glsl/linker: check for xfb_offset aliasing
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/prog_instruction.h"
74 #include "program/program.h"
75 #include "util/mesa-sha1.h"
76 #include "util/set.h"
77 #include "string_to_uint_map.h"
78 #include "linker.h"
79 #include "linker_util.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86 #include "util/u_string.h"
87 #include "util/u_math.h"
88
89 #include "main/imports.h"
90 #include "main/shaderobj.h"
91 #include "main/enums.h"
92 #include "main/mtypes.h"
93
94
95 namespace {
96
97 struct find_variable {
98 const char *name;
99 bool found;
100
101 find_variable(const char *name) : name(name), found(false) {}
102 };
103
104 /**
105 * Visitor that determines whether or not a variable is ever written.
106 *
107 * Use \ref find_assignments for convenience.
108 */
109 class find_assignment_visitor : public ir_hierarchical_visitor {
110 public:
111 find_assignment_visitor(unsigned num_vars,
112 find_variable * const *vars)
113 : num_variables(num_vars), num_found(0), variables(vars)
114 {
115 }
116
117 virtual ir_visitor_status visit_enter(ir_assignment *ir)
118 {
119 ir_variable *const var = ir->lhs->variable_referenced();
120
121 return check_variable_name(var->name);
122 }
123
124 virtual ir_visitor_status visit_enter(ir_call *ir)
125 {
126 foreach_two_lists(formal_node, &ir->callee->parameters,
127 actual_node, &ir->actual_parameters) {
128 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129 ir_variable *sig_param = (ir_variable *) formal_node;
130
131 if (sig_param->data.mode == ir_var_function_out ||
132 sig_param->data.mode == ir_var_function_inout) {
133 ir_variable *var = param_rval->variable_referenced();
134 if (var && check_variable_name(var->name) == visit_stop)
135 return visit_stop;
136 }
137 }
138
139 if (ir->return_deref != NULL) {
140 ir_variable *const var = ir->return_deref->variable_referenced();
141
142 if (check_variable_name(var->name) == visit_stop)
143 return visit_stop;
144 }
145
146 return visit_continue_with_parent;
147 }
148
149 private:
150 ir_visitor_status check_variable_name(const char *name)
151 {
152 for (unsigned i = 0; i < num_variables; ++i) {
153 if (strcmp(variables[i]->name, name) == 0) {
154 if (!variables[i]->found) {
155 variables[i]->found = true;
156
157 assert(num_found < num_variables);
158 if (++num_found == num_variables)
159 return visit_stop;
160 }
161 break;
162 }
163 }
164
165 return visit_continue_with_parent;
166 }
167
168 private:
169 unsigned num_variables; /**< Number of variables to find */
170 unsigned num_found; /**< Number of variables already found */
171 find_variable * const *variables; /**< Variables to find */
172 };
173
174 /**
175 * Determine whether or not any of NULL-terminated list of variables is ever
176 * written to.
177 */
178 static void
179 find_assignments(exec_list *ir, find_variable * const *vars)
180 {
181 unsigned num_variables = 0;
182
183 for (find_variable * const *v = vars; *v; ++v)
184 num_variables++;
185
186 find_assignment_visitor visitor(num_variables, vars);
187 visitor.run(ir);
188 }
189
190 /**
191 * Determine whether or not the given variable is ever written to.
192 */
193 static void
194 find_assignments(exec_list *ir, find_variable *var)
195 {
196 find_assignment_visitor visitor(1, &var);
197 visitor.run(ir);
198 }
199
200 /**
201 * Visitor that determines whether or not a variable is ever read.
202 */
203 class find_deref_visitor : public ir_hierarchical_visitor {
204 public:
205 find_deref_visitor(const char *name)
206 : name(name), found(false)
207 {
208 /* empty */
209 }
210
211 virtual ir_visitor_status visit(ir_dereference_variable *ir)
212 {
213 if (strcmp(this->name, ir->var->name) == 0) {
214 this->found = true;
215 return visit_stop;
216 }
217
218 return visit_continue;
219 }
220
221 bool variable_found() const
222 {
223 return this->found;
224 }
225
226 private:
227 const char *name; /**< Find writes to a variable with this name. */
228 bool found; /**< Was a write to the variable found? */
229 };
230
231
232 /**
233 * A visitor helper that provides methods for updating the types of
234 * ir_dereferences. Classes that update variable types (say, updating
235 * array sizes) will want to use this so that dereference types stay in sync.
236 */
237 class deref_type_updater : public ir_hierarchical_visitor {
238 public:
239 virtual ir_visitor_status visit(ir_dereference_variable *ir)
240 {
241 ir->type = ir->var->type;
242 return visit_continue;
243 }
244
245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252
253 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254 {
255 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256 return visit_continue;
257 }
258 };
259
260
261 class array_resize_visitor : public deref_type_updater {
262 public:
263 unsigned num_vertices;
264 gl_shader_program *prog;
265 gl_shader_stage stage;
266
267 array_resize_visitor(unsigned num_vertices,
268 gl_shader_program *prog,
269 gl_shader_stage stage)
270 {
271 this->num_vertices = num_vertices;
272 this->prog = prog;
273 this->stage = stage;
274 }
275
276 virtual ~array_resize_visitor()
277 {
278 /* empty */
279 }
280
281 virtual ir_visitor_status visit(ir_variable *var)
282 {
283 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
284 var->data.patch)
285 return visit_continue;
286
287 unsigned size = var->type->length;
288
289 if (stage == MESA_SHADER_GEOMETRY) {
290 /* Generate a link error if the shader has declared this array with
291 * an incorrect size.
292 */
293 if (!var->data.implicit_sized_array &&
294 size && size != this->num_vertices) {
295 linker_error(this->prog, "size of array %s declared as %u, "
296 "but number of input vertices is %u\n",
297 var->name, size, this->num_vertices);
298 return visit_continue;
299 }
300
301 /* Generate a link error if the shader attempts to access an input
302 * array using an index too large for its actual size assigned at
303 * link time.
304 */
305 if (var->data.max_array_access >= (int)this->num_vertices) {
306 linker_error(this->prog, "%s shader accesses element %i of "
307 "%s, but only %i input vertices\n",
308 _mesa_shader_stage_to_string(this->stage),
309 var->data.max_array_access, var->name, this->num_vertices);
310 return visit_continue;
311 }
312 }
313
314 var->type = glsl_type::get_array_instance(var->type->fields.array,
315 this->num_vertices);
316 var->data.max_array_access = this->num_vertices - 1;
317
318 return visit_continue;
319 }
320 };
321
322 /**
323 * Visitor that determines the highest stream id to which a (geometry) shader
324 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
325 */
326 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
327 public:
328 find_emit_vertex_visitor(int max_allowed)
329 : max_stream_allowed(max_allowed),
330 invalid_stream_id(0),
331 invalid_stream_id_from_emit_vertex(false),
332 end_primitive_found(false),
333 uses_non_zero_stream(false)
334 {
335 /* empty */
336 }
337
338 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
339 {
340 int stream_id = ir->stream_id();
341
342 if (stream_id < 0) {
343 invalid_stream_id = stream_id;
344 invalid_stream_id_from_emit_vertex = true;
345 return visit_stop;
346 }
347
348 if (stream_id > max_stream_allowed) {
349 invalid_stream_id = stream_id;
350 invalid_stream_id_from_emit_vertex = true;
351 return visit_stop;
352 }
353
354 if (stream_id != 0)
355 uses_non_zero_stream = true;
356
357 return visit_continue;
358 }
359
360 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
361 {
362 end_primitive_found = true;
363
364 int stream_id = ir->stream_id();
365
366 if (stream_id < 0) {
367 invalid_stream_id = stream_id;
368 invalid_stream_id_from_emit_vertex = false;
369 return visit_stop;
370 }
371
372 if (stream_id > max_stream_allowed) {
373 invalid_stream_id = stream_id;
374 invalid_stream_id_from_emit_vertex = false;
375 return visit_stop;
376 }
377
378 if (stream_id != 0)
379 uses_non_zero_stream = true;
380
381 return visit_continue;
382 }
383
384 bool error()
385 {
386 return invalid_stream_id != 0;
387 }
388
389 const char *error_func()
390 {
391 return invalid_stream_id_from_emit_vertex ?
392 "EmitStreamVertex" : "EndStreamPrimitive";
393 }
394
395 int error_stream()
396 {
397 return invalid_stream_id;
398 }
399
400 bool uses_streams()
401 {
402 return uses_non_zero_stream;
403 }
404
405 bool uses_end_primitive()
406 {
407 return end_primitive_found;
408 }
409
410 private:
411 int max_stream_allowed;
412 int invalid_stream_id;
413 bool invalid_stream_id_from_emit_vertex;
414 bool end_primitive_found;
415 bool uses_non_zero_stream;
416 };
417
418 /* Class that finds array derefs and check if indexes are dynamic. */
419 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
420 {
421 public:
422 dynamic_sampler_array_indexing_visitor() :
423 dynamic_sampler_array_indexing(false)
424 {
425 }
426
427 ir_visitor_status visit_enter(ir_dereference_array *ir)
428 {
429 if (!ir->variable_referenced())
430 return visit_continue;
431
432 if (!ir->variable_referenced()->type->contains_sampler())
433 return visit_continue;
434
435 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
436 dynamic_sampler_array_indexing = true;
437 return visit_stop;
438 }
439 return visit_continue;
440 }
441
442 bool uses_dynamic_sampler_array_indexing()
443 {
444 return dynamic_sampler_array_indexing;
445 }
446
447 private:
448 bool dynamic_sampler_array_indexing;
449 };
450
451 } /* anonymous namespace */
452
453 void
454 linker_error(gl_shader_program *prog, const char *fmt, ...)
455 {
456 va_list ap;
457
458 ralloc_strcat(&prog->data->InfoLog, "error: ");
459 va_start(ap, fmt);
460 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
461 va_end(ap);
462
463 prog->data->LinkStatus = LINKING_FAILURE;
464 }
465
466
467 void
468 linker_warning(gl_shader_program *prog, const char *fmt, ...)
469 {
470 va_list ap;
471
472 ralloc_strcat(&prog->data->InfoLog, "warning: ");
473 va_start(ap, fmt);
474 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
475 va_end(ap);
476
477 }
478
479
480 /**
481 * Given a string identifying a program resource, break it into a base name
482 * and an optional array index in square brackets.
483 *
484 * If an array index is present, \c out_base_name_end is set to point to the
485 * "[" that precedes the array index, and the array index itself is returned
486 * as a long.
487 *
488 * If no array index is present (or if the array index is negative or
489 * mal-formed), \c out_base_name_end, is set to point to the null terminator
490 * at the end of the input string, and -1 is returned.
491 *
492 * Only the final array index is parsed; if the string contains other array
493 * indices (or structure field accesses), they are left in the base name.
494 *
495 * No attempt is made to check that the base name is properly formed;
496 * typically the caller will look up the base name in a hash table, so
497 * ill-formed base names simply turn into hash table lookup failures.
498 */
499 long
500 parse_program_resource_name(const GLchar *name,
501 const GLchar **out_base_name_end)
502 {
503 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
504 *
505 * "When an integer array element or block instance number is part of
506 * the name string, it will be specified in decimal form without a "+"
507 * or "-" sign or any extra leading zeroes. Additionally, the name
508 * string will not include white space anywhere in the string."
509 */
510
511 const size_t len = strlen(name);
512 *out_base_name_end = name + len;
513
514 if (len == 0 || name[len-1] != ']')
515 return -1;
516
517 /* Walk backwards over the string looking for a non-digit character. This
518 * had better be the opening bracket for an array index.
519 *
520 * Initially, i specifies the location of the ']'. Since the string may
521 * contain only the ']' charcater, walk backwards very carefully.
522 */
523 unsigned i;
524 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
525 /* empty */ ;
526
527 if ((i == 0) || name[i-1] != '[')
528 return -1;
529
530 long array_index = strtol(&name[i], NULL, 10);
531 if (array_index < 0)
532 return -1;
533
534 /* Check for leading zero */
535 if (name[i] == '0' && name[i+1] != ']')
536 return -1;
537
538 *out_base_name_end = name + (i - 1);
539 return array_index;
540 }
541
542
543 void
544 link_invalidate_variable_locations(exec_list *ir)
545 {
546 foreach_in_list(ir_instruction, node, ir) {
547 ir_variable *const var = node->as_variable();
548
549 if (var == NULL)
550 continue;
551
552 /* Only assign locations for variables that lack an explicit location.
553 * Explicit locations are set for all built-in variables, generic vertex
554 * shader inputs (via layout(location=...)), and generic fragment shader
555 * outputs (also via layout(location=...)).
556 */
557 if (!var->data.explicit_location) {
558 var->data.location = -1;
559 var->data.location_frac = 0;
560 }
561
562 /* ir_variable::is_unmatched_generic_inout is used by the linker while
563 * connecting outputs from one stage to inputs of the next stage.
564 */
565 if (var->data.explicit_location &&
566 var->data.location < VARYING_SLOT_VAR0) {
567 var->data.is_unmatched_generic_inout = 0;
568 } else {
569 var->data.is_unmatched_generic_inout = 1;
570 }
571 }
572 }
573
574
575 /**
576 * Set clip_distance_array_size based and cull_distance_array_size on the given
577 * shader.
578 *
579 * Also check for errors based on incorrect usage of gl_ClipVertex and
580 * gl_ClipDistance and gl_CullDistance.
581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
583 *
584 * Return false if an error was reported.
585 */
586 static void
587 analyze_clip_cull_usage(struct gl_shader_program *prog,
588 struct gl_linked_shader *shader,
589 struct gl_context *ctx,
590 GLuint *clip_distance_array_size,
591 GLuint *cull_distance_array_size)
592 {
593 *clip_distance_array_size = 0;
594 *cull_distance_array_size = 0;
595
596 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
597 /* From section 7.1 (Vertex Shader Special Variables) of the
598 * GLSL 1.30 spec:
599 *
600 * "It is an error for a shader to statically write both
601 * gl_ClipVertex and gl_ClipDistance."
602 *
603 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
604 * gl_ClipVertex nor gl_ClipDistance. However with
605 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
606 */
607 find_variable gl_ClipDistance("gl_ClipDistance");
608 find_variable gl_CullDistance("gl_CullDistance");
609 find_variable gl_ClipVertex("gl_ClipVertex");
610 find_variable * const variables[] = {
611 &gl_ClipDistance,
612 &gl_CullDistance,
613 !prog->IsES ? &gl_ClipVertex : NULL,
614 NULL
615 };
616 find_assignments(shader->ir, variables);
617
618 /* From the ARB_cull_distance spec:
619 *
620 * It is a compile-time or link-time error for the set of shaders forming
621 * a program to statically read or write both gl_ClipVertex and either
622 * gl_ClipDistance or gl_CullDistance.
623 *
624 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
625 * gl_ClipVertex.
626 */
627 if (!prog->IsES) {
628 if (gl_ClipVertex.found && gl_ClipDistance.found) {
629 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
630 "and `gl_ClipDistance'\n",
631 _mesa_shader_stage_to_string(shader->Stage));
632 return;
633 }
634 if (gl_ClipVertex.found && gl_CullDistance.found) {
635 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
636 "and `gl_CullDistance'\n",
637 _mesa_shader_stage_to_string(shader->Stage));
638 return;
639 }
640 }
641
642 if (gl_ClipDistance.found) {
643 ir_variable *clip_distance_var =
644 shader->symbols->get_variable("gl_ClipDistance");
645 assert(clip_distance_var);
646 *clip_distance_array_size = clip_distance_var->type->length;
647 }
648 if (gl_CullDistance.found) {
649 ir_variable *cull_distance_var =
650 shader->symbols->get_variable("gl_CullDistance");
651 assert(cull_distance_var);
652 *cull_distance_array_size = cull_distance_var->type->length;
653 }
654 /* From the ARB_cull_distance spec:
655 *
656 * It is a compile-time or link-time error for the set of shaders forming
657 * a program to have the sum of the sizes of the gl_ClipDistance and
658 * gl_CullDistance arrays to be larger than
659 * gl_MaxCombinedClipAndCullDistances.
660 */
661 if ((*clip_distance_array_size + *cull_distance_array_size) >
662 ctx->Const.MaxClipPlanes) {
663 linker_error(prog, "%s shader: the combined size of "
664 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
665 "be larger than "
666 "gl_MaxCombinedClipAndCullDistances (%u)",
667 _mesa_shader_stage_to_string(shader->Stage),
668 ctx->Const.MaxClipPlanes);
669 }
670 }
671 }
672
673
674 /**
675 * Verify that a vertex shader executable meets all semantic requirements.
676 *
677 * Also sets info.clip_distance_array_size and
678 * info.cull_distance_array_size as a side effect.
679 *
680 * \param shader Vertex shader executable to be verified
681 */
682 static void
683 validate_vertex_shader_executable(struct gl_shader_program *prog,
684 struct gl_linked_shader *shader,
685 struct gl_context *ctx)
686 {
687 if (shader == NULL)
688 return;
689
690 /* From the GLSL 1.10 spec, page 48:
691 *
692 * "The variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable. [...] The
696 * variable gl_Position is available only in the vertex
697 * language and is intended for writing the homogeneous vertex
698 * position. All executions of a well-formed vertex shader
699 * executable must write a value into this variable."
700 *
701 * while in GLSL 1.40 this text is changed to:
702 *
703 * "The variable gl_Position is available only in the vertex
704 * language and is intended for writing the homogeneous vertex
705 * position. It can be written at any time during shader
706 * execution. It may also be read back by a vertex shader
707 * after being written. This value will be used by primitive
708 * assembly, clipping, culling, and other fixed functionality
709 * operations, if present, that operate on primitives after
710 * vertex processing has occurred. Its value is undefined if
711 * the vertex shader executable does not write gl_Position."
712 *
713 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
714 * gl_Position is not an error.
715 */
716 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
717 find_variable gl_Position("gl_Position");
718 find_assignments(shader->ir, &gl_Position);
719 if (!gl_Position.found) {
720 if (prog->IsES) {
721 linker_warning(prog,
722 "vertex shader does not write to `gl_Position'. "
723 "Its value is undefined. \n");
724 } else {
725 linker_error(prog,
726 "vertex shader does not write to `gl_Position'. \n");
727 }
728 return;
729 }
730 }
731
732 analyze_clip_cull_usage(prog, shader, ctx,
733 &shader->Program->info.clip_distance_array_size,
734 &shader->Program->info.cull_distance_array_size);
735 }
736
737 static void
738 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
739 struct gl_linked_shader *shader,
740 struct gl_context *ctx)
741 {
742 if (shader == NULL)
743 return;
744
745 analyze_clip_cull_usage(prog, shader, ctx,
746 &shader->Program->info.clip_distance_array_size,
747 &shader->Program->info.cull_distance_array_size);
748 }
749
750
751 /**
752 * Verify that a fragment shader executable meets all semantic requirements
753 *
754 * \param shader Fragment shader executable to be verified
755 */
756 static void
757 validate_fragment_shader_executable(struct gl_shader_program *prog,
758 struct gl_linked_shader *shader)
759 {
760 if (shader == NULL)
761 return;
762
763 find_variable gl_FragColor("gl_FragColor");
764 find_variable gl_FragData("gl_FragData");
765 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
766 find_assignments(shader->ir, variables);
767
768 if (gl_FragColor.found && gl_FragData.found) {
769 linker_error(prog, "fragment shader writes to both "
770 "`gl_FragColor' and `gl_FragData'\n");
771 }
772 }
773
774 /**
775 * Verify that a geometry shader executable meets all semantic requirements
776 *
777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
778 * info.cull_distance_array_size as a side effect.
779 *
780 * \param shader Geometry shader executable to be verified
781 */
782 static void
783 validate_geometry_shader_executable(struct gl_shader_program *prog,
784 struct gl_linked_shader *shader,
785 struct gl_context *ctx)
786 {
787 if (shader == NULL)
788 return;
789
790 unsigned num_vertices =
791 vertices_per_prim(shader->Program->info.gs.input_primitive);
792 prog->Geom.VerticesIn = num_vertices;
793
794 analyze_clip_cull_usage(prog, shader, ctx,
795 &shader->Program->info.clip_distance_array_size,
796 &shader->Program->info.cull_distance_array_size);
797 }
798
799 /**
800 * Check if geometry shaders emit to non-zero streams and do corresponding
801 * validations.
