glsl: make use glsl_type::is_atomic_uint()
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 /**
94 * Visitor that determines whether or not a variable is ever written.
95 */
96 class find_assignment_visitor : public ir_hierarchical_visitor {
97 public:
98 find_assignment_visitor(const char *name)
99 : name(name), found(false)
100 {
101 /* empty */
102 }
103
104 virtual ir_visitor_status visit_enter(ir_assignment *ir)
105 {
106 ir_variable *const var = ir->lhs->variable_referenced();
107
108 if (strcmp(name, var->name) == 0) {
109 found = true;
110 return visit_stop;
111 }
112
113 return visit_continue_with_parent;
114 }
115
116 virtual ir_visitor_status visit_enter(ir_call *ir)
117 {
118 foreach_two_lists(formal_node, &ir->callee->parameters,
119 actual_node, &ir->actual_parameters) {
120 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
121 ir_variable *sig_param = (ir_variable *) formal_node;
122
123 if (sig_param->data.mode == ir_var_function_out ||
124 sig_param->data.mode == ir_var_function_inout) {
125 ir_variable *var = param_rval->variable_referenced();
126 if (var && strcmp(name, var->name) == 0) {
127 found = true;
128 return visit_stop;
129 }
130 }
131 }
132
133 if (ir->return_deref != NULL) {
134 ir_variable *const var = ir->return_deref->variable_referenced();
135
136 if (strcmp(name, var->name) == 0) {
137 found = true;
138 return visit_stop;
139 }
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 bool variable_found()
146 {
147 return found;
148 }
149
150 private:
151 const char *name; /**< Find writes to a variable with this name. */
152 bool found; /**< Was a write to the variable found? */
153 };
154
155
156 /**
157 * Visitor that determines whether or not a variable is ever read.
158 */
159 class find_deref_visitor : public ir_hierarchical_visitor {
160 public:
161 find_deref_visitor(const char *name)
162 : name(name), found(false)
163 {
164 /* empty */
165 }
166
167 virtual ir_visitor_status visit(ir_dereference_variable *ir)
168 {
169 if (strcmp(this->name, ir->var->name) == 0) {
170 this->found = true;
171 return visit_stop;
172 }
173
174 return visit_continue;
175 }
176
177 bool variable_found() const
178 {
179 return this->found;
180 }
181
182 private:
183 const char *name; /**< Find writes to a variable with this name. */
184 bool found; /**< Was a write to the variable found? */
185 };
186
187
188 /**
189 * A visitor helper that provides methods for updating the types of
190 * ir_dereferences. Classes that update variable types (say, updating
191 * array sizes) will want to use this so that dereference types stay in sync.
192 */
193 class deref_type_updater : public ir_hierarchical_visitor {
194 public:
195 virtual ir_visitor_status visit(ir_dereference_variable *ir)
196 {
197 ir->type = ir->var->type;
198 return visit_continue;
199 }
200
201 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
202 {
203 const glsl_type *const vt = ir->array->type;
204 if (vt->is_array())
205 ir->type = vt->fields.array;
206 return visit_continue;
207 }
208
209 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
210 {
211 for (unsigned i = 0; i < ir->record->type->length; i++) {
212 const struct glsl_struct_field *field =
213 &ir->record->type->fields.structure[i];
214 if (strcmp(field->name, ir->field) == 0) {
215 ir->type = field->type;
216 break;
217 }
218 }
219 return visit_continue;
220 }
221 };
222
223
224 class array_resize_visitor : public deref_type_updater {
225 public:
226 unsigned num_vertices;
227 gl_shader_program *prog;
228 gl_shader_stage stage;
229
230 array_resize_visitor(unsigned num_vertices,
231 gl_shader_program *prog,
232 gl_shader_stage stage)
233 {
234 this->num_vertices = num_vertices;
235 this->prog = prog;
236 this->stage = stage;
237 }
238
239 virtual ~array_resize_visitor()
240 {
241 /* empty */
242 }
243
244 virtual ir_visitor_status visit(ir_variable *var)
245 {
246 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
247 var->data.patch)
248 return visit_continue;
249
250 unsigned size = var->type->length;
251
252 if (stage == MESA_SHADER_GEOMETRY) {
253 /* Generate a link error if the shader has declared this array with
254 * an incorrect size.
255 */
256 if (!var->data.implicit_sized_array &&
257 size && size != this->num_vertices) {
258 linker_error(this->prog, "size of array %s declared as %u, "
259 "but number of input vertices is %u\n",
260 var->name, size, this->num_vertices);
261 return visit_continue;
262 }
263
264 /* Generate a link error if the shader attempts to access an input
265 * array using an index too large for its actual size assigned at
266 * link time.
267 */
268 if (var->data.max_array_access >= (int)this->num_vertices) {
269 linker_error(this->prog, "%s shader accesses element %i of "
270 "%s, but only %i input vertices\n",
271 _mesa_shader_stage_to_string(this->stage),
272 var->data.max_array_access, var->name, this->num_vertices);
273 return visit_continue;
274 }
275 }
276
277 var->type = glsl_type::get_array_instance(var->type->fields.array,
278 this->num_vertices);
279 var->data.max_array_access = this->num_vertices - 1;
280
281 return visit_continue;
282 }
283 };
284
285 /**
286 * Visitor that determines the highest stream id to which a (geometry) shader
287 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
288 */
289 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
290 public:
291 find_emit_vertex_visitor(int max_allowed)
292 : max_stream_allowed(max_allowed),
293 invalid_stream_id(0),
294 invalid_stream_id_from_emit_vertex(false),
295 end_primitive_found(false),
296 uses_non_zero_stream(false)
297 {
298 /* empty */
299 }
300
301 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
302 {
303 int stream_id = ir->stream_id();
304
305 if (stream_id < 0) {
306 invalid_stream_id = stream_id;
307 invalid_stream_id_from_emit_vertex = true;
308 return visit_stop;
309 }
310
311 if (stream_id > max_stream_allowed) {
312 invalid_stream_id = stream_id;
313 invalid_stream_id_from_emit_vertex = true;
314 return visit_stop;
315 }
316
317 if (stream_id != 0)
318 uses_non_zero_stream = true;
319
320 return visit_continue;
321 }
322
323 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
324 {
325 end_primitive_found = true;
326
327 int stream_id = ir->stream_id();
328
329 if (stream_id < 0) {
330 invalid_stream_id = stream_id;
331 invalid_stream_id_from_emit_vertex = false;
332 return visit_stop;
333 }
334
335 if (stream_id > max_stream_allowed) {
336 invalid_stream_id = stream_id;
337 invalid_stream_id_from_emit_vertex = false;
338 return visit_stop;
339 }
340
341 if (stream_id != 0)
342 uses_non_zero_stream = true;
343
344 return visit_continue;
345 }
346
347 bool error()
348 {
349 return invalid_stream_id != 0;
350 }
351
352 const char *error_func()
353 {
354 return invalid_stream_id_from_emit_vertex ?
355 "EmitStreamVertex" : "EndStreamPrimitive";
356 }
357
358 int error_stream()
359 {
360 return invalid_stream_id;
361 }
362
363 bool uses_streams()
364 {
365 return uses_non_zero_stream;
366 }
367
368 bool uses_end_primitive()
369 {
370 return end_primitive_found;
371 }
372
373 private:
374 int max_stream_allowed;
375 int invalid_stream_id;
376 bool invalid_stream_id_from_emit_vertex;
377 bool end_primitive_found;
378 bool uses_non_zero_stream;
379 };
380
381 /* Class that finds array derefs and check if indexes are dynamic. */
382 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
383 {
384 public:
385 dynamic_sampler_array_indexing_visitor() :
386 dynamic_sampler_array_indexing(false)
387 {
388 }
389
390 ir_visitor_status visit_enter(ir_dereference_array *ir)
391 {
392 if (!ir->variable_referenced())
393 return visit_continue;
394
395 if (!ir->variable_referenced()->type->contains_sampler())
396 return visit_continue;
397
398 if (!ir->array_index->constant_expression_value()) {
399 dynamic_sampler_array_indexing = true;
400 return visit_stop;
401 }
402 return visit_continue;
403 }
404
405 bool uses_dynamic_sampler_array_indexing()
406 {
407 return dynamic_sampler_array_indexing;
408 }
409
410 private:
411 bool dynamic_sampler_array_indexing;
412 };
413
414 } /* anonymous namespace */
415
416 void
417 linker_error(gl_shader_program *prog, const char *fmt, ...)
418 {
419 va_list ap;
420
421 ralloc_strcat(&prog->data->InfoLog, "error: ");
422 va_start(ap, fmt);
423 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
424 va_end(ap);
425
426 prog->data->LinkStatus = linking_failure;
427 }
428
429
430 void
431 linker_warning(gl_shader_program *prog, const char *fmt, ...)
432 {
433 va_list ap;
434
435 ralloc_strcat(&prog->data->InfoLog, "warning: ");
436 va_start(ap, fmt);
437 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
438 va_end(ap);
439
440 }
441
442
443 /**
444 * Given a string identifying a program resource, break it into a base name
445 * and an optional array index in square brackets.
446 *
447 * If an array index is present, \c out_base_name_end is set to point to the
448 * "[" that precedes the array index, and the array index itself is returned
449 * as a long.
450 *
451 * If no array index is present (or if the array index is negative or
452 * mal-formed), \c out_base_name_end, is set to point to the null terminator
453 * at the end of the input string, and -1 is returned.
454 *
455 * Only the final array index is parsed; if the string contains other array
456 * indices (or structure field accesses), they are left in the base name.
457 *
458 * No attempt is made to check that the base name is properly formed;
459 * typically the caller will look up the base name in a hash table, so
460 * ill-formed base names simply turn into hash table lookup failures.
461 */
462 long
463 parse_program_resource_name(const GLchar *name,
464 const GLchar **out_base_name_end)
465 {
466 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
467 *
468 * "When an integer array element or block instance number is part of
469 * the name string, it will be specified in decimal form without a "+"
470 * or "-" sign or any extra leading zeroes. Additionally, the name
471 * string will not include white space anywhere in the string."
472 */
473
474 const size_t len = strlen(name);
475 *out_base_name_end = name + len;
476
477 if (len == 0 || name[len-1] != ']')
478 return -1;
479
480 /* Walk backwards over the string looking for a non-digit character. This
481 * had better be the opening bracket for an array index.
482 *
483 * Initially, i specifies the location of the ']'. Since the string may
484 * contain only the ']' charcater, walk backwards very carefully.
485 */
486 unsigned i;
487 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
488 /* empty */ ;
489
490 if ((i == 0) || name[i-1] != '[')
491 return -1;
492
493 long array_index = strtol(&name[i], NULL, 10);
494 if (array_index < 0)
495 return -1;
496
497 /* Check for leading zero */
498 if (name[i] == '0' && name[i+1] != ']')
499 return -1;
500
501 *out_base_name_end = name + (i - 1);
502 return array_index;
503 }
504
505
506 void
507 link_invalidate_variable_locations(exec_list *ir)
508 {
509 foreach_in_list(ir_instruction, node, ir) {
510 ir_variable *const var = node->as_variable();
511
512 if (var == NULL)
513 continue;
514
515 /* Only assign locations for variables that lack an explicit location.
516 * Explicit locations are set for all built-in variables, generic vertex
517 * shader inputs (via layout(location=...)), and generic fragment shader
518 * outputs (also via layout(location=...)).
519 */
520 if (!var->data.explicit_location) {
521 var->data.location = -1;
522 var->data.location_frac = 0;
523 }
524
525 /* ir_variable::is_unmatched_generic_inout is used by the linker while
526 * connecting outputs from one stage to inputs of the next stage.
527 */
528 if (var->data.explicit_location &&
529 var->data.location < VARYING_SLOT_VAR0) {
530 var->data.is_unmatched_generic_inout = 0;
531 } else {
532 var->data.is_unmatched_generic_inout = 1;
533 }
534 }
535 }
536
537
538 /**
539 * Set clip_distance_array_size based and cull_distance_array_size on the given
540 * shader.
541 *
542 * Also check for errors based on incorrect usage of gl_ClipVertex and
543 * gl_ClipDistance and gl_CullDistance.
544 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
545 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
546 *
547 * Return false if an error was reported.
548 */
549 static void
550 analyze_clip_cull_usage(struct gl_shader_program *prog,
551 struct gl_linked_shader *shader,
552 struct gl_context *ctx,
553 GLuint *clip_distance_array_size,
554 GLuint *cull_distance_array_size)
555 {
556 *clip_distance_array_size = 0;
557 *cull_distance_array_size = 0;
558
559 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
560 /* From section 7.1 (Vertex Shader Special Variables) of the
561 * GLSL 1.30 spec:
562 *
563 * "It is an error for a shader to statically write both
564 * gl_ClipVertex and gl_ClipDistance."
565 *
566 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
567 * gl_ClipVertex nor gl_ClipDistance. However with
568 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
569 */
570 find_assignment_visitor clip_distance("gl_ClipDistance");
571 find_assignment_visitor cull_distance("gl_CullDistance");
572
573 clip_distance.run(shader->ir);
574 cull_distance.run(shader->ir);
575
576 /* From the ARB_cull_distance spec:
577 *
578 * It is a compile-time or link-time error for the set of shaders forming
579 * a program to statically read or write both gl_ClipVertex and either
580 * gl_ClipDistance or gl_CullDistance.
581 *
582 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
583 * gl_ClipVertex.
584 */
585 if (!prog->IsES) {
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587
588 clip_vertex.run(shader->ir);
589
590 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
591 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
592 "and `gl_ClipDistance'\n",
593 _mesa_shader_stage_to_string(shader->Stage));
594 return;
595 }
596 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
597 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
598 "and `gl_CullDistance'\n",
599 _mesa_shader_stage_to_string(shader->Stage));
600 return;
601 }
602 }
603
604 if (clip_distance.variable_found()) {
605 ir_variable *clip_distance_var =
606 shader->symbols->get_variable("gl_ClipDistance");
607 assert(clip_distance_var);
608 *clip_distance_array_size = clip_distance_var->type->length;
609 }
610 if (cull_distance.variable_found()) {
611 ir_variable *cull_distance_var =
612 shader->symbols->get_variable("gl_CullDistance");
613 assert(cull_distance_var);
614 *cull_distance_array_size = cull_distance_var->type->length;
615 }
616 /* From the ARB_cull_distance spec:
617 *
618 * It is a compile-time or link-time error for the set of shaders forming
619 * a program to have the sum of the sizes of the gl_ClipDistance and
620 * gl_CullDistance arrays to be larger than
621 * gl_MaxCombinedClipAndCullDistances.
622 */
623 if ((*clip_distance_array_size + *cull_distance_array_size) >
624 ctx->Const.MaxClipPlanes) {
625 linker_error(prog, "%s shader: the combined size of "
626 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
627 "be larger than "
628 "gl_MaxCombinedClipAndCullDistances (%u)",
629 _mesa_shader_stage_to_string(shader->Stage),
630 ctx->Const.MaxClipPlanes);
631 }
632 }
633 }
634
635
636 /**
637 * Verify that a vertex shader executable meets all semantic requirements.
638 *
639 * Also sets info.clip_distance_array_size and
640 * info.cull_distance_array_size as a side effect.
641 *
642 * \param shader Vertex shader executable to be verified
643 */
644 void
645 validate_vertex_shader_executable(struct gl_shader_program *prog,
646 struct gl_linked_shader *shader,
647 struct gl_context *ctx)
648 {
649 if (shader == NULL)
650 return;
651
652 /* From the GLSL 1.10 spec, page 48:
653 *
654 * "The variable gl_Position is available only in the vertex
655 * language and is intended for writing the homogeneous vertex
656 * position. All executions of a well-formed vertex shader
657 * executable must write a value into this variable. [...] The
658 * variable gl_Position is available only in the vertex
659 * language and is intended for writing the homogeneous vertex
660 * position. All executions of a well-formed vertex shader
661 * executable must write a value into this variable."
662 *
663 * while in GLSL 1.40 this text is changed to:
664 *
665 * "The variable gl_Position is available only in the vertex
666 * language and is intended for writing the homogeneous vertex
667 * position. It can be written at any time during shader
668 * execution. It may also be read back by a vertex shader
669 * after being written. This value will be used by primitive
670 * assembly, clipping, culling, and other fixed functionality
671 * operations, if present, that operate on primitives after
672 * vertex processing has occurred. Its value is undefined if
673 * the vertex shader executable does not write gl_Position."
674 *
675 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
676 * gl_Position is not an error.
677 */
678 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
679 find_assignment_visitor find("gl_Position");
680 find.run(shader->ir);
681 if (!find.variable_found()) {
682 if (prog->IsES) {
683 linker_warning(prog,
684 "vertex shader does not write to `gl_Position'. "
685 "Its value is undefined. \n");
686 } else {
687 linker_error(prog,
688 "vertex shader does not write to `gl_Position'. \n");
689 }
690 return;
691 }
692 }
693
694 analyze_clip_cull_usage(prog, shader, ctx,
695 &shader->Program->info.clip_distance_array_size,
696 &shader->Program->info.cull_distance_array_size);
697 }
698
699 void
700 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
701 struct gl_linked_shader *shader,
702 struct gl_context *ctx)
703 {
704 if (shader == NULL)
705 return;
706
707 analyze_clip_cull_usage(prog, shader, ctx,
708 &shader->Program->info.clip_distance_array_size,
709 &shader->Program->info.cull_distance_array_size);
710 }
711
712
713 /**
714 * Verify that a fragment shader executable meets all semantic requirements
715 *
716 * \param shader Fragment shader executable to be verified
717 */
718 void
719 validate_fragment_shader_executable(struct gl_shader_program *prog,
720 struct gl_linked_shader *shader)
721 {
722 if (shader == NULL)
723 return;
724
725 find_assignment_visitor frag_color("gl_FragColor");
726 find_assignment_visitor frag_data("gl_FragData");
727
728 frag_color.run(shader->ir);
729 frag_data.run(shader->ir);
730
731 if (frag_color.variable_found() && frag_data.variable_found()) {
732 linker_error(prog, "fragment shader writes to both "
733 "`gl_FragColor' and `gl_FragData'\n");
734 }
735 }
736
737 /**
738 * Verify that a geometry shader executable meets all semantic requirements
739 *
740 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
741 * info.cull_distance_array_size as a side effect.
742 *
743 * \param shader Geometry shader executable to be verified
744 */
745 void
746 validate_geometry_shader_executable(struct gl_shader_program *prog,
747 struct gl_linked_shader *shader,
748 struct gl_context *ctx)
749 {
750 if (shader == NULL)
751 return;
752
753 unsigned num_vertices =
754 vertices_per_prim(shader->Program->info.gs.input_primitive);
755 prog->Geom.VerticesIn = num_vertices;
756
757 analyze_clip_cull_usage(prog, shader, ctx,
758 &shader->Program->info.clip_distance_array_size,
759 &shader->Program->info.cull_distance_array_size);
760 }
761
762 /**
763 * Check if geometry shaders emit to non-zero streams and do corresponding
764 * validations.
