new(sh) glsl_symbol_table;
1267
1268 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1269 }
1270
1271
1272 /**
1273 * Remap variables referenced in an instruction tree
1274 *
1275 * This is used when instruction trees are cloned from one shader and placed in
1276 * another. These trees will contain references to \c ir_variable nodes that
1277 * do not exist in the target shader. This function finds these \c ir_variable
1278 * references and replaces the references with matching variables in the target
1279 * shader.
1280 *
1281 * If there is no matching variable in the target shader, a clone of the
1282 * \c ir_variable is made and added to the target shader. The new variable is
1283 * added to \b both the instruction stream and the symbol table.
1284 *
1285 * \param inst IR tree that is to be processed.
1286 * \param symbols Symbol table containing global scope symbols in the
1287 * linked shader.
1288 * \param instructions Instruction stream where new variable declarations
1289 * should be added.
1290 */
1291 static void
1292 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1293 hash_table *temps)
1294 {
1295 class remap_visitor : public ir_hierarchical_visitor {
1296 public:
1297 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1298 {
1299 this->target = target;
1300 this->symbols = target->symbols;
1301 this->instructions = target->ir;
1302 this->temps = temps;
1303 }
1304
1305 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1306 {
1307 if (ir->var->data.mode == ir_var_temporary) {
1308 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1309 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1310
1311 assert(var != NULL);
1312 ir->var = var;
1313 return visit_continue;
1314 }
1315
1316 ir_variable *const existing =
1317 this->symbols->get_variable(ir->var->name);
1318 if (existing != NULL)
1319 ir->var = existing;
1320 else {
1321 ir_variable *copy = ir->var->clone(this->target, NULL);
1322
1323 this->symbols->add_variable(copy);
1324 this->instructions->push_head(copy);
1325 ir->var = copy;
1326 }
1327
1328 return visit_continue;
1329 }
1330
1331 private:
1332 struct gl_linked_shader *target;
1333 glsl_symbol_table *symbols;
1334 exec_list *instructions;
1335 hash_table *temps;
1336 };
1337
1338 remap_visitor v(target, temps);
1339
1340 inst->accept(&v);
1341 }
1342
1343
1344 /**
1345 * Move non-declarations from one instruction stream to another
1346 *
1347 * The intended usage pattern of this function is to pass the pointer to the
1348 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1349 * pointer) for \c last and \c false for \c make_copies on the first
1350 * call. Successive calls pass the return value of the previous call for
1351 * \c last and \c true for \c make_copies.
1352 *
1353 * \param instructions Source instruction stream
1354 * \param last Instruction after which new instructions should be
1355 * inserted in the target instruction stream
1356 * \param make_copies Flag selecting whether instructions in \c instructions
1357 * should be copied (via \c ir_instruction::clone) into the
1358 * target list or moved.
1359 *
1360 * \return
1361 * The new "last" instruction in the target instruction stream. This pointer
1362 * is suitable for use as the \c last parameter of a later call to this
1363 * function.
1364 */
1365 static exec_node *
1366 move_non_declarations(exec_list *instructions, exec_node *last,
1367 bool make_copies, gl_linked_shader *target)
1368 {
1369 hash_table *temps = NULL;
1370
1371 if (make_copies)
1372 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1373 _mesa_key_pointer_equal);
1374
1375 foreach_in_list_safe(ir_instruction, inst, instructions) {
1376 if (inst->as_function())
1377 continue;
1378
1379 ir_variable *var = inst->as_variable();
1380 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1381 continue;
1382
1383 assert(inst->as_assignment()
1384 || inst->as_call()
1385 || inst->as_if() /* for initializers with the ?: operator */
1386 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1387
1388 if (make_copies) {
1389 inst = inst->clone(target, NULL);
1390
1391 if (var != NULL)
1392 _mesa_hash_table_insert(temps, var, inst);
1393 else
1394 remap_variables(inst, target, temps);
1395 } else {
1396 inst->remove();
1397 }
1398
1399 last->insert_after(inst);
1400 last = inst;
1401 }
1402
1403 if (make_copies)
1404 _mesa_hash_table_destroy(temps, NULL);
1405
1406 return last;
1407 }
1408
1409
1410 /**
1411 * This class is only used in link_intrastage_shaders() below but declaring
1412 * it inside that function leads to compiler warnings with some versions of
1413 * gcc.
1414 */
1415 class array_sizing_visitor : public deref_type_updater {
1416 public:
1417 array_sizing_visitor()
1418 : mem_ctx(ralloc_context(NULL)),
1419 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1420 _mesa_key_pointer_equal))
1421 {
1422 }
1423
1424 ~array_sizing_visitor()
1425 {
1426 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1427 ralloc_free(this->mem_ctx);
1428 }
1429
1430 virtual ir_visitor_status visit(ir_variable *var)
1431 {
1432 const glsl_type *type_without_array;
1433 bool implicit_sized_array = var->data.implicit_sized_array;
1434 fixup_type(&var->type, var->data.max_array_access,
1435 var->data.from_ssbo_unsized_array,
1436 &implicit_sized_array);
1437 var->data.implicit_sized_array = implicit_sized_array;
1438 type_without_array = var->type->without_array();
1439 if (var->type->is_interface()) {
1440 if (interface_contains_unsized_arrays(var->type)) {
1441 const glsl_type *new_type =
1442 resize_interface_members(var->type,
1443 var->get_max_ifc_array_access(),
1444 var->is_in_shader_storage_block());
1445 var->type = new_type;
1446 var->change_interface_type(new_type);
1447 }
1448 } else if (type_without_array->is_interface()) {
1449 if (interface_contains_unsized_arrays(type_without_array)) {
1450 const glsl_type *new_type =
1451 resize_interface_members(type_without_array,
1452 var->get_max_ifc_array_access(),
1453 var->is_in_shader_storage_block());
1454 var->change_interface_type(new_type);
1455 var->type = update_interface_members_array(var->type, new_type);
1456 }
1457 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1458 /* Store a pointer to the variable in the unnamed_interfaces
1459 * hashtable.
1460 */
1461 hash_entry *entry =
1462 _mesa_hash_table_search(this->unnamed_interfaces,
1463 ifc_type);
1464
1465 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1466
1467 if (interface_vars == NULL) {
1468 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1469 ifc_type->length);
1470 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1471 interface_vars);
1472 }
1473 unsigned index = ifc_type->field_index(var->name);
1474 assert(index < ifc_type->length);
1475 assert(interface_vars[index] == NULL);
1476 interface_vars[index] = var;
1477 }
1478 return visit_continue;
1479 }
1480
1481 /**
1482 * For each unnamed interface block that was discovered while running the
1483 * visitor, adjust the interface type to reflect the newly assigned array
1484 * sizes, and fix up the ir_variable nodes to point to the new interface
1485 * type.
1486 */
1487 void fixup_unnamed_interface_types()
1488 {
1489 hash_table_call_foreach(this->unnamed_interfaces,
1490 fixup_unnamed_interface_type, NULL);
1491 }
1492
1493 private:
1494 /**
1495 * If the type pointed to by \c type represents an unsized array, replace
1496 * it with a sized array whose size is determined by max_array_access.
1497 */
1498 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1499 bool from_ssbo_unsized_array, bool *implicit_sized)
1500 {
1501 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1502 *type = glsl_type::get_array_instance((*type)->fields.array,
1503 max_array_access + 1);
1504 *implicit_sized = true;
1505 assert(*type != NULL);
1506 }
1507 }
1508
1509 static const glsl_type *
1510 update_interface_members_array(const glsl_type *type,
1511 const glsl_type *new_interface_type)
1512 {
1513 const glsl_type *element_type = type->fields.array;
1514 if (element_type->is_array()) {
1515 const glsl_type *new_array_type =
1516 update_interface_members_array(element_type, new_interface_type);
1517 return glsl_type::get_array_instance(new_array_type, type->length);
1518 } else {
1519 return glsl_type::get_array_instance(new_interface_type,
1520 type->length);
1521 }
1522 }
1523
1524 /**
1525 * Determine whether the given interface type contains unsized arrays (if
1526 * it doesn't, array_sizing_visitor doesn't need to process it).
1527 */
1528 static bool interface_contains_unsized_arrays(const glsl_type *type)
1529 {
1530 for (unsigned i = 0; i < type->length; i++) {
1531 const glsl_type *elem_type = type->fields.structure[i].type;
1532 if (elem_type->is_unsized_array())
1533 return true;
1534 }
1535 return false;
1536 }
1537
1538 /**
1539 * Create a new interface type based on the given type, with unsized arrays
1540 * replaced by sized arrays whose size is determined by
1541 * max_ifc_array_access.
1542 */
1543 static const glsl_type *
1544 resize_interface_members(const glsl_type *type,
1545 const int *max_ifc_array_access,
1546 bool is_ssbo)
1547 {
1548 unsigned num_fields = type->length;
1549 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1550 memcpy(fields, type->fields.structure,
1551 num_fields * sizeof(*fields));
1552 for (unsigned i = 0; i < num_fields; i++) {
1553 bool implicit_sized_array = fields[i].implicit_sized_array;
1554 /* If SSBO last member is unsized array, we don't replace it by a sized
1555 * array.
1556 */
1557 if (is_ssbo && i == (num_fields - 1))
1558 fixup_type(&fields[i].type, max_ifc_array_access[i],
1559 true, &implicit_sized_array);
1560 else
1561 fixup_type(&fields[i].type, max_ifc_array_access[i],
1562 false, &implicit_sized_array);
1563 fields[i].implicit_sized_array = implicit_sized_array;
1564 }
1565 glsl_interface_packing packing =
1566 (glsl_interface_packing) type->interface_packing;
1567 bool row_major = (bool) type->interface_row_major;
1568 const glsl_type *new_ifc_type =
1569 glsl_type::get_interface_instance(fields, num_fields,
1570 packing, row_major, type->name);
1571 delete [] fields;
1572 return new_ifc_type;
1573 }
1574
1575 static void fixup_unnamed_interface_type(const void *key, void *data,
1576 void *)
1577 {
1578 const glsl_type *ifc_type = (const glsl_type *) key;
1579 ir_variable **interface_vars = (ir_variable **) data;
1580 unsigned num_fields = ifc_type->length;
1581 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1582 memcpy(fields, ifc_type->fields.structure,
1583 num_fields * sizeof(*fields));
1584 bool interface_type_changed = false;
1585 for (unsigned i = 0; i < num_fields; i++) {
1586 if (interface_vars[i] != NULL &&
1587 fields[i].type != interface_vars[i]->type) {
1588 fields[i].type = interface_vars[i]->type;
1589 interface_type_changed = true;
1590 }
1591 }
1592 if (!interface_type_changed) {
1593 delete [] fields;
1594 return;
1595 }
1596 glsl_interface_packing packing =
1597 (glsl_interface_packing) ifc_type->interface_packing;
1598 bool row_major = (bool) ifc_type->interface_row_major;
1599 const glsl_type *new_ifc_type =
1600 glsl_type::get_interface_instance(fields, num_fields, packing,
1601 row_major, ifc_type->name);
1602 delete [] fields;
1603 for (unsigned i = 0; i < num_fields; i++) {
1604 if (interface_vars[i] != NULL)
1605 interface_vars[i]->change_interface_type(new_ifc_type);
1606 }
1607 }
1608
1609 /**
1610 * Memory context used to allocate the data in \c unnamed_interfaces.
1611 */
1612 void *mem_ctx;
1613
1614 /**
1615 * Hash table from const glsl_type * to an array of ir_variable *'s
1616 * pointing to the ir_variables constituting each unnamed interface block.
1617 */
1618 hash_table *unnamed_interfaces;
1619 };
1620
1621 static bool
1622 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1623 struct gl_shader_program *prog)
1624 {
1625 /* We will validate doubles at a later stage */
1626 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1627 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1628 "multiple of 4 or if its applied to a type that is "
1629 "or contains a double a multiple of 8.",
1630 prog->TransformFeedback.BufferStride[idx]);
1631 return false;
1632 }
1633
1634 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1635 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1636 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1637 "limit has been exceeded.");
1638 return false;
1639 }
1640
1641 return true;
1642 }
1643
1644 /**
1645 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1646 * for later use.
1647 */
1648 static void
1649 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1650 struct gl_shader_program *prog,
1651 struct gl_shader **shader_list,
1652 unsigned num_shaders)
1653 {
1654 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1655 prog->TransformFeedback.BufferStride[i] = 0;
1656 }
1657
1658 for (unsigned i = 0; i < num_shaders; i++) {
1659 struct gl_shader *shader = shader_list[i];
1660
1661 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1662 if (shader->TransformFeedbackBufferStride[j]) {
1663 if (prog->TransformFeedback.BufferStride[j] == 0) {
1664 prog->TransformFeedback.BufferStride[j] =
1665 shader->TransformFeedbackBufferStride[j];
1666 if (!validate_xfb_buffer_stride(ctx, j, prog))
1667 return;
1668 } else if (prog->TransformFeedback.BufferStride[j] !=
1669 shader->TransformFeedbackBufferStride[j]){
1670 linker_error(prog,
1671 "intrastage shaders defined with conflicting "
1672 "xfb_stride for buffer %d (%d and %d)\n", j,
1673 prog->TransformFeedback.BufferStride[j],
1674 shader->TransformFeedbackBufferStride[j]);
1675 return;
1676 }
1677 }
1678 }
1679 }
1680 }
1681
1682 /**
1683 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1684 * global scope.
1685 */
1686 static void
1687 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1688 struct gl_shader **shader_list,
1689 unsigned num_shaders)
1690 {
1691 bool bindless_sampler, bindless_image;
1692 bool bound_sampler, bound_image;
1693
1694 bindless_sampler = bindless_image = false;
1695 bound_sampler = bound_image = false;
1696
1697 for (unsigned i = 0; i < num_shaders; i++) {
1698 struct gl_shader *shader = shader_list[i];
1699
1700 if (shader->bindless_sampler)
1701 bindless_sampler = true;
1702 if (shader->bindless_image)
1703 bindless_image = true;
1704 if (shader->bound_sampler)
1705 bound_sampler = true;
1706 if (shader->bound_image)
1707 bound_image = true;
1708
1709 if ((bindless_sampler && bound_sampler) ||
1710 (bindless_image && bound_image)) {
1711 /* From section 4.4.6 of the ARB_bindless_texture spec:
1712 *
1713 * "If both bindless_sampler and bound_sampler, or bindless_image
1714 * and bound_image, are declared at global scope in any
1715 * compilation unit, a link- time error will be generated."
1716 */
1717 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1718 "bindless_image and bound_image, can't be declared at "
1719 "global scope");
1720 }
1721 }
1722 }
1723
1724 /**
1725 * Performs the cross-validation of tessellation control shader vertices and
1726 * layout qualifiers for the attached tessellation control shaders,
1727 * and propagates them to the linked TCS and linked shader program.