802 */
803 static void
804 validate_geometry_shader_emissions(struct gl_context *ctx,
805 struct gl_shader_program *prog)
806 {
807 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
808
809 if (sh != NULL) {
810 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
811 emit_vertex.run(sh->ir);
812 if (emit_vertex.error()) {
813 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
814 "stream parameter are in the range [0, %d].\n",
815 emit_vertex.error_func(),
816 emit_vertex.error_stream(),
817 ctx->Const.MaxVertexStreams - 1);
818 }
819 prog->Geom.UsesStreams = emit_vertex.uses_streams();
820 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
821
822 /* From the ARB_gpu_shader5 spec:
823 *
824 * "Multiple vertex streams are supported only if the output primitive
825 * type is declared to be "points". A program will fail to link if it
826 * contains a geometry shader calling EmitStreamVertex() or
827 * EndStreamPrimitive() if its output primitive type is not "points".
828 *
829 * However, in the same spec:
830 *
831 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
832 * with <stream> set to zero."
833 *
834 * And:
835 *
836 * "The function EndPrimitive() is equivalent to calling
837 * EndStreamPrimitive() with <stream> set to zero."
838 *
839 * Since we can call EmitVertex() and EndPrimitive() when we output
840 * primitives other than points, calling EmitStreamVertex(0) or
841 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
842 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
843 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
844 * stream.
845 */
846 if (prog->Geom.UsesStreams &&
847 sh->Program->info.gs.output_primitive != GL_POINTS) {
848 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
849 "with n>0 requires point output\n");
850 }
851 }
852 }
853
854 bool
855 validate_intrastage_arrays(struct gl_shader_program *prog,
856 ir_variable *const var,
857 ir_variable *const existing)
858 {
859 /* Consider the types to be "the same" if both types are arrays
860 * of the same type and one of the arrays is implicitly sized.
861 * In addition, set the type of the linked variable to the
862 * explicitly sized array.
863 */
864 if (var->type->is_array() && existing->type->is_array()) {
865 if ((var->type->fields.array == existing->type->fields.array) &&
866 ((var->type->length == 0)|| (existing->type->length == 0))) {
867 if (var->type->length != 0) {
868 if ((int)var->type->length <= existing->data.max_array_access) {
869 linker_error(prog, "%s `%s' declared as type "
870 "`%s' but outermost dimension has an index"
871 " of `%i'\n",
872 mode_string(var),
873 var->name, var->type->name,
874 existing->data.max_array_access);
875 }
876 existing->type = var->type;
877 return true;
878 } else if (existing->type->length != 0) {
879 if((int)existing->type->length <= var->data.max_array_access &&
880 !existing->data.from_ssbo_unsized_array) {
881 linker_error(prog, "%s `%s' declared as type "
882 "`%s' but outermost dimension has an index"
883 " of `%i'\n",
884 mode_string(var),
885 var->name, existing->type->name,
886 var->data.max_array_access);
887 }
888 return true;
889 }
890 }
891 }
892 return false;
893 }
894
895
896 /**
897 * Perform validation of global variables used across multiple shaders
898 */
899 static void
900 cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
901 struct exec_list *ir, glsl_symbol_table *variables,
902 bool uniforms_only)
903 {
904 foreach_in_list(ir_instruction, node, ir) {
905 ir_variable *const var = node->as_variable();
906
907 if (var == NULL)
908 continue;
909
910 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
911 continue;
912
913 /* don't cross validate subroutine uniforms */
914 if (var->type->contains_subroutine())
915 continue;
916
917 /* Don't cross validate interface instances. These are only relevant
918 * inside a shader. The cross validation is done at the Interface Block
919 * name level.
920 */
921 if (var->is_interface_instance())
922 continue;
923
924 /* Don't cross validate temporaries that are at global scope. These
925 * will eventually get pulled into the shaders 'main'.
926 */
927 if (var->data.mode == ir_var_temporary)
928 continue;
929
930 /* If a global with this name has already been seen, verify that the
931 * new instance has the same type. In addition, if the globals have
932 * initializers, the values of the initializers must be the same.
933 */
934 ir_variable *const existing = variables->get_variable(var->name);
935 if (existing != NULL) {
936 /* Check if types match. */
937 if (var->type != existing->type) {
938 if (!validate_intrastage_arrays(prog, var, existing)) {
939 /* If it is an unsized array in a Shader Storage Block,
940 * two different shaders can access to different elements.
941 * Because of that, they might be converted to different
942 * sized arrays, then check that they are compatible but
943 * ignore the array size.
944 */
945 if (!(var->data.mode == ir_var_shader_storage &&
946 var->data.from_ssbo_unsized_array &&
947 existing->data.mode == ir_var_shader_storage &&
948 existing->data.from_ssbo_unsized_array &&
949 var->type->gl_type == existing->type->gl_type)) {
950 linker_error(prog, "%s `%s' declared as type "
951 "`%s' and type `%s'\n",
952 mode_string(var),
953 var->name, var->type->name,
954 existing->type->name);
955 return;
956 }
957 }
958 }
959
960 if (var->data.explicit_location) {
961 if (existing->data.explicit_location
962 && (var->data.location != existing->data.location)) {
963 linker_error(prog, "explicit locations for %s "
964 "`%s' have differing values\n",
965 mode_string(var), var->name);
966 return;
967 }
968
969 if (var->data.location_frac != existing->data.location_frac) {
970 linker_error(prog, "explicit components for %s `%s' have "
971 "differing values\n", mode_string(var), var->name);
972 return;
973 }
974
975 existing->data.location = var->data.location;
976 existing->data.explicit_location = true;
977 } else {
978 /* Check if uniform with implicit location was marked explicit
979 * by earlier shader stage. If so, mark it explicit in this stage
980 * too to make sure later processing does not treat it as
981 * implicit one.
982 */
983 if (existing->data.explicit_location) {
984 var->data.location = existing->data.location;
985 var->data.explicit_location = true;
986 }
987 }
988
989 /* From the GLSL 4.20 specification:
990 * "A link error will result if two compilation units in a program
991 * specify different integer-constant bindings for the same
992 * opaque-uniform name. However, it is not an error to specify a
993 * binding on some but not all declarations for the same name"
994 */
995 if (var->data.explicit_binding) {
996 if (existing->data.explicit_binding &&
997 var->data.binding != existing->data.binding) {
998 linker_error(prog, "explicit bindings for %s "
999 "`%s' have differing values\n",
1000 mode_string(var), var->name);
1001 return;
1002 }
1003
1004 existing->data.binding = var->data.binding;
1005 existing->data.explicit_binding = true;
1006 }
1007
1008 if (var->type->contains_atomic() &&
1009 var->data.offset != existing->data.offset) {
1010 linker_error(prog, "offset specifications for %s "
1011 "`%s' have differing values\n",
1012 mode_string(var), var->name);
1013 return;
1014 }
1015
1016 /* Validate layout qualifiers for gl_FragDepth.
1017 *
1018 * From the AMD/ARB_conservative_depth specs:
1019 *
1020 * "If gl_FragDepth is redeclared in any fragment shader in a
1021 * program, it must be redeclared in all fragment shaders in
1022 * that program that have static assignments to
1023 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1024 * fragment shaders in a single program must have the same set
1025 * of qualifiers."
1026 */
1027 if (strcmp(var->name, "gl_FragDepth") == 0) {
1028 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1029 bool layout_differs =
1030 var->data.depth_layout != existing->data.depth_layout;
1031
1032 if (layout_declared && layout_differs) {
1033 linker_error(prog,
1034 "All redeclarations of gl_FragDepth in all "
1035 "fragment shaders in a single program must have "
1036 "the same set of qualifiers.\n");
1037 }
1038
1039 if (var->data.used && layout_differs) {
1040 linker_error(prog,
1041 "If gl_FragDepth is redeclared with a layout "
1042 "qualifier in any fragment shader, it must be "
1043 "redeclared with the same layout qualifier in "
1044 "all fragment shaders that have assignments to "
1045 "gl_FragDepth\n");
1046 }
1047 }
1048
1049 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1050 *
1051 * "If a shared global has multiple initializers, the
1052 * initializers must all be constant expressions, and they
1053 * must all have the same value. Otherwise, a link error will
1054 * result. (A shared global having only one initializer does
1055 * not require that initializer to be a constant expression.)"
1056 *
1057 * Previous to 4.20 the GLSL spec simply said that initializers
1058 * must have the same value. In this case of non-constant
1059 * initializers, this was impossible to determine. As a result,
1060 * no vendor actually implemented that behavior. The 4.20
1061 * behavior matches the implemented behavior of at least one other
1062 * vendor, so we'll implement that for all GLSL versions.
1063 */
1064 if (var->constant_initializer != NULL) {
1065 if (existing->constant_initializer != NULL) {
1066 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1067 linker_error(prog, "initializers for %s "
1068 "`%s' have differing values\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 } else {
1073 /* If the first-seen instance of a particular uniform did
1074 * not have an initializer but a later instance does,
1075 * replace the former with the later.
1076 */
1077 variables->replace_variable(existing->name, var);
1078 }
1079 }
1080
1081 if (var->data.has_initializer) {
1082 if (existing->data.has_initializer
1083 && (var->constant_initializer == NULL
1084 || existing->constant_initializer == NULL)) {
1085 linker_error(prog,
1086 "shared global variable `%s' has multiple "
1087 "non-constant initializers.\n",
1088 var->name);
1089 return;
1090 }
1091 }
1092
1093 if (existing->data.explicit_invariant != var->data.explicit_invariant) {
1094 linker_error(prog, "declarations for %s `%s' have "
1095 "mismatching invariant qualifiers\n",
1096 mode_string(var), var->name);
1097 return;
1098 }
1099 if (existing->data.centroid != var->data.centroid) {
1100 linker_error(prog, "declarations for %s `%s' have "
1101 "mismatching centroid qualifiers\n",
1102 mode_string(var), var->name);
1103 return;
1104 }
1105 if (existing->data.sample != var->data.sample) {
1106 linker_error(prog, "declarations for %s `%s` have "
1107 "mismatching sample qualifiers\n",
1108 mode_string(var), var->name);
1109 return;
1110 }
1111 if (existing->data.image_format != var->data.image_format) {
1112 linker_error(prog, "declarations for %s `%s` have "
1113 "mismatching image format qualifiers\n",
1114 mode_string(var), var->name);
1115 return;
1116 }
1117
1118 /* Check the precision qualifier matches for uniform variables on
1119 * GLSL ES.
1120 */
1121 if (!ctx->Const.AllowGLSLRelaxedES &&
1122 prog->IsES && !var->get_interface_type() &&
1123 existing->data.precision != var->data.precision) {
1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125 linker_error(prog, "declarations for %s `%s` have "
1126 "mismatching precision qualifiers\n",
1127 mode_string(var), var->name);
1128 return;
1129 } else {
1130 linker_warning(prog, "declarations for %s `%s` have "
1131 "mismatching precision qualifiers\n",
1132 mode_string(var), var->name);
1133 }
1134 }
1135
1136 /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1137 *
1138 * "It is a link-time error if any particular shader interface
1139 * contains:
1140 *
1141 * - two different blocks, each having no instance name, and each
1142 * having a member of the same name, or
1143 *
1144 * - a variable outside a block, and a block with no instance name,
1145 * where the variable has the same name as a member in the block."
1146 */
1147 const glsl_type *var_itype = var->get_interface_type();
1148 const glsl_type *existing_itype = existing->get_interface_type();
1149 if (var_itype != existing_itype) {
1150 if (!var_itype || !existing_itype) {
1151 linker_error(prog, "declarations for %s `%s` are inside block "
1152 "`%s` and outside a block",
1153 mode_string(var), var->name,
1154 var_itype ? var_itype->name : existing_itype->name);
1155 return;
1156 } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1157 linker_error(prog, "declarations for %s `%s` are inside blocks "
1158 "`%s` and `%s`",
1159 mode_string(var), var->name,
1160 existing_itype->name,
1161 var_itype->name);
1162 return;
1163 }
1164 }
1165 } else
1166 variables->add_variable(var);
1167 }
1168 }
1169
1170
1171 /**
1172 * Perform validation of uniforms used across multiple shader stages
1173 */
1174 static void
1175 cross_validate_uniforms(struct gl_context *ctx,
1176 struct gl_shader_program *prog)
1177 {
1178 glsl_symbol_table variables;
1179 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1180 if (prog->_LinkedShaders[i] == NULL)
1181 continue;
1182
1183 cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1184 &variables, true);
1185 }
1186 }
1187
1188 /**
1189 * Accumulates the array of buffer blocks and checks that all definitions of
1190 * blocks agree on their contents.
1191 */
1192 static bool
1193 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1194 bool validate_ssbo)
1195 {
1196 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1197 struct gl_uniform_block *blks = NULL;
1198 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1199 &prog->data->NumUniformBlocks;
1200
1201 unsigned max_num_buffer_blocks = 0;
1202 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1203 if (prog->_LinkedShaders[i]) {
1204 if (validate_ssbo) {
1205 max_num_buffer_blocks +=
1206 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1207 } else {
1208 max_num_buffer_blocks +=
1209 prog->_LinkedShaders[i]->Program->info.num_ubos;
1210 }
1211 }
1212 }
1213
1214 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1215 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1216
1217 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1218 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1219 InterfaceBlockStageIndex[i][j] = -1;
1220
1221 if (sh == NULL)
1222 continue;
1223
1224 unsigned sh_num_blocks;
1225 struct gl_uniform_block **sh_blks;
1226 if (validate_ssbo) {
1227 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1228 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1229 } else {
1230 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1231 sh_blks = sh->Program->sh.UniformBlocks;
1232 }
1233
1234 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1235 int index = link_cross_validate_uniform_block(prog->data, &blks,
1236 num_blks, sh_blks[j]);
1237
1238 if (index == -1) {
1239 linker_error(prog, "buffer block `%s' has mismatching "
1240 "definitions\n", sh_blks[j]->Name);
1241
1242 for (unsigned k = 0; k <= i; k++) {
1243 delete[] InterfaceBlockStageIndex[k];
1244 }
1245
1246 /* Reset the block count. This will help avoid various segfaults
1247 * from api calls that assume the array exists due to the count
1248 * being non-zero.
1249 */
1250 *num_blks = 0;
1251 return false;
1252 }
1253
1254 InterfaceBlockStageIndex[i][index] = j;
1255 }
1256 }
1257
1258 /* Update per stage block pointers to point to the program list.
1259 * FIXME: We should be able to free the per stage blocks here.
1260 */
1261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1262 for (unsigned j = 0; j < *num_blks; j++) {
1263 int stage_index = InterfaceBlockStageIndex[i][j];
1264
1265 if (stage_index != -1) {
1266 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1267
1268 struct gl_uniform_block **sh_blks = validate_ssbo ?
1269 sh->Program->sh.ShaderStorageBlocks :
1270 sh->Program->sh.UniformBlocks;
1271
1272 blks[j].stageref |= sh_blks[stage_index]->stageref;
1273 sh_blks[stage_index] = &blks[j];
1274 }
1275 }
1276 }
1277
1278 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1279 delete[] InterfaceBlockStageIndex[i];
1280 }
1281
1282 if (validate_ssbo)
1283 prog->data->ShaderStorageBlocks = blks;
1284 else
1285 prog->data->UniformBlocks = blks;
1286
1287 return true;
1288 }
1289
1290 /**
1291 * Verifies the invariance of built-in special variables.
1292 */
1293 static bool
1294 validate_invariant_builtins(struct gl_shader_program *prog,
1295 const gl_linked_shader *vert,
1296 const gl_linked_shader *frag)
1297 {
1298 const ir_variable *var_vert;
1299 const ir_variable *var_frag;
1300
1301 if (!vert || !frag)
1302 return true;
1303
1304 /*
1305 * From OpenGL ES Shading Language 1.0 specification
1306 * (4.6.4 Invariance and Linkage):
1307 * "The invariance of varyings that are declared in both the vertex and
1308 * fragment shaders must match. For the built-in special variables,
1309 * gl_FragCoord can only be declared invariant if and only if
1310 * gl_Position is declared invariant. Similarly gl_PointCoord can only
1311 * be declared invariant if and only if gl_PointSize is declared
1312 * invariant. It is an error to declare gl_FrontFacing as invariant.
1313 * The invariance of gl_FrontFacing is the same as the invariance of
1314 * gl_Position."
1315 */
1316 var_frag = frag->symbols->get_variable("gl_FragCoord");
1317 if (var_frag && var_frag->data.invariant) {
1318 var_vert = vert->symbols->get_variable("gl_Position");
1319 if (var_vert && !var_vert->data.invariant) {
1320 linker_error(prog,
1321 "fragment shader built-in `%s' has invariant qualifier, "
1322 "but vertex shader built-in `%s' lacks invariant qualifier\n",
1323 var_frag->name, var_vert->name);
1324 return false;
1325 }
1326 }
1327
1328 var_frag = frag->symbols->get_variable("gl_PointCoord");
1329 if (var_frag && var_frag->data.invariant) {
1330 var_vert = vert->symbols->get_variable("gl_PointSize");
1331 if (var_vert && !var_vert->data.invariant) {
1332 linker_error(prog,
1333 "fragment shader built-in `%s' has invariant qualifier, "
1334 "but vertex shader built-in `%s' lacks invariant qualifier\n",
1335 var_frag->name, var_vert->name);
1336 return false;
1337 }
1338 }
1339
1340 var_frag = frag->symbols->get_variable("gl_FrontFacing");
1341 if (var_frag && var_frag->data.invariant) {
1342 linker_error(prog,
1343 "fragment shader built-in `%s' can not be declared as invariant\n",
1344 var_frag->name);
1345 return false;
1346 }
1347
1348 return true;
1349 }
1350
1351 /**
1352 * Populates a shaders symbol table with all global declarations
1353 */
1354 static void
1355 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1356 {
1357 sh->symbols = new(sh) glsl_symbol_table;
1358
1359 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1360 }
1361
1362
1363 /**
1364 * Remap variables referenced in an instruction tree
1365 *
1366 * This is used when instruction trees are cloned from one shader and placed in
1367 * another. These trees will contain references to \c ir_variable nodes that
1368 * do not exist in the target shader. This function finds these \c ir_variable
1369 * references and replaces the references with matching variables in the target
1370 * shader.
1371 *
1372 * If there is no matching variable in the target shader, a clone of the
1373 * \c ir_variable is made and added to the target shader. The new variable is
1374 * added to \b both the instruction stream and the symbol table.
1375 *
1376 * \param inst IR tree that is to be processed.
1377 * \param symbols Symbol table containing global scope symbols in the
1378 * linked shader.
1379 * \param instructions Instruction stream where new variable declarations
1380 * should be added.
1381 */
1382 static void
1383 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1384 hash_table *temps)
1385 {
1386 class remap_visitor : public ir_hierarchical_visitor {
1387 public:
1388 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1389 {
1390 this->target = target;
1391 this->symbols = target->symbols;
1392 this->instructions = target->ir;
1393 this->temps = temps;
1394 }
1395
1396 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1397 {
1398 if (ir->var->data.mode == ir_var_temporary) {
1399 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1400 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1401
1402 assert(var != NULL);
1403 ir->var = var;
1404 return visit_continue;
1405 }
1406
1407 ir_variable *const existing =
1408 this->symbols->get_variable(ir->var->name);
1409 if (existing != NULL)
1410 ir->var = existing;
1411 else {
1412 ir_variable *copy = ir->var->clone(this->target, NULL);
1413
1414 this->symbols->add_variable(copy);
1415 this->instructions->push_head(copy);
1416 ir->var = copy;
1417 }
1418
1419 return visit_continue;
1420 }
1421
1422 private:
1423 struct gl_linked_shader *target;
1424 glsl_symbol_table *symbols;
1425 exec_list *instructions;
1426 hash_table *temps;
1427 };
1428
1429 remap_visitor v(target, temps);
1430
1431 inst->accept(&v);
1432 }
1433
1434
1435 /**
1436 * Move non-declarations from one instruction stream to another
1437 *
1438 * The intended usage pattern of this function is to pass the pointer to the
1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1440 * pointer) for \c last and \c false for \c make_copies on the first
1441 * call. Successive calls pass the return value of the previous call for
1442 * \c last and \c true for \c make_copies.