765 */
766 static void
767 validate_geometry_shader_emissions(struct gl_context *ctx,
768 struct gl_shader_program *prog)
769 {
770 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
771
772 if (sh != NULL) {
773 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
774 emit_vertex.run(sh->ir);
775 if (emit_vertex.error()) {
776 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
777 "stream parameter are in the range [0, %d].\n",
778 emit_vertex.error_func(),
779 emit_vertex.error_stream(),
780 ctx->Const.MaxVertexStreams - 1);
781 }
782 prog->Geom.UsesStreams = emit_vertex.uses_streams();
783 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
784
785 /* From the ARB_gpu_shader5 spec:
786 *
787 * "Multiple vertex streams are supported only if the output primitive
788 * type is declared to be "points". A program will fail to link if it
789 * contains a geometry shader calling EmitStreamVertex() or
790 * EndStreamPrimitive() if its output primitive type is not "points".
791 *
792 * However, in the same spec:
793 *
794 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
795 * with <stream> set to zero."
796 *
797 * And:
798 *
799 * "The function EndPrimitive() is equivalent to calling
800 * EndStreamPrimitive() with <stream> set to zero."
801 *
802 * Since we can call EmitVertex() and EndPrimitive() when we output
803 * primitives other than points, calling EmitStreamVertex(0) or
804 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
805 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
806 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
807 * stream.
808 */
809 if (prog->Geom.UsesStreams &&
810 sh->Program->info.gs.output_primitive != GL_POINTS) {
811 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
812 "with n>0 requires point output\n");
813 }
814 }
815 }
816
817 bool
818 validate_intrastage_arrays(struct gl_shader_program *prog,
819 ir_variable *const var,
820 ir_variable *const existing)
821 {
822 /* Consider the types to be "the same" if both types are arrays
823 * of the same type and one of the arrays is implicitly sized.
824 * In addition, set the type of the linked variable to the
825 * explicitly sized array.
826 */
827 if (var->type->is_array() && existing->type->is_array()) {
828 if ((var->type->fields.array == existing->type->fields.array) &&
829 ((var->type->length == 0)|| (existing->type->length == 0))) {
830 if (var->type->length != 0) {
831 if ((int)var->type->length <= existing->data.max_array_access) {
832 linker_error(prog, "%s `%s' declared as type "
833 "`%s' but outermost dimension has an index"
834 " of `%i'\n",
835 mode_string(var),
836 var->name, var->type->name,
837 existing->data.max_array_access);
838 }
839 existing->type = var->type;
840 return true;
841 } else if (existing->type->length != 0) {
842 if((int)existing->type->length <= var->data.max_array_access &&
843 !existing->data.from_ssbo_unsized_array) {
844 linker_error(prog, "%s `%s' declared as type "
845 "`%s' but outermost dimension has an index"
846 " of `%i'\n",
847 mode_string(var),
848 var->name, existing->type->name,
849 var->data.max_array_access);
850 }
851 return true;
852 }
853 } else {
854 /* The arrays of structs could have different glsl_type pointers but
855 * they are actually the same type. Use record_compare() to check that.
856 */
857 if (existing->type->fields.array->is_record() &&
858 var->type->fields.array->is_record() &&
859 existing->type->fields.array->record_compare(var->type->fields.array))
860 return true;
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Perform validation of global variables used across multiple shaders
869 */
870 void
871 cross_validate_globals(struct gl_shader_program *prog,
872 struct exec_list *ir, glsl_symbol_table *variables,
873 bool uniforms_only)
874 {
875 foreach_in_list(ir_instruction, node, ir) {
876 ir_variable *const var = node->as_variable();
877
878 if (var == NULL)
879 continue;
880
881 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
882 continue;
883
884 /* don't cross validate subroutine uniforms */
885 if (var->type->contains_subroutine())
886 continue;
887
888 /* Don't cross validate interface instances. These are only relevant
889 * inside a shader. The cross validation is done at the Interface Block
890 * name level.
891 */
892 if (var->is_interface_instance())
893 continue;
894
895 /* Don't cross validate temporaries that are at global scope. These
896 * will eventually get pulled into the shaders 'main'.
897 */
898 if (var->data.mode == ir_var_temporary)
899 continue;
900
901 /* If a global with this name has already been seen, verify that the
902 * new instance has the same type. In addition, if the globals have
903 * initializers, the values of the initializers must be the same.
904 */
905 ir_variable *const existing = variables->get_variable(var->name);
906 if (existing != NULL) {
907 /* Check if types match. */
908 if (var->type != existing->type) {
909 if (!validate_intrastage_arrays(prog, var, existing)) {
910 if (var->type->is_record() && existing->type->is_record()
911 && existing->type->record_compare(var->type)) {
912 existing->type = var->type;
913 } else {
914 /* If it is an unsized array in a Shader Storage Block,
915 * two different shaders can access to different elements.
916 * Because of that, they might be converted to different
917 * sized arrays, then check that they are compatible but
918 * ignore the array size.
919 */
920 if (!(var->data.mode == ir_var_shader_storage &&
921 var->data.from_ssbo_unsized_array &&
922 existing->data.mode == ir_var_shader_storage &&
923 existing->data.from_ssbo_unsized_array &&
924 var->type->gl_type == existing->type->gl_type)) {
925 linker_error(prog, "%s `%s' declared as type "
926 "`%s' and type `%s'\n",
927 mode_string(var),
928 var->name, var->type->name,
929 existing->type->name);
930 return;
931 }
932 }
933 }
934 }
935
936 if (var->data.explicit_location) {
937 if (existing->data.explicit_location
938 && (var->data.location != existing->data.location)) {
939 linker_error(prog, "explicit locations for %s "
940 "`%s' have differing values\n",
941 mode_string(var), var->name);
942 return;
943 }
944
945 if (var->data.location_frac != existing->data.location_frac) {
946 linker_error(prog, "explicit components for %s `%s' have "
947 "differing values\n", mode_string(var), var->name);
948 return;
949 }
950
951 existing->data.location = var->data.location;
952 existing->data.explicit_location = true;
953 } else {
954 /* Check if uniform with implicit location was marked explicit
955 * by earlier shader stage. If so, mark it explicit in this stage
956 * too to make sure later processing does not treat it as
957 * implicit one.
958 */
959 if (existing->data.explicit_location) {
960 var->data.location = existing->data.location;
961 var->data.explicit_location = true;
962 }
963 }
964
965 /* From the GLSL 4.20 specification:
966 * "A link error will result if two compilation units in a program
967 * specify different integer-constant bindings for the same
968 * opaque-uniform name. However, it is not an error to specify a
969 * binding on some but not all declarations for the same name"
970 */
971 if (var->data.explicit_binding) {
972 if (existing->data.explicit_binding &&
973 var->data.binding != existing->data.binding) {
974 linker_error(prog, "explicit bindings for %s "
975 "`%s' have differing values\n",
976 mode_string(var), var->name);
977 return;
978 }
979
980 existing->data.binding = var->data.binding;
981 existing->data.explicit_binding = true;
982 }
983
984 if (var->type->contains_atomic() &&
985 var->data.offset != existing->data.offset) {
986 linker_error(prog, "offset specifications for %s "
987 "`%s' have differing values\n",
988 mode_string(var), var->name);
989 return;
990 }
991
992 /* Validate layout qualifiers for gl_FragDepth.
993 *
994 * From the AMD/ARB_conservative_depth specs:
995 *
996 * "If gl_FragDepth is redeclared in any fragment shader in a
997 * program, it must be redeclared in all fragment shaders in
998 * that program that have static assignments to
999 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1000 * fragment shaders in a single program must have the same set
1001 * of qualifiers."
1002 */
1003 if (strcmp(var->name, "gl_FragDepth") == 0) {
1004 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1005 bool layout_differs =
1006 var->data.depth_layout != existing->data.depth_layout;
1007
1008 if (layout_declared && layout_differs) {
1009 linker_error(prog,
1010 "All redeclarations of gl_FragDepth in all "
1011 "fragment shaders in a single program must have "
1012 "the same set of qualifiers.\n");
1013 }
1014
1015 if (var->data.used && layout_differs) {
1016 linker_error(prog,
1017 "If gl_FragDepth is redeclared with a layout "
1018 "qualifier in any fragment shader, it must be "
1019 "redeclared with the same layout qualifier in "
1020 "all fragment shaders that have assignments to "
1021 "gl_FragDepth\n");
1022 }
1023 }
1024
1025 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1026 *
1027 * "If a shared global has multiple initializers, the
1028 * initializers must all be constant expressions, and they
1029 * must all have the same value. Otherwise, a link error will
1030 * result. (A shared global having only one initializer does
1031 * not require that initializer to be a constant expression.)"
1032 *
1033 * Previous to 4.20 the GLSL spec simply said that initializers
1034 * must have the same value. In this case of non-constant
1035 * initializers, this was impossible to determine. As a result,
1036 * no vendor actually implemented that behavior. The 4.20
1037 * behavior matches the implemented behavior of at least one other
1038 * vendor, so we'll implement that for all GLSL versions.
1039 */
1040 if (var->constant_initializer != NULL) {
1041 if (existing->constant_initializer != NULL) {
1042 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1043 linker_error(prog, "initializers for %s "
1044 "`%s' have differing values\n",
1045 mode_string(var), var->name);
1046 return;
1047 }
1048 } else {
1049 /* If the first-seen instance of a particular uniform did
1050 * not have an initializer but a later instance does,
1051 * replace the former with the later.
1052 */
1053 variables->replace_variable(existing->name, var);
1054 }
1055 }
1056
1057 if (var->data.has_initializer) {
1058 if (existing->data.has_initializer
1059 && (var->constant_initializer == NULL
1060 || existing->constant_initializer == NULL)) {
1061 linker_error(prog,
1062 "shared global variable `%s' has multiple "
1063 "non-constant initializers.\n",
1064 var->name);
1065 return;
1066 }
1067 }
1068
1069 if (existing->data.invariant != var->data.invariant) {
1070 linker_error(prog, "declarations for %s `%s' have "
1071 "mismatching invariant qualifiers\n",
1072 mode_string(var), var->name);
1073 return;
1074 }
1075 if (existing->data.centroid != var->data.centroid) {
1076 linker_error(prog, "declarations for %s `%s' have "
1077 "mismatching centroid qualifiers\n",
1078 mode_string(var), var->name);
1079 return;
1080 }
1081 if (existing->data.sample != var->data.sample) {
1082 linker_error(prog, "declarations for %s `%s` have "
1083 "mismatching sample qualifiers\n",
1084 mode_string(var), var->name);
1085 return;
1086 }
1087 if (existing->data.image_format != var->data.image_format) {
1088 linker_error(prog, "declarations for %s `%s` have "
1089 "mismatching image format qualifiers\n",
1090 mode_string(var), var->name);
1091 return;
1092 }
1093
1094 /* Only in GLSL ES 3.10, the precision qualifier should not match
1095 * between block members defined in matched block names within a
1096 * shader interface.
1097 *
1098 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1099 * member should match.
1100 */
1101 if (prog->IsES && (prog->data->Version != 310 ||
1102 !var->get_interface_type()) &&
1103 existing->data.precision != var->data.precision) {
1104 linker_error(prog, "declarations for %s `%s` have "
1105 "mismatching precision qualifiers\n",
1106 mode_string(var), var->name);
1107 return;
1108 }
1109 } else
1110 variables->add_variable(var);
1111 }
1112 }
1113
1114
1115 /**
1116 * Perform validation of uniforms used across multiple shader stages
1117 */
1118 void
1119 cross_validate_uniforms(struct gl_shader_program *prog)
1120 {
1121 glsl_symbol_table variables;
1122 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1123 if (prog->_LinkedShaders[i] == NULL)
1124 continue;
1125
1126 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1127 true);
1128 }
1129 }
1130
1131 /**
1132 * Accumulates the array of buffer blocks and checks that all definitions of
1133 * blocks agree on their contents.
1134 */
1135 static bool
1136 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1137 bool validate_ssbo)
1138 {
1139 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1140 struct gl_uniform_block *blks = NULL;
1141 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1142 &prog->data->NumUniformBlocks;
1143
1144 unsigned max_num_buffer_blocks = 0;
1145 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1146 if (prog->_LinkedShaders[i]) {
1147 if (validate_ssbo) {
1148 max_num_buffer_blocks +=
1149 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1150 } else {
1151 max_num_buffer_blocks +=
1152 prog->_LinkedShaders[i]->Program->info.num_ubos;
1153 }
1154 }
1155 }
1156
1157 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1158 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1159
1160 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1161 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1162 InterfaceBlockStageIndex[i][j] = -1;
1163
1164 if (sh == NULL)
1165 continue;
1166
1167 unsigned sh_num_blocks;
1168 struct gl_uniform_block **sh_blks;
1169 if (validate_ssbo) {
1170 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1171 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1172 } else {
1173 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1174 sh_blks = sh->Program->sh.UniformBlocks;
1175 }
1176
1177 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1178 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1179 sh_blks[j]);
1180
1181 if (index == -1) {
1182 linker_error(prog, "buffer block `%s' has mismatching "
1183 "definitions\n", sh_blks[j]->Name);
1184
1185 for (unsigned k = 0; k <= i; k++) {
1186 delete[] InterfaceBlockStageIndex[k];
1187 }
1188
1189 /* Reset the block count. This will help avoid various segfaults
1190 * from api calls that assume the array exists due to the count
1191 * being non-zero.
1192 */
1193 *num_blks = 0;
1194 return false;
1195 }
1196
1197 InterfaceBlockStageIndex[i][index] = j;
1198 }
1199 }
1200
1201 /* Update per stage block pointers to point to the program list.
1202 * FIXME: We should be able to free the per stage blocks here.
1203 */
1204 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1205 for (unsigned j = 0; j < *num_blks; j++) {
1206 int stage_index = InterfaceBlockStageIndex[i][j];
1207
1208 if (stage_index != -1) {
1209 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1210
1211 struct gl_uniform_block **sh_blks = validate_ssbo ?
1212 sh->Program->sh.ShaderStorageBlocks :
1213 sh->Program->sh.UniformBlocks;
1214
1215 blks[j].stageref |= sh_blks[stage_index]->stageref;
1216 sh_blks[stage_index] = &blks[j];
1217 }
1218 }
1219 }
1220
1221 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1222 delete[] InterfaceBlockStageIndex[i];
1223 }
1224
1225 if (validate_ssbo)
1226 prog->data->ShaderStorageBlocks = blks;
1227 else
1228 prog->data->UniformBlocks = blks;
1229
1230 return true;
1231 }
1232
1233
1234 /**
1235 * Populates a shaders symbol table with all global declarations
1236 */
1237 static void
1238 populate_symbol_table(gl_linked_shader *sh)
1239 {
1240 sh->symbols = new(sh) glsl_symbol_table;
1241
1242 foreach_in_list(ir_instruction, inst, sh->ir) {
1243 ir_variable *var;
1244 ir_function *func;
1245
1246 if ((func = inst->as_function()) != NULL) {
1247 sh->symbols->add_function(func);
1248 } else if ((var = inst->as_variable()) != NULL) {
1249 if (var->data.mode != ir_var_temporary)
1250 sh->symbols->add_variable(var);
1251 }
1252 }
1253 }
1254
1255
1256 /**
1257 * Remap variables referenced in an instruction tree
1258 *
1259 * This is used when instruction trees are cloned from one shader and placed in
1260 * another. These trees will contain references to \c ir_variable nodes that
1261 * do not exist in the target shader. This function finds these \c ir_variable
1262 * references and replaces the references with matching variables in the target
1263 * shader.
1264 *
1265 * If there is no matching variable in the target shader, a clone of the
1266 * \c ir_variable is made and added to the target shader. The new variable is
1267 * added to \b both the instruction stream and the symbol table.
1268 *
1269 * \param inst IR tree that is to be processed.
1270 * \param symbols Symbol table containing global scope symbols in the
1271 * linked shader.
1272 * \param instructions Instruction stream where new variable declarations
1273 * should be added.
1274 */
1275 void
1276 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1277 hash_table *temps)
1278 {
1279 class remap_visitor : public ir_hierarchical_visitor {
1280 public:
1281 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1282 {
1283 this->target = target;
1284 this->symbols = target->symbols;
1285 this->instructions = target->ir;
1286 this->temps = temps;
1287 }
1288
1289 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1290 {
1291 if (ir->var->data.mode == ir_var_temporary) {
1292 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1293 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1294
1295 assert(var != NULL);
1296 ir->var = var;
1297 return visit_continue;
1298 }
1299
1300 ir_variable *const existing =
1301 this->symbols->get_variable(ir->var->name);
1302 if (existing != NULL)
1303 ir->var = existing;
1304 else {
1305 ir_variable *copy = ir->var->clone(this->target, NULL);
1306
1307 this->symbols->add_variable(copy);
1308 this->instructions->push_head(copy);
1309 ir->var = copy;
1310 }
1311
1312 return visit_continue;
1313 }
1314
1315 private:
1316 struct gl_linked_shader *target;
1317 glsl_symbol_table *symbols;
1318 exec_list *instructions;
1319 hash_table *temps;
1320 };
1321
1322 remap_visitor v(target, temps);
1323
1324 inst->accept(&v);
1325 }
1326
1327
1328 /**
1329 * Move non-declarations from one instruction stream to another
1330 *
1331 * The intended usage pattern of this function is to pass the pointer to the
1332 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1333 * pointer) for \c last and \c false for \c make_copies on the first
1334 * call. Successive calls pass the return value of the previous call for
1335 * \c last and \c true for \c make_copies.
1336 *
1337 * \param instructions Source instruction stream
1338 * \param last Instruction after which new instructions should be
1339 * inserted in the target instruction stream
1340 * \param make_copies Flag selecting whether instructions in \c instructions
1341 * should be copied (via \c ir_instruction::clone) into the
1342 * target list or moved.
1343 *
1344 * \return
1345 * The new "last" instruction in the target instruction stream. This pointer
1346 * is suitable for use as the \c last parameter of a later call to this
1347 * function.