1728 */
1729 static void
1730 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1731 struct gl_program *gl_prog,
1732 struct gl_shader **shader_list,
1733 unsigned num_shaders)
1734 {
1735 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1736 return;
1737
1738 gl_prog->info.tess.tcs_vertices_out = 0;
1739
1740 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1741 *
1742 * "All tessellation control shader layout declarations in a program
1743 * must specify the same output patch vertex count. There must be at
1744 * least one layout qualifier specifying an output patch vertex count
1745 * in any program containing tessellation control shaders; however,
1746 * such a declaration is not required in all tessellation control
1747 * shaders."
1748 */
1749
1750 for (unsigned i = 0; i < num_shaders; i++) {
1751 struct gl_shader *shader = shader_list[i];
1752
1753 if (shader->info.TessCtrl.VerticesOut != 0) {
1754 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1755 gl_prog->info.tess.tcs_vertices_out !=
1756 (unsigned) shader->info.TessCtrl.VerticesOut) {
1757 linker_error(prog, "tessellation control shader defined with "
1758 "conflicting output vertex count (%d and %d)\n",
1759 gl_prog->info.tess.tcs_vertices_out,
1760 shader->info.TessCtrl.VerticesOut);
1761 return;
1762 }
1763 gl_prog->info.tess.tcs_vertices_out =
1764 shader->info.TessCtrl.VerticesOut;
1765 }
1766 }
1767
1768 /* Just do the intrastage -> interstage propagation right now,
1769 * since we already know we're in the right type of shader program
1770 * for doing it.
1771 */
1772 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1773 linker_error(prog, "tessellation control shader didn't declare "
1774 "vertices out layout qualifier\n");
1775 return;
1776 }
1777 }
1778
1779
1780 /**
1781 * Performs the cross-validation of tessellation evaluation shader
1782 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1783 * for the attached tessellation evaluation shaders, and propagates them
1784 * to the linked TES and linked shader program.
1785 */
1786 static void
1787 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1788 struct gl_program *gl_prog,
1789 struct gl_shader **shader_list,
1790 unsigned num_shaders)
1791 {
1792 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1793 return;
1794
1795 int point_mode = -1;
1796 unsigned vertex_order = 0;
1797
1798 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1799 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1800
1801 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1802 *
1803 * "At least one tessellation evaluation shader (compilation unit) in
1804 * a program must declare a primitive mode in its input layout.
1805 * Declaration vertex spacing, ordering, and point mode identifiers is
1806 * optional. It is not required that all tessellation evaluation
1807 * shaders in a program declare a primitive mode. If spacing or
1808 * vertex ordering declarations are omitted, the tessellation
1809 * primitive generator will use equal spacing or counter-clockwise
1810 * vertex ordering, respectively. If a point mode declaration is
1811 * omitted, the tessellation primitive generator will produce lines or
1812 * triangles according to the primitive mode."
1813 */
1814
1815 for (unsigned i = 0; i < num_shaders; i++) {
1816 struct gl_shader *shader = shader_list[i];
1817
1818 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1819 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1820 gl_prog->info.tess.primitive_mode !=
1821 shader->info.TessEval.PrimitiveMode) {
1822 linker_error(prog, "tessellation evaluation shader defined with "
1823 "conflicting input primitive modes.\n");
1824 return;
1825 }
1826 gl_prog->info.tess.primitive_mode =
1827 shader->info.TessEval.PrimitiveMode;
1828 }
1829
1830 if (shader->info.TessEval.Spacing != 0) {
1831 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1832 shader->info.TessEval.Spacing) {
1833 linker_error(prog, "tessellation evaluation shader defined with "
1834 "conflicting vertex spacing.\n");
1835 return;
1836 }
1837 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1838 }
1839
1840 if (shader->info.TessEval.VertexOrder != 0) {
1841 if (vertex_order != 0 &&
1842 vertex_order != shader->info.TessEval.VertexOrder) {
1843 linker_error(prog, "tessellation evaluation shader defined with "
1844 "conflicting ordering.\n");
1845 return;
1846 }
1847 vertex_order = shader->info.TessEval.VertexOrder;
1848 }
1849
1850 if (shader->info.TessEval.PointMode != -1) {
1851 if (point_mode != -1 &&
1852 point_mode != shader->info.TessEval.PointMode) {
1853 linker_error(prog, "tessellation evaluation shader defined with "
1854 "conflicting point modes.\n");
1855 return;
1856 }
1857 point_mode = shader->info.TessEval.PointMode;
1858 }
1859
1860 }
1861
1862 /* Just do the intrastage -> interstage propagation right now,
1863 * since we already know we're in the right type of shader program
1864 * for doing it.
1865 */
1866 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1867 linker_error(prog,
1868 "tessellation evaluation shader didn't declare input "
1869 "primitive modes.\n");
1870 return;
1871 }
1872
1873 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1874 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1875
1876 if (vertex_order == 0 || vertex_order == GL_CCW)
1877 gl_prog->info.tess.ccw = true;
1878 else
1879 gl_prog->info.tess.ccw = false;
1880
1881
1882 if (point_mode == -1 || point_mode == GL_FALSE)
1883 gl_prog->info.tess.point_mode = false;
1884 else
1885 gl_prog->info.tess.point_mode = true;
1886 }
1887
1888
1889 /**
1890 * Performs the cross-validation of layout qualifiers specified in
1891 * redeclaration of gl_FragCoord for the attached fragment shaders,
1892 * and propagates them to the linked FS and linked shader program.
1893 */
1894 static void
1895 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1896 struct gl_linked_shader *linked_shader,
1897 struct gl_shader **shader_list,
1898 unsigned num_shaders)
1899 {
1900 bool redeclares_gl_fragcoord = false;
1901 bool uses_gl_fragcoord = false;
1902 bool origin_upper_left = false;
1903 bool pixel_center_integer = false;
1904
1905 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1906 (prog->data->Version < 150 &&
1907 !prog->ARB_fragment_coord_conventions_enable))
1908 return;
1909
1910 for (unsigned i = 0; i < num_shaders; i++) {
1911 struct gl_shader *shader = shader_list[i];
1912 /* From the GLSL 1.50 spec, page 39:
1913 *
1914 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1915 * it must be redeclared in all the fragment shaders in that program
1916 * that have a static use gl_FragCoord."
1917 */
1918 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1919 shader->uses_gl_fragcoord)
1920 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1921 uses_gl_fragcoord)) {
1922 linker_error(prog, "fragment shader defined with conflicting "
1923 "layout qualifiers for gl_FragCoord\n");
1924 }
1925
1926 /* From the GLSL 1.50 spec, page 39:
1927 *
1928 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1929 * single program must have the same set of qualifiers."
1930 */
1931 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1932 (shader->origin_upper_left != origin_upper_left ||
1933 shader->pixel_center_integer != pixel_center_integer)) {
1934 linker_error(prog, "fragment shader defined with conflicting "
1935 "layout qualifiers for gl_FragCoord\n");
1936 }
1937
1938 /* Update the linked shader state. Note that uses_gl_fragcoord should
1939 * accumulate the results. The other values should replace. If there
1940 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1941 * are already known to be the same.
1942 */
1943 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1944 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1945 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1946 origin_upper_left = shader->origin_upper_left;
1947 pixel_center_integer = shader->pixel_center_integer;
1948 }
1949
1950 linked_shader->Program->info.fs.early_fragment_tests |=
1951 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1952 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1953 linked_shader->Program->info.fs.post_depth_coverage |=
1954 shader->PostDepthCoverage;
1955
1956 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1957 }
1958 }
1959
1960 /**
1961 * Performs the cross-validation of geometry shader max_vertices and
1962 * primitive type layout qualifiers for the attached geometry shaders,
1963 * and propagates them to the linked GS and linked shader program.
1964 */
1965 static void
1966 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1967 struct gl_program *gl_prog,
1968 struct gl_shader **shader_list,
1969 unsigned num_shaders)
1970 {
1971 /* No in/out qualifiers defined for anything but GLSL 1.50+
1972 * geometry shaders so far.
1973 */
1974 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1975 prog->data->Version < 150)
1976 return;
1977
1978 int vertices_out = -1;
1979
1980 gl_prog->info.gs.invocations = 0;
1981 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1982 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1983
1984 /* From the GLSL 1.50 spec, page 46:
1985 *
1986 * "All geometry shader output layout declarations in a program
1987 * must declare the same layout and same value for
1988 * max_vertices. There must be at least one geometry output
1989 * layout declaration somewhere in a program, but not all
1990 * geometry shaders (compilation units) are required to
1991 * declare it."
1992 */
1993
1994 for (unsigned i = 0; i < num_shaders; i++) {
1995 struct gl_shader *shader = shader_list[i];
1996
1997 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1998 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1999 gl_prog->info.gs.input_primitive !=
2000 shader->info.Geom.InputType) {
2001 linker_error(prog, "geometry shader defined with conflicting "
2002 "input types\n");
2003 return;
2004 }
2005 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2006 }
2007
2008 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2009 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2010 gl_prog->info.gs.output_primitive !=
2011 shader->info.Geom.OutputType) {
2012 linker_error(prog, "geometry shader defined with conflicting "
2013 "output types\n");
2014 return;
2015 }
2016 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2017 }
2018
2019 if (shader->info.Geom.VerticesOut != -1) {
2020 if (vertices_out != -1 &&
2021 vertices_out != shader->info.Geom.VerticesOut) {
2022 linker_error(prog, "geometry shader defined with conflicting "
2023 "output vertex count (%d and %d)\n",
2024 vertices_out, shader->info.Geom.VerticesOut);
2025 return;
2026 }
2027 vertices_out = shader->info.Geom.VerticesOut;
2028 }
2029
2030 if (shader->info.Geom.Invocations != 0) {
2031 if (gl_prog->info.gs.invocations != 0 &&
2032 gl_prog->info.gs.invocations !=
2033 (unsigned) shader->info.Geom.Invocations) {
2034 linker_error(prog, "geometry shader defined with conflicting "
2035 "invocation count (%d and %d)\n",
2036 gl_prog->info.gs.invocations,
2037 shader->info.Geom.Invocations);
2038 return;
2039 }
2040 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2041 }
2042 }
2043
2044 /* Just do the intrastage -> interstage propagation right now,
2045 * since we already know we're in the right type of shader program
2046 * for doing it.
2047 */
2048 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2049 linker_error(prog,
2050 "geometry shader didn't declare primitive input type\n");
2051 return;
2052 }
2053
2054 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2055 linker_error(prog,
2056 "geometry shader didn't declare primitive output type\n");
2057 return;
2058 }
2059
2060 if (vertices_out == -1) {
2061 linker_error(prog,
2062 "geometry shader didn't declare max_vertices\n");
2063 return;
2064 } else {
2065 gl_prog->info.gs.vertices_out = vertices_out;
2066 }
2067
2068 if (gl_prog->info.gs.invocations == 0)
2069 gl_prog->info.gs.invocations = 1;
2070 }
2071
2072
2073 /**
2074 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2075 * qualifiers for the attached compute shaders, and propagate them to the
2076 * linked CS and linked shader program.
2077 */
2078 static void
2079 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2080 struct gl_program *gl_prog,
2081 struct gl_shader **shader_list,
2082 unsigned num_shaders)
2083 {
2084 /* This function is called for all shader stages, but it only has an effect
2085 * for compute shaders.
2086 */
2087 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2088 return;
2089
2090 for (int i = 0; i < 3; i++)
2091 gl_prog->info.cs.local_size[i] = 0;
2092
2093 gl_prog->info.cs.local_size_variable = false;
2094
2095 /* From the ARB_compute_shader spec, in the section describing local size
2096 * declarations:
2097 *
2098 * If multiple compute shaders attached to a single program object
2099 * declare local work-group size, the declarations must be identical;
2100 * otherwise a link-time error results. Furthermore, if a program
2101 * object contains any compute shaders, at least one must contain an
2102 * input layout qualifier specifying the local work sizes of the
2103 * program, or a link-time error will occur.
2104 */
2105 for (unsigned sh = 0; sh < num_shaders; sh++) {
2106 struct gl_shader *shader = shader_list[sh];
2107
2108 if (shader->info.Comp.LocalSize[0] != 0) {
2109 if (gl_prog->info.cs.local_size[0] != 0) {
2110 for (int i = 0; i < 3; i++) {
2111 if (gl_prog->info.cs.local_size[i] !=
2112 shader->info.Comp.LocalSize[i]) {
2113 linker_error(prog, "compute shader defined with conflicting "
2114 "local sizes\n");
2115 return;
2116 }
2117 }
2118 }
2119 for (int i = 0; i < 3; i++) {
2120 gl_prog->info.cs.local_size[i] =
2121 shader->info.Comp.LocalSize[i];
2122 }
2123 } else if (shader->info.Comp.LocalSizeVariable) {
2124 if (gl_prog->info.cs.local_size[0] != 0) {
2125 /* The ARB_compute_variable_group_size spec says:
2126 *
2127 * If one compute shader attached to a program declares a
2128 * variable local group size and a second compute shader
2129 * attached to the same program declares a fixed local group
2130 * size, a link-time error results.
2131 */
2132 linker_error(prog, "compute shader defined with both fixed and "
2133 "variable local group size\n");
2134 return;
2135 }
2136 gl_prog->info.cs.local_size_variable = true;
2137 }
2138 }
2139
2140 /* Just do the intrastage -> interstage propagation right now,
2141 * since we already know we're in the right type of shader program
2142 * for doing it.
2143 */
2144 if (gl_prog->info.cs.local_size[0] == 0 &&
2145 !gl_prog->info.cs.local_size_variable) {
2146 linker_error(prog, "compute shader must contain a fixed or a variable "
2147 "local group size\n");
2148 return;
2149 }
2150 }
2151
2152
2153 /**
2154 * Combine a group of shaders for a single stage to generate a linked shader
2155 *
2156 * \note
2157 * If this function is supplied a single shader, it is cloned, and the new
2158 * shader is returned.
2159 */
2160 struct gl_linked_shader *
2161 link_intrastage_shaders(void *mem_ctx,
2162 struct gl_context *ctx,
2163 struct gl_shader_program *prog,
2164 struct gl_shader **shader_list,
2165 unsigned num_shaders,
2166 bool allow_missing_main)
2167 {
2168 struct gl_uniform_block *ubo_blocks = NULL;
2169 struct gl_uniform_block *ssbo_blocks = NULL;
2170 unsigned num_ubo_blocks = 0;
2171 unsigned num_ssbo_blocks = 0;
2172
2173 /* Check that global variables defined in multiple shaders are consistent.
2174 */
2175 glsl_symbol_table variables;
2176 for (unsigned i = 0; i < num_shaders; i++) {
2177 if (shader_list[i] == NULL)
2178 continue;
2179 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2180 }
2181
2182 if (!prog->data->LinkStatus)
2183 return NULL;
2184
2185 /* Check that interface blocks defined in multiple shaders are consistent.
2186 */
2187 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2188 num_shaders);
2189 if (!prog->data->LinkStatus)
2190 return NULL;
2191
2192 /* Check that there is only a single definition of each function signature
2193 * across all shaders.
2194 */
2195 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2196 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2197 ir_function *const f = node->as_function();
2198
2199 if (f == NULL)
2200 continue;
2201
2202 for (unsigned j = i + 1; j < num_shaders; j++) {
2203 ir_function *const other =
2204 shader_list[j]->symbols->get_function(f->name);
2205
2206 /* If the other shader has no function (and therefore no function
2207 * signatures) with the same name, skip to the next shader.