1443 *
1444 * \param instructions Source instruction stream
1445 * \param last Instruction after which new instructions should be
1446 * inserted in the target instruction stream
1447 * \param make_copies Flag selecting whether instructions in \c instructions
1448 * should be copied (via \c ir_instruction::clone) into the
1449 * target list or moved.
1450 *
1451 * \return
1452 * The new "last" instruction in the target instruction stream. This pointer
1453 * is suitable for use as the \c last parameter of a later call to this
1454 * function.
1455 */
1456 static exec_node *
1457 move_non_declarations(exec_list *instructions, exec_node *last,
1458 bool make_copies, gl_linked_shader *target)
1459 {
1460 hash_table *temps = NULL;
1461
1462 if (make_copies)
1463 temps = _mesa_pointer_hash_table_create(NULL);
1464
1465 foreach_in_list_safe(ir_instruction, inst, instructions) {
1466 if (inst->as_function())
1467 continue;
1468
1469 ir_variable *var = inst->as_variable();
1470 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1471 continue;
1472
1473 assert(inst->as_assignment()
1474 || inst->as_call()
1475 || inst->as_if() /* for initializers with the ?: operator */
1476 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1477
1478 if (make_copies) {
1479 inst = inst->clone(target, NULL);
1480
1481 if (var != NULL)
1482 _mesa_hash_table_insert(temps, var, inst);
1483 else
1484 remap_variables(inst, target, temps);
1485 } else {
1486 inst->remove();
1487 }
1488
1489 last->insert_after(inst);
1490 last = inst;
1491 }
1492
1493 if (make_copies)
1494 _mesa_hash_table_destroy(temps, NULL);
1495
1496 return last;
1497 }
1498
1499
1500 /**
1501 * This class is only used in link_intrastage_shaders() below but declaring
1502 * it inside that function leads to compiler warnings with some versions of
1503 * gcc.
1504 */
1505 class array_sizing_visitor : public deref_type_updater {
1506 public:
1507 array_sizing_visitor()
1508 : mem_ctx(ralloc_context(NULL)),
1509 unnamed_interfaces(_mesa_pointer_hash_table_create(NULL))
1510 {
1511 }
1512
1513 ~array_sizing_visitor()
1514 {
1515 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1516 ralloc_free(this->mem_ctx);
1517 }
1518
1519 virtual ir_visitor_status visit(ir_variable *var)
1520 {
1521 const glsl_type *type_without_array;
1522 bool implicit_sized_array = var->data.implicit_sized_array;
1523 fixup_type(&var->type, var->data.max_array_access,
1524 var->data.from_ssbo_unsized_array,
1525 &implicit_sized_array);
1526 var->data.implicit_sized_array = implicit_sized_array;
1527 type_without_array = var->type->without_array();
1528 if (var->type->is_interface()) {
1529 if (interface_contains_unsized_arrays(var->type)) {
1530 const glsl_type *new_type =
1531 resize_interface_members(var->type,
1532 var->get_max_ifc_array_access(),
1533 var->is_in_shader_storage_block());
1534 var->type = new_type;
1535 var->change_interface_type(new_type);
1536 }
1537 } else if (type_without_array->is_interface()) {
1538 if (interface_contains_unsized_arrays(type_without_array)) {
1539 const glsl_type *new_type =
1540 resize_interface_members(type_without_array,
1541 var->get_max_ifc_array_access(),
1542 var->is_in_shader_storage_block());
1543 var->change_interface_type(new_type);
1544 var->type = update_interface_members_array(var->type, new_type);
1545 }
1546 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1547 /* Store a pointer to the variable in the unnamed_interfaces
1548 * hashtable.
1549 */
1550 hash_entry *entry =
1551 _mesa_hash_table_search(this->unnamed_interfaces,
1552 ifc_type);
1553
1554 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1555
1556 if (interface_vars == NULL) {
1557 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1558 ifc_type->length);
1559 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1560 interface_vars);
1561 }
1562 unsigned index = ifc_type->field_index(var->name);
1563 assert(index < ifc_type->length);
1564 assert(interface_vars[index] == NULL);
1565 interface_vars[index] = var;
1566 }
1567 return visit_continue;
1568 }
1569
1570 /**
1571 * For each unnamed interface block that was discovered while running the
1572 * visitor, adjust the interface type to reflect the newly assigned array
1573 * sizes, and fix up the ir_variable nodes to point to the new interface
1574 * type.
1575 */
1576 void fixup_unnamed_interface_types()
1577 {
1578 hash_table_call_foreach(this->unnamed_interfaces,
1579 fixup_unnamed_interface_type, NULL);
1580 }
1581
1582 private:
1583 /**
1584 * If the type pointed to by \c type represents an unsized array, replace
1585 * it with a sized array whose size is determined by max_array_access.
1586 */
1587 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1588 bool from_ssbo_unsized_array, bool *implicit_sized)
1589 {
1590 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1591 *type = glsl_type::get_array_instance((*type)->fields.array,
1592 max_array_access + 1);
1593 *implicit_sized = true;
1594 assert(*type != NULL);
1595 }
1596 }
1597
1598 static const glsl_type *
1599 update_interface_members_array(const glsl_type *type,
1600 const glsl_type *new_interface_type)
1601 {
1602 const glsl_type *element_type = type->fields.array;
1603 if (element_type->is_array()) {
1604 const glsl_type *new_array_type =
1605 update_interface_members_array(element_type, new_interface_type);
1606 return glsl_type::get_array_instance(new_array_type, type->length);
1607 } else {
1608 return glsl_type::get_array_instance(new_interface_type,
1609 type->length);
1610 }
1611 }
1612
1613 /**
1614 * Determine whether the given interface type contains unsized arrays (if
1615 * it doesn't, array_sizing_visitor doesn't need to process it).
1616 */
1617 static bool interface_contains_unsized_arrays(const glsl_type *type)
1618 {
1619 for (unsigned i = 0; i < type->length; i++) {
1620 const glsl_type *elem_type = type->fields.structure[i].type;
1621 if (elem_type->is_unsized_array())
1622 return true;
1623 }
1624 return false;
1625 }
1626
1627 /**
1628 * Create a new interface type based on the given type, with unsized arrays
1629 * replaced by sized arrays whose size is determined by
1630 * max_ifc_array_access.
1631 */
1632 static const glsl_type *
1633 resize_interface_members(const glsl_type *type,
1634 const int *max_ifc_array_access,
1635 bool is_ssbo)
1636 {
1637 unsigned num_fields = type->length;
1638 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1639 memcpy(fields, type->fields.structure,
1640 num_fields * sizeof(*fields));
1641 for (unsigned i = 0; i < num_fields; i++) {
1642 bool implicit_sized_array = fields[i].implicit_sized_array;
1643 /* If SSBO last member is unsized array, we don't replace it by a sized
1644 * array.
1645 */
1646 if (is_ssbo && i == (num_fields - 1))
1647 fixup_type(&fields[i].type, max_ifc_array_access[i],
1648 true, &implicit_sized_array);
1649 else
1650 fixup_type(&fields[i].type, max_ifc_array_access[i],
1651 false, &implicit_sized_array);
1652 fields[i].implicit_sized_array = implicit_sized_array;
1653 }
1654 glsl_interface_packing packing =
1655 (glsl_interface_packing) type->interface_packing;
1656 bool row_major = (bool) type->interface_row_major;
1657 const glsl_type *new_ifc_type =
1658 glsl_type::get_interface_instance(fields, num_fields,
1659 packing, row_major, type->name);
1660 delete [] fields;
1661 return new_ifc_type;
1662 }
1663
1664 static void fixup_unnamed_interface_type(const void *key, void *data,
1665 void *)
1666 {
1667 const glsl_type *ifc_type = (const glsl_type *) key;
1668 ir_variable **interface_vars = (ir_variable **) data;
1669 unsigned num_fields = ifc_type->length;
1670 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1671 memcpy(fields, ifc_type->fields.structure,
1672 num_fields * sizeof(*fields));
1673 bool interface_type_changed = false;
1674 for (unsigned i = 0; i < num_fields; i++) {
1675 if (interface_vars[i] != NULL &&
1676 fields[i].type != interface_vars[i]->type) {
1677 fields[i].type = interface_vars[i]->type;
1678 interface_type_changed = true;
1679 }
1680 }
1681 if (!interface_type_changed) {
1682 delete [] fields;
1683 return;
1684 }
1685 glsl_interface_packing packing =
1686 (glsl_interface_packing) ifc_type->interface_packing;
1687 bool row_major = (bool) ifc_type->interface_row_major;
1688 const glsl_type *new_ifc_type =
1689 glsl_type::get_interface_instance(fields, num_fields, packing,
1690 row_major, ifc_type->name);
1691 delete [] fields;
1692 for (unsigned i = 0; i < num_fields; i++) {
1693 if (interface_vars[i] != NULL)
1694 interface_vars[i]->change_interface_type(new_ifc_type);
1695 }
1696 }
1697
1698 /**
1699 * Memory context used to allocate the data in \c unnamed_interfaces.
1700 */
1701 void *mem_ctx;
1702
1703 /**
1704 * Hash table from const glsl_type * to an array of ir_variable *'s
1705 * pointing to the ir_variables constituting each unnamed interface block.
1706 */
1707 hash_table *unnamed_interfaces;
1708 };
1709
1710 static bool
1711 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1712 struct gl_shader_program *prog)
1713 {
1714 /* We will validate doubles at a later stage */
1715 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1716 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1717 "multiple of 4 or if its applied to a type that is "
1718 "or contains a double a multiple of 8.",
1719 prog->TransformFeedback.BufferStride[idx]);
1720 return false;
1721 }
1722
1723 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1724 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1725 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1726 "limit has been exceeded.");
1727 return false;
1728 }
1729
1730 return true;
1731 }
1732
1733 /**
1734 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1735 * for later use.
1736 */
1737 static void
1738 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1739 struct gl_shader_program *prog,
1740 struct gl_shader **shader_list,
1741 unsigned num_shaders)
1742 {
1743 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1744 prog->TransformFeedback.BufferStride[i] = 0;
1745 }
1746
1747 for (unsigned i = 0; i < num_shaders; i++) {
1748 struct gl_shader *shader = shader_list[i];
1749
1750 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1751 if (shader->TransformFeedbackBufferStride[j]) {
1752 if (prog->TransformFeedback.BufferStride[j] == 0) {
1753 prog->TransformFeedback.BufferStride[j] =
1754 shader->TransformFeedbackBufferStride[j];
1755 if (!validate_xfb_buffer_stride(ctx, j, prog))
1756 return;
1757 } else if (prog->TransformFeedback.BufferStride[j] !=
1758 shader->TransformFeedbackBufferStride[j]){
1759 linker_error(prog,
1760 "intrastage shaders defined with conflicting "
1761 "xfb_stride for buffer %d (%d and %d)\n", j,
1762 prog->TransformFeedback.BufferStride[j],
1763 shader->TransformFeedbackBufferStride[j]);
1764 return;
1765 }
1766 }
1767 }
1768 }
1769 }
1770
1771 /**
1772 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1773 * global scope.
1774 */
1775 static void
1776 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1777 struct gl_shader **shader_list,
1778 unsigned num_shaders)
1779 {
1780 bool bindless_sampler, bindless_image;
1781 bool bound_sampler, bound_image;
1782
1783 bindless_sampler = bindless_image = false;
1784 bound_sampler = bound_image = false;
1785
1786 for (unsigned i = 0; i < num_shaders; i++) {
1787 struct gl_shader *shader = shader_list[i];
1788
1789 if (shader->bindless_sampler)
1790 bindless_sampler = true;
1791 if (shader->bindless_image)
1792 bindless_image = true;
1793 if (shader->bound_sampler)
1794 bound_sampler = true;
1795 if (shader->bound_image)
1796 bound_image = true;
1797
1798 if ((bindless_sampler && bound_sampler) ||
1799 (bindless_image && bound_image)) {
1800 /* From section 4.4.6 of the ARB_bindless_texture spec:
1801 *
1802 * "If both bindless_sampler and bound_sampler, or bindless_image
1803 * and bound_image, are declared at global scope in any
1804 * compilation unit, a link- time error will be generated."
1805 */
1806 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1807 "bindless_image and bound_image, can't be declared at "
1808 "global scope");
1809 }
1810 }
1811 }
1812
1813 /**
1814 * Performs the cross-validation of tessellation control shader vertices and
1815 * layout qualifiers for the attached tessellation control shaders,
1816 * and propagates them to the linked TCS and linked shader program.
1817 */
1818 static void
1819 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1820 struct gl_program *gl_prog,
1821 struct gl_shader **shader_list,
1822 unsigned num_shaders)
1823 {
1824 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1825 return;
1826
1827 gl_prog->info.tess.tcs_vertices_out = 0;
1828
1829 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1830 *
1831 * "All tessellation control shader layout declarations in a program
1832 * must specify the same output patch vertex count. There must be at
1833 * least one layout qualifier specifying an output patch vertex count
1834 * in any program containing tessellation control shaders; however,
1835 * such a declaration is not required in all tessellation control
1836 * shaders."
1837 */
1838
1839 for (unsigned i = 0; i < num_shaders; i++) {
1840 struct gl_shader *shader = shader_list[i];
1841
1842 if (shader->info.TessCtrl.VerticesOut != 0) {
1843 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1844 gl_prog->info.tess.tcs_vertices_out !=
1845 (unsigned) shader->info.TessCtrl.VerticesOut) {
1846 linker_error(prog, "tessellation control shader defined with "
1847 "conflicting output vertex count (%d and %d)\n",
1848 gl_prog->info.tess.tcs_vertices_out,
1849 shader->info.TessCtrl.VerticesOut);
1850 return;
1851 }
1852 gl_prog->info.tess.tcs_vertices_out =
1853 shader->info.TessCtrl.VerticesOut;
1854 }
1855 }
1856
1857 /* Just do the intrastage -> interstage propagation right now,
1858 * since we already know we're in the right type of shader program
1859 * for doing it.
1860 */
1861 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1862 linker_error(prog, "tessellation control shader didn't declare "
1863 "vertices out layout qualifier\n");
1864 return;
1865 }
1866 }
1867
1868
1869 /**
1870 * Performs the cross-validation of tessellation evaluation shader
1871 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1872 * for the attached tessellation evaluation shaders, and propagates them
1873 * to the linked TES and linked shader program.
1874 */
1875 static void
1876 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1877 struct gl_program *gl_prog,
1878 struct gl_shader **shader_list,
1879 unsigned num_shaders)
1880 {
1881 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1882 return;
1883
1884 int point_mode = -1;
1885 unsigned vertex_order = 0;
1886
1887 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1888 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1889
1890 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1891 *
1892 * "At least one tessellation evaluation shader (compilation unit) in
1893 * a program must declare a primitive mode in its input layout.
1894 * Declaration vertex spacing, ordering, and point mode identifiers is
1895 * optional. It is not required that all tessellation evaluation
1896 * shaders in a program declare a primitive mode. If spacing or
1897 * vertex ordering declarations are omitted, the tessellation
1898 * primitive generator will use equal spacing or counter-clockwise
1899 * vertex ordering, respectively. If a point mode declaration is
1900 * omitted, the tessellation primitive generator will produce lines or
1901 * triangles according to the primitive mode."
1902 */
1903
1904 for (unsigned i = 0; i < num_shaders; i++) {
1905 struct gl_shader *shader = shader_list[i];
1906
1907 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1908 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1909 gl_prog->info.tess.primitive_mode !=
1910 shader->info.TessEval.PrimitiveMode) {
1911 linker_error(prog, "tessellation evaluation shader defined with "
1912 "conflicting input primitive modes.\n");
1913 return;
1914 }
1915 gl_prog->info.tess.primitive_mode =
1916 shader->info.TessEval.PrimitiveMode;
1917 }
1918
1919 if (shader->info.TessEval.Spacing != 0) {
1920 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1921 shader->info.TessEval.Spacing) {
1922 linker_error(prog, "tessellation evaluation shader defined with "
1923 "conflicting vertex spacing.\n");
1924 return;
1925 }
1926 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1927 }
1928
1929 if (shader->info.TessEval.VertexOrder != 0) {
1930 if (vertex_order != 0 &&
1931 vertex_order != shader->info.TessEval.VertexOrder) {
1932 linker_error(prog, "tessellation evaluation shader defined with "
1933 "conflicting ordering.\n");
1934 return;
1935 }
1936 vertex_order = shader->info.TessEval.VertexOrder;
1937 }
1938
1939 if (shader->info.TessEval.PointMode != -1) {
1940 if (point_mode != -1 &&
1941 point_mode != shader->info.TessEval.PointMode) {
1942 linker_error(prog, "tessellation evaluation shader defined with "
1943 "conflicting point modes.\n");
1944 return;
1945 }
1946 point_mode = shader->info.TessEval.PointMode;
1947 }
1948
1949 }
1950
1951 /* Just do the intrastage -> interstage propagation right now,
1952 * since we already know we're in the right type of shader program
1953 * for doing it.
1954 */
1955 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1956 linker_error(prog,
1957 "tessellation evaluation shader didn't declare input "
1958 "primitive modes.\n");
1959 return;
1960 }
1961
1962 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1963 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1964
1965 if (vertex_order == 0 || vertex_order == GL_CCW)
1966 gl_prog->info.tess.ccw = true;
1967 else
1968 gl_prog->info.tess.ccw = false;
1969
1970
1971 if (point_mode == -1 || point_mode == GL_FALSE)
1972 gl_prog->info.tess.point_mode = false;
1973 else
1974 gl_prog->info.tess.point_mode = true;
1975 }
1976
1977
1978 /**
1979 * Performs the cross-validation of layout qualifiers specified in
1980 * redeclaration of gl_FragCoord for the attached fragment shaders,
1981 * and propagates them to the linked FS and linked shader program.
1982 */
1983 static void
1984 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1985 struct gl_linked_shader *linked_shader,
1986 struct gl_shader **shader_list,
1987 unsigned num_shaders)
1988 {
1989 bool redeclares_gl_fragcoord = false;
1990 bool uses_gl_fragcoord = false;
1991 bool origin_upper_left = false;
1992 bool pixel_center_integer = false;
1993
1994 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1995 (prog->data->Version < 150 &&
1996 !prog->ARB_fragment_coord_conventions_enable))
1997 return;
1998
1999 for (unsigned i = 0; i < num_shaders; i++) {
2000 struct gl_shader *shader = shader_list[i];
2001 /* From the GLSL 1.50 spec, page 39:
2002 *
2003 * "If gl_FragCoord is redeclared in any fragment shader in a program,
2004 * it must be redeclared in all the fragment shaders in that program
2005 * that have a static use gl_FragCoord."
2006 */
2007 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2008 shader->uses_gl_fragcoord)
2009 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2010 uses_gl_fragcoord)) {
2011 linker_error(prog, "fragment shader defined with conflicting "
2012 "layout qualifiers for gl_FragCoord\n");
2013 }
2014
2015 /* From the GLSL 1.50 spec, page 39:
2016 *
2017 * "All redeclarations of gl_FragCoord in all fragment shaders in a
2018 * single program must have the same set of qualifiers."
2019 */
2020 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2021 (shader->origin_upper_left != origin_upper_left ||
2022 shader->pixel_center_integer != pixel_center_integer)) {
2023 linker_error(prog, "fragment shader defined with conflicting "
2024 "layout qualifiers for gl_FragCoord\n");
2025 }
2026
2027 /* Update the linked shader state. Note that uses_gl_fragcoord should
2028 * accumulate the results. The other values should replace. If there
2029 * are multiple redeclarations, all the fields except uses_gl_fragcoord
2030 * are already known to be the same.
2031 */
2032 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2033 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2034 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2035 origin_upper_left = shader->origin_upper_left;
2036 pixel_center_integer = shader->pixel_center_integer;
2037 }
2038
2039 linked_shader->Program->info.fs.early_fragment_tests |=
2040 shader->EarlyFragmentTests || shader->PostDepthCoverage;
2041 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2042 linked_shader->Program->info.fs.post_depth_coverage |=
2043 shader->PostDepthCoverage;
2044 linked_shader->Program->info.fs.pixel_interlock_ordered |=
2045 shader->PixelInterlockOrdered;
2046 linked_shader->Program->info.fs.pixel_interlock_unordered |=
2047 shader->PixelInterlockUnordered;
2048 linked_shader->Program->info.fs.sample_interlock_ordered |=
2049 shader->SampleInterlockOrdered;
2050 linked_shader->Program->info.fs.sample_interlock_unordered |=
2051 shader->SampleInterlockUnordered;
2052 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
2053 }
2054
2055 linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer;
2056 linked_shader->Program->info.fs.origin_upper_left = origin_upper_left;
2057 }
2058
2059 /**
2060 * Performs the cross-validation of geometry shader max_vertices and
2061 * primitive type layout qualifiers for the attached geometry shaders,
2062 * and propagates them to the linked GS and linked shader program.