1348 */
1349 exec_node *
1350 move_non_declarations(exec_list *instructions, exec_node *last,
1351 bool make_copies, gl_linked_shader *target)
1352 {
1353 hash_table *temps = NULL;
1354
1355 if (make_copies)
1356 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1357 _mesa_key_pointer_equal);
1358
1359 foreach_in_list_safe(ir_instruction, inst, instructions) {
1360 if (inst->as_function())
1361 continue;
1362
1363 ir_variable *var = inst->as_variable();
1364 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1365 continue;
1366
1367 assert(inst->as_assignment()
1368 || inst->as_call()
1369 || inst->as_if() /* for initializers with the ?: operator */
1370 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1371
1372 if (make_copies) {
1373 inst = inst->clone(target, NULL);
1374
1375 if (var != NULL)
1376 _mesa_hash_table_insert(temps, var, inst);
1377 else
1378 remap_variables(inst, target, temps);
1379 } else {
1380 inst->remove();
1381 }
1382
1383 last->insert_after(inst);
1384 last = inst;
1385 }
1386
1387 if (make_copies)
1388 _mesa_hash_table_destroy(temps, NULL);
1389
1390 return last;
1391 }
1392
1393
1394 /**
1395 * This class is only used in link_intrastage_shaders() below but declaring
1396 * it inside that function leads to compiler warnings with some versions of
1397 * gcc.
1398 */
1399 class array_sizing_visitor : public deref_type_updater {
1400 public:
1401 array_sizing_visitor()
1402 : mem_ctx(ralloc_context(NULL)),
1403 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1404 _mesa_key_pointer_equal))
1405 {
1406 }
1407
1408 ~array_sizing_visitor()
1409 {
1410 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1411 ralloc_free(this->mem_ctx);
1412 }
1413
1414 virtual ir_visitor_status visit(ir_variable *var)
1415 {
1416 const glsl_type *type_without_array;
1417 bool implicit_sized_array = var->data.implicit_sized_array;
1418 fixup_type(&var->type, var->data.max_array_access,
1419 var->data.from_ssbo_unsized_array,
1420 &implicit_sized_array);
1421 var->data.implicit_sized_array = implicit_sized_array;
1422 type_without_array = var->type->without_array();
1423 if (var->type->is_interface()) {
1424 if (interface_contains_unsized_arrays(var->type)) {
1425 const glsl_type *new_type =
1426 resize_interface_members(var->type,
1427 var->get_max_ifc_array_access(),
1428 var->is_in_shader_storage_block());
1429 var->type = new_type;
1430 var->change_interface_type(new_type);
1431 }
1432 } else if (type_without_array->is_interface()) {
1433 if (interface_contains_unsized_arrays(type_without_array)) {
1434 const glsl_type *new_type =
1435 resize_interface_members(type_without_array,
1436 var->get_max_ifc_array_access(),
1437 var->is_in_shader_storage_block());
1438 var->change_interface_type(new_type);
1439 var->type = update_interface_members_array(var->type, new_type);
1440 }
1441 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1442 /* Store a pointer to the variable in the unnamed_interfaces
1443 * hashtable.
1444 */
1445 hash_entry *entry =
1446 _mesa_hash_table_search(this->unnamed_interfaces,
1447 ifc_type);
1448
1449 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1450
1451 if (interface_vars == NULL) {
1452 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1453 ifc_type->length);
1454 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1455 interface_vars);
1456 }
1457 unsigned index = ifc_type->field_index(var->name);
1458 assert(index < ifc_type->length);
1459 assert(interface_vars[index] == NULL);
1460 interface_vars[index] = var;
1461 }
1462 return visit_continue;
1463 }
1464
1465 /**
1466 * For each unnamed interface block that was discovered while running the
1467 * visitor, adjust the interface type to reflect the newly assigned array
1468 * sizes, and fix up the ir_variable nodes to point to the new interface
1469 * type.
1470 */
1471 void fixup_unnamed_interface_types()
1472 {
1473 hash_table_call_foreach(this->unnamed_interfaces,
1474 fixup_unnamed_interface_type, NULL);
1475 }
1476
1477 private:
1478 /**
1479 * If the type pointed to by \c type represents an unsized array, replace
1480 * it with a sized array whose size is determined by max_array_access.
1481 */
1482 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1483 bool from_ssbo_unsized_array, bool *implicit_sized)
1484 {
1485 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1486 *type = glsl_type::get_array_instance((*type)->fields.array,
1487 max_array_access + 1);
1488 *implicit_sized = true;
1489 assert(*type != NULL);
1490 }
1491 }
1492
1493 static const glsl_type *
1494 update_interface_members_array(const glsl_type *type,
1495 const glsl_type *new_interface_type)
1496 {
1497 const glsl_type *element_type = type->fields.array;
1498 if (element_type->is_array()) {
1499 const glsl_type *new_array_type =
1500 update_interface_members_array(element_type, new_interface_type);
1501 return glsl_type::get_array_instance(new_array_type, type->length);
1502 } else {
1503 return glsl_type::get_array_instance(new_interface_type,
1504 type->length);
1505 }
1506 }
1507
1508 /**
1509 * Determine whether the given interface type contains unsized arrays (if
1510 * it doesn't, array_sizing_visitor doesn't need to process it).
1511 */
1512 static bool interface_contains_unsized_arrays(const glsl_type *type)
1513 {
1514 for (unsigned i = 0; i < type->length; i++) {
1515 const glsl_type *elem_type = type->fields.structure[i].type;
1516 if (elem_type->is_unsized_array())
1517 return true;
1518 }
1519 return false;
1520 }
1521
1522 /**
1523 * Create a new interface type based on the given type, with unsized arrays
1524 * replaced by sized arrays whose size is determined by
1525 * max_ifc_array_access.
1526 */
1527 static const glsl_type *
1528 resize_interface_members(const glsl_type *type,
1529 const int *max_ifc_array_access,
1530 bool is_ssbo)
1531 {
1532 unsigned num_fields = type->length;
1533 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1534 memcpy(fields, type->fields.structure,
1535 num_fields * sizeof(*fields));
1536 for (unsigned i = 0; i < num_fields; i++) {
1537 bool implicit_sized_array = fields[i].implicit_sized_array;
1538 /* If SSBO last member is unsized array, we don't replace it by a sized
1539 * array.
1540 */
1541 if (is_ssbo && i == (num_fields - 1))
1542 fixup_type(&fields[i].type, max_ifc_array_access[i],
1543 true, &implicit_sized_array);
1544 else
1545 fixup_type(&fields[i].type, max_ifc_array_access[i],
1546 false, &implicit_sized_array);
1547 fields[i].implicit_sized_array = implicit_sized_array;
1548 }
1549 glsl_interface_packing packing =
1550 (glsl_interface_packing) type->interface_packing;
1551 bool row_major = (bool) type->interface_row_major;
1552 const glsl_type *new_ifc_type =
1553 glsl_type::get_interface_instance(fields, num_fields,
1554 packing, row_major, type->name);
1555 delete [] fields;
1556 return new_ifc_type;
1557 }
1558
1559 static void fixup_unnamed_interface_type(const void *key, void *data,
1560 void *)
1561 {
1562 const glsl_type *ifc_type = (const glsl_type *) key;
1563 ir_variable **interface_vars = (ir_variable **) data;
1564 unsigned num_fields = ifc_type->length;
1565 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1566 memcpy(fields, ifc_type->fields.structure,
1567 num_fields * sizeof(*fields));
1568 bool interface_type_changed = false;
1569 for (unsigned i = 0; i < num_fields; i++) {
1570 if (interface_vars[i] != NULL &&
1571 fields[i].type != interface_vars[i]->type) {
1572 fields[i].type = interface_vars[i]->type;
1573 interface_type_changed = true;
1574 }
1575 }
1576 if (!interface_type_changed) {
1577 delete [] fields;
1578 return;
1579 }
1580 glsl_interface_packing packing =
1581 (glsl_interface_packing) ifc_type->interface_packing;
1582 bool row_major = (bool) ifc_type->interface_row_major;
1583 const glsl_type *new_ifc_type =
1584 glsl_type::get_interface_instance(fields, num_fields, packing,
1585 row_major, ifc_type->name);
1586 delete [] fields;
1587 for (unsigned i = 0; i < num_fields; i++) {
1588 if (interface_vars[i] != NULL)
1589 interface_vars[i]->change_interface_type(new_ifc_type);
1590 }
1591 }
1592
1593 /**
1594 * Memory context used to allocate the data in \c unnamed_interfaces.
1595 */
1596 void *mem_ctx;
1597
1598 /**
1599 * Hash table from const glsl_type * to an array of ir_variable *'s
1600 * pointing to the ir_variables constituting each unnamed interface block.
1601 */
1602 hash_table *unnamed_interfaces;
1603 };
1604
1605 static bool
1606 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1607 struct gl_shader_program *prog)
1608 {
1609 /* We will validate doubles at a later stage */
1610 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1611 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1612 "multiple of 4 or if its applied to a type that is "
1613 "or contains a double a multiple of 8.",
1614 prog->TransformFeedback.BufferStride[idx]);
1615 return false;
1616 }
1617
1618 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1619 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1620 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1621 "limit has been exceeded.");
1622 return false;
1623 }
1624
1625 return true;
1626 }
1627
1628 /**
1629 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1630 * for later use.
1631 */
1632 static void
1633 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1634 struct gl_shader_program *prog,
1635 struct gl_linked_shader *linked_shader,
1636 struct gl_shader **shader_list,
1637 unsigned num_shaders)
1638 {
1639 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1640 prog->TransformFeedback.BufferStride[i] = 0;
1641 }
1642
1643 for (unsigned i = 0; i < num_shaders; i++) {
1644 struct gl_shader *shader = shader_list[i];
1645
1646 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1647 if (shader->TransformFeedbackBufferStride[j]) {
1648 if (prog->TransformFeedback.BufferStride[j] == 0) {
1649 prog->TransformFeedback.BufferStride[j] =
1650 shader->TransformFeedbackBufferStride[j];
1651 if (!validate_xfb_buffer_stride(ctx, j, prog))
1652 return;
1653 } else if (prog->TransformFeedback.BufferStride[j] !=
1654 shader->TransformFeedbackBufferStride[j]){
1655 linker_error(prog,
1656 "intrastage shaders defined with conflicting "
1657 "xfb_stride for buffer %d (%d and %d)\n", j,
1658 prog->TransformFeedback.BufferStride[j],
1659 shader->TransformFeedbackBufferStride[j]);
1660 return;
1661 }
1662 }
1663 }
1664 }
1665 }
1666
1667 /**
1668 * Performs the cross-validation of tessellation control shader vertices and
1669 * layout qualifiers for the attached tessellation control shaders,
1670 * and propagates them to the linked TCS and linked shader program.
1671 */
1672 static void
1673 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1674 struct gl_program *gl_prog,
1675 struct gl_shader **shader_list,
1676 unsigned num_shaders)
1677 {
1678 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1679 return;
1680
1681 gl_prog->info.tess.tcs_vertices_out = 0;
1682
1683 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1684 *
1685 * "All tessellation control shader layout declarations in a program
1686 * must specify the same output patch vertex count. There must be at
1687 * least one layout qualifier specifying an output patch vertex count
1688 * in any program containing tessellation control shaders; however,
1689 * such a declaration is not required in all tessellation control
1690 * shaders."
1691 */
1692
1693 for (unsigned i = 0; i < num_shaders; i++) {
1694 struct gl_shader *shader = shader_list[i];
1695
1696 if (shader->info.TessCtrl.VerticesOut != 0) {
1697 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1698 gl_prog->info.tess.tcs_vertices_out !=
1699 (unsigned) shader->info.TessCtrl.VerticesOut) {
1700 linker_error(prog, "tessellation control shader defined with "
1701 "conflicting output vertex count (%d and %d)\n",
1702 gl_prog->info.tess.tcs_vertices_out,
1703 shader->info.TessCtrl.VerticesOut);
1704 return;
1705 }
1706 gl_prog->info.tess.tcs_vertices_out =
1707 shader->info.TessCtrl.VerticesOut;
1708 }
1709 }
1710
1711 /* Just do the intrastage -> interstage propagation right now,
1712 * since we already know we're in the right type of shader program
1713 * for doing it.
1714 */
1715 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1716 linker_error(prog, "tessellation control shader didn't declare "
1717 "vertices out layout qualifier\n");
1718 return;
1719 }
1720 }
1721
1722
1723 /**
1724 * Performs the cross-validation of tessellation evaluation shader
1725 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1726 * for the attached tessellation evaluation shaders, and propagates them
1727 * to the linked TES and linked shader program.
1728 */
1729 static void
1730 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1731 struct gl_program *gl_prog,
1732 struct gl_shader **shader_list,
1733 unsigned num_shaders)
1734 {
1735 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1736 return;
1737
1738 int point_mode = -1;
1739 unsigned vertex_order = 0;
1740
1741 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1742 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1743
1744 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1745 *
1746 * "At least one tessellation evaluation shader (compilation unit) in
1747 * a program must declare a primitive mode in its input layout.
1748 * Declaration vertex spacing, ordering, and point mode identifiers is
1749 * optional. It is not required that all tessellation evaluation
1750 * shaders in a program declare a primitive mode. If spacing or
1751 * vertex ordering declarations are omitted, the tessellation
1752 * primitive generator will use equal spacing or counter-clockwise
1753 * vertex ordering, respectively. If a point mode declaration is
1754 * omitted, the tessellation primitive generator will produce lines or
1755 * triangles according to the primitive mode."
1756 */
1757
1758 for (unsigned i = 0; i < num_shaders; i++) {
1759 struct gl_shader *shader = shader_list[i];
1760
1761 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1762 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1763 gl_prog->info.tess.primitive_mode !=
1764 shader->info.TessEval.PrimitiveMode) {
1765 linker_error(prog, "tessellation evaluation shader defined with "
1766 "conflicting input primitive modes.\n");
1767 return;
1768 }
1769 gl_prog->info.tess.primitive_mode =
1770 shader->info.TessEval.PrimitiveMode;
1771 }
1772
1773 if (shader->info.TessEval.Spacing != 0) {
1774 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1775 shader->info.TessEval.Spacing) {
1776 linker_error(prog, "tessellation evaluation shader defined with "
1777 "conflicting vertex spacing.\n");
1778 return;
1779 }
1780 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1781 }
1782
1783 if (shader->info.TessEval.VertexOrder != 0) {
1784 if (vertex_order != 0 &&
1785 vertex_order != shader->info.TessEval.VertexOrder) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting ordering.\n");
1788 return;
1789 }
1790 vertex_order = shader->info.TessEval.VertexOrder;
1791 }
1792
1793 if (shader->info.TessEval.PointMode != -1) {
1794 if (point_mode != -1 &&
1795 point_mode != shader->info.TessEval.PointMode) {
1796 linker_error(prog, "tessellation evaluation shader defined with "
1797 "conflicting point modes.\n");
1798 return;
1799 }
1800 point_mode = shader->info.TessEval.PointMode;
1801 }
1802
1803 }
1804
1805 /* Just do the intrastage -> interstage propagation right now,
1806 * since we already know we're in the right type of shader program
1807 * for doing it.
1808 */
1809 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1810 linker_error(prog,
1811 "tessellation evaluation shader didn't declare input "
1812 "primitive modes.\n");
1813 return;
1814 }
1815
1816 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1817 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1818
1819 if (vertex_order == 0 || vertex_order == GL_CCW)
1820 gl_prog->info.tess.ccw = true;
1821 else
1822 gl_prog->info.tess.ccw = false;
1823
1824
1825 if (point_mode == -1 || point_mode == GL_FALSE)
1826 gl_prog->info.tess.point_mode = false;
1827 else
1828 gl_prog->info.tess.point_mode = true;
1829 }
1830
1831
1832 /**
1833 * Performs the cross-validation of layout qualifiers specified in
1834 * redeclaration of gl_FragCoord for the attached fragment shaders,
1835 * and propagates them to the linked FS and linked shader program.
1836 */
1837 static void
1838 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1839 struct gl_linked_shader *linked_shader,
1840 struct gl_shader **shader_list,
1841 unsigned num_shaders)
1842 {
1843 bool redeclares_gl_fragcoord = false;
1844 bool uses_gl_fragcoord = false;
1845 bool origin_upper_left = false;
1846 bool pixel_center_integer = false;
1847
1848 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1849 (prog->data->Version < 150 &&
1850 !prog->ARB_fragment_coord_conventions_enable))
1851 return;
1852
1853 for (unsigned i = 0; i < num_shaders; i++) {
1854 struct gl_shader *shader = shader_list[i];
1855 /* From the GLSL 1.50 spec, page 39:
1856 *
1857 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1858 * it must be redeclared in all the fragment shaders in that program
1859 * that have a static use gl_FragCoord."
1860 */
1861 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1862 shader->uses_gl_fragcoord)
1863 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1864 uses_gl_fragcoord)) {
1865 linker_error(prog, "fragment shader defined with conflicting "
1866 "layout qualifiers for gl_FragCoord\n");
1867 }
1868
1869 /* From the GLSL 1.50 spec, page 39:
1870 *
1871 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1872 * single program must have the same set of qualifiers."
1873 */
1874 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1875 (shader->origin_upper_left != origin_upper_left ||
1876 shader->pixel_center_integer != pixel_center_integer)) {
1877 linker_error(prog, "fragment shader defined with conflicting "
1878 "layout qualifiers for gl_FragCoord\n");
1879 }
1880
1881 /* Update the linked shader state. Note that uses_gl_fragcoord should
1882 * accumulate the results. The other values should replace. If there
1883 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1884 * are already known to be the same.
1885 */
1886 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1887 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1888 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1889 origin_upper_left = shader->origin_upper_left;
1890 pixel_center_integer = shader->pixel_center_integer;
1891 }
1892
1893 linked_shader->Program->info.fs.early_fragment_tests |=
1894 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1895 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1896 linked_shader->Program->info.fs.post_depth_coverage |=
1897 shader->PostDepthCoverage;
1898
1899 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1900 }
1901 }
1902
1903 /**
1904 * Performs the cross-validation of geometry shader max_vertices and
1905 * primitive type layout qualifiers for the attached geometry shaders,
1906 * and propagates them to the linked GS and linked shader program.
1907 */
1908 static void
1909 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1910 struct gl_program *gl_prog,
1911 struct gl_shader **shader_list,
1912 unsigned num_shaders)
1913 {
1914 /* No in/out qualifiers defined for anything but GLSL 1.50+
1915 * geometry shaders so far.
1916 */
1917 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1918 prog->data->Version < 150)
1919 return;
1920
1921 int vertices_out = -1;
1922
1923 gl_prog->info.gs.invocations = 0;
1924 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1925 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1926
1927 /* From the GLSL 1.50 spec, page 46:
1928 *
1929 * "All geometry shader output layout declarations in a program
1930 * must declare the same layout and same value for
1931 * max_vertices. There must be at least one geometry output
1932 * layout declaration somewhere in a program, but not all
1933 * geometry shaders (compilation units) are required to
1934 * declare it."