2208 */
2209 if (other == NULL)
2210 continue;
2211
2212 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2213 if (!sig->is_defined)
2214 continue;
2215
2216 ir_function_signature *other_sig =
2217 other->exact_matching_signature(NULL, &sig->parameters);
2218
2219 if (other_sig != NULL && other_sig->is_defined) {
2220 linker_error(prog, "function `%s' is multiply defined\n",
2221 f->name);
2222 return NULL;
2223 }
2224 }
2225 }
2226 }
2227 }
2228
2229 /* Find the shader that defines main, and make a clone of it.
2230 *
2231 * Starting with the clone, search for undefined references. If one is
2232 * found, find the shader that defines it. Clone the reference and add
2233 * it to the shader. Repeat until there are no undefined references or
2234 * until a reference cannot be resolved.
2235 */
2236 gl_shader *main = NULL;
2237 for (unsigned i = 0; i < num_shaders; i++) {
2238 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2239 main = shader_list[i];
2240 break;
2241 }
2242 }
2243
2244 if (main == NULL && allow_missing_main)
2245 main = shader_list[0];
2246
2247 if (main == NULL) {
2248 linker_error(prog, "%s shader lacks `main'\n",
2249 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2250 return NULL;
2251 }
2252
2253 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2254 linked->Stage = shader_list[0]->Stage;
2255
2256 /* Create program and attach it to the linked shader */
2257 struct gl_program *gl_prog =
2258 ctx->Driver.NewProgram(ctx,
2259 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2260 prog->Name, false);
2261 if (!gl_prog) {
2262 prog->data->LinkStatus = linking_failure;
2263 _mesa_delete_linked_shader(ctx, linked);
2264 return NULL;
2265 }
2266
2267 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2268
2269 /* Don't use _mesa_reference_program() just take ownership */
2270 linked->Program = gl_prog;
2271
2272 linked->ir = new(linked) exec_list;
2273 clone_ir_list(mem_ctx, linked->ir, main->ir);
2274
2275 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2276 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2277 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2278 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2279 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2280
2281 if (linked->Stage != MESA_SHADER_FRAGMENT)
2282 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2283
2284 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2285
2286 populate_symbol_table(linked, shader_list[0]->symbols);
2287
2288 /* The pointer to the main function in the final linked shader (i.e., the
2289 * copy of the original shader that contained the main function).
2290 */
2291 ir_function_signature *const main_sig =
2292 _mesa_get_main_function_signature(linked->symbols);
2293
2294 /* Move any instructions other than variable declarations or function
2295 * declarations into main.
2296 */
2297 if (main_sig != NULL) {
2298 exec_node *insertion_point =
2299 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2300 linked);
2301
2302 for (unsigned i = 0; i < num_shaders; i++) {
2303 if (shader_list[i] == main)
2304 continue;
2305
2306 insertion_point = move_non_declarations(shader_list[i]->ir,
2307 insertion_point, true, linked);
2308 }
2309 }
2310
2311 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2312 _mesa_delete_linked_shader(ctx, linked);
2313 return NULL;
2314 }
2315
2316 /* Make a pass over all variable declarations to ensure that arrays with
2317 * unspecified sizes have a size specified. The size is inferred from the
2318 * max_array_access field.
2319 */
2320 array_sizing_visitor v;
2321 v.run(linked->ir);
2322 v.fixup_unnamed_interface_types();
2323
2324 /* Link up uniform blocks defined within this stage. */
2325 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2326 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2327
2328 if (!prog->data->LinkStatus) {
2329 _mesa_delete_linked_shader(ctx, linked);
2330 return NULL;
2331 }
2332
2333 /* Copy ubo blocks to linked shader list */
2334 linked->Program->sh.UniformBlocks =
2335 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2336 ralloc_steal(linked, ubo_blocks);
2337 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2338 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2339 }
2340 linked->Program->info.num_ubos = num_ubo_blocks;
2341
2342 /* Copy ssbo blocks to linked shader list */
2343 linked->Program->sh.ShaderStorageBlocks =
2344 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2345 ralloc_steal(linked, ssbo_blocks);
2346 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2347 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2348 }
2349 linked->Program->info.num_ssbos = num_ssbo_blocks;
2350
2351 /* At this point linked should contain all of the linked IR, so
2352 * validate it to make sure nothing went wrong.
2353 */
2354 validate_ir_tree(linked->ir);
2355
2356 /* Set the size of geometry shader input arrays */
2357 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2358 unsigned num_vertices =
2359 vertices_per_prim(gl_prog->info.gs.input_primitive);
2360 array_resize_visitor input_resize_visitor(num_vertices, prog,
2361 MESA_SHADER_GEOMETRY);
2362 foreach_in_list(ir_instruction, ir, linked->ir) {
2363 ir->accept(&input_resize_visitor);
2364 }
2365 }
2366
2367 if (ctx->Const.VertexID_is_zero_based)
2368 lower_vertex_id(linked);
2369
2370 if (ctx->Const.LowerCsDerivedVariables)
2371 lower_cs_derived(linked);
2372
2373 #ifdef DEBUG
2374 /* Compute the source checksum. */
2375 linked->SourceChecksum = 0;
2376 for (unsigned i = 0; i < num_shaders; i++) {
2377 if (shader_list[i] == NULL)
2378 continue;
2379 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2380 }
2381 #endif
2382
2383 return linked;
2384 }
2385
2386 /**
2387 * Update the sizes of linked shader uniform arrays to the maximum
2388 * array index used.
2389 *
2390 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2391 *
2392 * If one or more elements of an array are active,
2393 * GetActiveUniform will return the name of the array in name,
2394 * subject to the restrictions listed above. The type of the array
2395 * is returned in type. The size parameter contains the highest
2396 * array element index used, plus one. The compiler or linker
2397 * determines the highest index used. There will be only one
2398 * active uniform reported by the GL per uniform array.
2399
2400 */
2401 static void
2402 update_array_sizes(struct gl_shader_program *prog)
2403 {
2404 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2405 if (prog->_LinkedShaders[i] == NULL)
2406 continue;
2407
2408 bool types_were_updated = false;
2409
2410 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2411 ir_variable *const var = node->as_variable();
2412
2413 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2414 !var->type->is_array())
2415 continue;
2416
2417 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2418 * will not be eliminated. Since we always do std140, just
2419 * don't resize arrays in UBOs.
2420 *
2421 * Atomic counters are supposed to get deterministic
2422 * locations assigned based on the declaration ordering and
2423 * sizes, array compaction would mess that up.
2424 *
2425 * Subroutine uniforms are not removed.
2426 */
2427 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2428 var->type->contains_subroutine() || var->constant_initializer)
2429 continue;
2430
2431 int size = var->data.max_array_access;
2432 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2433 if (prog->_LinkedShaders[j] == NULL)
2434 continue;
2435
2436 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2437 ir_variable *other_var = node2->as_variable();
2438 if (!other_var)
2439 continue;
2440
2441 if (strcmp(var->name, other_var->name) == 0 &&
2442 other_var->data.max_array_access > size) {
2443 size = other_var->data.max_array_access;
2444 }
2445 }
2446 }
2447
2448 if (size + 1 != (int)var->type->length) {
2449 /* If this is a built-in uniform (i.e., it's backed by some
2450 * fixed-function state), adjust the number of state slots to
2451 * match the new array size. The number of slots per array entry
2452 * is not known. It seems safe to assume that the total number of
2453 * slots is an integer multiple of the number of array elements.
2454 * Determine the number of slots per array element by dividing by
2455 * the old (total) size.
2456 */
2457 const unsigned num_slots = var->get_num_state_slots();
2458 if (num_slots > 0) {
2459 var->set_num_state_slots((size + 1)
2460 * (num_slots / var->type->length));
2461 }
2462
2463 var->type = glsl_type::get_array_instance(var->type->fields.array,
2464 size + 1);
2465 types_were_updated = true;
2466 }
2467 }
2468
2469 /* Update the types of dereferences in case we changed any. */
2470 if (types_were_updated) {
2471 deref_type_updater v;
2472 v.run(prog->_LinkedShaders[i]->ir);
2473 }
2474 }
2475 }
2476
2477 /**
2478 * Resize tessellation evaluation per-vertex inputs to the size of
2479 * tessellation control per-vertex outputs.
2480 */
2481 static void
2482 resize_tes_inputs(struct gl_context *ctx,
2483 struct gl_shader_program *prog)
2484 {
2485 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2486 return;
2487
2488 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2489 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2490
2491 /* If no control shader is present, then the TES inputs are statically
2492 * sized to MaxPatchVertices; the actual size of the arrays won't be
2493 * known until draw time.
2494 */
2495 const int num_vertices = tcs
2496 ? tcs->Program->info.tess.tcs_vertices_out
2497 : ctx->Const.MaxPatchVertices;
2498
2499 array_resize_visitor input_resize_visitor(num_vertices, prog,
2500 MESA_SHADER_TESS_EVAL);
2501 foreach_in_list(ir_instruction, ir, tes->ir) {
2502 ir->accept(&input_resize_visitor);
2503 }
2504
2505 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2506 /* Convert the gl_PatchVerticesIn system value into a constant, since
2507 * the value is known at this point.
2508 */
2509 foreach_in_list(ir_instruction, ir, tes->ir) {
2510 ir_variable *var = ir->as_variable();
2511 if (var && var->data.mode == ir_var_system_value &&
2512 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2513 void *mem_ctx = ralloc_parent(var);
2514 var->data.location = 0;
2515 var->data.explicit_location = false;
2516 if (tcs) {
2517 var->data.mode = ir_var_auto;
2518 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2519 } else {
2520 var->data.mode = ir_var_uniform;
2521 var->data.how_declared = ir_var_hidden;
2522 var->allocate_state_slots(1);
2523 ir_state_slot *slot0 = &var->get_state_slots()[0];
2524 slot0->swizzle = SWIZZLE_XXXX;
2525 slot0->tokens[0] = STATE_INTERNAL;
2526 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2527 for (int i = 2; i < STATE_LENGTH; i++)
2528 slot0->tokens[i] = 0;
2529 }
2530 }
2531 }
2532 }
2533 }
2534
2535 /**
2536 * Find a contiguous set of available bits in a bitmask.
2537 *
2538 * \param used_mask Bits representing used (1) and unused (0) locations
2539 * \param needed_count Number of contiguous bits needed.
2540 *
2541 * \return
2542 * Base location of the available bits on success or -1 on failure.
2543 */
2544 static int
2545 find_available_slots(unsigned used_mask, unsigned needed_count)
2546 {
2547 unsigned needed_mask = (1 << needed_count) - 1;
2548 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2549
2550 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2551 * cannot optimize possibly infinite loops" for the loop below.
2552 */
2553 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2554 return -1;
2555
2556 for (int i = 0; i <= max_bit_to_test; i++) {
2557 if ((needed_mask & ~used_mask) == needed_mask)
2558 return i;
2559
2560 needed_mask <<= 1;
2561 }
2562
2563 return -1;
2564 }
2565
2566
2567 /**
2568 * Assign locations for either VS inputs or FS outputs
2569 *
2570 * \param mem_ctx Temporary ralloc context used for linking
2571 * \param prog Shader program whose variables need locations assigned
2572 * \param constants Driver specific constant values for the program.
2573 * \param target_index Selector for the program target to receive location
2574 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2575 * \c MESA_SHADER_FRAGMENT.
2576 *
2577 * \return
2578 * If locations are successfully assigned, true is returned. Otherwise an
2579 * error is emitted to the shader link log and false is returned.
2580 */
2581 static bool
2582 assign_attribute_or_color_locations(void *mem_ctx,
2583 gl_shader_program *prog,
2584 struct gl_constants *constants,
2585 unsigned target_index)
2586 {
2587 /* Maximum number of generic locations. This corresponds to either the
2588 * maximum number of draw buffers or the maximum number of generic
2589 * attributes.
2590 */
2591 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2592 constants->Program[target_index].MaxAttribs :
2593 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2594
2595 /* Mark invalid locations as being used.
2596 */
2597 unsigned used_locations = (max_index >= 32)
2598 ? ~0 : ~((1 << max_index) - 1);
2599 unsigned double_storage_locations = 0;
2600
2601 assert((target_index == MESA_SHADER_VERTEX)
2602 || (target_index == MESA_SHADER_FRAGMENT));
2603
2604 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2605 if (sh == NULL)
2606 return true;
2607
2608 /* Operate in a total of four passes.
2609 *
2610 * 1. Invalidate the location assignments for all vertex shader inputs.
2611 *
2612 * 2. Assign locations for inputs that have user-defined (via
2613 * glBindVertexAttribLocation) locations and outputs that have
2614 * user-defined locations (via glBindFragDataLocation).
2615 *
2616 * 3. Sort the attributes without assigned locations by number of slots
2617 * required in decreasing order. Fragmentation caused by attribute
2618 * locations assigned by the application may prevent large attributes
2619 * from having enough contiguous space.
2620 *
2621 * 4. Assign locations to any inputs without assigned locations.
2622 */
2623
2624 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2625 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2626
2627 const enum ir_variable_mode direction =
2628 (target_index == MESA_SHADER_VERTEX)
2629 ? ir_var_shader_in : ir_var_shader_out;
2630
2631
2632 /* Temporary storage for the set of attributes that need locations assigned.
2633 */
2634 struct temp_attr {
2635 unsigned slots;
2636 ir_variable *var;
2637
2638 /* Used below in the call to qsort. */
2639 static int compare(const void *a, const void *b)
2640 {
2641 const temp_attr *const l = (const temp_attr *) a;
2642 const temp_attr *const r = (const temp_attr *) b;
2643
2644 /* Reversed because we want a descending order sort below. */
2645 return r->slots - l->slots;
2646 }
2647 } to_assign[32];
2648 assert(max_index <= 32);
2649
2650 /* Temporary array for the set of attributes that have locations assigned,
2651 * for the purpose of checking overlapping slots/components of (non-ES)
2652 * fragment shader outputs.
2653 */
2654 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2655 unsigned assigned_attr = 0;
2656
2657 unsigned num_attr = 0;
2658
2659 foreach_in_list(ir_instruction, node, sh->ir) {
2660 ir_variable *const var = node->as_variable();
2661
2662 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2663 continue;
2664
2665 if (var->data.explicit_location) {
2666 var->data.is_unmatched_generic_inout = 0;
2667 if ((var->data.location >= (int)(max_index + generic_base))
2668 || (var->data.location < 0)) {
2669 linker_error(prog,
2670 "invalid explicit location %d specified for `%s'\n",
2671 (var->data.location < 0)
2672 ? var->data.location
2673 : var->data.location - generic_base,
2674 var->name);
2675 return false;
2676 }
2677 } else if (target_index == MESA_SHADER_VERTEX) {
2678 unsigned binding;
2679
2680 if (prog->AttributeBindings->get(binding, var->name)) {
2681 assert(binding >= VERT_ATTRIB_GENERIC0);
2682 var->data.location = binding;
2683 var->data.is_unmatched_generic_inout = 0;
2684 }
2685 } else if (target_index == MESA_SHADER_FRAGMENT) {
2686 unsigned binding;
2687 unsigned index;
2688 const char *name = var->name;
2689 const glsl_type *type = var->type;
2690
2691 while (type) {
2692 /* Check if there's a binding for the variable name */
2693 if (prog->FragDataBindings->get(binding, name)) {
2694 assert(binding >= FRAG_RESULT_DATA0);
2695 var->data.location = binding;
2696 var->data.is_unmatched_generic_inout = 0;
2697
2698 if (prog->FragDataIndexBindings->get(index, name)) {
2699 var->data.index = index;
2700 }
2701 break;
2702 }
2703
2704 /* If not, but it's an array type, look for name[0] */
2705 if (type->is_array()) {
2706 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2707 type = type->fields.array;
2708 continue;
2709 }
2710
2711 break;
2712 }
2713 }
2714
2715 if (strcmp(var->name, "gl_LastFragData") == 0)
2716 continue;
2717
2718 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2719 *
2720 * "Output binding assignments will cause LinkProgram to fail:
2721 * ...