2063 */
2064 static void
2065 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2066 struct gl_program *gl_prog,
2067 struct gl_shader **shader_list,
2068 unsigned num_shaders)
2069 {
2070 /* No in/out qualifiers defined for anything but GLSL 1.50+
2071 * geometry shaders so far.
2072 */
2073 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2074 prog->data->Version < 150)
2075 return;
2076
2077 int vertices_out = -1;
2078
2079 gl_prog->info.gs.invocations = 0;
2080 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2081 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2082
2083 /* From the GLSL 1.50 spec, page 46:
2084 *
2085 * "All geometry shader output layout declarations in a program
2086 * must declare the same layout and same value for
2087 * max_vertices. There must be at least one geometry output
2088 * layout declaration somewhere in a program, but not all
2089 * geometry shaders (compilation units) are required to
2090 * declare it."
2091 */
2092
2093 for (unsigned i = 0; i < num_shaders; i++) {
2094 struct gl_shader *shader = shader_list[i];
2095
2096 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2097 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2098 gl_prog->info.gs.input_primitive !=
2099 shader->info.Geom.InputType) {
2100 linker_error(prog, "geometry shader defined with conflicting "
2101 "input types\n");
2102 return;
2103 }
2104 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2105 }
2106
2107 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2108 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2109 gl_prog->info.gs.output_primitive !=
2110 shader->info.Geom.OutputType) {
2111 linker_error(prog, "geometry shader defined with conflicting "
2112 "output types\n");
2113 return;
2114 }
2115 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2116 }
2117
2118 if (shader->info.Geom.VerticesOut != -1) {
2119 if (vertices_out != -1 &&
2120 vertices_out != shader->info.Geom.VerticesOut) {
2121 linker_error(prog, "geometry shader defined with conflicting "
2122 "output vertex count (%d and %d)\n",
2123 vertices_out, shader->info.Geom.VerticesOut);
2124 return;
2125 }
2126 vertices_out = shader->info.Geom.VerticesOut;
2127 }
2128
2129 if (shader->info.Geom.Invocations != 0) {
2130 if (gl_prog->info.gs.invocations != 0 &&
2131 gl_prog->info.gs.invocations !=
2132 (unsigned) shader->info.Geom.Invocations) {
2133 linker_error(prog, "geometry shader defined with conflicting "
2134 "invocation count (%d and %d)\n",
2135 gl_prog->info.gs.invocations,
2136 shader->info.Geom.Invocations);
2137 return;
2138 }
2139 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2140 }
2141 }
2142
2143 /* Just do the intrastage -> interstage propagation right now,
2144 * since we already know we're in the right type of shader program
2145 * for doing it.
2146 */
2147 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2148 linker_error(prog,
2149 "geometry shader didn't declare primitive input type\n");
2150 return;
2151 }
2152
2153 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2154 linker_error(prog,
2155 "geometry shader didn't declare primitive output type\n");
2156 return;
2157 }
2158
2159 if (vertices_out == -1) {
2160 linker_error(prog,
2161 "geometry shader didn't declare max_vertices\n");
2162 return;
2163 } else {
2164 gl_prog->info.gs.vertices_out = vertices_out;
2165 }
2166
2167 if (gl_prog->info.gs.invocations == 0)
2168 gl_prog->info.gs.invocations = 1;
2169 }
2170
2171
2172 /**
2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout and
2174 * derivative arrangement qualifiers for the attached compute shaders, and
2175 * propagate them to the linked CS and linked shader program.
2176 */
2177 static void
2178 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2179 struct gl_program *gl_prog,
2180 struct gl_shader **shader_list,
2181 unsigned num_shaders)
2182 {
2183 /* This function is called for all shader stages, but it only has an effect
2184 * for compute shaders.
2185 */
2186 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2187 return;
2188
2189 for (int i = 0; i < 3; i++)
2190 gl_prog->info.cs.local_size[i] = 0;
2191
2192 gl_prog->info.cs.local_size_variable = false;
2193
2194 gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE;
2195
2196 /* From the ARB_compute_shader spec, in the section describing local size
2197 * declarations:
2198 *
2199 * If multiple compute shaders attached to a single program object
2200 * declare local work-group size, the declarations must be identical;
2201 * otherwise a link-time error results. Furthermore, if a program
2202 * object contains any compute shaders, at least one must contain an
2203 * input layout qualifier specifying the local work sizes of the
2204 * program, or a link-time error will occur.
2205 */
2206 for (unsigned sh = 0; sh < num_shaders; sh++) {
2207 struct gl_shader *shader = shader_list[sh];
2208
2209 if (shader->info.Comp.LocalSize[0] != 0) {
2210 if (gl_prog->info.cs.local_size[0] != 0) {
2211 for (int i = 0; i < 3; i++) {
2212 if (gl_prog->info.cs.local_size[i] !=
2213 shader->info.Comp.LocalSize[i]) {
2214 linker_error(prog, "compute shader defined with conflicting "
2215 "local sizes\n");
2216 return;
2217 }
2218 }
2219 }
2220 for (int i = 0; i < 3; i++) {
2221 gl_prog->info.cs.local_size[i] =
2222 shader->info.Comp.LocalSize[i];
2223 }
2224 } else if (shader->info.Comp.LocalSizeVariable) {
2225 if (gl_prog->info.cs.local_size[0] != 0) {
2226 /* The ARB_compute_variable_group_size spec says:
2227 *
2228 * If one compute shader attached to a program declares a
2229 * variable local group size and a second compute shader
2230 * attached to the same program declares a fixed local group
2231 * size, a link-time error results.
2232 */
2233 linker_error(prog, "compute shader defined with both fixed and "
2234 "variable local group size\n");
2235 return;
2236 }
2237 gl_prog->info.cs.local_size_variable = true;
2238 }
2239
2240 enum gl_derivative_group group = shader->info.Comp.DerivativeGroup;
2241 if (group != DERIVATIVE_GROUP_NONE) {
2242 if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE &&
2243 gl_prog->info.cs.derivative_group != group) {
2244 linker_error(prog, "compute shader defined with conflicting "
2245 "derivative groups\n");
2246 return;
2247 }
2248 gl_prog->info.cs.derivative_group = group;
2249 }
2250 }
2251
2252 /* Just do the intrastage -> interstage propagation right now,
2253 * since we already know we're in the right type of shader program
2254 * for doing it.
2255 */
2256 if (gl_prog->info.cs.local_size[0] == 0 &&
2257 !gl_prog->info.cs.local_size_variable) {
2258 linker_error(prog, "compute shader must contain a fixed or a variable "
2259 "local group size\n");
2260 return;
2261 }
2262
2263 if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
2264 if (gl_prog->info.cs.local_size[0] % 2 != 0) {
2265 linker_error(prog, "derivative_group_quadsNV must be used with a "
2266 "local group size whose first dimension "
2267 "is a multiple of 2\n");
2268 return;
2269 }
2270 if (gl_prog->info.cs.local_size[1] % 2 != 0) {
2271 linker_error(prog, "derivative_group_quadsNV must be used with a local"
2272 "group size whose second dimension "
2273 "is a multiple of 2\n");
2274 return;
2275 }
2276 } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
2277 if ((gl_prog->info.cs.local_size[0] *
2278 gl_prog->info.cs.local_size[1] *
2279 gl_prog->info.cs.local_size[2]) % 4 != 0) {
2280 linker_error(prog, "derivative_group_linearNV must be used with a "
2281 "local group size whose total number of invocations "
2282 "is a multiple of 4\n");
2283 return;
2284 }
2285 }
2286 }
2287
2288 /**
2289 * Link all out variables on a single stage which are not
2290 * directly used in a shader with the main function.
2291 */
2292 static void
2293 link_output_variables(struct gl_linked_shader *linked_shader,
2294 struct gl_shader **shader_list,
2295 unsigned num_shaders)
2296 {
2297 struct glsl_symbol_table *symbols = linked_shader->symbols;
2298
2299 for (unsigned i = 0; i < num_shaders; i++) {
2300
2301 /* Skip shader object with main function */
2302 if (shader_list[i]->symbols->get_function("main"))
2303 continue;
2304
2305 foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2306 if (ir->ir_type != ir_type_variable)
2307 continue;
2308
2309 ir_variable *var = (ir_variable *) ir;
2310
2311 if (var->data.mode == ir_var_shader_out &&
2312 !symbols->get_variable(var->name)) {
2313 var = var->clone(linked_shader, NULL);
2314 symbols->add_variable(var);
2315 linked_shader->ir->push_head(var);
2316 }
2317 }
2318 }
2319
2320 return;
2321 }
2322
2323
2324 /**
2325 * Combine a group of shaders for a single stage to generate a linked shader
2326 *
2327 * \note
2328 * If this function is supplied a single shader, it is cloned, and the new
2329 * shader is returned.
2330 */
2331 struct gl_linked_shader *
2332 link_intrastage_shaders(void *mem_ctx,
2333 struct gl_context *ctx,
2334 struct gl_shader_program *prog,
2335 struct gl_shader **shader_list,
2336 unsigned num_shaders,
2337 bool allow_missing_main)
2338 {
2339 struct gl_uniform_block *ubo_blocks = NULL;
2340 struct gl_uniform_block *ssbo_blocks = NULL;
2341 unsigned num_ubo_blocks = 0;
2342 unsigned num_ssbo_blocks = 0;
2343
2344 /* Check that global variables defined in multiple shaders are consistent.
2345 */
2346 glsl_symbol_table variables;
2347 for (unsigned i = 0; i < num_shaders; i++) {
2348 if (shader_list[i] == NULL)
2349 continue;
2350 cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2351 false);
2352 }
2353
2354 if (!prog->data->LinkStatus)
2355 return NULL;
2356
2357 /* Check that interface blocks defined in multiple shaders are consistent.
2358 */
2359 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2360 num_shaders);
2361 if (!prog->data->LinkStatus)
2362 return NULL;
2363
2364 /* Check that there is only a single definition of each function signature
2365 * across all shaders.
2366 */
2367 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2368 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2369 ir_function *const f = node->as_function();
2370
2371 if (f == NULL)
2372 continue;
2373
2374 for (unsigned j = i + 1; j < num_shaders; j++) {
2375 ir_function *const other =
2376 shader_list[j]->symbols->get_function(f->name);
2377
2378 /* If the other shader has no function (and therefore no function
2379 * signatures) with the same name, skip to the next shader.
2380 */
2381 if (other == NULL)
2382 continue;
2383
2384 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2385 if (!sig->is_defined)
2386 continue;
2387
2388 ir_function_signature *other_sig =
2389 other->exact_matching_signature(NULL, &sig->parameters);
2390
2391 if (other_sig != NULL && other_sig->is_defined) {
2392 linker_error(prog, "function `%s' is multiply defined\n",
2393 f->name);
2394 return NULL;
2395 }
2396 }
2397 }
2398 }
2399 }
2400
2401 /* Find the shader that defines main, and make a clone of it.
2402 *
2403 * Starting with the clone, search for undefined references. If one is
2404 * found, find the shader that defines it. Clone the reference and add
2405 * it to the shader. Repeat until there are no undefined references or
2406 * until a reference cannot be resolved.
2407 */
2408 gl_shader *main = NULL;
2409 for (unsigned i = 0; i < num_shaders; i++) {
2410 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2411 main = shader_list[i];
2412 break;
2413 }
2414 }
2415
2416 if (main == NULL && allow_missing_main)
2417 main = shader_list[0];
2418
2419 if (main == NULL) {
2420 linker_error(prog, "%s shader lacks `main'\n",
2421 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2422 return NULL;
2423 }
2424
2425 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2426 linked->Stage = shader_list[0]->Stage;
2427
2428 /* Create program and attach it to the linked shader */
2429 struct gl_program *gl_prog =
2430 ctx->Driver.NewProgram(ctx,
2431 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2432 prog->Name, false);
2433 if (!gl_prog) {
2434 prog->data->LinkStatus = LINKING_FAILURE;
2435 _mesa_delete_linked_shader(ctx, linked);
2436 return NULL;
2437 }
2438
2439 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2440
2441 /* Don't use _mesa_reference_program() just take ownership */
2442 linked->Program = gl_prog;
2443
2444 linked->ir = new(linked) exec_list;
2445 clone_ir_list(mem_ctx, linked->ir, main->ir);
2446
2447 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2448 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2449 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2450 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2451 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2452
2453 if (linked->Stage != MESA_SHADER_FRAGMENT)
2454 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2455
2456 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2457
2458 populate_symbol_table(linked, shader_list[0]->symbols);
2459
2460 /* The pointer to the main function in the final linked shader (i.e., the
2461 * copy of the original shader that contained the main function).
2462 */
2463 ir_function_signature *const main_sig =
2464 _mesa_get_main_function_signature(linked->symbols);
2465
2466 /* Move any instructions other than variable declarations or function
2467 * declarations into main.
2468 */
2469 if (main_sig != NULL) {
2470 exec_node *insertion_point =
2471 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2472 linked);
2473
2474 for (unsigned i = 0; i < num_shaders; i++) {
2475 if (shader_list[i] == main)
2476 continue;
2477
2478 insertion_point = move_non_declarations(shader_list[i]->ir,
2479 insertion_point, true, linked);
2480 }
2481 }
2482
2483 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2484 _mesa_delete_linked_shader(ctx, linked);
2485 return NULL;
2486 }
2487
2488 if (linked->Stage != MESA_SHADER_FRAGMENT)
2489 link_output_variables(linked, shader_list, num_shaders);
2490
2491 /* Make a pass over all variable declarations to ensure that arrays with
2492 * unspecified sizes have a size specified. The size is inferred from the
2493 * max_array_access field.
2494 */
2495 array_sizing_visitor v;
2496 v.run(linked->ir);
2497 v.fixup_unnamed_interface_types();
2498
2499 /* Link up uniform blocks defined within this stage. */
2500 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2501 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2502
2503 if (!prog->data->LinkStatus) {
2504 _mesa_delete_linked_shader(ctx, linked);
2505 return NULL;
2506 }
2507
2508 /* Copy ubo blocks to linked shader list */
2509 linked->Program->sh.UniformBlocks =
2510 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2511 ralloc_steal(linked, ubo_blocks);
2512 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2513 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2514 }
2515 linked->Program->info.num_ubos = num_ubo_blocks;
2516
2517 /* Copy ssbo blocks to linked shader list */
2518 linked->Program->sh.ShaderStorageBlocks =
2519 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2520 ralloc_steal(linked, ssbo_blocks);
2521 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2522 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2523 }
2524 linked->Program->info.num_ssbos = num_ssbo_blocks;
2525
2526 /* At this point linked should contain all of the linked IR, so
2527 * validate it to make sure nothing went wrong.
2528 */
2529 validate_ir_tree(linked->ir);
2530
2531 /* Set the size of geometry shader input arrays */
2532 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2533 unsigned num_vertices =
2534 vertices_per_prim(gl_prog->info.gs.input_primitive);
2535 array_resize_visitor input_resize_visitor(num_vertices, prog,
2536 MESA_SHADER_GEOMETRY);
2537 foreach_in_list(ir_instruction, ir, linked->ir) {
2538 ir->accept(&input_resize_visitor);
2539 }
2540 }
2541
2542 if (ctx->Const.VertexID_is_zero_based)
2543 lower_vertex_id(linked);
2544
2545 if (ctx->Const.LowerCsDerivedVariables)
2546 lower_cs_derived(linked);
2547
2548 #ifdef DEBUG
2549 /* Compute the source checksum. */
2550 linked->SourceChecksum = 0;
2551 for (unsigned i = 0; i < num_shaders; i++) {
2552 if (shader_list[i] == NULL)
2553 continue;
2554 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2555 }
2556 #endif
2557
2558 return linked;
2559 }
2560
2561 /**
2562 * Update the sizes of linked shader uniform arrays to the maximum
2563 * array index used.
2564 *
2565 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2566 *
2567 * If one or more elements of an array are active,
2568 * GetActiveUniform will return the name of the array in name,
2569 * subject to the restrictions listed above. The type of the array
2570 * is returned in type. The size parameter contains the highest
2571 * array element index used, plus one. The compiler or linker
2572 * determines the highest index used. There will be only one
2573 * active uniform reported by the GL per uniform array.
2574
2575 */
2576 static void
2577 update_array_sizes(struct gl_shader_program *prog)
2578 {
2579 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2580 if (prog->_LinkedShaders[i] == NULL)
2581 continue;
2582
2583 bool types_were_updated = false;
2584
2585 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2586 ir_variable *const var = node->as_variable();
2587
2588 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2589 !var->type->is_array())
2590 continue;
2591
2592 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2593 * will not be eliminated. Since we always do std140, just
2594 * don't resize arrays in UBOs.
2595 *
2596 * Atomic counters are supposed to get deterministic
2597 * locations assigned based on the declaration ordering and
2598 * sizes, array compaction would mess that up.
2599 *
2600 * Subroutine uniforms are not removed.
2601 */
2602 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2603 var->type->contains_subroutine() || var->constant_initializer)
2604 continue;
2605
2606 int size = var->data.max_array_access;
2607 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2608 if (prog->_LinkedShaders[j] == NULL)
2609 continue;
2610
2611 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2612 ir_variable *other_var = node2->as_variable();
2613 if (!other_var)
2614 continue;
2615
2616 if (strcmp(var->name, other_var->name) == 0 &&
2617 other_var->data.max_array_access > size) {
2618 size = other_var->data.max_array_access;
2619 }
2620 }
2621 }
2622
2623 if (size + 1 != (int)var->type->length) {
2624 /* If this is a built-in uniform (i.e., it's backed by some
2625 * fixed-function state), adjust the number of state slots to
2626 * match the new array size. The number of slots per array entry
2627 * is not known. It seems safe to assume that the total number of
2628 * slots is an integer multiple of the number of array elements.
2629 * Determine the number of slots per array element by dividing by
2630 * the old (total) size.
2631 */
2632 const unsigned num_slots = var->get_num_state_slots();
2633 if (num_slots > 0) {
2634 var->set_num_state_slots((size + 1)
2635 * (num_slots / var->type->length));
2636 }
2637
2638 var->type = glsl_type::get_array_instance(var->type->fields.array,
2639 size + 1);
2640 types_were_updated = true;
2641 }
2642 }
2643
2644 /* Update the types of dereferences in case we changed any. */
2645 if (types_were_updated) {
2646 deref_type_updater v;
2647 v.run(prog->_LinkedShaders[i]->ir);
2648 }
2649 }
2650 }
2651
2652 /**
2653 * Resize tessellation evaluation per-vertex inputs to the size of
2654 * tessellation control per-vertex outputs.
2655 */
2656 static void
2657 resize_tes_inputs(struct gl_context *ctx,
2658 struct gl_shader_program *prog)
2659 {
2660 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2661 return;
2662
2663 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2664 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2665
2666 /* If no control shader is present, then the TES inputs are statically
2667 * sized to MaxPatchVertices; the actual size of the arrays won't be
2668 * known until draw time.
2669 */
2670 const int num_vertices = tcs
2671 ? tcs->Program->info.tess.tcs_vertices_out
2672 : ctx->Const.MaxPatchVertices;
2673
2674 array_resize_visitor input_resize_visitor(num_vertices, prog,
2675 MESA_SHADER_TESS_EVAL);
2676 foreach_in_list(ir_instruction, ir, tes->ir) {
2677 ir->accept(&input_resize_visitor);
2678 }
2679
2680 if (tcs) {
2681 /* Convert the gl_PatchVerticesIn system value into a constant, since
2682 * the value is known at this point.
2683 */
2684 foreach_in_list(ir_instruction, ir, tes->ir) {
2685 ir_variable *var = ir->as_variable();
2686 if (var && var->data.mode == ir_var_system_value &&
2687 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2688 void *mem_ctx = ralloc_parent(var);
2689 var->data.location = 0;
2690 var->data.explicit_location = false;
2691 var->data.mode = ir_var_auto;
2692 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2693 }
2694 }
2695 }
2696 }
2697
2698 /**
2699 * Find a contiguous set of available bits in a bitmask.