1935 */
1936
1937 for (unsigned i = 0; i < num_shaders; i++) {
1938 struct gl_shader *shader = shader_list[i];
1939
1940 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1941 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1942 gl_prog->info.gs.input_primitive !=
1943 shader->info.Geom.InputType) {
1944 linker_error(prog, "geometry shader defined with conflicting "
1945 "input types\n");
1946 return;
1947 }
1948 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1949 }
1950
1951 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1952 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1953 gl_prog->info.gs.output_primitive !=
1954 shader->info.Geom.OutputType) {
1955 linker_error(prog, "geometry shader defined with conflicting "
1956 "output types\n");
1957 return;
1958 }
1959 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
1960 }
1961
1962 if (shader->info.Geom.VerticesOut != -1) {
1963 if (vertices_out != -1 &&
1964 vertices_out != shader->info.Geom.VerticesOut) {
1965 linker_error(prog, "geometry shader defined with conflicting "
1966 "output vertex count (%d and %d)\n",
1967 vertices_out, shader->info.Geom.VerticesOut);
1968 return;
1969 }
1970 vertices_out = shader->info.Geom.VerticesOut;
1971 }
1972
1973 if (shader->info.Geom.Invocations != 0) {
1974 if (gl_prog->info.gs.invocations != 0 &&
1975 gl_prog->info.gs.invocations !=
1976 (unsigned) shader->info.Geom.Invocations) {
1977 linker_error(prog, "geometry shader defined with conflicting "
1978 "invocation count (%d and %d)\n",
1979 gl_prog->info.gs.invocations,
1980 shader->info.Geom.Invocations);
1981 return;
1982 }
1983 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1984 }
1985 }
1986
1987 /* Just do the intrastage -> interstage propagation right now,
1988 * since we already know we're in the right type of shader program
1989 * for doing it.
1990 */
1991 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
1992 linker_error(prog,
1993 "geometry shader didn't declare primitive input type\n");
1994 return;
1995 }
1996
1997 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
1998 linker_error(prog,
1999 "geometry shader didn't declare primitive output type\n");
2000 return;
2001 }
2002
2003 if (vertices_out == -1) {
2004 linker_error(prog,
2005 "geometry shader didn't declare max_vertices\n");
2006 return;
2007 } else {
2008 gl_prog->info.gs.vertices_out = vertices_out;
2009 }
2010
2011 if (gl_prog->info.gs.invocations == 0)
2012 gl_prog->info.gs.invocations = 1;
2013 }
2014
2015
2016 /**
2017 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2018 * qualifiers for the attached compute shaders, and propagate them to the
2019 * linked CS and linked shader program.
2020 */
2021 static void
2022 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2023 struct gl_program *gl_prog,
2024 struct gl_shader **shader_list,
2025 unsigned num_shaders)
2026 {
2027 /* This function is called for all shader stages, but it only has an effect
2028 * for compute shaders.
2029 */
2030 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2031 return;
2032
2033 for (int i = 0; i < 3; i++)
2034 gl_prog->info.cs.local_size[i] = 0;
2035
2036 gl_prog->info.cs.local_size_variable = false;
2037
2038 /* From the ARB_compute_shader spec, in the section describing local size
2039 * declarations:
2040 *
2041 * If multiple compute shaders attached to a single program object
2042 * declare local work-group size, the declarations must be identical;
2043 * otherwise a link-time error results. Furthermore, if a program
2044 * object contains any compute shaders, at least one must contain an
2045 * input layout qualifier specifying the local work sizes of the
2046 * program, or a link-time error will occur.
2047 */
2048 for (unsigned sh = 0; sh < num_shaders; sh++) {
2049 struct gl_shader *shader = shader_list[sh];
2050
2051 if (shader->info.Comp.LocalSize[0] != 0) {
2052 if (gl_prog->info.cs.local_size[0] != 0) {
2053 for (int i = 0; i < 3; i++) {
2054 if (gl_prog->info.cs.local_size[i] !=
2055 shader->info.Comp.LocalSize[i]) {
2056 linker_error(prog, "compute shader defined with conflicting "
2057 "local sizes\n");
2058 return;
2059 }
2060 }
2061 }
2062 for (int i = 0; i < 3; i++) {
2063 gl_prog->info.cs.local_size[i] =
2064 shader->info.Comp.LocalSize[i];
2065 }
2066 } else if (shader->info.Comp.LocalSizeVariable) {
2067 if (gl_prog->info.cs.local_size[0] != 0) {
2068 /* The ARB_compute_variable_group_size spec says:
2069 *
2070 * If one compute shader attached to a program declares a
2071 * variable local group size and a second compute shader
2072 * attached to the same program declares a fixed local group
2073 * size, a link-time error results.
2074 */
2075 linker_error(prog, "compute shader defined with both fixed and "
2076 "variable local group size\n");
2077 return;
2078 }
2079 gl_prog->info.cs.local_size_variable = true;
2080 }
2081 }
2082
2083 /* Just do the intrastage -> interstage propagation right now,
2084 * since we already know we're in the right type of shader program
2085 * for doing it.
2086 */
2087 if (gl_prog->info.cs.local_size[0] == 0 &&
2088 !gl_prog->info.cs.local_size_variable) {
2089 linker_error(prog, "compute shader must contain a fixed or a variable "
2090 "local group size\n");
2091 return;
2092 }
2093 }
2094
2095
2096 /**
2097 * Combine a group of shaders for a single stage to generate a linked shader
2098 *
2099 * \note
2100 * If this function is supplied a single shader, it is cloned, and the new
2101 * shader is returned.
2102 */
2103 struct gl_linked_shader *
2104 link_intrastage_shaders(void *mem_ctx,
2105 struct gl_context *ctx,
2106 struct gl_shader_program *prog,
2107 struct gl_shader **shader_list,
2108 unsigned num_shaders,
2109 bool allow_missing_main)
2110 {
2111 struct gl_uniform_block *ubo_blocks = NULL;
2112 struct gl_uniform_block *ssbo_blocks = NULL;
2113 unsigned num_ubo_blocks = 0;
2114 unsigned num_ssbo_blocks = 0;
2115
2116 /* Check that global variables defined in multiple shaders are consistent.
2117 */
2118 glsl_symbol_table variables;
2119 for (unsigned i = 0; i < num_shaders; i++) {
2120 if (shader_list[i] == NULL)
2121 continue;
2122 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2123 }
2124
2125 if (!prog->data->LinkStatus)
2126 return NULL;
2127
2128 /* Check that interface blocks defined in multiple shaders are consistent.
2129 */
2130 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2131 num_shaders);
2132 if (!prog->data->LinkStatus)
2133 return NULL;
2134
2135 /* Check that there is only a single definition of each function signature
2136 * across all shaders.
2137 */
2138 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2139 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2140 ir_function *const f = node->as_function();
2141
2142 if (f == NULL)
2143 continue;
2144
2145 for (unsigned j = i + 1; j < num_shaders; j++) {
2146 ir_function *const other =
2147 shader_list[j]->symbols->get_function(f->name);
2148
2149 /* If the other shader has no function (and therefore no function
2150 * signatures) with the same name, skip to the next shader.
2151 */
2152 if (other == NULL)
2153 continue;
2154
2155 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2156 if (!sig->is_defined)
2157 continue;
2158
2159 ir_function_signature *other_sig =
2160 other->exact_matching_signature(NULL, &sig->parameters);
2161
2162 if (other_sig != NULL && other_sig->is_defined) {
2163 linker_error(prog, "function `%s' is multiply defined\n",
2164 f->name);
2165 return NULL;
2166 }
2167 }
2168 }
2169 }
2170 }
2171
2172 /* Find the shader that defines main, and make a clone of it.
2173 *
2174 * Starting with the clone, search for undefined references. If one is
2175 * found, find the shader that defines it. Clone the reference and add
2176 * it to the shader. Repeat until there are no undefined references or
2177 * until a reference cannot be resolved.
2178 */
2179 gl_shader *main = NULL;
2180 for (unsigned i = 0; i < num_shaders; i++) {
2181 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2182 main = shader_list[i];
2183 break;
2184 }
2185 }
2186
2187 if (main == NULL && allow_missing_main)
2188 main = shader_list[0];
2189
2190 if (main == NULL) {
2191 linker_error(prog, "%s shader lacks `main'\n",
2192 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2193 return NULL;
2194 }
2195
2196 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2197 linked->Stage = shader_list[0]->Stage;
2198
2199 /* Create program and attach it to the linked shader */
2200 struct gl_program *gl_prog =
2201 ctx->Driver.NewProgram(ctx,
2202 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2203 prog->Name, false);
2204 if (!gl_prog) {
2205 prog->data->LinkStatus = linking_failure;
2206 _mesa_delete_linked_shader(ctx, linked);
2207 return NULL;
2208 }
2209
2210 if (!prog->data->cache_fallback)
2211 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2212
2213 /* Don't use _mesa_reference_program() just take ownership */
2214 linked->Program = gl_prog;
2215
2216 linked->ir = new(linked) exec_list;
2217 clone_ir_list(mem_ctx, linked->ir, main->ir);
2218
2219 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2220 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2221 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2222 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2223 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2224 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2225 num_shaders);
2226
2227 populate_symbol_table(linked);
2228
2229 /* The pointer to the main function in the final linked shader (i.e., the
2230 * copy of the original shader that contained the main function).
2231 */
2232 ir_function_signature *const main_sig =
2233 _mesa_get_main_function_signature(linked->symbols);
2234
2235 /* Move any instructions other than variable declarations or function
2236 * declarations into main.
2237 */
2238 if (main_sig != NULL) {
2239 exec_node *insertion_point =
2240 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2241 linked);
2242
2243 for (unsigned i = 0; i < num_shaders; i++) {
2244 if (shader_list[i] == main)
2245 continue;
2246
2247 insertion_point = move_non_declarations(shader_list[i]->ir,
2248 insertion_point, true, linked);
2249 }
2250 }
2251
2252 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2253 _mesa_delete_linked_shader(ctx, linked);
2254 return NULL;
2255 }
2256
2257 /* Make a pass over all variable declarations to ensure that arrays with
2258 * unspecified sizes have a size specified. The size is inferred from the
2259 * max_array_access field.
2260 */
2261 array_sizing_visitor v;
2262 v.run(linked->ir);
2263 v.fixup_unnamed_interface_types();
2264
2265 if (!prog->data->cache_fallback) {
2266 /* Link up uniform blocks defined within this stage. */
2267 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2268 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2269
2270 if (!prog->data->LinkStatus) {
2271 _mesa_delete_linked_shader(ctx, linked);
2272 return NULL;
2273 }
2274
2275 /* Copy ubo blocks to linked shader list */
2276 linked->Program->sh.UniformBlocks =
2277 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2278 ralloc_steal(linked, ubo_blocks);
2279 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2280 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2281 }
2282 linked->Program->info.num_ubos = num_ubo_blocks;
2283
2284 /* Copy ssbo blocks to linked shader list */
2285 linked->Program->sh.ShaderStorageBlocks =
2286 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2287 ralloc_steal(linked, ssbo_blocks);
2288 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2289 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2290 }
2291 linked->Program->info.num_ssbos = num_ssbo_blocks;
2292 }
2293
2294 /* At this point linked should contain all of the linked IR, so
2295 * validate it to make sure nothing went wrong.
2296 */
2297 validate_ir_tree(linked->ir);
2298
2299 /* Set the size of geometry shader input arrays */
2300 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2301 unsigned num_vertices =
2302 vertices_per_prim(gl_prog->info.gs.input_primitive);
2303 array_resize_visitor input_resize_visitor(num_vertices, prog,
2304 MESA_SHADER_GEOMETRY);
2305 foreach_in_list(ir_instruction, ir, linked->ir) {
2306 ir->accept(&input_resize_visitor);
2307 }
2308 }
2309
2310 if (ctx->Const.VertexID_is_zero_based)
2311 lower_vertex_id(linked);
2312
2313 #ifdef DEBUG
2314 /* Compute the source checksum. */
2315 linked->SourceChecksum = 0;
2316 for (unsigned i = 0; i < num_shaders; i++) {
2317 if (shader_list[i] == NULL)
2318 continue;
2319 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2320 }
2321 #endif
2322
2323 return linked;
2324 }
2325
2326 /**
2327 * Update the sizes of linked shader uniform arrays to the maximum
2328 * array index used.
2329 *
2330 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2331 *
2332 * If one or more elements of an array are active,
2333 * GetActiveUniform will return the name of the array in name,
2334 * subject to the restrictions listed above. The type of the array
2335 * is returned in type. The size parameter contains the highest
2336 * array element index used, plus one. The compiler or linker
2337 * determines the highest index used. There will be only one
2338 * active uniform reported by the GL per uniform array.
2339
2340 */
2341 static void
2342 update_array_sizes(struct gl_shader_program *prog)
2343 {
2344 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2345 if (prog->_LinkedShaders[i] == NULL)
2346 continue;
2347
2348 bool types_were_updated = false;
2349
2350 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2351 ir_variable *const var = node->as_variable();
2352
2353 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2354 !var->type->is_array())
2355 continue;
2356
2357 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2358 * will not be eliminated. Since we always do std140, just
2359 * don't resize arrays in UBOs.
2360 *
2361 * Atomic counters are supposed to get deterministic
2362 * locations assigned based on the declaration ordering and
2363 * sizes, array compaction would mess that up.
2364 *
2365 * Subroutine uniforms are not removed.
2366 */
2367 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2368 var->type->contains_subroutine() || var->constant_initializer)
2369 continue;
2370
2371 int size = var->data.max_array_access;
2372 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2373 if (prog->_LinkedShaders[j] == NULL)
2374 continue;
2375
2376 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2377 ir_variable *other_var = node2->as_variable();
2378 if (!other_var)
2379 continue;
2380
2381 if (strcmp(var->name, other_var->name) == 0 &&
2382 other_var->data.max_array_access > size) {
2383 size = other_var->data.max_array_access;
2384 }
2385 }
2386 }
2387
2388 if (size + 1 != (int)var->type->length) {
2389 /* If this is a built-in uniform (i.e., it's backed by some
2390 * fixed-function state), adjust the number of state slots to
2391 * match the new array size. The number of slots per array entry
2392 * is not known. It seems safe to assume that the total number of
2393 * slots is an integer multiple of the number of array elements.
2394 * Determine the number of slots per array element by dividing by
2395 * the old (total) size.
2396 */
2397 const unsigned num_slots = var->get_num_state_slots();
2398 if (num_slots > 0) {
2399 var->set_num_state_slots((size + 1)
2400 * (num_slots / var->type->length));
2401 }
2402
2403 var->type = glsl_type::get_array_instance(var->type->fields.array,
2404 size + 1);
2405 types_were_updated = true;
2406 }
2407 }
2408
2409 /* Update the types of dereferences in case we changed any. */
2410 if (types_were_updated) {
2411 deref_type_updater v;
2412 v.run(prog->_LinkedShaders[i]->ir);
2413 }
2414 }
2415 }
2416
2417 /**
2418 * Resize tessellation evaluation per-vertex inputs to the size of
2419 * tessellation control per-vertex outputs.
2420 */
2421 static void
2422 resize_tes_inputs(struct gl_context *ctx,
2423 struct gl_shader_program *prog)
2424 {
2425 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2426 return;
2427
2428 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2429 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2430
2431 /* If no control shader is present, then the TES inputs are statically
2432 * sized to MaxPatchVertices; the actual size of the arrays won't be
2433 * known until draw time.
2434 */
2435 const int num_vertices = tcs
2436 ? tcs->Program->info.tess.tcs_vertices_out
2437 : ctx->Const.MaxPatchVertices;
2438
2439 array_resize_visitor input_resize_visitor(num_vertices, prog,
2440 MESA_SHADER_TESS_EVAL);
2441 foreach_in_list(ir_instruction, ir, tes->ir) {
2442 ir->accept(&input_resize_visitor);
2443 }
2444
2445 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2446 /* Convert the gl_PatchVerticesIn system value into a constant, since
2447 * the value is known at this point.
2448 */
2449 foreach_in_list(ir_instruction, ir, tes->ir) {
2450 ir_variable *var = ir->as_variable();
2451 if (var && var->data.mode == ir_var_system_value &&
2452 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2453 void *mem_ctx = ralloc_parent(var);
2454 var->data.location = 0;
2455 var->data.explicit_location = false;
2456 if (tcs) {
2457 var->data.mode = ir_var_auto;
2458 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2459 } else {
2460 var->data.mode = ir_var_uniform;
2461 var->data.how_declared = ir_var_hidden;
2462 var->allocate_state_slots(1);
2463 ir_state_slot *slot0 = &var->get_state_slots()[0];
2464 slot0->swizzle = SWIZZLE_XXXX;
2465 slot0->tokens[0] = STATE_INTERNAL;
2466 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2467 for (int i = 2; i < STATE_LENGTH; i++)
2468 slot0->tokens[i] = 0;
2469 }
2470 }
2471 }
2472 }
2473 }
2474
2475 /**
2476 * Find a contiguous set of available bits in a bitmask.
2477 *
2478 * \param used_mask Bits representing used (1) and unused (0) locations
2479 * \param needed_count Number of contiguous bits needed.
2480 *
2481 * \return
2482 * Base location of the available bits on success or -1 on failure.
2483 */
2484 int
2485 find_available_slots(unsigned used_mask, unsigned needed_count)
2486 {
2487 unsigned needed_mask = (1 << needed_count) - 1;
2488 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2489
2490 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2491 * cannot optimize possibly infinite loops" for the loop below.
2492 */
2493 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2494 return -1;
2495
2496 for (int i = 0; i <= max_bit_to_test; i++) {
2497 if ((needed_mask & ~used_mask) == needed_mask)
2498 return i;
2499
2500 needed_mask <<= 1;
2501 }
2502
2503 return -1;
2504 }
2505
2506
2507 /**
2508 * Assign locations for either VS inputs or FS outputs
2509 *
2510 * \param mem_ctx Temporary ralloc context used for linking
2511 * \param prog Shader program whose variables need locations assigned
2512 * \param constants Driver specific constant values for the program.
2513 * \param target_index Selector for the program target to receive location
2514 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2515 * \c MESA_SHADER_FRAGMENT.
2516 *
2517 * \return
2518 * If locations are successfully assigned, true is returned. Otherwise an
2519 * error is emitted to the shader link log and false is returned.
2520 */
2521 bool
2522 assign_attribute_or_color_locations(void *mem_ctx,
2523 gl_shader_program *prog,
2524 struct gl_constants *constants,
2525 unsigned target_index)
2526 {
2527 /* Maximum number of generic locations. This corresponds to either the
2528 * maximum number of draw buffers or the maximum number of generic
2529 * attributes.
2530 */
2531 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2532 constants->Program[target_index].MaxAttribs :
2533 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2534
2535 /* Mark invalid locations as being used.
2536 */
2537 unsigned used_locations = (max_index >= 32)
2538 ? ~0 : ~((1 << max_index) - 1);
2539 unsigned double_storage_locations = 0;
2540
2541 assert((target_index == MESA_SHADER_VERTEX)
2542 || (target_index == MESA_SHADER_FRAGMENT));
2543
2544 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2545 if (sh == NULL)
2546 return true;
2547
2548 /* Operate in a total of four passes.
2549 *
2550 * 1. Invalidate the location assignments for all vertex shader inputs.