2722 * If the program has an active output assigned to a location greater
2723 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2724 * an active output assigned an index greater than or equal to one;"
2725 */
2726 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2727 var->data.location - generic_base >=
2728 (int) constants->MaxDualSourceDrawBuffers) {
2729 linker_error(prog,
2730 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2731 "with index %u for %s\n",
2732 var->data.location - generic_base, var->data.index,
2733 var->name);
2734 return false;
2735 }
2736
2737 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2738
2739 /* If the variable is not a built-in and has a location statically
2740 * assigned in the shader (presumably via a layout qualifier), make sure
2741 * that it doesn't collide with other assigned locations. Otherwise,
2742 * add it to the list of variables that need linker-assigned locations.
2743 */
2744 if (var->data.location != -1) {
2745 if (var->data.location >= generic_base && var->data.index < 1) {
2746 /* From page 61 of the OpenGL 4.0 spec:
2747 *
2748 * "LinkProgram will fail if the attribute bindings assigned
2749 * by BindAttribLocation do not leave not enough space to
2750 * assign a location for an active matrix attribute or an
2751 * active attribute array, both of which require multiple
2752 * contiguous generic attributes."
2753 *
2754 * I think above text prohibits the aliasing of explicit and
2755 * automatic assignments. But, aliasing is allowed in manual
2756 * assignments of attribute locations. See below comments for
2757 * the details.
2758 *
2759 * From OpenGL 4.0 spec, page 61:
2760 *
2761 * "It is possible for an application to bind more than one
2762 * attribute name to the same location. This is referred to as
2763 * aliasing. This will only work if only one of the aliased
2764 * attributes is active in the executable program, or if no
2765 * path through the shader consumes more than one attribute of
2766 * a set of attributes aliased to the same location. A link
2767 * error can occur if the linker determines that every path
2768 * through the shader consumes multiple aliased attributes,
2769 * but implementations are not required to generate an error
2770 * in this case."
2771 *
2772 * From GLSL 4.30 spec, page 54:
2773 *
2774 * "A program will fail to link if any two non-vertex shader
2775 * input variables are assigned to the same location. For
2776 * vertex shaders, multiple input variables may be assigned
2777 * to the same location using either layout qualifiers or via
2778 * the OpenGL API. However, such aliasing is intended only to
2779 * support vertex shaders where each execution path accesses
2780 * at most one input per each location. Implementations are
2781 * permitted, but not required, to generate link-time errors
2782 * if they detect that every path through the vertex shader
2783 * executable accesses multiple inputs assigned to any single
2784 * location. For all shader types, a program will fail to link
2785 * if explicit location assignments leave the linker unable
2786 * to find space for other variables without explicit
2787 * assignments."
2788 *
2789 * From OpenGL ES 3.0 spec, page 56:
2790 *
2791 * "Binding more than one attribute name to the same location
2792 * is referred to as aliasing, and is not permitted in OpenGL
2793 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2794 * fail when this condition exists. However, aliasing is
2795 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2796 * This will only work if only one of the aliased attributes
2797 * is active in the executable program, or if no path through
2798 * the shader consumes more than one attribute of a set of
2799 * attributes aliased to the same location. A link error can
2800 * occur if the linker determines that every path through the
2801 * shader consumes multiple aliased attributes, but implemen-
2802 * tations are not required to generate an error in this case."
2803 *
2804 * After looking at above references from OpenGL, OpenGL ES and
2805 * GLSL specifications, we allow aliasing of vertex input variables
2806 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2807 *
2808 * NOTE: This is not required by the spec but its worth mentioning
2809 * here that we're not doing anything to make sure that no path
2810 * through the vertex shader executable accesses multiple inputs
2811 * assigned to any single location.
2812 */
2813
2814 /* Mask representing the contiguous slots that will be used by
2815 * this attribute.
2816 */
2817 const unsigned attr = var->data.location - generic_base;
2818 const unsigned use_mask = (1 << slots) - 1;
2819 const char *const string = (target_index == MESA_SHADER_VERTEX)
2820 ? "vertex shader input" : "fragment shader output";
2821
2822 /* Generate a link error if the requested locations for this
2823 * attribute exceed the maximum allowed attribute location.
2824 */
2825 if (attr + slots > max_index) {
2826 linker_error(prog,
2827 "insufficient contiguous locations "
2828 "available for %s `%s' %d %d %d\n", string,
2829 var->name, used_locations, use_mask, attr);
2830 return false;
2831 }
2832
2833 /* Generate a link error if the set of bits requested for this
2834 * attribute overlaps any previously allocated bits.
2835 */
2836 if ((~(use_mask << attr) & used_locations) != used_locations) {
2837 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2838 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2839 * 4.40 spec:
2840 *
2841 * "Additionally, for fragment shader outputs, if two
2842 * variables are placed within the same location, they
2843 * must have the same underlying type (floating-point or
2844 * integer). No component aliasing of output variables or
2845 * members is allowed.
2846 */
2847 for (unsigned i = 0; i < assigned_attr; i++) {
2848 unsigned assigned_slots =
2849 assigned[i]->type->count_attribute_slots(false);
2850 unsigned assig_attr =
2851 assigned[i]->data.location - generic_base;
2852 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2853
2854 if ((assigned_use_mask << assig_attr) &
2855 (use_mask << attr)) {
2856
2857 const glsl_type *assigned_type =
2858 assigned[i]->type->without_array();
2859 const glsl_type *type = var->type->without_array();
2860 if (assigned_type->base_type != type->base_type) {
2861 linker_error(prog, "types do not match for aliased"
2862 " %ss %s and %s\n", string,
2863 assigned[i]->name, var->name);
2864 return false;
2865 }
2866
2867 unsigned assigned_component_mask =
2868 ((1 << assigned_type->vector_elements) - 1) <<
2869 assigned[i]->data.location_frac;
2870 unsigned component_mask =
2871 ((1 << type->vector_elements) - 1) <<
2872 var->data.location_frac;
2873 if (assigned_component_mask & component_mask) {
2874 linker_error(prog, "overlapping component is "
2875 "assigned to %ss %s and %s "
2876 "(component=%d)\n",
2877 string, assigned[i]->name, var->name,
2878 var->data.location_frac);
2879 return false;
2880 }
2881 }
2882 }
2883 } else if (target_index == MESA_SHADER_FRAGMENT ||
2884 (prog->IsES && prog->data->Version >= 300)) {
2885 linker_error(prog, "overlapping location is assigned "
2886 "to %s `%s' %d %d %d\n", string, var->name,
2887 used_locations, use_mask, attr);
2888 return false;
2889 } else {
2890 linker_warning(prog, "overlapping location is assigned "
2891 "to %s `%s' %d %d %d\n", string, var->name,
2892 used_locations, use_mask, attr);
2893 }
2894 }
2895
2896 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2897 /* Only track assigned variables for non-ES fragment shaders
2898 * to avoid overflowing the array.
2899 *
2900 * At most one variable per fragment output component should
2901 * reach this.
2902 */
2903 assert(assigned_attr < ARRAY_SIZE(assigned));
2904 assigned[assigned_attr] = var;
2905 assigned_attr++;
2906 }
2907
2908 used_locations |= (use_mask << attr);
2909
2910 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2911 *
2912 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2913 * active attribute variables may fail to link, unless
2914 * device-dependent optimizations are able to make the program
2915 * fit within available hardware resources. For the purposes
2916 * of this test, attribute variables of the type dvec3, dvec4,
2917 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2918 * count as consuming twice as many attributes as equivalent
2919 * single-precision types. While these types use the same number
2920 * of generic attributes as their single-precision equivalents,
2921 * implementations are permitted to consume two single-precision
2922 * vectors of internal storage for each three- or four-component
2923 * double-precision vector."
2924 *
2925 * Mark this attribute slot as taking up twice as much space
2926 * so we can count it properly against limits. According to
2927 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2928 * is optional behavior, but it seems preferable.
2929 */
2930 if (var->type->without_array()->is_dual_slot())
2931 double_storage_locations |= (use_mask << attr);
2932 }
2933
2934 continue;
2935 }
2936
2937 if (num_attr >= max_index) {
2938 linker_error(prog, "too many %s (max %u)",
2939 target_index == MESA_SHADER_VERTEX ?
2940 "vertex shader inputs" : "fragment shader outputs",
2941 max_index);
2942 return false;
2943 }
2944 to_assign[num_attr].slots = slots;
2945 to_assign[num_attr].var = var;
2946 num_attr++;
2947 }
2948
2949 if (target_index == MESA_SHADER_VERTEX) {
2950 unsigned total_attribs_size =
2951 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2952 _mesa_bitcount(double_storage_locations);
2953 if (total_attribs_size > max_index) {
2954 linker_error(prog,
2955 "attempt to use %d vertex attribute slots only %d available ",
2956 total_attribs_size, max_index);
2957 return false;
2958 }
2959 }
2960
2961 /* If all of the attributes were assigned locations by the application (or
2962 * are built-in attributes with fixed locations), return early. This should
2963 * be the common case.
2964 */
2965 if (num_attr == 0)
2966 return true;
2967
2968 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2969
2970 if (target_index == MESA_SHADER_VERTEX) {
2971 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2972 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2973 * reserved to prevent it from being automatically allocated below.
2974 */
2975 find_deref_visitor find("gl_Vertex");
2976 find.run(sh->ir);
2977 if (find.variable_found())
2978 used_locations |= (1 << 0);
2979 }
2980
2981 for (unsigned i = 0; i < num_attr; i++) {
2982 /* Mask representing the contiguous slots that will be used by this
2983 * attribute.
2984 */
2985 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2986
2987 int location = find_available_slots(used_locations, to_assign[i].slots);
2988
2989 if (location < 0) {
2990 const char *const string = (target_index == MESA_SHADER_VERTEX)
2991 ? "vertex shader input" : "fragment shader output";
2992
2993 linker_error(prog,
2994 "insufficient contiguous locations "
2995 "available for %s `%s'\n",
2996 string, to_assign[i].var->name);
2997 return false;
2998 }
2999
3000 to_assign[i].var->data.location = generic_base + location;
3001 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3002 used_locations |= (use_mask << location);
3003
3004 if (to_assign[i].var->type->without_array()->is_dual_slot())
3005 double_storage_locations |= (use_mask << location);
3006 }
3007
3008 /* Now that we have all the locations, from the GL 4.5 core spec, section
3009 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3010 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3011 * as equivalent single-precision types.
3012 */
3013 if (target_index == MESA_SHADER_VERTEX) {
3014 unsigned total_attribs_size =
3015 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3016 _mesa_bitcount(double_storage_locations);
3017 if (total_attribs_size > max_index) {
3018 linker_error(prog,
3019 "attempt to use %d vertex attribute slots only %d available ",
3020 total_attribs_size, max_index);
3021 return false;
3022 }
3023 }
3024
3025 return true;
3026 }
3027
3028 /**
3029 * Match explicit locations of outputs to inputs and deactivate the
3030 * unmatch flag if found so we don't optimise them away.
3031 */
3032 static void
3033 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3034 gl_linked_shader *consumer)
3035 {
3036 glsl_symbol_table parameters;
3037 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3038 { {NULL, NULL} };
3039
3040 /* Find all shader outputs in the "producer" stage.
3041 */
3042 foreach_in_list(ir_instruction, node, producer->ir) {
3043 ir_variable *const var = node->as_variable();
3044
3045 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3046 continue;
3047
3048 if (var->data.explicit_location &&
3049 var->data.location >= VARYING_SLOT_VAR0) {
3050 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3051 if (explicit_locations[idx][var->data.location_frac] == NULL)
3052 explicit_locations[idx][var->data.location_frac] = var;
3053 }
3054 }
3055
3056 /* Match inputs to outputs */
3057 foreach_in_list(ir_instruction, node, consumer->ir) {
3058 ir_variable *const input = node->as_variable();
3059
3060 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3061 continue;
3062
3063 ir_variable *output = NULL;
3064 if (input->data.explicit_location
3065 && input->data.location >= VARYING_SLOT_VAR0) {
3066 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3067 [input->data.location_frac];
3068
3069 if (output != NULL){
3070 input->data.is_unmatched_generic_inout = 0;
3071 output->data.is_unmatched_generic_inout = 0;
3072 }
3073 }
3074 }
3075 }
3076
3077 /**
3078 * Store the gl_FragDepth layout in the gl_shader_program struct.
3079 */
3080 static void
3081 store_fragdepth_layout(struct gl_shader_program *prog)
3082 {
3083 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3084 return;
3085 }
3086
3087 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3088
3089 /* We don't look up the gl_FragDepth symbol directly because if
3090 * gl_FragDepth is not used in the shader, it's removed from the IR.
3091 * However, the symbol won't be removed from the symbol table.
3092 *
3093 * We're only interested in the cases where the variable is NOT removed
3094 * from the IR.