2700 *
2701 * \param used_mask Bits representing used (1) and unused (0) locations
2702 * \param needed_count Number of contiguous bits needed.
2703 *
2704 * \return
2705 * Base location of the available bits on success or -1 on failure.
2706 */
2707 static int
2708 find_available_slots(unsigned used_mask, unsigned needed_count)
2709 {
2710 unsigned needed_mask = (1 << needed_count) - 1;
2711 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2712
2713 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2714 * cannot optimize possibly infinite loops" for the loop below.
2715 */
2716 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2717 return -1;
2718
2719 for (int i = 0; i <= max_bit_to_test; i++) {
2720 if ((needed_mask & ~used_mask) == needed_mask)
2721 return i;
2722
2723 needed_mask <<= 1;
2724 }
2725
2726 return -1;
2727 }
2728
2729
2730 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2731
2732 /**
2733 * Assign locations for either VS inputs or FS outputs.
2734 *
2735 * \param mem_ctx Temporary ralloc context used for linking.
2736 * \param prog Shader program whose variables need locations
2737 * assigned.
2738 * \param constants Driver specific constant values for the program.
2739 * \param target_index Selector for the program target to receive location
2740 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2741 * \c MESA_SHADER_FRAGMENT.
2742 * \param do_assignment Whether we are actually marking the assignment or we
2743 * are just doing a dry-run checking.
2744 *
2745 * \return
2746 * If locations are (or can be, in case of dry-running) successfully assigned,
2747 * true is returned. Otherwise an error is emitted to the shader link log and
2748 * false is returned.
2749 */
2750 static bool
2751 assign_attribute_or_color_locations(void *mem_ctx,
2752 gl_shader_program *prog,
2753 struct gl_constants *constants,
2754 unsigned target_index,
2755 bool do_assignment)
2756 {
2757 /* Maximum number of generic locations. This corresponds to either the
2758 * maximum number of draw buffers or the maximum number of generic
2759 * attributes.
2760 */
2761 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2762 constants->Program[target_index].MaxAttribs :
2763 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2764
2765 /* Mark invalid locations as being used.
2766 */
2767 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2768 unsigned double_storage_locations = 0;
2769
2770 assert((target_index == MESA_SHADER_VERTEX)
2771 || (target_index == MESA_SHADER_FRAGMENT));
2772
2773 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2774 if (sh == NULL)
2775 return true;
2776
2777 /* Operate in a total of four passes.
2778 *
2779 * 1. Invalidate the location assignments for all vertex shader inputs.
2780 *
2781 * 2. Assign locations for inputs that have user-defined (via
2782 * glBindVertexAttribLocation) locations and outputs that have
2783 * user-defined locations (via glBindFragDataLocation).
2784 *
2785 * 3. Sort the attributes without assigned locations by number of slots
2786 * required in decreasing order. Fragmentation caused by attribute
2787 * locations assigned by the application may prevent large attributes
2788 * from having enough contiguous space.
2789 *
2790 * 4. Assign locations to any inputs without assigned locations.
2791 */
2792
2793 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2794 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2795
2796 const enum ir_variable_mode direction =
2797 (target_index == MESA_SHADER_VERTEX)
2798 ? ir_var_shader_in : ir_var_shader_out;
2799
2800
2801 /* Temporary storage for the set of attributes that need locations assigned.
2802 */
2803 struct temp_attr {
2804 unsigned slots;
2805 ir_variable *var;
2806
2807 /* Used below in the call to qsort. */
2808 static int compare(const void *a, const void *b)
2809 {
2810 const temp_attr *const l = (const temp_attr *) a;
2811 const temp_attr *const r = (const temp_attr *) b;
2812
2813 /* Reversed because we want a descending order sort below. */
2814 return r->slots - l->slots;
2815 }
2816 } to_assign[32];
2817 assert(max_index <= 32);
2818
2819 /* Temporary array for the set of attributes that have locations assigned,
2820 * for the purpose of checking overlapping slots/components of (non-ES)
2821 * fragment shader outputs.
2822 */
2823 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2824 unsigned assigned_attr = 0;
2825
2826 unsigned num_attr = 0;
2827
2828 foreach_in_list(ir_instruction, node, sh->ir) {
2829 ir_variable *const var = node->as_variable();
2830
2831 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2832 continue;
2833
2834 if (var->data.explicit_location) {
2835 var->data.is_unmatched_generic_inout = 0;
2836 if ((var->data.location >= (int)(max_index + generic_base))
2837 || (var->data.location < 0)) {
2838 linker_error(prog,
2839 "invalid explicit location %d specified for `%s'\n",
2840 (var->data.location < 0)
2841 ? var->data.location
2842 : var->data.location - generic_base,
2843 var->name);
2844 return false;
2845 }
2846 } else if (target_index == MESA_SHADER_VERTEX) {
2847 unsigned binding;
2848
2849 if (prog->AttributeBindings->get(binding, var->name)) {
2850 assert(binding >= VERT_ATTRIB_GENERIC0);
2851 var->data.location = binding;
2852 var->data.is_unmatched_generic_inout = 0;
2853 }
2854 } else if (target_index == MESA_SHADER_FRAGMENT) {
2855 unsigned binding;
2856 unsigned index;
2857 const char *name = var->name;
2858 const glsl_type *type = var->type;
2859
2860 while (type) {
2861 /* Check if there's a binding for the variable name */
2862 if (prog->FragDataBindings->get(binding, name)) {
2863 assert(binding >= FRAG_RESULT_DATA0);
2864 var->data.location = binding;
2865 var->data.is_unmatched_generic_inout = 0;
2866
2867 if (prog->FragDataIndexBindings->get(index, name)) {
2868 var->data.index = index;
2869 }
2870 break;
2871 }
2872
2873 /* If not, but it's an array type, look for name[0] */
2874 if (type->is_array()) {
2875 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2876 type = type->fields.array;
2877 continue;
2878 }
2879
2880 break;
2881 }
2882 }
2883
2884 if (strcmp(var->name, "gl_LastFragData") == 0)
2885 continue;
2886
2887 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2888 *
2889 * "Output binding assignments will cause LinkProgram to fail:
2890 * ...
2891 * If the program has an active output assigned to a location greater
2892 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2893 * an active output assigned an index greater than or equal to one;"
2894 */
2895 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2896 var->data.location - generic_base >=
2897 (int) constants->MaxDualSourceDrawBuffers) {
2898 linker_error(prog,
2899 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2900 "with index %u for %s\n",
2901 var->data.location - generic_base, var->data.index,
2902 var->name);
2903 return false;
2904 }
2905
2906 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2907
2908 /* If the variable is not a built-in and has a location statically
2909 * assigned in the shader (presumably via a layout qualifier), make sure
2910 * that it doesn't collide with other assigned locations. Otherwise,
2911 * add it to the list of variables that need linker-assigned locations.
2912 */
2913 if (var->data.location != -1) {
2914 if (var->data.location >= generic_base && var->data.index < 1) {
2915 /* From page 61 of the OpenGL 4.0 spec:
2916 *
2917 * "LinkProgram will fail if the attribute bindings assigned
2918 * by BindAttribLocation do not leave not enough space to
2919 * assign a location for an active matrix attribute or an
2920 * active attribute array, both of which require multiple
2921 * contiguous generic attributes."
2922 *
2923 * I think above text prohibits the aliasing of explicit and
2924 * automatic assignments. But, aliasing is allowed in manual
2925 * assignments of attribute locations. See below comments for
2926 * the details.
2927 *
2928 * From OpenGL 4.0 spec, page 61:
2929 *
2930 * "It is possible for an application to bind more than one
2931 * attribute name to the same location. This is referred to as
2932 * aliasing. This will only work if only one of the aliased
2933 * attributes is active in the executable program, or if no
2934 * path through the shader consumes more than one attribute of
2935 * a set of attributes aliased to the same location. A link
2936 * error can occur if the linker determines that every path
2937 * through the shader consumes multiple aliased attributes,
2938 * but implementations are not required to generate an error
2939 * in this case."
2940 *
2941 * From GLSL 4.30 spec, page 54:
2942 *
2943 * "A program will fail to link if any two non-vertex shader
2944 * input variables are assigned to the same location. For
2945 * vertex shaders, multiple input variables may be assigned
2946 * to the same location using either layout qualifiers or via
2947 * the OpenGL API. However, such aliasing is intended only to
2948 * support vertex shaders where each execution path accesses
2949 * at most one input per each location. Implementations are
2950 * permitted, but not required, to generate link-time errors
2951 * if they detect that every path through the vertex shader
2952 * executable accesses multiple inputs assigned to any single
2953 * location. For all shader types, a program will fail to link
2954 * if explicit location assignments leave the linker unable
2955 * to find space for other variables without explicit
2956 * assignments."
2957 *
2958 * From OpenGL ES 3.0 spec, page 56:
2959 *
2960 * "Binding more than one attribute name to the same location
2961 * is referred to as aliasing, and is not permitted in OpenGL
2962 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2963 * fail when this condition exists. However, aliasing is
2964 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2965 * This will only work if only one of the aliased attributes
2966 * is active in the executable program, or if no path through
2967 * the shader consumes more than one attribute of a set of
2968 * attributes aliased to the same location. A link error can
2969 * occur if the linker determines that every path through the
2970 * shader consumes multiple aliased attributes, but implemen-
2971 * tations are not required to generate an error in this case."
2972 *
2973 * After looking at above references from OpenGL, OpenGL ES and
2974 * GLSL specifications, we allow aliasing of vertex input variables
2975 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2976 *
2977 * NOTE: This is not required by the spec but its worth mentioning
2978 * here that we're not doing anything to make sure that no path
2979 * through the vertex shader executable accesses multiple inputs
2980 * assigned to any single location.
2981 */
2982
2983 /* Mask representing the contiguous slots that will be used by
2984 * this attribute.
2985 */
2986 const unsigned attr = var->data.location - generic_base;
2987 const unsigned use_mask = (1 << slots) - 1;
2988 const char *const string = (target_index == MESA_SHADER_VERTEX)
2989 ? "vertex shader input" : "fragment shader output";
2990
2991 /* Generate a link error if the requested locations for this
2992 * attribute exceed the maximum allowed attribute location.
2993 */
2994 if (attr + slots > max_index) {
2995 linker_error(prog,
2996 "insufficient contiguous locations "
2997 "available for %s `%s' %d %d %d\n", string,
2998 var->name, used_locations, use_mask, attr);
2999 return false;
3000 }
3001
3002 /* Generate a link error if the set of bits requested for this
3003 * attribute overlaps any previously allocated bits.
3004 */
3005 if ((~(use_mask << attr) & used_locations) != used_locations) {
3006 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3007 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
3008 * 4.40 spec:
3009 *
3010 * "Additionally, for fragment shader outputs, if two
3011 * variables are placed within the same location, they
3012 * must have the same underlying type (floating-point or
3013 * integer). No component aliasing of output variables or
3014 * members is allowed.
3015 */
3016 for (unsigned i = 0; i < assigned_attr; i++) {
3017 unsigned assigned_slots =
3018 assigned[i]->type->count_attribute_slots(false);
3019 unsigned assig_attr =
3020 assigned[i]->data.location - generic_base;
3021 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
3022
3023 if ((assigned_use_mask << assig_attr) &
3024 (use_mask << attr)) {
3025
3026 const glsl_type *assigned_type =
3027 assigned[i]->type->without_array();
3028 const glsl_type *type = var->type->without_array();
3029 if (assigned_type->base_type != type->base_type) {
3030 linker_error(prog, "types do not match for aliased"
3031 " %ss %s and %s\n", string,
3032 assigned[i]->name, var->name);
3033 return false;
3034 }
3035
3036 unsigned assigned_component_mask =
3037 ((1 << assigned_type->vector_elements) - 1) <<
3038 assigned[i]->data.location_frac;
3039 unsigned component_mask =
3040 ((1 << type->vector_elements) - 1) <<
3041 var->data.location_frac;
3042 if (assigned_component_mask & component_mask) {
3043 linker_error(prog, "overlapping component is "
3044 "assigned to %ss %s and %s "
3045 "(component=%d)\n",
3046 string, assigned[i]->name, var->name,
3047 var->data.location_frac);
3048 return false;
3049 }
3050 }
3051 }
3052 } else if (target_index == MESA_SHADER_FRAGMENT ||
3053 (prog->IsES && prog->data->Version >= 300)) {
3054 linker_error(prog, "overlapping location is assigned "
3055 "to %s `%s' %d %d %d\n", string, var->name,
3056 used_locations, use_mask, attr);
3057 return false;
3058 } else {
3059 linker_warning(prog, "overlapping location is assigned "
3060 "to %s `%s' %d %d %d\n", string, var->name,
3061 used_locations, use_mask, attr);
3062 }
3063 }
3064
3065 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3066 /* Only track assigned variables for non-ES fragment shaders
3067 * to avoid overflowing the array.
3068 *
3069 * At most one variable per fragment output component should
3070 * reach this.
3071 */
3072 assert(assigned_attr < ARRAY_SIZE(assigned));
3073 assigned[assigned_attr] = var;
3074 assigned_attr++;
3075 }
3076
3077 used_locations |= (use_mask << attr);
3078
3079 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3080 *
3081 * "A program with more than the value of MAX_VERTEX_ATTRIBS
3082 * active attribute variables may fail to link, unless
3083 * device-dependent optimizations are able to make the program
3084 * fit within available hardware resources. For the purposes
3085 * of this test, attribute variables of the type dvec3, dvec4,
3086 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3087 * count as consuming twice as many attributes as equivalent
3088 * single-precision types. While these types use the same number
3089 * of generic attributes as their single-precision equivalents,
3090 * implementations are permitted to consume two single-precision
3091 * vectors of internal storage for each three- or four-component
3092 * double-precision vector."
3093 *
3094 * Mark this attribute slot as taking up twice as much space
3095 * so we can count it properly against limits. According to
3096 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3097 * is optional behavior, but it seems preferable.
3098 */
3099 if (var->type->without_array()->is_dual_slot())
3100 double_storage_locations |= (use_mask << attr);
3101 }
3102
3103 continue;
3104 }
3105
3106 if (num_attr >= max_index) {
3107 linker_error(prog, "too many %s (max %u)",
3108 target_index == MESA_SHADER_VERTEX ?
3109 "vertex shader inputs" : "fragment shader outputs",
3110 max_index);
3111 return false;
3112 }
3113 to_assign[num_attr].slots = slots;
3114 to_assign[num_attr].var = var;
3115 num_attr++;
3116 }
3117
3118 if (!do_assignment)
3119 return true;
3120
3121 if (target_index == MESA_SHADER_VERTEX) {
3122 unsigned total_attribs_size =
3123 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3124 util_bitcount(double_storage_locations);
3125 if (total_attribs_size > max_index) {
3126 linker_error(prog,
3127 "attempt to use %d vertex attribute slots only %d available ",
3128 total_attribs_size, max_index);
3129 return false;
3130 }
3131 }
3132
3133 /* If all of the attributes were assigned locations by the application (or
3134 * are built-in attributes with fixed locations), return early. This should
3135 * be the common case.
3136 */
3137 if (num_attr == 0)
3138 return true;
3139
3140 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3141
3142 if (target_index == MESA_SHADER_VERTEX) {
3143 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
3144 * only be explicitly assigned by via glBindAttribLocation. Mark it as
3145 * reserved to prevent it from being automatically allocated below.
3146 */
3147 find_deref_visitor find("gl_Vertex");
3148 find.run(sh->ir);
3149 if (find.variable_found())
3150 used_locations |= (1 << 0);
3151 }
3152
3153 for (unsigned i = 0; i < num_attr; i++) {
3154 /* Mask representing the contiguous slots that will be used by this
3155 * attribute.
3156 */
3157 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3158
3159 int location = find_available_slots(used_locations, to_assign[i].slots);
3160
3161 if (location < 0) {
3162 const char *const string = (target_index == MESA_SHADER_VERTEX)
3163 ? "vertex shader input" : "fragment shader output";
3164
3165 linker_error(prog,
3166 "insufficient contiguous locations "
3167 "available for %s `%s'\n",
3168 string, to_assign[i].var->name);
3169 return false;
3170 }
3171
3172 to_assign[i].var->data.location = generic_base + location;
3173 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3174 used_locations |= (use_mask << location);
3175
3176 if (to_assign[i].var->type->without_array()->is_dual_slot())
3177 double_storage_locations |= (use_mask << location);
3178 }
3179
3180 /* Now that we have all the locations, from the GL 4.5 core spec, section
3181 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3182 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3183 * as equivalent single-precision types.
3184 */
3185 if (target_index == MESA_SHADER_VERTEX) {
3186 unsigned total_attribs_size =
3187 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3188 util_bitcount(double_storage_locations);
3189 if (total_attribs_size > max_index) {
3190 linker_error(prog,
3191 "attempt to use %d vertex attribute slots only %d available ",
3192 total_attribs_size, max_index);
3193 return false;
3194 }
3195 }
3196
3197 return true;
3198 }
3199
3200 /**
3201 * Match explicit locations of outputs to inputs and deactivate the
3202 * unmatch flag if found so we don't optimise them away.
3203 */
3204 static void
3205 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3206 gl_linked_shader *consumer)
3207 {
3208 glsl_symbol_table parameters;
3209 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3210 { {NULL, NULL} };
3211
3212 /* Find all shader outputs in the "producer" stage.
3213 */
3214 foreach_in_list(ir_instruction, node, producer->ir) {
3215 ir_variable *const var = node->as_variable();
3216
3217 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3218 continue;
3219
3220 if (var->data.explicit_location &&
3221 var->data.location >= VARYING_SLOT_VAR0) {
3222 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3223 if (explicit_locations[idx][var->data.location_frac] == NULL)
3224 explicit_locations[idx][var->data.location_frac] = var;
3225
3226 /* Always match TCS outputs. They are shared by all invocations
3227 * within a patch and can be used as shared memory.
3228 */
3229 if (producer->Stage == MESA_SHADER_TESS_CTRL)
3230 var->data.is_unmatched_generic_inout = 0;
3231 }
3232 }
3233
3234 /* Match inputs to outputs */
3235 foreach_in_list(ir_instruction, node, consumer->ir) {
3236 ir_variable *const input = node->as_variable();
3237
3238 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3239 continue;
3240
3241 ir_variable *output = NULL;
3242 if (input->data.explicit_location
3243 && input->data.location >= VARYING_SLOT_VAR0) {
3244 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3245 [input->data.location_frac];
3246
3247 if (output != NULL){
3248 input->data.is_unmatched_generic_inout = 0;
3249 output->data.is_unmatched_generic_inout = 0;
3250 }
3251 }
3252 }
3253 }
3254
3255 /**
3256 * Store the gl_FragDepth layout in the gl_shader_program struct.
3257 */
3258 static void
3259 store_fragdepth_layout(struct gl_shader_program *prog)
3260 {
3261 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3262 return;
3263 }
3264
3265 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3266
3267 /* We don't look up the gl_FragDepth symbol directly because if
3268 * gl_FragDepth is not used in the shader, it's removed from the IR.
3269 * However, the symbol won't be removed from the symbol table.
3270 *
3271 * We're only interested in the cases where the variable is NOT removed
3272 * from the IR.