2551 *
2552 * 2. Assign locations for inputs that have user-defined (via
2553 * glBindVertexAttribLocation) locations and outputs that have
2554 * user-defined locations (via glBindFragDataLocation).
2555 *
2556 * 3. Sort the attributes without assigned locations by number of slots
2557 * required in decreasing order. Fragmentation caused by attribute
2558 * locations assigned by the application may prevent large attributes
2559 * from having enough contiguous space.
2560 *
2561 * 4. Assign locations to any inputs without assigned locations.
2562 */
2563
2564 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2565 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2566
2567 const enum ir_variable_mode direction =
2568 (target_index == MESA_SHADER_VERTEX)
2569 ? ir_var_shader_in : ir_var_shader_out;
2570
2571
2572 /* Temporary storage for the set of attributes that need locations assigned.
2573 */
2574 struct temp_attr {
2575 unsigned slots;
2576 ir_variable *var;
2577
2578 /* Used below in the call to qsort. */
2579 static int compare(const void *a, const void *b)
2580 {
2581 const temp_attr *const l = (const temp_attr *) a;
2582 const temp_attr *const r = (const temp_attr *) b;
2583
2584 /* Reversed because we want a descending order sort below. */
2585 return r->slots - l->slots;
2586 }
2587 } to_assign[32];
2588 assert(max_index <= 32);
2589
2590 /* Temporary array for the set of attributes that have locations assigned.
2591 */
2592 ir_variable *assigned[16];
2593
2594 unsigned num_attr = 0;
2595 unsigned assigned_attr = 0;
2596
2597 foreach_in_list(ir_instruction, node, sh->ir) {
2598 ir_variable *const var = node->as_variable();
2599
2600 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2601 continue;
2602
2603 if (var->data.explicit_location) {
2604 var->data.is_unmatched_generic_inout = 0;
2605 if ((var->data.location >= (int)(max_index + generic_base))
2606 || (var->data.location < 0)) {
2607 linker_error(prog,
2608 "invalid explicit location %d specified for `%s'\n",
2609 (var->data.location < 0)
2610 ? var->data.location
2611 : var->data.location - generic_base,
2612 var->name);
2613 return false;
2614 }
2615 } else if (target_index == MESA_SHADER_VERTEX) {
2616 unsigned binding;
2617
2618 if (prog->AttributeBindings->get(binding, var->name)) {
2619 assert(binding >= VERT_ATTRIB_GENERIC0);
2620 var->data.location = binding;
2621 var->data.is_unmatched_generic_inout = 0;
2622 }
2623 } else if (target_index == MESA_SHADER_FRAGMENT) {
2624 unsigned binding;
2625 unsigned index;
2626 const char *name = var->name;
2627 const glsl_type *type = var->type;
2628
2629 while (type) {
2630 /* Check if there's a binding for the variable name */
2631 if (prog->FragDataBindings->get(binding, name)) {
2632 assert(binding >= FRAG_RESULT_DATA0);
2633 var->data.location = binding;
2634 var->data.is_unmatched_generic_inout = 0;
2635
2636 if (prog->FragDataIndexBindings->get(index, name)) {
2637 var->data.index = index;
2638 }
2639 break;
2640 }
2641
2642 /* If not, but it's an array type, look for name[0] */
2643 if (type->is_array()) {
2644 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2645 type = type->fields.array;
2646 continue;
2647 }
2648
2649 break;
2650 }
2651 }
2652
2653 if (strcmp(var->name, "gl_LastFragData") == 0)
2654 continue;
2655
2656 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2657 *
2658 * "Output binding assignments will cause LinkProgram to fail:
2659 * ...
2660 * If the program has an active output assigned to a location greater
2661 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2662 * an active output assigned an index greater than or equal to one;"
2663 */
2664 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2665 var->data.location - generic_base >=
2666 (int) constants->MaxDualSourceDrawBuffers) {
2667 linker_error(prog,
2668 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2669 "with index %u for %s\n",
2670 var->data.location - generic_base, var->data.index,
2671 var->name);
2672 return false;
2673 }
2674
2675 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2676
2677 /* If the variable is not a built-in and has a location statically
2678 * assigned in the shader (presumably via a layout qualifier), make sure
2679 * that it doesn't collide with other assigned locations. Otherwise,
2680 * add it to the list of variables that need linker-assigned locations.
2681 */
2682 if (var->data.location != -1) {
2683 if (var->data.location >= generic_base && var->data.index < 1) {
2684 /* From page 61 of the OpenGL 4.0 spec:
2685 *
2686 * "LinkProgram will fail if the attribute bindings assigned
2687 * by BindAttribLocation do not leave not enough space to
2688 * assign a location for an active matrix attribute or an
2689 * active attribute array, both of which require multiple
2690 * contiguous generic attributes."
2691 *
2692 * I think above text prohibits the aliasing of explicit and
2693 * automatic assignments. But, aliasing is allowed in manual
2694 * assignments of attribute locations. See below comments for
2695 * the details.
2696 *
2697 * From OpenGL 4.0 spec, page 61:
2698 *
2699 * "It is possible for an application to bind more than one
2700 * attribute name to the same location. This is referred to as
2701 * aliasing. This will only work if only one of the aliased
2702 * attributes is active in the executable program, or if no
2703 * path through the shader consumes more than one attribute of
2704 * a set of attributes aliased to the same location. A link
2705 * error can occur if the linker determines that every path
2706 * through the shader consumes multiple aliased attributes,
2707 * but implementations are not required to generate an error
2708 * in this case."
2709 *
2710 * From GLSL 4.30 spec, page 54:
2711 *
2712 * "A program will fail to link if any two non-vertex shader
2713 * input variables are assigned to the same location. For
2714 * vertex shaders, multiple input variables may be assigned
2715 * to the same location using either layout qualifiers or via
2716 * the OpenGL API. However, such aliasing is intended only to
2717 * support vertex shaders where each execution path accesses
2718 * at most one input per each location. Implementations are
2719 * permitted, but not required, to generate link-time errors
2720 * if they detect that every path through the vertex shader
2721 * executable accesses multiple inputs assigned to any single
2722 * location. For all shader types, a program will fail to link
2723 * if explicit location assignments leave the linker unable
2724 * to find space for other variables without explicit
2725 * assignments."
2726 *
2727 * From OpenGL ES 3.0 spec, page 56:
2728 *
2729 * "Binding more than one attribute name to the same location
2730 * is referred to as aliasing, and is not permitted in OpenGL
2731 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2732 * fail when this condition exists. However, aliasing is
2733 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2734 * This will only work if only one of the aliased attributes
2735 * is active in the executable program, or if no path through
2736 * the shader consumes more than one attribute of a set of
2737 * attributes aliased to the same location. A link error can
2738 * occur if the linker determines that every path through the
2739 * shader consumes multiple aliased attributes, but implemen-
2740 * tations are not required to generate an error in this case."
2741 *
2742 * After looking at above references from OpenGL, OpenGL ES and
2743 * GLSL specifications, we allow aliasing of vertex input variables
2744 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2745 *
2746 * NOTE: This is not required by the spec but its worth mentioning
2747 * here that we're not doing anything to make sure that no path
2748 * through the vertex shader executable accesses multiple inputs
2749 * assigned to any single location.
2750 */
2751
2752 /* Mask representing the contiguous slots that will be used by
2753 * this attribute.
2754 */
2755 const unsigned attr = var->data.location - generic_base;
2756 const unsigned use_mask = (1 << slots) - 1;
2757 const char *const string = (target_index == MESA_SHADER_VERTEX)
2758 ? "vertex shader input" : "fragment shader output";
2759
2760 /* Generate a link error if the requested locations for this
2761 * attribute exceed the maximum allowed attribute location.
2762 */
2763 if (attr + slots > max_index) {
2764 linker_error(prog,
2765 "insufficient contiguous locations "
2766 "available for %s `%s' %d %d %d\n", string,
2767 var->name, used_locations, use_mask, attr);
2768 return false;
2769 }
2770
2771 /* Generate a link error if the set of bits requested for this
2772 * attribute overlaps any previously allocated bits.
2773 */
2774 if ((~(use_mask << attr) & used_locations) != used_locations) {
2775 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2776 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2777 * 4.40 spec:
2778 *
2779 * "Additionally, for fragment shader outputs, if two
2780 * variables are placed within the same location, they
2781 * must have the same underlying type (floating-point or
2782 * integer). No component aliasing of output variables or
2783 * members is allowed.
2784 */
2785 for (unsigned i = 0; i < assigned_attr; i++) {
2786 unsigned assigned_slots =
2787 assigned[i]->type->count_attribute_slots(false);
2788 unsigned assig_attr =
2789 assigned[i]->data.location - generic_base;
2790 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2791
2792 if ((assigned_use_mask << assig_attr) &
2793 (use_mask << attr)) {
2794
2795 const glsl_type *assigned_type =
2796 assigned[i]->type->without_array();
2797 const glsl_type *type = var->type->without_array();
2798 if (assigned_type->base_type != type->base_type) {
2799 linker_error(prog, "types do not match for aliased"
2800 " %ss %s and %s\n", string,
2801 assigned[i]->name, var->name);
2802 return false;
2803 }
2804
2805 unsigned assigned_component_mask =
2806 ((1 << assigned_type->vector_elements) - 1) <<
2807 assigned[i]->data.location_frac;
2808 unsigned component_mask =
2809 ((1 << type->vector_elements) - 1) <<
2810 var->data.location_frac;
2811 if (assigned_component_mask & component_mask) {
2812 linker_error(prog, "overlapping component is "
2813 "assigned to %ss %s and %s "
2814 "(component=%d)\n",
2815 string, assigned[i]->name, var->name,
2816 var->data.location_frac);
2817 return false;
2818 }
2819 }
2820 }
2821 } else if (target_index == MESA_SHADER_FRAGMENT ||
2822 (prog->IsES && prog->data->Version >= 300)) {
2823 linker_error(prog, "overlapping location is assigned "
2824 "to %s `%s' %d %d %d\n", string, var->name,
2825 used_locations, use_mask, attr);
2826 return false;
2827 } else {
2828 linker_warning(prog, "overlapping location is assigned "
2829 "to %s `%s' %d %d %d\n", string, var->name,
2830 used_locations, use_mask, attr);
2831 }
2832 }
2833
2834 used_locations |= (use_mask << attr);
2835
2836 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2837 *
2838 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2839 * active attribute variables may fail to link, unless
2840 * device-dependent optimizations are able to make the program
2841 * fit within available hardware resources. For the purposes
2842 * of this test, attribute variables of the type dvec3, dvec4,
2843 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2844 * count as consuming twice as many attributes as equivalent
2845 * single-precision types. While these types use the same number
2846 * of generic attributes as their single-precision equivalents,
2847 * implementations are permitted to consume two single-precision
2848 * vectors of internal storage for each three- or four-component
2849 * double-precision vector."
2850 *
2851 * Mark this attribute slot as taking up twice as much space
2852 * so we can count it properly against limits. According to
2853 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2854 * is optional behavior, but it seems preferable.
2855 */
2856 if (var->type->without_array()->is_dual_slot())
2857 double_storage_locations |= (use_mask << attr);
2858 }
2859
2860 assigned[assigned_attr] = var;
2861 assigned_attr++;
2862
2863 continue;
2864 }
2865
2866 if (num_attr >= max_index) {
2867 linker_error(prog, "too many %s (max %u)",
2868 target_index == MESA_SHADER_VERTEX ?
2869 "vertex shader inputs" : "fragment shader outputs",
2870 max_index);
2871 return false;
2872 }
2873 to_assign[num_attr].slots = slots;
2874 to_assign[num_attr].var = var;
2875 num_attr++;
2876 }
2877
2878 if (target_index == MESA_SHADER_VERTEX) {
2879 unsigned total_attribs_size =
2880 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2881 _mesa_bitcount(double_storage_locations);
2882 if (total_attribs_size > max_index) {
2883 linker_error(prog,
2884 "attempt to use %d vertex attribute slots only %d available ",
2885 total_attribs_size, max_index);
2886 return false;
2887 }
2888 }
2889
2890 /* If all of the attributes were assigned locations by the application (or
2891 * are built-in attributes with fixed locations), return early. This should
2892 * be the common case.
2893 */
2894 if (num_attr == 0)
2895 return true;
2896
2897 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2898
2899 if (target_index == MESA_SHADER_VERTEX) {
2900 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2901 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2902 * reserved to prevent it from being automatically allocated below.
2903 */
2904 find_deref_visitor find("gl_Vertex");
2905 find.run(sh->ir);
2906 if (find.variable_found())
2907 used_locations |= (1 << 0);
2908 }
2909
2910 for (unsigned i = 0; i < num_attr; i++) {
2911 /* Mask representing the contiguous slots that will be used by this
2912 * attribute.
2913 */
2914 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2915
2916 int location = find_available_slots(used_locations, to_assign[i].slots);
2917
2918 if (location < 0) {
2919 const char *const string = (target_index == MESA_SHADER_VERTEX)
2920 ? "vertex shader input" : "fragment shader output";
2921
2922 linker_error(prog,
2923 "insufficient contiguous locations "
2924 "available for %s `%s'\n",
2925 string, to_assign[i].var->name);
2926 return false;
2927 }
2928
2929 to_assign[i].var->data.location = generic_base + location;
2930 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2931 used_locations |= (use_mask << location);
2932
2933 if (to_assign[i].var->type->without_array()->is_dual_slot())
2934 double_storage_locations |= (use_mask << location);
2935 }
2936
2937 /* Now that we have all the locations, from the GL 4.5 core spec, section
2938 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2939 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2940 * as equivalent single-precision types.
2941 */
2942 if (target_index == MESA_SHADER_VERTEX) {
2943 unsigned total_attribs_size =
2944 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2945 _mesa_bitcount(double_storage_locations);
2946 if (total_attribs_size > max_index) {
2947 linker_error(prog,
2948 "attempt to use %d vertex attribute slots only %d available ",
2949 total_attribs_size, max_index);
2950 return false;
2951 }
2952 }
2953
2954 return true;
2955 }
2956
2957 /**
2958 * Match explicit locations of outputs to inputs and deactivate the
2959 * unmatch flag if found so we don't optimise them away.
2960 */
2961 static void
2962 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2963 gl_linked_shader *consumer)
2964 {
2965 glsl_symbol_table parameters;
2966 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2967 { {NULL, NULL} };
2968
2969 /* Find all shader outputs in the "producer" stage.
2970 */
2971 foreach_in_list(ir_instruction, node, producer->ir) {
2972 ir_variable *const var = node->as_variable();
2973
2974 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2975 continue;
2976
2977 if (var->data.explicit_location &&
2978 var->data.location >= VARYING_SLOT_VAR0) {
2979 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2980 if (explicit_locations[idx][var->data.location_frac] == NULL)
2981 explicit_locations[idx][var->data.location_frac] = var;
2982 }
2983 }
2984
2985 /* Match inputs to outputs */
2986 foreach_in_list(ir_instruction, node, consumer->ir) {
2987 ir_variable *const input = node->as_variable();
2988
2989 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2990 continue;
2991
2992 ir_variable *output = NULL;
2993 if (input->data.explicit_location
2994 && input->data.location >= VARYING_SLOT_VAR0) {
2995 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2996 [input->data.location_frac];
2997
2998 if (output != NULL){
2999 input->data.is_unmatched_generic_inout = 0;
3000 output->data.is_unmatched_generic_inout = 0;
3001 }
3002 }
3003 }
3004 }
3005
3006 /**
3007 * Store the gl_FragDepth layout in the gl_shader_program struct.
3008 */
3009 static void
3010 store_fragdepth_layout(struct gl_shader_program *prog)
3011 {
3012 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3013 return;
3014 }
3015
3016 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3017
3018 /* We don't look up the gl_FragDepth symbol directly because if
3019 * gl_FragDepth is not used in the shader, it's removed from the IR.
3020 * However, the symbol won't be removed from the symbol table.
3021 *
3022 * We're only interested in the cases where the variable is NOT removed
3023 * from the IR.
3024 */
3025 foreach_in_list(ir_instruction, node, ir) {
3026 ir_variable *const var = node->as_variable();
3027
3028 if (var == NULL || var->data.mode != ir_var_shader_out) {
3029 continue;
3030 }
3031
3032 if (strcmp(var->name, "gl_FragDepth") == 0) {
3033 switch (var->data.depth_layout) {
3034 case ir_depth_layout_none:
3035 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3036 return;
3037 case ir_depth_layout_any:
3038 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3039 return;
3040 case ir_depth_layout_greater:
3041 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3042 return;
3043 case ir_depth_layout_less:
3044 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3045 return;
3046 case ir_depth_layout_unchanged:
3047 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3048 return;
3049 default:
3050 assert(0);
3051 return;
3052 }
3053 }
3054 }
3055 }
3056
3057 /**
3058 * Validate the resources used by a program versus the implementation limits
3059 */
3060 static void
3061 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3062 {
3063 unsigned total_uniform_blocks = 0;
3064 unsigned total_shader_storage_blocks = 0;
3065
3066 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3067 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3068
3069 if (sh == NULL)
3070 continue;
3071
3072 if (sh->Program->info.num_textures >
3073 ctx->Const.Program[i].MaxTextureImageUnits) {
3074 linker_error(prog, "Too many %s shader texture samplers\n",
3075 _mesa_shader_stage_to_string(i));
3076 }
3077
3078 if (sh->num_uniform_components >
3079 ctx->Const.Program[i].MaxUniformComponents) {
3080 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3081 linker_warning(prog, "Too many %s shader default uniform block "
3082 "components, but the driver will try to optimize "
3083 "them out; this is non-portable out-of-spec "
3084 "behavior\n",
3085 _mesa_shader_stage_to_string(i));
3086 } else {
3087 linker_error(prog, "Too many %s shader default uniform block "
3088 "components\n",
3089 _mesa_shader_stage_to_string(i));
3090 }
3091 }
3092
3093 if (sh->num_combined_uniform_components >
3094 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3095 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3096 linker_warning(prog, "Too many %s shader uniform components, "
3097 "but the driver will try to optimize them out; "
3098 "this is non-portable out-of-spec behavior\n",
3099 _mesa_shader_stage_to_string(i));
3100 } else {
3101 linker_error(prog, "Too many %s shader uniform components\n",
3102 _mesa_shader_stage_to_string(i));
3103 }
3104 }
3105
3106 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3107 total_uniform_blocks += sh->Program->info.num_ubos;
3108
3109 const unsigned max_uniform_blocks =
3110 ctx->Const.Program[i].MaxUniformBlocks;
3111 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3112 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3113 _mesa_shader_stage_to_string(i),
3114 sh->Program->info.num_ubos, max_uniform_blocks);
3115 }
3116
3117 const unsigned max_shader_storage_blocks =
3118 ctx->Const.Program[i].MaxShaderStorageBlocks;
3119 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3120 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3121 _mesa_shader_stage_to_string(i),
3122 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3123 }
3124 }
3125
3126 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3127 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3128 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3129 }
3130
3131 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3132 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3133 total_shader_storage_blocks,
3134 ctx->Const.MaxCombinedShaderStorageBlocks);
3135 }
3136
3137 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3138 if (prog->data->UniformBlocks[i].UniformBufferSize >
3139 ctx->Const.MaxUniformBlockSize) {
3140 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3141 prog->data->UniformBlocks[i].Name,
3142 prog->data->UniformBlocks[i].UniformBufferSize,
3143 ctx->Const.MaxUniformBlockSize);
3144 }
3145 }
3146
3147 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3148 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3149 ctx->Const.MaxShaderStorageBlockSize) {
3150 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3151 prog->data->ShaderStorageBlocks[i].Name,
3152 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3153 ctx->Const.MaxShaderStorageBlockSize);
3154 }
3155 }
3156 }
3157
3158 static void
3159 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3160 {
3161 unsigned mask = prog->data->linked_stages;
3162 while (mask) {
3163 const int i = u_bit_scan(&mask);
3164 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3165
3166 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3167 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3168 continue;
3169
3170 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3171
3172 if (!uni)
3173 continue;
3174
3175 int count = 0;
3176 if (p->sh.NumSubroutineFunctions == 0) {
3177 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3178 continue;
3179 }
3180 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3181 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3182 for (int k = 0; k < fn->num_compat_types; k++) {
3183 if (fn->types[k] == uni->type) {
3184 count++;
3185 break;
3186 }
3187 }
3188 }
3189 uni->num_compatible_subroutines = count;
3190 }
3191 }
3192 }
3193
3194 static void
3195 check_subroutine_resources(struct gl_shader_program *prog)
3196 {
3197 unsigned mask = prog->data->linked_stages;
3198 while (mask) {
3199 const int i = u_bit_scan(&mask);
3200 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3201
3202 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3203 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3204 _mesa_shader_stage_to_string(i));
3205 }
3206 }
3207 }
3208 /**
3209 * Validate shader image resources.