3095 */
3096 foreach_in_list(ir_instruction, node, ir) {
3097 ir_variable *const var = node->as_variable();
3098
3099 if (var == NULL || var->data.mode != ir_var_shader_out) {
3100 continue;
3101 }
3102
3103 if (strcmp(var->name, "gl_FragDepth") == 0) {
3104 switch (var->data.depth_layout) {
3105 case ir_depth_layout_none:
3106 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3107 return;
3108 case ir_depth_layout_any:
3109 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3110 return;
3111 case ir_depth_layout_greater:
3112 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3113 return;
3114 case ir_depth_layout_less:
3115 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3116 return;
3117 case ir_depth_layout_unchanged:
3118 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3119 return;
3120 default:
3121 assert(0);
3122 return;
3123 }
3124 }
3125 }
3126 }
3127
3128 /**
3129 * Validate the resources used by a program versus the implementation limits
3130 */
3131 static void
3132 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3133 {
3134 unsigned total_uniform_blocks = 0;
3135 unsigned total_shader_storage_blocks = 0;
3136
3137 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3138 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3139
3140 if (sh == NULL)
3141 continue;
3142
3143 if (sh->Program->info.num_textures >
3144 ctx->Const.Program[i].MaxTextureImageUnits) {
3145 linker_error(prog, "Too many %s shader texture samplers\n",
3146 _mesa_shader_stage_to_string(i));
3147 }
3148
3149 if (sh->num_uniform_components >
3150 ctx->Const.Program[i].MaxUniformComponents) {
3151 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3152 linker_warning(prog, "Too many %s shader default uniform block "
3153 "components, but the driver will try to optimize "
3154 "them out; this is non-portable out-of-spec "
3155 "behavior\n",
3156 _mesa_shader_stage_to_string(i));
3157 } else {
3158 linker_error(prog, "Too many %s shader default uniform block "
3159 "components\n",
3160 _mesa_shader_stage_to_string(i));
3161 }
3162 }
3163
3164 if (sh->num_combined_uniform_components >
3165 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3166 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3167 linker_warning(prog, "Too many %s shader uniform components, "
3168 "but the driver will try to optimize them out; "
3169 "this is non-portable out-of-spec behavior\n",
3170 _mesa_shader_stage_to_string(i));
3171 } else {
3172 linker_error(prog, "Too many %s shader uniform components\n",
3173 _mesa_shader_stage_to_string(i));
3174 }
3175 }
3176
3177 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3178 total_uniform_blocks += sh->Program->info.num_ubos;
3179
3180 const unsigned max_uniform_blocks =
3181 ctx->Const.Program[i].MaxUniformBlocks;
3182 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3183 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3184 _mesa_shader_stage_to_string(i),
3185 sh->Program->info.num_ubos, max_uniform_blocks);
3186 }
3187
3188 const unsigned max_shader_storage_blocks =
3189 ctx->Const.Program[i].MaxShaderStorageBlocks;
3190 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3191 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3192 _mesa_shader_stage_to_string(i),
3193 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3194 }
3195 }
3196
3197 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3198 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3199 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3200 }
3201
3202 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3203 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3204 total_shader_storage_blocks,
3205 ctx->Const.MaxCombinedShaderStorageBlocks);
3206 }
3207
3208 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3209 if (prog->data->UniformBlocks[i].UniformBufferSize >
3210 ctx->Const.MaxUniformBlockSize) {
3211 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3212 prog->data->UniformBlocks[i].Name,
3213 prog->data->UniformBlocks[i].UniformBufferSize,
3214 ctx->Const.MaxUniformBlockSize);
3215 }
3216 }
3217
3218 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3219 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3220 ctx->Const.MaxShaderStorageBlockSize) {
3221 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3222 prog->data->ShaderStorageBlocks[i].Name,
3223 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3224 ctx->Const.MaxShaderStorageBlockSize);
3225 }
3226 }
3227 }
3228
3229 static void
3230 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3231 {
3232 unsigned mask = prog->data->linked_stages;
3233 while (mask) {
3234 const int i = u_bit_scan(&mask);
3235 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3236
3237 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3238 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3239 continue;
3240
3241 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3242
3243 if (!uni)
3244 continue;
3245
3246 int count = 0;
3247 if (p->sh.NumSubroutineFunctions == 0) {
3248 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3249 continue;
3250 }
3251 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3252 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3253 for (int k = 0; k < fn->num_compat_types; k++) {
3254 if (fn->types[k] == uni->type) {
3255 count++;
3256 break;
3257 }
3258 }
3259 }
3260 uni->num_compatible_subroutines = count;
3261 }
3262 }
3263 }
3264
3265 static void
3266 check_subroutine_resources(struct gl_shader_program *prog)
3267 {
3268 unsigned mask = prog->data->linked_stages;
3269 while (mask) {
3270 const int i = u_bit_scan(&mask);
3271 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3272
3273 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3274 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3275 _mesa_shader_stage_to_string(i));
3276 }
3277 }
3278 }
3279 /**
3280 * Validate shader image resources.
3281 */
3282 static void
3283 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3284 {
3285 unsigned total_image_units = 0;
3286 unsigned fragment_outputs = 0;
3287 unsigned total_shader_storage_blocks = 0;
3288
3289 if (!ctx->Extensions.ARB_shader_image_load_store)
3290 return;
3291
3292 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3293 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3294
3295 if (sh) {
3296 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3297 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3298 _mesa_shader_stage_to_string(i),
3299 sh->Program->info.num_images,
3300 ctx->Const.Program[i].MaxImageUniforms);
3301
3302 total_image_units += sh->Program->info.num_images;
3303 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3304
3305 if (i == MESA_SHADER_FRAGMENT) {
3306 foreach_in_list(ir_instruction, node, sh->ir) {
3307 ir_variable *var = node->as_variable();
3308 if (var && var->data.mode == ir_var_shader_out)
3309 /* since there are no double fs outputs - pass false */
3310 fragment_outputs += var->type->count_attribute_slots(false);
3311 }
3312 }
3313 }
3314 }
3315
3316 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3317 linker_error(prog, "Too many combined image uniforms\n");
3318
3319 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3320 ctx->Const.MaxCombinedShaderOutputResources)
3321 linker_error(prog, "Too many combined image uniforms, shader storage "
3322 " buffers and fragment outputs\n");
3323 }
3324
3325
3326 /**
3327 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3328 * for a variable, checks for overlaps between other uniforms using explicit
3329 * locations.
3330 */
3331 static int
3332 reserve_explicit_locations(struct gl_shader_program *prog,
3333 string_to_uint_map *map, ir_variable *var)
3334 {
3335 unsigned slots = var->type->uniform_locations();
3336 unsigned max_loc = var->data.location + slots - 1;
3337 unsigned return_value = slots;
3338
3339 /* Resize remap table if locations do not fit in the current one. */
3340 if (max_loc + 1 > prog->NumUniformRemapTable) {
3341 prog->UniformRemapTable =
3342 reralloc(prog, prog->UniformRemapTable,
3343 gl_uniform_storage *,
3344 max_loc + 1);
3345
3346 if (!prog->UniformRemapTable) {
3347 linker_error(prog, "Out of memory during linking.\n");
3348 return -1;
3349 }
3350
3351 /* Initialize allocated space. */
3352 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3353 prog->UniformRemapTable[i] = NULL;
3354
3355 prog->NumUniformRemapTable = max_loc + 1;
3356 }
3357
3358 for (unsigned i = 0; i < slots; i++) {
3359 unsigned loc = var->data.location + i;
3360
3361 /* Check if location is already used. */
3362 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3363
3364 /* Possibly same uniform from a different stage, this is ok. */
3365 unsigned hash_loc;
3366 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3367 return_value = 0;
3368 continue;
3369 }
3370
3371 /* ARB_explicit_uniform_location specification states:
3372 *
3373 * "No two default-block uniform variables in the program can have
3374 * the same location, even if they are unused, otherwise a compiler
3375 * or linker error will be generated."
3376 */
3377 linker_error(prog,
3378 "location qualifier for uniform %s overlaps "
3379 "previously used location\n",
3380 var->name);
3381 return -1;
3382 }
3383
3384 /* Initialize location as inactive before optimization
3385 * rounds and location assignment.
3386 */
3387 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3388 }
3389
3390 /* Note, base location used for arrays. */
3391 map->put(var->data.location, var->name);
3392
3393 return return_value;
3394 }
3395
3396 static bool
3397 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3398 struct gl_program *p,
3399 ir_variable *var)
3400 {
3401 unsigned slots = var->type->uniform_locations();
3402 unsigned max_loc = var->data.location + slots - 1;
3403
3404 /* Resize remap table if locations do not fit in the current one. */
3405 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3406 p->sh.SubroutineUniformRemapTable =
3407 reralloc(p, p->sh.SubroutineUniformRemapTable,
3408 gl_uniform_storage *,
3409 max_loc + 1);
3410
3411 if (!p->sh.SubroutineUniformRemapTable) {
3412 linker_error(prog, "Out of memory during linking.\n");
3413 return false;
3414 }
3415
3416 /* Initialize allocated space. */
3417 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3418 p->sh.SubroutineUniformRemapTable[i] = NULL;
3419
3420 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3421 }
3422
3423 for (unsigned i = 0; i < slots; i++) {
3424 unsigned loc = var->data.location + i;
3425
3426 /* Check if location is already used. */
3427 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3428
3429 /* ARB_explicit_uniform_location specification states:
3430 * "No two subroutine uniform variables can have the same location
3431 * in the same shader stage, otherwise a compiler or linker error
3432 * will be generated."
3433 */
3434 linker_error(prog,
3435 "location qualifier for uniform %s overlaps "
3436 "previously used location\n",
3437 var->name);
3438 return false;
3439 }
3440
3441 /* Initialize location as inactive before optimization
3442 * rounds and location assignment.
3443 */
3444 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3445 }
3446
3447 return true;
3448 }
3449 /**
3450 * Check and reserve all explicit uniform locations, called before
3451 * any optimizations happen to handle also inactive uniforms and
3452 * inactive array elements that may get trimmed away.
3453 */
3454 static void
3455 check_explicit_uniform_locations(struct gl_context *ctx,
3456 struct gl_shader_program *prog)
3457 {
3458 prog->NumExplicitUniformLocations = 0;
3459
3460 if (!ctx->Extensions.ARB_explicit_uniform_location)
3461 return;
3462
3463 /* This map is used to detect if overlapping explicit locations
3464 * occur with the same uniform (from different stage) or a different one.
3465 */
3466 string_to_uint_map *uniform_map = new string_to_uint_map;
3467
3468 if (!uniform_map) {
3469 linker_error(prog, "Out of memory during linking.\n");
3470 return;
3471 }
3472
3473 unsigned entries_total = 0;
3474 unsigned mask = prog->data->linked_stages;
3475 while (mask) {
3476 const int i = u_bit_scan(&mask);
3477 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3478
3479 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3480 ir_variable *var = node->as_variable();
3481 if (!var || var->data.mode != ir_var_uniform)
3482 continue;
3483
3484 if (var->data.explicit_location) {
3485 bool ret = false;
3486 if (var->type->without_array()->is_subroutine())
3487 ret = reserve_subroutine_explicit_locations(prog, p, var);
3488 else {
3489 int slots = reserve_explicit_locations(prog, uniform_map,
3490 var);
3491 if (slots != -1) {
3492 ret = true;
3493 entries_total += slots;
3494 }
3495 }
3496 if (!ret) {
3497 delete uniform_map;
3498 return;
3499 }
3500 }
3501 }
3502 }
3503
3504 struct empty_uniform_block *current_block = NULL;
3505
3506 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3507 /* We found empty space in UniformRemapTable. */
3508 if (prog->UniformRemapTable[i] == NULL) {
3509 /* We've found the beginning of a new continous block of empty slots */
3510 if (!current_block || current_block->start + current_block->slots != i) {
3511 current_block = rzalloc(prog, struct empty_uniform_block);
3512 current_block->start = i;
3513 exec_list_push_tail(&prog->EmptyUniformLocations,
3514 &current_block->link);
3515 }
3516
3517 /* The current block continues, so we simply increment its slots */
3518 current_block->slots++;
3519 }
3520 }
3521
3522 delete uniform_map;
3523 prog->NumExplicitUniformLocations = entries_total;
3524 }
3525
3526 static bool
3527 should_add_buffer_variable(struct gl_shader_program *shProg,
3528 GLenum type, const char *name)
3529 {
3530 bool found_interface = false;
3531 unsigned block_name_len = 0;
3532 const char *block_name_dot = strchr(name, '.');
3533
3534 /* These rules only apply to buffer variables. So we return
3535 * true for the rest of types.
3536 */
3537 if (type != GL_BUFFER_VARIABLE)
3538 return true;
3539
3540 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3541 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3542 block_name_len = strlen(block_name);
3543
3544 const char *block_square_bracket = strchr(block_name, '[');
3545 if (block_square_bracket) {
3546 /* The block is part of an array of named interfaces,
3547 * for the name comparison we ignore the "[x]" part.
3548 */
3549 block_name_len -= strlen(block_square_bracket);
3550 }
3551
3552 if (block_name_dot) {
3553 /* Check if the variable name starts with the interface
3554 * name. The interface name (if present) should have the
3555 * length than the interface block name we are comparing to.
3556 */
3557 unsigned len = strlen(name) - strlen(block_name_dot);
3558 if (len != block_name_len)
3559 continue;
3560 }
3561
3562 if (strncmp(block_name, name, block_name_len) == 0) {
3563 found_interface = true;
3564 break;
3565 }
3566 }
3567
3568 /* We remove the interface name from the buffer variable name,
3569 * including the dot that follows it.
3570 */
3571 if (found_interface)
3572 name = name + block_name_len + 1;
3573
3574 /* The ARB_program_interface_query spec says:
3575 *
3576 * "For an active shader storage block member declared as an array, an
3577 * entry will be generated only for the first array element, regardless
3578 * of its type. For arrays of aggregate types, the enumeration rules
3579 * are applied recursively for the single enumerated array element."
3580 */
3581 const char *struct_first_dot = strchr(name, '.');
3582 const char *first_square_bracket = strchr(name, '[');
3583
3584 /* The buffer variable is on top level and it is not an array */
3585 if (!first_square_bracket) {
3586 return true;
3587 /* The shader storage block member is a struct, then generate the entry */
3588 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3589 return true;
3590 } else {
3591 /* Shader storage block member is an array, only generate an entry for the
3592 * first array element.
3593 */
3594 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3595 return true;
3596 }
3597
3598 return false;
3599 }
3600
3601 static bool
3602 add_program_resource(struct gl_shader_program *prog,
3603 struct set *resource_set,
3604 GLenum type, const void *data, uint8_t stages)
3605 {
3606 assert(data);
3607
3608 /* If resource already exists, do not add it again. */
3609 if (_mesa_set_search(resource_set, data))
3610 return true;
3611
3612 prog->data->ProgramResourceList =
3613 reralloc(prog,
3614 prog->data->ProgramResourceList,
3615 gl_program_resource,
3616 prog->data->NumProgramResourceList + 1);
3617
3618 if (!prog->data->ProgramResourceList) {
3619 linker_error(prog, "Out of memory during linking.\n");
3620 return false;
3621 }
3622
3623 struct gl_program_resource *res =
3624 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3625
3626 res->Type = type;
3627 res->Data = data;
3628 res->StageReferences = stages;
3629
3630 prog->data->NumProgramResourceList++;
3631
3632 _mesa_set_add(resource_set, data);
3633
3634 return true;
3635 }
3636
3637 /* Function checks if a variable var is a packed varying and
3638 * if given name is part of packed varying's list.
3639 *
3640 * If a variable is a packed varying, it has a name like
3641 * 'packed:a,b,c' where a, b and c are separate variables.
3642 */
3643 static bool
3644 included_in_packed_varying(ir_variable *var, const char *name)
3645 {
3646 if (strncmp(var->name, "packed:", 7) != 0)
3647 return false;
3648
3649 char *list = strdup(var->name + 7);
3650 assert(list);
3651
3652 bool found = false;
3653 char *saveptr;
3654 char *token = strtok_r(list, ",", &saveptr);
3655 while (token) {
3656 if (strcmp(token, name) == 0) {
3657 found = true;
3658 break;
3659 }
3660 token = strtok_r(NULL, ",", &saveptr);
3661 }
3662 free(list);
3663 return found;
3664 }
3665
3666 /**
3667 * Function builds a stage reference bitmask from variable name.