3273 */
3274 foreach_in_list(ir_instruction, node, ir) {
3275 ir_variable *const var = node->as_variable();
3276
3277 if (var == NULL || var->data.mode != ir_var_shader_out) {
3278 continue;
3279 }
3280
3281 if (strcmp(var->name, "gl_FragDepth") == 0) {
3282 switch (var->data.depth_layout) {
3283 case ir_depth_layout_none:
3284 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3285 return;
3286 case ir_depth_layout_any:
3287 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3288 return;
3289 case ir_depth_layout_greater:
3290 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3291 return;
3292 case ir_depth_layout_less:
3293 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3294 return;
3295 case ir_depth_layout_unchanged:
3296 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3297 return;
3298 default:
3299 assert(0);
3300 return;
3301 }
3302 }
3303 }
3304 }
3305
3306 /**
3307 * Validate the resources used by a program versus the implementation limits
3308 */
3309 static void
3310 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3311 {
3312 unsigned total_uniform_blocks = 0;
3313 unsigned total_shader_storage_blocks = 0;
3314
3315 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3316 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3317
3318 if (sh == NULL)
3319 continue;
3320
3321 if (sh->Program->info.num_textures >
3322 ctx->Const.Program[i].MaxTextureImageUnits) {
3323 linker_error(prog, "Too many %s shader texture samplers\n",
3324 _mesa_shader_stage_to_string(i));
3325 }
3326
3327 if (sh->num_uniform_components >
3328 ctx->Const.Program[i].MaxUniformComponents) {
3329 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3330 linker_warning(prog, "Too many %s shader default uniform block "
3331 "components, but the driver will try to optimize "
3332 "them out; this is non-portable out-of-spec "
3333 "behavior\n",
3334 _mesa_shader_stage_to_string(i));
3335 } else {
3336 linker_error(prog, "Too many %s shader default uniform block "
3337 "components\n",
3338 _mesa_shader_stage_to_string(i));
3339 }
3340 }
3341
3342 if (sh->num_combined_uniform_components >
3343 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3344 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3345 linker_warning(prog, "Too many %s shader uniform components, "
3346 "but the driver will try to optimize them out; "
3347 "this is non-portable out-of-spec behavior\n",
3348 _mesa_shader_stage_to_string(i));
3349 } else {
3350 linker_error(prog, "Too many %s shader uniform components\n",
3351 _mesa_shader_stage_to_string(i));
3352 }
3353 }
3354
3355 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3356 total_uniform_blocks += sh->Program->info.num_ubos;
3357
3358 const unsigned max_uniform_blocks =
3359 ctx->Const.Program[i].MaxUniformBlocks;
3360 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3361 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3362 _mesa_shader_stage_to_string(i),
3363 sh->Program->info.num_ubos, max_uniform_blocks);
3364 }
3365
3366 const unsigned max_shader_storage_blocks =
3367 ctx->Const.Program[i].MaxShaderStorageBlocks;
3368 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3369 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3370 _mesa_shader_stage_to_string(i),
3371 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3372 }
3373 }
3374
3375 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3376 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3377 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3378 }
3379
3380 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3381 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3382 total_shader_storage_blocks,
3383 ctx->Const.MaxCombinedShaderStorageBlocks);
3384 }
3385
3386 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3387 if (prog->data->UniformBlocks[i].UniformBufferSize >
3388 ctx->Const.MaxUniformBlockSize) {
3389 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3390 prog->data->UniformBlocks[i].Name,
3391 prog->data->UniformBlocks[i].UniformBufferSize,
3392 ctx->Const.MaxUniformBlockSize);
3393 }
3394 }
3395
3396 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3397 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3398 ctx->Const.MaxShaderStorageBlockSize) {
3399 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3400 prog->data->ShaderStorageBlocks[i].Name,
3401 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3402 ctx->Const.MaxShaderStorageBlockSize);
3403 }
3404 }
3405 }
3406
3407 static void
3408 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3409 {
3410 unsigned mask = prog->data->linked_stages;
3411 while (mask) {
3412 const int i = u_bit_scan(&mask);
3413 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3414
3415 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3416 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3417 continue;
3418
3419 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3420
3421 if (!uni)
3422 continue;
3423
3424 int count = 0;
3425 if (p->sh.NumSubroutineFunctions == 0) {
3426 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3427 continue;
3428 }
3429 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3430 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3431 for (int k = 0; k < fn->num_compat_types; k++) {
3432 if (fn->types[k] == uni->type) {
3433 count++;
3434 break;
3435 }
3436 }
3437 }
3438 uni->num_compatible_subroutines = count;
3439 }
3440 }
3441 }
3442
3443 static void
3444 check_subroutine_resources(struct gl_shader_program *prog)
3445 {
3446 unsigned mask = prog->data->linked_stages;
3447 while (mask) {
3448 const int i = u_bit_scan(&mask);
3449 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3450
3451 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3452 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3453 _mesa_shader_stage_to_string(i));
3454 }
3455 }
3456 }
3457 /**
3458 * Validate shader image resources.
3459 */
3460 static void
3461 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3462 {
3463 unsigned total_image_units = 0;
3464 unsigned fragment_outputs = 0;
3465 unsigned total_shader_storage_blocks = 0;
3466
3467 if (!ctx->Extensions.ARB_shader_image_load_store)
3468 return;
3469
3470 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3471 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3472
3473 if (sh) {
3474 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3475 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3476 _mesa_shader_stage_to_string(i),
3477 sh->Program->info.num_images,
3478 ctx->Const.Program[i].MaxImageUniforms);
3479
3480 total_image_units += sh->Program->info.num_images;
3481 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3482
3483 if (i == MESA_SHADER_FRAGMENT) {
3484 foreach_in_list(ir_instruction, node, sh->ir) {
3485 ir_variable *var = node->as_variable();
3486 if (var && var->data.mode == ir_var_shader_out)
3487 /* since there are no double fs outputs - pass false */
3488 fragment_outputs += var->type->count_attribute_slots(false);
3489 }
3490 }
3491 }
3492 }
3493
3494 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3495 linker_error(prog, "Too many combined image uniforms\n");
3496
3497 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3498 ctx->Const.MaxCombinedShaderOutputResources)
3499 linker_error(prog, "Too many combined image uniforms, shader storage "
3500 " buffers and fragment outputs\n");
3501 }
3502
3503
3504 /**
3505 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3506 * for a variable, checks for overlaps between other uniforms using explicit
3507 * locations.
3508 */
3509 static int
3510 reserve_explicit_locations(struct gl_shader_program *prog,
3511 string_to_uint_map *map, ir_variable *var)
3512 {
3513 unsigned slots = var->type->uniform_locations();
3514 unsigned max_loc = var->data.location + slots - 1;
3515 unsigned return_value = slots;
3516
3517 /* Resize remap table if locations do not fit in the current one. */
3518 if (max_loc + 1 > prog->NumUniformRemapTable) {
3519 prog->UniformRemapTable =
3520 reralloc(prog, prog->UniformRemapTable,
3521 gl_uniform_storage *,
3522 max_loc + 1);
3523
3524 if (!prog->UniformRemapTable) {
3525 linker_error(prog, "Out of memory during linking.\n");
3526 return -1;
3527 }
3528
3529 /* Initialize allocated space. */
3530 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3531 prog->UniformRemapTable[i] = NULL;
3532
3533 prog->NumUniformRemapTable = max_loc + 1;
3534 }
3535
3536 for (unsigned i = 0; i < slots; i++) {
3537 unsigned loc = var->data.location + i;
3538
3539 /* Check if location is already used. */
3540 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3541
3542 /* Possibly same uniform from a different stage, this is ok. */
3543 unsigned hash_loc;
3544 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3545 return_value = 0;
3546 continue;
3547 }
3548
3549 /* ARB_explicit_uniform_location specification states:
3550 *
3551 * "No two default-block uniform variables in the program can have
3552 * the same location, even if they are unused, otherwise a compiler
3553 * or linker error will be generated."
3554 */
3555 linker_error(prog,
3556 "location qualifier for uniform %s overlaps "
3557 "previously used location\n",
3558 var->name);
3559 return -1;
3560 }
3561
3562 /* Initialize location as inactive before optimization
3563 * rounds and location assignment.
3564 */
3565 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3566 }
3567
3568 /* Note, base location used for arrays. */
3569 map->put(var->data.location, var->name);
3570
3571 return return_value;
3572 }
3573
3574 static bool
3575 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3576 struct gl_program *p,
3577 ir_variable *var)
3578 {
3579 unsigned slots = var->type->uniform_locations();
3580 unsigned max_loc = var->data.location + slots - 1;
3581
3582 /* Resize remap table if locations do not fit in the current one. */
3583 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3584 p->sh.SubroutineUniformRemapTable =
3585 reralloc(p, p->sh.SubroutineUniformRemapTable,
3586 gl_uniform_storage *,
3587 max_loc + 1);
3588
3589 if (!p->sh.SubroutineUniformRemapTable) {
3590 linker_error(prog, "Out of memory during linking.\n");
3591 return false;
3592 }
3593
3594 /* Initialize allocated space. */
3595 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3596 p->sh.SubroutineUniformRemapTable[i] = NULL;
3597
3598 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3599 }
3600
3601 for (unsigned i = 0; i < slots; i++) {
3602 unsigned loc = var->data.location + i;
3603
3604 /* Check if location is already used. */
3605 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3606
3607 /* ARB_explicit_uniform_location specification states:
3608 * "No two subroutine uniform variables can have the same location
3609 * in the same shader stage, otherwise a compiler or linker error
3610 * will be generated."
3611 */
3612 linker_error(prog,
3613 "location qualifier for uniform %s overlaps "
3614 "previously used location\n",
3615 var->name);
3616 return false;
3617 }
3618
3619 /* Initialize location as inactive before optimization
3620 * rounds and location assignment.
3621 */
3622 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3623 }
3624
3625 return true;
3626 }
3627 /**
3628 * Check and reserve all explicit uniform locations, called before
3629 * any optimizations happen to handle also inactive uniforms and
3630 * inactive array elements that may get trimmed away.
3631 */
3632 static void
3633 check_explicit_uniform_locations(struct gl_context *ctx,
3634 struct gl_shader_program *prog)
3635 {
3636 prog->NumExplicitUniformLocations = 0;
3637
3638 if (!ctx->Extensions.ARB_explicit_uniform_location)
3639 return;
3640
3641 /* This map is used to detect if overlapping explicit locations
3642 * occur with the same uniform (from different stage) or a different one.
3643 */
3644 string_to_uint_map *uniform_map = new string_to_uint_map;
3645
3646 if (!uniform_map) {
3647 linker_error(prog, "Out of memory during linking.\n");
3648 return;
3649 }
3650
3651 unsigned entries_total = 0;
3652 unsigned mask = prog->data->linked_stages;
3653 while (mask) {
3654 const int i = u_bit_scan(&mask);
3655 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3656
3657 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3658 ir_variable *var = node->as_variable();
3659 if (!var || var->data.mode != ir_var_uniform)
3660 continue;
3661
3662 if (var->data.explicit_location) {
3663 bool ret = false;
3664 if (var->type->without_array()->is_subroutine())
3665 ret = reserve_subroutine_explicit_locations(prog, p, var);
3666 else {
3667 int slots = reserve_explicit_locations(prog, uniform_map,
3668 var);
3669 if (slots != -1) {
3670 ret = true;
3671 entries_total += slots;
3672 }
3673 }
3674 if (!ret) {
3675 delete uniform_map;
3676 return;
3677 }
3678 }
3679 }
3680 }
3681
3682 link_util_update_empty_uniform_locations(prog);
3683
3684 delete uniform_map;
3685 prog->NumExplicitUniformLocations = entries_total;
3686 }
3687
3688 static bool
3689 should_add_buffer_variable(struct gl_shader_program *shProg,
3690 GLenum type, const char *name)
3691 {
3692 bool found_interface = false;
3693 unsigned block_name_len = 0;
3694 const char *block_name_dot = strchr(name, '.');
3695
3696 /* These rules only apply to buffer variables. So we return
3697 * true for the rest of types.
3698 */
3699 if (type != GL_BUFFER_VARIABLE)
3700 return true;
3701
3702 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3703 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3704 block_name_len = strlen(block_name);
3705
3706 const char *block_square_bracket = strchr(block_name, '[');
3707 if (block_square_bracket) {
3708 /* The block is part of an array of named interfaces,
3709 * for the name comparison we ignore the "[x]" part.
3710 */
3711 block_name_len -= strlen(block_square_bracket);
3712 }
3713
3714 if (block_name_dot) {
3715 /* Check if the variable name starts with the interface
3716 * name. The interface name (if present) should have the
3717 * length than the interface block name we are comparing to.
3718 */
3719 unsigned len = strlen(name) - strlen(block_name_dot);
3720 if (len != block_name_len)
3721 continue;
3722 }
3723
3724 if (strncmp(block_name, name, block_name_len) == 0) {
3725 found_interface = true;
3726 break;
3727 }
3728 }
3729
3730 /* We remove the interface name from the buffer variable name,
3731 * including the dot that follows it.
3732 */
3733 if (found_interface)
3734 name = name + block_name_len + 1;
3735
3736 /* The ARB_program_interface_query spec says:
3737 *
3738 * "For an active shader storage block member declared as an array, an
3739 * entry will be generated only for the first array element, regardless
3740 * of its type. For arrays of aggregate types, the enumeration rules
3741 * are applied recursively for the single enumerated array element."
3742 */
3743 const char *struct_first_dot = strchr(name, '.');
3744 const char *first_square_bracket = strchr(name, '[');
3745
3746 /* The buffer variable is on top level and it is not an array */
3747 if (!first_square_bracket) {
3748 return true;
3749 /* The shader storage block member is a struct, then generate the entry */
3750 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3751 return true;
3752 } else {
3753 /* Shader storage block member is an array, only generate an entry for the
3754 * first array element.
3755 */
3756 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3757 return true;
3758 }
3759
3760 return false;
3761 }
3762
3763 /* Function checks if a variable var is a packed varying and
3764 * if given name is part of packed varying's list.
3765 *
3766 * If a variable is a packed varying, it has a name like
3767 * 'packed:a,b,c' where a, b and c are separate variables.
3768 */
3769 static bool
3770 included_in_packed_varying(ir_variable *var, const char *name)
3771 {
3772 if (strncmp(var->name, "packed:", 7) != 0)
3773 return false;
3774
3775 char *list = strdup(var->name + 7);
3776 assert(list);
3777
3778 bool found = false;
3779 char *saveptr;
3780 char *token = strtok_r(list, ",", &saveptr);
3781 while (token) {
3782 if (strcmp(token, name) == 0) {
3783 found = true;
3784 break;
3785 }
3786 token = strtok_r(NULL, ",", &saveptr);
3787 }
3788 free(list);
3789 return found;
3790 }
3791
3792 /**
3793 * Function builds a stage reference bitmask from variable name.
3794 */
3795 static uint8_t
3796 build_stageref(struct gl_shader_program *shProg, const char *name,
3797 unsigned mode)
3798 {
3799 uint8_t stages = 0;
3800
3801 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3802 * used for reference mask in gl_program_resource will need to be changed.
3803 */
3804 assert(MESA_SHADER_STAGES < 8);
3805
3806 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3807 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3808 if (!sh)
3809 continue;
3810
3811 /* Shader symbol table may contain variables that have
3812 * been optimized away. Search IR for the variable instead.
3813 */
3814 foreach_in_list(ir_instruction, node, sh->ir) {
3815 ir_variable *var = node->as_variable();
3816 if (var) {
3817 unsigned baselen = strlen(var->name);
3818
3819 if (included_in_packed_varying(var, name)) {
3820 stages |= (1 << i);
3821 break;
3822 }
3823
3824 /* Type needs to match if specified, otherwise we might
3825 * pick a variable with same name but different interface.
3826 */
3827 if (var->data.mode != mode)
3828 continue;
3829
3830 if (strncmp(var->name, name, baselen) == 0) {
3831 /* Check for exact name matches but also check for arrays and
3832 * structs.
3833 */
3834 if (name[baselen] == '\0' ||
3835 name[baselen] == '[' ||
3836 name[baselen] == '.') {
3837 stages |= (1 << i);
3838 break;
3839 }
3840 }
3841 }
3842 }
3843 }
3844 return stages;
3845 }
3846
3847 /**
3848 * Create gl_shader_variable from ir_variable class.
3849 */
3850 static gl_shader_variable *
3851 create_shader_variable(struct gl_shader_program *shProg,
3852 const ir_variable *in,
3853 const char *name, const glsl_type *type,
3854 const glsl_type *interface_type,
3855 bool use_implicit_location, int location,
3856 const glsl_type *outermost_struct_type)
3857 {
3858 /* Allocate zero-initialized memory to ensure that bitfield padding
3859 * is zero.
3860 */
3861 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3862 if (!out)
3863 return NULL;
3864
3865 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3866 * expect to see gl_VertexID in the program resource list. Pretend.
3867 */
3868 if (in->data.mode == ir_var_system_value &&
3869 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3870 out->name = ralloc_strdup(shProg, "gl_VertexID");
3871 } else if ((in->data.mode == ir_var_shader_out &&
3872 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3873 (in->data.mode == ir_var_system_value &&
3874 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3875 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3876 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3877 } else if ((in->data.mode == ir_var_shader_out &&
3878 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3879 (in->data.mode == ir_var_system_value &&
3880 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3881 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3882 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3883 } else {
3884 out->name = ralloc_strdup(shProg, name);
3885 }
3886
3887 if (!out->name)
3888 return NULL;
3889
3890 /* The ARB_program_interface_query spec says:
3891 *
3892 * "Not all active variables are assigned valid locations; the
3893 * following variables will have an effective location of -1:
3894 *
3895 * * uniforms declared as atomic counters;
3896 *
3897 * * members of a uniform block;
3898 *
3899 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3900 *
3901 * * inputs or outputs not declared with a "location" layout
3902 * qualifier, except for vertex shader inputs and fragment shader
3903 * outputs."
3904 */
3905 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3906 !(in->data.explicit_location || use_implicit_location)) {
3907 out->location = -1;
3908 } else {
3909 out->location = location;
3910 }
3911
3912 out->type = type;
3913 out->outermost_struct_type = outermost_struct_type;
3914 out->interface_type = interface_type;
3915 out->component = in->data.location_frac;
3916 out->index = in->data.index;
3917 out->patch = in->data.patch;
3918 out->mode = in->data.mode;
3919 out->interpolation = in->data.interpolation;
3920 out->explicit_location = in->data.explicit_location;
3921 out->precision = in->data.precision;
3922
3923 return out;
3924 }
3925
3926 static bool
3927 add_shader_variable(const struct gl_context *ctx,
3928 struct gl_shader_program *shProg,
3929 struct set *resource_set,
3930 unsigned stage_mask,
3931 GLenum programInterface, ir_variable *var,
3932 const char *name, const glsl_type *type,
3933 bool use_implicit_location, int location,
3934 bool inouts_share_location,
3935 const glsl_type *outermost_struct_type = NULL)
3936 {
3937 const glsl_type *interface_type = var->get_interface_type();
3938
3939 if (outermost_struct_type == NULL) {
3940 if (var->data.from_named_ifc_block) {
3941 const char *interface_name = interface_type->name;
3942
3943 if (interface_type->is_array()) {
3944 /* Issue #16 of the ARB_program_interface_query spec says:
3945 *
3946 * "* If a variable is a member of an interface block without an
3947 * instance name, it is enumerated using just the variable name.
3948 *
3949 * * If a variable is a member of an interface block with an
3950 * instance name, it is enumerated as "BlockName.Member", where
3951 * "BlockName" is the name of the interface block (not the
3952 * instance name) and "Member" is the name of the variable."
3953 *
3954 * In particular, it indicates that it should be "BlockName",
3955 * not "BlockName[array length]". The conformance suite and
3956 * dEQP both require this behavior.
3957 *
3958 * Here, we unwrap the extra array level added by named interface
3959 * block array lowering so we have the correct variable type. We
3960 * also unwrap the interface type when constructing the name.
3961 *
3962 * We leave interface_type the same so that ES 3.x SSO pipeline
3963 * validation can enforce the rules requiring array length to
3964 * match on interface blocks.
3965 */
3966 type = type->fields.array;
3967
3968 interface_name = interface_type->fields.array->name;
3969 }
3970
3971 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3972 }
3973 }
3974
3975 switch (type->base_type) {
3976 case GLSL_TYPE_STRUCT: {
3977 /* The ARB_program_interface_query spec says:
3978 *
3979 * "For an active variable declared as a structure, a separate entry
3980 * will be generated for each active structure member. The name of
3981 * each entry is formed by concatenating the name of the structure,
3982 * the "." character, and the name of the structure member. If a
3983 * structure member to enumerate is itself a structure or array,
3984 * these enumeration rules are applied recursively."
3985 */
3986 if (outermost_struct_type == NULL)
3987 outermost_struct_type = type;
3988
3989 unsigned field_location = location;
3990 for (unsigned i = 0; i < type->length; i++) {
3991 const struct glsl_struct_field *field = &type->fields.structure[i];
3992 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3993 if (!add_shader_variable(ctx, shProg, resource_set,
3994 stage_mask, programInterface,
3995 var, field_name, field->type,
3996 use_implicit_location, field_location,
3997 false, outermost_struct_type))
3998 return false;
3999
4000 field_location += field->type->count_attribute_slots(false);
4001 }
4002 return true;
4003 }
4004
4005 case GLSL_TYPE_ARRAY: {
4006 /* The ARB_program_interface_query spec says:
4007 *
4008 * "For an active variable declared as an array of basic types, a
4009 * single entry will be generated, with its name string formed by
4010 * concatenating the name of the array and the string "[0]"."