3210 */
3211 static void
3212 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3213 {
3214 unsigned total_image_units = 0;
3215 unsigned fragment_outputs = 0;
3216 unsigned total_shader_storage_blocks = 0;
3217
3218 if (!ctx->Extensions.ARB_shader_image_load_store)
3219 return;
3220
3221 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3222 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3223
3224 if (sh) {
3225 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3226 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3227 _mesa_shader_stage_to_string(i),
3228 sh->Program->info.num_images,
3229 ctx->Const.Program[i].MaxImageUniforms);
3230
3231 total_image_units += sh->Program->info.num_images;
3232 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3233
3234 if (i == MESA_SHADER_FRAGMENT) {
3235 foreach_in_list(ir_instruction, node, sh->ir) {
3236 ir_variable *var = node->as_variable();
3237 if (var && var->data.mode == ir_var_shader_out)
3238 /* since there are no double fs outputs - pass false */
3239 fragment_outputs += var->type->count_attribute_slots(false);
3240 }
3241 }
3242 }
3243 }
3244
3245 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3246 linker_error(prog, "Too many combined image uniforms\n");
3247
3248 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3249 ctx->Const.MaxCombinedShaderOutputResources)
3250 linker_error(prog, "Too many combined image uniforms, shader storage "
3251 " buffers and fragment outputs\n");
3252 }
3253
3254
3255 /**
3256 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3257 * for a variable, checks for overlaps between other uniforms using explicit
3258 * locations.
3259 */
3260 static int
3261 reserve_explicit_locations(struct gl_shader_program *prog,
3262 string_to_uint_map *map, ir_variable *var)
3263 {
3264 unsigned slots = var->type->uniform_locations();
3265 unsigned max_loc = var->data.location + slots - 1;
3266 unsigned return_value = slots;
3267
3268 /* Resize remap table if locations do not fit in the current one. */
3269 if (max_loc + 1 > prog->NumUniformRemapTable) {
3270 prog->UniformRemapTable =
3271 reralloc(prog, prog->UniformRemapTable,
3272 gl_uniform_storage *,
3273 max_loc + 1);
3274
3275 if (!prog->UniformRemapTable) {
3276 linker_error(prog, "Out of memory during linking.\n");
3277 return -1;
3278 }
3279
3280 /* Initialize allocated space. */
3281 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3282 prog->UniformRemapTable[i] = NULL;
3283
3284 prog->NumUniformRemapTable = max_loc + 1;
3285 }
3286
3287 for (unsigned i = 0; i < slots; i++) {
3288 unsigned loc = var->data.location + i;
3289
3290 /* Check if location is already used. */
3291 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3292
3293 /* Possibly same uniform from a different stage, this is ok. */
3294 unsigned hash_loc;
3295 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3296 return_value = 0;
3297 continue;
3298 }
3299
3300 /* ARB_explicit_uniform_location specification states:
3301 *
3302 * "No two default-block uniform variables in the program can have
3303 * the same location, even if they are unused, otherwise a compiler
3304 * or linker error will be generated."
3305 */
3306 linker_error(prog,
3307 "location qualifier for uniform %s overlaps "
3308 "previously used location\n",
3309 var->name);
3310 return -1;
3311 }
3312
3313 /* Initialize location as inactive before optimization
3314 * rounds and location assignment.
3315 */
3316 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3317 }
3318
3319 /* Note, base location used for arrays. */
3320 map->put(var->data.location, var->name);
3321
3322 return return_value;
3323 }
3324
3325 static bool
3326 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3327 struct gl_program *p,
3328 ir_variable *var)
3329 {
3330 unsigned slots = var->type->uniform_locations();
3331 unsigned max_loc = var->data.location + slots - 1;
3332
3333 /* Resize remap table if locations do not fit in the current one. */
3334 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3335 p->sh.SubroutineUniformRemapTable =
3336 reralloc(p, p->sh.SubroutineUniformRemapTable,
3337 gl_uniform_storage *,
3338 max_loc + 1);
3339
3340 if (!p->sh.SubroutineUniformRemapTable) {
3341 linker_error(prog, "Out of memory during linking.\n");
3342 return false;
3343 }
3344
3345 /* Initialize allocated space. */
3346 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3347 p->sh.SubroutineUniformRemapTable[i] = NULL;
3348
3349 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3350 }
3351
3352 for (unsigned i = 0; i < slots; i++) {
3353 unsigned loc = var->data.location + i;
3354
3355 /* Check if location is already used. */
3356 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3357
3358 /* ARB_explicit_uniform_location specification states:
3359 * "No two subroutine uniform variables can have the same location
3360 * in the same shader stage, otherwise a compiler or linker error
3361 * will be generated."
3362 */
3363 linker_error(prog,
3364 "location qualifier for uniform %s overlaps "
3365 "previously used location\n",
3366 var->name);
3367 return false;
3368 }
3369
3370 /* Initialize location as inactive before optimization
3371 * rounds and location assignment.
3372 */
3373 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3374 }
3375
3376 return true;
3377 }
3378 /**
3379 * Check and reserve all explicit uniform locations, called before
3380 * any optimizations happen to handle also inactive uniforms and
3381 * inactive array elements that may get trimmed away.
3382 */
3383 static void
3384 check_explicit_uniform_locations(struct gl_context *ctx,
3385 struct gl_shader_program *prog)
3386 {
3387 prog->NumExplicitUniformLocations = 0;
3388
3389 if (!ctx->Extensions.ARB_explicit_uniform_location)
3390 return;
3391
3392 /* This map is used to detect if overlapping explicit locations
3393 * occur with the same uniform (from different stage) or a different one.
3394 */
3395 string_to_uint_map *uniform_map = new string_to_uint_map;
3396
3397 if (!uniform_map) {
3398 linker_error(prog, "Out of memory during linking.\n");
3399 return;
3400 }
3401
3402 unsigned entries_total = 0;
3403 unsigned mask = prog->data->linked_stages;
3404 while (mask) {
3405 const int i = u_bit_scan(&mask);
3406 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3407
3408 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3409 ir_variable *var = node->as_variable();
3410 if (!var || var->data.mode != ir_var_uniform)
3411 continue;
3412
3413 if (var->data.explicit_location) {
3414 bool ret = false;
3415 if (var->type->without_array()->is_subroutine())
3416 ret = reserve_subroutine_explicit_locations(prog, p, var);
3417 else {
3418 int slots = reserve_explicit_locations(prog, uniform_map,
3419 var);
3420 if (slots != -1) {
3421 ret = true;
3422 entries_total += slots;
3423 }
3424 }
3425 if (!ret) {
3426 delete uniform_map;
3427 return;
3428 }
3429 }
3430 }
3431 }
3432
3433 struct empty_uniform_block *current_block = NULL;
3434
3435 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3436 /* We found empty space in UniformRemapTable. */
3437 if (prog->UniformRemapTable[i] == NULL) {
3438 /* We've found the beginning of a new continous block of empty slots */
3439 if (!current_block || current_block->start + current_block->slots != i) {
3440 current_block = rzalloc(prog, struct empty_uniform_block);
3441 current_block->start = i;
3442 exec_list_push_tail(&prog->EmptyUniformLocations,
3443 &current_block->link);
3444 }
3445
3446 /* The current block continues, so we simply increment its slots */
3447 current_block->slots++;
3448 }
3449 }
3450
3451 delete uniform_map;
3452 prog->NumExplicitUniformLocations = entries_total;
3453 }
3454
3455 static bool
3456 should_add_buffer_variable(struct gl_shader_program *shProg,
3457 GLenum type, const char *name)
3458 {
3459 bool found_interface = false;
3460 unsigned block_name_len = 0;
3461 const char *block_name_dot = strchr(name, '.');
3462
3463 /* These rules only apply to buffer variables. So we return
3464 * true for the rest of types.
3465 */
3466 if (type != GL_BUFFER_VARIABLE)
3467 return true;
3468
3469 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3470 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3471 block_name_len = strlen(block_name);
3472
3473 const char *block_square_bracket = strchr(block_name, '[');
3474 if (block_square_bracket) {
3475 /* The block is part of an array of named interfaces,
3476 * for the name comparison we ignore the "[x]" part.
3477 */
3478 block_name_len -= strlen(block_square_bracket);
3479 }
3480
3481 if (block_name_dot) {
3482 /* Check if the variable name starts with the interface
3483 * name. The interface name (if present) should have the
3484 * length than the interface block name we are comparing to.
3485 */
3486 unsigned len = strlen(name) - strlen(block_name_dot);
3487 if (len != block_name_len)
3488 continue;
3489 }
3490
3491 if (strncmp(block_name, name, block_name_len) == 0) {
3492 found_interface = true;
3493 break;
3494 }
3495 }
3496
3497 /* We remove the interface name from the buffer variable name,
3498 * including the dot that follows it.
3499 */
3500 if (found_interface)
3501 name = name + block_name_len + 1;
3502
3503 /* The ARB_program_interface_query spec says:
3504 *
3505 * "For an active shader storage block member declared as an array, an
3506 * entry will be generated only for the first array element, regardless
3507 * of its type. For arrays of aggregate types, the enumeration rules
3508 * are applied recursively for the single enumerated array element."
3509 */
3510 const char *struct_first_dot = strchr(name, '.');
3511 const char *first_square_bracket = strchr(name, '[');
3512
3513 /* The buffer variable is on top level and it is not an array */
3514 if (!first_square_bracket) {
3515 return true;
3516 /* The shader storage block member is a struct, then generate the entry */
3517 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3518 return true;
3519 } else {
3520 /* Shader storage block member is an array, only generate an entry for the
3521 * first array element.
3522 */
3523 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3524 return true;
3525 }
3526
3527 return false;
3528 }
3529
3530 static bool
3531 add_program_resource(struct gl_shader_program *prog,
3532 struct set *resource_set,
3533 GLenum type, const void *data, uint8_t stages)
3534 {
3535 assert(data);
3536
3537 /* If resource already exists, do not add it again. */
3538 if (_mesa_set_search(resource_set, data))
3539 return true;
3540
3541 prog->data->ProgramResourceList =
3542 reralloc(prog,
3543 prog->data->ProgramResourceList,
3544 gl_program_resource,
3545 prog->data->NumProgramResourceList + 1);
3546
3547 if (!prog->data->ProgramResourceList) {
3548 linker_error(prog, "Out of memory during linking.\n");
3549 return false;
3550 }
3551
3552 struct gl_program_resource *res =
3553 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3554
3555 res->Type = type;
3556 res->Data = data;
3557 res->StageReferences = stages;
3558
3559 prog->data->NumProgramResourceList++;
3560
3561 _mesa_set_add(resource_set, data);
3562
3563 return true;
3564 }
3565
3566 /* Function checks if a variable var is a packed varying and
3567 * if given name is part of packed varying's list.
3568 *
3569 * If a variable is a packed varying, it has a name like
3570 * 'packed:a,b,c' where a, b and c are separate variables.
3571 */
3572 static bool
3573 included_in_packed_varying(ir_variable *var, const char *name)
3574 {
3575 if (strncmp(var->name, "packed:", 7) != 0)
3576 return false;
3577
3578 char *list = strdup(var->name + 7);
3579 assert(list);
3580
3581 bool found = false;
3582 char *saveptr;
3583 char *token = strtok_r(list, ",", &saveptr);
3584 while (token) {
3585 if (strcmp(token, name) == 0) {
3586 found = true;
3587 break;
3588 }
3589 token = strtok_r(NULL, ",", &saveptr);
3590 }
3591 free(list);
3592 return found;
3593 }
3594
3595 /**
3596 * Function builds a stage reference bitmask from variable name.
3597 */
3598 static uint8_t
3599 build_stageref(struct gl_shader_program *shProg, const char *name,
3600 unsigned mode)
3601 {
3602 uint8_t stages = 0;
3603
3604 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3605 * used for reference mask in gl_program_resource will need to be changed.
3606 */
3607 assert(MESA_SHADER_STAGES < 8);
3608
3609 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3610 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3611 if (!sh)
3612 continue;
3613
3614 /* Shader symbol table may contain variables that have
3615 * been optimized away. Search IR for the variable instead.
3616 */
3617 foreach_in_list(ir_instruction, node, sh->ir) {
3618 ir_variable *var = node->as_variable();
3619 if (var) {
3620 unsigned baselen = strlen(var->name);
3621
3622 if (included_in_packed_varying(var, name)) {
3623 stages |= (1 << i);
3624 break;
3625 }
3626
3627 /* Type needs to match if specified, otherwise we might
3628 * pick a variable with same name but different interface.
3629 */
3630 if (var->data.mode != mode)
3631 continue;
3632
3633 if (strncmp(var->name, name, baselen) == 0) {
3634 /* Check for exact name matches but also check for arrays and
3635 * structs.
3636 */
3637 if (name[baselen] == '\0' ||
3638 name[baselen] == '[' ||
3639 name[baselen] == '.') {
3640 stages |= (1 << i);
3641 break;
3642 }
3643 }
3644 }
3645 }
3646 }
3647 return stages;
3648 }
3649
3650 /**
3651 * Create gl_shader_variable from ir_variable class.
3652 */
3653 static gl_shader_variable *
3654 create_shader_variable(struct gl_shader_program *shProg,
3655 const ir_variable *in,
3656 const char *name, const glsl_type *type,
3657 const glsl_type *interface_type,
3658 bool use_implicit_location, int location,
3659 const glsl_type *outermost_struct_type)
3660 {
3661 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3662 if (!out)
3663 return NULL;
3664
3665 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3666 * expect to see gl_VertexID in the program resource list. Pretend.
3667 */
3668 if (in->data.mode == ir_var_system_value &&
3669 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3670 out->name = ralloc_strdup(shProg, "gl_VertexID");
3671 } else if ((in->data.mode == ir_var_shader_out &&
3672 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3673 (in->data.mode == ir_var_system_value &&
3674 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3675 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3676 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3677 } else if ((in->data.mode == ir_var_shader_out &&
3678 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3679 (in->data.mode == ir_var_system_value &&
3680 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3681 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3682 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3683 } else {
3684 out->name = ralloc_strdup(shProg, name);
3685 }
3686
3687 if (!out->name)
3688 return NULL;
3689
3690 /* The ARB_program_interface_query spec says:
3691 *
3692 * "Not all active variables are assigned valid locations; the
3693 * following variables will have an effective location of -1:
3694 *
3695 * * uniforms declared as atomic counters;
3696 *
3697 * * members of a uniform block;
3698 *
3699 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3700 *
3701 * * inputs or outputs not declared with a "location" layout
3702 * qualifier, except for vertex shader inputs and fragment shader
3703 * outputs."
3704 */
3705 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3706 !(in->data.explicit_location || use_implicit_location)) {
3707 out->location = -1;
3708 } else {
3709 out->location = location;
3710 }
3711
3712 out->type = type;
3713 out->outermost_struct_type = outermost_struct_type;
3714 out->interface_type = interface_type;
3715 out->component = in->data.location_frac;
3716 out->index = in->data.index;
3717 out->patch = in->data.patch;
3718 out->mode = in->data.mode;
3719 out->interpolation = in->data.interpolation;
3720 out->explicit_location = in->data.explicit_location;
3721 out->precision = in->data.precision;
3722
3723 return out;
3724 }
3725
3726 static bool
3727 add_shader_variable(const struct gl_context *ctx,
3728 struct gl_shader_program *shProg,
3729 struct set *resource_set,
3730 unsigned stage_mask,
3731 GLenum programInterface, ir_variable *var,
3732 const char *name, const glsl_type *type,
3733 bool use_implicit_location, int location,
3734 const glsl_type *outermost_struct_type = NULL)
3735 {
3736 const glsl_type *interface_type = var->get_interface_type();
3737
3738 if (outermost_struct_type == NULL) {
3739 if (var->data.from_named_ifc_block) {
3740 const char *interface_name = interface_type->name;
3741
3742 if (interface_type->is_array()) {
3743 /* Issue #16 of the ARB_program_interface_query spec says:
3744 *
3745 * "* If a variable is a member of an interface block without an
3746 * instance name, it is enumerated using just the variable name.
3747 *
3748 * * If a variable is a member of an interface block with an
3749 * instance name, it is enumerated as "BlockName.Member", where
3750 * "BlockName" is the name of the interface block (not the
3751 * instance name) and "Member" is the name of the variable."
3752 *
3753 * In particular, it indicates that it should be "BlockName",
3754 * not "BlockName[array length]". The conformance suite and
3755 * dEQP both require this behavior.
3756 *
3757 * Here, we unwrap the extra array level added by named interface
3758 * block array lowering so we have the correct variable type. We
3759 * also unwrap the interface type when constructing the name.
3760 *
3761 * We leave interface_type the same so that ES 3.x SSO pipeline
3762 * validation can enforce the rules requiring array length to
3763 * match on interface blocks.