3668 */
3669 static uint8_t
3670 build_stageref(struct gl_shader_program *shProg, const char *name,
3671 unsigned mode)
3672 {
3673 uint8_t stages = 0;
3674
3675 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3676 * used for reference mask in gl_program_resource will need to be changed.
3677 */
3678 assert(MESA_SHADER_STAGES < 8);
3679
3680 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3681 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3682 if (!sh)
3683 continue;
3684
3685 /* Shader symbol table may contain variables that have
3686 * been optimized away. Search IR for the variable instead.
3687 */
3688 foreach_in_list(ir_instruction, node, sh->ir) {
3689 ir_variable *var = node->as_variable();
3690 if (var) {
3691 unsigned baselen = strlen(var->name);
3692
3693 if (included_in_packed_varying(var, name)) {
3694 stages |= (1 << i);
3695 break;
3696 }
3697
3698 /* Type needs to match if specified, otherwise we might
3699 * pick a variable with same name but different interface.
3700 */
3701 if (var->data.mode != mode)
3702 continue;
3703
3704 if (strncmp(var->name, name, baselen) == 0) {
3705 /* Check for exact name matches but also check for arrays and
3706 * structs.
3707 */
3708 if (name[baselen] == '\0' ||
3709 name[baselen] == '[' ||
3710 name[baselen] == '.') {
3711 stages |= (1 << i);
3712 break;
3713 }
3714 }
3715 }
3716 }
3717 }
3718 return stages;
3719 }
3720
3721 /**
3722 * Create gl_shader_variable from ir_variable class.
3723 */
3724 static gl_shader_variable *
3725 create_shader_variable(struct gl_shader_program *shProg,
3726 const ir_variable *in,
3727 const char *name, const glsl_type *type,
3728 const glsl_type *interface_type,
3729 bool use_implicit_location, int location,
3730 const glsl_type *outermost_struct_type)
3731 {
3732 /* Allocate zero-initialized memory to ensure that bitfield padding
3733 * is zero.
3734 */
3735 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3736 if (!out)
3737 return NULL;
3738
3739 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3740 * expect to see gl_VertexID in the program resource list. Pretend.
3741 */
3742 if (in->data.mode == ir_var_system_value &&
3743 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3744 out->name = ralloc_strdup(shProg, "gl_VertexID");
3745 } else if ((in->data.mode == ir_var_shader_out &&
3746 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3747 (in->data.mode == ir_var_system_value &&
3748 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3749 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3750 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3751 } else if ((in->data.mode == ir_var_shader_out &&
3752 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3753 (in->data.mode == ir_var_system_value &&
3754 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3755 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3756 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3757 } else {
3758 out->name = ralloc_strdup(shProg, name);
3759 }
3760
3761 if (!out->name)
3762 return NULL;
3763
3764 /* The ARB_program_interface_query spec says:
3765 *
3766 * "Not all active variables are assigned valid locations; the
3767 * following variables will have an effective location of -1:
3768 *
3769 * * uniforms declared as atomic counters;
3770 *
3771 * * members of a uniform block;
3772 *
3773 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3774 *
3775 * * inputs or outputs not declared with a "location" layout
3776 * qualifier, except for vertex shader inputs and fragment shader
3777 * outputs."
3778 */
3779 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3780 !(in->data.explicit_location || use_implicit_location)) {
3781 out->location = -1;
3782 } else {
3783 out->location = location;
3784 }
3785
3786 out->type = type;
3787 out->outermost_struct_type = outermost_struct_type;
3788 out->interface_type = interface_type;
3789 out->component = in->data.location_frac;
3790 out->index = in->data.index;
3791 out->patch = in->data.patch;
3792 out->mode = in->data.mode;
3793 out->interpolation = in->data.interpolation;
3794 out->explicit_location = in->data.explicit_location;
3795 out->precision = in->data.precision;
3796
3797 return out;
3798 }
3799
3800 static bool
3801 add_shader_variable(const struct gl_context *ctx,
3802 struct gl_shader_program *shProg,
3803 struct set *resource_set,
3804 unsigned stage_mask,
3805 GLenum programInterface, ir_variable *var,
3806 const char *name, const glsl_type *type,
3807 bool use_implicit_location, int location,
3808 bool inouts_share_location,
3809 const glsl_type *outermost_struct_type = NULL)
3810 {
3811 const glsl_type *interface_type = var->get_interface_type();
3812
3813 if (outermost_struct_type == NULL) {
3814 if (var->data.from_named_ifc_block) {
3815 const char *interface_name = interface_type->name;
3816
3817 if (interface_type->is_array()) {
3818 /* Issue #16 of the ARB_program_interface_query spec says:
3819 *
3820 * "* If a variable is a member of an interface block without an
3821 * instance name, it is enumerated using just the variable name.
3822 *
3823 * * If a variable is a member of an interface block with an
3824 * instance name, it is enumerated as "BlockName.Member", where
3825 * "BlockName" is the name of the interface block (not the
3826 * instance name) and "Member" is the name of the variable."
3827 *
3828 * In particular, it indicates that it should be "BlockName",
3829 * not "BlockName[array length]". The conformance suite and
3830 * dEQP both require this behavior.
3831 *
3832 * Here, we unwrap the extra array level added by named interface
3833 * block array lowering so we have the correct variable type. We
3834 * also unwrap the interface type when constructing the name.
3835 *
3836 * We leave interface_type the same so that ES 3.x SSO pipeline
3837 * validation can enforce the rules requiring array length to
3838 * match on interface blocks.
3839 */
3840 type = type->fields.array;
3841
3842 interface_name = interface_type->fields.array->name;
3843 }
3844
3845 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3846 }
3847 }
3848
3849 switch (type->base_type) {
3850 case GLSL_TYPE_STRUCT: {
3851 /* The ARB_program_interface_query spec says:
3852 *
3853 * "For an active variable declared as a structure, a separate entry
3854 * will be generated for each active structure member. The name of
3855 * each entry is formed by concatenating the name of the structure,
3856 * the "." character, and the name of the structure member. If a
3857 * structure member to enumerate is itself a structure or array,
3858 * these enumeration rules are applied recursively."
3859 */
3860 if (outermost_struct_type == NULL)
3861 outermost_struct_type = type;
3862
3863 unsigned field_location = location;
3864 for (unsigned i = 0; i < type->length; i++) {
3865 const struct glsl_struct_field *field = &type->fields.structure[i];
3866 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3867 if (!add_shader_variable(ctx, shProg, resource_set,
3868 stage_mask, programInterface,
3869 var, field_name, field->type,
3870 use_implicit_location, field_location,
3871 false, outermost_struct_type))
3872 return false;
3873
3874 field_location += field->type->count_attribute_slots(false);
3875 }
3876 return true;
3877 }
3878
3879 case GLSL_TYPE_ARRAY: {
3880 /* The ARB_program_interface_query spec says:
3881 *
3882 * "For an active variable declared as an array of basic types, a
3883 * single entry will be generated, with its name string formed by
3884 * concatenating the name of the array and the string "[0]"."
3885 *
3886 * "For an active variable declared as an array of an aggregate data
3887 * type (structures or arrays), a separate entry will be generated
3888 * for each active array element, unless noted immediately below.
3889 * The name of each entry is formed by concatenating the name of
3890 * the array, the "[" character, an integer identifying the element
3891 * number, and the "]" character. These enumeration rules are
3892 * applied recursively, treating each enumerated array element as a
3893 * separate active variable."
3894 */
3895 const struct glsl_type *array_type = type->fields.array;
3896 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3897 array_type->base_type == GLSL_TYPE_ARRAY) {
3898 unsigned elem_location = location;
3899 unsigned stride = inouts_share_location ? 0 :
3900 array_type->count_attribute_slots(false);
3901 for (unsigned i = 0; i < type->length; i++) {
3902 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3903 if (!add_shader_variable(ctx, shProg, resource_set,
3904 stage_mask, programInterface,
3905 var, elem, array_type,
3906 use_implicit_location, elem_location,
3907 false, outermost_struct_type))
3908 return false;
3909 elem_location += stride;
3910 }
3911 return true;
3912 }
3913 /* fallthrough */
3914 }
3915
3916 default: {
3917 /* The ARB_program_interface_query spec says:
3918 *
3919 * "For an active variable declared as a single instance of a basic
3920 * type, a single entry will be generated, using the variable name
3921 * from the shader source."
3922 */
3923 gl_shader_variable *sha_v =
3924 create_shader_variable(shProg, var, name, type, interface_type,
3925 use_implicit_location, location,
3926 outermost_struct_type);
3927 if (!sha_v)
3928 return false;
3929
3930 return add_program_resource(shProg, resource_set,
3931 programInterface, sha_v, stage_mask);
3932 }
3933 }
3934 }
3935
3936 static bool
3937 inout_has_same_location(const ir_variable *var, unsigned stage)
3938 {
3939 if (!var->data.patch &&
3940 ((var->data.mode == ir_var_shader_out &&
3941 stage == MESA_SHADER_TESS_CTRL) ||
3942 (var->data.mode == ir_var_shader_in &&
3943 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3944 stage == MESA_SHADER_GEOMETRY))))
3945 return true;
3946 else
3947 return false;
3948 }
3949
3950 static bool
3951 add_interface_variables(const struct gl_context *ctx,
3952 struct gl_shader_program *shProg,
3953 struct set *resource_set,
3954 unsigned stage, GLenum programInterface)
3955 {
3956 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3957
3958 foreach_in_list(ir_instruction, node, ir) {
3959 ir_variable *var = node->as_variable();
3960
3961 if (!var || var->data.how_declared == ir_var_hidden)
3962 continue;
3963
3964 int loc_bias;
3965
3966 switch (var->data.mode) {
3967 case ir_var_system_value:
3968 case ir_var_shader_in:
3969 if (programInterface != GL_PROGRAM_INPUT)
3970 continue;
3971 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3972 : int(VARYING_SLOT_VAR0);
3973 break;
3974 case ir_var_shader_out:
3975 if (programInterface != GL_PROGRAM_OUTPUT)
3976 continue;
3977 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3978 : int(VARYING_SLOT_VAR0);
3979 break;
3980 default:
3981 continue;
3982 };
3983
3984 if (var->data.patch)
3985 loc_bias = int(VARYING_SLOT_PATCH0);
3986
3987 /* Skip packed varyings, packed varyings are handled separately
3988 * by add_packed_varyings.
3989 */
3990 if (strncmp(var->name, "packed:", 7) == 0)
3991 continue;
3992
3993 /* Skip fragdata arrays, these are handled separately
3994 * by add_fragdata_arrays.
3995 */
3996 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3997 continue;
3998
3999 const bool vs_input_or_fs_output =
4000 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4001 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4002
4003 if (!add_shader_variable(ctx, shProg, resource_set,
4004 1 << stage, programInterface,
4005 var, var->name, var->type, vs_input_or_fs_output,
4006 var->data.location - loc_bias,
4007 inout_has_same_location(var, stage)))
4008 return false;
4009 }
4010 return true;
4011 }
4012
4013 static bool
4014 add_packed_varyings(const struct gl_context *ctx,
4015 struct gl_shader_program *shProg,
4016 struct set *resource_set,
4017 int stage, GLenum type)
4018 {
4019 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4020 GLenum iface;
4021
4022 if (!sh || !sh->packed_varyings)
4023 return true;
4024
4025 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4026 ir_variable *var = node->as_variable();
4027 if (var) {
4028 switch (var->data.mode) {
4029 case ir_var_shader_in:
4030 iface = GL_PROGRAM_INPUT;
4031 break;
4032 case ir_var_shader_out:
4033 iface = GL_PROGRAM_OUTPUT;
4034 break;
4035 default:
4036 unreachable("unexpected type");
4037 }
4038
4039 if (type == iface) {
4040 const int stage_mask =
4041 build_stageref(shProg, var->name, var->data.mode);
4042 if (!add_shader_variable(ctx, shProg, resource_set,
4043 stage_mask,
4044 iface, var, var->name, var->type, false,
4045 var->data.location - VARYING_SLOT_VAR0,
4046 inout_has_same_location(var, stage)))
4047 return false;
4048 }
4049 }
4050 }
4051 return true;
4052 }
4053
4054 static bool
4055 add_fragdata_arrays(const struct gl_context *ctx,
4056 struct gl_shader_program *shProg,
4057 struct set *resource_set)
4058 {
4059 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4060
4061 if (!sh || !sh->fragdata_arrays)
4062 return true;
4063
4064 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4065 ir_variable *var = node->as_variable();
4066 if (var) {
4067 assert(var->data.mode == ir_var_shader_out);
4068
4069 if (!add_shader_variable(ctx, shProg, resource_set,
4070 1 << MESA_SHADER_FRAGMENT,
4071 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4072 true, var->data.location - FRAG_RESULT_DATA0,
4073 false))
4074 return false;
4075 }
4076 }
4077 return true;
4078 }
4079
4080 static char*
4081 get_top_level_name(const char *name)
4082 {
4083 const char *first_dot = strchr(name, '.');
4084 const char *first_square_bracket = strchr(name, '[');
4085 int name_size = 0;
4086
4087 /* The ARB_program_interface_query spec says:
4088 *
4089 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4090 * the number of active array elements of the top-level shader storage
4091 * block member containing to the active variable is written to
4092 * <params>. If the top-level block member is not declared as an
4093 * array, the value one is written to <params>. If the top-level block
4094 * member is an array with no declared size, the value zero is written
4095 * to <params>."
4096 */
4097
4098 /* The buffer variable is on top level.*/
4099 if (!first_square_bracket && !first_dot)
4100 name_size = strlen(name);
4101 else if ((!first_square_bracket ||
4102 (first_dot && first_dot < first_square_bracket)))
4103 name_size = first_dot - name;
4104 else
4105 name_size = first_square_bracket - name;
4106
4107 return strndup(name, name_size);
4108 }
4109
4110 static char*
4111 get_var_name(const char *name)
4112 {
4113 const char *first_dot = strchr(name, '.');
4114
4115 if (!first_dot)
4116 return strdup(name);
4117
4118 return strndup(first_dot+1, strlen(first_dot) - 1);
4119 }
4120
4121 static bool
4122 is_top_level_shader_storage_block_member(const char* name,
4123 const char* interface_name,
4124 const char* field_name)
4125 {
4126 bool result = false;
4127
4128 /* If the given variable is already a top-level shader storage
4129 * block member, then return array_size = 1.
4130 * We could have two possibilities: if we have an instanced
4131 * shader storage block or not instanced.
4132 *
4133 * For the first, we check create a name as it was in top level and
4134 * compare it with the real name. If they are the same, then
4135 * the variable is already at top-level.
4136 *
4137 * Full instanced name is: interface name + '.' + var name +
4138 * NULL character
4139 */
4140 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4141 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4142 if (!full_instanced_name) {
4143 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4144 return false;
4145 }
4146
4147 snprintf(full_instanced_name, name_length, "%s.%s",
4148 interface_name, field_name);
4149
4150 /* Check if its top-level shader storage block member of an
4151 * instanced interface block, or of a unnamed interface block.