4011 *
4012 * "For an active variable declared as an array of an aggregate data
4013 * type (structures or arrays), a separate entry will be generated
4014 * for each active array element, unless noted immediately below.
4015 * The name of each entry is formed by concatenating the name of
4016 * the array, the "[" character, an integer identifying the element
4017 * number, and the "]" character. These enumeration rules are
4018 * applied recursively, treating each enumerated array element as a
4019 * separate active variable."
4020 */
4021 const struct glsl_type *array_type = type->fields.array;
4022 if (array_type->base_type == GLSL_TYPE_STRUCT ||
4023 array_type->base_type == GLSL_TYPE_ARRAY) {
4024 unsigned elem_location = location;
4025 unsigned stride = inouts_share_location ? 0 :
4026 array_type->count_attribute_slots(false);
4027 for (unsigned i = 0; i < type->length; i++) {
4028 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
4029 if (!add_shader_variable(ctx, shProg, resource_set,
4030 stage_mask, programInterface,
4031 var, elem, array_type,
4032 use_implicit_location, elem_location,
4033 false, outermost_struct_type))
4034 return false;
4035 elem_location += stride;
4036 }
4037 return true;
4038 }
4039 /* fallthrough */
4040 }
4041
4042 default: {
4043 /* The ARB_program_interface_query spec says:
4044 *
4045 * "For an active variable declared as a single instance of a basic
4046 * type, a single entry will be generated, using the variable name
4047 * from the shader source."
4048 */
4049 gl_shader_variable *sha_v =
4050 create_shader_variable(shProg, var, name, type, interface_type,
4051 use_implicit_location, location,
4052 outermost_struct_type);
4053 if (!sha_v)
4054 return false;
4055
4056 return link_util_add_program_resource(shProg, resource_set,
4057 programInterface, sha_v, stage_mask);
4058 }
4059 }
4060 }
4061
4062 static bool
4063 inout_has_same_location(const ir_variable *var, unsigned stage)
4064 {
4065 if (!var->data.patch &&
4066 ((var->data.mode == ir_var_shader_out &&
4067 stage == MESA_SHADER_TESS_CTRL) ||
4068 (var->data.mode == ir_var_shader_in &&
4069 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
4070 stage == MESA_SHADER_GEOMETRY))))
4071 return true;
4072 else
4073 return false;
4074 }
4075
4076 static bool
4077 add_interface_variables(const struct gl_context *ctx,
4078 struct gl_shader_program *shProg,
4079 struct set *resource_set,
4080 unsigned stage, GLenum programInterface)
4081 {
4082 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
4083
4084 foreach_in_list(ir_instruction, node, ir) {
4085 ir_variable *var = node->as_variable();
4086
4087 if (!var || var->data.how_declared == ir_var_hidden)
4088 continue;
4089
4090 int loc_bias;
4091
4092 switch (var->data.mode) {
4093 case ir_var_system_value:
4094 case ir_var_shader_in:
4095 if (programInterface != GL_PROGRAM_INPUT)
4096 continue;
4097 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
4098 : int(VARYING_SLOT_VAR0);
4099 break;
4100 case ir_var_shader_out:
4101 if (programInterface != GL_PROGRAM_OUTPUT)
4102 continue;
4103 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
4104 : int(VARYING_SLOT_VAR0);
4105 break;
4106 default:
4107 continue;
4108 };
4109
4110 if (var->data.patch)
4111 loc_bias = int(VARYING_SLOT_PATCH0);
4112
4113 /* Skip packed varyings, packed varyings are handled separately
4114 * by add_packed_varyings.
4115 */
4116 if (strncmp(var->name, "packed:", 7) == 0)
4117 continue;
4118
4119 /* Skip fragdata arrays, these are handled separately
4120 * by add_fragdata_arrays.
4121 */
4122 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4123 continue;
4124
4125 const bool vs_input_or_fs_output =
4126 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4127 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4128
4129 if (!add_shader_variable(ctx, shProg, resource_set,
4130 1 << stage, programInterface,
4131 var, var->name, var->type, vs_input_or_fs_output,
4132 var->data.location - loc_bias,
4133 inout_has_same_location(var, stage)))
4134 return false;
4135 }
4136 return true;
4137 }
4138
4139 static bool
4140 add_packed_varyings(const struct gl_context *ctx,
4141 struct gl_shader_program *shProg,
4142 struct set *resource_set,
4143 int stage, GLenum type)
4144 {
4145 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4146 GLenum iface;
4147
4148 if (!sh || !sh->packed_varyings)
4149 return true;
4150
4151 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4152 ir_variable *var = node->as_variable();
4153 if (var) {
4154 switch (var->data.mode) {
4155 case ir_var_shader_in:
4156 iface = GL_PROGRAM_INPUT;
4157 break;
4158 case ir_var_shader_out:
4159 iface = GL_PROGRAM_OUTPUT;
4160 break;
4161 default:
4162 unreachable("unexpected type");
4163 }
4164
4165 if (type == iface) {
4166 const int stage_mask =
4167 build_stageref(shProg, var->name, var->data.mode);
4168 if (!add_shader_variable(ctx, shProg, resource_set,
4169 stage_mask,
4170 iface, var, var->name, var->type, false,
4171 var->data.location - VARYING_SLOT_VAR0,
4172 inout_has_same_location(var, stage)))
4173 return false;
4174 }
4175 }
4176 }
4177 return true;
4178 }
4179
4180 static bool
4181 add_fragdata_arrays(const struct gl_context *ctx,
4182 struct gl_shader_program *shProg,
4183 struct set *resource_set)
4184 {
4185 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4186
4187 if (!sh || !sh->fragdata_arrays)
4188 return true;
4189
4190 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4191 ir_variable *var = node->as_variable();
4192 if (var) {
4193 assert(var->data.mode == ir_var_shader_out);
4194
4195 if (!add_shader_variable(ctx, shProg, resource_set,
4196 1 << MESA_SHADER_FRAGMENT,
4197 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4198 true, var->data.location - FRAG_RESULT_DATA0,
4199 false))
4200 return false;
4201 }
4202 }
4203 return true;
4204 }
4205
4206 static char*
4207 get_top_level_name(const char *name)
4208 {
4209 const char *first_dot = strchr(name, '.');
4210 const char *first_square_bracket = strchr(name, '[');
4211 int name_size = 0;
4212
4213 /* The ARB_program_interface_query spec says:
4214 *
4215 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4216 * the number of active array elements of the top-level shader storage
4217 * block member containing to the active variable is written to
4218 * <params>. If the top-level block member is not declared as an
4219 * array, the value one is written to <params>. If the top-level block
4220 * member is an array with no declared size, the value zero is written
4221 * to <params>."
4222 */
4223
4224 /* The buffer variable is on top level.*/
4225 if (!first_square_bracket && !first_dot)
4226 name_size = strlen(name);
4227 else if ((!first_square_bracket ||
4228 (first_dot && first_dot < first_square_bracket)))
4229 name_size = first_dot - name;
4230 else
4231 name_size = first_square_bracket - name;
4232
4233 return strndup(name, name_size);
4234 }
4235
4236 static char*
4237 get_var_name(const char *name)
4238 {
4239 const char *first_dot = strchr(name, '.');
4240
4241 if (!first_dot)
4242 return strdup(name);
4243
4244 return strndup(first_dot+1, strlen(first_dot) - 1);
4245 }
4246
4247 static bool
4248 is_top_level_shader_storage_block_member(const char* name,
4249 const char* interface_name,
4250 const char* field_name)
4251 {
4252 bool result = false;
4253
4254 /* If the given variable is already a top-level shader storage
4255 * block member, then return array_size = 1.
4256 * We could have two possibilities: if we have an instanced
4257 * shader storage block or not instanced.
4258 *
4259 * For the first, we check create a name as it was in top level and
4260 * compare it with the real name. If they are the same, then
4261 * the variable is already at top-level.
4262 *
4263 * Full instanced name is: interface name + '.' + var name +
4264 * NULL character
4265 */
4266 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4267 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4268 if (!full_instanced_name) {
4269 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4270 return false;
4271 }
4272
4273 util_snprintf(full_instanced_name, name_length, "%s.%s",
4274 interface_name, field_name);
4275
4276 /* Check if its top-level shader storage block member of an
4277 * instanced interface block, or of a unnamed interface block.
4278 */
4279 if (strcmp(name, full_instanced_name) == 0 ||
4280 strcmp(name, field_name) == 0)
4281 result = true;
4282
4283 free(full_instanced_name);
4284 return result;
4285 }
4286
4287 static int
4288 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4289 char *interface_name, char *var_name)
4290 {
4291 /* The ARB_program_interface_query spec says:
4292 *
4293 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4294 * the number of active array elements of the top-level shader storage
4295 * block member containing to the active variable is written to
4296 * <params>. If the top-level block member is not declared as an
4297 * array, the value one is written to <params>. If the top-level block
4298 * member is an array with no declared size, the value zero is written
4299 * to <params>."
4300 */
4301 if (is_top_level_shader_storage_block_member(uni->name,
4302 interface_name,
4303 var_name))
4304 return 1;
4305 else if (field->type->is_unsized_array())
4306 return 0;
4307 else if (field->type->is_array())
4308 return field->type->length;
4309
4310 return 1;
4311 }
4312
4313 static int
4314 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4315 const glsl_type *iface, const glsl_struct_field *field,
4316 char *interface_name, char *var_name)
4317 {
4318 /* The ARB_program_interface_query spec says:
4319 *
4320 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4321 * identifying the stride between array elements of the top-level
4322 * shader storage block member containing the active variable is
4323 * written to <params>. For top-level block members declared as
4324 * arrays, the value written is the difference, in basic machine units,
4325 * between the offsets of the active variable for consecutive elements
4326 * in the top-level array. For top-level block members not declared as
4327 * an array, zero is written to <params>."
4328 */
4329 if (field->type->is_array()) {
4330 const enum glsl_matrix_layout matrix_layout =
4331 glsl_matrix_layout(field->matrix_layout);
4332 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4333 const glsl_type *array_type = field->type->fields.array;
4334
4335 if (is_top_level_shader_storage_block_member(uni->name,
4336 interface_name,
4337 var_name))
4338 return 0;
4339
4340 if (GLSL_INTERFACE_PACKING_STD140 ==
4341 iface->
4342 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4343 if (array_type->is_struct() || array_type->is_array())
4344 return glsl_align(array_type->std140_size(row_major), 16);
4345 else
4346 return MAX2(array_type->std140_base_alignment(row_major), 16);
4347 } else {
4348 return array_type->std430_array_stride(row_major);
4349 }
4350 }
4351 return 0;
4352 }
4353
4354 static void
4355 calculate_array_size_and_stride(struct gl_context *ctx,
4356 struct gl_shader_program *shProg,
4357 struct gl_uniform_storage *uni)
4358 {
4359 int block_index = uni->block_index;
4360 int array_size = -1;
4361 int array_stride = -1;
4362 char *var_name = get_top_level_name(uni->name);
4363 char *interface_name =
4364 get_top_level_name(uni->is_shader_storage ?
4365 shProg->data->ShaderStorageBlocks[block_index].Name :
4366 shProg->data->UniformBlocks[block_index].Name);
4367
4368 if (strcmp(var_name, interface_name) == 0) {
4369 /* Deal with instanced array of SSBOs */
4370 char *temp_name = get_var_name(uni->name);
4371 if (!temp_name) {
4372 linker_error(shProg, "Out of memory during linking.\n");
4373 goto write_top_level_array_size_and_stride;
4374 }
4375 free(var_name);
4376 var_name = get_top_level_name(temp_name);
4377 free(temp_name);
4378 if (!var_name) {
4379 linker_error(shProg, "Out of memory during linking.\n");
4380 goto write_top_level_array_size_and_stride;
4381 }
4382 }
4383
4384 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4385 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4386 if (sh == NULL)
4387 continue;
4388
4389 foreach_in_list(ir_instruction, node, sh->ir) {
4390 ir_variable *var = node->as_variable();
4391 if (!var || !var->get_interface_type() ||
4392 var->data.mode != ir_var_shader_storage)
4393 continue;
4394
4395 const glsl_type *iface = var->get_interface_type();
4396
4397 if (strcmp(interface_name, iface->name) != 0)
4398 continue;
4399
4400 for (unsigned i = 0; i < iface->length; i++) {
4401 const glsl_struct_field *field = &iface->fields.structure[i];
4402 if (strcmp(field->name, var_name) != 0)
4403 continue;
4404
4405 array_stride = get_array_stride(ctx, uni, iface, field,
4406 interface_name, var_name);
4407 array_size = get_array_size(uni, field, interface_name, var_name);
4408 goto write_top_level_array_size_and_stride;
4409 }
4410 }
4411 }
4412 write_top_level_array_size_and_stride:
4413 free(interface_name);
4414 free(var_name);
4415 uni->top_level_array_stride = array_stride;
4416 uni->top_level_array_size = array_size;
4417 }
4418
4419 /**
4420 * Builds up a list of program resources that point to existing
4421 * resource data.
4422 */
4423 void
4424 build_program_resource_list(struct gl_context *ctx,
4425 struct gl_shader_program *shProg)
4426 {
4427 /* Rebuild resource list. */
4428 if (shProg->data->ProgramResourceList) {
4429 ralloc_free(shProg->data->ProgramResourceList);
4430 shProg->data->ProgramResourceList = NULL;
4431 shProg->data->NumProgramResourceList = 0;
4432 }
4433
4434 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4435
4436 /* Determine first input and final output stage. These are used to
4437 * detect which variables should be enumerated in the resource list
4438 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4439 */
4440 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4441 if (!shProg->_LinkedShaders[i])
4442 continue;
4443 if (input_stage == MESA_SHADER_STAGES)
4444 input_stage = i;
4445 output_stage = i;
4446 }
4447
4448 /* Empty shader, no resources. */
4449 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4450 return;
4451
4452 struct set *resource_set = _mesa_pointer_set_create(NULL);
4453
4454 /* Program interface needs to expose varyings in case of SSO. */
4455 if (shProg->SeparateShader) {
4456 if (!add_packed_varyings(ctx, shProg, resource_set,
4457 input_stage, GL_PROGRAM_INPUT))
4458 return;
4459
4460 if (!add_packed_varyings(ctx, shProg, resource_set,
4461 output_stage, GL_PROGRAM_OUTPUT))
4462 return;
4463 }
4464
4465 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4466 return;
4467
4468 /* Add inputs and outputs to the resource list. */
4469 if (!add_interface_variables(ctx, shProg, resource_set,
4470 input_stage, GL_PROGRAM_INPUT))
4471 return;
4472
4473 if (!add_interface_variables(ctx, shProg, resource_set,
4474 output_stage, GL_PROGRAM_OUTPUT))
4475 return;
4476
4477 if (shProg->last_vert_prog) {
4478 struct gl_transform_feedback_info *linked_xfb =
4479 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4480
4481 /* Add transform feedback varyings. */
4482 if (linked_xfb->NumVarying > 0) {
4483 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4484 if (!link_util_add_program_resource(shProg, resource_set,
4485 GL_TRANSFORM_FEEDBACK_VARYING,
4486 &linked_xfb->Varyings[i], 0))
4487 return;
4488 }
4489 }
4490
4491 /* Add transform feedback buffers. */
4492 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4493 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4494 linked_xfb->Buffers[i].Binding = i;
4495 if (!link_util_add_program_resource(shProg, resource_set,
4496 GL_TRANSFORM_FEEDBACK_BUFFER,
4497 &linked_xfb->Buffers[i], 0))
4498 return;
4499 }
4500 }
4501 }
4502
4503 /* Add uniforms from uniform storage. */
4504 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4505 /* Do not add uniforms internally used by Mesa. */
4506 if (shProg->data->UniformStorage[i].hidden)
4507 continue;
4508
4509 uint8_t stageref =
4510 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4511 ir_var_uniform);
4512
4513 /* Add stagereferences for uniforms in a uniform block. */
4514 bool is_shader_storage =
4515 shProg->data->UniformStorage[i].is_shader_storage;
4516 int block_index = shProg->data->UniformStorage[i].block_index;
4517 if (block_index != -1) {
4518 stageref |= is_shader_storage ?
4519 shProg->data->ShaderStorageBlocks[block_index].stageref :
4520 shProg->data->UniformBlocks[block_index].stageref;
4521 }
4522
4523 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4524 if (!should_add_buffer_variable(shProg, type,
4525 shProg->data->UniformStorage[i].name))
4526 continue;
4527
4528 if (is_shader_storage) {
4529 calculate_array_size_and_stride(ctx, shProg,
4530 &shProg->data->UniformStorage[i]);
4531 }
4532
4533 if (!link_util_add_program_resource(shProg, resource_set, type,
4534 &shProg->data->UniformStorage[i], stageref))
4535 return;
4536 }
4537
4538 /* Add program uniform blocks. */
4539 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4540 if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4541 &shProg->data->UniformBlocks[i], 0))
4542 return;
4543 }
4544
4545 /* Add program shader storage blocks. */
4546 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4547 if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4548 &shProg->data->ShaderStorageBlocks[i], 0))
4549 return;
4550 }
4551
4552 /* Add atomic counter buffers. */
4553 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4554 if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4555 &shProg->data->AtomicBuffers[i], 0))
4556 return;
4557 }
4558
4559 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4560 GLenum type;
4561 if (!shProg->data->UniformStorage[i].hidden)
4562 continue;
4563
4564 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4565 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4566 !shProg->data->UniformStorage[i].type->is_subroutine())
4567 continue;
4568
4569 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4570 /* add shader subroutines */
4571 if (!link_util_add_program_resource(shProg, resource_set,
4572 type, &shProg->data->UniformStorage[i], 0))
4573 return;
4574 }
4575 }
4576
4577 unsigned mask = shProg->data->linked_stages;
4578 while (mask) {
4579 const int i = u_bit_scan(&mask);
4580 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4581
4582 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4583 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4584 if (!link_util_add_program_resource(shProg, resource_set,
4585 type, &p->sh.SubroutineFunctions[j], 0))
4586 return;
4587 }
4588 }
4589
4590 _mesa_set_destroy(resource_set, NULL);
4591 }
4592
4593 /**
4594 * This check is done to make sure we allow only constant expression
4595 * indexing and "constant-index-expression" (indexing with an expression
4596 * that includes loop induction variable).
4597 */
4598 static bool
4599 validate_sampler_array_indexing(struct gl_context *ctx,
4600 struct gl_shader_program *prog)
4601 {
4602 dynamic_sampler_array_indexing_visitor v;
4603 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4604 if (prog->_LinkedShaders[i] == NULL)
4605 continue;
4606
4607 bool no_dynamic_indexing =
4608 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4609
4610 /* Search for array derefs in shader. */
4611 v.run(prog->_LinkedShaders[i]->ir);
4612 if (v.uses_dynamic_sampler_array_indexing()) {
4613 const char *msg = "sampler arrays indexed with non-constant "
4614 "expressions is forbidden in GLSL %s %u";
4615 /* Backend has indicated that it has no dynamic indexing support. */
4616 if (no_dynamic_indexing) {
4617 linker_error(prog, msg, prog->IsES ? "ES" : "",
4618 prog->data->Version);
4619 return false;
4620 } else {
4621 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4622 prog->data->Version);
4623 }
4624 }
4625 }
4626 return true;
4627 }
4628
4629 static void
4630 link_assign_subroutine_types(struct gl_shader_program *prog)
4631 {
4632 unsigned mask = prog->data->linked_stages;
4633 while (mask) {
4634 const int i = u_bit_scan(&mask);
4635 gl_program *p = prog->_LinkedShaders[i]->Program;
4636
4637 p->sh.MaxSubroutineFunctionIndex = 0;
4638 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4639 ir_function *fn = node->as_function();
4640 if (!fn)
4641 continue;
4642
4643 if (fn->is_subroutine)
4644 p->sh.NumSubroutineUniformTypes++;
4645
4646 if (!fn->num_subroutine_types)
4647 continue;
4648
4649 /* these should have been calculated earlier. */
4650 assert(fn->subroutine_index != -1);
4651 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4652 linker_error(prog, "Too many subroutine functions declared.\n");
4653 return;
4654 }
4655 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4656 struct gl_subroutine_function,
4657 p->sh.NumSubroutineFunctions + 1);
4658 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4659 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4660 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4661 ralloc_array(p, const struct glsl_type *,
4662 fn->num_subroutine_types);
4663
4664 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4665 * GLSL 4.5 spec:
4666 *
4667 * "Each subroutine with an index qualifier in the shader must be
4668 * given a unique index, otherwise a compile or link error will be
4669 * generated."