3764 */
3765 type = type->fields.array;
3766
3767 interface_name = interface_type->fields.array->name;
3768 }
3769
3770 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3771 }
3772 }
3773
3774 switch (type->base_type) {
3775 case GLSL_TYPE_STRUCT: {
3776 /* The ARB_program_interface_query spec says:
3777 *
3778 * "For an active variable declared as a structure, a separate entry
3779 * will be generated for each active structure member. The name of
3780 * each entry is formed by concatenating the name of the structure,
3781 * the "." character, and the name of the structure member. If a
3782 * structure member to enumerate is itself a structure or array,
3783 * these enumeration rules are applied recursively."
3784 */
3785 if (outermost_struct_type == NULL)
3786 outermost_struct_type = type;
3787
3788 unsigned field_location = location;
3789 for (unsigned i = 0; i < type->length; i++) {
3790 const struct glsl_struct_field *field = &type->fields.structure[i];
3791 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3792 if (!add_shader_variable(ctx, shProg, resource_set,
3793 stage_mask, programInterface,
3794 var, field_name, field->type,
3795 use_implicit_location, field_location,
3796 outermost_struct_type))
3797 return false;
3798
3799 field_location += field->type->count_attribute_slots(false);
3800 }
3801 return true;
3802 }
3803
3804 default: {
3805 /* The ARB_program_interface_query spec says:
3806 *
3807 * "For an active variable declared as a single instance of a basic
3808 * type, a single entry will be generated, using the variable name
3809 * from the shader source."
3810 */
3811 gl_shader_variable *sha_v =
3812 create_shader_variable(shProg, var, name, type, interface_type,
3813 use_implicit_location, location,
3814 outermost_struct_type);
3815 if (!sha_v)
3816 return false;
3817
3818 return add_program_resource(shProg, resource_set,
3819 programInterface, sha_v, stage_mask);
3820 }
3821 }
3822 }
3823
3824 static bool
3825 add_interface_variables(const struct gl_context *ctx,
3826 struct gl_shader_program *shProg,
3827 struct set *resource_set,
3828 unsigned stage, GLenum programInterface)
3829 {
3830 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3831
3832 foreach_in_list(ir_instruction, node, ir) {
3833 ir_variable *var = node->as_variable();
3834
3835 if (!var || var->data.how_declared == ir_var_hidden)
3836 continue;
3837
3838 int loc_bias;
3839
3840 switch (var->data.mode) {
3841 case ir_var_system_value:
3842 case ir_var_shader_in:
3843 if (programInterface != GL_PROGRAM_INPUT)
3844 continue;
3845 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3846 : int(VARYING_SLOT_VAR0);
3847 break;
3848 case ir_var_shader_out:
3849 if (programInterface != GL_PROGRAM_OUTPUT)
3850 continue;
3851 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3852 : int(VARYING_SLOT_VAR0);
3853 break;
3854 default:
3855 continue;
3856 };
3857
3858 if (var->data.patch)
3859 loc_bias = int(VARYING_SLOT_PATCH0);
3860
3861 /* Skip packed varyings, packed varyings are handled separately
3862 * by add_packed_varyings.
3863 */
3864 if (strncmp(var->name, "packed:", 7) == 0)
3865 continue;
3866
3867 /* Skip fragdata arrays, these are handled separately
3868 * by add_fragdata_arrays.
3869 */
3870 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3871 continue;
3872
3873 const bool vs_input_or_fs_output =
3874 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3875 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3876
3877 if (!add_shader_variable(ctx, shProg, resource_set,
3878 1 << stage, programInterface,
3879 var, var->name, var->type, vs_input_or_fs_output,
3880 var->data.location - loc_bias))
3881 return false;
3882 }
3883 return true;
3884 }
3885
3886 static bool
3887 add_packed_varyings(const struct gl_context *ctx,
3888 struct gl_shader_program *shProg,
3889 struct set *resource_set,
3890 int stage, GLenum type)
3891 {
3892 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3893 GLenum iface;
3894
3895 if (!sh || !sh->packed_varyings)
3896 return true;
3897
3898 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3899 ir_variable *var = node->as_variable();
3900 if (var) {
3901 switch (var->data.mode) {
3902 case ir_var_shader_in:
3903 iface = GL_PROGRAM_INPUT;
3904 break;
3905 case ir_var_shader_out:
3906 iface = GL_PROGRAM_OUTPUT;
3907 break;
3908 default:
3909 unreachable("unexpected type");
3910 }
3911
3912 if (type == iface) {
3913 const int stage_mask =
3914 build_stageref(shProg, var->name, var->data.mode);
3915 if (!add_shader_variable(ctx, shProg, resource_set,
3916 stage_mask,
3917 iface, var, var->name, var->type, false,
3918 var->data.location - VARYING_SLOT_VAR0))
3919 return false;
3920 }
3921 }
3922 }
3923 return true;
3924 }
3925
3926 static bool
3927 add_fragdata_arrays(const struct gl_context *ctx,
3928 struct gl_shader_program *shProg,
3929 struct set *resource_set)
3930 {
3931 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3932
3933 if (!sh || !sh->fragdata_arrays)
3934 return true;
3935
3936 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3937 ir_variable *var = node->as_variable();
3938 if (var) {
3939 assert(var->data.mode == ir_var_shader_out);
3940
3941 if (!add_shader_variable(ctx, shProg, resource_set,
3942 1 << MESA_SHADER_FRAGMENT,
3943 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3944 true, var->data.location - FRAG_RESULT_DATA0))
3945 return false;
3946 }
3947 }
3948 return true;
3949 }
3950
3951 static char*
3952 get_top_level_name(const char *name)
3953 {
3954 const char *first_dot = strchr(name, '.');
3955 const char *first_square_bracket = strchr(name, '[');
3956 int name_size = 0;
3957
3958 /* The ARB_program_interface_query spec says:
3959 *
3960 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3961 * the number of active array elements of the top-level shader storage
3962 * block member containing to the active variable is written to
3963 * <params>. If the top-level block member is not declared as an
3964 * array, the value one is written to <params>. If the top-level block
3965 * member is an array with no declared size, the value zero is written
3966 * to <params>."
3967 */
3968
3969 /* The buffer variable is on top level.*/
3970 if (!first_square_bracket && !first_dot)
3971 name_size = strlen(name);
3972 else if ((!first_square_bracket ||
3973 (first_dot && first_dot < first_square_bracket)))
3974 name_size = first_dot - name;
3975 else
3976 name_size = first_square_bracket - name;
3977
3978 return strndup(name, name_size);
3979 }
3980
3981 static char*
3982 get_var_name(const char *name)
3983 {
3984 const char *first_dot = strchr(name, '.');
3985
3986 if (!first_dot)
3987 return strdup(name);
3988
3989 return strndup(first_dot+1, strlen(first_dot) - 1);
3990 }
3991
3992 static bool
3993 is_top_level_shader_storage_block_member(const char* name,
3994 const char* interface_name,
3995 const char* field_name)
3996 {
3997 bool result = false;
3998
3999 /* If the given variable is already a top-level shader storage
4000 * block member, then return array_size = 1.
4001 * We could have two possibilities: if we have an instanced
4002 * shader storage block or not instanced.
4003 *
4004 * For the first, we check create a name as it was in top level and
4005 * compare it with the real name. If they are the same, then
4006 * the variable is already at top-level.
4007 *
4008 * Full instanced name is: interface name + '.' + var name +
4009 * NULL character
4010 */
4011 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4012 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4013 if (!full_instanced_name) {
4014 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4015 return false;
4016 }
4017
4018 snprintf(full_instanced_name, name_length, "%s.%s",
4019 interface_name, field_name);
4020
4021 /* Check if its top-level shader storage block member of an
4022 * instanced interface block, or of a unnamed interface block.
4023 */
4024 if (strcmp(name, full_instanced_name) == 0 ||
4025 strcmp(name, field_name) == 0)
4026 result = true;
4027
4028 free(full_instanced_name);
4029 return result;
4030 }
4031
4032 static int
4033 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4034 char *interface_name, char *var_name)
4035 {
4036 /* The ARB_program_interface_query spec says:
4037 *
4038 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4039 * the number of active array elements of the top-level shader storage
4040 * block member containing to the active variable is written to
4041 * <params>. If the top-level block member is not declared as an
4042 * array, the value one is written to <params>. If the top-level block
4043 * member is an array with no declared size, the value zero is written
4044 * to <params>."
4045 */
4046 if (is_top_level_shader_storage_block_member(uni->name,
4047 interface_name,
4048 var_name))
4049 return 1;
4050 else if (field->type->is_unsized_array())
4051 return 0;
4052 else if (field->type->is_array())
4053 return field->type->length;
4054
4055 return 1;
4056 }
4057
4058 static int
4059 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4060 const glsl_struct_field *field, char *interface_name,
4061 char *var_name)
4062 {
4063 /* The ARB_program_interface_query spec says:
4064 *
4065 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4066 * identifying the stride between array elements of the top-level
4067 * shader storage block member containing the active variable is
4068 * written to <params>. For top-level block members declared as
4069 * arrays, the value written is the difference, in basic machine units,
4070 * between the offsets of the active variable for consecutive elements
4071 * in the top-level array. For top-level block members not declared as
4072 * an array, zero is written to <params>."
4073 */
4074 if (field->type->is_array()) {
4075 const enum glsl_matrix_layout matrix_layout =
4076 glsl_matrix_layout(field->matrix_layout);
4077 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4078 const glsl_type *array_type = field->type->fields.array;
4079
4080 if (is_top_level_shader_storage_block_member(uni->name,
4081 interface_name,
4082 var_name))
4083 return 0;
4084
4085 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4086 if (array_type->is_record() || array_type->is_array())
4087 return glsl_align(array_type->std140_size(row_major), 16);
4088 else
4089 return MAX2(array_type->std140_base_alignment(row_major), 16);
4090 } else {
4091 return array_type->std430_array_stride(row_major);
4092 }
4093 }
4094 return 0;
4095 }
4096
4097 static void
4098 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4099 struct gl_uniform_storage *uni)
4100 {
4101 int block_index = uni->block_index;
4102 int array_size = -1;
4103 int array_stride = -1;
4104 char *var_name = get_top_level_name(uni->name);
4105 char *interface_name =
4106 get_top_level_name(uni->is_shader_storage ?
4107 shProg->data->ShaderStorageBlocks[block_index].Name :
4108 shProg->data->UniformBlocks[block_index].Name);
4109
4110 if (strcmp(var_name, interface_name) == 0) {
4111 /* Deal with instanced array of SSBOs */
4112 char *temp_name = get_var_name(uni->name);
4113 if (!temp_name) {
4114 linker_error(shProg, "Out of memory during linking.\n");
4115 goto write_top_level_array_size_and_stride;
4116 }
4117 free(var_name);
4118 var_name = get_top_level_name(temp_name);
4119 free(temp_name);
4120 if (!var_name) {
4121 linker_error(shProg, "Out of memory during linking.\n");
4122 goto write_top_level_array_size_and_stride;
4123 }
4124 }
4125
4126 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4127 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4128 if (sh == NULL)
4129 continue;
4130
4131 foreach_in_list(ir_instruction, node, sh->ir) {
4132 ir_variable *var = node->as_variable();
4133 if (!var || !var->get_interface_type() ||
4134 var->data.mode != ir_var_shader_storage)
4135 continue;
4136
4137 const glsl_type *interface = var->get_interface_type();
4138
4139 if (strcmp(interface_name, interface->name) != 0)
4140 continue;
4141
4142 for (unsigned i = 0; i < interface->length; i++) {
4143 const glsl_struct_field *field = &interface->fields.structure[i];
4144 if (strcmp(field->name, var_name) != 0)
4145 continue;
4146
4147 array_stride = get_array_stride(uni, interface, field,
4148 interface_name, var_name);
4149 array_size = get_array_size(uni, field, interface_name, var_name);
4150 goto write_top_level_array_size_and_stride;
4151 }
4152 }
4153 }
4154 write_top_level_array_size_and_stride:
4155 free(interface_name);
4156 free(var_name);
4157 uni->top_level_array_stride = array_stride;
4158 uni->top_level_array_size = array_size;
4159 }
4160
4161 /**
4162 * Builds up a list of program resources that point to existing
4163 * resource data.
4164 */
4165 void
4166 build_program_resource_list(struct gl_context *ctx,
4167 struct gl_shader_program *shProg)
4168 {
4169 /* Rebuild resource list. */
4170 if (shProg->data->ProgramResourceList) {
4171 ralloc_free(shProg->data->ProgramResourceList);
4172 shProg->data->ProgramResourceList = NULL;
4173 shProg->data->NumProgramResourceList = 0;
4174 }
4175
4176 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4177
4178 /* Determine first input and final output stage. These are used to
4179 * detect which variables should be enumerated in the resource list
4180 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4181 */
4182 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4183 if (!shProg->_LinkedShaders[i])
4184 continue;
4185 if (input_stage == MESA_SHADER_STAGES)
4186 input_stage = i;
4187 output_stage = i;
4188 }
4189
4190 /* Empty shader, no resources. */
4191 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4192 return;
4193
4194 struct set *resource_set = _mesa_set_create(NULL,
4195 _mesa_hash_pointer,
4196 _mesa_key_pointer_equal);
4197
4198 /* Program interface needs to expose varyings in case of SSO. */
4199 if (shProg->SeparateShader) {
4200 if (!add_packed_varyings(ctx, shProg, resource_set,
4201 input_stage, GL_PROGRAM_INPUT))
4202 return;
4203
4204 if (!add_packed_varyings(ctx, shProg, resource_set,
4205 output_stage, GL_PROGRAM_OUTPUT))
4206 return;
4207 }
4208
4209 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4210 return;
4211
4212 /* Add inputs and outputs to the resource list. */
4213 if (!add_interface_variables(ctx, shProg, resource_set,
4214 input_stage, GL_PROGRAM_INPUT))
4215 return;
4216
4217 if (!add_interface_variables(ctx, shProg, resource_set,
4218 output_stage, GL_PROGRAM_OUTPUT))
4219 return;
4220
4221 if (shProg->last_vert_prog) {
4222 struct gl_transform_feedback_info *linked_xfb =
4223 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4224
4225 /* Add transform feedback varyings. */
4226 if (linked_xfb->NumVarying > 0) {
4227 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4228 if (!add_program_resource(shProg, resource_set,
4229 GL_TRANSFORM_FEEDBACK_VARYING,
4230 &linked_xfb->Varyings[i], 0))
4231 return;
4232 }
4233 }
4234
4235 /* Add transform feedback buffers. */
4236 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4237 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4238 linked_xfb->Buffers[i].Binding = i;
4239 if (!add_program_resource(shProg, resource_set,
4240 GL_TRANSFORM_FEEDBACK_BUFFER,
4241 &linked_xfb->Buffers[i], 0))
4242 return;
4243 }
4244 }
4245 }
4246
4247 /* Add uniforms from uniform storage. */
4248 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4249 /* Do not add uniforms internally used by Mesa. */
4250 if (shProg->data->UniformStorage[i].hidden)
4251 continue;
4252
4253 uint8_t stageref =
4254 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4255 ir_var_uniform);
4256
4257 /* Add stagereferences for uniforms in a uniform block. */
4258 bool is_shader_storage =
4259 shProg->data->UniformStorage[i].is_shader_storage;
4260 int block_index = shProg->data->UniformStorage[i].block_index;
4261 if (block_index != -1) {
4262 stageref |= is_shader_storage ?
4263 shProg->data->ShaderStorageBlocks[block_index].stageref :
4264 shProg->data->UniformBlocks[block_index].stageref;
4265 }
4266
4267 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4268 if (!should_add_buffer_variable(shProg, type,
4269 shProg->data->UniformStorage[i].name))
4270 continue;
4271
4272 if (is_shader_storage) {
4273 calculate_array_size_and_stride(shProg,
4274 &shProg->data->UniformStorage[i]);
4275 }
4276
4277 if (!add_program_resource(shProg, resource_set, type,
4278 &shProg->data->UniformStorage[i], stageref))
4279 return;
4280 }
4281
4282 /* Add program uniform blocks. */
4283 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4284 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4285 &shProg->data->UniformBlocks[i], 0))
4286 return;
4287 }
4288
4289 /* Add program shader storage blocks. */
4290 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4291 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4292 &shProg->data->ShaderStorageBlocks[i], 0))
4293 return;
4294 }
4295
4296 /* Add atomic counter buffers. */
4297 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4298 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4299 &shProg->data->AtomicBuffers[i], 0))
4300 return;
4301 }
4302
4303 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4304 GLenum type;
4305 if (!shProg->data->UniformStorage[i].hidden)
4306 continue;
4307
4308 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4309 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4310 !shProg->data->UniformStorage[i].type->is_subroutine())
4311 continue;
4312
4313 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4314 /* add shader subroutines */
4315 if (!add_program_resource(shProg, resource_set,
4316 type, &shProg->data->UniformStorage[i], 0))
4317 return;
4318 }
4319 }
4320
4321 unsigned mask = shProg->data->linked_stages;
4322 while (mask) {
4323 const int i = u_bit_scan(&mask);
4324 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4325
4326 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4327 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4328 if (!add_program_resource(shProg, resource_set,
4329 type, &p->sh.SubroutineFunctions[j], 0))
4330 return;
4331 }
4332 }
4333
4334 _mesa_set_destroy(resource_set, NULL);
4335 }
4336
4337 /**
4338 * This check is done to make sure we allow only constant expression
4339 * indexing and "constant-index-expression" (indexing with an expression
4340 * that includes loop induction variable).
4341 */
4342 static bool
4343 validate_sampler_array_indexing(struct gl_context *ctx,
4344 struct gl_shader_program *prog)
4345 {
4346 dynamic_sampler_array_indexing_visitor v;
4347 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4348 if (prog->_LinkedShaders[i] == NULL)
4349 continue;
4350
4351 bool no_dynamic_indexing =
4352 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4353
4354 /* Search for array derefs in shader. */
4355 v.run(prog->_LinkedShaders[i]->ir);
4356 if (v.uses_dynamic_sampler_array_indexing()) {
4357 const char *msg = "sampler arrays indexed with non-constant "
4358 "expressions is forbidden in GLSL %s %u";
4359 /* Backend has indicated that it has no dynamic indexing support. */
4360 if (no_dynamic_indexing) {
4361 linker_error(prog, msg, prog->IsES ? "ES" : "",
4362 prog->data->Version);
4363 return false;
4364 } else {
4365 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4366 prog->data->Version);
4367 }
4368 }
4369 }
4370 return true;
4371 }
4372
4373 static void
4374 link_assign_subroutine_types(struct gl_shader_program *prog)
4375 {
4376 unsigned mask = prog->data->linked_stages;
4377 while (mask) {
4378 const int i = u_bit_scan(&mask);
4379 gl_program *p = prog->_LinkedShaders[i]->Program;
4380
4381 p->sh.MaxSubroutineFunctionIndex = 0;
4382 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4383 ir_function *fn = node->as_function();
4384 if (!fn)
4385 continue;
4386
4387 if (fn->is_subroutine)
4388 p->sh.NumSubroutineUniformTypes++;
4389
4390 if (!fn->num_subroutine_types)
4391 continue;
4392
4393 /* these should have been calculated earlier. */
4394 assert(fn->subroutine_index != -1);
4395 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4396 linker_error(prog, "Too many subroutine functions declared.\n");
4397 return;
4398 }
4399 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4400 struct gl_subroutine_function,
4401 p->sh.NumSubroutineFunctions + 1);
4402 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4403 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4404 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4405 ralloc_array(p, const struct glsl_type *,
4406 fn->num_subroutine_types);
4407
4408 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4409 * GLSL 4.5 spec:
4410 *
4411 * "Each subroutine with an index qualifier in the shader must be
4412 * given a unique index, otherwise a compile or link error will be
4413 * generated."