4152 */
4153 if (strcmp(name, full_instanced_name) == 0 ||
4154 strcmp(name, field_name) == 0)
4155 result = true;
4156
4157 free(full_instanced_name);
4158 return result;
4159 }
4160
4161 static int
4162 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4163 char *interface_name, char *var_name)
4164 {
4165 /* The ARB_program_interface_query spec says:
4166 *
4167 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4168 * the number of active array elements of the top-level shader storage
4169 * block member containing to the active variable is written to
4170 * <params>. If the top-level block member is not declared as an
4171 * array, the value one is written to <params>. If the top-level block
4172 * member is an array with no declared size, the value zero is written
4173 * to <params>."
4174 */
4175 if (is_top_level_shader_storage_block_member(uni->name,
4176 interface_name,
4177 var_name))
4178 return 1;
4179 else if (field->type->is_unsized_array())
4180 return 0;
4181 else if (field->type->is_array())
4182 return field->type->length;
4183
4184 return 1;
4185 }
4186
4187 static int
4188 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4189 const glsl_type *interface, const glsl_struct_field *field,
4190 char *interface_name, char *var_name)
4191 {
4192 /* The ARB_program_interface_query spec says:
4193 *
4194 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4195 * identifying the stride between array elements of the top-level
4196 * shader storage block member containing the active variable is
4197 * written to <params>. For top-level block members declared as
4198 * arrays, the value written is the difference, in basic machine units,
4199 * between the offsets of the active variable for consecutive elements
4200 * in the top-level array. For top-level block members not declared as
4201 * an array, zero is written to <params>."
4202 */
4203 if (field->type->is_array()) {
4204 const enum glsl_matrix_layout matrix_layout =
4205 glsl_matrix_layout(field->matrix_layout);
4206 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4207 const glsl_type *array_type = field->type->fields.array;
4208
4209 if (is_top_level_shader_storage_block_member(uni->name,
4210 interface_name,
4211 var_name))
4212 return 0;
4213
4214 if (GLSL_INTERFACE_PACKING_STD140 ==
4215 interface->
4216 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4217 if (array_type->is_record() || array_type->is_array())
4218 return glsl_align(array_type->std140_size(row_major), 16);
4219 else
4220 return MAX2(array_type->std140_base_alignment(row_major), 16);
4221 } else {
4222 return array_type->std430_array_stride(row_major);
4223 }
4224 }
4225 return 0;
4226 }
4227
4228 static void
4229 calculate_array_size_and_stride(struct gl_context *ctx,
4230 struct gl_shader_program *shProg,
4231 struct gl_uniform_storage *uni)
4232 {
4233 int block_index = uni->block_index;
4234 int array_size = -1;
4235 int array_stride = -1;
4236 char *var_name = get_top_level_name(uni->name);
4237 char *interface_name =
4238 get_top_level_name(uni->is_shader_storage ?
4239 shProg->data->ShaderStorageBlocks[block_index].Name :
4240 shProg->data->UniformBlocks[block_index].Name);
4241
4242 if (strcmp(var_name, interface_name) == 0) {
4243 /* Deal with instanced array of SSBOs */
4244 char *temp_name = get_var_name(uni->name);
4245 if (!temp_name) {
4246 linker_error(shProg, "Out of memory during linking.\n");
4247 goto write_top_level_array_size_and_stride;
4248 }
4249 free(var_name);
4250 var_name = get_top_level_name(temp_name);
4251 free(temp_name);
4252 if (!var_name) {
4253 linker_error(shProg, "Out of memory during linking.\n");
4254 goto write_top_level_array_size_and_stride;
4255 }
4256 }
4257
4258 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4259 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4260 if (sh == NULL)
4261 continue;
4262
4263 foreach_in_list(ir_instruction, node, sh->ir) {
4264 ir_variable *var = node->as_variable();
4265 if (!var || !var->get_interface_type() ||
4266 var->data.mode != ir_var_shader_storage)
4267 continue;
4268
4269 const glsl_type *interface = var->get_interface_type();
4270
4271 if (strcmp(interface_name, interface->name) != 0)
4272 continue;
4273
4274 for (unsigned i = 0; i < interface->length; i++) {
4275 const glsl_struct_field *field = &interface->fields.structure[i];
4276 if (strcmp(field->name, var_name) != 0)
4277 continue;
4278
4279 array_stride = get_array_stride(ctx, uni, interface, field,
4280 interface_name, var_name);
4281 array_size = get_array_size(uni, field, interface_name, var_name);
4282 goto write_top_level_array_size_and_stride;
4283 }
4284 }
4285 }
4286 write_top_level_array_size_and_stride:
4287 free(interface_name);
4288 free(var_name);
4289 uni->top_level_array_stride = array_stride;
4290 uni->top_level_array_size = array_size;
4291 }
4292
4293 /**
4294 * Builds up a list of program resources that point to existing
4295 * resource data.
4296 */
4297 void
4298 build_program_resource_list(struct gl_context *ctx,
4299 struct gl_shader_program *shProg)
4300 {
4301 /* Rebuild resource list. */
4302 if (shProg->data->ProgramResourceList) {
4303 ralloc_free(shProg->data->ProgramResourceList);
4304 shProg->data->ProgramResourceList = NULL;
4305 shProg->data->NumProgramResourceList = 0;
4306 }
4307
4308 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4309
4310 /* Determine first input and final output stage. These are used to
4311 * detect which variables should be enumerated in the resource list
4312 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4313 */
4314 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4315 if (!shProg->_LinkedShaders[i])
4316 continue;
4317 if (input_stage == MESA_SHADER_STAGES)
4318 input_stage = i;
4319 output_stage = i;
4320 }
4321
4322 /* Empty shader, no resources. */
4323 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4324 return;
4325
4326 struct set *resource_set = _mesa_set_create(NULL,
4327 _mesa_hash_pointer,
4328 _mesa_key_pointer_equal);
4329
4330 /* Program interface needs to expose varyings in case of SSO. */
4331 if (shProg->SeparateShader) {
4332 if (!add_packed_varyings(ctx, shProg, resource_set,
4333 input_stage, GL_PROGRAM_INPUT))
4334 return;
4335
4336 if (!add_packed_varyings(ctx, shProg, resource_set,
4337 output_stage, GL_PROGRAM_OUTPUT))
4338 return;
4339 }
4340
4341 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4342 return;
4343
4344 /* Add inputs and outputs to the resource list. */
4345 if (!add_interface_variables(ctx, shProg, resource_set,
4346 input_stage, GL_PROGRAM_INPUT))
4347 return;
4348
4349 if (!add_interface_variables(ctx, shProg, resource_set,
4350 output_stage, GL_PROGRAM_OUTPUT))
4351 return;
4352
4353 if (shProg->last_vert_prog) {
4354 struct gl_transform_feedback_info *linked_xfb =
4355 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4356
4357 /* Add transform feedback varyings. */
4358 if (linked_xfb->NumVarying > 0) {
4359 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4360 if (!add_program_resource(shProg, resource_set,
4361 GL_TRANSFORM_FEEDBACK_VARYING,
4362 &linked_xfb->Varyings[i], 0))
4363 return;
4364 }
4365 }
4366
4367 /* Add transform feedback buffers. */
4368 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4369 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4370 linked_xfb->Buffers[i].Binding = i;
4371 if (!add_program_resource(shProg, resource_set,
4372 GL_TRANSFORM_FEEDBACK_BUFFER,
4373 &linked_xfb->Buffers[i], 0))
4374 return;
4375 }
4376 }
4377 }
4378
4379 /* Add uniforms from uniform storage. */
4380 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4381 /* Do not add uniforms internally used by Mesa. */
4382 if (shProg->data->UniformStorage[i].hidden)
4383 continue;
4384
4385 uint8_t stageref =
4386 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4387 ir_var_uniform);
4388
4389 /* Add stagereferences for uniforms in a uniform block. */
4390 bool is_shader_storage =
4391 shProg->data->UniformStorage[i].is_shader_storage;
4392 int block_index = shProg->data->UniformStorage[i].block_index;
4393 if (block_index != -1) {
4394 stageref |= is_shader_storage ?
4395 shProg->data->ShaderStorageBlocks[block_index].stageref :
4396 shProg->data->UniformBlocks[block_index].stageref;
4397 }
4398
4399 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4400 if (!should_add_buffer_variable(shProg, type,
4401 shProg->data->UniformStorage[i].name))
4402 continue;
4403
4404 if (is_shader_storage) {
4405 calculate_array_size_and_stride(ctx, shProg,
4406 &shProg->data->UniformStorage[i]);
4407 }
4408
4409 if (!add_program_resource(shProg, resource_set, type,
4410 &shProg->data->UniformStorage[i], stageref))
4411 return;
4412 }
4413
4414 /* Add program uniform blocks. */
4415 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4416 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4417 &shProg->data->UniformBlocks[i], 0))
4418 return;
4419 }
4420
4421 /* Add program shader storage blocks. */
4422 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4423 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4424 &shProg->data->ShaderStorageBlocks[i], 0))
4425 return;
4426 }
4427
4428 /* Add atomic counter buffers. */
4429 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4430 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4431 &shProg->data->AtomicBuffers[i], 0))
4432 return;
4433 }
4434
4435 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4436 GLenum type;
4437 if (!shProg->data->UniformStorage[i].hidden)
4438 continue;
4439
4440 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4441 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4442 !shProg->data->UniformStorage[i].type->is_subroutine())
4443 continue;
4444
4445 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4446 /* add shader subroutines */
4447 if (!add_program_resource(shProg, resource_set,
4448 type, &shProg->data->UniformStorage[i], 0))
4449 return;
4450 }
4451 }
4452
4453 unsigned mask = shProg->data->linked_stages;
4454 while (mask) {
4455 const int i = u_bit_scan(&mask);
4456 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4457
4458 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4459 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4460 if (!add_program_resource(shProg, resource_set,
4461 type, &p->sh.SubroutineFunctions[j], 0))
4462 return;
4463 }
4464 }
4465
4466 _mesa_set_destroy(resource_set, NULL);
4467 }
4468
4469 /**
4470 * This check is done to make sure we allow only constant expression
4471 * indexing and "constant-index-expression" (indexing with an expression
4472 * that includes loop induction variable).
4473 */
4474 static bool
4475 validate_sampler_array_indexing(struct gl_context *ctx,
4476 struct gl_shader_program *prog)
4477 {
4478 dynamic_sampler_array_indexing_visitor v;
4479 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4480 if (prog->_LinkedShaders[i] == NULL)
4481 continue;
4482
4483 bool no_dynamic_indexing =
4484 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4485
4486 /* Search for array derefs in shader. */
4487 v.run(prog->_LinkedShaders[i]->ir);
4488 if (v.uses_dynamic_sampler_array_indexing()) {
4489 const char *msg = "sampler arrays indexed with non-constant "
4490 "expressions is forbidden in GLSL %s %u";
4491 /* Backend has indicated that it has no dynamic indexing support. */
4492 if (no_dynamic_indexing) {
4493 linker_error(prog, msg, prog->IsES ? "ES" : "",
4494 prog->data->Version);
4495 return false;
4496 } else {
4497 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4498 prog->data->Version);
4499 }
4500 }
4501 }
4502 return true;
4503 }
4504
4505 static void
4506 link_assign_subroutine_types(struct gl_shader_program *prog)
4507 {
4508 unsigned mask = prog->data->linked_stages;
4509 while (mask) {
4510 const int i = u_bit_scan(&mask);
4511 gl_program *p = prog->_LinkedShaders[i]->Program;
4512
4513 p->sh.MaxSubroutineFunctionIndex = 0;
4514 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4515 ir_function *fn = node->as_function();
4516 if (!fn)
4517 continue;
4518
4519 if (fn->is_subroutine)
4520 p->sh.NumSubroutineUniformTypes++;
4521
4522 if (!fn->num_subroutine_types)
4523 continue;
4524
4525 /* these should have been calculated earlier. */
4526 assert(fn->subroutine_index != -1);
4527 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4528 linker_error(prog, "Too many subroutine functions declared.\n");
4529 return;
4530 }
4531 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4532 struct gl_subroutine_function,
4533 p->sh.NumSubroutineFunctions + 1);
4534 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4535 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4536 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4537 ralloc_array(p, const struct glsl_type *,
4538 fn->num_subroutine_types);
4539
4540 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4541 * GLSL 4.5 spec:
4542 *
4543 * "Each subroutine with an index qualifier in the shader must be
4544 * given a unique index, otherwise a compile or link error will be
4545 * generated."
4546 */
4547 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4548 if (p->sh.SubroutineFunctions[j].index != -1 &&
4549 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4550 linker_error(prog, "each subroutine index qualifier in the "
4551 "shader must be unique\n");
4552 return;
4553 }
4554 }
4555 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4556 fn->subroutine_index;
4557
4558 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4559 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4560
4561 for (int j = 0; j < fn->num_subroutine_types; j++)
4562 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4563 p->sh.NumSubroutineFunctions++;
4564 }
4565 }
4566 }
4567
4568 static void
4569 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4570 {
4571 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4572
4573 foreach_in_list(ir_instruction, node, ir) {
4574 ir_variable *const var = node->as_variable();
4575
4576 if (var == NULL || var->data.mode != io_mode)
4577 continue;
4578
4579 /* Don't set always active on builtins that haven't been redeclared */
4580 if (var->data.how_declared == ir_var_declared_implicitly)
4581 continue;
4582
4583 var->data.always_active_io = true;
4584 }
4585 }
4586
4587 /**
4588 * When separate shader programs are enabled, only input/outputs between
4589 * the stages of a multi-stage separate program can be safely removed
4590 * from the shader interface. Other inputs/outputs must remain active.
4591 */
4592 static void
4593 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4594 {
4595 unsigned first, last;
4596 assert(prog->SeparateShader);
4597
4598 first = MESA_SHADER_STAGES;
4599 last = 0;
4600
4601 /* Determine first and last stage. Excluding the compute stage */
4602 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4603 if (!prog->_LinkedShaders[i])
4604 continue;
4605 if (first == MESA_SHADER_STAGES)
4606 first = i;
4607 last = i;
4608 }
4609
4610 if (first == MESA_SHADER_STAGES)
4611 return;
4612
4613 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4614 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4615 if (!sh)
4616 continue;
4617
4618 /* Prevent the removal of inputs to the first and outputs from the last
4619 * stage, unless they are the initial pipeline inputs or final pipeline
4620 * outputs, respectively.
4621 *
4622 * The removal of IO between shaders in the same program is always
4623 * allowed.