4670 */
4671 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4672 if (p->sh.SubroutineFunctions[j].index != -1 &&
4673 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4674 linker_error(prog, "each subroutine index qualifier in the "
4675 "shader must be unique\n");
4676 return;
4677 }
4678 }
4679 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4680 fn->subroutine_index;
4681
4682 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4683 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4684
4685 for (int j = 0; j < fn->num_subroutine_types; j++)
4686 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4687 p->sh.NumSubroutineFunctions++;
4688 }
4689 }
4690 }
4691
4692 static void
4693 verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4694 {
4695 unsigned mask = prog->data->linked_stages;
4696 while (mask) {
4697 const int i = u_bit_scan(&mask);
4698 gl_program *p = prog->_LinkedShaders[i]->Program;
4699 glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4700
4701 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4702 *
4703 * "A program will fail to compile or link if any shader
4704 * or stage contains two or more functions with the same
4705 * name if the name is associated with a subroutine type."
4706 */
4707 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4708 unsigned definitions = 0;
4709 char *name = p->sh.SubroutineFunctions[j].name;
4710 ir_function *fn = symbols->get_function(name);
4711
4712 /* Calculate number of function definitions with the same name */
4713 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4714 if (sig->is_defined) {
4715 if (++definitions > 1) {
4716 linker_error(prog, "%s shader contains two or more function "
4717 "definitions with name `%s', which is "
4718 "associated with a subroutine type.\n",
4719 _mesa_shader_stage_to_string(i),
4720 fn->name);
4721 return;
4722 }
4723 }
4724 }
4725 }
4726 }
4727 }
4728
4729
4730 static void
4731 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4732 {
4733 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4734
4735 foreach_in_list(ir_instruction, node, ir) {
4736 ir_variable *const var = node->as_variable();
4737
4738 if (var == NULL || var->data.mode != io_mode)
4739 continue;
4740
4741 /* Don't set always active on builtins that haven't been redeclared */
4742 if (var->data.how_declared == ir_var_declared_implicitly)
4743 continue;
4744
4745 var->data.always_active_io = true;
4746 }
4747 }
4748
4749 /**
4750 * When separate shader programs are enabled, only input/outputs between
4751 * the stages of a multi-stage separate program can be safely removed
4752 * from the shader interface. Other inputs/outputs must remain active.
4753 */
4754 static void
4755 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4756 {
4757 unsigned first, last;
4758 assert(prog->SeparateShader);
4759
4760 first = MESA_SHADER_STAGES;
4761 last = 0;
4762
4763 /* Determine first and last stage. Excluding the compute stage */
4764 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4765 if (!prog->_LinkedShaders[i])
4766 continue;
4767 if (first == MESA_SHADER_STAGES)
4768 first = i;
4769 last = i;
4770 }
4771
4772 if (first == MESA_SHADER_STAGES)
4773 return;
4774
4775 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4776 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4777 if (!sh)
4778 continue;
4779
4780 /* Prevent the removal of inputs to the first and outputs from the last
4781 * stage, unless they are the initial pipeline inputs or final pipeline
4782 * outputs, respectively.
4783 *
4784 * The removal of IO between shaders in the same program is always
4785 * allowed.
4786 */
4787 if (stage == first && stage != MESA_SHADER_VERTEX)
4788 set_always_active_io(sh->ir, ir_var_shader_in);
4789 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4790 set_always_active_io(sh->ir, ir_var_shader_out);
4791 }
4792 }
4793
4794 static void
4795 link_and_validate_uniforms(struct gl_context *ctx,
4796 struct gl_shader_program *prog)
4797 {
4798 update_array_sizes(prog);
4799 link_assign_uniform_locations(prog, ctx);
4800
4801 link_assign_atomic_counter_resources(ctx, prog);
4802 link_calculate_subroutine_compat(prog);
4803 check_resources(ctx, prog);
4804 check_subroutine_resources(prog);
4805 check_image_resources(ctx, prog);
4806 link_check_atomic_counter_resources(ctx, prog);
4807 }
4808
4809 static bool
4810 link_varyings_and_uniforms(unsigned first, unsigned last,
4811 struct gl_context *ctx,
4812 struct gl_shader_program *prog, void *mem_ctx)
4813 {
4814 /* Mark all generic shader inputs and outputs as unpaired. */
4815 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4816 if (prog->_LinkedShaders[i] != NULL) {
4817 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4818 }
4819 }
4820
4821 unsigned prev = first;
4822 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4823 if (prog->_LinkedShaders[i] == NULL)
4824 continue;
4825
4826 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4827 prog->_LinkedShaders[i]);
4828 prev = i;
4829 }
4830
4831 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4832 MESA_SHADER_VERTEX, true)) {
4833 return false;
4834 }
4835
4836 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4837 MESA_SHADER_FRAGMENT, true)) {
4838 return false;
4839 }
4840
4841 prog->last_vert_prog = NULL;
4842 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4843 if (prog->_LinkedShaders[i] == NULL)
4844 continue;
4845
4846 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4847 break;
4848 }
4849
4850 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4851 return false;
4852
4853 link_and_validate_uniforms(ctx, prog);
4854
4855 if (!prog->data->LinkStatus)
4856 return false;
4857
4858 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4859 if (prog->_LinkedShaders[i] == NULL)
4860 continue;
4861
4862 const struct gl_shader_compiler_options *options =
4863 &ctx->Const.ShaderCompilerOptions[i];
4864
4865 if (options->LowerBufferInterfaceBlocks)
4866 lower_ubo_reference(prog->_LinkedShaders[i],
4867 options->ClampBlockIndicesToArrayBounds,
4868 ctx->Const.UseSTD430AsDefaultPacking);
4869
4870 if (i == MESA_SHADER_COMPUTE)
4871 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4872
4873 lower_vector_derefs(prog->_LinkedShaders[i]);
4874 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4875 }
4876
4877 return true;
4878 }
4879
4880 static void
4881 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4882 unsigned stage)
4883 {
4884 if (ctx->Const.GLSLOptimizeConservatively) {
4885 /* Run it just once. */
4886 do_common_optimization(ir, true, false,
4887 &ctx->Const.ShaderCompilerOptions[stage],
4888 ctx->Const.NativeIntegers);
4889 } else {
4890 /* Repeat it until it stops making changes. */
4891 while (do_common_optimization(ir, true, false,
4892 &ctx->Const.ShaderCompilerOptions[stage],
4893 ctx->Const.NativeIntegers))
4894 ;
4895 }
4896 }
4897
4898 void
4899 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4900 {
4901 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4902 prog->data->Validated = false;
4903
4904 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4905 *
4906 * "Linking can fail for a variety of reasons as specified in the
4907 * OpenGL Shading Language Specification, as well as any of the
4908 * following reasons:
4909 *
4910 * - No shader objects are attached to program."
4911 *
4912 * The Compatibility Profile specification does not list the error. In
4913 * Compatibility Profile missing shader stages are replaced by
4914 * fixed-function. This applies to the case where all stages are
4915 * missing.
4916 */
4917 if (prog->NumShaders == 0) {
4918 if (ctx->API != API_OPENGL_COMPAT)
4919 linker_error(prog, "no shaders attached to the program\n");
4920 return;
4921 }
4922
4923 #ifdef ENABLE_SHADER_CACHE
4924 if (shader_cache_read_program_metadata(ctx, prog))
4925 return;
4926 #endif
4927
4928 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4929
4930 prog->ARB_fragment_coord_conventions_enable = false;
4931
4932 /* Separate the shaders into groups based on their type.
4933 */
4934 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4935 unsigned num_shaders[MESA_SHADER_STAGES];
4936
4937 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4938 shader_list[i] = (struct gl_shader **)
4939 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4940 num_shaders[i] = 0;
4941 }
4942
4943 unsigned min_version = UINT_MAX;
4944 unsigned max_version = 0;
4945 for (unsigned i = 0; i < prog->NumShaders; i++) {
4946 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4947 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4948
4949 if (!ctx->Const.AllowGLSLRelaxedES &&
4950 prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4951 linker_error(prog, "all shaders must use same shading "
4952 "language version\n");
4953 goto done;
4954 }
4955
4956 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4957 prog->ARB_fragment_coord_conventions_enable = true;
4958 }
4959
4960 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4961 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4962 num_shaders[shader_type]++;
4963 }
4964
4965 /* In desktop GLSL, different shader versions may be linked together. In
4966 * GLSL ES, all shader versions must be the same.
4967 */
4968 if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4969 min_version != max_version) {
4970 linker_error(prog, "all shaders must use same shading "
4971 "language version\n");
4972 goto done;
4973 }
4974
4975 prog->data->Version = max_version;
4976 prog->IsES = prog->Shaders[0]->IsES;
4977
4978 /* Some shaders have to be linked with some other shaders present.
4979 */
4980 if (!prog->SeparateShader) {
4981 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4982 num_shaders[MESA_SHADER_VERTEX] == 0) {
4983 linker_error(prog, "Geometry shader must be linked with "
4984 "vertex shader\n");
4985 goto done;
4986 }
4987 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4988 num_shaders[MESA_SHADER_VERTEX] == 0) {
4989 linker_error(prog, "Tessellation evaluation shader must be linked "
4990 "with vertex shader\n");
4991 goto done;
4992 }
4993 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4994 num_shaders[MESA_SHADER_VERTEX] == 0) {
4995 linker_error(prog, "Tessellation control shader must be linked with "
4996 "vertex shader\n");
4997 goto done;
4998 }
4999
5000 /* Section 7.3 of the OpenGL ES 3.2 specification says:
5001 *
5002 * "Linking can fail for [...] any of the following reasons:
5003 *
5004 * * program contains an object to form a tessellation control
5005 * shader [...] and [...] the program is not separable and
5006 * contains no object to form a tessellation evaluation shader"
5007 *
5008 * The OpenGL spec is contradictory. It allows linking without a tess
5009 * eval shader, but that can only be used with transform feedback and
5010 * rasterization disabled. However, transform feedback isn't allowed
5011 * with GL_PATCHES, so it can't be used.
5012 *
5013 * More investigation showed that the idea of transform feedback after
5014 * a tess control shader was dropped, because some hw vendors couldn't
5015 * support tessellation without a tess eval shader, but the linker
5016 * section wasn't updated to reflect that.
5017 *
5018 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
5019 * spec bug.
5020 *
5021 * Do what's reasonable and always require a tess eval shader if a tess
5022 * control shader is present.
5023 */
5024 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
5025 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
5026 linker_error(prog, "Tessellation control shader must be linked with "
5027 "tessellation evaluation shader\n");
5028 goto done;
5029 }
5030
5031 if (prog->IsES) {
5032 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
5033 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
5034 linker_error(prog, "GLSL ES requires non-separable programs "
5035 "containing a tessellation evaluation shader to also "
5036 "be linked with a tessellation control shader\n");
5037 goto done;
5038 }
5039 }
5040 }
5041
5042 /* Compute shaders have additional restrictions. */
5043 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
5044 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
5045 linker_error(prog, "Compute shaders may not be linked with any other "
5046 "type of shader\n");
5047 }
5048
5049 /* Link all shaders for a particular stage and validate the result.
5050 */
5051 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5052 if (num_shaders[stage] > 0) {
5053 gl_linked_shader *const sh =
5054 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
5055 num_shaders[stage], false);
5056
5057 if (!prog->data->LinkStatus) {
5058 if (sh)
5059 _mesa_delete_linked_shader(ctx, sh);
5060 goto done;
5061 }
5062
5063 switch (stage) {
5064 case MESA_SHADER_VERTEX:
5065 validate_vertex_shader_executable(prog, sh, ctx);
5066 break;
5067 case MESA_SHADER_TESS_CTRL:
5068 /* nothing to be done */
5069 break;
5070 case MESA_SHADER_TESS_EVAL:
5071 validate_tess_eval_shader_executable(prog, sh, ctx);
5072 break;
5073 case MESA_SHADER_GEOMETRY:
5074 validate_geometry_shader_executable(prog, sh, ctx);
5075 break;
5076 case MESA_SHADER_FRAGMENT:
5077 validate_fragment_shader_executable(prog, sh);
5078 break;
5079 }
5080 if (!prog->data->LinkStatus) {
5081 if (sh)
5082 _mesa_delete_linked_shader(ctx, sh);
5083 goto done;
5084 }
5085
5086 prog->_LinkedShaders[stage] = sh;
5087 prog->data->linked_stages |= 1 << stage;
5088 }
5089 }
5090
5091 /* Here begins the inter-stage linking phase. Some initial validation is
5092 * performed, then locations are assigned for uniforms, attributes, and
5093 * varyings.
5094 */
5095 cross_validate_uniforms(ctx, prog);
5096 if (!prog->data->LinkStatus)
5097 goto done;
5098
5099 unsigned first, last, prev;
5100
5101 first = MESA_SHADER_STAGES;
5102 last = 0;
5103
5104 /* Determine first and last stage. */
5105 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5106 if (!prog->_LinkedShaders[i])
5107 continue;
5108 if (first == MESA_SHADER_STAGES)
5109 first = i;
5110 last = i;
5111 }
5112
5113 check_explicit_uniform_locations(ctx, prog);
5114 link_assign_subroutine_types(prog);
5115 verify_subroutine_associated_funcs(prog);
5116
5117 if (!prog->data->LinkStatus)
5118 goto done;
5119
5120 resize_tes_inputs(ctx, prog);
5121
5122 /* Validate the inputs of each stage with the output of the preceding
5123 * stage.
5124 */
5125 prev = first;
5126 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
5127 if (prog->_LinkedShaders[i] == NULL)
5128 continue;
5129
5130 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
5131 prog->_LinkedShaders[i]);
5132 if (!prog->data->LinkStatus)
5133 goto done;
5134
5135 cross_validate_outputs_to_inputs(ctx, prog,
5136 prog->_LinkedShaders[prev],
5137 prog->_LinkedShaders[i]);
5138 if (!prog->data->LinkStatus)
5139 goto done;
5140
5141 prev = i;
5142 }
5143
5144 /* The cross validation of outputs/inputs above validates interstage
5145 * explicit locations. We need to do this also for the inputs in the first
5146 * stage and outputs of the last stage included in the program, since there
5147 * is no cross validation for these.
5148 */
5149 validate_first_and_last_interface_explicit_locations(ctx, prog,
5150 (gl_shader_stage) first,
5151 (gl_shader_stage) last);
5152
5153 /* Cross-validate uniform blocks between shader stages */
5154 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5155 if (!prog->data->LinkStatus)
5156 goto done;
5157
5158 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5159 if (prog->_LinkedShaders[i] != NULL)
5160 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5161 }
5162
5163 if (prog->IsES && prog->data->Version == 100)
5164 if (!validate_invariant_builtins(prog,
5165 prog->_LinkedShaders[MESA_SHADER_VERTEX],
5166 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
5167 goto done;
5168
5169 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5170 * it before optimization because we want most of the checks to get
5171 * dropped thanks to constant propagation.
5172 *
5173 * This rule also applies to GLSL ES 3.00.
5174 */
5175 if (max_version >= (prog->IsES ? 300 : 130)) {
5176 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5177 if (sh) {
5178 lower_discard_flow(sh->ir);
5179 }
5180 }
5181
5182 if (prog->SeparateShader)
5183 disable_varying_optimizations_for_sso(prog);
5184
5185 /* Process UBOs */
5186 if (!interstage_cross_validate_uniform_blocks(prog, false))
5187 goto done;
5188
5189 /* Process SSBOs */
5190 if (!interstage_cross_validate_uniform_blocks(prog, true))
5191 goto done;
5192
5193 /* Do common optimization before assigning storage for attributes,
5194 * uniforms, and varyings. Later optimization could possibly make
5195 * some of that unused.
5196 */
5197 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5198 if (prog->_LinkedShaders[i] == NULL)
5199 continue;
5200
5201 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5202 if (!prog->data->LinkStatus)
5203 goto done;
5204
5205 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5206 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5207 }
5208
5209 if (ctx->Const.LowerTessLevel) {
5210 lower_tess_level(prog->_LinkedShaders[i]);
5211 }
5212
5213 /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
5214 * specification says:
5215 *
5216 * "In general, the behavior of GLSL ES should not depend on compiler
5217 * optimizations which might be implementation-dependent. Name matching
5218 * rules in most languages, including C++ from which GLSL ES is derived,
5219 * are based on declarations rather than use.
5220 *
5221 * RESOLUTION: The existence of aliasing is determined by declarations
5222 * present after preprocessing."
5223 *
5224 * Because of this rule, we do a 'dry-run' of attribute assignment for
5225 * vertex shader inputs here.
5226 */
5227 if (prog->IsES && i == MESA_SHADER_VERTEX) {
5228 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
5229 MESA_SHADER_VERTEX, false)) {
5230 goto done;
5231 }
5232 }
5233
5234 /* Call opts before lowering const arrays to uniforms so we can const
5235 * propagate any elements accessed directly.
5236 */
5237 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5238
5239 /* Call opts after lowering const arrays to copy propagate things. */
5240 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5241 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5242
5243 propagate_invariance(prog->_LinkedShaders[i]->ir);
5244 }
5245
5246 /* Validation for special cases where we allow sampler array indexing
5247 * with loop induction variable. This check emits a warning or error
5248 * depending if backend can handle dynamic indexing.
5249 */
5250 if ((!prog->IsES && prog->data->Version < 130) ||
5251 (prog->IsES && prog->data->Version < 300)) {
5252 if (!validate_sampler_array_indexing(ctx, prog))
5253 goto done;
5254 }
5255
5256 /* Check and validate stream emissions in geometry shaders */
5257 validate_geometry_shader_emissions(ctx, prog);
5258
5259 store_fragdepth_layout(prog);
5260
5261 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5262 goto done;
5263
5264 /* Linking varyings can cause some extra, useless swizzles to be generated
5265 * due to packing and unpacking.
5266 */
5267 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5268 if (prog->_LinkedShaders[i] == NULL)
5269 continue;
5270
5271 optimize_swizzles(prog->_LinkedShaders[i]->ir);
5272 }
5273
5274 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5275 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5276 * anything about shader linking when one of the shaders (vertex or
5277 * fragment shader) is absent. So, the extension shouldn't change the
5278 * behavior specified in GLSL specification.
5279 *
5280 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5281 * "Linking can fail for a variety of reasons as specified in the
5282 * OpenGL ES Shading Language Specification, as well as any of the
5283 * following reasons:
5284 *
5285 * ...
5286 *
5287 * * program contains objects to form either a vertex shader or
5288 * fragment shader, and program is not separable, and does not
5289 * contain objects to form both a vertex shader and fragment
5290 * shader."
5291 *
5292 * However, the only scenario in 3.1+ where we don't require them both is
5293 * when we have a compute shader. For example:
5294 *
5295 * - No shaders is a link error.
5296 * - Geom or Tess without a Vertex shader is a link error which means we
5297 * always require a Vertex shader and hence a Fragment shader.
5298 * - Finally a Compute shader linked with any other stage is a link error.
5299 */
5300 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5301 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5302 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5303 linker_error(prog, "program lacks a vertex shader\n");
5304 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5305 linker_error(prog, "program lacks a fragment shader\n");
5306 }
5307 }
5308
5309 done:
5310 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5311 free(shader_list[i]);
5312 if (prog->_LinkedShaders[i] == NULL)
5313 continue;
5314
5315 /* Do a final validation step to make sure that the IR wasn't
5316 * invalidated by any modifications performed after intrastage linking.
5317 */
5318 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5319
5320 /* Retain any live IR, but trash the rest. */
5321 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5322
5323 /* The symbol table in the linked shaders may contain references to
5324 * variables that were removed (e.g., unused uniforms). Since it may
5325 * contain junk, there is no possible valid use. Delete it and set the
5326 * pointer to NULL.
5327 */
5328 delete prog->_LinkedShaders[i]->symbols;
5329 prog->_LinkedShaders[i]->symbols = NULL;
5330 }
5331
5332 ralloc_free(mem_ctx);
5333 }