4414 */
4415 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4416 if (p->sh.SubroutineFunctions[j].index != -1 &&
4417 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4418 linker_error(prog, "each subroutine index qualifier in the "
4419 "shader must be unique\n");
4420 return;
4421 }
4422 }
4423 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4424 fn->subroutine_index;
4425
4426 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4427 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4428
4429 for (int j = 0; j < fn->num_subroutine_types; j++)
4430 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4431 p->sh.NumSubroutineFunctions++;
4432 }
4433 }
4434 }
4435
4436 static void
4437 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4438 {
4439 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4440
4441 foreach_in_list(ir_instruction, node, ir) {
4442 ir_variable *const var = node->as_variable();
4443
4444 if (var == NULL || var->data.mode != io_mode)
4445 continue;
4446
4447 /* Don't set always active on builtins that haven't been redeclared */
4448 if (var->data.how_declared == ir_var_declared_implicitly)
4449 continue;
4450
4451 var->data.always_active_io = true;
4452 }
4453 }
4454
4455 /**
4456 * When separate shader programs are enabled, only input/outputs between
4457 * the stages of a multi-stage separate program can be safely removed
4458 * from the shader interface. Other inputs/outputs must remain active.
4459 */
4460 static void
4461 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4462 {
4463 unsigned first, last;
4464 assert(prog->SeparateShader);
4465
4466 first = MESA_SHADER_STAGES;
4467 last = 0;
4468
4469 /* Determine first and last stage. Excluding the compute stage */
4470 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4471 if (!prog->_LinkedShaders[i])
4472 continue;
4473 if (first == MESA_SHADER_STAGES)
4474 first = i;
4475 last = i;
4476 }
4477
4478 if (first == MESA_SHADER_STAGES)
4479 return;
4480
4481 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4482 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4483 if (!sh)
4484 continue;
4485
4486 if (first == last) {
4487 /* For a single shader program only allow inputs to the vertex shader
4488 * and outputs from the fragment shader to be removed.
4489 */
4490 if (stage != MESA_SHADER_VERTEX)
4491 set_always_active_io(sh->ir, ir_var_shader_in);
4492 if (stage != MESA_SHADER_FRAGMENT)
4493 set_always_active_io(sh->ir, ir_var_shader_out);
4494 } else {
4495 /* For multi-stage separate shader programs only allow inputs and
4496 * outputs between the shader stages to be removed as well as inputs
4497 * to the vertex shader and outputs from the fragment shader.
4498 */
4499 if (stage == first && stage != MESA_SHADER_VERTEX)
4500 set_always_active_io(sh->ir, ir_var_shader_in);
4501 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4502 set_always_active_io(sh->ir, ir_var_shader_out);
4503 }
4504 }
4505 }
4506
4507 static void
4508 link_and_validate_uniforms(struct gl_context *ctx,
4509 struct gl_shader_program *prog)
4510 {
4511 update_array_sizes(prog);
4512 link_assign_uniform_locations(prog, ctx);
4513
4514 if (!prog->data->cache_fallback) {
4515 link_assign_atomic_counter_resources(ctx, prog);
4516 link_calculate_subroutine_compat(prog);
4517 check_resources(ctx, prog);
4518 check_subroutine_resources(prog);
4519 check_image_resources(ctx, prog);
4520 link_check_atomic_counter_resources(ctx, prog);
4521 }
4522 }
4523
4524 static bool
4525 link_varyings_and_uniforms(unsigned first, unsigned last,
4526 struct gl_context *ctx,
4527 struct gl_shader_program *prog, void *mem_ctx)
4528 {
4529 /* Mark all generic shader inputs and outputs as unpaired. */
4530 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4531 if (prog->_LinkedShaders[i] != NULL) {
4532 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4533 }
4534 }
4535
4536 unsigned prev = first;
4537 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4538 if (prog->_LinkedShaders[i] == NULL)
4539 continue;
4540
4541 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4542 prog->_LinkedShaders[i]);
4543 prev = i;
4544 }
4545
4546 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4547 MESA_SHADER_VERTEX)) {
4548 return false;
4549 }
4550
4551 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4552 MESA_SHADER_FRAGMENT)) {
4553 return false;
4554 }
4555
4556 prog->last_vert_prog = NULL;
4557 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4558 if (prog->_LinkedShaders[i] == NULL)
4559 continue;
4560
4561 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4562 break;
4563 }
4564
4565 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4566 return false;
4567
4568 link_and_validate_uniforms(ctx, prog);
4569
4570 if (!prog->data->LinkStatus)
4571 return false;
4572
4573 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4574 if (prog->_LinkedShaders[i] == NULL)
4575 continue;
4576
4577 const struct gl_shader_compiler_options *options =
4578 &ctx->Const.ShaderCompilerOptions[i];
4579
4580 if (options->LowerBufferInterfaceBlocks)
4581 lower_ubo_reference(prog->_LinkedShaders[i],
4582 options->ClampBlockIndicesToArrayBounds);
4583
4584 if (i == MESA_SHADER_COMPUTE)
4585 lower_shared_reference(prog->_LinkedShaders[i],
4586 &prog->Comp.SharedSize);
4587
4588 lower_vector_derefs(prog->_LinkedShaders[i]);
4589 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4590 }
4591
4592 return true;
4593 }
4594
4595 static void
4596 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4597 unsigned stage)
4598 {
4599 if (ctx->Const.GLSLOptimizeConservatively) {
4600 /* Run it just once. */
4601 do_common_optimization(ir, true, false,
4602 &ctx->Const.ShaderCompilerOptions[stage],
4603 ctx->Const.NativeIntegers);
4604 } else {
4605 /* Repeat it until it stops making changes. */
4606 while (do_common_optimization(ir, true, false,
4607 &ctx->Const.ShaderCompilerOptions[stage],
4608 ctx->Const.NativeIntegers))
4609 ;
4610 }
4611 }
4612
4613 void
4614 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4615 {
4616 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4617 prog->data->Validated = false;
4618
4619 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4620 *
4621 * "Linking can fail for a variety of reasons as specified in the
4622 * OpenGL Shading Language Specification, as well as any of the
4623 * following reasons:
4624 *
4625 * - No shader objects are attached to program."
4626 *
4627 * The Compatibility Profile specification does not list the error. In
4628 * Compatibility Profile missing shader stages are replaced by
4629 * fixed-function. This applies to the case where all stages are
4630 * missing.
4631 */
4632 if (prog->NumShaders == 0) {
4633 if (ctx->API != API_OPENGL_COMPAT)
4634 linker_error(prog, "no shaders attached to the program\n");
4635 return;
4636 }
4637
4638 #ifdef ENABLE_SHADER_CACHE
4639 /* If transform feedback used on the program then compile all shaders. */
4640 bool skip_cache = false;
4641 if (prog->TransformFeedback.NumVarying > 0) {
4642 for (unsigned i = 0; i < prog->NumShaders; i++) {
4643 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4644 }
4645 skip_cache = true;
4646 }
4647
4648 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4649 return;
4650 #endif
4651
4652 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4653
4654 prog->ARB_fragment_coord_conventions_enable = false;
4655
4656 /* Separate the shaders into groups based on their type.
4657 */
4658 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4659 unsigned num_shaders[MESA_SHADER_STAGES];
4660
4661 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4662 shader_list[i] = (struct gl_shader **)
4663 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4664 num_shaders[i] = 0;
4665 }
4666
4667 unsigned min_version = UINT_MAX;
4668 unsigned max_version = 0;
4669 for (unsigned i = 0; i < prog->NumShaders; i++) {
4670 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4671 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4672
4673 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4674 linker_error(prog, "all shaders must use same shading "
4675 "language version\n");
4676 goto done;
4677 }
4678
4679 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4680 prog->ARB_fragment_coord_conventions_enable = true;
4681 }
4682
4683 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4684 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4685 num_shaders[shader_type]++;
4686 }
4687
4688 /* In desktop GLSL, different shader versions may be linked together. In
4689 * GLSL ES, all shader versions must be the same.
4690 */
4691 if (prog->Shaders[0]->IsES && min_version != max_version) {
4692 linker_error(prog, "all shaders must use same shading "
4693 "language version\n");
4694 goto done;
4695 }
4696
4697 prog->data->Version = max_version;
4698 prog->IsES = prog->Shaders[0]->IsES;
4699
4700 /* Some shaders have to be linked with some other shaders present.
4701 */
4702 if (!prog->SeparateShader) {
4703 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4704 num_shaders[MESA_SHADER_VERTEX] == 0) {
4705 linker_error(prog, "Geometry shader must be linked with "
4706 "vertex shader\n");
4707 goto done;
4708 }
4709 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4710 num_shaders[MESA_SHADER_VERTEX] == 0) {
4711 linker_error(prog, "Tessellation evaluation shader must be linked "
4712 "with vertex shader\n");
4713 goto done;
4714 }
4715 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4716 num_shaders[MESA_SHADER_VERTEX] == 0) {
4717 linker_error(prog, "Tessellation control shader must be linked with "
4718 "vertex shader\n");
4719 goto done;
4720 }
4721
4722 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4723 *
4724 * "Linking can fail for [...] any of the following reasons:
4725 *
4726 * * program contains an object to form a tessellation control
4727 * shader [...] and [...] the program is not separable and
4728 * contains no object to form a tessellation evaluation shader"
4729 *
4730 * The OpenGL spec is contradictory. It allows linking without a tess
4731 * eval shader, but that can only be used with transform feedback and
4732 * rasterization disabled. However, transform feedback isn't allowed
4733 * with GL_PATCHES, so it can't be used.
4734 *
4735 * More investigation showed that the idea of transform feedback after
4736 * a tess control shader was dropped, because some hw vendors couldn't
4737 * support tessellation without a tess eval shader, but the linker
4738 * section wasn't updated to reflect that.
4739 *
4740 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4741 * spec bug.
4742 *
4743 * Do what's reasonable and always require a tess eval shader if a tess
4744 * control shader is present.
4745 */
4746 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4747 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4748 linker_error(prog, "Tessellation control shader must be linked with "
4749 "tessellation evaluation shader\n");
4750 goto done;
4751 }
4752
4753 if (prog->IsES) {
4754 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4755 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4756 linker_error(prog, "GLSL ES requires non-separable programs "
4757 "containing a tessellation evaluation shader to also "
4758 "be linked with a tessellation control shader\n");
4759 goto done;
4760 }
4761 }
4762 }
4763
4764 /* Compute shaders have additional restrictions. */
4765 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4766 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4767 linker_error(prog, "Compute shaders may not be linked with any other "
4768 "type of shader\n");
4769 }
4770
4771 /* Link all shaders for a particular stage and validate the result.
4772 */
4773 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4774 if (num_shaders[stage] > 0) {
4775 gl_linked_shader *const sh =
4776 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4777 num_shaders[stage], false);
4778
4779 if (!prog->data->LinkStatus) {
4780 if (sh)
4781 _mesa_delete_linked_shader(ctx, sh);
4782 goto done;
4783 }
4784
4785 switch (stage) {
4786 case MESA_SHADER_VERTEX:
4787 validate_vertex_shader_executable(prog, sh, ctx);
4788 break;
4789 case MESA_SHADER_TESS_CTRL:
4790 /* nothing to be done */
4791 break;
4792 case MESA_SHADER_TESS_EVAL:
4793 validate_tess_eval_shader_executable(prog, sh, ctx);
4794 break;
4795 case MESA_SHADER_GEOMETRY:
4796 validate_geometry_shader_executable(prog, sh, ctx);
4797 break;
4798 case MESA_SHADER_FRAGMENT:
4799 validate_fragment_shader_executable(prog, sh);
4800 break;
4801 }
4802 if (!prog->data->LinkStatus) {
4803 if (sh)
4804 _mesa_delete_linked_shader(ctx, sh);
4805 goto done;
4806 }
4807
4808 prog->_LinkedShaders[stage] = sh;
4809 prog->data->linked_stages |= 1 << stage;
4810 }
4811 }
4812
4813 /* Here begins the inter-stage linking phase. Some initial validation is
4814 * performed, then locations are assigned for uniforms, attributes, and
4815 * varyings.
4816 */
4817 cross_validate_uniforms(prog);
4818 if (!prog->data->LinkStatus)
4819 goto done;
4820
4821 unsigned first, last, prev;
4822
4823 first = MESA_SHADER_STAGES;
4824 last = 0;
4825
4826 /* Determine first and last stage. */
4827 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4828 if (!prog->_LinkedShaders[i])
4829 continue;
4830 if (first == MESA_SHADER_STAGES)
4831 first = i;
4832 last = i;
4833 }
4834
4835 if (!prog->data->cache_fallback) {
4836 check_explicit_uniform_locations(ctx, prog);
4837 link_assign_subroutine_types(prog);
4838 }
4839
4840 if (!prog->data->LinkStatus)
4841 goto done;
4842
4843 resize_tes_inputs(ctx, prog);
4844
4845 /* Validate the inputs of each stage with the output of the preceding
4846 * stage.
4847 */
4848 prev = first;
4849 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4850 if (prog->_LinkedShaders[i] == NULL)
4851 continue;
4852
4853 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4854 prog->_LinkedShaders[i]);
4855 if (!prog->data->LinkStatus)
4856 goto done;
4857
4858 cross_validate_outputs_to_inputs(prog,
4859 prog->_LinkedShaders[prev],
4860 prog->_LinkedShaders[i]);
4861 if (!prog->data->LinkStatus)
4862 goto done;
4863
4864 prev = i;
4865 }
4866
4867 /* Cross-validate uniform blocks between shader stages */
4868 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4869 if (!prog->data->LinkStatus)
4870 goto done;
4871
4872 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4873 if (prog->_LinkedShaders[i] != NULL)
4874 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4875 }
4876
4877 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4878 * it before optimization because we want most of the checks to get
4879 * dropped thanks to constant propagation.
4880 *
4881 * This rule also applies to GLSL ES 3.00.
4882 */
4883 if (max_version >= (prog->IsES ? 300 : 130)) {
4884 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4885 if (sh) {
4886 lower_discard_flow(sh->ir);
4887 }
4888 }
4889
4890 if (prog->SeparateShader)
4891 disable_varying_optimizations_for_sso(prog);
4892
4893 if (!prog->data->cache_fallback) {
4894 /* Process UBOs */
4895 if (!interstage_cross_validate_uniform_blocks(prog, false))
4896 goto done;
4897
4898 /* Process SSBOs */
4899 if (!interstage_cross_validate_uniform_blocks(prog, true))
4900 goto done;
4901 }
4902
4903 /* Do common optimization before assigning storage for attributes,
4904 * uniforms, and varyings. Later optimization could possibly make
4905 * some of that unused.
4906 */
4907 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4908 if (prog->_LinkedShaders[i] == NULL)
4909 continue;
4910
4911 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4912 if (!prog->data->LinkStatus)
4913 goto done;
4914
4915 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4916 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4917 }
4918
4919 if (ctx->Const.LowerTessLevel) {
4920 lower_tess_level(prog->_LinkedShaders[i]);
4921 }
4922
4923 /* Call opts before lowering const arrays to uniforms so we can const
4924 * propagate any elements accessed directly.
4925 */
4926 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4927
4928 /* Call opts after lowering const arrays to copy propagate things. */
4929 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4930 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4931
4932 propagate_invariance(prog->_LinkedShaders[i]->ir);
4933 }
4934
4935 /* Validation for special cases where we allow sampler array indexing
4936 * with loop induction variable. This check emits a warning or error
4937 * depending if backend can handle dynamic indexing.
4938 */
4939 if ((!prog->IsES && prog->data->Version < 130) ||
4940 (prog->IsES && prog->data->Version < 300)) {
4941 if (!validate_sampler_array_indexing(ctx, prog))
4942 goto done;
4943 }
4944
4945 /* Check and validate stream emissions in geometry shaders */
4946 validate_geometry_shader_emissions(ctx, prog);
4947
4948 store_fragdepth_layout(prog);
4949
4950 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4951 goto done;
4952
4953 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4954 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4955 * anything about shader linking when one of the shaders (vertex or
4956 * fragment shader) is absent. So, the extension shouldn't change the
4957 * behavior specified in GLSL specification.
4958 *
4959 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4960 * "Linking can fail for a variety of reasons as specified in the
4961 * OpenGL ES Shading Language Specification, as well as any of the
4962 * following reasons:
4963 *
4964 * ...
4965 *
4966 * * program contains objects to form either a vertex shader or
4967 * fragment shader, and program is not separable, and does not
4968 * contain objects to form both a vertex shader and fragment
4969 * shader."
4970 *
4971 * However, the only scenario in 3.1+ where we don't require them both is
4972 * when we have a compute shader. For example:
4973 *
4974 * - No shaders is a link error.
4975 * - Geom or Tess without a Vertex shader is a link error which means we
4976 * always require a Vertex shader and hence a Fragment shader.
4977 * - Finally a Compute shader linked with any other stage is a link error.
4978 */
4979 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4980 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4981 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4982 linker_error(prog, "program lacks a vertex shader\n");
4983 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4984 linker_error(prog, "program lacks a fragment shader\n");
4985 }
4986 }
4987
4988 done:
4989 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4990 free(shader_list[i]);
4991 if (prog->_LinkedShaders[i] == NULL)
4992 continue;
4993
4994 /* Do a final validation step to make sure that the IR wasn't
4995 * invalidated by any modifications performed after intrastage linking.
4996 */
4997 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4998
4999 /* Retain any live IR, but trash the rest. */
5000 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5001
5002 /* The symbol table in the linked shaders may contain references to
5003 * variables that were removed (e.g., unused uniforms). Since it may
5004 * contain junk, there is no possible valid use. Delete it and set the
5005 * pointer to NULL.
5006 */
5007 delete prog->_LinkedShaders[i]->symbols;
5008 prog->_LinkedShaders[i]->symbols = NULL;
5009 }
5010
5011 ralloc_free(mem_ctx);
5012 }