4624 */
4625 if (stage == first && stage != MESA_SHADER_VERTEX)
4626 set_always_active_io(sh->ir, ir_var_shader_in);
4627 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4628 set_always_active_io(sh->ir, ir_var_shader_out);
4629 }
4630 }
4631
4632 static void
4633 link_and_validate_uniforms(struct gl_context *ctx,
4634 struct gl_shader_program *prog)
4635 {
4636 update_array_sizes(prog);
4637 link_assign_uniform_locations(prog, ctx);
4638
4639 link_assign_atomic_counter_resources(ctx, prog);
4640 link_calculate_subroutine_compat(prog);
4641 check_resources(ctx, prog);
4642 check_subroutine_resources(prog);
4643 check_image_resources(ctx, prog);
4644 link_check_atomic_counter_resources(ctx, prog);
4645 }
4646
4647 static bool
4648 link_varyings_and_uniforms(unsigned first, unsigned last,
4649 struct gl_context *ctx,
4650 struct gl_shader_program *prog, void *mem_ctx)
4651 {
4652 /* Mark all generic shader inputs and outputs as unpaired. */
4653 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4654 if (prog->_LinkedShaders[i] != NULL) {
4655 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4656 }
4657 }
4658
4659 unsigned prev = first;
4660 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4661 if (prog->_LinkedShaders[i] == NULL)
4662 continue;
4663
4664 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4665 prog->_LinkedShaders[i]);
4666 prev = i;
4667 }
4668
4669 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4670 MESA_SHADER_VERTEX)) {
4671 return false;
4672 }
4673
4674 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4675 MESA_SHADER_FRAGMENT)) {
4676 return false;
4677 }
4678
4679 prog->last_vert_prog = NULL;
4680 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4681 if (prog->_LinkedShaders[i] == NULL)
4682 continue;
4683
4684 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4685 break;
4686 }
4687
4688 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4689 return false;
4690
4691 link_and_validate_uniforms(ctx, prog);
4692
4693 if (!prog->data->LinkStatus)
4694 return false;
4695
4696 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4697 if (prog->_LinkedShaders[i] == NULL)
4698 continue;
4699
4700 const struct gl_shader_compiler_options *options =
4701 &ctx->Const.ShaderCompilerOptions[i];
4702
4703 if (options->LowerBufferInterfaceBlocks)
4704 lower_ubo_reference(prog->_LinkedShaders[i],
4705 options->ClampBlockIndicesToArrayBounds,
4706 ctx->Const.UseSTD430AsDefaultPacking);
4707
4708 if (i == MESA_SHADER_COMPUTE)
4709 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4710
4711 lower_vector_derefs(prog->_LinkedShaders[i]);
4712 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4713 }
4714
4715 return true;
4716 }
4717
4718 static void
4719 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4720 unsigned stage)
4721 {
4722 if (ctx->Const.GLSLOptimizeConservatively) {
4723 /* Run it just once. */
4724 do_common_optimization(ir, true, false,
4725 &ctx->Const.ShaderCompilerOptions[stage],
4726 ctx->Const.NativeIntegers);
4727 } else {
4728 /* Repeat it until it stops making changes. */
4729 while (do_common_optimization(ir, true, false,
4730 &ctx->Const.ShaderCompilerOptions[stage],
4731 ctx->Const.NativeIntegers))
4732 ;
4733 }
4734 }
4735
4736 void
4737 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4738 {
4739 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4740 prog->data->Validated = false;
4741
4742 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4743 *
4744 * "Linking can fail for a variety of reasons as specified in the
4745 * OpenGL Shading Language Specification, as well as any of the
4746 * following reasons:
4747 *
4748 * - No shader objects are attached to program."
4749 *
4750 * The Compatibility Profile specification does not list the error. In
4751 * Compatibility Profile missing shader stages are replaced by
4752 * fixed-function. This applies to the case where all stages are
4753 * missing.
4754 */
4755 if (prog->NumShaders == 0) {
4756 if (ctx->API != API_OPENGL_COMPAT)
4757 linker_error(prog, "no shaders attached to the program\n");
4758 return;
4759 }
4760
4761 #ifdef ENABLE_SHADER_CACHE
4762 /* If transform feedback used on the program then compile all shaders. */
4763 bool skip_cache = false;
4764 if (prog->TransformFeedback.NumVarying > 0) {
4765 for (unsigned i = 0; i < prog->NumShaders; i++) {
4766 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4767 }
4768 skip_cache = true;
4769 }
4770
4771 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4772 return;
4773 #endif
4774
4775 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4776
4777 prog->ARB_fragment_coord_conventions_enable = false;
4778
4779 /* Separate the shaders into groups based on their type.
4780 */
4781 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4782 unsigned num_shaders[MESA_SHADER_STAGES];
4783
4784 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4785 shader_list[i] = (struct gl_shader **)
4786 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4787 num_shaders[i] = 0;
4788 }
4789
4790 unsigned min_version = UINT_MAX;
4791 unsigned max_version = 0;
4792 for (unsigned i = 0; i < prog->NumShaders; i++) {
4793 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4794 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4795
4796 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4797 linker_error(prog, "all shaders must use same shading "
4798 "language version\n");
4799 goto done;
4800 }
4801
4802 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4803 prog->ARB_fragment_coord_conventions_enable = true;
4804 }
4805
4806 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4807 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4808 num_shaders[shader_type]++;
4809 }
4810
4811 /* In desktop GLSL, different shader versions may be linked together. In
4812 * GLSL ES, all shader versions must be the same.
4813 */
4814 if (prog->Shaders[0]->IsES && min_version != max_version) {
4815 linker_error(prog, "all shaders must use same shading "
4816 "language version\n");
4817 goto done;
4818 }
4819
4820 prog->data->Version = max_version;
4821 prog->IsES = prog->Shaders[0]->IsES;
4822
4823 /* Some shaders have to be linked with some other shaders present.
4824 */
4825 if (!prog->SeparateShader) {
4826 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4827 num_shaders[MESA_SHADER_VERTEX] == 0) {
4828 linker_error(prog, "Geometry shader must be linked with "
4829 "vertex shader\n");
4830 goto done;
4831 }
4832 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4833 num_shaders[MESA_SHADER_VERTEX] == 0) {
4834 linker_error(prog, "Tessellation evaluation shader must be linked "
4835 "with vertex shader\n");
4836 goto done;
4837 }
4838 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4839 num_shaders[MESA_SHADER_VERTEX] == 0) {
4840 linker_error(prog, "Tessellation control shader must be linked with "
4841 "vertex shader\n");
4842 goto done;
4843 }
4844
4845 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4846 *
4847 * "Linking can fail for [...] any of the following reasons:
4848 *
4849 * * program contains an object to form a tessellation control
4850 * shader [...] and [...] the program is not separable and
4851 * contains no object to form a tessellation evaluation shader"
4852 *
4853 * The OpenGL spec is contradictory. It allows linking without a tess
4854 * eval shader, but that can only be used with transform feedback and
4855 * rasterization disabled. However, transform feedback isn't allowed
4856 * with GL_PATCHES, so it can't be used.
4857 *
4858 * More investigation showed that the idea of transform feedback after
4859 * a tess control shader was dropped, because some hw vendors couldn't
4860 * support tessellation without a tess eval shader, but the linker
4861 * section wasn't updated to reflect that.
4862 *
4863 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4864 * spec bug.
4865 *
4866 * Do what's reasonable and always require a tess eval shader if a tess
4867 * control shader is present.
4868 */
4869 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4870 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4871 linker_error(prog, "Tessellation control shader must be linked with "
4872 "tessellation evaluation shader\n");
4873 goto done;
4874 }
4875
4876 if (prog->IsES) {
4877 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4878 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4879 linker_error(prog, "GLSL ES requires non-separable programs "
4880 "containing a tessellation evaluation shader to also "
4881 "be linked with a tessellation control shader\n");
4882 goto done;
4883 }
4884 }
4885 }
4886
4887 /* Compute shaders have additional restrictions. */
4888 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4889 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4890 linker_error(prog, "Compute shaders may not be linked with any other "
4891 "type of shader\n");
4892 }
4893
4894 /* Link all shaders for a particular stage and validate the result.
4895 */
4896 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4897 if (num_shaders[stage] > 0) {
4898 gl_linked_shader *const sh =
4899 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4900 num_shaders[stage], false);
4901
4902 if (!prog->data->LinkStatus) {
4903 if (sh)
4904 _mesa_delete_linked_shader(ctx, sh);
4905 goto done;
4906 }
4907
4908 switch (stage) {
4909 case MESA_SHADER_VERTEX:
4910 validate_vertex_shader_executable(prog, sh, ctx);
4911 break;
4912 case MESA_SHADER_TESS_CTRL:
4913 /* nothing to be done */
4914 break;
4915 case MESA_SHADER_TESS_EVAL:
4916 validate_tess_eval_shader_executable(prog, sh, ctx);
4917 break;
4918 case MESA_SHADER_GEOMETRY:
4919 validate_geometry_shader_executable(prog, sh, ctx);
4920 break;
4921 case MESA_SHADER_FRAGMENT:
4922 validate_fragment_shader_executable(prog, sh);
4923 break;
4924 }
4925 if (!prog->data->LinkStatus) {
4926 if (sh)
4927 _mesa_delete_linked_shader(ctx, sh);
4928 goto done;
4929 }
4930
4931 prog->_LinkedShaders[stage] = sh;
4932 prog->data->linked_stages |= 1 << stage;
4933 }
4934 }
4935
4936 /* Here begins the inter-stage linking phase. Some initial validation is
4937 * performed, then locations are assigned for uniforms, attributes, and
4938 * varyings.
4939 */
4940 cross_validate_uniforms(prog);
4941 if (!prog->data->LinkStatus)
4942 goto done;
4943
4944 unsigned first, last, prev;
4945
4946 first = MESA_SHADER_STAGES;
4947 last = 0;
4948
4949 /* Determine first and last stage. */
4950 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4951 if (!prog->_LinkedShaders[i])
4952 continue;
4953 if (first == MESA_SHADER_STAGES)
4954 first = i;
4955 last = i;
4956 }
4957
4958 check_explicit_uniform_locations(ctx, prog);
4959 link_assign_subroutine_types(prog);
4960
4961 if (!prog->data->LinkStatus)
4962 goto done;
4963
4964 resize_tes_inputs(ctx, prog);
4965
4966 /* Validate the inputs of each stage with the output of the preceding
4967 * stage.
4968 */
4969 prev = first;
4970 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4971 if (prog->_LinkedShaders[i] == NULL)
4972 continue;
4973
4974 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4975 prog->_LinkedShaders[i]);
4976 if (!prog->data->LinkStatus)
4977 goto done;
4978
4979 cross_validate_outputs_to_inputs(ctx, prog,
4980 prog->_LinkedShaders[prev],
4981 prog->_LinkedShaders[i]);
4982 if (!prog->data->LinkStatus)
4983 goto done;
4984
4985 prev = i;
4986 }
4987
4988 /* The cross validation of outputs/inputs above validates explicit locations
4989 * but for SSO programs we need to do this also for the inputs in the
4990 * first stage and outputs of the last stage included in the program, since
4991 * there is no cross validation for these.
4992 */
4993 if (prog->SeparateShader)
4994 validate_sso_explicit_locations(ctx, prog,
4995 (gl_shader_stage) first,
4996 (gl_shader_stage) last);
4997
4998 /* Cross-validate uniform blocks between shader stages */
4999 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5000 if (!prog->data->LinkStatus)
5001 goto done;
5002
5003 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5004 if (prog->_LinkedShaders[i] != NULL)
5005 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5006 }
5007
5008 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5009 * it before optimization because we want most of the checks to get
5010 * dropped thanks to constant propagation.
5011 *
5012 * This rule also applies to GLSL ES 3.00.
5013 */
5014 if (max_version >= (prog->IsES ? 300 : 130)) {
5015 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5016 if (sh) {
5017 lower_discard_flow(sh->ir);
5018 }
5019 }
5020
5021 if (prog->SeparateShader)
5022 disable_varying_optimizations_for_sso(prog);
5023
5024 /* Process UBOs */
5025 if (!interstage_cross_validate_uniform_blocks(prog, false))
5026 goto done;
5027
5028 /* Process SSBOs */
5029 if (!interstage_cross_validate_uniform_blocks(prog, true))
5030 goto done;
5031
5032 /* Do common optimization before assigning storage for attributes,
5033 * uniforms, and varyings. Later optimization could possibly make
5034 * some of that unused.
5035 */
5036 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5037 if (prog->_LinkedShaders[i] == NULL)
5038 continue;
5039
5040 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5041 if (!prog->data->LinkStatus)
5042 goto done;
5043
5044 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5045 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5046 }
5047
5048 if (ctx->Const.LowerTessLevel) {
5049 lower_tess_level(prog->_LinkedShaders[i]);
5050 }
5051
5052 /* Call opts before lowering const arrays to uniforms so we can const
5053 * propagate any elements accessed directly.
5054 */
5055 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5056
5057 /* Call opts after lowering const arrays to copy propagate things. */
5058 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5059 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5060
5061 propagate_invariance(prog->_LinkedShaders[i]->ir);
5062 }
5063
5064 /* Validation for special cases where we allow sampler array indexing
5065 * with loop induction variable. This check emits a warning or error
5066 * depending if backend can handle dynamic indexing.
5067 */
5068 if ((!prog->IsES && prog->data->Version < 130) ||
5069 (prog->IsES && prog->data->Version < 300)) {
5070 if (!validate_sampler_array_indexing(ctx, prog))
5071 goto done;
5072 }
5073
5074 /* Check and validate stream emissions in geometry shaders */
5075 validate_geometry_shader_emissions(ctx, prog);
5076
5077 store_fragdepth_layout(prog);
5078
5079 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5080 goto done;
5081
5082 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5083 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5084 * anything about shader linking when one of the shaders (vertex or
5085 * fragment shader) is absent. So, the extension shouldn't change the
5086 * behavior specified in GLSL specification.
5087 *
5088 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5089 * "Linking can fail for a variety of reasons as specified in the
5090 * OpenGL ES Shading Language Specification, as well as any of the
5091 * following reasons:
5092 *
5093 * ...
5094 *
5095 * * program contains objects to form either a vertex shader or
5096 * fragment shader, and program is not separable, and does not
5097 * contain objects to form both a vertex shader and fragment
5098 * shader."
5099 *
5100 * However, the only scenario in 3.1+ where we don't require them both is
5101 * when we have a compute shader. For example:
5102 *
5103 * - No shaders is a link error.
5104 * - Geom or Tess without a Vertex shader is a link error which means we
5105 * always require a Vertex shader and hence a Fragment shader.
5106 * - Finally a Compute shader linked with any other stage is a link error.
5107 */
5108 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5109 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5110 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5111 linker_error(prog, "program lacks a vertex shader\n");
5112 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5113 linker_error(prog, "program lacks a fragment shader\n");
5114 }
5115 }
5116
5117 done:
5118 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5119 free(shader_list[i]);
5120 if (prog->_LinkedShaders[i] == NULL)
5121 continue;
5122
5123 /* Do a final validation step to make sure that the IR wasn't
5124 * invalidated by any modifications performed after intrastage linking.
5125 */
5126 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5127
5128 /* Retain any live IR, but trash the rest. */
5129 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5130
5131 /* The symbol table in the linked shaders may contain references to
5132 * variables that were removed (e.g., unused uniforms). Since it may
5133 * contain junk, there is no possible valid use. Delete it and set the
5134 * pointer to NULL.
5135 */
5136 delete prog->_LinkedShaders[i]->symbols;
5137 prog->_LinkedShaders[i]->symbols = NULL;
5138 }
5139
5140 ralloc_free(mem_ctx);
5141 }